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Abstract

In recent years, many general presentations (metamodels) for calculi with name-
passing, either operational or denotational in flavour, have been proposed. In this
paper, we investigate the connections among some of these proposals, namely per-
mutation algebras, named sets and sheaf categories, with the aim of establishing a
bridge between different approaches to the abstract specification of nominal calculi.
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Introduction

Since the introduction of π-calculus, the notion of name has been recognized
as central in models for concurrency, mobility, staged computation, metapro-
gramming, memory region allocation, etc. In recent years, several approaches
have been proposed as general frameworks (metamodels) for streamlining the
development of these models featuring name passing and/or allocation.

One of the most common approaches is to consider categories of functors
over the category I of finite sets and injective functions, such as presheaves
SetI; see e.g. Moggi, Stark, Hofmann, Fiore and Turi, among others [13, 16,
8, 5]. Presheaves represent “staged computations”, indexed by the (finite)
sets of names currently allocated. In these categories, the classical results for
definining initial algebra/final coalgebra can be extended to deal with names,
and thus are well suited for interpreting specifications given by polynomial
functors. A variation considers only a subcategory of sheaves, leading to
models supporting classical logic; see e.g. Stark, Hofmann, and others [16,8,2].
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An alternative approach, based on the Fraenkel-Mostowski permutation
model of set theory with atoms (FM-sets), is proposed by Gabbay and Pitts [6].
A different theory of sets with permutations, named sets, has been introduced
as a basis for an operational model of History Dependent automata [14]; while
for the development of a structured coalgebraic theory in that formalism also
permutation algebras, which are models of suitable algebraic specifications of
permutations, have been considered by Ferrari, Montanari, Pistore [4].

It comes as no surprise that there are so many approaches: despite all
ultimately cope with the same issues, they are inspired by different aims
and perspective, leading to different solutions and choices. It is therefore
important to investigate the relationships between these metamodels. First,
this will point out similarities and differences between metamodels. Possi-
bly, apparently peculiar idiosyncrasies are either justified, or revealed to be
inessential. Moreover, these interconnections allow for transferring properties,
techniques and constructions among metamodels, thus cross-fertilizing each
other. In fact, this formal comparison allows for highlighting weak points of
some metamodel, and possibly for suggesting improvements.

However, these approaches are not always easily comparable, also because
they dwell in different meta-logical settings (category theory, (non-standard)
set theory, algebraic specifications, automata theory. . . ). So far we know
that the model of FM-sets with finite support used in [6] is equivalent to
the category of sheaves used in [8, 2], which, of course, is a full reflective
subcategory of SetI used in [8,5]. However, the big picture is still incomplete,
since the connections with other approaches, and in particular with those
rooted on permutation algebras, are still unclear.

This is indeed the aim of this work: we study the connections between per-
mutation algebras, named sets and sheaf categories. Permutation algebras are
algebras over permutation signatures. Usually we are interested in permuta-
tion algebras whose elements are finitely supported—i.e., we rule out processes
and terms with infinite free names at once. One of the results of this paper is
that permutation algebras with finite support are equivalent to the category
of pullback preserving functors I → Set, i.e., the so-called Schanuel topos. 1

On the other hand, named sets have been introduced as a building block of
History Depended Automata, an operational model whose states are equipped
with a set of names and name bijections. To some extent, named sets have
been intended to be an implementation of permutation algebras. In this paper,
we make this connection precise: It turns out that named sets form a category
which is equivalent to the category of finite kernel algebras with finite support.

These results confirm that permutation algebras with finite support (and
named sets) are a good metamodel for formalisms dealing with names, as
much as Sh(Iop) and the FM-sets are.

1 A stronger result, stating the equivalence between the Schanuel topos and the category
of permutation algebras over the signature containing only finite kernel premutations, has
been omitted from this work due to lack of space; we refer then the reader to [7].
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Synopsis.

In Section 1 we recall the basic definitions about (finite kernel) permuta-
tions, permutation algebras, and finite support. In Section 2 we show that
permutation algebras can be seen as continuous G-sets, and therefore that per-
mutation algebras with finite support ultimately correspond to the Schanuel
topos. In Section 3 we consider named sets, and we show that they also form
a category which is equivalent to the category of finite kernel permutation al-
gebras with finite support. Finally, some conclusions are drawn in Section 4.

1 Permutation algebras

This section recalls the main definitions on permutation algebras: They are
mostly drawn from [14], with some additional references to the literature.

Definition 1.1 (permutation group) Given a set A, a permutation on A
is a bijective endofunction on A. The set of all such permutations is denoted
by Aut(A), and it forms a group, called the permutation group of A, where
the operation is function composition: For all π1, π2 ∈ Aut(A), π1π2 , π1 ◦π2.

On sets, permutations coincide with automorphisms (because there is no struc-
ture to preserve), hence the notation denoting the permutation group. We
stick however to permutations since now this is almost the standard usage in
theoretical computer science, and it is the term used in our main references:
See [14, Section 2.1] and the initial paragraphs of [6, Section 3].

Definition 1.2 (finite kernel permutations) Let π ∈ Aut(A) be a permu-
tation on A. The kernel of π is defined as ker(π) , {a ∈ A | π(a) 6= a}. The
set Autfk(A) of finite kernel permutations forms a subgroup of Aut(A).

Let us now fix A as ω = {0, 1, 2, . . .}, the set of natural numbers. In the
paper we will restrict our attention to permutations on ω, i.e., belonging to
Aut(ω), even if our definitions and remarks could apply in full generality.

Definition 1.3 (permutation signature and algebras) The permuta-
tion signature Σπ is given by the set of unary operators {π̂ | π ∈ Aut(ω)},

together with the pair of axioms schemata îd(x) = x and π̂1(π̂2(x)) = π̂1π2(x).

A permutation algebra A = (A, {π̂A}) is an algebra for Σπ. A permutation
morphism σ : A → B is an algebra morphism, i.e., a function σ : A → B
such that σ(π̂A(x)) = π̂B(σ(x)). Finally, Alg(Σπ) (often shortened as Algπ)
denotes the category of permutation algebras and their morphisms.

For example, the same set of permutations Aut(ω) forms the carrier of
a permutation algebra. An interesting example is given by the permutation
algebra for the π-calculus: The carrier contains all the processes, up-to struc-
tural congruence, and the interpretation of a permutation is the associated
name substitution (see also [14, Definition 15 and Section 3]).

We give now some additional definitions, concerning the finite kernel prop-
erty, again drawn from [14, Section 2.1].
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Definition 1.4 (algebras for finite kernel) The finite kernel permutation
signature Σfk

π is obtained as the subsignature of Σπ restricted to those unary
operators induced by finite kernel permutations.

The associated category of algebras is Alg(Σfk
π ), shortened as Algfk

π .

Of course, finite kernel does not imply finite carrier, since each algebra
in Algπ belongs also to Algfk

π , thus the former is a subcategory of the latter.
However, Algfk

π has a countable set of operators and axioms, and thus it is
more amenable to the standard results out of the algebraic specification mold.

An example of algebra with finite kernel and infinite carrier is the per-
mutation algebra for the π-calculus with bound parallelism, i.e., limited to
those recursive processes whose unfolding can generate only a finite number
of names (see [14, Definition 46]).

We provide now a final list of definitions, concerning the finite support
property. They rephrase those definitions in [14, Section 2.1], according to [6,
Definition 3.3], and to our needs in the following sections.

Definition 1.5 (finite support algebras) Let A be a permutation algebra,
and let a ∈ A. We denote as fixA(a) the set of permutations fixing a in A,
i.e., those permutations π such that π̂A(a) = a.

Moreover, let X ⊆ ω be a set. We denote as fix(X) the set of permutations
fixing X (i.e., those permutations π such that π(k) = k for all k ∈ X), and
we say that the set X supports the element a if all permutations fixing X also
fix a in A (i.e., if fix(X) ⊆ fixA(a)).

An algebra A is finitely supported if for each element of its carrier there
exists a finite set supporting it. The category of all finitely supported algebras
is denoted by FSAlg(Σπ), shortened as FSAlgπ.

It is important to remark that not all the algebras in Algπ are finitely sup-
ported (hence, neither those in Algfk

π ). For example, let us consider the algebra
(A, {π̂ | π ∈ Autfk(ω)}), where A contains id and the following permutation

ρ(i) =

{
i − 1 if i = 2k + 1

i + 1 if i = 2k
= (1, 0, 3, 2, 5, 4, 7, 6 . . . )

and it is closed under precomposition with finite kernel permutations. Let
π̂(ρ) , πρ: This algebra is in Algπ, but it is not finitely supported. Indeed,
for any X ⊂ ω finite, we can choose π ∈ Autfk(ω) such that π(x) = x for all
x ∈ X, but which swaps max(X) + 1 and max(X) + 2; then π̂(ρ) = πρ 6= ρ.

In general, an element of the carrier of an algebra may have different
sets supporting it. The following proposition, mirroring [6, Proposition 3.4],
ensures that a minimal support does exist.

Proposition 1.6 Let A be a permutation algebra, and let a ∈ A. If a is
finitely supported, then there exists a least finite subset of ω supporting it.
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Given an algebra A, and a finitely supported element a ∈ A, we call support
of a the (necessarily unique) least subset supporting it, denoted by suppA(a).

It is easy to see that fixA(a) always forms a group. Furthermore, the
permutations fixing an element have a strong link to its support. We tighten
up this section with a technical lemma relating a simple result, which is needed
later on, concerning permutations preserving the support.

Lemma 1.7 (preserving supports) Let A be a permutation algebra, and
let a ∈ A be a finitely supported element. Moreover, let spA(a) be the set of
permutations preserving the support of a (i.e., spA(a) , {π | π(suppA(a)) =
suppA(a)}). Then, spA(a) is a group and fixA(a) ⊆ spA(a).

2 Permutation algebras and continuous G-sets

In this section we show that the categories of algebras Algπ and Algfk
π consid-

ered above are strictly related to a well-known notion of algebraic topology,
namely that of (continuous) G-sets. This will allow for taking advantage of a
large and well-established theory, which will be used in the next section.

Definition 2.1 (G-sets) Let G be a group. A G-set is a pair (X, ·X) where
X is a set and ·X : X × G → X is a right G-action, that is

x ·X id = x (x ·X g1) ·X g2 = x ·X (g1g2)

A morphism f : (X, ·X) → (Y, ·Y ) between G-sets is a function f : X → Y
such that f(x ·X g) = f(x) ·Y g for all x ∈ X.

The G-sets and their morphisms form a category denoted by BGδ.

Let us consider the G-sets when G is either Aut(ω) or Autfk(ω). Clearly,
every Aut(ω)-set is also a Autfk(ω)-set (just by restricting the action to the
finite kernel permutations), mimicking the correspondence between Algπ and
Algfk

π . In fact, a stronger equivalence holds between the formalisms, as it is
put in evidence by the result proved below.

Proposition 2.2 Algπ
∼= BAut(ω)δ and Algfk

π
∼= BAutfk(ω)δ.

Proof. Let A a permutation algebra. We define a corresponding Aut(ω)-set
G(A) = (A, ·G(A)) where a ·G(A) π , π̂A(a) for all a ∈ A. On the other hand, if
(X, ·X) is a Aut(ω)-set, the corresponding algebra X = (X, {πX}) is defined
by taking π̂X(x) , x ·X π for π ∈ Aut(ω).

Let A,B be two permutation algebras. A function f : A → B is a mor-
phism f : A → B in Algπ iff f(π̂A(a)) = π̂B(f(a)) for all permutations π and
a ∈ A, which in turn holds iff f(a ·G(A) π) = f(a) ·G(B) π for all π and a, which
equivalently states that f : (A, ·G(A)) → (B, ·G(B)) is a morphism in BAut(ω)δ.
Clearly, this correspondence is full and faithful, hence the thesis.

Using the same argument, we have also that Algfk
π
∼= BAutfk(ω)δ. 2
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Also the subcategory of algebras with finite support (possibly over only
finite kernel permutations) can be recasted in the more general setting of G-
sets, but to this end we need to recall some notions from topology theory; see
e.g. [10] for a presentation of these concepts in the context of general topology,
and [11, Section V.9] and [12, II] in the context of category and topos theory.

Definition 2.3 (topological spaces) A topological space is a pair
(X,O(X)) for X a set and O(X) ⊆ ℘(X) (the topology over X) is closed
with respect to arbitrary union and finite intersection, and ∅, X ∈ O(X).

A function f : X → Y is a continuous map f : (X,O(X)) → (Y,O(Y )) if
f−1(U) ∈ O(X) for all U ∈ O(Y ).

Topological spaces and continuous maps form a category, denoted top.

The elements of O(X) are referred to as the open sets of the topology.

Example 2.4 The smallest (i.e., coarsest) topology is O(X) = {∅, X}. On
the other hand, the finest topology is the discrete topology, where O(X) =
℘(X). It is easy to prove that a topology is discrete if and only if {x} ∈ O(X)
for all x ∈ X, i.e., if every point is separated from the others (hence the name).
Clearly, every function is continuous with respect to the discrete topology.

Remark 2.5 (product of spaces) The category top is complete and co-
complete [11, Section V.9]. In particular, given a family of topological spaces
(Xi,O(Xi)) ∈ top, indexed by i ∈ I, the product

∏
i∈I(Xi,O(Xi)) is the topo-

logical space whose space is X =
∏

i∈I Xi, and the topology is the smallest
topology such that the projections πi : X → Xi are continuous. If I is finite,
then O(X) =

∏
i∈I O(Xi). This property does not hold however for I infinite.

We recall now a last standard definition, which generalizes Definition 2.1.

Definition 2.6 (topological groups and continuous G-sets) A group G
is a topological group if its carrier is equipped with a topology, and its multi-
plication and inverse are continuous with respect to this topology.

A G-set (X, ·X) is continuous if G is topological and the action ·X : X ×
G → G is continuous with respect to X equipped with the discrete topology.

A morphism f : (X, ·X) → (Y, ·Y ) between continuous G-sets is a function
f : X → Y which respects the actions.

For a given topological group G, continuous G-sets and their morphisms
form a category, denoted by BG.

Notice that for any group G, the category of all G-sets is the category of
continuous G-sets where G is taken with the discrete topology – hence the
notation BGδ from [12] we have used in Definition 2.1.

Remark 2.7 (permutation groups as topological spaces) Let us con-
sider the space N, given as the set ω of natural numbers equipped with the
discrete topology. The Baire space is the topological space

∏∞

i=0 N = Nω,
equipped with the infinite product topology. A base of this topology is given by
the sets of the form

∏∞

i=0 Ai, where Ai 6= ω only for finitely many indexes i.
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Let us now consider the groups Aut(ω) and Autfk(ω). As described
in [12, Section III.9] for Aut(ω), the carriers of these groups can be seen
as subspaces of the Baire space, where each π corresponds to the infinite list
(π(0), π(1), π(2), . . . ). Now, both Aut(ω) and Autfk(ω) inherit a topology from
Nω: Their open sets are of the form U ∩Aut(ω) and U ∩Autfk(ω), for U open
set of Nω. We can therefore consider the categories BAut(ω) and BAutfk(ω)
of continuous Aut(ω)-sets and continuous Autfk(ω)-sets, respectively.

We are now ready to prove our first main result, namely, the correspon-
dence between continuous G-sets and permutation algebras with finite sup-
port. We first state a technical lemma [12, I, Exercise 6].

Lemma 2.8 Let (X, ·X) be a G-set, and for each x ∈ X let Ix , {g ∈ G |
x ·X g = x} be denoted the isotropy group of x. Then, (X, ·X) is continuous
iff all its isotropy groups are open sets in G.

Theorem 2.9 FSAlgπ
∼= BAut(ω) and FSAlgfk

π
∼= BAutfk(ω).

Proof. In order to prove FSAlgfk
π

∼= BAutfk(ω), we show that the functor
G of Proposition 2.2 maps algebras with finite support and finite kernel to
continuous Autfk(ω)-sets, and vice versa.

Let A = (A, {π̂A}) be an algebra in FSAlgfk
π ; the corresponding Autfk(ω)-

set is (A, ·G(A)), where a ·G(A) π , π̂A(a) for all a ∈ A. For Lemma 2.8, G(A)
is continuous if and only if for all a ∈ A, Ia is open. Indeed:

Ia =
⋃

π∈Ia

∞∏

i=0

{π(i)}

=
⋃

π∈Ia

(
∞∏

i=0

Aπ
i

)
∩ Autfk(ω) where Aπ

i ,

{
{π(i)} if i ∈ supp(a)

ω otherwise

=

( ⋃

π∈Ia

∞∏

i=0

Aπ
i

)
∩ Autfk(ω) (1)

which is open in Autfk(ω) because each
∏∞

i=0 Aπ
i is open in Nω since suppA(a) is

finite and thus only finitely many Aπ
i ’s are different from ω (see Remark 2.7). 2

On the other hand, let (X, ·X) be a continuous Autfk(ω)-set; we prove
that X = (X, {π̂X}) is in FSAlgfk

π . Clearly X is a finite kernel permutation
algebra. By Lemma 2.8, for any x ∈ X, Ix is an open set of Autfk(ω), hence
Ix = U ∩ Autfk(ω) for some U open set of Nω. More explicitly, Ix can be
written as follows

Ix =

(⋃

i∈I

∞∏

j=0

Xij

)
∩ Autfk(ω)

2 We can prove the equivalence (1) also directly. Obviously, Ia ⊆
(⋃

π∈Ia

∏
∞

i=0
Aπ

i

)
∩

Autfk(ω). Let π ∈
(⋃

π∈Ia

∏
∞

i=0
Aπ

i

)
∩ Autfk(ω); then, there exists ρ ∈ Ia such that for all

i ∈ suppA(a) : π(i) = ρ(i). Since ρ(a) = a, also π(a) = a, thus π ∈ Ia.
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for some family of indexes I, and where for each i ∈ I there exists a finite
Ji ⊂ ω such that Xij 6= ω only for j ∈ Ji. Since id ∈ Ix (it is a group),
there exists i0 ∈ I such that id ∈

∏∞

j=0 Xi0j. We prove that the finite set

J , Ji0 supports x. Let π ∈ Autfk(ω) fixing J . For all j ∈ ω, if j ∈ J
then π(j) = j ∈ Xi0j, otherwise Xi0j = ω. In both cases, π(j) ∈ Xi0j. So
π ∈

∏∞

j=0 Xi0j, and therefore π ∈ Ix, i.e. π̂(x) = x ·X π = x, hence the thesis.

For proving FSAlg ∼= BAut(ω) we can reply the argument above, just
replacing Autfk(ω) with Aut(ω). 2

Using this result, we can take advantage of a well-established theory about
continuous G-sets for proving properties about categories of permutation al-
gebras with finite support. In particular, we establish easily a connection with
presheaf categories. Recall that the category of presheaves over a small cate-
gory C is the category of functors SetC

op

, and natural transformations among
them. Many authors used the category SetI, where I is the category of finite
subsets of ω and injective maps, for modeling the computational notion of dy-
namic allocation of names or locations; see e.g. [13,16,8,5]. For our purposes,
we consider a particular subcategory of SetI, namely the category of sheaves
with respect to the atomic topology, denoted by Sh(Iop). This subcategory is
conveniently characterized by the property below [9, Example 2.1.11(h)].

Proposition 2.10 Sh(Iop) is the full subcategory of SetI of pullback preserv-
ing functors.

The category Sh(Iop) is often called the Schanuel topos. It features the same
important properties of SetI above: It is a topos (and hence it is cartesian
closed), the functor N = y(1) is a sheaf, and initial algebras and final coalge-
bras of polynomial functors are pullback preserving. Therefore, Sh(Iop) can be
used in place of SetI for giving the semantics of languages with dynamic name
allocations, as in [16, 17, 8, 2] and ultimately also in [6] (being the Fraenkel-
Mostowsky set theory essentially equivalent to Sh(Iop)). The main difference
between SetI and Sh(Iop) is that the latter is a Boolean topos [12, Section III.8,
p. 150], while the former is not. Hence, Sh(Iop) is a model for classical logic,
instead of the usual intuitionistic (extensional) higher order logic of topoi.

Now, for [12, Section III.9, Corollary 3], we know that BAut(ω) ∼= Sh(Iop).
Thus, as an immediate corollary of Theorem 2.9 we have that the category of
permutation algebras with finite support, is equivalent to the Schanuel topos.

Corollary 2.11 FSAlgπ
∼= Sh(Iop).

In other words, permutation algebras with finite support correspond to
pullback-preserving functors I → Set, and thus they form a Boolean topos
with enough structure for defining the semantics of languages with dynamic
name allocation, such as π-calculus, mobile ambients, etc. 3

3 Actually, we can prove also the stronger equivalence FSAlgfkπ
∼= Sh(Iop). The proof of this

fact is quite technical and lengthy, so due to lack of space we refer the reader to [7].
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Fig. 1. The Permutation Algebra Cube, first version.

We summarize the relationships we have established among permutation
algebras and G-sets in the diagram in Figure 1.

It is interesting to notice that the inclusion functors BAut(ω) ↪→ BAut(ω)δ

and BAutfk(ω) ↪→ BAutfk(ω)δ have right adjoints; the latter is e.g. defined
on the objects as follows

r : BAutfk(ω)δ → BAutfk(ω) (X, ·X) 7→ ({x ∈ X | Ix open for Autfk(ω)}, ·X)

and it is the restriction on morphisms. Therefore, r maps every BAutfk(ω)δ-
set to the largest continuous BAutfk(ω)-set contained in it. Translating r to
permutation algebras along the equivalences, this means that there exists

r′ : Algfk
π → FSAlgfk

π (A, {π̂A}) 7→ (B, {π̂A|B})

where B , {a ∈ A | fixA(a) open for Autfk(ω)}. Now, fixA(a) is open if
there exists a finite J ⊂ ω such that for fix(J) ∩ Autfk(ω) ⊆ fixA(a) (see
the proof of Theorem 2.9). This corresponds exactly to say that a has finite
support, hence we can define directly r′(A) = {a ∈ A | suppA(a) finite}.

3 Permutation algebras and named sets

Named sets are the building blocks of HD-automata, the implementation coun-
terpart of permutation algebras. The definitions below are lifted from [4, Sec-
tion 3.1], and simplified according to our needs.

Definition 3.1 (named sets) A named set N is a triple

N = 〈QN , ‖ · ‖N : QN → ω,GN :
∏

q∈QN
℘(Aut(‖q‖N))〉

where QN is a set of states; ‖ · ‖N is the enumerating function; and for all
q ∈ QN , the set GN(q) is a subgroup of Aut(‖q‖N) (hence, closed with respect
to inverse and identity), and it is called the permutation group of q.

In this definition, and also in the following, we adopt the usual “set-theoretic”
convention of representing finite ordinals by natural numbers, thus 0 = ∅ and
n = {0, . . . , n − 1}. Therefore, Aut(‖q‖N) = Aut({0, . . . , ‖q‖N − 1}).
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Intuitively, a state in QN represents a process, and thus the function ‖ · ‖N

assigns to each state the number of variables possibly occurring free in it; in
other words, it denotes a canonical choice of its free variables. Finally, GN

denotes for each state the group of renamings under which it is preserved, i.e.,
those permutations on names that do not interfere with its possible behavior.
Note also that GN(q) = {id} if ‖q‖N = 0.

Definition 3.2 (category of named sets) Let N , M be named sets. A
named function H : N → M is a pair

H = 〈h : QN → QM , Λh :
∏

q∈QN
℘(I(‖h(q)‖M , ‖q‖N))〉

for h a function and Λh(q) a set of injections from ‖h(q)‖M to ‖q‖N , satisfying
the additional condition

GN(q) ◦ λ ⊆ Λh(q) = λ ◦ GM(h(q)) ∀λ ∈ Λh(q)

Finally, NSet denotes the category of named sets and their morphisms.

So, a named function is a state function, equipped with a set of injective
renamings for each q ∈ QN , which are somewhat compatible with the permu-
tations in GN(q) and GM(h(q)) (and such that λh(q) = ∅ if ‖h(q)‖M = 0). In
other words, “the whole set of Λh(q) must be generated by saturating any of
its elements by the permutation group of h(q), and the result must be invari-
ant with respect to the permutation group of q” [4, Section 3.1]. In particular,
the identity on N is 〈id, Aut(‖ · ‖N)〉, and composition is defined as expected.

Example 3.3 Let us consider a few simple examples. Since 1 = {0} is the
singleton set, both N1 = 〈1, ‖0‖ = 1, Aut(1) = {id}〉 and Np

2 = 〈1, ‖0‖ =
2, Aut(2) = {id, (1, 0)}〉 are named sets: same set of states, different enumer-
ating functions. Instead, N i

2 = 〈1, ‖0‖ = 2, {id} ⊆ Aut(2)〉 is a named set
with the same set of states and the same enumerating function of Np

2 , but
with a different permutation group.

Notice that there is no named function from Np
2 to N1, since any injection

λ, when post-composed with Aut(2), generates the whole I(1, 2). Instead, de-
noting by Ij, for j = 0, 1, the set containing the injection mapping 0 to j, then
〈id, Ij〉 is a named function from N i

2 to N1, while 〈id, I0 ∪ I1 = I(1, 2)〉 is not.

Similarly, there is no named function from Np
2 to N i

2, while 〈id, Aut(2)〉 :
N i

2 → Np
2 (and it does not exist for any other choice of the set of injections

Λ(1) ⊆ Aut(2)). In fact, it is easy to see that, given named sets 〈Q, ‖ · ‖, G1〉
and 〈Q, ‖ · ‖, G2〉 (i.e., same state set and enumerating function, different per-
mutation groups), with G1(q) a subgroup of G2(q) for all q ∈ Q, then 〈id,G2〉
is a well-defined named function from the former named set to the latter.

In the remaining of this section we relate FSAlgfk
π , the category of finitely

supported, finite kernel permutation algebras and their morphisms, and NSet,
the category of named sets. We plan to sharpen and make more concise some
of the results presented in [14, Section 6].

10
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Summarizing, Proposition 3.4 and Proposition 3.7 (and the “canonical”
version of the latter, Proposition 3.13: See later) prove the existence of suit-
able functors between the underlying categories, generalizing the functions on
objects presented as Definition 49 and Definition 50, respectively, in [14, Sec-
tion 6]; while Theorem 3.14 extends to a categorical equivalence the corre-
spondence on objects proved in Theorem 51 of the same paper.

3.1 From named sets to permutation algebras

The functor from named sets to permutation algebras is obtained by a free
construction, (apparently) analogous to the standard correspondence between
sets and algebras. We need to introduce some notation. For π ∈ Aut(n) and
π′ ∈ Autfk(ω), for n ∈ ω, let us denote by [π, π′] ∈ Autfk(ω) the completion of

π with π′, defined as [π, π′](i) ,

{
π(i) if i < n

π′(i − n) + n otherwise

Proposition 3.4 (from sets to algebras) Let FO be the function mapping
each named set N to the finite kernel permutation algebra freely generated from
the elements of QN (considered as new constants), modulo the equivalence
≡N induced by set of axioms associated to the permutations in GN , that is,

[̂π, π′]F (N)(q) ≡N q (i.e., a suitable completion of π) if π ∈ GN(q).

Moreover, given a named function H : N → M , for each q ∈ QN let us
choose an injection λq ∈ Λh(q), and a permutation λ̂q ∈ Aut(‖q‖N) extending

λq. Let us denote by Hλ : QN → QM the function Hλ(q) = [λ̂q, id](h(q)) for
all q ∈ Q. Then, let FA be the function associating to each named function H
the free extension of the function Hλ.

The pair F = 〈FO, FA〉 defines a functor from NSet to FSAlgfk
π .

Proof. The carrier of FO(N) is {π(q) | q ∈ QN , π ∈ Autfk(ω)}/≡N . Thus, it
is easy to see that the resulting algebra has finite support, proving that each
element [π(q)]N is supported by the set π({0, . . . , ‖q‖N −1}). In order to prove
this, we must show that each permutation π′ fixing π({0, . . . , ‖q‖N − 1}) also
fixes π̂F (N)(q). Then we have that

∀k′ ∈ π(‖q‖N) : π′(k′) = k′ =⇒ ∀k < ‖q‖N : π′(π(k)) = π(k)

=⇒ ∀k < ‖q‖N : π−1(π′(π(k))) = k

=⇒ ̂(π−1π′π)F (N)(q) ≡N q

=⇒ π̂−1
F (N)(π̂

′
F (N)(π̂F (N)(q))) ≡N q

=⇒ π̂′
F (N)(π̂F (N)(q)) ≡N π̂F (N)(q)

Let us now consider a named set function H : N → M . The function Hλ

can be lifted to an algebra homomorphism from the free algebra TΣfk
π

(QN)
to the free algebra TΣfk

π
(QM). Moreover, it preserves the axioms on iden-

tity and composition: We must then prove that this holds also for the addi-
tional axioms arisen from the permutation group. This is equivalent to prove

11
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that Hλ([π, π′]F (N)(q)) ≡M Hλ(q) for all π ∈ GN(q). By construction, we

have that Hλ([π, π′]F (N)(q)) , [π, π′]F (M)([λ̂a, id]F (M)(h(q))). Now, remem-
ber that there exists a π ∈ GM(h(q)) such that π ◦ λa = λa ◦ π, and then

that for a suitable π′ we have [π, π′] ◦ [λ̂a, id] = [λ̂a, id] ◦ [π, π′]: This implies

that Hλ([π, π′]F (N)(q)) coincides with [λ̂a, id]F (M)([π, π′]F (M)(h(q))), which is

equivalent to [λ̂a, id]F (M)(h(q)), hence the result.

The identities 〈id,GN〉 are clearly preserved. Concerning composition, it
is enough to show that the result of the functor is independent with respect
to the choice of the injection, i.e, that given a named function H : N → M ,
then for any λ, λ′ ∈ Λh(q) the equality [λ̂, id](h(q)) ≡M [λ̂′, id](h(q)) holds. To
prove the latter, note that the conditions on ΛH(q) ensure on the existence of
a permutation π ∈ GM(h(q)) such that λ◦π = λ′, hence the equality follows.2

3.2 From permutation algebras to named sets

We first define some additional structure on supports.

Definition 3.5 (on finite supports) Let A be a permutation algebra, and
let a ∈ A be a finitely supported element. Then, normA(a) ∈ I(|suppA(a)|, ω)
denotes the (necessarily unique) order-preserving injection covering the sup-
port. Formally, normA(a)(i) < normA(a)(i + 1) for all i < |suppA(a)| and
normA(a)({0, . . . , |suppA(a)| − 1}) = suppA(a).

Now an easy technical lemma, relating the support of two algebras.

Lemma 3.6 (mapping supports) Let σ : A → B be an algebra homomor-
phism, and let a ∈ A be finitely supported. Then, suppB(σ(a)) ⊆ suppA(a).

Proof. Let us prove that any K ⊆ ω supporting a ∈ A, supports also σ(a) ∈
B. Let π ∈ Aut(ω) such that for all i ∈ K : π(i) = i. Then, by hypothesis
π̂A(a) = a, and hence π̂B(σ(a)) = σ(π̂A(a)) = σ(a). 2

In other words, the lemma above implies that for each morphism σ the
element σ(a) is finitely supported if a is; and it allows for defining a functor
I from finite kernel permutation algebras to named sets.

Proposition 3.7 (from algebras to sets) Let IO be the function mapping
each A ∈ FSAlgfk

π to the named set 〈A, |suppA(·)|, GI(A)〉, for GI(A)(a) the set
of permutations given by

{π ∈ Aut(|suppA(a)|) | ∃π′ ∈ fixA(a) : normA(a) ◦ π = π′ ◦ normA(a)}.

Let σ : A → B, and let inσ(a) : |suppB(σ(a))| → |suppA(a)| the
uniquely induced arrow (thanks to Lemma 3.6) such that normA(a)◦ inσ(a) =
normB(σ(a)). Hence, let IA be the function associating to σ the named func-
tion 〈hσ, Λσ〉 given by the obvious function from A to B and by the set of
injections Λσ(a) = inσ(a) ◦ GI(B)(σ(a)) for all a ∈ A.

The pair I = 〈IO, IA〉 defines a functor from FSAlgfk
π to NSet.

12
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Proof. It is easy to check that GI(A)(a) is a group, since fixA(a) is so.

Concerning Λσ, it is clear that the condition λ ◦GI(B)(σ(a)) = Λσ(a) holds
for all λ ∈ Λσ(a), since λ is of the shape inA(a) ◦ π, for π ∈ GI(B)(σ(a)).

We must now prove that GI(A)(a) ◦ λ ⊆ Λσ(a) for all λ ∈ Λσ(a). This
is equivalent to ask that for all π ∈ GI(A)(a) there exists a π ∈ GI(B)(σ(a))
such that π ◦ inσ(a) = inσ(a) ◦ π. By definition we have normA(a) ◦ inσ(a) =
normB(σ(a)), so that for π′ ∈ fixA(a) corresponding to π, we have

normA(a) ◦ inσ(a) = normB(σ(a)) =⇒

=⇒ π′ ◦ normA(a) ◦ inσ(a) = π′ ◦ normB(σ(a))

=⇒ normA(a) ◦ π ◦ inσ(a) = π′ ◦ normB(σ(a))

since fixA(a) ⊆ fixB(σ(a)) ⊆ spB(σ(a)), there exists π ∈ Aut(|suppB(σ(a))|)

=⇒ normA(a) ◦ π ◦ inσ(a) = normB(σ(a)) ◦ π

=⇒ normA(a) ◦ π ◦ inσ(a) = normA(a) ◦ inσ(a) ◦ π

and finally, since normA(a) is injective,

=⇒ π ◦ inσ(a) = inσ(a) ◦ π

The identities are clearly preserved. Concerning composition, note that
the choice of arrow in is preserved by it, in the sense that inσ(a) ◦ inσ′(σ(a))
coincides with inσ;σ′(σ′(σ(a))). Then, we have that

Λσ;σ′(a) = inσ;σ′(a) ◦ GC(σ
′(σ(a))) = inσ(a) ◦ inσ′(σ(a)) ◦ GC(σ

′(σ(a)))

= inσ(a) ◦ GB(σ(a)) ◦ inσ′(σ(a)) ◦ GC(σ
′(σ(a))) = Λσ(a) ◦ Λσ′(σ(a))

and thus compositionality holds. 2

3.3 Adjunction between named sets and permutation algebras

We first give a look at the structure of the algebras obtained via functor F .

Lemma 3.8 Let N be a named set, and let q ∈ QN . Then, the equivalence
class [q]≡N

is finitely supported, and suppF (N)([q]≡N
) = {0, . . . , ‖q‖N − 1};

furthermore, fixF (N )([q]≡N
) = {[π, π′] | π ∈ GN(q), π′ ∈ Autfk(ω)}.

Proof. Clearly, each permutation π ∈ fix({0, . . . , ‖q‖N − 1}) fixes [q]≡N
,

since it can be written as [id, π′] (see also the proof of Proposition 3.4). Now,
let us assume a k < ‖q‖N such that k 6∈ suppF (N)([q]N), and let πk be the
permutation exchanging k with ‖q‖N + 1, and fixing the rest. Now, we have
πk(q) = q in FO(N), but the equivalence can not be obtained by ≡N , since the
latter is generated by the permutations in GN(q). This proves the first half.

Now, let us consider π ∈ fixF (N)([q]N). Then, π ∈ spF (N)([q]N), so that it
is of the shape π = [πs, π

′] for πs ∈ Aut(‖q‖N). As for before, since GN(q) is
a group, it follows that πs ∈ GN(q). 2

13
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Let N be a named set. By Lemma 3.8, we have that |suppF (N)([q]≡N
)| =

‖q‖N and GI(F (N))([q]≡N
) = GN(q), so that the pair ηN = 〈in≡N

, GN(q)〉
defines a named function from N to I(F (N)), for in≡N

the obvious injection
mapping q to [q]≡N

. Such a morphism is a strong candidate for the unit of a
possible adjunction. Unfortunately, this is not the case, as explained below.

Remark 3.9 Let A ∈ FSAlgπ, and let us suppose that F a I. Then, for each
named function H : N → I(A) there exists a unique morphism σH : F (N) →
A such that ηN ; I(σH) = H (see [1, Definition 13.2.1]).

Such a morphism should behave as h on QN , meaning that (the equivalence
class) [q]≡N

has to be mapped into h(q): So, this fact does constrain the choice
of σH to be the free extension of h. To prove its existence would now be enough
to show that the axiomatization is preserved, i.e., that [π, π′](h(q)) = h(q)
holds in A if [π, π′](q) ≡N q: The commutativity of the diagram follows, as
well as the uniqueness of σH .

Let W = 〈ω, {π̂W}〉 be the algebra such that π̂W (i) = π(i) for all i ∈ ω.
It is finitely supported, since clearly suppW (i) = {i} for all i ∈ ω. Then, by
construction I(W) = 〈ω, ‖i‖ = 1, id〉 (compare with the named sets in Exam-
ple 3.3). Now, let us consider the identity on I(W): The obvious function
σid : F (I(W)) → W is not an algebra morphism.

The problem lies on the “normalization” along the functor I, which blurs
the identity of the elements of the support. We need to choose a “canonical”
element for each set of elements with the same cardinality of the support.

Lemma 3.10 Let A ∈ Algπ and let a ∈ A. If a is finitely supported, then
suppA(π(a)) = π(suppA(a)) for all π ∈ Aut(ω).

Lemma 3.11 Let A ∈ Algπ, let a ∈ A and let HomA[a, a′] , {π | π̂A(a) =
a′}. Then, HomA[a, a′] ◦ fixA(a) = HomA[a, a′] = fixA(a′) ◦ HomA[a, a′].

We now introduce a last concept, the orbit of an element, consisting of the
family of all the other elements of an algebra which can be reached from it via
the application of an operator of the permutation signature.

Definition 3.12 (orbits) Let A ∈ Algπ and let a ∈ A. The orbit of a is the
set OrbA(a) , {π̂A(a) | π ∈ Aut(ω)}.

Thus, the orbit of an element a collects all the other elements that are
reached from a via the application of a permutation, i.e., an operator of the
signature. It is obvious that orbits partition a permutation algebra. Moreover,
let us assume the existence for each orbit OrbA(a) of a canonical representative
aO. (We will come back on this later on.)

Proposition 3.13 (from algebras to sets, II) Let ÎO be the function
mapping each A ∈ FSAlgfk

π to the named set 〈{aO | a ∈ A}, |suppA(·)|, GbI(A)〉,

for GbI(A)(aO) the set of permutations given by

{π ∈ Aut(|suppA(a0)|) | ∃π′ ∈ fixA(a0) : normA(aO) ◦ π = π′ ◦ normA(aO)}.
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Let σ : A → B, let inσ(aO) : |suppB(σ(aO))| → |suppA(aO)| be the
uniquely induced arrow such that normA(aO) ◦ inσ(aO) = normB(σ(aO)), and
let Ξ(σ(a)O, σ(aO)) ⊆ I(|suppA(σ(a)O)|, |suppA(σ(aO))|) be the set of permu-
tations given by

{π | ∃π′ ∈ HomB[σ(a)O, σ(aO)] : normB(σ(aO)) ◦ π = π′ ◦ normB(σ(a)O)}.

Hence, let ÎA be the function associating to σ the named function 〈hσ, Λσ〉 such
that hσ(aO) = σ(a)O and Λσ(aO) = inσ(aO) ◦ Ξ(σ(a)O, σ(aO)) ◦ GbI(B)(σ(a)O)
for all aO ∈ A.

The pair Î = 〈ÎO, ÎA〉 defines a functor from FSAlgfk
π to NSet.

Proof. The key remark for the correctness of Λσ is that HomB[σ(a)O, σ(a0)]◦
fixB(σ(aO)) = fixB(σ(a)O) ◦ HomB[σ(a)O, σ(aO)] (see Lemma 3.11 above),
and equality Ξ(σ(a)O, σ(aO))◦GbI(A)(σ(a)O) = GI(A)(σ(aO))◦Ξ(σ(a)O, σ(aO))
follows: Then, it is enough to mimic the proof for Proposition 3.7. 2

The proof goes along the same lines of the one for Proposition 3.7: Addi-
tionally, now the “normalization” along Î picks up a single representative for
each orbit, which is mirrored by the introduction of the family ΞaO

. Using
the previously defined functor, it is easy to realize that named sets are just a
different presentation for finite kernel permutation algebras.

Theorem 3.14 NSet ∼= FSAlgfk
π .

Proof. Let N be a named set: It is easy to prove that it is isomorphic to
Î(F (N)). Thanks to Lemmata 3.8 and 3.11, the set of states of the latter
is

⋃
q∈QN

(([q]≡N
)O), its enumerating function is |suppF (N)(([q]≡N

)O)| = ‖q‖N ,
and its set of permutations GbI(F (N ))(([q]≡N

)O) ⊆ Aut(‖q‖N) satisfies

GbI(F (N ))(([q]≡N
)O)◦Ξ(([q]≡N

)O, [q]≡N
)) = Ξ(([q]≡N

)O, [q]≡N
))◦GI(F (N ))([q]≡N

).

Now, since GI(F (N ))([q]≡N
) = GN(q), the corresponding isomorphism is given

by 〈([−]≡N
)O, GbI(F (N ))(([q]≡N

)O) ◦ Ξ(([q]≡N
)O, [q]≡N

))〉, which is also natural.

Analogous considerations hold for the endomorphism F (Î(A)) on algebras.

The element aO ∈ Î(A) generates the whole orbit of [aO]≡
F (bI(A))

, and the

algebra isomorphism σ maps the latter is to π̂A(aO), for π any permutation
extending normA(aO). 2

Remark 3.15 As a final note, we remark that the canonical representative aO

of each orbit can be constructively defined. In fact, Aut(ω) can be naturally
equipped with a total order, which is then lifted to sets of permutations.
Hence, for each orbit an element ac can be chosen, such that |suppA(ac)| =
suppA(ac), and which has the minimal permutation group associated to it.
The definition is well-given, since it is easy to prove that fixA(a) = fixA(a′)
implies a = a′ for all finitely supported a ∈ A and a′ ∈ OrbA(a).
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Fig. 2. The Permutation Algebra Cube, strengthened version.

4 Conclusions

We investigated the connections between three different approaches to the
treatment of nominal calculi, such as calculi for name passing or location gen-
eration, comparing meta-models based on (pre)sheaf categories, on algebras
over permutation signatures, and on sets enriched with names and permuta-
tion groups. We proved that the category of named sets is equivalent to the
category of permutation algebras with finite support on the signature with fi-
nite kernel permutations; which in turn, when all permutations are considered,
is equivalent to the category of sheaves over I, i.e., the Schanuel topos.

Our characterization results are summarized in Figure 2. They confirm
that permutation algebras are well suited for modeling the semantics of nom-
inal calculi. Moreover, we can import from the (pre)sheaf approach the initial
algebra/final coalgebra machinery. Our next step will be to compare the mod-
els obtained by bialgebras on named sets and permutation algebras (see [14,
Section 4] and [3]), with the coalgebraic models over presheaves categories [5].

Beside this, it seems natural to develop further our research in terms of
categorical logic. We would aim to define a suitable internal language for
the three meta-models we analyzed so far. The connection with the Schanuel
topos, and its correspondence with Fraenkel-Mostowski set theory, would lead
us to consider some variant (e.g., higher-order) of Pitts’ Nominal Logic [15].
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A. Kučera, editors, Concurrency Theory, Lect. Notes in Comp. Sci. 2421 (2002),
pp. 449–465.

[4] Ferrari, G., U. Montanari and M. Pistore, Minimizing transition systems for
name passing calculi: A co-algebraic formulation, in: M. Nielsen and U. Engberg,
editors, Foundations of Software and Computer Science, Lect. Notes in Comp.
Sci. 2303 (2002), pp. 129–143.

[5] Fiore, M. and D. Turi, Semantics of name and value passing, in: H. Mairson,
editor, Logic in Computer Science (2001), pp. 93–104.

[6] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntax with variable
binding, Formal Aspects of Computing 13 (2002), pp. 341–363.

[7] Gadducci, F., M. Miculan and U. Montanari, About permutation algebras
and sheaves (and named sets, too!), Technical Report UDMI/26/2003/RR,
Dipartimento di Matematica e Informatica, Università di Udine (2003).
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