AUTOMATED FUNCTIONS IN TRAIN TRAFFIC CONTROL - PROBLEMS AND SOLUTIONS

Bengt Sandblad
A W Andersson
G Isaksson-Lutteman
A Kauppi

Human-Computer Interaction
Dept. of Information Technology
Uppsala University
http://www.it.uu.se/research/hci

Agenda

- What is train traffic control (TTC)?
- Automation in TTC
- Automation problems
 - General
 - In TTC
- Non-autonomous automated systems
- Tests and experiences in Swedish TTC
Train traffic control in Sweden

- 8 regional traffic control centres
- Swedish Railway Administration
- Many traffic operators (~60)
- Total track 11 904 km
 - Single 8 099 km
 - Double and more 3 805 km

A traffic control centre today
Automated systems

- Automated systems are common and necessary.
- Different types, e.g.
 - In switchboxes
 - Inside the control system
 - In separate systems
- Different functionality, e.g.
 - Based on train identification
 - Based on time-tables
 - First in – first served

What is automation?

Purpose:
- "To achieve a proper relationship and distribution between the behaviour and tasks of the technology and the human operator"

Strategy:
- "Replacement of human labor (physical or mental)"
Proper relationship?

- MABA-MABA........
 - (Men/Machines are better at...)

- Degree of automation

| Human must do all | Machine ignores the human |

Proper relationship?

Authority?

- Who is in charge?
- Does the human operator know what is going on?
- Can/shall the system ”take over”?
 - Can be good and necessary
 - Can cause incidents and accidents
Problems with automation

Situation awareness requires that the operator can
- Observe (past/present status)
- Comprehend (past/present status)
- Project (future status)

Automated functions can reduce situation awareness and cause automation surprises.

Problems with automation

- Designing automated functions requires a complete model of the system to be controlled.

- Very complex and dynamic systems are often underspecified.
- I.e. automated functions can (sometimes or often) be incorrect or inappropriate.
Problems with automation

- In order to be in-the-loop and have full control, the human operator often turns the automated functions off.
- This is common in disturbed and problematic situations, i.e. when help is most needed.

"The irony of automation"

Decision support systems

- DSS can be considered as automated systems
- Different types, e.g.
 - Optimizing algorithms for optimal solutions to traffic conflicts
 - Supply the operator with decision relevant information
- Different modes, e.g.
 - Suggest solutions
 - Executes with or without informing operator
Automation in Train Traffic Control

- The work (dispatching, control) is very complex
- The human operator must be supported
- But how?

Automation in TTC today

- There are many problems related to automation, e.g.
 - Automated systems are often turned off in order to obtain full control (avoid surprises)
 - Decision support is not used, because of incomplete models, lack of transparency, time etc.
A new approach

- The human operator (traffic controller, dispatcher) must be supported, otherwise the tasks are impossible
- Efficient support without disturbing
- Support when it is most needed
- Let the human operator always
 - be focused on the most important
 - be "in-the-loop"

Autonomy

- Autonomous automates
 - Act independently and can change the operator’s plan
 - Decision is inseparable from execution

- Non-autonomous automates
 - Only execute what is planned, actions are always transparent
 - Decision is separated from execution
 - Decision at one time
 - Execute when appropriate
A new control strategy

- Traffic control through real-time *re-planning* of a *traffic plan*

- Automatic execution of the continuously updated traffic plan
 (AEF=Automatic Execution Function)

- Automated functions are made completely predictable, by being non-autonomous
The new user interface

- Supports situation awareness
 - Dynamic traffic data
- Automated functions can never change the plan
 - The AEF only executes exactly what is planned (non-autonomous)
- Decision support
 - Detect and show conflicts
 - Show possible solutions

Detection of conflicts

Station track conflict

Line track conflict
Display of automation (AEF) aspects

Indicates the actions of the AEF

Status of the AEF for each station (of/off)

AEF turned off at one station
Conclusions

Evaluation of 9 months of operative tests shows that:

- Non-autonomous systems support the human operator in all situations
- There are no "surprises" or uncertainties
- The human operator can focus on solving conflicts and plan traffic
- The Automatic Execution Function (AEF) executes the plan when appropriate
- If there are remaining conflicts the plan is not executed
- The interface shows what the AEF is doing and when

Conclusions

- Using non-autonomous systems we can reach a high degree of automation without problems
- Using autonomous systems even a low degree of automation will cause problems
- Automating decisions does not work in practice
- Supporting decision making by improved information will increase efficiency
More information about our research can be found at:

http://www.it.uu.se/research/project/ftts