
Polyadic History-Dependent Automata
for the Fusion Calculus?

Emilio Tuosto1, Björn Victor2, and Kidane Yemane2

1 Dipartimento di Informatica, Università di Pisa, Italy.
2 Dept. of Information Technology, Uppsala University, Sweden.

Abstract. We extend History Dependent Automata to handle polyadic labels, and using a new symbolic
semantics of fusion calculus we give a mapping into these Polyadic HDA with Negative Transitions,
and show that the mapping is adequate with respect to hyperequivalence in the fusion calculus.
This lays the grounds for HD-automata-based tools applicable not only to the monadic π-calculus but
also to the fusion calculus and polyadic π-calculus, allowing implementation efforts to be focused at a
foundational level rather than being multiplied in several tools.

1 Introduction

With the development of the History Dependent Automata framework (HD-automata in brief) by Montanari,
Pistore and Ferrari [6, 10, 7, 1], a promising path to the development of generic, reusable algorithms and
tools for automated verification of mobile processes has opened. Rather than developing techniques and
algorithms at the level of the mobile process calculus, adapting them from one calculus variant to the next,
and often multiplying the work spent on optimization and specialization in each tool, this work can be
focused at the level of HD-automata. What is necessary for this are mappings from each process calculus
to an appropriate variant of HD-automata, and proof that the properties of interest are preserved by the
mapping.

In this paper, we apply this approach to the fusion calculus, an extension and simplification of the π-
calculus developed by Parrow and Victor [9], where the effects of communication are not necessarily local
to the input end (as they are in the π-calculus). Our results are initially applicable to equivalence checking.

HD-automata provide an operational model for history dependent calculi, i.e., calculi whose semantics
are defined in terms of transition systems such that the transitions may carry information generated in earlier
transitions of the system, and this “historical” information can influence the future behaviour of the system.
Mobile process calculi such as the π-calculus, where the communication topology may change dynamically,
are typical such history dependent calculi. HD-automata give finite representations of classes of infinite
labelled transition systems. Symbolic semantics at the process calculus level have also been used for this
purpose, but HD-automata give additional benefits: compact representation of states using symmetries of
names, and more importantly, a unified foundational framework for history-dependent calculi.

A tool based on HD-automata have been developed [2]. It works on a variant of HD (HDS) suitable
for early and late semantics of π-calculus, and very efficiently performs minimization of automata. HDS
are not applicable for open equivalence in π-calculus or hyperequivalence in fusion calculus. An extension
of HDS, History Dependent Automata with Negative Transitions (HDN) [10], is required. In this paper
we further extend HDN in order to model polyadic rather than monadic communication. This extension is
useful not only for our application, that of modelling fusion calculus in HDN, but also for open semantics
of the π-calculus. The same extension can also be applied to HDS, allowing polyadicity also in early and
late semantics.

? Work supported by the PROFUNDIS FET-GC project.

2

Overview. In the following section we recapitulate the syntax, semantics, and bisimulation congruence of
the fusion calculus [9]. In Section 3 we introduce a canonical symbolic semantics for the fusion calculus,
along the lines of [12], and prove that the original hyperequivalence coincides with symbolic bisimulation.
After an introduction to HD in Section 4, we extend the HDN from monadic to polyadic in Section 5.
Finally, in Section 6, we give a mapping of fusion calculus into HDN using the symbolic semantics, and
in Section 7 show that bisimulation in HDN coincides with hyperequivalence. Full proofs are found in
Appendix A.

2 Syntax and Semantics of the Fusion Calculus

In this section we first review the syntax and operational semantics of the fusion calculus with match and
recursion, and then its strong bisimulation equivalence and congruence from [9]. The novel contribution of
the present paper begins by exploring the canonical symbolic semantics.

We assume an infinite enumerable set N of names ranged over by u, v, . . . , z. Like in the π-calculus,
names represent communication channels, which are also the values transmitted. We write x̃ for a (possibly
empty) finite sequence x1 · · ·xn of names. ϕ ranges over total equivalence relations overN (i.e. equivalence
relations with dom(ϕ) = N) with only finitely many non-singular equivalence classes. We write {x̃ = ỹ}
to mean the smallest such equivalence relation relating each xi with yi, and write 1 for the identity relation.
If x and y are related by ϕ we write x ϕ y.

Definition 1. The free actions, ranged over by α, and the agents, ranged over by P, Q, . . ., are defined by
α ::= ux̃ (Input)

ux̃ (Output)
ϕ (Fusion)

P ::= 0

∣
∣ α . Q

∣
∣ Q + R

∣
∣ Q | R

∣
∣ (x)Q

∣
∣ [x = y]Q

∣
∣ A(x̃)

In the fusion calculus prefixes correspond exactly to the free actions defined above. An input action
ux̃ means “input objects along the port u and replace x̃ with these objects.” Contrary to the situation in
the π-calculus this action does not bind x̃. In other words, the scope of x̃ is not bounded by the action. The
output action ux̃ is familiar from the π-calculus and means “output the objects x̃ along the port u”. A fusion
action {x̃ = ỹ} represents an obligation to make x̃ and ỹ equal everywhere.

Input and output actions are collectively called free communication actions. In these, the names x̃ are
the objects of the action, and the name u is the subject. We write a to stand for either u or u, thus ax̃ is the
general form of a communication action. Fusion actions have neither subject nor objects.

The name x is said to be bound in (x)P . We write (x̃)P for (x1) · · · (xn)P . The free names in P ,
denoted fn(P), are the names in P with a non-bound occurrence; here fn(ϕ) is defined to be the names in
the non-singular equivalence classes, i.e., in the relation ϕ−1. Notice that since the syntax {x = x}means
1, the free names of that fusion do not include x, but is the empty set. As usual we will not distinguish
between alpha-variants of agents, i.e., agents differing only in the choice of bound names.

The action of a transition may be free or bound:

Definition 2. The actions, ranged over by γ and δ, consist of the fusion actions and of communication
actions of the form (z1) · · · (zn)ax̃ (written (z̃)ax̃), where n ≥ 0 and all names in z̃ are also in x̃. If n > 0
we say it is a bound action.

Note that there are no bound fusion actions. In the communication actions above, z̃ are the bound objects
and the names in x̃ that are not in z̃ are the free objects. Free actions have no bound objects. We further
write n(γ) to mean all names occurring in γ, both bound and free.

We let M, N, L range over sequences of match operators, and we say that M implies N , written M ⇒
N , if the conjunction of all matches in M logically implies all elements in N , and that M ⇔ N if M and
N imply each other.

We define ϕ\z to mean ϕ ∩ (N − {z})2 ∪ {(z, z)}, i.e., the equivalence relation ϕ with all references
to z removed (except for the identity). For example, {x = z, z = y}\z = {x = y}, and {x = y}\y = 1.

3

PREF
−

α . P
α
−→ P

SUM
P

α
−→ P ′

P + Q
α
−→ P ′

PAR
P

α
−→ P ′

P | Q
α
−→ P ′ | Q

COM
P

ux̃
−→ P ′, Q

uỹ
−→ Q′, |x̃| = |ỹ|

P | Q
{x̃=ỹ}
−−−−→ P ′ | Q′

SCOPE
P

ϕ
−→ P ′, z ϕ x, z 6= x

(z)P
ϕ\z
−−→ P ′{x/z}

PASS
P

α
−→ P ′, z 6∈ n(α)

(z)P
α
−→ (z)P ′

OPEN
P

(ỹ)a x̃
−−−−→ P ′, z ∈ x̃ − ỹ, a 6∈ {z, z}

(z)P
(zỹ)a x̃
−−−−→ P ′

MATCH
P

α
−→ P ′

[x = x]P
α
−→ P ′

Table 1. Transition rules for the Fusion Calculus.

Definition 3. The structural congruence, ≡, between agents is the least congruence satisfying the abelian
monoid laws for Summation and Composition (associativity, commutativity and 0 as identity), and the scope
laws (x)0 ≡ 0, (x)(y)P ≡ (y)(x)P, (x)(P + Q) ≡ (x)P + (x)Q, (x)MP ≡M(x)P if x 6∈ n(M) and
also the scope extension law P | (z)Q ≡ (z)(P | Q) where z 6∈ fn(P), and the law for process identifiers:

A(ỹ) ≡ P{ỹ/x̃} if A(x̃)
def
= P .

We proceed by giving the labelled transition semantics of fusion calculus.

Definition 4. The family of transitions P
γ
−→ Q is the least family satisfying the laws in Table 1. In this

definition structurally equivalent agents are considered the same, i.e., if P ≡ P ′ and Q ≡ Q′ and P
γ
−→ Q

then also P ′ γ
−→ Q′.

Definition 5. A substitution σ agrees with the fusion ϕ if ∀x, y : x ϕ y ⇔ σ(x) = σ(y). A substitutive
effect of a fusion ϕ is an idempotent substitution σ agreeing with ϕ such that ∀x, y : σ(x) = y ⇒ x ϕ y
(i.e., σ sends all members of the equivalence class to one representative of the class). The only substitutive
effect of a communication action is the identity substitution. For any action γ we write σγ for its substitutive
effect.

For example, the substitutive effects of {x = y} are {x/y} and {y/x}. Note that not all substitutions
which agree with ϕ are substitutive effects of ϕ. For example any injective substitution agrees with 1, but
the only substitutive effect of 1 is the identity substitution.

Lemma 6. If P
γ
−→ P ′, then Pσ

γσ
−→ P ′σ, for any substitution σ.

We end this section by reviewing the definition of hyperbisimulation [9].

Definition 7. A fusion bisimulation is a binary symmetric relation S between agents such that (P, Q) ∈ S
implies:

If P
γ
−→ P ′ with bn(γ) ∩ fn(Q) = ∅, then Q

γ
−→ Q′ and (P ′σγ , Q′σγ) ∈ S. P is fusion bisimilar to Q,

written P
.
∼ Q, if (P, Q) ∈ S for some fusion bisimulation S.

A hyperbisimulation is a substitution closed fusion bisimulation, i.e., a fusion bisimulation S with the
property that (P, Q) ∈ S implies (Pσ, Qσ) ∈ S for any substitution σ. Two agents P and Q are hyper-
equivalent, written P ∼ Q, if they are related by a hyperbisimulation.

The interesting point in this definition is the treatment of fusion actions. A fusion {x = y} represents an
obligation to make x and y equal everywhere. Therefore, if γ above is such a fusion, it only makes sense
to relate P ′ and Q′ when a substitution {y/x} or {x/y} has been performed. Note that it does not matter
which substitution we choose, since P{x/y}

.
∼ Q{x/y} implies P{y/x}

.
∼ Q{y/x}, by the simple fact

that P{x/y}{y/x} ≡ P{y/x} and that bisimulation is closed under injective substitutions.

4

S-PREF
−

α . P
∅,α
7−−→ Pσα

S-SUM
P

M,α
7−−→ P ′

P + Q
M,α
7−−→ P ′

S-PAR
P

M,α
7−−→ P ′

P | Q
M,α
7−−→ P ′ | QσMσα

S-COM
P

M,ux̃
7−−−→ P ′, Q

N,vỹ
7−−−→ Q′, |x̃| = |ỹ|, L = MN [u = v], ϕ = {x̃ = ỹ}σL

P | Q
L,ϕ
7−−→ (P ′ | Q′)σLσϕ

S-SCOPE
P

M,ϕ
7−−→ P ′, z ϕ x, z 6= x, z 6∈ n(M)

(z)P
M,ϕ\z
7−−−−→ P ′{x/z}

S-PASS
P

M,α
7−−→ P ′, z 6∈ n(M, α)

(z)P
M,α
7−−→ (z)P ′

S-OPEN
P

M,(ỹ)a x̃
7−−−−−→ P ′, z ∈ x̃ − ỹ, a 6∈ {z, z}, z 6∈ n(M)

(z)P
M,(zỹ)a x̃
7−−−−−−→ P ′

S-MATCH
P

M,α
7−−→ P ′

[x = y]P
M[x=y],α
7−−−−−−→ P ′σM[x=y]

Table 2. Canonical symbolic transition system for the Fusion Calculus.

Theorem 8. [9] Hyperequivalence is the largest congruence in fusion bisimilarity.

For further examples and explanations we refer the reader to [9, 5].

3 Canonical Symbolic Semantics of Fusion Calculus

In this section we present a canonical symbolic semantics for the fusion calculus, along the lines of symbolic
semantics for the π-calculus [12, 11]. Symbolic semantics are often used to give efficient characterizations
of bisimulation equivalences for value-passing calculi.

In Table 2 we present the symbolic transition system. Like in [12] a symbolic transition is of the form

P
M,γ
7−−→ Q, where M is the enabling condition of the action γ in the sense that M represents the equalities

a minimal substitution σM must make true in order for PσM to perform the corresponding action in the
original labelled transition system.

Following Pistore and Sangiorgi’s work [11], our transition rules apply substitutions to the continuation
of a transition: like [11], a substitution σM , making the condition for the transition true, and in addition
a substitution σγ , the substitutive effect of the action. The motivation for this is to make the definition
of bisimulation simpler and more in line with the algorithms used in the HD framework (see Section 5).
We show later in this section that bisimulation using the symbolic semantics coincides with the original
non-symbolic version.

While we can in general use any σM which agrees with M and which is identity for all names not
in M , and any substitutive effect σγ of the action, like Pistore and Sangiorgi [11] we choose canonical
substitutions, which selects the minimal representative of each equivalence class of M or γ and maps
all members to it. Henceforth, σM and σγ refer to canonical substitutions. Note that hyperequivalence
(Definition 7) does not change, since we can use any substitutive effect there.

Using canonical substitutions gives us pleasant properties like the following:

Lemma 9. If P
M,γ
7−−→ P ′, then γ = γσM and P ′ = P ′σM = P ′σγ = P ′σMσγ .

The definition of symbolic hyperbisimulation is similar to that of symbolic open bisimulation [12, 11],
but does not have the complication of distinctions.

Definition 10. A binary symmetric process relation S is a symbolic hyperbisimulation if (P, Q) ∈ S im-
plies:

If P
M,γ
7−−→ P ′ with bn(γ) ∩ fn(Q) = ∅ then Q

N,γ′

7−−−→ Q′ such that

5

– M ⇒ N ,
– γ = γ′σM , (note γ = γσM)
– and (P ′, Q′σM) ∈ S (note P ′ = P ′σM).

P is symbolically hyperequivalent to Q, written P ' Q, if (P, Q) ∈ S for some symbolic hyperbisimulation
S.

Since the symbolic semantics applies the substitution effects, we can leave most of that out of the
bisimulation definition. It is still necessary to apply substitution corresponding to the stronger condition,
σM , to the label and continuation of the transition of Q. (Note that Q′σM = Q′σMσγ .)

In the remainder of this section we establish the correspondence between symbolic hyperequivalence
(Definition 10) and the standard hyperequivalence (Definition 7) by proving Theorem 15: P ∼ Q iff P ' Q.

Lemma 11.

1. σσRσ = σRρ, for any substitution σ and some ρ, where R is an equivalence relation.
2. If M ⇒ N then Mσ = Nσρ, for some substitution ρ
3. σRσSσR

= σSσR, where R and S are equivalence relations.

Lemma 12.

1. If P
M,γ
7−−→ P ′, then Pσ

Mσ,γσ
7−−−−→ P ′σσMσσγσ .

2. if Pσ
N,γ′

7−−−→ P ′, then P
M,γ
7−−→ P ′′ with Mσ ⇔ N , γσ = γ′, and P ′ = P ′′σσNσγ′ .

Proof. By transition induction, using Lemma 11.

Lemma 13. P ' Q implies Pσ ' Qσ

Proof. Straightforward diagram chasing, using Lemmas 11 and 12.

Lemma 14.

1. If P
M,γ
7−−→ P ′, then PσM

γ
−→ P ′′ s.t. P ′ = P ′′σγ;

2. if M ⇒ N and PσM
γ
−→ P ′, then P

N,γ′

7−−−→ P ′′ such that γ = γ′σM and P ′σγ = P ′′σM .

Proof. Again by transition induction, using Lemmas 11 and 6.

Theorem 15. P ∼ Q iff P ' Q

Proof of ⇒: by showing S = {(P, Q) : P ∼ Q} is a symbolic hyperbisimulation, using Lemmas 14
and 11.

Proof of⇐: We already have closure under substitution (Lemma 13), and show that S = {(P, Q) : P ' Q}
is a fusion bisimulation using Lemmas 14 and 11.

4 History Dependent Automata

Verification of systems that are modelled as mobile processes (i.e. concurrent systems whose communica-
tion topology may change dynamically) is hard. For instance, in fusion calculus, agents can perform tran-
sitions that generate new names, e.g. the OPEN rule in Table 1 establishes that an agent, (z)P , can create a
new name and can extrude it. The OPEN rule introduces an infinite branching in the automata corresponding
to agents that perform such transitions since z can be freely replaced with any name in N \ fn(P).

6

v1 v2 v3

v
2

v
1

v3

v2

v1

v3v2v1

v1

v1

v3

v
2

v
1

v1

v2

v3

v2

v1

v2

v1
v2=

q
1

q
0 t

q
2

t"

t’

φ
001

< ,
out

 >

001

<
, out >

φ
001

< , out >

Fig. 1. HD-automaton for a fusion calculus agent

History Dependent automata (HD-automata in brief) have been proposed in [10, 6, 7, 1] as a new
operational model for history dependent calculi, i.e., calculi whose semantics are defined in terms of a
labelled transition system such that the labels may carry information generated in earlier transitions of the
system that can influence the future behaviour of the system, e.g. the fusion calculus.

HD-automata aim at giving a finite representation of otherwise infinite LTSs; similarly to ordinary
automata, they consist of states and labeled transitions, however, states and transitions of HD-automata are
equipped with names which are no longer treated as syntactic components of labels, but become an explicit
part of the operational model. This permits modelling of typical linguistic mechanisms of name passing
calculi, such as creation and extrusion of names. Moreover, it allows for compact representation of agent
behaviour by collapsing states that differ only for renaming of local names.

Various families of HD-automata have been introduced. Roughly speaking each class of HD-automata
corresponds to a class of history dependent calculi or different behavioural semantics. In order to deal with
asynchronous and open semantics of π-calculus, HD-automata with negative transitions have been proposed
(the reader is referred to [10] for details).

Negative transitions “cover” regular transitions which may become redundant. For example, let us
consider the fusion agent P = (y)(u vy . B(u, y) + [u = v]v vy . B(y, y)). Provided that B(y, y) is
equivalent to B(u, y){v/u}, according to symbolic hyperbisimulation (Definition 10), P is equivalent to

(y)uvy . B(u, y) because the transition P
[u=v],(y)v vy
7−−−−−−−−→ B(y, y) is matched by transition P

∅,(y)u vy
7−−−−−→

B(u, y); thus it is redundant in P .
Figure 1 depicts the HD-automaton corresponding to the fusion agent P 3. It has three states, q0, q1

and q2, that respectively correspond to agents P , B(u, y) and B(y, y), and three transitions t, t′ and t′′.
Since names are local to states, labels and transitions of HD-automata, they have been renamed in order to
“normalise” them, as will be more clear in Section 6 (where we also comment on the “001” of out labels).
We need a mechanism for describing how names correspond to each other along transitions. Graphically,
we represent such correspondences using dashed wires that connect names of the label and the source and
target states of transitions. All transitions have three names v1, v2 and v3. Name v3 is connected to v2 in
q1 and is observed in the label, but it has no counterpart in q0, meaning that it is a name created by t′′ (and
similarly for t and t′). Transitions t and t′′, represented with straight arrows, are positive transitions, while
transition t′, the zig-zag arrow, is negative. It is used to detect the redundancy of t; as defined later, a positive
transition t is redundant when there is a negative transition that corresponds to t, leading to an equivalent

3 The algorithm for mapping P in the automaton of Figure 1 will be given in Section 6. Here we just give an intuition
of the interplay between positive and negative transitions.

7

state. Redundant transitions can be safely removed from the HD-automaton during the bisimulation check
without affecting bisimilarity (Theorem 27). Notice also that if we remove t and t′ from Figure 1 we obtain
the automaton corresponding to (y)u vy . B(y, y) (equivalent to P).

5 Polyadic HD-automata with Negative Transitions

This section, after some notation, introduces polyadic HD-automata which can address polyadic calculi.
Basically, we set the framework for formally defining HD-automata and the mapping to these from fusion
calculus agents.

Given a relation f ⊆ A × B, we define dom(f) = {a ∈ A : ∃b ∈ B.(a, b) ∈ f} and cod(f) = {b ∈
B : ∃a ∈ A.(a, b) ∈ f}. When cod(f) = B, we say that f is an embedding of B in A (written f : A ◦−→ B
or f : B ◦←− A). An embedding f ⊆ A × B associates elements of A to elements of B. Inverse injections
can be simply defined as follows:

Definition 16. A relation f ⊆ A×B is an inverse injection (written f : A←⇀ B) iff f is an embedding of
B in A, (a, b), (a′, b) ∈ f ⇒ a = a′ and f−1 is injective.

An inverse injection f : A←⇀B can be seen as an embedding of B into (a subset of) A. Condition cod(f) =
B states that each element of B is associated to an element of A, while injectivity of f−1 states that such
element is unique; furthermore, each element of A is related to at most one element of B. Therefore, f can
be thought of as being a partial injective function from A to B such that f−1 is an injective function. In the
sequel, we often write f(a) = b for (a, b) ∈ f .

We use polyadic named functions (p-named functions for short) for handling polyadicity:

Definition 17. A named set E is a set E and a family of subset of names indexed by E, or equivalently E[]
is a map from E to ℘(N) (in the following, if X is a named set, then X denotes its underlying set).

Let E and F be two named sets. A p-named function m : E→ F is

– a function m : E → F and
– a family {m[e] : E[e] ◦−→ F[f]}(e,f)∈m of name embeddings indexed by m such that, for any e ∈ E,

(a, b), (a, b′) ∈ m[e] =⇒ b = b′.

A named function m : E→ F is a p-named function such that, for each e ∈ E, m[e] is an inverse injection.

Hereafter, if m : E → F is a (p-)named function, m denotes the underlying mapping and, for any e ∈ E,
m[e] is the embedding from E[e] to F[m(e)].

Definition 18. A Polyadic History Dependent Automaton with Negative Transitions (pHDN), denoted by
A, is a tuple 〈Q, L, T, T, s, d, o, q0, σ0〉, where

– Q is a named set of states;
– L is a named set of labels;
– T is a named set of (positive) transitions;
– T is a named set of negative transitions;
– s, d : T] T→ Q are the source and destination named functions;
– o : T] T→ L is the observation p-named function;
– q0 ∈ Q is the initial state;
– σ0 : N ←⇀Q[q0] is the initial embedding of the local names of q0 intoN .

We define T[t]old
def
= T[t] ∩ dom(s[t]) and T[t]new

def
= T[t] \ dom(s[t]) and require that T[t]new ⊆

dom(o[t]), for each t ∈ T . We use corresponding definitions for negative transitions.

8

We write t : q
l
−→ q′ (resp. t : q

l
 q′) for denoting a positive (resp. negative) transition t such that s[t] = q,

d[t] = q′ and o[t] = l.
The source and destination functions associate states to each transition; they injectively embed the

names of the source/destination states in the names of their transition. Similarly, the observation function
associates a label to each transition, and embeds the names of the label in the names of the transition.
It should be clear that Figure 1 fits Definition 18 if q0 is the initial state and the initial embedding is
{(u, v1), (v, v2)}. Notice that s[t] and d[t] must be inverse injections, whereas o[t] is an embedding of names
of T[t] into names of the observation. Hence it is not required that o[t] be injective; for instance, transition
t in Figure 1 embeds both label names v1 and v2 of t in v1 thus representing the two occurrences of v
in the corresponding transition of the agent P . The conditions on s[t] and d[t] mean that names of source
and destination of t have at most one possible “meaning” along the transitions, while for o[t] multiple
occurrences can appear in the observations 4.

Bisimulation on pHDNs must consider names of states, labels and transitions. We first give the concept
of partial bijection:

Definition 19. A relation R ⊆ A × B is a partial bijection between A and B (written R : A ↼⇀ B) iff
whenever (a, b), (a′, b′) ∈ R, then a = a′ ⇔ b = b′.

Bisimulations on pHDNs are relations R made of triples 〈q1, δ, q2〉 where q1 and q2 are the related states
and δ : Q[q1] ↼⇀ Q[q2] is a correspondence among names of q1 and q2. We say that R is symmetric if
〈q1, δ, q2〉 ∈ R implies 〈q2, δ

−1, q1〉 ∈ R.

Definition 20. Let A = 〈Q, L, T, T, s, d, o, q0, σ0〉 be a pHDN and R ⊆ {〈q1, δ, q2〉 : q1, q2 ∈ Q, δ :
Q[q1] ↼⇀ Q[q2]} be a symmetric set of triples onA. The set red[R] of redundant transitions forR is the set
of positive transitions t ∈ T such that there exist some negative transition t′ ∈ T such that s(t) = s(t′) and
there are some ξ : T[t]new ↔ T[t′]new and some ζ : T[t] ↼⇀ T[t′] such that, if ζ = (s[t]; s[t′]−1) ∪ ξ, then

o[t] = ζ; o[t′] and 〈d[t], δ′, d[t′]〉 ∈ R, for some δ′ ⊆ (d[t]−1; ζ; d[t′]).

A transition which is not redundant (for R) is said to be irredundant (forR).

Definition 21. Let A = 〈Q, L, T, T, s, d, o, q0, σ0〉 be a pHDN. A pHDN-bisimulation for A is a symmetric
set of triples R ⊆ {〈q1, δ, q2〉 : q1 ∈ Q, q2 ∈ Q, δ : Q[q1] ↼⇀ Q[q2]} such that whenever 〈q1, δ, q2〉 ∈ R,

then for each t1 : q1
l
−→ q′1 6∈ red[R], there exist t2 : q2

l
−→ q′2, ξ : T[t1]new ↔ T[t2]new and ζ : T[t1] ↼⇀

T[t2] such that, if ζ = (s[t1]; δ; s[t2]
−1) ∪ ξ, then

o[t1] = ζ; o[t2] and 〈q′1, δ
′, q′2〉 ∈ R, for some δ′ ⊆ (d[t1]

−1; ζ; d[t2])

We writeA1]A2 for the pHDN obtained by taking the disjoint union ofA1 andA2, and whose initial state
coincides with the initial state of A1. (Of course, it does not matter whether we choose the initial state of
A1]A2 to be the initial state of A1 or of A2.)

Definition 22. Let Ai = 〈Qi, L, Ti, Ti, si, di, oi, q0i
, σ0i
〉 (i ∈ {1, 2}) be two pHDNs. A1 and A2 are

pHDN-bisimilar, written A1 ∼ A2, if there exists some pHDN-bisimulation R for A1] A2 such that
〈q01

, δ, q02
〉 ∈ R for some δ ⊆ (σ01

; σ−1
02

).

4 In [10] this problem is resolved by using labels of the form out2 that exposes a single name which plays the rôle of
subject and object in the transition. We cannot exploit this mechanism for general polyadicity, because if x̃ are the
names of a transition, we should consider a different label for each subset of names of x̃. Even though this could be
a valid solution, it is not suitable as far as verification purposes are concerned. Indeed, it would require a different
transition for each subset of the set names carried by the label. This makes the number of states of the underlying
automata exponential.

9

γ 1 (z̃)u x̃ (z̃)u x̃ {x̃ = z̃}

l ∈ Lf
tau in b1· · ·bm out b1· · ·bm fusm

λ ∈ Lf [l] − u x1 · · · xm u x1 · · · xm x1 · · · xm z1 · · · zm

κ(n) ∈ Lf [l] − vn vn+1 · · · vn+m vn vn+1 · · · vn+m vn · · · vn+m+1 vn+m+2 · · · v2n+m

Table 3. Labels for fusion calculus pHDN (m = |x̃|)

6 Mapping Fusion Calculus to pHDN

The mapping of fusion calculus agents to pHDN is similar to the mapping of constrained π-calculus agents
in the open semantics [10]; like there, the closure under substitutions is handled by matching the condition
part of the label in bisimulation, and the negative transitions of the pHDN are used to “mark” possibly
redundant transitions. Differently from [10], we do not need neither distinctions nor to split a symbolic

transition
M,γ
7−−→ into two transitions at HD-automata level (one for condition M and one for action γ). Our

polyadic extension of HDN allows conditions and actions to be combined in the same transition.
Hereafter, we consider only representative transitions, defined as follows:

Definition 23. A transition P
M,γ
7−−→ Q is a representative transitions iff, assuming a total order onN , either

γ is a fusion or γ ∈ {(z1 . . . zm)u x̃, (z1 . . . zm)u x̃} and, for all i = 1, . . . , m, zi = min{N \ fn(P)\{zj :
1 ≤ j < i}}.

In the following, we assume a function norm() such that, for any fusion calculus agent A, norm(A) yields
the pair (B, ρ) where

– B is the representative element of the class of agents differing from A by bijective substitutions,
– ρ : fn(A)→ fn(B) is a bijective substitution such that Aρ = B.

Basically, norm() renames agents exploiting the total order assumed on N . To fix the terminology, we
assume that v1 < v2 · · · < vn · · ·, where, for each i, vi is a name in N . For instance, let us again consider
the agent of Section 4, P = (y)(u vy . B(u, y) + [u = v]v vy . B(y, y)); norm(P) = (q0, σ0), where
q0 = (y)(v1 v2y . B(v1, y) + [v1 = v2]v2 v2y . B(y, y)) and σ0 = {(u, v1), (v, v2)}.

Table 3 gives the correspondence between labels of the fusion calculus and pHDN labels.
The first row reports the labels of fusion calculus, for each of these, the second row establishes the

correspondence between the label of the HD-automata. The set of labels for pHDN of fusion calculus
agents is

Lf = {tau} ∪ {α b1· · ·bm : α ∈ {in, out} ∧ ∀i = 1, . . . , m : bi ∈ {1, 0}} ∪ {fusm : m > 0}.

Label tau is used for identity fusions; in b1· · ·bm and out b1· · ·bm correspond to input and output of m
names, say x1· · ·xm; each xi is free or bound depending whether bi = 1 or bi = 0; fusm corresponds to a
fusion action {x1 = z1, . . . , xm = zm}.

The correspondence between the names of the occurring in the fusion calculus labels and those of the
HD-automata are given the last two rows. Such correspondence is defined in terms of two embeddings
κ and λ; the former depends on a parameter n which is the number (incremented by 1) of names of the
condition part of transitions not included in the action part names of the fusion calculus agents. It is used
to let the names (of canonical representatives) of pHDN transitions be different from the names used in the
conditions; κ(n) is not required to be injective. Basically, λ and κ define the embedding of names of the
transitions of agents into the (normalised) names of the transitions of the HD-automata.

Definition 24. The pHDN Af (A) corresponding to the fusion calculus calculus agent A is the smallest
pHDN that satisfies the following rules:

10

1. Initial state and embedding: if norm(A) = (A′, σ′) then
– A′ ∈ Q is the initial state, and Q[A′] = fn(A′);
– σ′ is the initial embedding;

2. Positive transitions: if A ∈ Q, A
M,γ
7−−→ A′ is a representative transition, norm(A′) = (A′′, σ), N is a

normalised condition, and N ⇔Mρ for some bijective substitution ρ, then
– A′′ ∈ Q and Q[A′′] = fn(A′′);
– there is some t ∈ T such that T[t] = fn(A) ∪ n(M) ∪ bn(γ);
– s(t) = A, d(t) = A′′, s[t] = idfn(A) and d[t] = σ;
– o(t) = 〈N, l〉 and o[t] = ρ ∪ κ(n) where n = 1 + |n(N) \ n(γ)|, while l and κ are related to γ as

defined in Table 3;

3. Negative transitions: if A ∈ Q, A
M,γ
7−−→ A′ and A

M ′,γ′

7−−−→ A′′ are representative transition such that
M 6⇐⇒ M ′ and γ = γ′σM ; let norm(A′′σM) = (A′′′, σ), N be a normalised condition such that
N ⇔Mρ for some bijective substitution ρ, then

– A′′′ ∈ Q and Q[A′′] = fn(A′′′);
– there is some t ∈ T such that T[t] = fn(A) ∪ n(M) ∪ bn(γ);
– s(t) = A, d(t) = A′′′, s[t] = idfn(A) and d[t] = σMσ;
– o(t) = 〈N, l〉 and o[t] = ρ ∪ κ(n) where n = 1 + |n(N) \ n(γ)|, while l and κ are related to γ as

defined in Table 3.

We use the agent P given in Section 4 to comment on Definition 24; we build the automaton following the
steps of Definition 24.

1. Initial state and initial embedding are given by norm(P) = (q0, σ0) previously detailed.

2. There are two possible representative transitions out of q0, namely q0
v1=v2,(v3)v2 v2v37−−−−−−−−−−−→ B(v3, v3) and

q0
∅,(v3)v1 v2v37−−−−−−−−→ B(v1, v3), so if (q1, σ1) = norm(B(v3, v3)) and (q2, σ2) = norm(B(v1, v3)) then

σ1(v3) = v1 and σ2(v3) = v2 as shown in Figure 1. As prescribed by Definition 24, we add two
positive transition, t and t′′. Transition t goes from q0 to q1; its names are fn(q0) ∪ n(v1 = v2) ∪
bn((v3)v2 v2v3) = {v1, v2, v3}, moreover, s[t] = idfn(q0) and d[t] = σ1. Finally, the observation of t is
obtained through Table 3. Indeed, o(t) = 〈v1 = v2, out001〉; since v1 and v2 appear in the action part
of the label, κ(1) = {(v1, v1), (v1, v2), (v2, v3)}, as reported in Table 3, which in Figure 1 corresponds
to the dashed arrows from names of t to names of the observation.

3. To complete the automaton, it remains to add the negative transitions. Let us observe that, by definition,
the condition of t strictly implies the condition of t′′, i.e. u = v 6⇐⇒ ∅; moreover, uvyσu=v = v vy
and norm(B(u, v)σu=v) = (q2, id). Thus, we add negative transition t′ to the automaton, where the
name embeddings are computed as done above for positive transitions t and t′′.

7 Relating pHDN-bisimulation and Hyperequivalence

This section shows the relationship between hyperequivalence and pHDN-bisimulation formally stated in
Theorem 29: The HD-automata corresponding to bisimilar fusion calculus agents are pHDN-bisimilar and,
conversely, we can recover an agent from a state of an automaton once a “global” identity is assigned to the
local names of the state.

Definition 25. Given a pHDN automaton A = 〈Q, L, T, T, s, d, o, q0, σ0〉, a global state of A is a pair
(q, σ) where q is a state of A and σ : N ←⇀ Q[q]. GA is the named set of global states of A, where
GA[(q, σ)] = σ−1(Q[q]).

A global transition ofA is a pair (t, ρ) where t is a transition ofA and ρ : N ◦−→ T[t] (ρ : N ◦−→ T[t] if
t is a negative transition) is s.t. (n, x), (n, x′) ∈ ρ ⇐⇒ o[t](x) = o[t](x′). UA is the named set of global
transition of A where UA[(t, ρ)] = ρ−1(T[t]). Moreover, we let UA[(t, ρ)]old = ρ(T[t]old) (and similarly
for UA[(t, ρ)]new).

11

If t : q
l
−→ q′ then (t, ρ) : (q, ρ; s[t])

l,λ
−−→ (q′, ρ; d[t]) is s.t. λ−1 = ρ ∪ o[t] and λ and l are related as in

Table 3 (and similarly for negative transitions).

A global state (q, σ) represents the image of state q of a pHDN automaton once a global identity σ has been
fixed for the names of q (and analogously for global transitions).

Theorem 29 relies on the fact that pHDN-bisimulation is equivalent to bisimulation on global states and
global transitions that is defined as follows:

Definition 26. Let R be a binary relation over global states of a pHDN-automaton A. A positive global

transition t : q
l
−→ q′ is redundant forR if there exists a global negative transition t′ : q

l
 q′′ s.t. q′ R q′′.

A symmetric binary relation R over global states of A is a global bisimulation if, whenever q1 R q2,

for each non-redundant transition t1 : q1
l
−→ q′ for R, there exists a global transition t2 : q2

l
−→ q′2 s.t.

U1[t1]new ∩ G2[t2] = ∅ and q′1 R q′2.

Theorem 27. Two pHDN-automata are pHDN-bisimilar iff they are globally bisimilar.

The proof of Theorem 27 is given in the appendix. The intuition is that for the “only if” part is to prove

that R′ def
= { 〈q1, δ, q2〉 : (q1, σ1)R(q2, σ2), where δ = σ−1

1 ; σ2} is a pHDN-bisimulation, if R is a global

bisimulation for A1 and A2; while for the “if” part of the theorem we can show that R′ def
= { 〈q1, δ, q2〉 :

(q1, σ1) R(q2, σ2), where δ = σ−1
1 ; σ2} is a pHDN-bisimulation, provided thatR is a global bisimulation

forA1 andA2.

Lemma 28. Given fusion calculus agent P and a global state (q, σ) of Af (P), then:

1. if qσ
M,γ
7−−→ q′′ is a transition in Af (P), then there is a global transition (t, ρ) : (q, σ)

l,λ
−−→ (q′, σ′) of

Af (P) s.t. q′′ = q′σ′ and l and λ are related as in Table 3;

2. vice versa, if (t, ρ) : (q, σ)
l,λ
−−→ (q′, σ′) is a global transition of Af (P), then there is a transition

qσ
M,γ
7−−→ q′′ s.t. q′′ = q′σ′ and l and λ are related as in Table 3.

Proof of 1: By Lemma 12(2), we have (without loss of generality) a representative transition q
M ′,γ′

7−−−→ q′′′

where M ⇔ M ′σ, γ = γ′σ, q′′ = q′′′σM σγ . Then, letting (q′, σ′′) = norm(q′′′), by Definition 24,

t : q
N,l
7−−→ q′ is a transition of Af (P), where, for a bijective substitution θ,

N ⇔M ′θ, o[t] = θ ∪ κ(|n(N)|), d[t] = σ′′, s[t] = idfn(q),

and l and κ are related as in Table 3. If we let σ′ = σ′′−1; σM ′ ; σγ and consider an embedding ρ s.t.

ρ|dom(σ) = σ and ρ−1|n(N) = θ−1 then it is trivial to see that (t, ρ) : (q, σ)
l,λ
−−→ (q′, σ′) is a global transition

for Af (P). Finally, since by construction of σ′ and q′ = q′′′σ′′, we have q′σ′ = q′′′σ′′; σ′′−1; σM ′ ; σγ =
q′′′σM ′ ; σγ = q′′ (where the last equality holds by Lemma 12(2)).

Proof of 2: Let (t, ρ) : (q, σ)
l,λ
−−→ (q′, σ′) be a global transition for Af (P) then, by construction, there is a

transition t : q
M,l
7−−→ q′ inAf (P) (where M , l and λ are related as in Table 3); hence, by Definition 24, there

is a (representative) transition s.t., for a bijective substitution θ, q
N,γ
7−−→ q′′′ where N ⇔ Mθ, (q′, σ′′) =

norm(q′′′) and σ′′ = d[t]. Then, by Lemma 12(1), qσ
M,γ
7−−→ q′′′σ, where q′′ = q′′′σσMσγσ and proceeding

as in the first part, we have that q′σ′ = q′′. ut

Theorem 29. A1 ' A2 iff Af (A1) ∼ Af (A2), where A1 and A2 are two fusion calculus agents.

12

Proof. The proof shows that A1 ' A2 iff the corresponding automaton are global bisimilar. This, by
Theorem 27, proves the result.

By Lemma 28(1) we have that the relation

R = {〈(q1, σ1), (q2, σ2) : (qi, σi) global state of Af (Ai), i ∈ {1, 2} ∧ q1σ1 ' q2σ2〉} (1)

is a global bisimulation and, by construction of Af (A1) and Af (A2), if (qi0 , σi0) is the initial state of
Af (Ai) (i ∈ {1, 2}), then

q10
σ10

= A1 ' A2 = q20
σ20

,

hence 〈(q10
, σ10

), (q20
, σ20

)〉 ∈ R, which, by Definition 22, means that Af (A1) is bisimilar to Af (A1).
The converse is similarly proved by using Lemma 28(2). Indeed, if R is global bisimulation which

contains 〈(q10
, σ10

), (q20
, σ20

)〉 then the relation

S
def
={(q1σ1, q2σ2) : (q1, σ1)R(q2, σ2)}

is a bisimulation containing (A1, A2). ut

8 Conclusion

We developed a new symbolic semantics for the fusion calculus where canonical substitutions are applied
eagerly, lessening the computational work in bisimulation checking, and which fits well in the HD frame-
work with negative transitions. We made a conservative extension (pHDN) of history dependent automata
to handle polyadicity. This extension is applicable also to π-calculus semantics. For the open semantics of
π, it also reduces the number of states and transitions in the corresponding HD-automata by avoiding the
split into condition and action transitions. To simplify the presentation (avoiding the distinctions of open
semantics of π), and to show that the substitutive effects of the fusion calculus do not present a problem for
pHDN, we gave a mapping of fusion calculus into pHDN, and proved its adequacy. Similar mappings for
the closely related πF -calculus [4] or the χ-calculus [3] should be straightforward.

As future work, we will apply our results in a partition refinement-based equivalence checking tool
within the PWEB, a web-based verification environment under development in the PROFUNDIS FET-GC
project. In addition, we intend to give an explicit co-algebraic formulation of pHDN where an effective
minimization algorithm can be guaranteed by the existence of a terminal object, like for the π-calculus with
early semantics [1]. We also intend to extend HD-automata with a substitution operation on the states in
order to model full congruences for late and early π semantics.

References

[1] G. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name passing calculi: A co-algebraic
formulation. In M. Nielsen and U. Engberg, editors, FOSSACS 2002, volume 2303 of LNCS, pages 129–143.
Springer, 2002.

[2] G. Ferrari, U. Montanari, R. Raggi, and E. Tuosto. From co-algebraic specifications to implementation: The
Mihda toolkit. In International Symposium on Formal Methods for Components and Objects, LNCS. Springer-
Verlag, 2003. To appear.

[3] Y. Fu. A proof-theoretical approach to communication. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
editors, Proceedings of ICALP ’97, volume 1256 of LNCS, pages 325–335. Springer, 1997.

[4] P. Gardner and L. Wischik. Explicit fusions. In Nielsen and Rovan [8], pages 373–382.
[5] C. Laneve and B. Victor. Solos in concert. In J. Wiederman, P. van Emde Boas, and M. Nielsen, editors,

Proceedings of ICALP ’99, volume 1644 of LNCS, pages 513–523. Springer, July 1999.
[6] U. Montanari and M. Pistore. History dependent automata. Technical report, Computer Science Department,

Università di Pisa, 1998. TR-11-98.

13

[7] U. Montanari and M. Pistore. pi-calculus, structured coalgebras, and minimal HD-automata. In Nielsen and
Rovan [8].

[8] M. Nielsen and B. Rovan, editors. Mathematical Foundations of Computer Science, 25th International Sympo-
sium, MFCS 2000 (Bratislava, Slovakia), volume 1893 of LNCS. Springer, 2000.

[9] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile processes. In Proceedings
of LICS ’98, pages 176–185. IEEE, Computer Society Press, July 1998.

[10] M. Pistore. History Dependent Automata. PhD thesis, Dipartimento di Informatica, Università di Pisa, Mar. 1999.
[11] M. Pistore and D. Sangiorgi. A partition refinement algorithm for the π-calculus. Information and Computation,

164(2):264–321, 2001. An extended abstract appeared in Proceedings of CAV’96, LNCS 1102.
[12] D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33:69–97, 1996. Earlier version pub-

lished as Report ECS-LFCS-93-270, University of Edinburgh. An extended abstract appeared in the Proceedings
of CONCUR ’93, LNCS 715.

[13] P. Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.

14

A Proofs

A.1 Proofs from Section 3

Proof of Lemma 11:

1. See [12].
2. Follows from the following lemmas of Sangiorgi [12]:

(a) if M ⇒ N then Mσ ⇒ Nσ
(b) if σ ⇒ σ′ then ρ exists s.t. σ= σ′ρ

3. Follows from the Substitution Lemma in Taylor [13].

Proof of Lemma 12: We show the case for S-PAR; the others are similar.

1. P ≡ P1 | P2
M,γ
7−−→ P ′

1 | P
′
2 ≡ Q where P1

M,γ
7−−→ P ′

1 and P ′
2 ≡ P2σMσγ .

Then by induction P1σ
Mσ,γσ
7−−−−→ P ′

1σσMσσγσ and by S-PAR P1σ | P2σ
Mσ,γσ
7−−−−→ P ′

1σσMσσγσ | P2σσMσσγσ .
Let P ′ = P ′

1σσMσσγσ,

P ′ | P2σσMσσγσ =
= P ′ | P2σMσγρ (by Lemma 11(1), for some ρ s.t. σσMσσγσ = σM)
= P ′ | P2σMσMσγσγρ (idempotence)
= P ′ | P2σMσMσγσM

σγρ (γ = γσM by Lemma 9)
= P ′ | P2σMσγσMσγρ (by Lemma 11(3))
= P ′ | P ′

2σMσγρ (P ′
2 = P2σMσγ)

= P ′
1σσMσσγσ | P ′

2σσMσσγσ (using ρ, σ from first step above)
= (P ′

1 | P
′
2)σσMσσγσ (which is what is required)

2. Let P ≡ (P1 | P2)σ
N,γ′

7−−−→ P ′
1 | P

′
2 ≡ Q where P1σ

N,γ′

7−−−→ P ′
1 and P ′

2 = P2σσNσ′
γ

Then by induction hypothesis we have P1
M,γ
7−−→ P ′′

1 with P ′
1 = P ′′

1 σσNσγ′ , γσ = γ′ and Mσ ⇔ N

and by S-PAR P1 | P2
M,γ
7−−→ P ′′

1 | P ′′
2 ≡ P3 with P ′′

2 ≡ P2σMσγ . We only need to show that Q =
P3σσNσγ′ .

Q = P ′
1 | P

′
2

= P ′
1 | P2σσNσγ′

= P ′
1 | P2σσMσσγσ (γ′ = γσ and N ≡Mσ)

= P ′
1 | P2σMσγρ (by Lemma 11(1), for some ρ s.t. σσMσσγσ = σM)

= P ′
1 | P2σMσγσMσγρ (γ = γσM , Lemma 11(3) and idempotence)

= P ′
1 | P

′′
2 σMσγρ (P ′′

2 = P2σMσγ)
= P ′

1 | P
′′
2 σσMσσγσ (using ρ, σ from earlier step)

= P ′′
1 σσNσγ′ | P ′′

2 σσNσγ′ (γ′ = γσ and N ⇔Mσ)
= (P ′′

1 | P
′′
2)σσNσγ′ = P3σσNσγ′

Proof of Lemma 13: We show that

S =
⋃

σ

{(Pσ, Qσ) : P ' Q}

is a symbolic hyperbisimulation. By Lemma 12(2) an action of Pσ can be written as Pσ
Mσ,γσ
7−−−−→ P ′′ for

some M , γ and P ′ s.t. P
M,γ
7−−→ P ′ and P ′′ = P ′σσMσσγσ . Note that by Lemma 9, γσ = γσσMσ . Since

15

P ' Q, we have Q
N,δ
7−−→ Q′ with

M ⇒ N (2)

γ = δσM (3)

P ′ ' Q′σM (4)

Using Lemma 12(1), we have Qσ
Nσ,δσ
7−−−−→ Q′′σσNσδσ . We only need to show the following three equations

in order to show this is a matching action of Pσ.

Mσ ⇒ Nσ (5)

γσ = δσσMσ (6)

P ′σ S Q′σσMσ (7)

Equation (5) follows from (2) and item (b) in the proof of Lemma 11(2).

γ = δσM (from (3))
⇔ γσM = δσM (γ = γσM by Lemma 9)
⇒ γσMρ = δσMρ (for some ρ s.t. σσMσσγσ = σMρ by Lemma 11(1))
⇔ γσσMσ = δσσMσ (by Lemma 11(1))
⇔ γσ = δσσMσ (since γσ = γσσMσ)

Equation (7) follows from (3) by similar reasoning.

Proof of Lemma 14:

1. The proof is by transition induction. We show the case for S-COM, the others are similar.

P1
M1,ux̃
7−−−−→ P ′

1, P2
M2,vỹ
7−−−−→ P ′

2, |x̃| = |ỹ|, L = M1M2[u = v], ϕ = {x̃ = ỹ}σL

P1 | P2
L,ϕ
7−−→ (P ′

1 | P
′
2)σLσϕ

From the induction hypothesis we have

P1σM1

(ux̃)σM1−−−−−→ P ′′
1 P2σM2

(vỹ)σM2−−−−−→ P ′′
2

with P ′′
1 = P ′

1σux̃ = P ′
1 and P ′′

2 = P ′
2σuỹ = P ′

2.
Using Lemma 2, σL can be decomposed into σM1

ρ1 and into σM2
ρ2 for some ρ1, ρ2. Using these and

Lemma 6
P1σL

(ay)σL−−−−→ P ′
1σL P2σL

(ay)σL−−−−→ P ′
2σL

(P1 | P2)σL
ϕ
−→ (P ′

1σL | P
′
2σL) = (P ′

1 | P
′
2)σL

2. This proof is also by transition induction. We give the proof for the case of S-PAR.

PAR
P1σM

γ
7−→ P ′

1

(P1 | P2)σM
γ
7−→ P ′

1 | P2σM

From the induction hypothesis we have;

S-PAR
P1

N,γ′

7−−−→ P ′′
1

P1 | P2
N,γ′

7−−−→ P ′′
1 | P2σNσγ′

16

(Notice that P ′′
1 = P ′′

1 σNσ′
γ by Lemma 9.) But

(P ′′
1 | P2σNσγ′)σM = (P ′′

1 σNσγ′ | P2σNσγ′)σM

= (P ′′
1 | P2)σNσγ′σM

= (P ′′
1 | P2)σNσMσγ′σM

= (P ′
1 | P2)σMσγ′σM

= (P ′
1 | P2)σMσγ

The proof of the rest cases are similar.

Proof of Theorem 15:
(⇒): We show that

S = {(P, Q) : P ∼ Q}

is a symbolic hyperbisimulation.

Suppose P
M,γ
7−−→ P ′. By Lemma 14(1), we have PσM

γ
−→ P ′′ such that P ′ = P ′′σγ . From P ∼ Q and

Definition 7, we have PσM ∼ QσM , so QσM
γ
−→ Q′′ with P ′′σγ ∼ Q′′σγ . By Lemma 14(2), Q

N,δ
7−−→ Q′

with M ⇒ N , δσM = γ and Q′σM = Q′′σγ .
We have P ′′σγ ∼ Q′′σγ , so P ′′σγσM ∼ Q′′σγσM by Definition 7. P ′′σγσM = P ′′σMσγσM

=
P ′′σMσγ = P ′, and Q′′σγσM = Q′σMσM = Q′σM .

So finally (P ′, Q′σM) ∈ S which closes up the bisimulation.
(⇐): We already have closure under substitution (Lemma 13), and only need to show that

S = {(P, Q) : P ' Q}

is a fusion bisimulation. Suppose P
α
−→ P ′. By Lemma 14(2) we have P

∅,α
7−−→ P ′. Since P ' Q, we have

Q
∅,α
7−−→ Q′ ' P ′. From Lemma 14(1), Q

α
−→ Q′, which closes up the bisimulation. ut

A.2 Proofs from Section 7

Proof of Theorem 27: We prove the “only if” part by showing that

R′ def
= {〈(q1, σ1), (q2, σ2)〉|〈q1, δ, q2〉 ∈ R, where δ = σ−1

1 ; σ2}

is a global bisimulation, provided thatR is a pHDN-bisimulation.

Assume that (q1, σ1)R′(q2, σ2) and (t1, ρ1) : (q1, σ1)
l,λ
−−→ (q′1, σ

′
1) is a non-redundant global transi-

tion s.t. ρ−1
1 (T1[t1]) ∩ σ−1

2 (Q2[q2]) = ∅. We must find a transition (t2, ρ1) : (q2, σ2)
l,λ
−−→ (q′2, σ

′
2) with

(q′1, σ
′
1)R

′(q′2, σ
′
2).

We have that t1 : q1
l
−→ q′1 (by Definition 25) and

σ1 = ρ1; s1[t1], λ−1 = ρ1; o1[t1], σ1 = ρ1; d1[t1]. (8)

SinceR is a pHDN-bisimulation, there is a transition t2 : q2
l
−→ q′2, some ξ : T1[t1]new ↼⇀ T2[t2]new and

some ζ : T1[t1] ↼⇀ T2[t2] s.t., for a δ′ ⊆ d1[t1]
−1; ζ; d2[t2], the following equalities hold

ζ = (s1[t1]; δ; s2[t2]
−1) ∪ ξ, o1[t1] = ζ; o2[t2], 〈q′1, δ

′, q′2〉 ∈ R. (9)

17

We define ρ2
def
= (σ2; s2[t2]) ∪ ρ1; ξ; it is trivial to note that ρ2 : N ◦−→ T2[t2]. Hence, we have that

ζ = ρ−1
1 ; ρ2; and by (9),

ζ = (

ρ−1

1
︷ ︸︸ ︷

s1[t1]; σ
−1
1 ; σ2; s2[t2]

−1) ∪ ξ = ρ1; (

ρ2

︷ ︸︸ ︷

(σ2; s2[t2] ∪ ρ1; ξ)). (10)

Moreover, by observing that σ2 ⊆ ρ2; s2[t2] (by definition of ρ2), we conclude that σ2 = ρ2; s2[t2] since its
inverse is a function.

By (9), o1[t1] = ζ; o2[t2], so by (10) we have ρ1; o1[t1] = λ−1 = ρ2; o2[t2]. This, and the definition of

global transition, proves that (t2, ρ2) : (q2, σ2)
l,λ
−−→ (q′2, σ

′
2) is a global transition, where σ′

2
def
= ρ2; d2[t2].

Finally,
δ′ = d1[t1]

−1; ζ; d2[t2] = d1[t1]
−1; ρ−1

1 ; ρ2; d2[t2] = σ′−1
1 ; σ′

2.

By definition of R′, 〈q′1, δ
′, q′2〉 ∈ R implies that (q′1, σ

′
1)R

′(q′2, σ
′
2); this concludes the proof of the only

“if part” (the proof of the symmetric clause of the bisimulation is similar).
Now we proof the “if” part of the theorem by showing that

R′ def
= {〈q1, δ, q2〉|(q1, σ1)R(q2, σ2), where δ = σ−1

1 ; σ2}

is a pHDN-bisimulation, if R is a global bisimulation forA1 andA2.

Suppose 〈q1, δ, q2〉 ∈ R′ and let t1 : q1
λ
−→ q′1 be a non redundant transition forR. If we let ρ1 : N ◦−→

T1[t1] be an embedding s.t.

ρ1|T1[t1]old = σ1; s1[t1]
−1, ρ1|T1[t1]new\dom(σ1∪σ2) : N ◦−→ T1[t1]new

we have σ1 = ρ1; s1[t1] and ρ−1
1 (T1[t1]new) ∩ σ−1

2 (Q2[q2]) = ∅. By definition, there is a global transition

(t1, ρ1) : (q1, σ1)
l,λ
−−→ (q′1, σ

′
1) s.t.

(q′1, σ
′
1)R(q′2, σ

′
2), σ2 = ρ2; s2[t2] ρ1; o1[t1] = λ−1 = ρ2; o2[t2] σ′

2 = ρ2; d2[t2]. (11)

Hence, there is a transition t2 : q2
l
−→ q′2 and, assuming ζ = ρ−1

1 ; ρ2 : T1[t1] ↼⇀ T2[t2], we can define
ξ = ζ|T1[t1]new

. Therefore,

o1[t1] = ρ−1
1 ; ρ2; o2[t2] = ζ; o2[t2] (by (11))

ζ = ((ρ1|T1[t1]old)
−1; ρ2|T2[t2]old) ∪ ξ

= (s1[t1]; σ
−1
1 ; σ2; s2[t2]

−1) ∪ ξ
= (s1[t1]; δ; s2[t2]

−1) ∪ ξ.

Finally, (q′1, σ
′
1)R(q′2, σ

′
2) implies that 〈q1, δ

′, q2〉 ∈ R
′, provided that σ′−1

1 ; σ′
2, thus δ′ = d1[t1]; ρ

−1
1 ; ρ2; d2[t2] =

d1[t1]; ζ; d2[t2]. This concludes the proof, since the symmetric clause of bisimulation can be dealt with in a
similar way. ut

