
Session Types for Functional Multithreading∗

Vasco Vasconcelos† Simon Gay‡ António Ravara§

November 9, 2004

Abstract

We define a language whose type system, incorporating session types,
allows complex protocols to be specified by types and verified by static
typechecking. A session type, associated with a communication channel,
specifies the state transitions of a protocol and also the data types of
messages associated with transitions; thus typechecking can verify both
correctness of individual messages and correctness of sequences of transi-
tions. Previously session types have mainly been studied in the context of
the π-calculus; instead, our formulation is based on a multi-threaded func-
tional language with side-effecting input/output operations. Our typing
judgements statically describe dynamic changes in the types of channels,
our channel types statically track aliasing, and our function types not only
specify argument and result types but also describe changes in channels.
We formalize the syntax, semantics and typing system of our language,
and prove subject reduction and runtime type safety theorems. We also
present a type checking algorithm and show that it is correct with respect
to the type system.
Keywords: Session types, static typechecking, concurrent programming,
specification of communication protocols.

1 Introduction

Communication in distributed systems is typically structured around protocols
that specify the sequence and form of messages passing over communication
channels. Correctness of such systems implies that protocols are obeyed.

System programming is traditionally performed in the C programming lan-
guage. It thus comes as no surprise that many attempts to statically check pro-
tocols are based on this language: safe control of stateful resources is achieved

∗A revised and extended version of the paper in Concur 2004, volume 3170 of LNCS, pages
497–511, Springer-Verlag, 2004.

†Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016
Lisboa, Portugal.

‡Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
§CLC and Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa,

Portugal.

1

via type systems that either run on annotated C programs [7, 9], or on programs
written in a type-safe variant of C [13, 14]. Another approach to proving prop-
erties of protocols comes from the general setting of the π-calculus [21, 27], and
includes type and effect systems to check correspondence assertions [2, 12]; the
approximation of the behaviour of π-processes by CCS terms [5, 25]; and session
types to describe structured communication programming [11, 15, 16, 28].

Session types allow the specification of a protocol to be expressed as a type;
when a communication channel is created, a session type is associated with it.
Such a type specifies not only the data types of individual messages, but also the
state transitions of the protocol and hence the allowable sequences of messages.
By extending the standard methodology of static typechecking for conventional
languages, it becomes possible to verify, at compile-time, that an agent using
the channel does so in accordance with the protocol.

The theory of session types has been developed in the context of the π-
calculus, but has not been studied theoretically in the context of a standard
language paradigm, despite a few contributions which bridge session types and
conventional languages. Session types have been used to add behavioural in-
formation to the interfaces of CORBA objects [29] using Gay and Hole’s the-
ory of subtyping [11] to formalise compatibility and substitutability of com-
ponents. Session types have also been encoded in the Haskell programming
language [22]. The former does not link the improved CORBA interfaces to
actual programming languages; the latter does not address the correspondence
between a session-based programming language and Haskell.

Our contribution to the problem of structured communication-based pro-
gramming in general, and the verification of protocols in particular, is to trans-
fer the concept of session types from the π-calculus to a multi-threaded func-
tional language with side-effecting input/output operations. This shows that
static checking of session types could be added to a language such as Concur-
rent ML [26] (at least without imperative features) or Concurrent Haskell [20]
(cf. [22]). More generally, it is our view that by starting with typing concepts
which are well-understood in the context of a theoretical calculus, and transfer-
ring them to a language which is closer to mainstream programming practice,
we can achieve a powerful type system which is suited to practical programming
while retaining the benefits of a sound foundation.

The key technical steps which we have undertaken, in order to address the
differences between a conventional programming style and the programming
notation of the π-calculus, are as follows:

• The operations on channels are independent terms, rather than prefixes of
processes, so we have introduced a new form of typing judgement which
describes the effect of a term on channel environment.

• We have separated naming and creation of channels, and because this
introduces the possibility of aliasing, we represent the types of channels by
indirection from the main type environment to the channel environment.

In previous work [10] we have presented a language supporting typed func-

2

tional programming with inter-process communication channels, but we only
considered individual processes in isolation. In [30] we addressed collections
of functional threads communicating via (session) channels created from shared
names. Here we present the proofs for subject reduction and type safety, claimed
in [30], and introduce a type checking algorithm for the language, together with
a proof of its correctness.

The structure of the paper is as follows. In Section 2 we explain session
types in connection with a progressively more sophisticated example. Sections 3
to 5 define the syntax, operational semantics, and type system of our language.
In Section 6 we present the runtime safety result. Section 7 presents a type
checking algorithm. In Sections 8 and 9 we discuss related and future work.
The appendix contains the proofs of all the results in the paper.

2 Session Types and the Maths Server

Input, Output and Sequencing Types. First consider a server which pro-
vides a single operation: addition of integers. A suitable protocol can be defined
as follows.

The client sends two integers. The server sends an integer which is
their sum, then closes the connection.

The corresponding session type, from the server’s point of view, is

S =?Int.?Int.!Int.End

in which ? means receive, ! means send, dot (.) is sequencing, and End indicates
the end of the session. The type does not correspond precisely to the specifica-
tion, because it does not state that the server calculates the sum. However, the
type captures the parts of the specification which we can reasonably expect to
verify statically. The server communicates with a client on a channel called u;
we think of the client engaging in a session with the server, using the channel
u for communication. In our language, the server looks like this:

server u = let x = receive u in

let y = receive u in

send x + y on u

or more concisely: send (receive u) + (receive u) on u.
Interchanging ? and ! yields the type describing the client side of the protocol:

S =!Int.!Int.?Int.End

and a client implementation uses the server to add two particular integers; the
code may use x but cannot use the channel u except for closing it.

client u = send 2 on u

send 3 on u

let x = receive u in code

3

Branching Types. Now let us modify the protocol and add a negation op-
eration to the server.

The client selects one of two commands: add or neg . In the case
of add the client then sends two integers and the server replies with
an integer which is their sum. In the case of neg the client then
sends an integer and the server replies with an integer which is its
negation. In either case, the server then closes the connection.

The corresponding session type, for the server side, uses the constructor &
(branch) to indicate that a choice is offered.

S = &〈add : ?Int.?Int.!Int.End,neg : ?Int.!Int.End〉

Both services must be implemented. We introduce a case construct:

server u = case u of {
add ⇒ send (receive u) + (receive u) on u

neg ⇒ send −(receive u) on u }

The type of the client side uses the dual constructor ⊕ (choice) to indicate
that a choice is made.

S = ⊕〈add : !Int.!Int.?Int.End,neg : !Int.?Int.End〉

A client implementation makes a particular choice, for example:

addClient u = select add on u negClient u = select neg on u

send 2 on u send 7 on u

send 3 on u let x = receive u in code
let x = receive u in code

Note that the type of the subsequent interaction depends on the label which is
selected. In order for typechecking to be decidable, it is essential that the label
add or neg appears as a literal name in the program; labels cannot result from
computations.

If we add a square root operation, sqrt , then as well as specifying that the
argument and result have type Real, we must allow for the possibility of an error
(resulting in the end of the session) if the client asks for the square root of a
negative number. This is done by using the ⊕ constructor on the server side,
with options ok and error . The complete English description of the protocol is
starting to become lengthy, so we will omit it and simply show the type of the
server side.

S = &〈add : ?Int.?Int.!Int.End,

neg : ?Int.!Int.End,

sqrt : ?Real .⊕〈ok : !Real.End, error : End〉〉

This example shows that session types allow the description of protocols that
cannot be easily accommodated with objects, that is, with sequences of the
form: select a method; send the arguments; receive the result.

4

Recursive Types. A more realistic server would allow a session to consist
of a sequence of commands and responses. The corresponding type must be
defined recursively, and it is useful to include a quit command. Here is the type
of the server side:

S = &〈add : ?Int.?Int.!Int.S,

neg : ?Int.!Int.S,

sqrt : ?Real.⊕〈ok : !Real.S, error : S〉,
quit : End〉

The server is now implemented by a recursive function, in which the positions
of the recursive calls correspond to the recursive occurrences of S in the type
definition. To simplify the theory we decided not to include recursive types in
this paper; the interested reader may refer to report [10].

Function Types. We have not mentioned the type of the server itself. Clearly,
it accepts a channel (in state &〈add : . . .,neg : . . .〉), and returns nothing (de-
scribed by the Unit type). The body of the function “consumes” the channel,
leaving it in a state ready to be closed (described by type End). We write all this
as follows, where c is the (runtime) channel denoted by the (program) variable
u.

server :: c : &〈add : . . .,neg : . . .〉;Chan c → Unit; c : End

server u = case u of {add ⇒ . . . ,neg ⇒ . . . }

Note how the function type describes, not only the type of the parameter and
that of the result, but also, its effect on channel c. It can also be useful to send
functions on channels. For example we could add the component1

eval : ?(Int → Bool).?Int.!Bool.End

to the branch type of the server, with corresponding server code, to be placed
within the server’s case above.

eval ⇒ send (receive u)(receive u) on u

A client which requires a primality test service (perhaps the server has fast
hardware) can be written as follows.

primeClient :: c : ⊕ 〈add : . . .,neg : . . ., eval : . . .〉;Chan c → Unit; c : End

primeClient u = select eval on u

send isPrime on u

send bigNumber on u

let x = receive u in code

1We often omit the empty channel environment on each side of the arrow.

5

Establishing a Connection. How do the client and the server reach a state
in which they both know about channel c? We follow Takeuchi, Kubo and
Honda [28], and propose a pair of constructs: request v for use by clients, and
accept v for use by servers. In use, request and accept occur in separate threads,
and interact with each other to create a new channel. The value v in both
request and accept, denotes the common knowledge of the two threads: a shared
name used solely for the creation of new channels. We may then write:

server :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in (case u of . . .; close u)
negClient :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

negClient x = let u = request x in (select neg on u . . . ; close u)

Note that the same type for the shared name x is used both for the server
and for the client; it is the accept/request construct that distinguishes one from
the other. This is also where we introduce the operation to close a channel:
accept/request creates a channel; close destroys it.

Sharing Names. In order for a name to become known by a client and a
server, it must be created somewhere and distributed to both. To create a new,
potentially shared, name of type S, we write new S. To distribute it to a second
thread, we fork a new thread, in whose code the name occurs.2 Our complete
system creates a name x and launches three threads (a server and two clients),
all sharing the newly created name.

system :: Unit

system = let x = new &〈add : . . .,neg : . . ., eval : . . .〉 in

fork negClient x; fork addClient x; fork server x

Given the above implementation of server , one of the clients will be forever
requesting x. Fortunately, it is easy to extend the server to accept more than
one connection in its life time.

server :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in fork (case u of . . .; close u)
server x

Sending Channels on Channels. Imagine two clients that need to coop-
erate in their interaction with the server: one client establishes a connection,
selects the neg operation, and sends the argument; the second client receives
the result. After selecting neg, the first client must provide the second with the
channel to the server. In order to do so, both clients must share a name of

2Alternatively, we may send x on an existing channel.

6

type ?(?Int.End).End (call this type S) and establish a connection for the sole
purpose of transmitting the server channel.

askNeg :: [〈add : . . .〉] → [S] → Unit getNeg :: [S] → Unit

askNeg x y = let u = request x in getNeg y = let w = accept y in

select neg on u; send 7 on u let u = receive w in

let w = request y in let i = receive u in

send u on w; close w close u; close w; code

It is instructive to follow the evolution of the state (the type) of channels
c and d, connected to variables u and w, respectively. After the execution of
the first line of getNeg, d has type S =?(?Int.End).End; after the second line,
d is reduced to End, but c shows up with type ?Int.End; after the third line
both channels are of type End, that is, ready to be closed. By the end of the
fourth line, we gather no more information on channels c and d, for they are
now closed. That is the sort of analysis our type system performs.

After sending a channel, no further interaction on the channel is possible.
Note that askNeg cannot close u, for otherwise the channel’s client side would
be closed twice (in askNeg and in getNeg). On the other hand, channel w must
be closed at both its ends, by askNeg and by getNeg.

Channel Aliasing. As soon as we separate creation and naming of channels,
aliasing becomes an issue. Consider the function below.

sendSend u v = send 1 on u; send 2 on v

Function sendSend can be used in a number of different ways including the
one where u and v become aliases for a single underlying channel.

sendTwice :: c : !Int.!Int.End;Chan c → Unit; c : End

sendTwice w = sendSend w w

Clearly our type system must track aliases in order to be able to correctly
typecheck programs such as this. Our approach is to introduce indirection into
type environments. In the body of function sendSend, the types of u and v are
both Chan c. The state of c, initially !Int.!Int.End, is recorded separately.

Free Variables in Functions. If we write

sendFree v = send 1 on u; send 2 on v

then function sendSend becomes λu.sendFree. In order to type sendTwice, thus
effectively aliasing u and v in sendSend, we must have3

sendFree :: c : !Int.!Int.End;Chan c → Unit; c : End

sendSend :: c : !Int.!Int.End;Chan c → Chan c → Unit; c : End

3We abbreviate Σ; T → (Σ; U → V ; Σ′); Σ′ to Σ; T → U → V ; Σ′.

7

v ::= c | n | x | λ(Σ;x : T).e | rec (x : T).v | true | false | unit

e ::= t | vv | if v then e else e | new S | accept v | request v |
send v on v | receive v | case v of {li ⇒ ei}i∈I | select l on v | close v

t ::= v | let x = e in t | fork t; t
C ::= 〈t〉 | (C | C) | (νn : T)C | (νc : S)C

Figure 1: Syntax of values, expressions, threads, and configurations

in a typing environment associating the type Chan c to the free variable u of
sendFree. However, if aliasing u and v is not sought, then we must have

sendFree :: c : !Int.End, d : !Int.End;Chan c → Unit; c : End, d : End

sendSend :: c : !Int.End, d : !Int.End;Chan c → Chan d → Unit; c : End, d : End

in a typing environment containing u : Chan d. Note how this type for sendFree
captures channel changes, parameters to the function or not.

Polymorphism. We have seen that sendFree admits at least two different
types. In order to allow for code reuse we work with a type-free syntax, and
type our functions as many times as needed, potentially with different types.
The paragraph above showed a share/not-share kind of polymorphism. Other
forms include channel polymorphism and session polymorphism. For the former
consider

sendTwiceSendTwice :: c : S, d : S;Chan c → Chan d → Unit; c : End, d : End

sendTwiceSendTwice x y = sendTwice x; sendTwice y

where S is !Int.!Int.End. Here sendTwice must be typed once with channel c,
and another with channel d. For the latter we have:

sendQuad :: c : !Int.!Int.!Int.!Int.End;Chan c → Unit; c : End

sendQuad x = sendTwice x; sendTwice x

where sendTwice must be typed once with c : !Int.!Int.!Int.!Int.End, and a second
time with c : !Int.!Int.End.

3 Syntax

Most of the syntax of our language has been illustrated in the previous section;
here we define it formally by the grammar in Figures 1 and 2.4

4Cf. [19] on the use of threads to facilitate the presentation of the operational semantics.

8

S ::= ?D.S | !D.S | ?S.S | !S.S | &〈li : Si〉i∈I | ⊕ 〈li : Si〉i∈I | End | ⊥S

D ::= Bool | Unit | Σ; T → T ; Σ | [S]
T ::= D | Chan c

Σ ::= ∅ | Σ, c : S (c : S not in Σ)

Figure 2: Syntax of channel types, data types, types, and channel environments

(C, |, 〈unit〉) is a commutative monoid (S-Monoid)
(νa : T)C1 | C2 ≡ (νa : T)(C1 | C2) if a not free in C2 (S-Scope)

Figure 3: Structural congruence

We use channel identifiers c, . . ., name identifiers n, . . . , term variables x, . . .,
and labels l, . . ., and define values v, expressions e, threads t, and configurations
C. To simplify definitions, we use (νa : T) to stand for either (νc : S) or (νn : T).

Channel identifiers and name identifiers are not available in the top-level
syntax of threads; they arise only during reduction, in a request/accept synchro-
nization, and in a new operation, respectively, as described in section 4.

The syntax of types is described in figure 2. We define session types S,
data types D, term types T , and channel environments Σ. The type Chan c
represents the type of the channel with identity c; the session type associated
with c is recorded separately in a channel environment Σ. Channel type bottom,
⊥S , denotes a channel that is already in use by two threads, hence that cannot
be used further. One of the two threads expects to see the channel at type S, the
other at type dual of S (figure 5). Similarly to channel and name identifiers, ⊥S

is not available at the top level syntax, arising only via the channel environment
composition operator, Σ1 • Σ2, defined in section 5. Among datatypes we have
channel-state annotated functional types Σ;T → T ; Σ, and types for names [S]
capable of establishing sessions of type S.

In section 2 we used several derived constructors. An expression e; t
(sometimes implied in our examples by the indentation) is an abbreviation
for let y = e in t, provided y does not occur free in t. Idioms like
send (receive c)(receive c) on c need appropriate de-sugaring into consecutive
lets, making the evaluation order explicit. We sometimes “terminate” threads
with an expression rather than a value: a thread e is short for let x = e in x.
Recursive function definitions must be made explicit with rec.

To support typechecking, we annotate λ-abstractions with a channel envi-
ronment as well as a typed argument.

9

〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νc)(〈let x = c in t1〉 | 〈let y = c in t2〉) (R-Init)

〈let x = receive c in t1〉 | 〈let y =send v on c in t2〉 →
〈let x =v in t1〉 | 〈let y =unit in t2〉 (R-Com)

〈let x = case c of {li ⇒ ei}i∈I in t1〉 | 〈let y = select lj on c in t2〉 →
〈let x = ej in t1〉 | 〈let y = unit in t2〉 (R-Branch)
〈let x = close c in t1〉 | 〈let y = close c in t2〉 →

〈let x = unit in t1〉 | 〈let y = unit in t2〉 (R-Close)
〈let x = new S in t〉 → (νn)〈let x = n in t〉 (R-New)

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉 (R-Fork)
〈let x = if true then e else e′ in t〉 → 〈let x = e in t〉 (R-IfT)
〈let x = if false then e else e′ in t〉 → 〈let x = e′ in t〉 (R-IfF)
〈let x = (λ(Σ; y : T).e)v in t〉 → 〈let x = e{v/y} in t〉 (R-App)

〈let x = (rec (y : T).v)u in t〉 → 〈let x = (v{rec (y : T).v/y})u in t〉 (R-Rec)
〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉 (R-Let)

〈let x = v in t〉 → 〈t{v/x}〉 (R-Beta)
C → C ′

(νa : T)C → (νa : T)C ′
C → C ′

C | C ′′ → C ′ | C ′′
C ≡ → ≡ C ′

C → C ′ (R-Conf)

In R-Init, c is not free in t1, t2; in R-New, n is not free in t.

Figure 4: Reduction rules

4 Operational Semantics

The binding occurrences are the variable x in λ(Σ;x : T).e, in rec (x : T).e, and
in let x = e in t; the name n in (νn : D)C; and the channel c in (νc : S)C. Free
and bound identifiers are defined as usual and we work up to α-equivalence.
Substitution, of values for variables, is defined as expected. We define a reduc-
tion semantics on configurations (figure 4), making use of a simple structural
congruence relation [21] (figure 3), allowing for the rearrangement of threads in
a configuration, so that reduction may happen.5

R-Init synchronizes two threads on a shared name n, creating a new channel
c known to both threads. Rules R-Com, R-Branch, and R-Close synchronize
two threads on a channel c: R-Com transmits a value v from one thread to
the other; R-Branch, rather than transmitting a value, chooses one of the
branches in the case thread; and R-Close closes a channel in both threads
simultaneously. R-New creates a new name n, and records the fact that the

5We could easily arrange for structural congruence to garbage collect all threads of the
form 〈v〉, for v closed.

10

End = End ?D.S =!D.S ?S′.S =!S′.S !D.S =?D.S !S′.S =?S′.S

&〈li : Si〉i∈I = ⊕〈li : Si〉i∈I ⊕〈li : Si〉i∈I = &〈li : Si〉i∈I

Figure 5: Duality on session types

name is potentially shared, by means of a (νn) in the resulting configuration.
The last four rules allow reduction to happen underneath restriction, parallel
composition, and structural congruence.

Unlike other thread models, the value a thread reduces to is not communi-
cated back to its parent thread (the one that forked the terminating thread).
Such behaviour would have to be explicitely programmed by arranging for both
threads to share a channel and explicitly sending the result back to the parent.

Example 1. We follow the execution of thread 〈system〉 in page 6. Types play
no rôle in reduction; we omit them.

〈system〉 →∗

(νn)〈fork negClient n; fork addClient n; fork server n〉 →∗

(νn)(〈let u = request n in . . .〉 | 〈let u = request n in . . .〉 | 〈let u = accept n in . . .〉) →∗

(νn)(〈let u = request n in . . .〉 | (νc)(〈select neg on c; . . .〉 | 〈case c of . . .〉)) →∗

(νn)(〈let u = request n in . . .〉 | (νc)(〈close c〉 | 〈close c〉)) →∗

(νn)〈let u = request n in . . .〉

In the third line we have two threads competing for requesting a session on
name n. We have choosen the negClient to go ahead; a new channel c, known
only to the negClient and to the server, is created. In line four we have a typical
interaction between two threads on a common channel. Similar interactions
continue until both channels are ready to be closed, in line five. Once closed,
structural congruence allows to get rid of the terminated threads. The run ends
in line six with the addClient still waiting for a server that will never come.

5 Typing

The type system is presented in figures 6 to 9. Typing judgements for constants
are of the form Γ ` v : T , where Γ is a map from names and variables to types.
Value judgements do not mention channel environments, for values, having no
behaviour, do not change channels. Judgements for expressions are of the form
Γ ` Σ . e : T / Σ′, where Σ is a channel environment (a map from channels into
sorts, as in figure 2). The difference between Σ and Σ′ reflects the effect of an
expression on the types of channels. For example

x : Chan c ` c : ?Int.End . receive x : Int / c : End.

11

Γ ` true : Bool Γ ` false : Bool Γ ` unit : Unit (T-Const)

Γ ` c : Chan c Γ, n : [S] ` n : [S] Γ, x : T ` x : T
(T-Chan,T-Name,T-Var)

Γ, x : T ` Σ . e : U / Σ′ ∀c.Σ(c) 6=⊥
Γ ` λ(Σ;x : T).e : (Σ; T → U ; Σ′)

Γ, x : T ` v : T T = (Σ;U → U ′; Σ′)
Γ ` rec (x : T).v : T

(T-Abs,T-Rec)

Figure 6: Typing rules for values

Γ ` v : Chan c

Γ ` Σ, c : ?D.S . receive v : D / Σ, c : S
(T-ReceiveD)

Γ ` v : Chan c d fresh
Γ ` Σ, c : ?S′.S . receive v : Chan d / Σ, d : S′, c : S

(T-ReceiveS)

Γ ` v : D Γ ` v′ : Chan c

Γ ` Σ, c : !D.S . send v on v′ : Unit / Σ, c : S
(T-SendD)

Γ ` v : Chan d Γ ` v′ : Chan c

Γ ` Σ, c : !S′.S, d : S′ . send v on v′ : Unit / Σ, c : S
(T-SendS)

Γ ` v : Chan c j ∈ I

Γ ` Σ, c : ⊕〈li : Si〉i∈I . select lj on v : Unit / Σ, c : Sj
(T-Select)

Γ ` v : Chan c Γ ` Σ, c : Sj . ej : T / Σ′ ∀j ∈ I

Γ ` Σ, c : &〈li : Si〉i∈I . case v of {li ⇒ ei}i∈I : T / Σ′ (T-Case)

Γ ` v : Chan c

Γ ` Σ, c : End . close v : Unit / Σ
(T-Close)

Figure 7: Typing rules for expressions I: Channel operations

Finally, typing judgements for configurations are of the form ∆ ` Σ . C
where ∆ is a map from names to datatypes of the form [S].

Typing Values (figure 6). T-Chan says that a channel named c has type
Chan c. The actual type (or state) of channel c is to be found in a channel
environment Σ, in the rules for expressions. In T-Abs, the initial and final
channel environments of the function body are recorded in the function type.

Typing Expressions (figures 7, 8). There are two rules for receive and two
rules for send, for these constructors are overloaded: they allow transmission of
data as well as channels. In T-ReceiveD, the prefix ?D., of the type for channel
c, is consumed, provided that we are receiving on a value aliased to channel c
(of type Chan c). In T-ReceiveS, we receive a channel, that we decided to call

12

Γ ` v : [S] c fresh
Γ ` Σ . request v : Chan c / Σ, c : S

Γ ` v : [S] c fresh
Γ ` Σ . accept v : Chan c / Σ, c : S

(T-Request,T-Accept)

Γ ` Σ1 . t1 : T1 / ∅ Γ ` Σ2 . t2 : T2 / ∅
Γ ` Σ1 • Σ2 . fork t1; t2 : T2 / ∅

(T-Fork)

Γ ` Σ . new S : [S] / Σ
Γ ` v : (Σ; T → U ; Σ′) Γ ` v′ : T

Γ ` Σ . vv′ : U / Σ′

(T-New,T-App)

Γ ` v : T

Γ ` Σ . v : T / Σ
Γ ` v : Bool Γ ` Σ . e : T / Σ′ Γ ` Σ . e′ : T / Σ′

Γ ` Σ . if v then e else e′ : T / Σ′

(T-Val,T-If)

Γ ` Σ . e : T / Σ′′ Γ, x : T ` Σ′′ . t : U / Σ′

Γ ` Σ . let x = e in t : U / Σ′
Γ ` Σ . t{v/x} : T / Σ′

Γ ` Σ . let x = v in t : T / Σ′

(T-Let,T-PolyLet)

Figure 8: Typing rules for expressions II: Other rules

d; the type of the expression is Chan d, and we add a new entry to the final
channel environment, where we record the type for d. The particular form of
the final channel environment allows the continuation to hold both ends of the
channel. The rules T-SendD and T-SendS, for sending values and channels,
are similar. In T-Select, the type for c in the final channel environment is that
of branch li in the type for c in the source channel environment. In T-Case,
all branches must produce the same final channel environment. This enables
us to know the environment for any code following the case, independently of
which branch is chosen at runtime. The same applies to the two branches of the
conditional in T-If. Rule T-Close requires that the channel must be ready to
be closed (of type End). We remove the closed channel from the environment.

Rules T-Request and T-Accept both introduce a new channel c in the
channel environment, of dual polarities [11, 15, 16, 28, 29]. The dual of a session
type S, denoted S, is defined for all session types except ⊥S , and is obtained
by interchanging output ! and input ?, and by interchanging branching & and
selection ⊕, and leaving S otherwise unchanged. The inductive definition of
duality is in Figure 5.

In T-App, the initial and final channel environments in the type of the func-
tion are released into the typing for the application. T-Val says that constants
do not affect the state of channels. Expression new S has type [S], denoting a
name that, when shared by two threads, is able to produce (via accept/request)
new channels of type S.

Rule T-Fork composes the initial channel environments of two configura-
tions, by checking that the types of the channels occurring in both environ-
ments are dual. As for the final environment, the rule requires, via the ~c : ⊥~S

13

∆ ` Σ . t : T / ∅
∆ ` Σ . 〈t〉

∆ ` Σ1 . C1 ∆ ` Σ2 . C2

∆ ` Σ1 • Σ2 . C1 | C2

∆, n : [S] ` Σ . C

∆ ` Σ . (νn : S)C
(T-Thread,T-Par,T-NewN)

∆ ` Σ, c : ⊥S . C c not in ∆,Σ
∆ ` Σ . (νc : ⊥S)C

∆ ` Σ . C c not in ∆,Σ
∆ ` Σ . (νc : ⊥S)C

(T-NewB,T-NewC)

Figure 9: Typing rules for configurations

and ~d : ⊥ ~S′ in the antecedent, that each thread involved either consumes their
channels (that is, sends or closes the channels), or uses them in dual mode.

The composition of two channel environments, Σ1 •Σ2, is defined only when
Σ1(c) = Σ2(c), for all c ∈ dom Σ1 ∩ dom Σ2. In this case dom(Σ1 • Σ2) =
dom Σ1 ∪ dom Σ2, and (Σ1 • Σ2)(c) is ⊥S when c ∈ dom Σ1 ∩ dom Σ2 and
Σ1(c) = S, and is Σi(c) when c ∈ dom Σi \ dom Σ3−i, for i = 1, 2.

Rule T-PolyLet types the various forms of polymorphism identified in
section 2, by separately typing different copies of the polymorphic value [24,
Chapter 22].

Typing Configurations (figure 9). Rule T-Thread requires that threads
either consume their channels or use them in dual mode, similarly to T-Fork.
The ∆ in the antecedent of rule T-Thread ensures that threads are closed
for variables, for the domain of ∆ does not include variables. Rule T-Par is
similar to T-Fork. T-NewN discards information on the bound name. There
are two rules for channel creation. Rule T-NewB says that a newly created
channel must be used with dual modes by exactly two threads, since the type
⊥S usually arises from the • operator in rules T-Par or T-Fork. Rule T-
NewC allows to garbage collect unused channels.

The formulation of Subject Reduction is standard; the proof is in appendix A,
page 24.

Theorem 2 (Subject Reduction). If ∆ ` Σ . C and C → C ′, then ∆ ` Σ . C ′.

6 Type Safety

In our language of functional communicating threads different sorts of problems
may occur at runtime, ranging from the traditional error of testing, in a con-
ditional expression, a value that is not true or false; through applying close to
a value that is not a channel; to the most relevant to our work: having one
thread trying to send on a given channel, and another trying to select on the
same channel, or having three or more threads trying to synchronize on the
same channel.

14

Γ; true 7→ Bool Γ; false 7→ Bool Γ; unit 7→ Unit (C-Const)

Γ; c 7→ Chan c Γ, n : [S];n 7→ [S] Γ, x : T ;x 7→ T
(C-Chan,C-Name,C-Var)

Γ, x : T ; Σ; e 7→ Σ1;U ; Σ2 ∀c.Σ(c) 6=⊥
Γ;λ(Σ;x : T).e 7→ (Σ;T → U ; Σ1,Σ2)

(C-Abs)

Γ, x : T ; v 7→ T T = (Σ;U → U ′; Σ′)
Γ; rec (x : T).v 7→ T

(C-Rec)

Figure 10: Type checking values

In order to define what we mean by a faulty configuration, we start by calling
a c-thread any thread ready to perform an operation on channel c, that is a
thread of the form 〈let x = receive c in t〉, and similarly for send, case, select, and
close. A c-redex is the parallel composition of two threads ready to communicate
on channel c, that is 〈let x = send v on c in t1〉 | 〈let y = receive c in t2〉, and
similarly for case/select, close/close. A configuration C is faulty when C ≡
(νΓ)(C1 | C2) and C1 is

1. the thread 〈let x = e in t〉, where e is i) if v then else with v 6= true, false,
or is ii) v with v 6= λy.e′ and v 6= rec y.e′; or is

2. the thread 〈let x = accept/request v in t〉, where v is not a name; or is

3. the thread 〈let x = e in t〉, where e is i) receive/close v, or ii) send on v,
or iii) case v of , or iv) select on v, with v not a channel; or is

4. the parallel composition of two c-threads that do not form a c-redex; or is

5. the parallel composition of three or more c-threads.

The main property of this section says that typable configurations are not
faulty; the proof is in appendix B, page 34.

Theorem 3 (Type Safety). Typable configurations are not faulty.

7 Type Checking

This section presents a type checking algorithm in the form of typing rules.
Typing judgements for values are of the form Γ; v 7→ T , where Γ and v describe
the input, and T describes the output for the type checking function. Judge-
ments for expressions are of the form Γ; Σ; e 7→ Σ′;T ; Σ′′, where the symbols
at the left of the arrow represent the input, and those on the right the output.
Channel environment Σ′ describes the unused part of Σ, whereas Σ′′ represents
the final types of the channels which are used by e. Channels which are created

15

Γ; v 7→ D Γ; v′ 7→ Chan c

Γ;Σ, c : !D.S; send v on v′ 7→ Σ; Unit; c : S

Γ; v 7→ D Γ; v′ 7→ Chan c

Γ;Σ, c : ⊥!D.S ; send v on v′ 7→ Σ, c : ?D.S;Unit; c : S

Γ; v 7→ D Γ; v′ 7→ Chan c

Γ;Σ, c : ⊥?D.S ; send v on v′ 7→ Σ, c : ?D.S;Unit; c : S
(C-Send)

Γ; v 7→ Chan c Γ;Σ, c : Sj ; ej 7→ Σ1;T ; Σ2 ∀j ∈ I

Γ;Σ, c : &〈li : Si〉i∈I ; case v of {li ⇒ ei}i∈I 7→ Σ1;T ; Σ2

Γ; v 7→ Chan c Γ;Σ, c : Sj ; ej 7→ Σ1;T ; Σ2 ∀j ∈ I

Γ;Σ, c : ⊥&〈li : Si〉i∈I
; case v of {li ⇒ ei}i∈I 7→ Σ1, c : ⊕ 〈li : Si〉i∈I ;T ; Σ2

Γ; v 7→ Chan c Γ;Σ, c : Sj ; ej 7→ Σ1;T ; Σ2 ∀j ∈ I

Γ;Σ, c : ⊥⊕〈li : Si〉i∈I
; case v of {li ⇒ ei}i∈I 7→ Σ1, c : &〈li : Si〉i∈I ;T ; Σ2

(C-Case)

Figure 11: Type checking expressions I: Channel operations

by e appear in Σ′′. If c : S ∈ Σ and S 6=⊥, then we will have either c : S ∈ Σ′ if
e does not use c, or c : S′ ∈ Σ′′ if e uses c and leaves it with type S′, or neither
if S = End and e closes c. If c : ⊥S ∈ Σ or c : ⊥S ∈ Σ, and e uses c, then it will
be checked that e uses just one end of c, and we will have either c : S ∈ Σ′ and
c : S′ ∈ Σ′′, or c : S ∈ Σ′ and c : S′′ ∈ Σ′′. For example

x : Chan c; c : ?Int.End; receive x 7→ ∅; Int; c : End.

x : Chan c; c : ⊥?Int.End; receive x 7→ c : !Int.End; Int; c : End.

x : Chan c; c : ⊥!Int.End; receive x 7→ c : !Int.End; Int; c : End.

Finally, typing judgements for configurations are of the form ∆;Σ;C 7→ Σ′

where Σ′ describes the unused part of Σ.
The type inference system is presented in figures 10 to 13. Most of the rules

are obtained from those in figures 6 to 9, by a suitable reading of the sequents.

Type Checking Values (figure 10). In rule C-Abs we require, just as in
rule T-Abs, that Σ does not contain any ⊥ types. This means that a func-
tion can only use one end of a channel. The following lemma (Lemma 19,
Appendix C) guarantees that Σ1 and Σ2 have disjoint domains, so that Σ1,Σ2

is defined and the overall transformation of channel types can be described by
the function type Σ;T → U ; Σ1,Σ2.

Lemma If Γ; Σ; e 7→ Σ1;T ; Σ2 and Σ contains no ⊥ types, then dom(Σ1) ∩
dom(Σ2) = ∅.

16

Γ; v 7→ [S] c fresh
Γ;Σ; request v 7→ Σ; Chan c; c : S

Γ; v 7→ [S] c fresh
Γ;Σ; accept v 7→ Σ; Chan c; c : S

(C-Request,C-Accept)

Γ;Σ; t1 7→ Σ1;T1; ∅ Γ;Σ1; t2 7→ Σ2;T2; ∅
Γ;Σ; fork t1; t2 7→ Σ2;T2; ∅

(C-Fork)

Γ;Σ; new S 7→ Σ; [S]; ∅ Γ; v 7→ (Σ; T → U ; Σ′) Γ; v′ 7→ T

Γ;Σ; vv′ 7→ ∅;U ; Σ′

(C-New,C-App)

Γ; v 7→ T

Γ;Σ; v 7→ Σ; T ; ∅
Γ; v 7→ Bool Γ;Σ; e 7→ Σ1;T ; Σ2 Γ;Σ; e′ 7→ Σ1;T ; Σ2

Γ;Σ; if v then e else e′ 7→ Σ1;T ; Σ2

(C-Val,C-If)

Γ;Σ; e 7→ Σ1;T1; Σ′
1 Γ, x : T1; (Σ ∩ Σ1),Σ′

1; t 7→ Σ2;T2; Σ′
2

Γ;Σ; let x = e in t 7→ Σ3;T2; (Σ′
1 ∩ Σ2),Σ′

2

(C-Let)

In rule C-Let, Σ3 = (Σ1 ∩ Σ2) ∪ {c : S|(c : ⊥S ∈ Σ or c : ⊥S ∈ Σ) and (c : S ∈
Σ1 or c : S ∈ Σ2)}.

Figure 12: Type checking expressions II: other rules

Type Checking Expressions (figures 11, 12). Each rule in figure 7 gives
rise to three rules in the type checking system. In figure 11 we present the rules
corresponding to T-SendD and to T-Case; the remaining cases are easy to
infer.

The three rules for send-datatype distinguish the three possibles types for
channel c in the input environment. If the type is output, !D.S, then the type-
checking function consumes the type, yielding c : S in the consumed channel-
environment. When the type is bottom-output, ⊥!D.S , then, as above, the
type-checking function returns c : S in the consumed part. In this case, however,
the function announces, via c : ?D.S in the unused part, that the dual type is
available. When the type is bottom-input, the process is dual.

The three rules for case follow a similar pattern. For example, for the second
rule, when the input channel environment Σ contains an entry of the form
c : ⊥&〈li : Si〉i∈I

, we call the type checking function for each branch ej in the
body of the case with c : Sj , and place c : ⊕ 〈li : Si〉i∈I in the unused part.

In figure 12, contrast rule C-New with rule C-Abs. Since values do not
change channels, the former rule consumes nothing, placing the input Σ in the
unused position in the output. The latter consumes channels as described by Σ
in the type for the function, leaving empty the unused component in the output.

Rule C-Fork requires that t1 and t2 fully consume all of the channels that
they use, either by using them completely and closing them, or by sending them
to other threads. This corresponds to the hypotheses of rule T-Fork. Of the

17

∆; Σ; t 7→ Σ′;T ; ∅
∆; Σ; 〈t〉 7→ Σ′

∆; Σ;C1 7→ Σ1 ∆; Σ1;C2 7→ Σ2

∆; Σ;C1 | C2 7→ Σ2

∆, n : [S]; Σ; C 7→ Σ′

∆; Σ; (νn : S)C 7→ Σ′

(C-Thread,C-Par,C-NewN)

∆; Σ, c : ⊥S ;C 7→ Σ′ c not in ∆,Σ
∆; Σ; (νc : ⊥S)C 7→ Σ′

∆; Σ;C 7→ Σ′ c not in ∆,Σ
∆; Σ; (νc : ⊥S)C 7→ Σ′

(C-NewB,C-NewC)

Figure 13: Type checking configurations

initial channels Σ, some are consumed by t1 and the remainder, Σ1, are used
to typecheck t2. Any channels remaining after typechecking t2, i.e. Σ2, are
returned as the channels which are not used by the fork expression.

The most complex typechecking rule is C-Let. The channel environment
(Σ∩Σ1),Σ′

1 which is used when typechecking t consists of the channels (Σ∩Σ1)
which are not used by e and the updated types (Σ1) of the channels which
are used by e. Note that if c : ⊥S ∈ Σ but e uses (one end of) c, so that
c : S ∈ Σ and c : S′ ∈ Σ′

1, then t is typechecked with respect to c : S′, which
ensures that t can only use the same end of c which e uses. The final modified
channel environment, (Σ′

1 ∩ Σ2),Σ′
2, has a similar form to the initial channel

environment when typechecking t. The definition of the unused channels, Σ3,
includes channels which are used by neither e nor t, together with the unused
portions of channels c : ⊥ ∈ Σ which are used by either e or t.

Type Checking Configurations (figure 13). In rule C-Par, we run the
algorithm on C1 and feed the output Σ1, the unused part of Σ, into another
call, this time for C2. The output Σ2 of the second call is the unused channel
environmnent of the parallel composition C1 | C2 (cf. rule C-Fork in 12).

Correctness. The type checking algorithm is sound and complete with re-
spect to the type system presented in section 5. To state soundness we define
the partial operation Σ− Σ′ as follows.

(Σ, c : S)− c : S =Σ

(Σ, c : ⊥S)− c : S =Σ, c : S

(Σ, c : ⊥S)− c : S =Σ, c : S

Σ− c : S =undefined, otherwise

The definition is then extended inductively in the second argument. The for-
mulation of correctness is standard; the proofs are in appendices C (page 36),
and D (page 40).

Theorem 4 (Soundness). If ∆; Σ;C 7→ Σ′ then Σ − Σ′ is defined and ∆ `
Σ− Σ′ . C.

18

Theorem 5 (Completeness). If ∆ ` Σ . C without using rule T-PolyLet,
then for all Σ′ such that Σ • Σ′ is defined, ∆; Σ • Σ′;C 7→ Σ′.

8 Related Work

Cyclone [14] is a C-like type-safe polymorphic imperative language. It features
region-based memory management, and more recently threads and locks [13],
via a sophisticated type system. The multithreaded version requires “a lock
name for every pointer and lock type, and an effect for every function”. Our
locks are channels; but more than mutual exclusion, channels also allow a pre-
cise description of the protocol “between” acquiring and releasing the lock. In
Cyclone a thread acquires a lock for a resource, uses the resource in whichever
way it needs, and then releases the lock. Using our language a thread acquires
the lock via a request operation, and then follows the protocol for the resource,
before closing the channel obtained with request.

In the Vault system [7] annotations are added to C programs, in order to
describe protocols that a compiler can statically enforce. Similarly to our ap-
proach, individual runtime objects are tracked by associating keys (channels,
in our terminology) with resources, and function types describe the effect of
the function on the keys. Although incorporating a form of selection (⊕), the
type system describes protocols in less detail than we can achieve with session
types. “Adoption and Focus” [9], by the same authors, is a type system able to
track changes in the state of objects; the system handles aliasing, and includes
a form of polymorphism in functions. In contrast, our system checks the types
of individual messages, as well as tracking the state of the channel. Our sys-
tem is more specialized, but the specialization allows more type checking in the
situation that we handle.

Type and effect systems can be used to prove properties of protocols. Gordon
and Jeffrey [12] use one such system to prove progress properties of communi-
cation protocols written in π-calculus. Bonelli, Compagnoni, and Gunter [2]
combine the language of Honda, Vasconcelos and Kubo [16] with the correspon-
dence assertions of Gordon and Jeffrey, thus obtaining a setting where further
properties can be proved about programs.

Rajamani et al.’s Behave [5, 25] uses CCS to describe properties of π-calculus
programs, verified via a combination of type and model checking. Since our
system is purely type checking (not model checking) verification is more efficient
and easier to implement. Igarashi and Kobayashi have developed a generic
framework in which a range of π-calculus type systems can be defined [18].
Although able to express sequencing of input and output types similarly to
session types, it cannot express branching types.

A somewhat related line of research addresses resource access in general.
Walker, Crary, and Morrisett [32] present a language to describe region-based
memory management together with a provably safe type system. Igarashi and
Kobayashi [17] present a general framework comprising a language with primi-
tives for creating and accessing resources, and a type inference algorithm that

19

checks whether programs access resources in a disciplined manner. Although
types for resources in this latter work are similar in spirit to session types, we
work in a much simpler setting.

Neubauer and Thiemann encoded a version of session types in the Haskell
programming language, and proved that the embedding preserves typings [22],
but the results are limited to type soundness.

9 Future Work

A prototype implementation of the language, targeted at the Multithreaded
Intermediate Language [23], is under way. We outline some of the issues involved
in extending our language to include a wider range of standard features.

Recursive Session Types. We have introduced recursive session types in
a previous work [10]. We feel its incorporation in the present setting would
not present major difficulties, although care must be taken in the definition of
duality [29].

Principal Typings. For practical type inference, for separate compilation
and modularity, one needs a notion of principal typings for the language. Par-
ticularly challenging is the share/not-share kind of polymorphism identified in
section 2.

Type Inference. We are working on a constraint-based type inference algo-
rithm for (the monomorphic fragment of) the language.

Web services. Our work opens up the possibility of an application of session
types to verification of web service implementations [6, 31]. Web services require
a model for business interactions, which typically assume the form of sequences
of peer-to-peer message exchanges, both synchronous and asynchronous, within
stateful, long-running interactions involving two or more parties. Although some
rigorous semantics have been developed (eg., [3]), there is still little assistance
on the verification of the correctness of the protocol descriptions and their com-
position. (eg., [4, 8]). Session types may provide a useful static analysis tool.

ML-style references and assignment. This would introduce further issues
of aliasing. We do not yet know whether our present infrastructure for type-
checking in the presence of aliasing would be sufficient for this extension.

Acknowledgements. This work was partially supported by the EU IST proac-
tive initiative FET-Global Computing (projects Mikado, IST–2001–32222, and
Profundis, IST–2001–33100), Fundação para a Ciência e a Tecnologia (via CLC,

20

CITI, and the project MIMO, POSI/CHS/39789/2001), and a Treaty of Wind-
sor grant from the British Council in Portugal and the Portuguese Council of
University Rectors.

References

[1] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, 1984.

[2] E. Bonelli, A. Compagnoni, and E. Gunter. Typechecking safe process syn-
chronization. In FGUC 2004. Third EATCS Workshop in the Foundations
of Global Computing, ENTCS. Elsevier Science, 2004. To appear.

[3] M. J. Butler and C. Ferreira. A process compensation language. In Pro-
ceedings of IFM, pages 61–76, 2000.

[4] M. J. Butler and C. Ferreira. Using SPIN and STeP to verify business
processes specifications. In Proceedings of Eeshov Memorial Conference,
pages 207–213, 2003.

[5] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking
message-passing programs. In POPL, pages 45–57. ACM Press, 2002.

[6] F. Curbera, Y. Goland, J. Klein, F. Leymann, S. T. D. Roller,
and S. Weerawarana. Business process execution language for web
services, version 1.1. Technical report, IBM, 2003. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

[7] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level
software. In PLDI, pages 59–69. ACM Press, 2001.

[8] C. Ferreira and M. J. Butler. Using b refinement to analyse compensating
business processes. In Proceedings of ZB, pages 477–496, 2003.

[9] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers. In
PLDI, pages 1–12, Berlin, Germany, June 2002.

[10] S. Gay, V. T. Vasconcelos, and A. Ravara. Session types for inter-process
communication. TR 2003–133, Department of Computing, University of
Glasgow, March 2003.

[11] S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions.
volume 1576 of LNCS, pages 74–90. Springer-Verlag, 1999.

[12] A. Gordon and A. Jeffrey. Typing correspondence assertions for communi-
cation protocols. Theoretical Computer Science, 300:379–409, 2003.

[13] D. Grossman. Type-safe multithreading in cyclone. In ACM Workshop on
Types in Language Design and Implementation. ACM Press, 2003.

21

[14] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in cyclone. In PLDI, pages 282–293.
ACM Press, 2002.

[15] K. Honda. Types for dyadic interaction. In CONCUR’93, volume 715 of
LNCS, pages 509–523. Springer-Verlag, 1993.

[16] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. volume 1381
of LNCS, pages 122–138. Springer-Verlag, 1998.

[17] A. Igarashi and N. Kobayashi. Resource usage analysis. In POPL, pages
331–342. ACM Press, 2002.

[18] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus.
Theoretical Computer Science, 311(1–3):121–163, 2003.

[19] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for con-
current objects. In Proc. Lics2002, 17th Annual Symposium on Logic in
Computer Science, Copenhagen, pages 101–112. IEEE Computer Society
Press, 2002.

[20] S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proceed-
ings of the 23rd ACM Symposium on Principles of Programming Lan-
guages (POPL’96), St. Petersburg Beach, Florida, USA, pages 295–308.
ACM Press, 1996.

[21] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and
II. Information and Computation, 100(1):1–77, September 1992.

[22] M. Neubauer and P. Thiemann. An implementation of session types. In
Practical Aspects of Declarative Languages (PADL’04), volume 3057 of
LNCS, pages 56–70. Springer-Verlag, 2004.

[23] H. Paulino, P. Marques, L. Lopes, V. T. Vasconcelos, and F. Silva. A
multi-threaded asynchronous language. In 7th International Conference on
Parallel Computing Technologies (PaCT’03), volume 2763 of LNCS, pages
316–323. Springer-Verlag, 2003.

[24] B. Pierce. Types and Programming Languages. The MIT Press, 2002.

[25] S. K. Rajamani and J. Rehof. A behavioral module system for the pi-
calculus. volume 2126 of LNCS, pages 375–394. Springer-Verlag, 2001.

[26] J. Reppy. CML: a higher order concurrent language. In PLDI, pages 293–
305. ACM Press, 1991.

[27] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

22

[28] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and
its typing system. volume 817 of LNCS. Springer-Verlag, 1994.

[29] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of
objects and components using session types. In FOCLASA 2002, volume 68
of Electronic Notes in Theoretical Computer Science. Elsevier, August 2002.

[30] V. T. Vasconcelos, A. Ravara, and S. Gay. Session types for functional
multithreading. In CONCUR’04, volume 3170 of LNCS, pages 497–511.
Springer-Verlag, 2004.

[31] W3C. Web services choreography requirements, W3C working draft, 2004.
http://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311/.

[32] D. Walker, K. Crary, and G. Morrisett. Typed memory management via
static capabilities. TOPLAS, 22(4):701–771, 2000.

23

A Proof of Theorem 2, Subject Reduction

We start with a few auxiliary results; the proof of Subject Reduction is on
page 29. To simplify the proofs, we make use of the variable convention [1],
allowing, for example, to assume that, in sequent ∆ ` Σ . (νc)C, channel c does
not occur in either ∆ or Σ. Relatedly, when we say that c does not occur in C,
we mean that it does not occur free in C and, by the variable convention, that
it does not occur bound either.

The following easy results allow to grow and shrink the variable environment
of an expression. Weakening is used in Subject Reduction (rule R-Let) and
narrowing in the Substitution Lemma 15.6

Lemma 6 (Variable Weakening). Suppose that x does not occur in e, v.

1. If Γ ` Σ . e : U / Σ′, then Γ, x : T ` Σ . e : U / Σ′.

2. If Γ ` v : U , then Γ, x : T ` v : U .

Proof. The proofs, by mutual induction, are straightforward.

Lemma 7 (Variable Narrowing). Suppose that x does not occur in e, v.

1. If Γ, x : T ` Σ . e : U / Σ′, then Γ ` Σ . e : U / Σ′.

2. If Γ, x : T ` v : U , then Γ ` v : U .

Proof. The proofs, by mutual induction, are straightforward.

The following two unchallenging results allow to grow and shrink, this time,
the name environment of a configuration. They are used in the proofs of Subject
Congruence (rule S-ScopeN) and Subject Reduction (rule R-New).

Lemma 8 (Name Weakening). Suppose that n does not occur in C, e, v.

1. If ∆ ` Σ . C, then ∆, n : [S] ` Σ . C.

2. If Γ ` Σ . e : T / Σ′, then Γ, n : [S] ` Σ . e : T / Σ′.

3. If Γ ` v : T , then Γ, n : [S] ` v : T .

Proof. The proof for configurations is a straightforward induction on the deriva-
tion of the judgement, using the result for expressions when the last rule in the
derivation tree is T-Thread. The proofs for expressions and for values are by
mutual induction.

Lemma 9 (Name Narrowing). Suppose that n is not in C, e, v.

1. If ∆, n : [S] ` Σ . C, then ∆ ` Σ . C.

6In the formulation of the lemma, we have omitted the hypothesis that x is not in the
domain of Γ (for otherwise Γ, x : T would not be defined in the conclusion). We henceforth
follow this convention for all sorts of environments.

24

2. If Γ ` Σ, n : [S] . e : T / Σ′, then Γ ` Σ . e : T / Σ′.

3. If Γ, n : [S] ` v : T , then Γ ` v : T .

Proof. The proof for configurations is a straightforward induction on the deriva-
tion of the judgement, using the result for expressions when the last rule in the
derivation tree is T-Thread. The proofs for expressions and for values are by
mutual induction.

The following two results allow to grow and shrink the channel environment
of a configuration. Weakening is needed in Subject Reduction (rule R-Close);
Narrowing in Subject Congruence (channel extrusion using rule T-NewB).

Lemma 10 (Channel Weakening). Suppose that c does not occur in any of
∆,Γ,Σ,Σ′, C, e, v.

1. If ∆ ` Σ . C, then ∆ ` Σ, c : ⊥ . C.

2. If Γ ` Σ . e : T / Σ′, then Γ ` Σ, c : ⊥ . e : T / Σ′, c : ⊥.

3. If Γ ` v : (Σ; T → U ; Σ′), then Γ ` v : (Σ, c : ⊥;T → U ; Σ′, c : ⊥).

Proof. The proof for configurations is a straightforward induction on the deriva-
tion of the jugdement, using the result for expressions when the last rule in the
derivation tree is T-Thread. The proofs for expressions and for values are by
mutual induction.

Lemma 11 (Channel Narrowing). Suppose that c does not occur in any of
∆,Γ,Σ,Σ′, C, e, v.

1. If ∆ ` Σ, c : S . C, then S =⊥ and ∆ ` Σ . C.

2. If Γ ` Σ, c : S . e : T / Σ′, then Σ′ = Σ′′, c : S and Γ ` Σ . e : T / Σ′′.

3. If Γ ` v : (Σ, c : S;T → U ; Σ′, c : S), then Γ ` v : (Σ; T → U ; Σ′).

Proof. The proofs are by induction on the possible derivation trees for the judge-
ment.

1. Configurations. The only cases worth mentioning are when the last rule
is T-Par or T-Thread; the four remaining cases follow directly by induction.

T-Par. By hypothesis we have a tree of the form:

∆ ` Σ∗
1 . C1 ∆ ` Σ∗

2 . C2
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . C1 | C2

We analyse the possibilities for splitting the environment (Σ1 • Σ2), c : ⊥.
There are three cases.

1. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : S

25

3. S =⊥, Σ∗
1 = Σ1, c : S1 and Σ∗

2 = Σ2, c : S1

Each case follows easily by induction.
T-Thread. By hypothesis we have a tree of the form:

∆ ` Σ, c : S . t : T / ~d : ⊥

∆ ` Σ, c : S . 〈t〉

and use the clause for expressions in this lemma, to conclude that ~d : ⊥= Σ′, c : S
(therefore S =⊥) and that ∆ ` Σ . t : T / Σ′. The result follows by induction.

2. Expressions. The cases for all the rules in figure 7 (except T-Case), as
well as T-New and T-Val in figure 8 are direct, for the antecedents (if any) do
not mention channel environments. The case for rule T-App uses the clause for
functional values in this lemma. All other cases, except T-Fork follow directly
by induction.

T-Fork. By hypothesis we have a proof tree of the form:

∆ ` Σ∗
1 . t1 : T1 / ~c : ⊥ ∆ ` Σ∗

2 . t2 : T2 / ~d : ⊥
T-Fork

∆ ` (Σ1 • Σ2), c : S . fork t1; t2 : T2 / ~c : ⊥, ~d : ⊥

We analyse the possibilities for splitting the environment (Σ1 • Σ2), c : S.
There are three cases.

1. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2.

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : S.

3. S =⊥, Σ∗
1 = Σ1, c : S1 and Σ∗

2 = Σ2, c : S1.

The first two cases follow directly by induction. In the third case, the induction
hypothesis implies that S1 =⊥ and S1 =⊥, meaning that Σ∗

1 •Σ∗
2 is not defined.

So the third case cannot arise.
3. Values. Rules T-Const, T-Chan, and T-Name do not apply, for the

types in the axioms are not of the required form. Rule T-Var does not apply,
for c is not in Γ, by hypothesis. Rule T-Rec follows by induction, and rule
T-Abs uses the clause for expressions in this lemma.

The following result accounts for the monoidal structure of configurations;
it is used in the proof of Subject Congruence.

Lemma 12 (Channel environment monoid). Consider the commutative monoid
axioms expressed in terms of (Σ, •, ∅), each in the form LHS = RHS. For each
axiom, LHS is defined if and only if RHS is defined, and then they are equal.

Proof. Directly from the definition of channel environment composition, on page
14.

Congruent configurations share the same typings. This result is used in the
proof of Subject Reduction, rule R-Conf.

26

Lemma 13 (Subject Congruence). If ∆ ` Σ . C and C ≡ C ′, then ∆ ` Σ . C ′.

Proof. The proof proceeds by induction on the derivation of C ≡ C ′. The
inductive cases (the congruence rules) are straightforward. We now consider
the base cases.

When the last rule applied is the commutative monoid rule, we use Lemma 12.
For the scope extrusion rules S-ScopeN and S-ScopeC we must consider each
rule in both directions; for S-ScopeC we must consider two cases, depending
on whether the typing derivation uses T-NewB or T-NewC.

S-ScopeN. When reading the rule left-to-right we use name weakening
(lemma 8). In the other direction we use name narrowing (lemma 9). In both
cases, we use the hypothesis (in the congruence rule) that n is not in C2.

S-ScopeC, left-to-right, T-NewB. By hypothesis, we have

∆ ` Σ1, c : ⊥ . C1 c not in ∆,Σ1
T-NewB

∆ ` Σ1 . (νc)C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

From the assumptions in the above tree, we build the following derivation,
where we crucially use the variable convention to ensure that c is not in Σ2.

∆ ` Σ1, c : ⊥ . C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2, c : ⊥ . C1 | C2 c not in ∆,Σ1,Σ2
T-NewB

∆ ` Σ1 • Σ2 . (νc)(C1 | C2)

S-ScopeC, left-to-right, T-NewC. Similar to the previous case, again
using the variable convention.

S-ScopeC, right-to-left, T-NewB. By hypothesis, we have a proof tree
of the form:

∆ ` Σ∗
1 . C1 ∆ ` Σ∗

2 . C2
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . C1 | C2 c not in ∆,Σ1,Σ2
T-NewB

∆ ` (Σ1 • Σ2) . (νc)(C1 | C2)

We analyse the possibilities for splitting environment (Σ1 •Σ2), c : ⊥. There
are three cases.

1. Σ∗
1 = Σ1, c : ⊥ and Σ∗

2 = Σ2.

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : ⊥.

3. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2, c : S.

In case 1 we build the following derivation.

∆ ` Σ1, c : ⊥ . C1 c not in ∆,Σ1
T-NewB

∆ ` Σ1 . (νc)C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

27

In case 2 we build the following derivation.

∆ ` Σ1 . C1 c 6∈ ∆,Σ1
T-NewC

∆ ` Σ1 . (νc)C1

∆ ` Σ2, c : ⊥ . C2 c 6∈ ∆,Σ2, C2
Lemma 11

∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

In case 3 the typing derivation gives us the additional hypothesis that
(Σ1, c : S) • (Σ2, c : S) is defined. As we have ∆ ` Σ2, c : S . C2 and we know
that c is not in C2, Lemma 11 applies and this judgement is ∆ ` Σ2, c : ⊥ . C2,
contradicting the assumption that (Σ1, c : S) • (Σ2, c : S) is defined. Therefore
this case cannot arise.

S-ScopeC, right-to-left, T-NewC. Similar to case 1 of the previous ar-
gument.

The following result allow to replace a given channel for a another one,
throughout a derivation tree. We use it in Subject Reduction, rule R-Init, to
unify the two fresh channels in the hypothesis.

Lemma 14 (Channel replacement). Suppose that neither d nor c occurs in any
of Γ,Σ,Σ′, T, e, v.

1. If Γ ` Σ . e : T / Σ′, then Γ{d/c} ` Σ{d/c} . e : T{d/c} / Σ′{d/c}.

2. If Γ ` v : T , then Γ{d/c} ` v : T{d/c}.

Proof. The proof of the two results, by mutual induction, is straightforward.

The following lemma accounts for all cases in Subject Reduction where sub-
stitution is needed, namely, in rules R-App, R-Rec, and R-Beta.

Lemma 15 (Substitution). Suppose that Γ ` v : T .

1. If Γ, x : T ` Σ . e : U / Σ′ then Γ ` Σ . e{v/x} : U / Σ′.

2. If Γ, x : T ` u : U then Γ ` u{v/x} : U .

Proof. The proof of the two results is by mutual induction on the derivation of
the judgement.

1. Expressions. The result follows easily using the result for values and
induction.

2. Values. The cases of rules T-Const, T-Chan, and T-Name follow
easily, observing that x does not occur in u, and applying lemma 7. The case of
rule T-Var follows trivially, as u = x. The case of rule T-Abs uses the result
for expressions, and that of rule T-Rec follows by induction.

We are finally in a position to prove Subject Reduction.

28

Proof of theorem 2, page 14. The proof proceeds by induction on the derivation
of C → C ′. We analyse each reduction rule in figure 4, page 10, in turn.

R-Init. By hypothesis, we have

〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νc)(〈let x = c in t1〉 | 〈let y = c in t2〉).

and ∆ ` Σ . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉. The only proof
tree for this sequent is of the form

(1) (2)
T-Par

∆ ` Σ1 • Σ2 . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉

where (1) is the tree

∆ ` n : [S] d1 fresh

∆ ` Σ1 . request n : Chan d1 / Σ1, d1 : S ∆, x : Chan d1 ` Σ1, d1 : S . t1 : T / ~c : ⊥

∆ ` Σ1 . let x = request n in t1 : T / ~c : ⊥
T-Thread

∆ ` Σ1 . 〈let x = request n in t1〉

and (2) is the tree

∆ ` n : [S] d2 fresh

∆ ` Σ2 . accept n : Chan d2 / Σ2, d2 : S ∆, y : Chan d2 ` Σ2, d2 : S . t2 : U / ~d : ⊥

∆ ` Σ2 . let y = accept n in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2 . 〈let y = accept n in t2〉
From the assumptions in the above tree we may build the following tree

(1*) (2*)
T-Par

∆ ` Σ1 • Σ2, c : ⊥ . 〈let x = c in t1〉 | 〈let y = c in t2〉
T-NewB

∆ ` Σ1 • Σ2 . (νc)(〈let x = c in t1〉 | 〈let y = c in t2〉)

where (1*) is the tree

T-Chan
∆ ` c : Chan c

∆, x : Chan d1 ` Σ1, d1 : S . t1 : T / ~c : ⊥
Lemma 14

∆, x : Chan c ` Σ1, c : S . t1 : T / ~c : ⊥
T-Let

∆ ` Σ1, c : S . let x = c in t1 : T / ~c : ⊥
T-Thread

∆ ` Σ1, c : S . 〈let x = c in t1〉

and (2*) is the tree

T-Chan
∆ ` c : Chan c

∆, y : Chan d2 ` Σ2, d2 : S . t2 : U / ~d : ⊥
Lemma 14

∆, y : Chan c ` Σ2, c : S . t2 : U / ~d : ⊥
T-Let

∆ ` Σ2, c : S . let y = c in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2, c : S . 〈let y = c in t2〉

29

Notice that we are in the conditions of lemma 14, since d1 and d2 are fresh in
the assumptions of tree (1) and (2). By the same reason ∆{c/di} = ∆, and
similarly for Σ2 and for U .

R-Com. By hypothesis, we have

〈let x = receive c in t1〉 | 〈let y = send v on c in t2〉 →
〈let x = v in t1〉 | 〈let y = unit in t2〉

There are two possible derivations to consider, depending on the kind of value v
carried by channel c. Let us consider the case where v is a channel (the other
case is similar—and simpler).

(1) (2)
T-Par

∆ ` Σ . 〈let x = receive c in t1〉 | 〈let y = send v on c in t2〉
where Σ is (Σ1 • Σ2), c : ⊥, d : S′, and (1) is the tree

T-Chan
∆ ` c : Chan c d fresh

∆ ` Σ1, c : ?S′.S . receive c : Chan d / Σ′
1 ∆, x : Chan d ` Σ′

1 . t1 : T / ~c : ⊥, c : ⊥

∆ ` Σ1, c : ?S′.S . let x = receive c in t1 : T / ~c : ⊥, c : ⊥
T-Thread

∆ ` Σ1, c : ?S′.S . 〈let x = receive c in t1〉
where Σ′

1 is Σ1, c : S, d : S′. (2) is the tree

∆ ` v : Chan d ∆ ` c : Chan c

∆ ` Σ2, c : !S′.S, d : S′ . send v on c : Unit / Σ′
2 ∆, y : Unit ` Σ′

2 . t2 : U / ~d : ⊥

∆ ` Σ2, c : !S′.S, d : S′ . let y = send v on c in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2, c : !S′.S, d : S′ . 〈let y = send v on c in t2〉

where Σ′
2 is Σ2, c : S.

From the assumptions in the above tree, one may build

(1*) (2*)
T-Par

∆ ` (Σ1 • Σ2), c : ⊥, d : S′ . 〈let x = v in t1〉 | 〈let y = unit in t2〉
where (1*) is the tree

∆ ` v : Chan d ∆, x : Chan d ` Σ1, c : S, d : S′ . t1 : T / ~c : ⊥, c : ⊥
T-Let

∆ ` Σ1, c : S, d : S′ . let x = v in t1 : T / ~c : ⊥, c : ⊥
T-Thread

∆ ` Σ1, c : S, d : S′ . 〈let x = v in t1〉
and (2*) is the tree

T-Unit
∆ ` unit : Unit ∆, y : Unit ` Σ2, c : S . t2 : U / ~d : ⊥

T-Let
∆ ` Σ2, c : S . let y = unit in t2 : U / ~d : ⊥

T-Thread
∆ ` Σ2, c : S . 〈let y = unit in t2〉

30

Notice that the type environment (Σ1, c : S, d : S′)•(Σ2, c : S) in the conclusion of
rule T-Par above is defined, since (Σ1, c : ?S′.S)• (Σ2, c : !S′.S, d : S′) is defined
(in the tree for the hypothesis) and d is fresh (in tree (1)).

R-Close. By hypothesis, we have

〈let x = close c in t1〉 | 〈let y = close c in t2〉 →
〈let x = unit in t1〉 | 〈let y = unit in t2〉

and

(1) (2)
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . 〈let x = close c in t1〉 | 〈let y = close c in t2〉

where (1) is the tree

· · · ∆, x : Unit ` Σ1 . t1 : T / ~c : ⊥1
T-Let

∆ ` Σ1, c : End . let x = close c in t1 : T / ~c : ⊥1
T-Thread

∆ ` Σ1, c : End . 〈let x = close c in t1〉

and (2) is the tree below.

· · · ∆, y : Unit ` Σ2 . t2 : U / ~c : ⊥2
T-Let

∆ ` Σ2, c : End . let y = close c in t2 : U / ~c : ⊥2
T-Thread

∆ ` Σ2, c : End . 〈let y = close c in t2〉

From the assumptions in the above tree, one may build

(1*) (2*)
T-Par

∆ ` Σ1 • Σ2 . 〈let x = unit in t1〉 | 〈let y = unit in t2〉
Lemma 10

∆ ` (Σ1 • Σ2), c : ⊥ . 〈let x = unit in t1〉 | 〈let y = unit in t2〉

where (1*) is the tree

∆ ` unit : Unit
T-Val

∆ ` Σ1 . unit : Unit / Σ1 ∆, x : Unit ` Σ1 . t1 : T / ~c : ⊥1
T-Let

∆ ` Σ1 . let x = unit in t1 : T / ~c : ⊥1
T-Thread

∆ ` Σ1 . 〈let x = unit in t1〉

and (2*) is a similar tree.
R-New. By hypothesis, we have

〈let x = new in t〉 → (νn)〈let x = n in t〉

31

and

∆ ` new : [S]
T-Val

∆ ` Σ . new : [S] / Σ ∆, x : [S] ` Σ . t : T / ~c : ⊥
T-Let

∆ ` Σ . let x = new in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = new in t〉

From the hypothesis in the above tree, we build a tree to complete the proof.

∆, n : [S] ` n : [S]

∆, x : [S] ` Σ . t : T / ~c : ⊥
Lemma 8

∆, n : [S], x : [S] ` Σ . t : T / ~c : ⊥
T-Let

∆, n : [S] ` Σ . let x = n in t : T / ~c : ⊥
T-Thread

∆, n : [S] ` Σ . 〈let x = n in t〉
T-NewN

∆ ` Σ . (νn)〈let x = n in t〉

R-Fork. By hypothesis, we have

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉

and
∆ ` Σ1 . t : / ~c : ⊥ ∆ ` Σ2 . t′ : / ~d : ⊥

T-Fork
∆ ` Σ1 • Σ2 . fork t; t′ : / ~c : ⊥, ~d : ⊥

T-Thread
∆ ` Σ1 • Σ2 . 〈fork t; t′〉

From the hypotheses in the above tree, we build a tree to complete the proof.

∆ ` Σ1 . t : / ~c : ⊥
T-Thread

∆ ` Σ1 . 〈t〉

∆ ` Σ2 . t′ : / ~d : ⊥
T-Thread

∆ ` Σ2 . 〈t′〉
T-Par

∆ ` Σ1 • Σ2 . 〈t〉 | 〈t′〉

R-App. By hypothesis, we have

〈let x = (λy.e)v in t〉 → 〈let x = e{v/y} in t〉

and

∆, y : T ` Σ . e : U / Σ′

T-Abs
∆ ` λy.e : (Σ; T → U ; Σ′) ∆ ` v : T

T-App
∆ ` Σ . (λy.e)v : U / Σ′ ∆, x : U ` Σ′ . t : T ′ / ~c : ⊥

∆ ` Σ . let x = (λy.e)v in t : T ′ / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (λy.e)v in t〉

32

Then, one may build the following derivation to complete the proof.

∆ ` v : T ∆, y : T ` Σ . e : U / Σ′

Lemma 15
∆ ` Σ . e{v/y} : U / Σ′ ∆, x : U ` Σ′ . t : T ′ / ~c : ⊥

T-Let
∆ ` Σ . let x = e{v/y} in t : T ′ / ~c : ⊥

T-Thread
∆ ` Σ . 〈let x = e{v/y} in t〉

R-Rec. By hypothesis, we have

〈let x = (rec y.v)u in t〉 → 〈let x = (v{rec y.v/y})u in t〉

and

∆, y : (Σ; T → U ; Σ′) ` v : (Σ; T → U ; Σ′)
T-Rec

∆ ` rec y.v : (Σ; T → U ; Σ′) ∆ ` u : T
T-App

∆ ` Σ . (rec y.v)u : U / Σ′ (1)
T-Let

∆ ` Σ . let x = (rec y.v)u in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (rec y.v)u in t〉

where (1) is ∆, x : U ` Σ′ . t : T / ~c : ⊥.
Then, one may build the following derivation to complete the proof.

∆, y : (Σ; T → U ; Σ′) ` v : (Σ; T → U ; Σ′)
T-Rec

∆ ` rec y.v : (Σ; T → U ; Σ′)
Lemma 15

∆ ` v{rec y.v/y} : (Σ; T → U ; Σ′) ∆ ` u : T
T-App

∆ ` Σ . (v{rec y.v/y})u : U / Σ′ (1)
T-Let

∆ ` Σ . let x = (v{rec y.v/y})u in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (v{rec y.v/y})u in t〉
R-Beta. By hypothesis, we have

〈let x = v in t〉 → 〈t{v/x}〉.

There are two possible derivations for 〈let x = v in t〉; we analyse each in turn.
When the derivation uses rule T-Let, the result follows by lemma 15.

∆ ` v : U
T-Val

∆ ` Σ . v : U / Σ ∆, x : U ` Σ . t : T / ~c : ⊥
T-Let

∆ ` Σ . let x = v in t : / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = v in t〉
When the derivation uses rule T-PolyLet, the result is immediate.

∆ ` Σ . t{v/x} : T / ~c : ⊥
T-PolyLet

∆ ` Σ . 〈let x = v in t〉 : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = v in t〉

33

R-Let. By hypothesis, we have

〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉

and

∆ ` Σ . e : T / Σ1 ∆, y : T ` Σ1 . t′ : T1 / Σ′
1

∆ ` Σ . let y = e in t′ : T1 / Σ′
1 ∆, x : T1 ` Σ′

1 . t : U / ~c : ⊥

∆ ` Σ . let x = (let y = e in t′) in t : U / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (let y = e in t′) in t〉

Then, one may build the following derivation to complete the proof.

∆ ` Σ . e : T / Σ1 (1)
T-Let

∆ ` Σ . let y = e in (let x = t′ in t) : U / ~c : ⊥
T-Thread

∆ ` Σ . 〈let y = e in (let x = t′ in t)〉

where (1) is the tree

∆, y : T ` Σ1 . t′ : T1 / Σ′
1

∆, x : T1 ` Σ′
1 . t : U / ~c : ⊥

Lemma 6
∆, y : T, x : T1 ` Σ′

1 . t : U / ~c : ⊥
T-Let

∆, y : T ` Σ1 . let x = t′ in t : U / ~c : ⊥

R-IfT/R-IfF. Follows the pattern in all the above cases.
R-Branch. Follows the pattern in all the above cases.
R-Conf . The three cases follow directly by induction. For the rule that

uses structural congruence, we use lemma 13.

B Proof of Theorem 3, Type Safety

We start with a couple of easy results.

Lemma 16. Suppose that ∆ ` Σ . C.

1. If C is a c-thread, then c is in the domain of Σ.

2. If C is a c-redex, then Σ is of the from Σ′, c : ⊥.

Proof. 1. A smple analysis of the conclusions of the last rule applied in
the derivation of the sequent for c-threads, namely T-SendD, T-SendS, T-
ReceiveD, T-ReceiveS, T-Case, T-Select, and T-Close.

2. A simple analysis of the possible derivation trees for the thre possible
c-redex cases.

Proof of theorem 3, page 15. By contradiction, assuming faulty configurations
typable and performing a case analysis on the possible forms of the faulty con-
figurations.

34

Assume ∆ ` Σ . (ν~a)(C1 | C2). Without loss of generality, assume that
~a = ~n~c~d, where ~d are the channels that do not occur in ∆,Σ. Build the only
possible proof tree for the above sequent, first using rule T-NewN as many
times as there are names in ~n, then proceeding similarly with rules T-NewB
and T-NewC, a finally with rule T-Par, to obtain two subtrees ending with
the sequents (i = 1, 2):

∆, ~n : ~[S] ` Σi . Ci (1)

where Σ,~c : ~⊥ = Σ1 • Σ2. We now analyse each of the five possible cases of
faulty configurations defined in section 6, where we let ∆′ = ∆, ~n : ~[S].

1. The three cases are similar. We analyse the conditional expression. The
only derivation tree for sequent (1) above is of the form below.

∆′ ` v : Bool · · · · · ·
T-If

∆′ ` Σ1 . if v then e1 else e2 : / ~f : ⊥ · · ·
T-Let

∆′ ` Σ1 . let x = if v then e1 else e2 in t : / ~f : ⊥
T-Thread

∆′ ` Σ1 . 〈let x = if v then e1 else e2 in t〉

Analysing the rules for values (figure 6, page 12), one realises that v can
only be true or false, for the T-Var does not apply since variables are not in the
domain of ∆′, and the type in the conclusion of the remaining rules (T-Abs,
T-Rec, T-Chan, T-Name, Unit) is not Bool.

2. As above, analyse the lower part of the only proof tree for, say,

∆′ ` Σ1 . 〈let x = accept v in t〉

to obtain a tree for
∆′ ` v : [S].

Once again, among the rules for values, only T-Name applies. Then, v is a
name.

3. As above, analyse the lower part of the only proof tree for, say,

∆′ ` Σ1 . 〈let x = receive v in t〉

to obtain a tree for
∆′ ` v : Chan c.

Once again, among the rules for values, only T-Chan applies. Clearly v can
only be the channel c.

4. There are several cases to check in this point; they are all similar. Pick,
for example, the pair select/close, and expand the lower part of the proof tree,
until obtaining subtrees for the following two sequents,

∆′ ` Θ1 . select l on c : T1 / Θ′
1 ∆′ ` Θ2 . close c : T ′

2 / Θ′
2

where Σ1 = Θ1 • Θ2. Analysing the rule for select, one finds that c : ⊕ 〈l : S〉
must be in Θ1. Similarly, analysing the rule for close one realises that c : End

35

must be in Θ2. Then, Θ1 •Θ2 is not defined (for ⊕〈l : S〉 is not the dual of End),
hence (ν~a)(C1 | C2) is not typable.

5. We check the case for three c-threads 〈t1〉 | 〈t2〉 | 〈t3〉, the others reduce
to this. We have:

∆′ ` Σ′ . 〈t1〉 | 〈t2〉 ∆′ ` Σ′′ . 〈t3〉
T-Par

∆′ ` Σ1 . 〈t1〉 | 〈t2〉 | 〈t3〉

with Σ1 = Σ′ •Σ′′. If 〈t1〉 | 〈t2〉 is not a c-redex, then we use the previous case.
Otherwise, by Lemma 16, it must be the case that c : ⊥ is part of Σ′. Since
〈t3〉 is a c-thread, by Lemma 16, c is in the domain of Σ′′. But then Σ′ • Σ′′ is
not defined (for ⊥ is dual to no type), and (ν~a)(C1 | C2) is not typable.

C Proof of Theorem 4, Soundness of Typecheck-
ing

The first two lemmas deal with the first conclusion of the soundness result: that
Σ− Σ′ is defined.

Lemma 17. If Γ;Σ; e 7→ Σ1;T ; Σ2 then Σ− Σ1 is defined.

Proof. By induction on the derivation of Γ;Σ; e 7→ Σ1;T ; Σ2. In most cases
the conclusion follows immediately from the inference rule and the definition of
Σ− Σ′. Two cases are worthy of comment.

C-Fork. We have a derivation ending with

Γ;Σ; t1 7→ Σ1;T1; ∅ Γ;Σ1; t2 7→ Σ2;T2; ∅
Γ;Σ; fork t1; t2 7→ Σ2;T2; ∅

By induction, Σ − Σ1 and Σ1 − Σ2 are defined. Therefore Σ − Σ2 is defined,
because of the following reasoning. If c : S ∈ Σ2 and Σ1 − Σ2 is defined then
either c : S ∈ Σ1 or c : ⊥S ∈ Σ1 or c : ⊥S ∈ Σ1. Because Σ − Σ1 is defined,
either c : S ∈ Σ or c : ⊥S ∈ Σ or c : ⊥S ∈ Σ. In each of these cases, Σ − c : S
is defined. Applying the same argument to each component of Σ2 shows that
Σ− Σ2 is defined.

C-Let. We have a derivation ending with

Γ;Σ; e 7→ Σ1;T1; Σ′
1 Γ, x : T1; (Σ ∩ Σ1),Σ′

1; t 7→ Σ2;T2; Σ′
2

Γ;Σ; let x = e in t 7→ Σ3;T2; (Σ′
1 ∩ Σ2),Σ′

2

where

Σ3 = (Σ1∩Σ2)∪{c : S|(c : ⊥S ∈ Σ or c : ⊥S ∈ Σ) and (c : S ∈ Σ1 or c : S ∈ Σ2)}.

By induction, Σ − Σ1 is defined. We argue that Σ − Σ3 is defined, as follows.
Σ1∩Σ2 can be subtracted from Σ because it is a subset of Σ1 and we know that
Σ− Σ1 is defined. The set

{c : S|(c : ⊥S ∈ Σ or c : ⊥S ∈ Σ) and (c : S ∈ Σ1 or c : S ∈ Σ2)}

36

(assuming that c : S 6∈ Σ1∩Σ2) can be subtracted from Σ−Σ1∩Σ2 because in this
case either c : ⊥S ∈ Σ or c : ⊥S ∈ Σ, and therefore c : S can be subtracted.

Lemma 18. If ∆; Σ;C 7→ Σ′ then Σ− Σ′ is defined.

Proof. By induction on the derivation of ∆; Σ;C 7→ Σ′. The case of rule
C-Thread uses Lemma 17. The case of rule C-Par uses the same argument
as the case of rule C-Fork in the proof of Lemma 17. In the other cases the
induction hypothesis is used directly.

Lemma 19. If Γ;Σ; e 7→ Σ1;T ; Σ2 and Σ contains no ⊥ types, then dom(Σ1)∩
dom(Σ2) = ∅.

Proof. Straightforward induction on the derivation.

Lemmas 20 and 21 are proved by simultaneous induction on the size of the
derivation of the typechecking judgement in question. For clarity we present the
proofs separately, noting that the use of each lemma in the proof of the other
is valid.

Lemma 20 (Soundness for Values). If Γ; v 7→ T then Γ ` v : T .

Proof. The cases for literal values, channels, names and variables are trivial.
C-Abs. We have a derivation finishing with

Γ, x : T ; Σ; e 7→ Σ1;U ; Σ2 ∀c.Σ(c) 6=⊥
Γ;λ(Σ;x : T).e 7→ (Σ;T → U ; Σ1,Σ2)

Applying soundness for expressions (Lemma 21) to the hypothesis, we have

Γ, x : T ` Σ− Σ1 . e : U / Σ2

Using Weakening, we have

Γ, x : T ` (Σ− Σ1),Σ1 . e : U / Σ1,Σ2

Because Σ does not contain any ⊥ types, (Σ − Σ1),Σ1 is defined and equal to
Σ. Now we use rule T-Abs to conclude

Γ ` λ(Σ; x : T).e : (Σ; T → U ; Σ1,Σ2)

as required.
C-Rec. We have a derivation finishing with

Γ, x : T ; v 7→ T T = (Σ;U → U ′; Σ′)
Γ; rec (x : T).v 7→ T

By induction we have
Γ, x : T ` v : T

from which we use rule T-Rec to conclude

Γ ` rec (x : T).v : T

as required.

37

Lemma 21 (Soundness for Expressions). If Γ;Σ; e 7→ Σ1;T ; Σ2 then Σ−Σ1 is
defined and Γ ` Σ− Σ1 . e : T / Σ2.

Proof. By induction on the derivation of Γ;Σ; e 7→ Σ1;T ; Σ2. Lemma 17 guar-
antees that Σ− Σ1 is defined. We consider cases for each of the inference rules
in the typechecking algorithm.

C-Send. In the first case we have

Γ; v 7→ D Γ; v′ 7→ Chan c

Γ;Σ, c : !D.S; send v on v′ 7→ Σ; Unit; c : S

Lemma 20 implies that Γ ` v : D and Γ ` v′ : Chan c. Using rule T-SendD we
build the following derivation, noting that Σ, c : !D.S − Σ = c : !D.S.

Γ ` v : D Γ ` v′ : Chan c

Γ ` c : !D.S . send v on v′ : Unit / c : S

The two other cases are similar. For the former, we note that Σ, c : !D.S −
Σ, c : ?D.S = c : !D.S, and for the latter: Σ, c : ?D.S − Σ, c : ?D.S = c : !D.S.

The remaining cases in figure 11 are similar.
C-Request. We have

Γ; v 7→ [S] c fresh
Γ;Σ; request v 7→ Σ; Chan c; c : S

Lemma 20 implies that Γ ` v : [S]. Using rule T-Request and noting that
Σ− Σ = ∅, we obtain

Γ ` v : [S] c fresh
Γ ` ∅ . request v : Chan c / c : S

The case of C-Accept is similar.
C-Fork. We have

Γ;Σ; t1 7→ Σ1;T1; ∅ Γ;Σ1; t2 7→ Σ2;T2; ∅
Γ;Σ; fork t1; t2 7→ Σ2;T2; ∅

The induction hypothesis yields the hypotheses in the following instance of rule
T-Fork:

Γ ` Σ− Σ1 . t1 : T1 / ∅ Γ ` Σ1 − Σ2 . t2 : T2 / ∅
Γ ` (Σ− Σ1) • (Σ1 − Σ2) . fork t1; t2 : T2 / ∅

and by considering the possible cases for occurrences of c : S or c : ⊥S in Σ and
Σ1, we can show that (Σ− Σ1) • (Σ1 − Σ2) = Σ− Σ2.

C-New. We have
Γ;Σ; new S 7→ Σ; [S]; ∅

and, noting that Σ− Σ = ∅, we obtain

Γ ` ∅ . new S : [S] / ∅

38

directly from rule T-New.
C-App. We have

Γ; v 7→ (Σ; T → U ; Σ′) Γ; v′ 7→ T

Γ;Σ; vv′ 7→ ∅;U ; Σ′

We have Σ−∅ = Σ, and Lemma 20 gives the hypotheses of the following instance
of rule T-App:

Γ ` v : (Σ; T → U ; Σ′) Γ ` v′ : T

Γ ` Σ . vv′ : U / Σ′

C-Val. We have
Γ; v 7→ T

Γ;Σ; v 7→ Σ; T ; ∅
Lemma 20 gives Γ ` v : T , and Σ− Σ = ∅, so we use rule T-Val to obtain

Γ ` v : T

Γ ` ∅ . v : T / ∅

C-Let. We have

Γ;Σ; e 7→ Σ1;T1; Σ′
1 Γ, x : T1; (Σ ∩ Σ1),Σ′

1; t 7→ Σ2;T2; Σ′
2

Γ;Σ; let x = e in t 7→ Σ3;T2; (Σ′
1 ∩ Σ2),Σ′

2

where

Σ3 = (Σ1∩Σ2)∪{c : S|(c : ⊥S ∈ Σ or c : ⊥S ∈ Σ) and (c : S ∈ Σ1 or c : S ∈ Σ2)}.

The induction hypothesis gives

Γ ` Σ− Σ1 . e : T1 / Σ′
1

and
Γ, x : T1 ` ((Σ ∩ Σ1),Σ′

1)− Σ2 . t : T2 / Σ′
2

Using Weakening (lemma 6) we get

Γ ` (Σ− Σ1),Σ4 . e : T1 / Σ′
1,Σ4

and

Γ, x : T1 ` (((Σ ∩ Σ1),Σ′
1)− Σ2), (Σ′

1 ∩ Σ2) . t : T2 / (Σ′
1 ∩ Σ2),Σ′

2

where

Σ4 = {c : S|c : S ∈ Σ1 ∩ Σ and c 6∈ dom(Σ2)}
∪ {c : S|c : ⊥S ∈ Σ1 ∩ Σ2 and c : S ∈ Σ2}

By considering all the cases for a typed channel, we can show that

Σ′
1,Σ4 = (((Σ ∩ Σ1),Σ′

1)− Σ2), (Σ′
1 ∩ Σ2)

39

and
(Σ− Σ1),Σ4 = Σ− Σ3

Therefore, using rule T-Let we get

Γ ` Σ− Σ3 . let x = e in t : T2 / (Σ′
1 ∩ Σ2),Σ′

2.

We are finally in a position to prove soundness.

Proof of theorem 4, page 18. By induction on the derivation of ∆;Σ; C 7→ Σ′.
Lemma 18 guarantees that Σ−Σ′ is defined. We consider cases for each of the
inference rules in the typechecking algorithm.

C-Thread. We have

∆; Σ; t 7→ Σ′;T ;~c : ⊥~S

∆; Σ; 〈t〉 7→ Σ′

Lemma 21 gives ∆ ` Σ− Σ′ . t : T /~c : ⊥~S and we use rule T-Thread to obtain

∆ ` Σ− Σ′ . t : T / ~c : ⊥~S

∆ ` Σ− Σ′ . 〈t〉

C-Par. We have

∆; Σ;C1 7→ Σ1 ∆; Σ1;C2 7→ Σ2

∆; Σ;C1 | C2 7→ Σ2

The induction hypothesis gives the hypotheses in the following instance of rule
T-Par:

∆ ` Σ− Σ1 . C1 ∆ ` Σ1 − Σ2 . C2

∆ ` (Σ− Σ1) • (Σ1 − Σ2) . C1 | C2

and by the same reasoning as for case C-Fork in the proof of Lemma 21 we
have (Σ− Σ1) • (Σ1 − Σ2) = Σ− Σ2.

C-NewN, C-NewB, C-NewC follow directly by using the induction hy-
pothesis.

D Proof of Theorem 5, Completeness of Type-
checking

Lemma 22 (Completeness for Values). If Γ ` v : T then Γ; v 7→ T .

Proof. The cases for literal values, channels, names and variables are trivial.
In the case of rule T-Abs we have a derivation finishing with

Γ, x : T ` Σ . e : U / Σ′

Γ ` λ(Σ;x : T).e : (Σ; T → U ; Σ′)

40

Applying completeness for expressions (Lemma 23) to the hypothesis, we have

Γ, x : T ; Σ; e 7→ Σ2;U ; Σ3

where Σ′ = Σ2,Σ3. Using C-Abs we obtain

Γ;λ(Σ;x : T).e 7→ (Σ;T → U ; Σ2,Σ3)

as required.
The case of rule T-Rec follows directly from the induction hypothesis.

Lemma 23 (Completeness for Expressions). If Γ ` Σ . e : T / Σ1 and Σ •Σ′ is
defined then Γ;Σ • Σ′; e 7→ Σ2 • Σ′;T ; Σ3 where Σ1 = Σ2,Σ3.

Proof. By induction on the derivation of Γ ` Σ . e : T / Σ1 with a case for each
inference rule.

For T-SendD we have

Γ ` v : D Γ ` v′ : Chan c

Γ ` Σ, c : !D.S . send v on v′ : Unit / Σ, c : S

There are two cases to consider, depending on the structure of Σ′.

1. If c 6∈ dom(Σ′) then (Σ, c : !D.S) •Σ′ = (Σ •Σ′), c : !D.S and by using the
first form of C-Send we obtain

Γ; (Σ • Σ′), c : !D.S; send v on v′ 7→ Σ • Σ′;Unit; c : S.

2. If c : ?D.S ∈ Σ′ then Σ′ = Σ′′, c : ?D.S and (Σ, c : !D.S) • Σ′ = (Σ •
Σ′′), c : ⊥ where ⊥ is either ⊥!D.S or ⊥?D.S . By using the second or third
form of C-Send we obtain

Γ; (Σ • Σ′′), c : ⊥; send v on v′ 7→ (Σ • Σ′′), c : ?D.S;Unit; c : S

and we have Σ • Σ′ = (Σ • Σ′′), c : ?D.S.

For T-Fork we have

Γ ` Σ1 . t1 : T1 / ∅ Γ ` Σ2 . t2 : T2 / ∅
Γ ` Σ1 • Σ2 . fork t1; t2 : T2 / ∅

By the induction hypothesis,

Γ; Σ1 • Σ2 • Σ′; t1 7→ Σ2 • Σ′;T1; ∅

and
Γ;Σ2 • Σ′; t2 7→ Σ′;T2; ∅

so by rule C-Fork we obtain

Γ;Σ1 • Σ2 • Σ′; fork t1; t2 7→ Σ2;T2; ∅

41

The case of T-Let is the most complex. We have

Γ ` Σ . e : T1 / Σ′′ Γ, x : T1 ` Σ′′ . t : T2 / Σ′

Γ ` Σ . let x = e in t : T2 / Σ′

Changing notation, for clarity, we must show that

Γ;Σ • Φ′; let x = e in t 7→ Ψ3 • Φ′;T2; Φ′
3

where Σ′ = Ψ3,Φ′
3.

Rule C-Let shows the recursive calls to the typechecker, and their results:

Γ; Σ • Φ′; e 7→ Φ1;T1; Φ′
1 Γ, x : T1; ((Σ • Φ′) ∩ Φ1),Φ′

1; t 7→ Φ2;T2; Φ′
2

Γ;Σ • Φ′; let x = e in t 7→ Φ3;T2; (Φ′
1 ∩ Φ2),Φ′

2

where Φ3 = (Φ1 ∩ Φ2) ∪ {c : S|(c : ⊥S ∈ Σ • Φ′ or c : ⊥S ∈ Σ • Φ′) and (c : S ∈
Φ1 or c : S ∈ Φ2)}.

Applying the induction hypothesis to the first hypothesis gives Φ1 = Ψ1 •Φ′

with Σ′′ = Ψ1,Φ′
1.

In order to apply the induction hypothesis to the second hypothesis, we must
find Φ′′ such that ((Σ •Φ′)∩Φ1),Φ′

1 = Σ′′ •Φ′. We then get Φ2 = Ψ2 •Φ′′ with
Σ′ = Ψ2,Φ′

2.
We take Φ′′ = Φ′ − {c : Φ′(c)|c ∈ dom(Φ′) ∩ dom(Φ′

1)}.
By considering all possible cases for a typed channel c : S, we can show

the necessary condition on Φ′′, and then prove that Φ3 = Ψ3 • Φ′ with Σ′ =
Ψ3, (Φ′

1 ∩ Φ2),Φ′
2 as required.

Theorem 5 (Completeness). If ∆ ` Σ . C, then for all Σ′ such that Σ • Σ′ is
defined, ∆; Σ • Σ′;C 7→ Σ′.

Proof. By induction on the derivation of ∆ ` Σ . C, considering a case for each
typing rule.

For T-Thread we have

∆ ` Σ . t : T / ∅
∆ ` Σ . 〈t〉

By Lemma 23 we have
∆; Σ • Σ′; t 7→ Σ′;T ; ∅

and rule C-Thread gives the required

∆; Σ • Σ′; 〈t〉 7→ Σ′.

For T-Par we have

∆ ` Σ1 . C1 ∆ ` Σ2 . C2

∆ ` Σ1 • Σ2 . C1 | C2

42

By the induction hypothesis we have

∆; Σ1 • Σ2 • Σ′;C1 7→ Σ2 • Σ′

and
∆; Σ2 • Σ′;C2 7→ Σ′

and by using rule C-Par we obtain

∆; Σ1 • Σ2 • Σ′;C1 | C2 7→ Σ′

as required.
The cases of T-NewN, T-NewB and T-NewC follow directly from the

induction hypothesis.

43

