
An Observational Model for Spatial Logics

Emilio Tuosto a

a Dipartimento di Informatica, Università di Pisa, etuosto@di.unipi.it

Hugo Torres Vieira b

b Departamento de Informática, FCT Universidade Nova de Lisboa,
htv@di.fct.unl.pt

Abstract

Spatiality is an important aspect of distributed systems because their computations
depend both on the dynamic behaviour and on the structure of their components.
Spatial logics have been proposed as the formal device for expressing spatial prop-
erties of systems.

We define CCS ��� , a CCS-like calculus whose semantics allows one to observe spa-
tial aspects of systems on the top of which we define models of the spatial logic.
Our alternative definition of models is proved equivalent to the standard one. Fur-
thermore, logical equivalence is characterized in terms of the bisimilarity of CCS ��� .

1 Introduction

In the last years there has been an increasing interest of many researchers in
the investigation of the so-called spatial properties of systems, namely those
properties that are tightly related to the structure of systems instead of on
their dynamic behaviour [8,11,13]. A number of works has also been devoted
to the exploration of spatial properties of data structures [9,10] and decid-
ability properties of ad-hoc logics [18,14]. Spatiality is an important aspect
of distributed systems, in fact, it is more and more evident that distributed
computations depend both on the dynamic behaviour of their components
and on the structure of the system that such components determine. This is
even more central in wide area networks where the topology of systems might
spread worldwide. For instance, a distributed file sharing application takes
into account both the distribution of information and the bandwidth of the
links used for downloading.

? This work was funded by the EU project FET IST-2001-33100 Profundis.

Article published in Electronic Notes in Theoretical Computer Science NN (2004) 1–31

Recently, spatial logics [6,8,7] have been proposed as the formal device for
expressing spatial properties of systems. A typical formula of spatial logics is

A|B (1)

which expresses the property of a system of being formed of two parts, one
satisfying A and the other B.

Spatial logics express properties of distributed systems in a very elegant way
since distributed systems hold a number of properties that are spatial in na-
ture. To provide some intuition consider the property of unique handling that
expresses that there is only one entity ready to receive messages on a deter-
mined channel, hence there is only one part of the system that can perform
input actions on that channel. Consider also the property of exclusive resource
access characterizing systems with resources known only to a single compo-
nent. In similar terms secrecy can be interpreted as some information whose
knowledge is confined to a part of a system. Notice that secrecy induces a
notion of spatial bound on the processes that share the secret information.

Models of a spatial logic formula A are usually defined as the set of systems
that hold the property expressed by A. In general, systems are expressed in a
given process calculus equipped with an operational semantics, and the typical
way of defining the entailment relation is by exploiting the underlying struc-
tural congruence. For instance, the models of formula (1) are those processes
P ≡ Q|R such that Q satisfies A and R satisfies B. Following the terminology
of [25], this way of defining models can be called fully intentional since it relies
on structural congruence (different approaches are discussed in Section 1.1).

In this work we consider the logic presented in [5] and interpret its formulae on
the top of a simple variant of CCS [19]. A first contribution of this paper is an
alternative definition of models which is not based on the structural congru-
ence, but relies on the operational semantics of the calculus. The intuition is
that, once a spatial logic and a process calculus with its observational seman-
tics are fixed, we enrich the observations with spatial observations. Namely,
we extend the semantics of processes so that structural information can be
explicitly observed, yielding a spatial semantics. As a further result, we define
models in terms of the spatial semantics and prove that the new definition is
equivalent to the standard one. Spatial semantics naturally induces a bisimi-
larity, namely spatial bisimilarity. A third result is the characterization of the
logical equivalence as spatial bisimilarity, indeed we prove that they coincide.
Noteworthy, the definition of spatial bisimilarity is fully extensional, namely,
it does not rely on structural congruence. Finally, we give an alternative char-
acterization both of the logical equivalence and the bisimilarity by showing
that they coincide with an extended structural congruence.

In this work we do not tackle implementation issues, however, our main mo-
tivation is to bring forth results that can be brought up to the development
of algorithms, verification techniques and toolkits for checking logical equiva-

2

lence. It is indeed of interest to develop tools and techniques for the verifica-
tion of distributed systems against spatial logics specifications. One example
of such a tool is the Spatial Logic Model Checker [27] which uses π-calculus to
model the systems and the spatial logic of [5] to express the spatial properties.
Even though model checking a given system against the formulae is extremely
useful, it might also be important to check whether two systems are logically

equivalent, namely, to check if they satisfy the same set of formulae. Within
our approach this may hopefully be done by exploiting the spatial bisimilar-
ity, in other words, checking logical equivalence reduces to checking spatial
bisimilarity because they coincide.

We remark that characterizing logical equivalence with a fully extensional
bisimilarity also has pragmatic impacts since we can exploit existing toolkits,
e.g. [16,26], that rely on such behavioural equivalences. Adapting bisimilarity
checking algorithms to logical equivalence checking is left for future work.

1.1 Related Work

Among the possible ways of formally defining concurrent and distributed sys-
tems we discuss those that are more closely related to our setting, namely
frameworks that explicitly take into account spatial aspects of systems. We
do not pretend to be exhaustive and leave out many approaches that do not
have a strong connection with our work.

Process calculi and their operational semantics allow the syntax to be consid-
ered as a specification of the structure while the semantics as an abstraction
from syntactic characteristics that focuses on the dynamic behaviour of the
system. In this context there are basically two ways of retrieving information
of the structure of a system. One exploits structural congruence in order to
check whether a system fits or not some requirements [11,7]. The other dates
back to the seminal work of [3] which introduced an observational seman-
tics of CCS [19,20] where spatial information systems were deduced from the
observable behaviour of systems.

Another example is the tile model [15,4] where observations of structural re-
configurations are neatly separated from those of their behaviour. Indeed, in
the tile model a system evolves in two dimensions: the “vertical” dimension
describes the dynamic evolution while the “horizontal” dimension details how
the system reconfigures. However, the structural reconfiguration of a system
only takes into account the changing of its interface. Noteworthy, all those
approaches define observations that abstractly represent the structure of the
system (following [25] they can be called extensional).

A different approach has been recently followed in [23] where concurrent sys-
tems are described in co-algebraic terms through the interplay of a pair of

3

functors. The first functor takes care of representing the dynamic behaviour
of systems, while the second yields the reconfiguration of their spatial struc-
ture. Basically, [23] distinguishes the two different kinds of observables and
deals with them separately.

In [25] and [18] a spatial logic for (dialects of) Mobile Ambients [12] have
been studied and the related logical equivalence has been contrasted with
observational equivalences, e.g., the barbed congruence and the intensional

bisimilarity. Basically, the intentional bisimulation requires the use of struc-
tural congruence in its definition when the observables of the calculus lack
sufficient information on the spatial structure of the system. Moreover, [25]
discusses the need for stuttering techniques to cope with recursion. Stutter-
ing helps in contrasting intensional bisimilarity and barbed congruence. These
approaches can be considered as hybrid with respect to [23] and [3].

Our approach is similar to [23], however, we uniformly handle spatial and be-
havioural observations, instead of dealing with them separately. Indeed, we
expect that a co-algebraic definition of our spatial semantics relies on a co-
algebra of a single functor rather than on a co-algebra of a pair of functors.
Although the intent of both approaches consists of establishing a transition
system that handles behaviour and structural observations, they mainly differ
in the way of achieving the goal. Indeed, in our work the two kinds of obser-
vations, although somewhat different in nature, are handled in a uniform way
(by equipping the transitions with structural inspections). As discussed in Sec-
tion 6, this uniformity brings some benefits when considering implementation
issues.

Despite the technical differences of the calculus and logic adopted, the ap-
proach that we followed has many similarities to [25,18], since our purpose
is to give an co-inductive characterization of logical equivalence. However, we
remark that the definition of spatial bisimilarity introduced here, is fully ex-
tensional while the bisimilarity of [25,18] exploits structural congruence. This
is possible because we enrich the information carried by the observables which,
in our case, suffices for characterizing spatial information of systems. A fur-
ther remark is that we aim at applying existing verification techniques for
checking logical equivalence, while in [25,18] the main motivation is to study
expressiveness of equivalences.

Layout of the paper We define the basic calculus in Section 2 while the logic
is reported in Section 3. Spatial semantics, spatial bisimulation and its proper-
ties are introduced in Section 4. Observational models of the logic are given in
Section 5 together with the proofs that spatial bisimilarity, logical equivalence
and extended structural congruence coincide. Final considerations are made
in Section 6. We collect the detailed proofs of our results in Appendixes A
and B.

4

2 Process Model

The purpose of this section is to introduce a calculus which provides the basis
for defining models of the spatial logic. We introduce the CCS � � calculus, the
anchored CCS, which basically smoothly extends CCS [19,20]. Different calculi
could be used, however we prefer to stick to a simple CCS variant because our
first purpose is to give a simple presentation of the main ideas of the paper.

We first give the definition of co-names, actions and processes.

Definition 1 [Co-names, actions and processes] Given an infinite set N of
names (ranged over by a, b . . . n, m . . .) the sets N̄ of co-names and A of
actions are defined by

N̄
�
{n̄ | n ∈ N} (co-names)

A
�
N ∪ N̄ ∪ {τ} (actions).

We let α range over A and write na(α) be the set of names occurring in α.

The set P of processes is given by

P, Q ::= 0 | α.P | P |Q | (νn)P | P ||Q.

A CCS � � process is either empty, or a process prefixed by an action, or the
parallel/anchor composition of two processes, or else a process where a name
is restricted.

The syntax of CCS � � is very similar to that of CCS as presented in [20] aside
from a few minor differences. First, the choice operator is missing in CCS � � ,
however it can be easily added without any change in what follows. Second,
CCS � � lacks recursion or iteration; there is no conceptual difficulty in consid-
ering recursive processes, however (differently from the choice operator) this
would have made proofs more involved. Finally, the hiding operator is replaced
by the restriction (in the spirit of [20]) and the anchor operator is introduced.
The former is only a syntactic change and allows us to get also rid of the
relabelling operator (which is replaced by name substitution), while the latter
is necessary in order to model the parallel modality of the logic; this will be
made more clear later.

Given a process P , the sets of free and bound names of P (denoted by fn(P)
and bn(P), respectively) are defined as usual for the standard constructs and
for the anchor in the following way.

fn(P ||Q) = fn(P) ∪ fn(Q), bn(P ||Q) = bn(P) ∪ bn(Q).

Two processes are indistinguishable when one is obtained by α-renaming

5

α.P
α
−→ P (Act)

P
α
−→ P ′

P |Q
α
−→ P ′|Q

(Par)

P
ā
−→ P ′ Q

a
−→ Q′

P |Q
τ
−→ P ′|Q′

(Comm)

P
α
−→ Q

n 6∈ fn(α)
(νn)P

α
−→ (νn)Q

(Res)

P ≡ P ′ λ
−→ Q′ ≡ Q

P
λ
−→ Q

(Cong)

Table 1
Behavioural semantics

bound names of the other; we write P ≡α Q when P and Q equivalent by
α-renaming.

Definition 2 [Structural congruence] The structural congruence is denoted
by ≡ and is the least congruence (wrt to the operators of CCS � �) relation on
processes such that it includes the ≡α, (P, 0, |) is a commutative monoid and
the following axioms hold.

(νn)0 ≡ 0 n 6∈ fn(P)⇒ P |(νn)Q ≡ (νn)(P |Q) (νn)(νm)P ≡ (νm)(νn)P.

Let us remark that Definition 2 does not involve the anchor operator. As will
be more clear later, || is neither commutative, associative nor has a neutral
element.

The behavioural semantics of CCS � � is given in terms of a labelled transition
system.

Definition 3 [Behavioural semantics of CCS � �] The semantics specifying the
behaviour of the CCS � � processes is given by the relation −→⊆ P × A × P
specified by the rules in Table 1.

For the moment, λ ranges over A (like α); later, we will extend the observables
of CCS � � so that the structural congruence rule will have a wider application.
Noteworthy, rules in Table 1 do not give any transition out of anchor processes.
The reason is that anchor processes only have “structural” transitions and
do not expose any “behavioural” observation. It is not possible to observe
behaviour in the anchor since it consists in the observation of a spatial bound,
somewhat analogous to restriction which also filters the possible behavioural
transitions when they involve the restricted name.

6

3 Logic

In this section we present the syntax and semantics of the logic, very similarly
to what can be found in [5]. The differences to note are that no recursive
formulae are present here and that the interpretation of the parallel formula
is extended to meet the process model as considered here. The syntax and
semantics of the logic are presented in Definition 4, being the latter presented
through the denotations of the formulae, i.e., the sets of processes that hold
the formula (� A � �

{P | P |= A}).

Definition 4 [Spatial logic] Formulae of the spatial logic are defined by the
following syntax:

A ::= T (True)

| ¬A (Negation)

| A ∧ B (Conjunction)

| 0 (Void)

| A|B (Composition)

| <α>.A (Action)

| n � A (Revelation)

| � x.A (Fresh name)

| ∃x.A (Existential).

We let A, B, C range over formulae. The semantics of the logic is reported in
Table 2.

Definition 4 uses names (n, m ∈ N) and name variables (x, y ∈ V) in formulae.
The logical operators considered include propositional, spatial and temporal
operators, freshness quantification, and first-order quantification.

Boolean connectives have the standard interpretation, spatial connectives are
interpreted on the structure of the processes and temporal connectives are
interpreted on the behaviour of processes. More precisely the spatial connec-
tives have the following interpretations: 0 is satisfied by the empty process,
A|B is satisfied by processes that can be broken down into two components
such that one satisfies A and the other satisfies B, either by considering the
parallel composition or the anchorage of two processes, and n � A is satisfied
by processes that hold a restriction n such that underneath the restriction
the process holds A. The temporal operator present in the form of <α>.A is
satisfied by processes that hold A after performing an action α. Finally the
fresh name quantifier � x.A is satisfied by processes that, for some name m

fresh to both the process and the formula, hold A{x←m}, and the existential
quantifier ∃x.A that denotes processes that, for some name m, hold A{x←m}.

7

�
T � � P
�
¬A � � P\A
�
A ∧B ��� � A � ∩ � B �
�
0 � � {P | P ≡ 0}
�
A|B � � {P | ∃Q,R . P ≡ Q|R ∧Q ∈

�
A � ∧R ∈

�
B � }

∪{P ||Q | P ∈
�
A � ∧Q ∈

�
B � }

�
<α>.A ��� {P | ∃Q . P

α
−→ Q ∧Q ∈

�
A � }

�
n � A � � {P | ∃Q . P ≡ (νn)Q ∧Q ∈

�
A � }

���
x.A � � ⋃

n6∈fn(A)(
�
A{x←n} � \{P | n ∈ fn(P)})

�
∃x.A � � ⋃

n∈N

�
A{x←n} �

Table 2
Syntax and Semantics of the logic

In both quantifiers the occurrence of x is binding with scope A.

In regard to the logic presented in [5] it is important to note that here the
anchor composition of two processes is a model for the parallel modality of the
logic, given that the processes are models of the inner formulae. Note that the
separation of the processes and the left/right placement is given by the anchor,
going along the lines of interpreting the anchor as a fixed spatial bound, where
not even structural rearrangement can be considered.

A simple description of the anchor construct can be that it represents a snap-
shot of the system, in the sense that it captures a determined configuration
and does not allow any reconfiguration or observation, either than the projec-
tion of the two parts of the system that the anchor is dividing. To further the
intuition on the anchor let

P � = a.0|ā.0 and P � � = a.0||ā.0,

then P � |= <τ>.T whilst P � � 6|= <τ>.T and also P � |= <ā>.T whilst P � � 6|=
<ā>.T since behavior can be observed in a parallel composition but not in the
anchor composition of processes. Moreover, we have that P � |= <ā>.T|<a>.T

whilst P � � 6|= <ā>.T|<a>.T, since the parallel composition of processes is
commutative and the anchor is not. For an example of an anchor process sat-
isfying a formula note that P � � |= <a>.T|<ā>.T since the inner components
of the anchor satisfy the corresponding sub-formulae of the parallel modality.
Lastly consider 0||0 6|= 0 showing that even the anchor composition of void
processes cannot be seen as the void process due to the spatial bound induced
by the anchor.

This section is wrapped up by the definition of logical equivalence.

8

Definition 5 [Logical equivalence] Two processes P and Q are logical equiva-

lent, written P =L Q, iff they satisfy exactly the same set of formulae, namely
iff, P |= A ⇐⇒ Q |= A holds for any formula A.

4 Observing the Structure

Our main purpose is to characterize the logical equivalence in terms of bisimi-
larity. Basically, this amounts to say that the observational semantics of CCS � �

must contain some information that allow us to infer (part of) the structure of
systems. There are mainly two different ways of obtaining such information.
One possibility, in the line of [3,15], is to enrich behavioural observation with
labels carrying information on the part of the system that fired a given action.

We adopt a different solution that completely separates behavioural and struc-
tural observations. The reason of our choice lies in the highly discriminative
power of revelation and parallel modalities. On the one hand, the process
(νn)n̄ is not logically equivalent to 0, according to the definition of model
given in Section 3:

(νn)n̄ |= n � <n̄>.0 0 6|= n � <n̄>.0.

On the contrary, a semantics that deduces the structure of the process from its
behaviour cannot distinguish the two processes because neither of them expose
any transition. Therefore, the bisimulation induced by such semantics cannot
be the logical equivalence. On the other hand, interpretation of the parallel
modality requires to precisely determine a subsystem and the corresponding
remaining part. Probably, this can also be determined via an algebraic struc-
ture of the spatial/behavioural observations, however the resulting framework
is in general particularly complex and involved.

Definition 6 [Spatial observables] The set Λ of labels is given by

Λ
�
A ∪ Σi where Σi

�
{νn | n ∈ N} ∪ {0, φ, c, b}.

The elements of Σi are the spatial inspections. Labels are ranged over by λ.

Definition 6 introduces the observables informing on the spatial structure of
systems. Labels can either be the actions of Definition 1 or spatial inspections
that yield information on the spatial structure of systems. A label νn will be
used to observe restricted names, 0 says that the system is the process 0, φ is
the observation induced by “freezing” a parallel composition of systems and,
dually, c and b are the projections of components of systems.

Spatial observables are used to define the spatial semantics of CCS � � .

9

(Void) 0
0
−→ 0 (νn)P � n

−→ P (Reveal)

(Freeze) P |Q
φ
−→ P ||Q P ||Q

φ
−→ P ||Q (Anchor)

(Left) P ||Q
c
−→ P P ||Q

b
−→ Q (Right)

Table 3
Spatial semantics

Definition 7 [Spatial semantics of CCS � �] The spatial semantics of CCS � � is
obtained by adding the axioms in Table 3 to the inference rules of Table 1.

Let us comment on axioms in Table 3. The first axiom states that the 0 pro-
cess manifests a 0 transition. The axiom (Reveal) states that a process having
n restricted has a transition labelled νn to a process where the restriction has
been revealed. On the one hand, this is reminiscent of the open rule of the
π-calculus where a restricted name can be extruded in a bound output transi-
tion. On the other hand, CCS � � does not have any rule that corresponds to the
close rule of π-calculus; once a name has been opened, it cannot be closed. The
third and fourth axiom state that the parallel or anchor composition of two
processes P and Q can “freeze” into the corresponding anchor process P ||Q,
respectively. Since the anchor operator does not obey the monoidal laws, in-
tuitively freezing a system correspond to avoid reconfiguring it via structural
congruence and consider it as exactly composed of two parts, the left and
right component. Indeed, the last two axioms basically give the semantics of
the anchor operator, namely, P ||Q can only move to P or Q via a transition
that determines the left or the right projection, respectively. Note that it is
not possible to observe any transition derived from the inner components of
an anchor, hence the anchor acts like a syntactic spatial bound that filters
all transitions, except projections and freezing, which implies that a frozen
system will only evolve into one of its components.

As said, P ||Q can be intuitively thought of as representing a system made
of two parallel components that either projects to its first components or
to the second. Hence, || somehow represents parallel systems having limited
“interleaving capacity”. Also at a first glance, one might suppose that the
anchor operator can be encoded with the synchronization, left- and right-
merge operators introduced in [1,2]. We conjecture that this is not possible
because all these operators are intimately related to the parallel operator
(i.e., after a transition the arrival process still is a parallel process), while
anchor processes evolve into one of their components only. We leave deeper
comparisons for future work.

Now, we introduce the observational semantics of CCS � � . We define the spatial

bisimilarity simply by casting the classical definition to the case of behavioural
and spatial observations. According to this definition, the basic properties of
bisimulation relations hold for the spatial bisimulation as well.

10

Definition 8 [Spatial bisimulation for CCS � �] A binary relation B ⊆ P × P
is a bisimulation iff, whenever (P, Q) ∈ B then

P
λ
−→ P ′⇒∃Q

λ
−→ Q′.(P ′, Q′) ∈ B (2)

Q
λ
−→ Q′⇒∃P

λ
−→ P ′.(P ′, Q′) ∈ B. (3)

Definition 8 is the usual bisimulation definition applied to the transition sys-
tem of the spatial semantics of CCS � � . In Appendix A we prove that the usual
properties of bisimulations hold for spatial bisimulations (the proofs of these
properties mimics those of the usual semantics and bisimulation of CCS [19]).

We call
⋃

i∈I Bi the spatial bisimilarity and denote it with ∼. By Proposition 3,
∼ is a bisimulation and contains any other bisimulation by definition.

Proposition 1 The spatial bisimilarity is an equivalence relation.

Proof. We prove that ∼ is reflexive, symmetric and transitive.
Reflexivity. The identity relation over processes is, by Proposition 2(2), a
bisimulation; hence it is included in ∼.
Transitivity. Since, by Proposition 2(3), ∼∼ is a bisimulation, we conclude
∼∼⊆∼ (by definition of ∼) which yields the transitivity of spatial bisimilar-
ity.
Symmetry. By Propositions 2(1) and 3,∼−1 is a bisimulation and, by definition
∼−1⊆∼.

Remark 9 The anchor operator is quite non-standard. Its operational se-
mantics is vaguely similar to the semantics of the (internal) choice operator,
but it does not hold the same algebraic properties: || is neither commutative,
associative, idempotent nor has a neutral element; even,

P ||Q 6∼ Q||P, P ||(Q||R) 6∼ (P ||Q)||R,

P ||P 6∼ P P ||0 6∼ P

are not valid laws in CCS � � . Moreover, P ||Q is not deadlocked, since it can
evolve once a left or right projection is performed. Basically, || only prevents
a system to expose a behavioural transition before having committed to one
of its components.

5 Characterizing Logical Equivalence

Having enriched the process model it is now possible to define the models of
the logic over the transition system given in Definition 7, considering also a

11

P |=o T always

P |=o ¬A P 6|=o A

P |=o A ∧B P |=o A ∧ P |=o B

P |=o 0 P
0
−→ Q

P |=o A|B P
φ
−→ P ′ ∧ P ′ c

−→ Q ∧ P ′ b
−→ R ∧Q |=o A ∧R |=o B

P |=o n � A P � n
−→ Q ∧Q |=o A

P |=o <ω>.A P
ω
−→ Q ∧Q |=o A

P |=o

�
x.A ∃n 6∈ fn(A) . P � n

−→ Q ∧ P |=o A{x←n}

P |=o ∃x.A ∃n ∈ N . P |=o A{x←n}

Table 4
Satisfaction defined through observation

richer set of observations for the temporal operator, since now not only can
we observe actions but also spatial inspections. We choose to add freezing and
projections to the set of observables of the temporal modality.

Definition 10 [Temporal observables] The set Ω of temporal observables is
given by

Ω
�
A ∪ {φ, c, b}.

We let ω range over Ω.

The syntax remains the same of that given in Definition 4 with the only differ-
ence that the (Action) modality <α>.A is now replaced by <ω>.A. The new
definition of the models of the logic is presented in Table 4. Some comments
on the clauses of Table 4 follow. Propositional formulae are dealt with in the
obvious way while the remaining cases exploit the spatial semantics of CCS � � .
For instance, in order to satisfy the void formula, a process must expose a
transition labelled with 0; the spatial semantics (Lemma 3 on page 20) guar-
antees that such processes are structurally congruent to the void process. A
process satisfies a parallel formula A|B when it can be frozen to a process that
projects to two components that respectively hold A and B. In order to hold
n � A, a process must exhibit a νn transition that reaches a process holding
A (Lemma 4 on page 20 states that if P � x

−→ Q then P ≡ (νx)Q) and simi-
larly for the temporal modality; notice, however, that ω ranges over temporal
observables, hence it can also be φ, c or b. The formula � x.A is satisfied by
those process that hold A{x←n} for a name n not occurring neither in the
process (hence, the process can reveal n) nor in A. The last case is trivial.

Remark 11 Interesting to note is that the addition of the projection and the
freezing to the temporal observables allows for the rewriting of the parallel
formula by means of the temporal modality. Indeed, the parallel modality can

12

be written in the following way:

A|B
�

<φ>.(<c>.A ∧.B).

This suggests that the logic as described in this section is interesting by itself
and should not be seen only as an extension of previous models, since one
of the most fundamental operators of the logic can be rewritten into simpler
constructs.

Remark 12 The Definition 7 allows an automaton to be built out of a given
process, being the transitions of the automaton labelled with observables of
the spatial semantics. Interestingly, clauses in Table 4 provide a model check-
ing algorithm that verifies spatial logic properties by visiting the automaton.
Observe that formulae guide the algorithm in identifying the correct path.

We now show that the semantics of the logic defined on the spatial transitions,
given in Table 4, and the usual one presented in Table 2 are equivalent. The
detailed technical proofs of most of the results are reported in Appendix B,
here we just give hints on the proofs and comments on the main lemmas and
theorems.

Lemma 1 If P |= A and P ≡ Q then Q |= A.

Proof. By induction on the structure of A.

Theorem 1 P |= A ⇐⇒ P |=o A.

Since the models are shown to be equivalent we will not distinguish them
further in the rest of the paper.

We now prove that logical equivalence and bisimilarity coincide. One practi-
cal consequence of this result is that it allows for the usage of minimization
techniques on automata that characterize bisimilarity to characterize logical
equivalence.

Lemma 2 If P ≡ Q then P =L Q.

Proof. Straightforward from Lemma 1 since for any A such that P |= A we
have that Q |= A and conversely.

Theorem 2 Two processes are logical equivalent iff they are bisimilar. P =L

Q ⇐⇒ P ∼ Q.

Proof. The full proof is reported in Appendix B. Here we only give the inter-
esting case of revelation.

(⇒) We proceed by induction on the derivation of P
λ
−→ P ′. Assuming

P � n
−→ P ′, then P |= n � T and, since P =L Q by hypothesis, we conclude

13

that that Q |= n � T which, by definition, implies Q � n
−→ Q′ and, therefore,

n 6∈ fn(P) ∪ fn(Q).
Notice that the inference of the transition Q � n

−→ Q′ subsumes n is chosen
as the revealed name. The name n can either occurs free in Q′ or not. Since
fn(Q′) is finite, there is only a finite number of revelations falling into the
first case (up to structural congruence). Moreover, if n 6∈ fn(Q′) then Q ≡ Q′,
hence, the infinite number of such revelations can be identified by structural
congruence. So, up to structural congruence, we have finitely many revelation
transitions out of Q, say Q � n

−→ R1, . . . , Q � n
−→ Rj.

Let us now assume that ∀i ∈ 1, . . . , n . Ri 6=L P ′, which gives us, considering
Lemma 8, that ∃A1, . . . , Aj . Ri 6|= Ai ∧ P ′ |= Ai. Since P ′ |= A1 ∧ . . .∧Aj we
have that P |= n � (A1 ∧ . . . ∧ Aj) hence, since P =L Q, we have that Q |=
n � (A1∧ . . .∧Aj) which gives us that Q � n

−→ Q̄∧ Q̄ |= (A1∧ . . .∧Aj) but since
∃j ∈ 1, . . . , n . Q̄ ≡ Rj we have that, considering Lemma 1, Q̄ 6|= Aj which is
a contradiction. So ∃i ∈ 1, . . . , n . Ri =L P ′ hence Q � n

−→ Ri ∧ Ri =L P ′.

(⇐) We show that for any A such that P |= A then Q |= A by induction on
the structure of A (note that the converse is analogous). We consider only the
revelation case and refer the interested reader to Appendix B for the detailed
proof.
By hypothesis, P |= n � A, hence there is P � n

−→ P ′ such that P ′ |= B. Since
P ∼ Q (by hypothesis) we have that Q � n

−→ Q′ and Q′ ∼ P ′. By induction
hypothesis we get that Q′ |= B which along with Q � n

−→ Q′ gives us Q |= n � B.
That concludes the proof.

The case reported in the proof of Theorem 2 suggests how the verification
techniques of Mihda discussed in Section 1 can be applied to CCS � � . Parti-
tion refinement algorithms can deal only with finite automata. Even though
we have not considered recursion or iteration, the transition systems pro-
cesses (upon which the HD-automata are built) are not finite because they
are infinitely branching. In fact, the use of structural congruence laws and
the (Cong) rule allow infinite transitions out of a single process. However, the
case reported in the previous proof shows how identifying the set of transitions
with respect to structural congruence reports us to finite branching transition
systems, moreover, this fact has been exploited also in all the other cases that
encompass infinite branching.

Remark 13 Basically, the solution to the infinite branching problem of CCS � �

is similar to that for the early semantics of π-calculus. Indeed, the peculiarity
of early semantics lies in the input prefix rule x(z).p

xy
−→ p{y←z} implying

that x(z).p triggers an infinite number of transitions (one for each instanti-
ated name y). In this case, one considers equivalent all those transitions that
substitute z with a name “fresh” in p. Hence the “relevant” transitions are
only those that either substitute a free name of p or a (single) fresh name. The
HD-automata basically deal with the choice of these representative transitions.

14

In order to further characterize the logical equivalence and bisimilarity that
have been described we introduce an extension to the structural congruence
relation and prove that it coincides with bisimilarity and logical equivalence.

Definition 14 [Extended structural congruence] Let ≡e denote the extended

structural congruence, defined as the least congruence (wrt to the operators of
CCS � �) relation on processes generated by the axioms of structural congruence
in Definition 2 and the following two axioms

P ≡e Q =⇒ P ||R ≡e Q||R P ≡e Q =⇒ R||P ≡e R||Q

Basically, ≡e is obtained by extending the usual structural congruence with the
axioms expressing the congruence property with respect to anchor contexts.

The following theorem simply states that the extended structural congruence
axiomatizes spatial bisimilarity.

Theorem 3 Two processes are bisimilar iff they are extended structurally con-

gruent. P ∼ Q ⇐⇒ P ≡e Q.

The proof of Theorem 3 basically follows as the proof of Theorem 2 and is
reported in Appendix B.

6 Concluding Remarks and Future Work

We have presented a spatial semantics based on a extension of a simple pro-
cess model and a transition system equipped with structural and behavioural
observations. Based on this semantics we define observational models of a spa-
tial logic and characterize the logical equivalence by obtaining that the notions
both of bisimilarity and of an extended structural congruence considered here
coincide with the logical equivalence.

Regarding the process model, for the sake of simplicity, we experiment our
ideas within a simple variant of CCS. Considering CCS instead of a name-
passing calculus (e.g., π-calculus [21]) can appear a strong limitation. However,
our approach can be smoothly adapted to name-passing calculi, therefore, we
prefer to maintain the presentation as simple as possible rather than consid-
ering a more general setting. It is important to remark that introducing the
anchor construct is of relevance, being its fixed configuration a syntactical fa-
cility that allows us to elegantly model the parallel modality of the logic. Not
including the anchor and having that processes are considered up to struc-
tural congruence, it would be harder to observe the two parts that compose
a system. Note that we can restrict to processes that initially do not contain
the anchor, since the trick lies in the “freezing” of a system into an anchor,

15

hence this approach is suitable for usual process calculi.

The transition system that yields the spatial semantics is plainly defined and
tailored to the logic we presented. The notion of spatial bisimilarity presented
is not a novelty with respect to intentional bisimilarity [25]. However, spatial
bisimilarity is defined straightforwardly from the transition system, where in
our case the intentionality lies. Verifying logical equivalence can be achieved
by reusing existing tools for checking bisimulation due to the uniform handling
of spatial and behavioural observables and the fully extensional definition of
bisimilarity. Indeed, such tools check bisimilarities expressed as ground rela-
tions, namely bisimilarities where transitions are uninterpreted, and expect a
single kind of observables. For instance, Mihda [16,17] implements a partition
refinement algorithm for history dependent automata [22,24] (HD-automata),
which have been proposed as an operational model of history dependent cal-
culi. Once a co-algebraic semantics and a mapping to HD-automata for a given
calculus are defined, Mihda checks the bisimulation by building the minimal
realization of the systems and testing for their equality. Our framework can
easily fit to Mihda requirements which we leave as future work.

We expect that our approach naturally fits in the context of name passing
calculi. We intend to lift our results to name passing calculi and we think that
this will not involve a great deal of difficulties. Another future direction is
to study the expressiveness of the logic presented here. More precisely, recall-
ing the comments of Remark 11, the parallel modality can be encoded using
freezing and projection. This suggests that our logic contains non-primitive
modalities and it might be to use the more primitive as a basic platform for
investigating weaker models of the logic.

Acknowledgements

Thanks to Lúıs Caires and Gianluigi Ferrari for helpful discussions and sug-
gestions. Thanks also to Filippo Bonchi for related discussions.

References

[1] J. Bergstra and J. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109–137, January/February/March 1984.

[2] J. Bergstra and J. Klop. Algebra of communicating processes with abstraction.
Theoretical Computuper Science, 37:77–121, 1985.

[3] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.
Theoretical Computer Science, 114(1):31–61, June 1993.

16

[4] R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of
connections. Theoretical Computer Science, 286(2):247–292, 2002.

[5] L. Caires. Behavioral and spatial properties in a logic for the pi-calculus.
In I. Walukiwicz, editor, Proc. of Foundations of Software Science and
Computation Structures’2004, Lecture Notes in Computer Science. Springer
Verlag, 2004.

[6] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). In TACAS,
Lecture Notes in Computer Science. Springer Verlag, 2001.

[7] L. Caires and L. Cardelli. A spatial logic for concurrency (Part II). In
CONCUR’02, volume 2421 of Lecture Notes in Computer Science. Springer
Verlag, 2002.

[8] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information
and Computation, 186(2):194–235, 2003.

[9] C. Calcagno, L. Cardelli, and A. Gordon. Deciding validity in a spatial logic for
trees. In Proceedings of the 2003 ACM SIGPLAN international workshop on
Types in languages design and implementation, pages 62–73. ACM Press, 2003.

[10] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating Trees with Hidden Labels.
In A. D. Gordon, editor, Proceedings of the First International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS ’03),
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[11] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POLP-00), pages 365–377, N.Y.,
January 2000. ACM Press.

[12] L. Cardelli and A. Gordon. Mobile ambients. TCS: Theoretical Computer
Science, 240, 2000.

[13] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, and J.-M.
Talbot. The complexity of model checking mobile ambients. In F. Honsell
and M. Miculan, editors, Proceedings of the 4th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2001)
(ETAPS 2001), volume 2030 of LNCS, pages 52–167. Springer, 2001.

[14] G. Conforti and G. Ghelli. Decidability of freshness, undecidability of revelation.
In I. Walukiewicz, editor, Proceedings of 7th FOSSACS Conference, volume
2987 of Lecture Notes in Computer Science, pages 105–120, Barcellona (Spain),
March/April 2004. Springer-Verlag.

[15] G. Ferrari and U. Montanari. Tile formats for located and mobile systems.
INFCTRL: Information and Computation (formerly Information and Control),
156, 2000.

[16] G. Ferrari, U. Montanari, and E. Tuosto. From co-algebraic specifications to
implementation: The Mihda toolkit. In F. de Boer, M. Bonsangue, S. Graf, and
W. de Roever, editors, Second International Symposium on Formal Methods for
Components and Objects, volume 2852 of Lecture Notes in Computer Science.
Springer-Verlag, November 2002.

17

[17] G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic minimisation of HD-
automata for the π-calculus in a polymorphic λ-calculus. Theoretical Computer
Science, 2004. To appear.

[18] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and
Decidability in the Ambient Logic. In Third Annual Symposium on Logic in
Computer Science, Copenhagen, Denmark, 2002. IEEE Computer Society.

[19] R. Milner. Communication and Concurrency. Printice Hall, 1989.

[20] R. Milner. Commuticating and Mobile Systems: the π-calculus. Cambridge
University Press, 1999.

[21] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, September 1992.

[22] U. Montanari and M. Pistore. π-calculus, structured coalgebras, and minimal
HD-automata. In M. Nielsen and B. Roman, editors, MFCS: Symposium
on Mathematical Foundations of Computer Science, volume 1983 of LNCS.
Springer Verlag, 2000. An extended version will be published on Theoretical
Computer Science.

[23] L. Monteiro. A noninterleaving model of concurrency based on transition. In
Coalgebraic Methods in Computer Science. Elsevier, 2004. To appear.

[24] M. Pistore. History dependent automata. PhD thesis, Computer Science
Department, Università di Pisa, 1999.

[25] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logics. In
28th Annual Symposium on Principles of Programming Languages, pages 4–13.
ACM, 2001.

[26] B. Victor and F. Moller. The Mobility Workbench — A Tool for the π-Calculus.
In D. Dill, editor, Proceedings of CAV ’94, volume 818 of Lecture Notes in
Computer Science, pages 428–440. Springer-Verlag, 1994.

[27] H. Vieira and L. Caires. Spatial logic model checker user’s guide. Technical
Report TR-DI/FCT/UNL-03/2004, DI/FCT Universidade Nova de Lisboa,
2004.

A Appendix: Properties of Spatial Bisimulations

We prove some properties of spatial bisimulations.

Proposition 2 Let B1 and B2 be two spatial bisimulations.

• 1 B−1
1 is a bisimulation;

• 2 IdP = {(P, P) | P ∈ P} is a bisimulation;

• 3 B1B2 is a bisimulation.

18

Proof. We prove the three statements.

1. By definition, (Q, P) ∈ B1
−1 ⇐⇒ (P, Q) ∈ B1 and if Q

λ
−→ Q′ then

there is a transition P
λ
−→ P ′ such that (P ′, Q′) ∈ B1 (by the clause 3 of

Definition 8). Then the first clause of the spatial bisimulation definition is
satisfied because (Q′, P ′) ∈ B−1

1 . We can prove the second clause in a similar
way.
2. Trivial.
3. Observe that (P, Q) ∈ B1B2 ⇐⇒ there is a process R such that (P, R) ∈ B1

and (R, Q) ∈ B2. Now, assume that a transition P
λ
−→ P ′ exists, then we

can find two transitions, R
λ
−→ R′ and Q

λ
−→ Q′ such that (P ′, R′) ∈ B1

and (R′, Q′) ∈ B2 (because B1 and B2 are bisimulations); then, by definition
(P ′, Q′) ∈ B1B2. (The proof that clause 8(3) holds for B1B2 is analogous.)

Proposition 3 Let Bi be a spatial bisimulation for any i in the index set I.

Then
⋃

i∈I Bi is a spatial bisimulation.

Proof. The conclusion easily follows by observing that (P, Q) ∈
⋃

i∈I Bi iff

there is ī ∈ I such that (P, Q) ∈ Bī and, also, whenever P
λ
−→ P ′ then there

is Q
λ
−→ Q′ such that (P ′, Q′) ∈ Bī, since Bī is a spatial bisimulation. Hence,

(P ′, Q′) ∈
⋃

i∈I Bi by definition.

B Appendix: Logical Equivalence, Bisimilarity and Structural con-

gruence

We first give the proof of Lemma 1 introduced on page 13.

Lemma 1 If P |= A and P ≡ Q then Q |= A.

Proof. By induction on the structure of A.

(Case of T) We immediately have that Q |= A.

(Case of ¬A) We have that P |= ¬A and P ≡ Q. Assume Q |= A, then by
induction hypothesis P |= A which is a contradiction. Hence Q |= ¬A.

(Case of A ∧B) We have that P |= A ∧B and P ≡ Q. From P |= A ∧B we
have that P |= A and P |= B from which, by induction hypothesis, we obtain
Q |= A and Q |= B, hence Q |= A ∧ B.

(Case of 0) We have that P |= 0 and P ≡ Q. From P |= 0 we get that P ≡ 0

which along with P ≡ Q gives us that Q ≡ 0 hence Q |= 0.

(Case of A|B) We have that P |= A|B and P ≡ Q. From P |= A|B we get
that ∃P1, P2 . (P ≡ P1|P2∧P1 |= A∧P2 |= B)∨(P ≡ P1||P2∧P1 |= A∧P2 |= B)

19

and since P ≡ Q we have that (Q ≡ P1|P2 ∧ P1 |= A ∧ P2 |= B) ∨ (Q ≡
P1||P2 ∧ P1 |= A ∧ P2 |= B) hence Q |= A|B.

(Case of n � A) We have that P |= n � A and P ≡ Q. From P |= n � A we
get that P ≡ (νn)P ′ ∧ P ′ |= A. Since P ≡ Q we have that Q ≡ (νn)P ′ hence
Q |= n � A.

(Case of <ω>.A) We have that P |= <ω>.A and P ≡ Q. From P |= <ω>.A

we get that P
ω
−→ P ′ ∧ P ′ |= A. Since P ≡ Q we have that Q

ω
−→ P ′ (Cong)

hence Q |= <ω>.A.

(Case of � x.A) We have that P |= � x.A and P ≡ Q. From P |= � x.A

we get that P |= A{x←m} for some m fresh to the formula and the process.
Since P ≡ Q we have that the processes have the same set of free names hence
m is also fresh to Q. By induction hypothesis on P |= A{x←m} we obtain
Q |= A{x←m} hence Q |= � x.A.

(Case of ∃x.A) We have that P |= ∃x.A and P ≡ Q. From P |= ∃x.A we get
that, for some name m, P |= A{x←m} which by induction hypothesis gives
us Q |= A{x←m}, hence Q |= ∃x.A.

Lemma 3 If P
0
−→ Q then P ≡ 0.

Proof. By induction on the derivation of the label. There are only two ways
to derive the 0 transition which are by the (Void) axiom, and in this case P is

0, or by the (Cong) inference rule, which tells us that P ≡ P ′ and P ′ 0
−→ P ′′,

hence by induction hypothesis P ′ ≡ 0 so P ≡ 0.

Lemma 4 If P � x
−→ Q then P ≡ (νx)Q.

Proof. By induction on the derivation of the label. There are only two ways
to derive the νx transition which are by the (Reveal) axiom, and in this case
P is (νx)Q, or by the (Cong) inference rule, which tells us that P ≡ P ′ and
P ′ � x
−→ P ′′ and P ′′ ≡ Q, hence by induction hypothesis P ′ ≡ (νx)P ′′ so

P ≡ (νx)Q.

Lemma 5 If Q
φ
−→ Q1||Q2 then Q ≡ Q1|Q2 ∨Q ≡ Q1||Q2.

Proof. By induction on the derivation of φ.

(Case of Q1||Q2
φ
−→ Q1||Q2) Q is Q1||Q2 hence the result is straightforward.

(Case of Q1|Q2
φ
−→ Q1||Q2) Q is Q1|Q2 hence the result is straightforward.

(Case of Q
φ
−→ Q1||Q2) Derived from Q ≡ Q′ φ

−→ Q′′ ≡ Q1||Q2. By induc-
tion hypothesis we obtain that Q′ ≡ Q1|Q2 ∨ Q′ ≡ Q1||Q2 and since Q ≡ Q′

20

we obtain Q ≡ Q1|Q2 ∨Q ≡ Q1||Q2.

Lemma 6 If P1||P2
c
−→ P ′ then P ′ ≡ P1 and if P1||P2

b
−→ P ′ then P ′ ≡ P2.

Proof. Since the proofs are analogous let us prove P1||P2
c
−→ P ′ =⇒ P ′ ≡ P1

by induction on the derivation of the label. There are only two ways to derive
the c transition which are by the (Left) axiom, and in this case P ′ is P1, or
by the (Cong) inference rule, which tells us that P1||P2 ≡ Q, Q′ ≡ P ′ and

Q
c
−→ Q′. By induction hypothesis we obtain Q′ ≡ P1 and since Q′ ≡ P ′ we

obtain P ′ ≡ P1.

Lemma 7 If Q
c
−→ Q1 and Q

b
−→ Q2 then Q ≡ R1||R2∧R1 ≡ Q1∧R2 ≡ Q2.

Proof. By inspecting the transition system one finds that only an anchor can

project components hence Q ≡ R1||R2. From Q
c
−→ Q1 and Q

b
−→ Q2 and

Q ≡ R1||R2 we get that R1||R2
c
−→ Q1 and R1||R2

b
−→ Q2 (Cong), which by

Lemma 6 gives us that R1 ≡ Q1 and R2 ≡ Q2.

We can now prove Theorem 1 reported on page 13.

Theorem 1 P |= A ⇐⇒ P |=o A.

Proof. We prove that for any process P and for all formulas A we have P |= A

iff P |=o A. We start by proving that if P |= A then P |=o A by induction on
the structure of A.

(Case of T) We immediately have that P |=o T.

(Case of ¬A) We have that P |= ¬A, which gives us that P ∈ P\ � A � . Assume
that P |=o A and prove by contradiction on induction in the structure of A.

(Case of T) We immediately have P |= T, hence a contradiction.

(Case of ¬B) We have that P |=o ¬B and that P |= ¬¬B. From P |= ¬¬B we
get P |= B hence by induction hypothesis P |=o B which is a contradiction.

(Case of B ∧ C) We have that P |=o B ∧ C and P |= ¬(B ∧ C). From
P |=o B ∧ C we get that P |=o B and P |=o C which by induction hypothesis
gives us P |= B and P |= C, hence P |= B ∧ C which is a contradiction.

(Case of 0) We have that P |=o 0 and P |= ¬0. From P |=o 0 we get that

P
0
−→ P ′ which, considering Lemma 3 gives us that P ≡ 0, hence P |= 0

which is a contradiction.

21

(Case of B|C) We have that P |=o B|C and P |= ¬B|C. From P |=o B|C we

get that P
φ
−→ P ′∧P ′ c

−→ Q∧P ′ b
−→ R∧Q |=o B∧R |=o C. By P ′ c

−→ Q and

P ′ b
−→ R and from Lemma 7 we have that P ′ ≡ Q̄||R̄∧ Q̄ ≡ Q∧ R̄ ≡ R. Since

P ≡ P
φ
−→ P ′ ≡ Q̄||R̄ we have that P

φ
−→ Q̄||R̄ (Cong). From P

φ
−→ Q̄||R̄

and Lemma 5 we obtain P ≡ Q̄|R̄ ∨ P ≡ Q̄||R̄. By induction hypothesis
on Q |=o B and R |=o C we have that Q |= B and R |= C so, considering
Lemma 1, we have Q̄ |= B and R̄ |= C which along with either P ≡ Q̄|R̄ or
P ≡ Q̄||R̄ gives us that P |= B|C which is a contradiction.

(Case of n � B) We have that P |=o n � B and P |= ¬n � B. From P |=o n � B

we get that P � n
−→ Q ∧ Q |=o B. From P � n

−→ Q and Lemma 4 we obtain
P ≡ (νn)Q. By induction hypothesis on Q |=o B we get Q |= B. From
P ≡ (νn)Q and Q |= B we obtain P |= n � B which is a contradiction.

(Case of <ω>.B) We have that P |=o <ω>.B and P |= ¬<ω>.B. From
P |=o <ω>.B we get that P

ω
−→ Q ∧ Q |=o B. By induction hypothesis we

have that Q |= B which along with P
ω
−→ Q gives us P |= <ω>.B which is a

contradiction.

(Case of � x.B) We have that P |=o � x.B and P |= ¬ � x.B. From P |=o � x.B

we get that P � y
−→ Q ∧ P |=o B{x←y} for some y fresh to the formula.

From P � y
−→ Q and Lemma 4 we obtain P ≡ (νy)Q that gives us that y is

fresh to the process P . By induction hypothesis on P |=o B{x←y} we obtain
P |= B{x←y} which, since y is fresh to the formula and to the process gives
us P |= � x.B which is a contradiction.

(Case of ∃x.B) We have that P |=o ∃x.B and P |= ¬∃x.B. From P |=o ∃x.B

we get that P |=o B{x←m} for some name m. By induction hypothesis we
obtain that P |= B{x←m} hence P |= ∃x.B which is a contradiction.

Since we reached a contradiction in every case we have that P 6|=o A hence
P |=o ¬A.

(Case of A ∧ B) We have that P |= A ∧ B, which gives us that P |= A and
P |= B. By induction hypothesis we get that P |=o A and P |=o B, hence
P |=o A ∧ B.

(Case of 0) We have that P |= 0, which gives us that P ≡ 0. Having

P ≡ 0
0
−→ 0 ≡ 0 (Void) we get that P

0
−→ 0 (Cong), hence P |=o 0.

(Case of A|B) We have that P |= A|B, which gives us that ∃Q, R . P ≡
Q|R ∧Q ∈ � A � ∧ R ∈ � B � or ∃Q, R . P ≡ Q||R ∧Q ∈ � A � ∧ R ∈ � B � .

In the first case we have that P ≡ Q|R
φ
−→ Q||R ≡ Q||R (Freeze) which gives

us that P
φ
−→ Q||R (Cong). Having that Q||R

c
−→ Q (Left) and Q||R

b
−→ R

(Right) and that Q |=o A and R |=o B, obtained by induction hypothesis on

22

Q ∈ � A � and R ∈ � B � , we get that P |=o A|B.

In the second case we have that P ≡ Q||R
φ
−→ Q||R ≡ Q||R (Anchor) which

gives us that P
φ
−→ Q||R (Cong) being the rest of the proof analogous to the

previous case.

(Case of n � A) We have that P |= n � A which gives us that P ≡ (νn)Q∧Q ∈
� A � . Having P ≡ (νn)Q � n

−→ Q ≡ Q (Reveal) we obtain that P � n
−→ Q (Cong)

and, since Q ∈ � A � by induction hypothesis we obtain that Q |=o A, hence
P |=o n � A.

(Case of <ω>.A) We have that P |= <ω>.A which gives us that ∃Q . P
ω
−→

Q∧Q ∈ � A � . By induction hypothesis we have that Q |=o A which along with
P

ω
−→ Q gives us P |=o <ω>.A.

(Case of � x.A) We have that P |= � x.A which gives us that P |= A{x←m}
for some name m fresh to both the process and the formula. Having that m

is fresh to the formula and to the process we get that P ≡ (νm)P (obtained
from (νn)0 ≡ 0 and n 6∈ fn(P) ⇒ P |(νn)Q ≡ (νn)(P |Q)) and having that
P ≡ (νm)P � m

−→ P ≡ P (Reveal) we get that P � m
−→ P (Cong). By induction

hypothesis on P |= A{x←m} we obtain P |=o A{x←m}, hence we have that
P |=o � x.A.

(Case of ∃x.A) We have that P |= ∃x.A which gives us that P |= A{x←m}
for some name m. By induction hypothesis we obtain that P |=o A{x←m}
hence P |=o ∃x.A.

Now we prove that if P |=o A then P |= A also by induction on the structure
of A.

(Case of T) We immediately have that P |= T.

(Case of ¬A) We have that P |=o ¬A, which gives us that P 6|=o A. As-
sume P |= A then, by the previous result, we have that P |=o A which is a
contradiction, hence P 6|= A so P |= ¬A.

(Case of A ∧ B) We have that P |=o A ∧ B, which gives us that P |=o A

and P |=o B. By induction hypothesis we get that P |= A and P |= B, hence
P |= A ∧ B.

(Case of 0) We have that P |=o 0, which gives us that P
0
−→ Q. From

Lemma 3 we have that P ≡ 0 which gives us that P |= 0.

(Case of A|B) We have that P |=o A|B, which gives us that P
φ
−→ P ′∧P ′ c

−→

Q∧P ′ b
−→ R∧Q |=o A∧R |=o B. From P ′ c

−→ Q and P ′ b
−→ R and Lemma 7

we have that P ′ ≡ Q̄||R̄ ∧ Q̄ ≡ Q ∧ R̄ ≡ R. Since P ≡ P
φ
−→ P ′ ≡ Q̄||R̄ we

have that P
φ
−→ Q̄||R̄ (Cong). From P

φ
−→ Q̄||R̄ and Lemma 5 we obtain

23

P ≡ Q̄|R̄ ∨ P ≡ Q̄||R̄. By induction hypothesis on Q |=o A and R |=o B

we have that Q |= A and R |= B so, considering Lemma 1, we have Q̄ |= B

and R̄ |= C which along with either P ≡ Q̄|R̄ or P ≡ Q̄||R̄ gives us that
P |= A|B.

(Case of n � A) We have that P |=o n � A which gives us that P � n
−→ Q ∧

Q |=o A. From P � n
−→ Q and Lemma 4 we obtain P ≡ (νn)Q. By induction

hypothesis on Q |=o A we get Q |= A. From P ≡ (νn)Q and Q |= A we obtain
P |= n � A.

(Case of <ω>.A) We have that P |=o <ω>.A which gives us that P
ω
−→

Q ∧Q |=o A. By induction hypothesis we have that Q |= A which along with
P

ω
−→ Q gives us P |= <ω>.A.

(Case of � x.A) We have that P |=o � x.A which gives us that P � y
−→ Q∧P |=o

A{x←y} for some y fresh to the formula. From P � y
−→ Q and Lemma 4 we

obtain P ≡ (νy)Q that gives us that y is fresh to the process P . By induction
hypothesis on P |=o A{x←y} we obtain P |= A{x←y} which, since y is fresh
to the formula and to the process gives us P |= � x.A.

(Case of ∃x.A) We have that P |=o ∃x.A which gives us that P |=o A{x←m}
for some name m. By induction hypothesis we obtain that P |= A{x←m}
hence P |= ∃x.A.

Lemma 8 If P 6=L Q then ∃A . P |= A ∧Q 6|= A.

Proof. From P 6=L Q we have that ∃B . (P |= B∧Q 6|= B)∨(P 6|= B∧Q |= B),
hence either P |= B ∧ Q 6|= B or P 6|= B ∧ Q |= B so P |= B ∧ Q 6|= B or
P |= ¬B ∧Q 6|= ¬B hence ∃A . P |= A ∧Q 6|= A.

Lemma 9 If Q
φ
−→ Q′ then Q′ ≡ Q1||Q2.

Proof. By induction on the derivation of φ.

(Case of Q1||Q2
φ
−→ Q1||Q2) Q′ is Q1||Q2 hence the result is straightforward.

(Case of Q1|Q2
φ
−→ Q1||Q2) Q′ is Q1|Q2 hence the result is straightforward.

(Case of Q
φ
−→ Q′) Derived from Q ≡ P

φ
−→ P ′ ≡ Q′. By induction hypoth-

esis we obtain that P ′ ≡ Q1||Q2 and since P ′ ≡ Q′ we obtain Q′ ≡ Q1||Q2.

Lemma 10 If P1||P2
φ
−→ Q then Q ≡ P1||P2.

Proof. By induction on the derivation of the label. There are only two ways
to derive the φ transition for an anchor which are by the (Anchor) axiom,

24

and in this case Q is P1||P2, or by the (Cong) inference rule, which tells us

that Q′ ≡ Q, P ′ ≡ P1||P2 and P ′ φ
−→ Q′. By induction hypothesis we obtain

Q′ ≡ P1||P2 and since Q′ ≡ Q we obtain Q ≡ P1||P2.

Lemma 11 If P1 =L Q1 and P2 =L Q2 then P1||Q1 =L Q1||Q2.

Proof. Considering A such that P1||P2 |= A we must prove that Q1||Q2 |= A,
being the converse analogous. Proof by induction on the structure of A.

(Case of T) We immediately have that Q1||Q2 |= T.

(Case of ¬A) We have that P1||P2 |= ¬A hence P1||P2 6|= ¬A. Assume
Q1||Q2 |= A then, by induction hypothesis, we get P1||P2 |= A which is a
contradiction, hence Q1||Q2 6|= A so Q1||Q2 |= ¬A.

(Case of A∧B) We have that P1||P2 |= A∧B so P1||P2 |= A and P1||P2 |= B

which by induction hypothesis gives us Q1||Q2 |= A and Q1||Q2 |= B hence
Q1||Q2 |= A ∧B.

(Case of 0) Impossible since P1||P2 is never a model of 0.

(Case of A|B) We have that P1||P2 |= A|B which gives us that P1||P2
φ
−→

R ∧ R
c
−→ R1 ∧ R

b
−→ R2 ∧ R1 |= A ∧ R2 |= B. Having P1||P2

φ
−→ R and by

Lemma 10 we get R ≡ P1||P2 which gives us P1||P2
c
−→ R1 and P1||P2

b
−→ R2

(Cong). Having P1||P2
c
−→ R1 and P1||P2

b
−→ R2 and considering Lemma 6

we get P1 ≡ R1 and P2 ≡ R2 hence, by Lemma 1, P1 |= A and P2 |= B. Since

P1 =L Q1 and P2 =L Q2 we have Q1 |= A and Q2 |= B, and since Q1||Q2
φ
−→

Q1||Q2 ∧Q1||Q2
c
−→ Q1 ∧Q1||Q2

b
−→ Q2 we get that Q1||Q2 |= A|B.

(Case of n � A) We have that P1||P2 |= n � A which gives us that P1||P2 � n
−→

R∧R |= A. Since the anchor construct does not support the scope extrusion of
restrictions, the only possibility for the derivation of P1||P2 � n

−→ R is P1||P2 ≡
(νn)(P1||P2) (derived from n 6∈ fn(S) =⇒ S ≡ (νn)S) and (νn)(P1||P2) � n

−→
P1||P2 and P1||P2 ≡ R. Since P1||P2 ≡ R and R |= A, by Lemma 1, we obtain
that P1||P2 |= A which by induction hypothesis gives us Q1||Q2 |= A. Since
n 6∈ fn(P1||P2) we get that n 6∈ fn(P1) and n 6∈ fn(P2) which gives us that
P1 |= n � T and P2 |= n � T, and from P1 =L Q1 and P2 =L Q2, we obtain
Q1 |= n � T and Q2 |= n � T, hence n 6∈ fn(Q1||Q2) so Q1||Q2 ≡ (νn)(Q1||Q2)
and from (νn)(Q1||Q2) � n

−→ Q1||Q2 we get that Q1||Q2 � n
−→ Q1||Q2 and since

Q1||Q2 |= A we have Q1||Q2 |= n � A.

(Case of <α>.A) Impossible since P1||P2 is never a model of <α>.A.

(Case of <φ>.A) We have that P1||P2 |= <φ>.A that implies P1||P2
φ
−→

R∧R |= A. Having P1||P2
φ
−→ R and considering Lemma 10 we get R ≡ P1||P2

25

and since R |= A by Lemma 1 we obtain P1||P2 |= A. By induction hypothesis

on P1||P2 |= A we get Q1||Q2 |= A and since Q1||Q2
φ
−→ Q1||Q2 we have

Q1||Q2 |= <φ>.A.

(Case of <c>.A) We have that P1||P2 |= <c>.A that implies P1||P2
c
−→

R ∧ R |= A. Having P1||P2
c
−→ R and considering Lemma 6 we get R ≡ P1

and since R |= A by Lemma 1 we obtain P1 |= A. Having P1 =L Q1 and

P1 |= A we get Q1 |= A and since Q1||Q2
c
−→ Q1 we obtain Q1||Q2 |= <c>.A.

(Case of .A) Analogous to the previous case.

(Case of � x.A) We have that P1||P2 |= � x.A that implies for some name
m fresh to the formula we have P1||P2 � m

−→ R ∧ P1||P2 |= A{x←m}. From
P1||P2 |= A{x←m} by induction hypothesis we get Q1||Q2 |= A{x←m} and
from P1||P2 � m

−→ R we obtain that m 6∈ fn(P1||P2). Since P1 |= m � T ∧ P2 |=
m � T and P1 =L Q1 and P2 =L Q2 we have that Q1 |= m � T ∧Q2 |= m � T,
hence m 6∈ fn(Q1||Q2) which gives us that Q1||Q2 � m

−→ S. From Q1||Q2 � m
−→ S

and Q1||Q2 |= A{x←m} we have that Q1||Q2 |= � x.A.

(Case of ∃x.A) We have that P1||P2 |= ∃x.A which gives us that for some
name m we have P1||P2 |= A{x←m} which by induction hypothesis gives us
Q1||Q2 |= A{x←m} hence Q1||Q2 |= ∃x.A.

Now we prove Theorem 2 reported on page 13.

Theorem 2 Two processes are logical equivalent iff they are bisimilar. P =L

Q ⇐⇒ P ∼ Q.

Proof. We first prove that P =L Q =⇒ P ∼ Q by means of proving
that B=L

= {(P, Q) | P =L Q} is a bisimulation and hence is contained, by
definition, in ∼.

We prove that if P
λ
−→ P ′ then Q

λ
−→ Q′ ∧ P ′B=L

Q′ by induction on the
derivation of the label λ.

(Case of α) We have that P =L Q and P
α
−→ P ′. From P

α
−→ P ′ we have that

P |= <α>.T hence Q |= <α>.T, since the processes are logically equivalent.
We also know that there is only a finite number of transitions up to structural
congruence since the processes are finite branching, hence ∃!Q1, . . . , Qn . Q

α
−→

Qi ∧ 1 ≤ i ≤ n, having i ≥ 1 since Q |= <α>.T, such that ∀R . Q
α
−→

R =⇒ ∃j ∈ 1, . . . , n . R ≡ Qj. Assuming that ∀i ∈ 1, . . . , n Qi 6=L P ′

then by Lemma 8 ∃A1, . . . , An . (Qi 6|= Ai ∧ P ′ |= Ai) from which we obtain
P |= <α>.(A1 ∧ . . . ∧ An) which gives us Q |= <α>.(A1 ∧ . . . ∧ An) hence
∃Q̄ . Q

α
−→ Q̄∧ Q̄ |= (A1 ∧ . . .∧An). Since Q̄ ≡ Qi ∧ i ∈ 1, . . . , n, considering

Lemma 1, we have that (Q̄ 6|= Ai ∧ P ′ |= Ai) which is a contradiction since
Q̄ |= Ai hence ∃i . Qi =L P ′ so Q

α
−→ Qi ∧Qi =L P ′.

26

(Case of c and b) Analogous to the previous one.

(Case of 0) We have that P =L Q and P
0
−→ P ′. From P

0
−→ P ′ and

Lemma 3 we get that P ≡ 0. Having P |= 0 and P =L Q we obtain Q |= 0,

hence Q
0
−→ Q′ which by Lemma 3 gives us Q ≡ 0, hence Q ≡ P . From Q ≡ P

and P
0
−→ P ′ we get that Q

0
−→ P ′ (Cong) hence Q

0
−→ P ′ ∧ P ′ =L P ′.

(Case of φ) We have that P =L Q and P
φ
−→ P ′. From P

φ
−→ P ′ and

Lemma 9 we have that P ′ ≡ P1||P2 which gives us that P
φ
−→ P1||P2 (Cong).

From P
φ
−→ P1||P2 and Lemma 5 we have that P ≡ P1|P2 ∨ P ≡ P1||P2.

If P ≡ P1||P2 then P |= <c>.T, so Q |= <c>.T hence Q ≡ Q1||Q2 since

only anchor processes can perform projections. Having Q1||Q2
φ
−→ Q1||Q2

(Anchor) we get that Q
φ
−→ Q (Cong). Since P ≡ P1||P2 and P ′ ≡ P1||P2

we have that P ≡ P ′ which gives us from Lemma 2 that P =L P ′ and since

P =L Q we have that Q =L P ′, hence Q
φ
−→ Q ∧Q =L P ′.

If P ≡ P1|P2 from Lemma 2 we obtain P1|P2 =L P and since P =L Q

we have that P1|P2 =L Q. Since all processes are finite branching we have
that Q has a finite number of relevant decompositions, i.e., a finite number
of decompositions up to structural congruence of the components obtained,
hence ∃!(R′

1, R
′′
1), . . . , (R

′
n, R′′

n) . Q ≡ R′
i|R

′′
i ∧ ∀R̄

′, R̄′′ . Q ≡ R̄′|R̄′′ =⇒ ∃j ∈
1, . . . , n . R̄′ ≡ R′

j ∧ R̄′′ ≡ R′′
j . Let us now assume that ∀i ∈ 1, . . . , n . R′

i 6=L

P1 ∨ R′′
i 6=L P2, which, considering Lemma 8, implies ∃A1, . . . , An . (R′

i 6|=
Ai ∧ P1 |= Ai) ∨ (R′′

i 6|= Ai ∧ P2 |= Ai). Considering A0

�
T and I1

�
{j | j ∈

0, . . . , n∧P1 |= Aj} and I2

�
{k | k ∈ 0, . . . , n∧P2 |= Ak} we have that P1|P2 |=

(
∧

i∈I1 Ai)|(
∧

i∈I2 Ai) and since P1|P2 =L Q we obtain Q |= (
∧

i∈I1 Ai)|(
∧

i∈I2 Ai)
so ∃Q1, Q2 . (Q ≡ Q1|Q2 ∨ Q ≡ Q1||Q2) ∧Q1 |= (

∧
i∈I1 Ai) ∧ Q2 |= (

∧
i∈I2 Ai)

and since P1|P2 =L Q we have that Q 6≡ Q1||Q2, hence Q ≡ Q1|Q2 which
gives us that ∃j ∈ 1, . . . , n . Q1 ≡ R′

j ∧Q2 ≡ R′′
j hence, considering Lemma 1,

gives us R′
j |= (

∧
i∈I1 Ai) ∧ R′′

j |= (
∧

i∈I2 Ai) which is a contradiction since
(j ∈ I1 =⇒ R′

j 6|= Aj) ∧ (j ∈ I2 =⇒ R′′
j 6|= Aj), so we have that

∃Q1, Q2 . Q ≡ Q1|Q2 ∧ Q1 =L P1 ∧ Q2 =L P2. Since Q1|Q2
φ
−→ Q1||Q2

(Freeze) and Q ≡ Q1|Q2 we obtain that Q
φ
−→ Q1||Q2 (Cong). Since P1 =L Q1

and P2 =L Q2 from Lemma 11 we have that P1||P2 =L Q1||Q2 and since
P ′ ≡ P1||P2 from Lemma 2 we get that P ′ =L P1||P2, so P ′ =L Q1||Q2, hence

Q
φ
−→ Q1||Q2 ∧Q1||Q2 =L P ′.

(Case of νn) See the proof of Theorem 2 on page 13.

We now prove that if P ∼ Q =⇒ P =L Q by showing that for any A such
that P |= A then Q |= A by induction on the structure of A (note that the
the converse is analogous).

(Case of T) We immediately have Q |= T.

27

(Case of ¬A) We have that P ∼ Q and P |= ¬A. From P |= ¬A we obtain
P 6|= A. Let us now assume Q |= A, then by induction hypothesis we get that
P |= A which is a contradiction hence Q 6|= A so Q |= ¬A.

(Case of A ∧B) We have that P ∼ Q and P |= A ∧B. From P |= A ∧B we
obtain P |= A and P |= B which by induction hypothesis gives us Q |= A and
Q |= B, hence Q |= A ∧ B.

(Case of 0) We have that P ∼ Q and P |= 0. From P |= 0 we have P
0
−→ P ′,

which along with P ∼ Q, gives us that Q
0
−→ Q′, hence Q |= 0.

(Case of A|B) We have that P ∼ Q and P |= A|B. From P |= A|B we

get that P
φ
−→ P ′ ∧ P ′ c

−→ P1 ∧ P ′ b
−→ P2 ∧ P1 |= A ∧ P2 |= B. From

P
φ
−→ P ′ ∧ P ′ c

−→ P1 ∧ P ′ b
−→ P2 and P ∼ Q we get that Q

φ
−→ Q′ ∧Q′ c

−→

Q1 ∧ Q′ b
−→ Q2 and P1 ∼ Q1 ∧ P2 ∼ Q2 from which by induction hypothesis

we get Q1 |= A ∧Q2 |= B hence Q |= A|B.

(Case of n � A) See the proof of Theorem 2 on page 13.

(Case of <ω>.A) We have that P ∼ Q and P |= <ω>.A. From P |= <ω>.A

we get that P
ω
−→ P ′∧P ′ |= A which since P ∼ Q gives us Q

ω
−→ Q′∧P ′ ∼ Q′.

By induction hypothesis we get that Q′ |= A which along with Q
ω
−→ Q′ gives

us Q |= <ω>.A.

(Case of � x.A) We have that P ∼ Q and P |= � x.A. From P |= � x.A we get
that for some name m fresh to the formula P � m

−→ P ′ ∧ P |= A{x←m}. Since
P ∼ Q we have that Q � m

−→ Q′. By induction hypothesis on P |= A{x←m}
we obtain Q |= A{x←m}, hence Q |= � x.A.

(Case of ∃x.A) We have that P ∼ Q and P |= ∃x.A. From P |= ∃x.A we get
that for some name m we have P |= A{x←ms}, which by induction hypothesis
gives us Q |= A{x←m} hence Q |= ∃x.A.

Now we prove Theorem 3 reported on page 15.

Theorem 3 Two processes are bisimilar iff they are extended structurally con-

gruent. P ∼ Q ⇐⇒ P ≡e Q

Proof. We first prove that P ∼ Q =⇒ P ≡e Q by induction on the structure
of P .

(Case of 0) We have that P is 0 hence P
0
−→ P ′ and since P ∼ Q we obtain

Q
0
−→ Q′, which by Lemma 3 gives us Q ≡ 0 hence Q ≡ P so Q ≡e P .

(Case of α.P ′) Since P ∼ Q and considering Theorem 2 we have that P =L Q.
Since P |= ¬(¬0|¬0) and P |= � x.x � x � T we have that Q |= ¬(¬0|¬0) and
Q |= � x.x � x � T which gives us that Q has only one component and has

28

no restrictions at top level that occur in the process, hence it has the form
of a prefix, and since P

α
−→ P ′ we have that Q

α
−→ Q′, which along with

the previous statement gives us that Q ≡ α.Q′. By induction hypothesis on
P ′ ∼ Q′ we get that P ′ ≡e Q′ hence P ≡e Q.

(Case of P1||P2) Since P ∼ Q, P1||P2
c
−→ P1 and P1||P2

b
−→ P2 we have

that Q
c
−→ Q1, Q

b
−→ Q2, P1 ∼ Q1 and P2 ∼ Q2. By induction hypothesis

on P1 ∼ Q1 and P2 ∼ Q2 we get that P1 ≡e Q1 and P2 ≡e Q2. Considering
Lemma 7 we have that Q ≡ R1||R2 ∧ R1 ≡ Q1 ∧ R2 ≡ Q2, so R1 ≡e P1 and
R2 ≡e P2 which gives us P1||P2 ≡e R1||R2 hence P ≡e Q.

(Case of P1|P2) Considering Theorem 2 we have that P1|P2 =L Q. Since
all processes are finite branching we have that Q has a finite number of rele-
vant decompositions, i.e., a finite number of decompositions up to structural
congruence of the components obtained, hence ∃!(R′

1, R
′′
1), . . . , (R

′
n, R′′

n) . Q ≡
R′

i|R
′′
i ∧ ∀R̄

′, R̄′′ . Q ≡ R̄′|R̄′′ =⇒ ∃j ∈ 1, . . . , n . R̄′ ≡ R′
j ∧ R̄′′ ≡ R′′

j .
Let us now assume that ∀i ∈ 1, . . . , n . R′

i 6=L P1 ∨ R′′
i 6=L P2, which,

considering Lemma 8, gives us that ∃A1, . . . , An . (R′
i 6|= Ai ∧ P1 |= Ai) ∨

(R′′
i 6|= Ai ∧ P2 |= Ai). Considering A0

�
T and I1

�
{j | j ∈ 0, . . . , n ∧

P1 |= Aj} and I2

�
{k | k ∈ 0, . . . , n ∧ P2 |= Ak} we have that P1|P2 |=

(
∧

i∈I1 Ai)|(
∧

i∈I2 Ai) and since P1|P2 =L Q we obtain Q |= (
∧

i∈I1 Ai)|(
∧

i∈I2 Ai)
so ∃Q1, Q2 . (Q ≡ Q1|Q2 ∨ Q ≡ Q1||Q2) ∧Q1 |= (

∧
i∈I1 Ai) ∧ Q2 |= (

∧
i∈I2 Ai)

and since P1|P2 =L Q we have that Q 6≡ Q1||Q2, hence Q ≡ Q1|Q2 which
gives us that ∃j ∈ 1, . . . , n . Q1 ≡ R′

j ∧Q2 ≡ R′′
j hence, considering Lemma 1,

we have that R′
j |= (

∧
i∈I1 Ai) ∧ R′′

j |= (
∧

i∈I2 Ai) which is a contradiction
since (j ∈ I1 =⇒ R′

j 6|= Aj) ∧ (j ∈ I2 =⇒ R′′
j 6|= Aj), so we have that

∃Q1, Q2 . Q ≡ Q1|Q2 ∧ Q1 =L P1 ∧ Q2 =L P2. Considering Theorem 2 we
have that P1 ∼ Q1 and P2 ∼ Q2 which by induction hypothesis gives us that
P1 ≡e Q1 and P2 ≡e Q2 so P1|P2 ≡e Q1|Q2 hence P ≡e Q.

(Case of (νn)P ′) We have that P � n
−→ P ′ which gives us Q � n

−→ Q′. From
P � n
−→ P ′ and Q � n

−→ Q′ we have that n is not a free name of both P and Q.
Since all processes are finite we have that there is a finite number of revelations
of a fresh name up to structural congruence, since the revelation can either
pick up a restriction that occurs as a free name of the process within, and this
set of restrictions is finite, or simply reveal a restriction that does not occur
and in this case the processes obtained are all structurally congruent to one
another, in fact they are structurally congruent to the initial one. So we have
that ∃!R1, . . . , Rn . Q � n

−→ Ri ∧ ∀R̄ . Q � n
−→ R̄ =⇒ ∃i ∈ 1, . . . , n . R̄ ≡ Ri.

Let us now assume that ∀i ∈ 1, . . . , n . Ri 6=L P ′, which gives us, considering
Lemma 8, that ∃A1, . . . , An . Ri 6|= Ai ∧ P ′ |= Ai. Since P ′ |= A1 ∧ . . . ∧ An

we have that P |= n � (A1 ∧ . . . ∧ An) hence, since P =L Q, we have that
Q |= n � (A1 ∧ . . . ∧ An) which gives us that Q � n

−→ Q̄ ∧ Q̄ |= (A1 ∧ . . . ∧ An)
but since ∃j ∈ 1, . . . , n . Q̄ ≡ Rj we have that, considering Lemma 1, Q̄ 6|=
Aj which is a contradiction. So ∃i ∈ 1, . . . , n . Ri =L P ′. From Ri =L P ′

and Theorem 2 we get that Ri ∼ P ′ which by induction hypothesis gives us

29

Ri ≡e P ′ so (νn)Ri ≡e (νn)P ′, and from Q � n
−→ Ri and Lemma 4 we get that

Q ≡ (νn)Ri hence P ≡e Q.

Considering Theorem 2 we now prove that P ≡e Q =⇒ P ∼ Q by obtaining
that P ≡e Q =⇒ P =L Q proving that if P ≡e Q for any A such that P |= A

then Q |= A by induction on the structure of A (note that the converse is
analogous).

(Case of T) We immediately have that Q |= A.

(Case of ¬A) We have that P |= ¬A and P ≡e Q. Assume Q |= A, then by
induction hypothesis P |= A which is a contradiction. Hence Q |= ¬A.

(Case of A∧B) We have that P |= A∧B and P ≡e Q. From P |= A∧B we
have that P |= A and P |= B from which, by induction hypothesis, we obtain
Q |= A and Q |= B, hence Q |= A ∧ B.

(Case of 0) We have that P |= 0 and P ≡e Q. If P ≡ Q, then from P |= 0 we

get that P
0
−→ P ′ which along with P ≡ Q gives us Q

0
−→ P ′ (Cong) hence

Q |= 0. If P ≡e Q ∧ P 6≡ Q then P 6|= 0, because both P and Q contain the
anchor construct, hence it is impossible.

(Case of A|B) We have that P |= A|B and P ≡e Q. From P |= A|B we get

that P
φ
−→ P ′∧P ′ c

−→ P1∧P ′ b
−→ P2∧P1 |= A∧P2 |= B. Since P |= A|B we

have that P is either an anchor or a parallel composition of processes, and from
P ≡e Q we get that either P ≡ P1||P2 and Q ≡ Q1||Q2, or P ≡ P1|P2 and
Q ≡ Q1|Q2, having in both cases P1 |= A, P2 |= B, P1 ≡e Q1 and P2 ≡e Q2,
hence by induction hypothesis Q1 |= A and Q2 |= B which in both cases gives
us that Q |= A|B.

(Case of n � A) We have that P |= n � A and P ≡e Q. From P |= n � A

we get that P � n
−→ P ′ ∧ P ′ |= A. From P � n

−→ P ′ and Lemma 4 we get
that P ≡ (νn)P ′ which regarding Definition 14 gives us Q ≡ (νn)Q′, hence
Q � n
−→ Q′, and P ′ ≡e Q′, which by induction hypothesis gives us Q′ |= A, so

Q |= n � A.

(Case of <ω>.A) We have that P |= <ω>.A and P ≡e Q. From P |=
<ω>.A we get that P

ω
−→ P ′ ∧ P ′ |= A. Having that the extended structural

congruence does not interfere with the observables, since the new axioms only
talk about structural rearrangement within anchors, we have that Q

ω
−→ Q′

and P ′ ≡e Q′, which by induction hypothesis gives us that Q′ |= A hence
Q |= <ω>.A.

(Case of � x.A) We have that P |= � x.A and P ≡e Q. From P |= � x.A we
get that P � m

−→ P ′ ∧ P |= A{x←m} for some m fresh to the formula. From
P |= A{x←m} by induction hypothesis we obtain Q |= A{x←m} and since
P ≡e Q implies that the processes have the same set of free names we have

30

that Q � m
−→ Q′ hence Q |= � x.A.

(Case of ∃x.A) We have that P |= ∃x.A and P ≡e Q. From P |= ∃x.A we get
that, for some name m, P |= A{x←m} which by induction hypothesis gives
us Q |= A{x←m}, hence Q |= ∃x.A.

31

