
An Extensional Spatial Logic

for Mobile Processes

Daniel Hirschkoff

LIP – ENS Lyon, France

Abstract. Existing spatial logics for concurrency are intensional, in the
sense that they induce an equivalence that coincides with structural
congruence. In this work, we study a contextual spatial logic for the π-
calculus, which lacks the spatial operators to observe emptyness, parallel
composition and restriction, and only has composition adjunct and hid-
ing. We show that the induced logical equivalence coincides with strong
early bisimilarity. The proof of completeness involves the definition of
non-trivial formulas, including characteristic formulas for restriction-free
processes up to bisimilarity. This result allows us to isolate the exten-
sional core of spatial logics, decomposing spatial logics into a part that
counts (given by the intensional operators) and a part that observes
(given by their adjuncts). We also study how enriching the core exten-
sional spatial logic with intensional operators affects its separative power.

1 Introduction

Spatial logics extend classical logic with constructions to reason about the struc-
ture of the underlying model (when applied to concurrent systems, the models
are processes). The additional connectives belong to two families. Intensional
operators allow one to inspect the structure of the model. A formula A1|A2 is
satisfied whenever we can split the structure into two parts satisfying the cor-
responding subformula Ai, i = 1, 2. In presence of restriction in the underlying
model, a structure P satisfies formula n�A if we can write P as (νn)P ′ with
P ′ satisfying A. Finally, formula 0 is only satisfied by the empty structure. Con-
nectives | and � come with adjunct operators, called guarantee (�) and hiding
(�) respectively, that allow one to extend the structure being observed. In this
sense, these can be called contextual operators. P satisfies A1 �A2 whenever the
spatial composition (using |) of P with any structure satisfying A1 satisfies A2,
and P satisfies A � n if (νn)P satisfies A.

Previous studies have demonstrated that in existing spatial logics, the in-
tensional character prevails. In the static case, where spatial logics are used to
reason about semi-structured data [CG01a], or about memory along the execu-
tion of a program that manipulates pointers [Rey02], the guarantee operator is
eliminable, in the sense that every formula involving � can be replaced by an
equivalent formula that does not make use of � [Loz03,Loz04,DGG04]. In spa-
tial logics for concurrency [CG00,CC01], that also include a temporal modality,
this is not the case. However, the equivalence on processes induced by the logic

coincides with structural congruence, a very fine grained relation on processes
— much finer in particular than behavioural equivalence [San01,HLS02,CL04].
This situation is in contrast with standard modal logics for concurrency like the
Hennessy-Milner (HM for short) logic [MPW93], for which logical equivalence is
known to coincide with bisimilarity.

Technically, the ability for spatial logic to capture structural congruence on
processes is based on two aspects of its expressiveness. The first aspect is the
ability to count, i.e., to express arithmetical properties about the number of
substructures exhibited by a given system. The second aspect is the definability
of modalities à la Hennessy-Milner within the logic, i.e., one is able to capture
parts of the behaviour of processes. This has been shown in [San01,HLS02], and
further studied in [HLS03], using a logic with a restricted set of operators, and
applying it to both the Ambient calculus and the π-calculus (modality formulas
are also derived in [CL04]). In [HLS03], in particular, the derivability of modality
formulas for the π-calculus and for Mobile Ambients heavily relies on the use of
intensional operators, in conjunction with guarantee: | and 0 are used to isolate
some kind of elementary components of interaction (called ‘threads’), while the
revelation operator makes it possible to test the free names of a process, and to
deduce behavioural properties.

In this work, we renounce to the intensional connectives, and study the re-
sulting contextual spatial logic, called L. L only has spatial composition adjunct
(�), revelation adjunct (�), a simple temporal modality (♦), and an operator I
for fresh name quantification. We apply L to reason about the π-calculus, and
we show extensionality of the logic, in the sense that L induces the same separa-
tive power as strong early bisimilarity (and thus as Hennessy-Milner logic). This
result suggests that the two families of operators in spatial logics serve different
purposes: while intensional operators allow one to count (as illustrated by the
study in [DLM04], where it is shown that a particular static spatial logic, in
which � is eliminable, characterises Presburger arithmetic), we show that con-
textual operators are enough to bring extensionality.

To establish our main result, we exploit the characterisation of strong bisim-
ilarity (written ∼) in terms of barbed equivalence (written �). The elementary
observations available in L are indeed close to the definition of �. However,
technically, we still need to define a way to perform instantaneous observations
(to detect barbs) in L, which is a priori not obvious given the definition of the
logic. We are only able to define formulas for barbs when imposing a bound on
the size of processes, but this is enough for our purposes. Another aspect of the
expressive power we need in order to capture � is the ability to let two pro-
cesses ‘pass the same tests’. This is achieved by defining characteristic formulas
for restriction-free processes up to ∼. These formulas exploit the constructions
for barbs, and are relatively concise thanks to some specific properties of bisimi-
larity on the calculus without restriction. As hinted above, due to the absence of
intensional operators, our constructions depart from the formulas for modalities
defined in related works [San01,HLS02,HLS03,CL04].

While we use � in order to show that logical equivalence for L coincides
with ∼, the argument does not follow the classical proof that � is included in
∼, and we instead use the ideas we just sketched. We briefly study also L�, an
adaptation of L that is closer to the observations given in � (detecting barbs is
primitive in L�). We show that L� is also an extensional logic.

Having isolated a core extensional spatial logic, we may wonder what lies
between L and full spatial logics for concurrency. To address this question, we
establish some results about the expressive and separative power we obtain when
enriching L with (some) intensional operators. These results suggest that from
the point of view of separability, the most powerful intensional operator is �.

Outline. We introduce the calculus and the logic we study in Section 2. Formulas
for (some of the) π-calculus modalities and to characterise bisimilarity classes
of restriction-free processes are presented in Section 3. In Section 4, we exploit
these constructions to prove that L is extensional. Section 5 is devoted to the
discussion of variants and enrichments of L, and we conclude in Section 6.

2 Preliminaries

2.1 The π-calculus

The finite synchronous π-calculus is introduced using an infinite set of names,
ranged over using a, b, . . . , m, n, Processes, ranged over using P, Q, R, . . . ,
are defined by the following syntax:

P ::= 0
∣∣ P1|P2

∣∣ (νn)P
∣∣ m(n).P

∣∣ m〈n〉.P .

Trailing occurrences of 0 will often be omitted. Name n is bound in an input-
prefixed term m(n).P , and in a restricted term (νn)P . A name that is not bound
is free, and fn(P) will denote the set of free names of P . We write P{n←m} for
the process resulting from the capture-avoiding replacement of n with m in P .

Actions of the labelled transition system, ranged over with µ, are defined by
the following syntax (notice the presence of free input):

µ ::= mn
∣∣ m〈n〉 ∣∣ m(n)

∣∣ τ .

Given an action µ, we define its names (n(µ)), free names (fn(µ)) and bound
names (bn(µ)) as usual. Figure 1 presents the transition rules that define the
operational semantics of the π-calculus (symmetrical versions of rules involving

parallel composition are omitted). We write P
m〈(n)〉−−−−→ P ′ whenever P

m〈n〉−−−→ P ′

or P
m(n)−−−→ P ′.

Structural congruence, ≡, is the least equivalence relation that is a congru-
ence and that satisfies the rules of Figure 2. Given a (possibly empty) sequence
of names ñ = n1, . . . , nk, (νñ)P will stand for (νn1) . . . (νnk)P . We will also
implicitly reason up to permutation of consecutive restrictions, thus treating ñ
as a set of names.

m〈n〉.P m〈n〉−−−→ P m(n).P
ma−−→ P{n←a}

P
µ−→ P ′

P |Q µ−→ P ′|Q
bn(µ) ∩ fn(Q) = ∅

P
µ−→ P ′

(νn) P
µ−→ (νn) P ′ n /∈ n(µ)

P
m〈n〉−−−→ P ′

(νn) P
m(n)−−−→ P ′

m �= n

P
m〈n〉−−−→ P ′ Q

mn−−→ Q′

P |Q τ−→ P ′|Q′
P

m(n)−−−→ P ′ Q
mn−−→ Q′

P |Q τ−→ (νn) (P ′|Q′)
n /∈ fn(Q)

Fig. 1. Early operational semantics

P |0 ≡ P P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R (νn) 0 ≡ 0

(νn)(νm) P ≡ (νm)(νn) P P |(νn) Q ≡ (νn) (P |Q) if n /∈ fn(P)

Fig. 2. Structural congruence

The public π-calculus consists in the set of restriction-free processes. We shall
also call P a public process whenever P ≡ Q for some Q in the public π-calculus.
Given a process P , we write size(P) for the number of prefixes of P . By definition,
if P ≡ Q, then size(P) = size(Q). A process P is an atom if size(P) = 1.

We define some basic observations, usually called barbs, as follows: we write
P↓n (resp. P↓n) whenever P ≡ (νm̃) (n(a).P1|P2) (resp. P ≡ (νm̃) (n〈a〉.P1|P2)
for some n, a, m̃, P1 and P2 such that n /∈ m̃.

We shall write relation composition using juxtaposition, and the negation of
a relation 	 will be written
	. We do not give the usual definition of reduction,
and instead equivalently (see [SW01]) set P −→ Q

def= P
τ−→≡ Q.

2.2 Behavioural Relations

Definition 1 (Behavioural equivalences).

– Strong bisimilarity, ∼, is the greatest symmetrical relation such that when-
ever P ∼ Q and P

µ−→ P ′, there is Q′ such that Q
µ−→ Q′ and P ′ ∼ Q′.

– Strong barbed bisimilarity,
.�, is the greatest symmetrical relation such that

whenever P
.� Q:

(i) For any n, (P↓n iff Q↓n) and (P↓n iff Q↓n).
(ii) For any P ′ s.t. P −→ P ′, there exists Q′ s.t. Q −→ Q′ and P ′ .� Q′.

– P and Q are strong barbed equivalent, written P � Q, iff for any process
R, P |R .� Q|R.

In the sequel, we shall often omit the word ‘strong’ when mentioning these
equivalences. The labelled transition system-based and reduction-based presen-
tations for behavioural equivalence coincide, as expressed by the following result.

Theorem 1 ([SW01]). P ∼ Q iff P � Q.

We shall need the following results about behavioural equivalence.

Proposition 1. Define ∼s like ∼ except that for actions µ of the form mn,
when comparing two processes P and Q, we only consider names n belonging to
the (finite) set fn(P) ∪ fn(Q) ∪ {d}, where d /∈ fn(P) ∪ fn(Q). Then ∼=∼s.

Lemma 1. ∼⊆ .�, and ∼ .�∼ ⊆ ∼.

Lemma 2. Given a process P , we have the following:

1. There exist names ñ and a public process P0 such that P ∼ (νñ)P0.
2. If size(P) < 2 ∗ k for some integer k, then P cannot perform a sequence of

reductions of length equal to k.

Proof. The first result follows from the two laws P |(νn)Q ∼ (νn) (P |Q) (when
n /∈ fn(P)) and α.(νn)P ∼ (νn)α.P where α is a prefix of the form m(m′) or
m〈m′〉 with n /∈ {m, m′}. ��

Note that the results of this lemma hold because we work in a finite calculus.
The following lemma shows that on the public π-calculus, bisimilarity is a

quite discriminating relation.

Lemma 3. Given two public processes P and Q, if P ∼ Q, then fn(P) = fn(Q),
size(P) = size(Q) and moreover P and Q have the same number of input (resp.
output) prefixes. In particular, for P public, P ∼ 0 implies P ≡ 0.

2.3 The Logic

Formulas of L, the contextual spatial logic, are ranged over using A,B, . . . , and
are given by the following grammar:

A ::= � ∣∣ ¬A ∣∣ A1 ∧A2

∣∣ ♦A ∣∣ A1 � A2

∣∣ A � n
∣∣ In.A .

Name n is bound in In.A, and we let fn(A) stand for the set of free names of
A. A{n←m} (resp. A{n↔m}) stands for the formula obtained by replacing (resp.
permuting) all occurrences of n with m (resp. and m) in A.

Definition 2 (Satisfaction in L, logical equivalence). The judgement P |=
A, saying that process P satisfies formula A, is defined as follows:

– P |= � always;
– P |= ¬A iff not P |= A (also written P
|= A);
– P |= A1 ∧A2 iff P |= A1 and P |= A2;
– P |= ♦A iff there exists P ′ s.t. P −→ P ′ and P ′ |= A;

– P |= A1 � A2 iff for any Q s.t. Q |= A1, P |Q |= A2;
– P |= A � n iff (νn)P |= A.
– P |= In.A iff for any m s.t. m /∈ fn(P) and m /∈ fn(A), P |= A{n↔m}.

P and Q are logically equivalent, written P =L Q, iff for any formula A, P |= A
iff Q |= A.

We will also make use in our constructions of the following derived formulas:

⊥ def= ¬� A1 ∨A2
def= ¬(¬A1 ∧ ¬A2) �A def= ¬♦¬A

A1 � A2
def= ¬(A1 � ¬A2)

The interpretation of ⊥, ∨ and � (‘always’) is standard. P |= A1 � A2 iff
there exists Q s.t. Q |= A1 and P |Q |= A2. Operators � and � are right
associative, and we define the following abbreviation: A1

� B def= A � B, and
Ak+1

� B def= A � (Ak
� B). We also set ♦1A def= ♦A and ♦k+1A def= ♦(♦kA).

A process P satisfies Ak
� B iff P , put in parallel with k processes satisfying A,

satisfies B. P |= ♦kA iff P can perform k reductions and then satisfy A.

Proposition 2. If P |= A, then for any Q, P ≡ Q implies Q |= A.

This result implies that ≡⊆=L, and that for any P and A, P |= ♦A iff
P |= 〈

τ
〉
.A, where

〈
τ
〉

is the HM modality corresponding to τ−→ [MPW93].

3 Expressiveness of the Logic

3.1 Auxiliary Formulas – Characterising Basic Processes

We start by some technical constructions to capture elementary π-calculus terms.

nil
def= �⊥ ∧ (�⊥ � �⊥) [〈1〉] def= ♦� [〈k + 1〉] def= ♦� ∧ �[〈k〉]

atom
def= �⊥ ∧ (� � ♦nil) atom(n) def= atom ∧ (nil � n)

∗(n) def= Ia. (atom(n) � ♦ atom(a)) n〈m〉 def= ∗(n) � ♦ atom(m)

n() def= n〈n〉 � ♦ nil duo(n, m) def= (atom(m) � �⊥) ∧ (n〈n〉 � ♦m〈m〉)

testOut(n, m) def= Ia. atom(n) � ♦ duo(a, m)

testIn(n, m, a) def= (atom(a) � �⊥) ∧ (∗(n) � ♦ (atom(m) � ♦ a〈a〉))

We briefly comment on these formulas. Using the strong interpretation of
operator ♦, we can capture the class of processes that are bisimilar to an atom:
formula atom says that these are processes that necessitate the addition of a
context in order to evolve in one step of reduction to a process satisfying 0.
We then distinguish between the input and output polarity by exploiting the
ability for a process to interact on a received fresh channel, in formula ∗(n).
This formula is then used to derive formulas to characterise the ∼-class of some
processes of sizes 1, 2 and 3. The following lemma states this formally:

Lemma 4. The above formulas have the following interpretation:

– P |= nil iff P ∼ 0.
– P |= [〈k〉] iff there is no reduction sequence P = P0 −→ P1 −→ . . . −→ Pi,

with i < k, such that Pi cannot perform any −→-transition.
– P |= atom(n) iff P ∼ n(m) or P ∼ n〈m〉, for some m; for formula atom,

name n is not fixed.
– P |= ∗(n) iff P ∼ n(x).x〈y〉 or P ∼ n(x).x(y) for some y.
– P |= n〈m〉 iff P ∼ n〈m〉, and P |= n() iff P ∼ n(x) for some x.
– When n
= m, P |= duo(n, m) iff P ∼ n(x).m〈m〉 for some x
= m.
– P |= testOut(n, m) iff P ∼ n(x).x(y).m〈m〉 for some y.
– P |= testIn(n, m, a) iff P ∼ n〈m〉.a〈a〉 when a
= n and a
= m.

Proof (Sketch). The interpretation of formulas nil, [〈k〉], atom and atom(n) is
easy. We sketch the proof of some of the other cases. We say that P is ∼-atomic
if P |= atom.

Suppose P |= ∗(n), and take a s.t. a
= n and a /∈ fn(P). We put P in
presence of a process Q bisimilar to n〈m〉 or to n(m) for some m. Since P |Q
reduces to a process that admits a as a free name and a /∈ fn(P), a ∈ fn(Q),
and thus Q ∼ n〈a〉 because a
= n. The reduction is necessarily an interaction
between P and Q, since it leads to a term satisfying atom(a), and n
= a. Hence

P
n(a)−−−→ P ′ for some P ′, and P ′|0 |= atom(a). As a /∈ fn(P), we can conclude.
Suppose P |= n〈m〉. We put P in presence of a process Q satisfying ∗(n);

the reduction step must be an interaction between P and Q, and P is ∼-atomic,
otherwise we could not reach a ∼-atomic process. Necessarily P ∼ n〈m〉, because
otherwise it could not react with Q and lead to a process satisfying atom(m).

Suppose P |= duo(n, m), and n
= m. P cannot interact at m and can
receive n at n, leading to a process which is bisimilar to m〈m〉. This is enough
to conclude.

Suppose P |= testOut(n, m), a /∈ fn(P), a
= n, and a
= m. We reason like
in the case of ∗(n) to deduce that P is put in presence with a process bisimilar

to n〈a〉. This implies that P
n(a)−−−→ P ′ |= duo(a, m), which allows us to conclude.

��

3.2 Detecting Barbs

Although L allows us to put a process in an arbitrary context built using parallel
composition and restriction, what is missing to capture behavioural equivalence

is the ability to perform instantaneous observations. We achieve this by intro-
ducing formulas to characterise barbs, i.e., the possibility for a term to offer an
interaction. We have not been able to define such formulas in the general case.
Instead, our constructions depend on the size of the tested process, and are thus
parametric over a natural number k ≥ 1:

pol(k)(a) def= a()k
� ♦k nil

prefpol(k)(n, a) def= (atom(a) � �⊥) ∧ (n〈n〉 � ♦ pol(k)(a))

↓n
(k) def= Ia.Ib.

(
duo(n, a) � prefpol(k)(a, b) � a() � b()k

� ♦♦[〈k〉])

↓n
(k) def= Ia.Ib.

(
testIn(n, n, a) � prefpol(k)(a, b) � a() � b()k

� ♦♦[〈k〉])

Lemma 5. Given a process P and an integer k, we have:

– P |= pol(k)(a) iff P is bisimilar to a term of the form (ν c̃) (a〈b1〉 | . . . | a〈bk〉),
for some names b1, . . . , bk, c̃ ⊆ {b1, . . . , bk} and a /∈ c̃.

– P |= prefpol(k)(n, a) iff n
= a and P ∼ n(x).P ′ with P ′ |= polk(a).

– P |= ↓n
(k) iff P

n〈(m)〉−−−−→ P ′ for some m, P ′, when 2 ∗ k − 1 > size(P).

– P |= ↓n
(k) iff P

n(m)−−−→ P ′, for some m, P ′, when 2 ∗ k − 1 > size(P).

Proof (sketch). We focus on formula ↓n. We first show that if P
n〈(m)〉−−−−→ P ′ for

some m and P ′, then P |= ↓n. When P is put in parallel with the processes
specified by the formula for ↓n, we can observe the following two reaction steps:
P can interact with the process satisfying duo(n, a), thus liberating a process
that can perform an output on a, which can in turn react with the term satis-
fying prefpol(k)(a, b), yielding a state where formula [〈k〉] is satisfied (thanks to
communications on b).

Suppose now P |= ↓n and size(P) < 2 ∗ k − 1. The scenario described
by formula ↓n expresses a property of the reductions of a process of the form
T = P |Q1|Q2|Q3|Q4, where the Qis are tester processes specified by the for-
mula:

- Q1 can perform an input at n followed by an output at a.
- Q2 starts by performing an input on a and then (independently from the

received value) is liable to do k outputs at b.
- Q3 just performs an input at a, while Q4 can perform k inputs at b.

First observe that, since a and b are fresh, process Q1|Q2|Q3|Q4 cannot
reduce on its own, and can only perform an input at n.

Then, consider a reduction T −→ T ′, and suppose that it comes from a
reduction P −→ P ′, the Qis remaining inactive. We show that formula ♦[〈k〉] does
not hold for T ′. For this, we look for a term T ′′ s.t. T ′ −→ T ′′ and T ′′ |= [〈k〉].

1. Suppose the reduction to T ′′ results from P ′ performing a free output at
n (the case where P ′ performs a bound output is treated similarly) and
synchronising with Q1, then we obtain a process T ′′ = P ′′|Q′

1|Q2|Q3|Q4,

where P ′ n〈m〉−−−→ P ′′ for some m and Q′
1

a〈a〉−−−→∼ 0. This entails that we can
derive T ′′ −→∼ U = P ′′|Q2|Q4 from an interaction between Q′

1 and Q3. As
a result, process Q2|Q4 is stuck in all possible evolutions of U , since P ′′ does
not know names a and b. So the only possible reductions of U are reductions
resulting from P ′′ on its own. Since size(P) < 2 ∗ k − 1, we can conclude
using Lemma 2 that T ′′
|= [〈k〉].

2. Suppose the reduction to T ′′ results from P ′ performing a reduction step on
its own, to a process P ′′. Then there are two cases:

(a) Either there exists R s.t. P ′′ −→∗ R and R
n〈m〉−−−→ R′ for some m and

R′. In this case, we reason as above to show that R|Q1|Q2|Q3|Q4 −→
R′|Q′

1|Q2|Q3|Q4 −→∼ R′|Q2|Q4, and in the resulting state, process
Q2|Q4 is stuck, which shows that T ′′
|= [〈k〉]. The case where R does
a bound output at n is treated similarly.

(b) Either such an R does not exist, in which case Q1|Q2|Q3|Q4 is frozen in
all possible evolutions of P ′′, and, since size(P) < 2 ∗ k − 1, T ′′
|= [〈k〉].

So finally, there is no process T ′′ fulfilling the conditions stated above. This
implies that no reduction of T involving only P can lead to a state where the
formula is satisfied. So necessarily, P has to interact with Q1|Q2|Q3|Q4, which
is possible only if P can perform an output at n.

The interpretation of formula ↓n follows the same ideas, the testing process
being specified using formula testIn instead of duo. ��

When clear from the context, we will omit the superscript (k) in ↓n
(k), ↓n

(k);
we will do so in particular when P is fixed (cf. the proof of Lemma 8).

3.3 Characteristic Formulas for Public Processes

As remarked above, L has the modality
〈
τ
〉
, due to the presence of constructor

♦. We further have derivability of the following modalities, that will be useful
below to define characteristic formulas.

〈
mn

〉(k)
.A def= Ia. testIn(m, n, a) �

(
atom(a) � ♦♦ (¬a� ∧ A)

)
〈
m〈n〉〉(k)

.A def= Ia.Ib. testOut(m, a) � duo(n, b) �

♦♦
(
a� ∧ b� ∧ (atom(a) � atom(b) � ♦♦ (¬a� ∧ ¬b� ∧ A))

)

Lemma 6 (Modality formulas). The formulas above have the following in-
terpretation, when size(P) < 2 ∗ k − 1:

– P |= 〈
mn

〉(k)
.A iff P

mn−−→ P ′ and P ′ |= A for some P ′.

– P |= 〈
m〈n〉〉(k)

.A iff P
m〈n〉−−−→ P ′ and P ′ |= A for some P ′.

Proof (sketch). In the case of
〈
mn

〉(k)
.A, we put the candidate process in pres-

ence of a process bisimilar to n〈m〉.a〈a〉|a(x), for a fresh. The remainder of the
formula specifies that after two steps of reduction, the process must not exhibit
a barb on a and must satisfy the continuation formula A. This is possible only
if a communication on a has happened, preceded by the output at n.

The formula for the free output modality follows similar ideas, the tester
process being more complex due to the necessity to recognise two names in the
prefix that is triggered. ��
Remark 1. An important property of our constructions is that at the end of the
‘experiment’, no garbage process is left, so that we can go on with the satisfaction
of A. This allows us to avoid using | in formulas like is done e.g. in [HLS03].

Remark 2 (Bound output modality). Although we have no formal proof for this,
we believe that we cannot define a formula for the bound output modality in
general in L. Intuitively, the reason is that in order to define a formula

〈
n(m)

〉
.A,

we should be able to impose satisfaction of A under the restriction binding the
extruded name, which is not possible (see also the extensions of L in 5.2).

However, we can observe the ability for a process to perform a bound output:

Lemma 7. Given P , n and k such that size(P) < 2∗k−1, there exists a formula〈
n()

〉(k) such that P |= 〈
n()

〉(k) iff P
n(m)−−−→ P ′ for some m and P ′.

For lack of space, we do not present the proof of this result. The main idea
is to express the fact that there is no way for a process coming from ‘outside the
tested process’ to interact on the name received at n. We use for this some for-
mulas whose interpretation contain a form of universal quantification on names
(to give an idea, this is the case for example for formula atom introduced in 3.1).

The formulas given by Lemma 6 allow us to derive the following result.

Theorem 2 (Characterising public processes). For any public process P ,
there exists a L-formula FP such that for any process Q, Q |= FP iff P ∼ Q.

Proof (Sketch). We exploit the characterisation of ∼ in Proposition 1, as well
as Lemma 3 to simplify the formulas we manipulate. We define FP by induction
over the size of the transition system for ∼s generated by P , using nil for the
bisimilarity class of 0. According to the result given in Proposition 1, we first
pick n fresh names a1, . . . , an, where n is the number of input prefixes in P , and
define N = fn(P) ∪ {a1, . . . , an}. We define M as the following set of actions:

M def= {mn , m ∈ N , n ∈ N} ∪ {m〈n〉 , m ∈ N , n ∈ N} .

We also set Ac(P) = {µ. ∃P ′. P
µ−→ P ′}, and, for a free input or output action µ,

P|µ = {P ′. P
µ−→ P ′}. We then define:

FP
def= Ia1 . . . Ian.

∧
µ∈Ac(P)

[
µ
](k)

.
(∨

P ′∈P|µ

FP ′
) ∧

∧
µ∈M\Ac(P)

¬〈
µ
〉(k)

.� ,

where
[
µ
](k)

.A stands for ¬〈
µ
〉(k)

.¬A and k satisfies 2 ∗ k − 1 > size(P).
The construction of FP is rather standard, and consists in describing the

transitions a state can make by expressing the possible actions and their contin-
uations as well as those actions that cannot be performed. ��
Remark 3. The characteristic formulas we define are valid for the whole calculus,
and in particular they are also satisfied by all processes with restriction that
are bisimilar to a public process. The logic also allows us to characterise some
processes outside this class, as illustrated by the following formula

〈
a()

〉 ∧ Ir.
(
Fa(x).x(y).r〈y〉 � ♦♦r〈b〉) ,

which captures the processes bisimilar to (νc) (a〈c〉|c〈b〉) (this is the case e.g. for
(νc) a〈c〉.c〈b〉). We have not been able to define characteristic formulas for the
whole calculus, though, and do not believe that this would be feasible along the
lines of the constructions presented above.

Remark 4 (On the role of I). We could get rid of I in the constructions we have
presented. This is possible by defining a formula unactive(k)(n), that says that
name n is not liable to be used in the first k interactions of a given process P
provided n is not sent to P (we can easily express (dis)equality of names in L).
Note that this property is different from being a fresh name for P , as a process
bisimilar to 0 can have free occurrences of names. Intuitively, to obtain exten-
sionality (Theorem 4 below), we only need to be able to pick enough ‘unactive
names’ to build the characteristic formula for a given public process. Without
having checked formally that this is the case, we do believe that our main result
can be proved in a logic without I.

4 Extensionality

We now show that =L coincides with ∼.

Theorem 3 (Behavioural implies logical). P ∼ Q implies P =L Q.

Proof (Sketch). We prove by structural induction on A that whenever P ∼ Q
and P |= A, we have Q |= A. The cases corresponding to the adjunct operators
� and � follow from congruence properties of ∼ w.r.t. parallel composition and
restriction, respectively (see [SW01]). ��
Lemma 8 (Characteristic formulas for barbed bisimilarity). Given a
process P and a finite set of names N such that fn(P) ⊆ N , there exists a
formula BN ,P such that for any Q such that fn(Q) ⊆ N , Q |= BN ,P iff P

.� Q.

Proof. The formula is defined by induction on the size of P as follows:

BN ,P
def=

∧
n∈N . P↓n

↓n ∧ ∧
n∈N . P↓n

↓n ∧ ∧
n∈N . P 	↓n

¬↓n ∧ ∧
n∈N . P 	↓n

¬↓n

∧ ∧
P ′∈{P ′. P−→P ′}/≡

♦BN ,P ′ .

In this formula, S/≡ stands for the quotient of S modulo ≡. The above conjunc-
tion is finite because N is finite and reduction is image-finite up to ≡ ([SW01]).
The definition is well-formed because P ′ is smaller (in the senze of size) than P
in the recursive calls.

By definition of
.�, Q |= BN ,P iff P

.� Q, as long as all free names of Q are
inspected by formula BN ,P , which is guaranteed by the condition fn(Q) ⊆ N .

��
Theorem 4 (Logical implies behavioural). P =L Q implies P ∼ Q.

Proof. Suppose P
∼ Q; by Theorem 1, P
� Q, i.e., P |R
 .� Q|R for some R.
Write using Lemma 2 R ∼ (νñ)R0, where R0 is public and ñ ∩ fn(P) =

ñ ∩ fn(Q) = ∅. We have that ∼ .�∼⊆ .�, and hence (νñ) (P |R0)
 .� (νñ) (Q|R0).
Take N = fn(P)∪fn(Q)∪fn(R), and define A def= BN ,(νen)(P |R0)�ñ. Observe

that we have P |= FR0 � A. Suppose now Q |= FR0 � A, this means that for
all R1 such that R0 ∼ R1, (νñ) (Q|R1) |= A, which entails by Lemma 8 that
(νñ) (P |R0)

.� (νñ) (Q|R1). R0 ∼ R1 implies (νñ) (Q|R1) ∼ (νñ) (Q|R0),
and hence, since ∼⊆ .�, and by transitivity of

.�, we obtain (νñ) (P |R0)
.�

(νñ) (Q|R0), a contradiction. So Q
|= FR0 � A, and finally P
=L Q. ��
Note that the proof above exploits the two presentations of ∼: characteristic

formulas for public processes are derived using the labelled transition system,
while the overall structure of the proof follows the definition of �.

5 Variants and Extensions of L
5.1 Changing the Primitive Observation

The most tedious constructions in Section 3 are the formulas to detect barbs
(cf. Theorem 5). We consider here a variant of L, called L�, in which we remove
� and add a primitive formula n�, whose satisfaction is defined by P |= n� iff
(P↓n or P↓n). With respect to L, L� allows one to build less contexts, while
providing the ability to perform instantaneous observations independently from
the size of the tested process.

We first remark that the only place where � is used in the formulas presented
in Section 3 is in the definition of atom(n), that can be rewritten in L� as follows:

atom(n) def= atom ∧ n� .

To show that logic L� induces an equivalence that also coincides with ∼, the
completeness proof of Section 4 has to be adapted. The main point is to observe
that testing for

.� against public processes is enough to get the same discrimi-
native power as �, as expressed by the following lemma.

Lemma 9. Define P �p Q iff for any R public, P |R .� Q |R. Then �p =�.

This result allows us to replay the proof of Theorem 4 in the case of L�

without using �, and we have:

Theorem 5. Two processes are logically equivalent for L� iff they are bisimilar.

5.2 Enriching L with Intensional Operators

Our main result, given by Theorems 3 and 4, isolates the extensional subset of
spatial logics for concurrency. To explore the spectrum between extensional and
intensional spatial logics, we now consider enrichments of L with (some of the)
intensional operators 0, | and �.

Observing emptyness. Formula 0 gives us an elementary form of observation: in
L ∪ {0} (using an obvious notation), we can detect garbage, in the sense that
we can use 0 to separate for example processes 0 and (νn)n〈m〉.P (which are
bisimilar). As a consequence, we can define characteristic formulas for ‘minimal-
size public processes’, i.e., characteristic formulas up to ∼ that are satisfied only
by public processes, by using 0 instead of nil in the constructions of Section 3.

Separating. In L∪{|}, we get a finer equivalence than ∼. In particular, we have:

Lemma 10. In L ∪ {|}, logical equivalence on public terms coincides with ≡.

On the full calculus, it would be interesting to study the relationship with dis-
tributed bisimulation [CH89], a behavioural equivalence that is able to separate
for example m〈n〉.m〈n〉 and m〈n〉 |m〈n〉. In presence of restriction, though, the
definition of distributed bisimulation is rather complex, even for CCS [Kie89].

Revealing names. The results in [HLS03] show that revelation brings a lot of
expressiveness to the logic. In L ∪ {�}, formula 0 is derivable, as well as a
formula to test the free occurrence of a name at any depth in a process:

0 def= nil ∧ ¬Ia. a�¬nil free(n) def= ¬n��

(the second formula is from [CG01b] — note that in the static case, free(n) can
be defined using only � [CG04]). Having the ability to observe under restrictions,
we can define a modality formula for bound output:

Lemma 11. In L∪{�}, given a formula A and a process P such that size(P) <

2 ∗ k − 1, there exists a formula
〈
m(n)

〉(k)
.A such that P |= 〈

m(n)
〉(k)

.A iff

P
m(n)−−−→ P ′ and P ′ |= A for some P ′.

We believe that characteristic formulas up to ∼ for the whole calculus are
definable in this enriched logic. � actually gives us a greater precision. Indeed,
the induced logical equivalence is rather fine-grained, but we have not been able
to provide a precise characterisation of it. For example, (νc) a〈c〉.c〈b〉 can be
separated from (νc) (a〈c〉 | c〈b〉), while m〈n〉.m〈n〉 and m〈n〉 |m〈n〉 are equivalent
in L ∪ {�}.

Combining intensional observations. In L ∪ {0, |}, on the other hand, the logic
separates the two latter processes while equating the first two. Finally, logic
L∪{|, �} is intensional: logical equivalence coincides with ≡. This can be shown
by adapting the proofs in [HLS02] using the constructions of the present paper.

The following graph sums up the observations made above. Vertices contain
relations, and two relations situated on the same vertex coincide (=L stands
for the equality induced by the logic L). An arrow between two edges represents
strict inclusion between the corresponding relations, and unrelated vertices corre-
spond to uncomparable relations. More detailed explanations are given in [Hir04]

=L∪{|,�}, =L∪{0,|,�}, ≡

����������������
�� =L∪{�} �� =L∪{0} �� =L, ∼

=L∪{0,|} ��

�������������
=L∪{|}

������������

6 Conclusion

We have defined a spatial logic L, and shown that the induced logical equivalence
coincides with bisimilarity. We can remark that while HM logic and L induce the
same equivalence on processes, model-checking in L seems a priori much more
difficult, due to the presence of �. We can also remark that L has a restricted set
of operators, and is minimal in the sense of [Loz03]: getting rid of a connective
of L hinders the expressive and separative powers of the logic.

The observations provided in L� suggest that this logic is to barbed equiva-
lence what Hennessy-Milner logic is to bisimilarity. The constructions in 3.2 show
that, to some extent, L has the ability to express the observations of L�. We do
not see how the converse could hold, i.e. how hiding could be expressed within
L�. At least we believe there is no compositional encoding that could translate
a formula of the form A�n into L�. A perhaps more interesting question would
be to find out whether � is eliminable in the logic resulting from the ‘union’ of
L and L�, along the lines of adjunct elimination in [Loz03,Loz04,DGG04].

In contrast with existing spatial logics, that all include intensional operators,
satisfaction in L is defined with no direct reference to structural congruence
(along these lines, the clause defining satisfaction for � in L can be seen as
specifying composition of behaviours). It would be interesting to look for a way
to recover some of the separating power of existing spatial logics while keeping
logical equivalence close to some existing equivalence. In another direction, we
would like to see whether we can combine the ideas presented here with the
constructions defined in [CL04], which would mean studying L\{�}, a contextual
logic with no reference to names. Logical equivalence is up to name permutation
in the name-free logic of [CL04]: we believe that logical equivalence in L \ {�}
is bisimilarity up to name permutation.

Finally, our techniques do not apply directly if we adopt a weak interpretation
for ♦ (which we use here to count, in some way): studying logical equivalence in
a ‘weak version’ of L represents a challenging question.

Acknowledgements. We would like to thank Étienne Lozes, Davide Sangiorgi and
Lúıs Caires for inspiring discussions about the results presented in this paper.
This work has been supported by european FET - Global Computing project
Profundis and by the french ACI Geocal.

References

[CC01] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In Proc.
of TACS’01, LNCS. Springer Verlag, 2001.

[CG00] L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for Mobile
Ambients. In Proc. of POPL’00, pages 365–377. ACM Press, 2000.

[CG01a] L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic.
In Proc. of ESOP’01, volume 2028 of LNCS, pages 1–22. Springer Verlag,
2001. invited paper.

[CG01b] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In Proc.
of TLCA’01, volume 2044 of LNCS. Springer Verlag, 2001.

[CG04] G. Conforti and G. Ghelli. Decidability of Freshness, Undecidability of Rev-
elation. In Proc. of FOSSACS’04, volume 2987 of LNCS, pages 105–120.
Springer Verlag, 2004.

[CH89] I. Castellani and M. Hennessy. Distributed Bisimulations. J. ACM,
36(4):887–911, 1989.

[CL04] L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in
Spatial Logics for Concurrency. this volume, 2004.

[DGG04] A. Dawar, P. Gardner, and G. Ghelli. Games for the Ambient Logic. draft,
2004.

[DLM04] S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A Logic You Can Count on. In
Proc. of POPL 2004. ACM Press, 2004.

[Hir04] D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. Technical
report, LIP - ENS Lyon, 2004. to appear.

[HLS02] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and
Decidability in the Ambient Logic. In Proc. of LICS’02, pages 423–432. IEEE
Computer Society, 2002.

[HLS03] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality Results for the Spa-
tial Logics. In Proc. of FSTTCS’03, volume 2914 of LNCS, pages 252–264.
Springer Verlag, 2003.

[Kie89] A. Kiehn. Distributed Bisimulations for Finite CCS. Technical Report 7/89,
University of Sussex, 1989.

[Loz03] E. Lozes. Adjunct Elimination in the Static Ambient Logic. In Proc. of
EXPRESS’03, ENTCS. Elsevier, 2003.

[Loz04] E. Lozes. Separation logic preserves the expressiveness of classical logic. In
Proc. of SPACE’04, 2004.

[MPW93] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile
processes. Theoretical Computer Science, 114(1):149–171, 1993.

[Rey02] J. Reynolds. Separation logic: a logic for shared mutable data structures. In
Proc. of LICS’02. IEEE Computer Society, 2002.

[San01] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. In
Proc. of 28th POPL, pages 4–17. ACM Press, 2001.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

