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Abstract. Although limits of resources such as memory or disk usage
are one of the key problems of many communicating applications, most
process algebras fail to take this aspect of mobile and concurrent systems
into account. In order to study this problem, we introduce the Controlled
π-calculus, an extension of the π-calculus with a notion of recovery of
unused resources with an explicit (parametrized) garbage-collection and
dead-process elimination. We discuss the definition of garbage-collection
and dead-process elimination for concurrent, communicating applica-
tions, and provide a type-based technique for statically proving resource
bounds. Selected examples are presented and show the potential of the
Controlled π-calculus.

1 Introduction

Virtually every piece of software or hardware in use nowadays relies on some form
of communication. Whether a communication takes place between a program and
the underlying operating system, between an application and a user, between
the video board and the central processing unit or between several distant com-
puters, it involves the concurrent emission and reception of information along
a of communication medium. As no actual device has infinite resources, neither
in memory limited-systems such as cellphones nor in enterprise-level webservers,
only a finite number of communications may be performed simultaneously with-
out failing, sometimes critically. Indeed, the problems of resource usage and
resource awareness are crucial as this kind of failure may arise as a consequence
of erroneous user-interaction, internal accidents or Denial of Service-like attacks.

A number of process algebras hold emissions and receptions as a primitive
construction. Unfortunately, these calculi fail to address the problem of resource
boundedness. This aspect of resource usage may be seen as closely related to
the creation/restriction of fresh names, a construction shared between the class
of process calculi known as nominal process calculi [3]. In this class of calculi,
names are used to access resources while interaction is programmed by letting
processes exercise some capabilities they have on names. Moreover, in nominal
calculi, names themselves may be seen as resources.

In this paper, we study the crucial problem of resource boundedness using
the π-calculus as a representative of nominal process calculi and as a base for
? This work is partially supported by IST Global Computing Profundis.



our work. To achieve our goal, we revisit the operator ν (the Greek letter ‘nu’,
pronounced ‘new’) of name creation/restriction in nominal process calculi from
two distinct points of view. In our setting, ν is both:
– the action of creating a new name whose identity is given by an agreed-upon

identifier – hence using some of the available resources;
– an indication of scope, limiting the definition domain of a name in space as

well as in time – hence also limiting the usage of resources.

Based on this notion of resources, in order to permit the design of resource-
aware protocols, we enrich the π-calculus with the ability to wait for the recovery
of now-unused resources by introducing a new capability k (the Hebrew letter
‘daleth’, to be pronounced ‘delete’). In this Controlled π-calculus, for instance,

(νx)((kx).P |Q) −→∗ P |Q when x is not free in P or Q.

In other words, when x is not used anymore, its finalizer P may be triggered
and the resources occupied by x may be recovered. This operator, somewhat
dual to ν, is very close to the Gc.finalise function in OCaml or to finalizer
methods in Java or C#. Although much safer than free or delete in tra-
ditional programming languages, the definition of finalization requires care to
avoid problems such as resurrection of previously garbage-collectable resources
– problems which may be easily witnessed in the aforementioned languages, and
which is considered bad programming as it may lead to unpredictable behaviors,
especially when in distributed or cross-language settings (see e.g. [1]).

In turn, resource recovery requires some form of garbage-collection mecha-
nism, which may be more or less automated, to recover resources which cannot
be accessed anymore although they may still appear syntactically in a term. For
example, let us consider a process Q defined by

Q
4
= (νr)r(x).P (1)

Q creates a new (secret) channel name r then immediately waits for an input
on r. Since r is secret, no other process can possibly communicate using this
channel, hence Q shall wait forever. Consequently, the resource r is unnecessary
and could be recovered, as well as some of the resources which may appear in
P , since P will never be actually executed.

In (1), a garbage-collector could rewrite Q into 0, possibly in several steps,
hence releasing r. However, different garbage-collectors might take different ap-
proaches to remove Q and may or may not be able to analyze complex situations
such as deadlocks or even livelocks. In order to deal with any possible garbage-
collection method, we first define a relation GC between garbage-collectable pro-
cesses and their garbage-collected counterparts using barbed simulations. We
then introduce in the operational semantics of Controlled π a rule

R-GC
P −→GC Q

P −→ Q

where −→GC is a parametric relation on processes and included in GC.



Although this enrichment of the π-calculus is not meant to add expressivity1,
it permits both dynamic reactivity to resources allocation and deallocation and
easy reasoning the usage of resources. The possibility for processes to synchronize
on resource recovery may be used to write resource-aware protocols which may
be run with statically provable bounded amounts of resources. In order to prove
these bounds, we introduce a resource-aware type system for the Controlled π-
calculus, more powerful than our previous type systems of [10], for it does not
require to replace replication by recursion.

In section 2, we introduce the Controlled π-calculus, starting with a simple
language with only a simple form of garbage-collection (Core language) then
expanding the definition to add garbage-collection mechanisms (Full language).
We then present in section 3 a type system for resource-bounds guarantees. We
conclude this paper by an overview of related works and future developments.
Due to space limitations, proofs are not included in this document. They may
be found in a companion technical annex [11].

2 The Controlled π-calculus

As the full definition of Controlled π-calculus (Cπ for short) requires a complex
definition of dead-process elimination which in turn relies on the definition of
the other parts of the calculus, we present Cπ in two steps. We start by defining
the core of Cπ.

2.1 Core Cπ

Syntax The syntax of Core Cπ is presented on Figure 1. Although the syntax
itself includes type annotations denoted by N in (νx : N), we delay presenting
a possible type system until Section 3. It is almost identical to that of the π-
calculus, with the addition of k and the special name � which denotes a special
channel on which communications never actually occur and which cannot be
bound. Process (kx).P , a finalizer for x, waits for name x to become unused then
proceeds as P . Based on this syntax, we define the set of free names, fn and the
set of bound names, bn, as in the π-calculus, with the addition of (kx) – (kx) is
not a binder, rather x is a free name in (kx).P . Substitution, written P{a← b},
is standard with the addition of rules for k: ((kx).P ){a← b} = (kb).(P{a← b})
if x = a, ((kx).P ){a← b} = (kx).(P{a← b}) otherwise.

In order to simplify the definition of the language, we shall only take into
account terms in which no name is bound twice (i.e. there is no P such that

P
4
= a(x)Q or P

4
= (νx : T )Q with x bound in Q). It is a standard result that,

through appropriate renamings, we may keep the names unique, in any term,
hence preventing the presence of names bound twice.

1 Actually, we believe k is encodable in π-calculus, although the encoding itself is way
too complicated to permit the relatively simple proofs of Section 3.



Processes Prefixes
P, Q ::= 0 Terminated process α ::= x(y) Input

| P | Q Parallel composition | x〈y〉 Output
| α.P Action
| !α.P Guarded replication
| P + Q Non-deterministic choice
| (νx : N)P Resource creation/restriction
| (kx).P Resource finalization

Fig. 1. Syntax of Controlled π-calculus.

S-par-assoc P |(Q|R) ≡ (P |Q)|R S-par-comm P |Q ≡ Q|P
S-par-nil P |0 ≡ P S-bang !P ≡ P |!P
S-sum-comm P + Q ≡ Q + P S-sum-nil P + 0 ≡ P
S-sum-assoc P + (Q + R) ≡ (P + Q) + R
S-new-ren (νx : N)P ≡ (νy : N).P{x← y} if y /∈ fn(P )
S-rcv-ren c(x).P ≡ c(y).P{x← y} if y /∈ fn(P )
S-new-comm (νx : N)(νy : U)P ≡ (νy : U)(νx : N)P if x 6= y
S-new-par (νx : N)(P |Q) ≡ P |(νx : N)Q if x /∈ fn(P )
S-fin-par (kx).P |(kx).Q ≡ (kx).(P |Q)
S-struct-par P ≡ Q =⇒ P |R ≡ Q|R

Fig. 2. Structural congruence in Cπ

Structural congruence Structural congruence is the smallest equivalence verifying
the relations of Figure 2. The rules are mostly identical to their counterparts
from the π-calculus. Actually, rule S-new-comm is slightly more precise than
its counterpart in the standard π-calculus, as it preserves type information2.

Also note that the only rule specific to k is S-fin-par, which states that
triggering two processes by either one or two identical finalizations does not
change the behavior of the system. The only other difference is the absence of
the usual rule (νx)0 ≡ 0. In Cπ, this congruence is not true since (νx : T )0 is
a process holding resource x, although it does not use it, while 0 is a process
holding no resource.

Similarly, we do not have (νx : T )α.P ≡ α.(νx : T )P , a rule found in several
variants of the π-calculus, which states that the time of allocation of a resource
is not important. In fact, this rule would not make sense in Cπ, for the time of
allocation of a resource is important, as may be seen in the following process:

Q
4
= c(x).(νy : T )P

Q acquires resource y only if reception c(x) actually takes place. If no other
process ever emits anything on channel c, the allocation will not take place.

Reduction rules Reduction rules of Base Cπ are defined in Figure 3.
R-comm and R-sum differ from their counterparts in the traditional π-

calculus only insofar as communication cannot take place on the special channel
2 This is actually not needed as long as we avoid names bound twice.



Communication

R-comm-sum (a〈b〉.P + Q)|(a(x).R + S) −→ P |R{x← b} (a 6= �)

Structure

R-par
P −→ Q

P |R −→ Q|R
R-new

P −→ Q

(νn : T )P −→ (νn : T )Q

R-equiv
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

Resource recovery

R-autoclean (νx : N)0 −→ 0
R-finalize (νx : N)(kx).P −→ P{x← �}

Fig. 3. Reduction rules for Base Cπ

named �. This may be seen as processes trying to dereference a null pointer:
the process is immediately stopped by the operating system. In other words, the
communication never occurs. R-par, R-new and R-equiv are standard.

R-autoclean takes the place of (νx : T )0 ≡ 0 in the traditional π-calculus.
It means that a terminated process may release the resources it is holding. R-
finalize states that a name which appears only as a finalizer may actually be
finalized. This is comparable to the behavior of garbage-collectors in traditional
languages: if the only reference to an object is a finalizer, then the object has
become unreachable and should be finalized then garbage-collected. Finalization
of name x ensures that x shall never be used again by substituting special name
� (once again similar to a null pointer) to possible occurrences of x. Without
this substitution, x could appear after (kx), which would mean that x still lives
after having been garbage-collected. Note that we could have specified either
that (kx).P is incorrect when x is free in P or that (νx)(kx).P may only be
reduced whenever x is free in P . We preferred our formulation with � as we may
wish, at a later stage, to use k and � to reason about some notions of secrecy
(we briefly discuss this perspective in the conclusion) as well as about erroneous
deallocations.

2.2 Example: a Bounded Resources Manager

Under most operating systems, in order for an agent (such as a Un*x-like process)
to allocate a resource, it must request it through a system call such as malloc,
fork or fopen. In turn, the operating system is responsible for limiting the actual
amount of resources used by each agent.

One possible model for such a bounded resources manager is presented on
Figure 4. Each � offers a slot: at any time, the number of resources available
for clients is equal to the number of concurrent � in the resource manager.
Conversely, each 5.P consumes a slot then proceeds as P . In order to allocate a
resource, a client agent must request it on channel alloc. Whenever the resource
manager receives a request, it waits for a slot to become available, consumes



it by exerting 5, creates the appropriate resource by exerting (νc : Nc) and
sends it to the client with r〈c〉. Whenever a resource c becomes unused and is
garbage-collected, a new � is created, hence keeping track of released resources.

�
4
= l〈�〉 5.P

4
= l(x).P with x /∈ fv(P )

BRMn
4
= (νl : Nl) ( !alloc(r).5 .(νc : Nc)(r〈c〉|(kc).�) | �|�| . . . |�| {z }

n resources

)

Fig. 4. Bounded resources manager

This bounded resources manager models the behaviour of operating systems’
memory allocation, process creation, file opening, network access opening. . . Also
note that several bounded resources managers may coexist, each handling a
different kind of resources. We shall return to this example to prove several of
its properties in the following sections.

Do note that this service only works whenever c is garbage-collected, which
may not happen if a client is faulty. Let us consider

ROGUE
4
= (νr)alloc〈r〉.r(c).c(x).0

A purely syntactic examination of ROGUE leads to believe that c is used
as a channel to receive some value and should not be recovered. However, in
ROGUE|BRMn, no process will ever emit anything on channel c.

Other circumstances, such as deadlocks or communication attempts on chan-
nel �, may hide the fact that a channel c is, in fact, unused. In each case, c falsely
appears to be used because the name c appears syntactically in a process which
will actually never be executed. Discovering and removing these occurences so
as to recover unneeded resources is the task of the dead-processes eliminator.

2.3 Full Cπ

As in programming languages, for most systems, the actual set of dead processes
not only changes during execution but also depends on non-deterministic choices
made during the reduction of processes. For example, let us consider

(νa)(νc)( c〈�〉.0 | c(x).P | c(x).Q )

where P uses a, Q does not and neither P nor Q ever use c. Since c is only used
once, either P or Q will be triggered while the other process will end up dead.
If P is triggered, a will be used, possibly infinitely often. If Q is triggered, a will
become unused.

Therefore, we cannot consider dead process elimination (DPE for short) a
static task. Instead, we must define it as a way to rewrite some processes when-
ever they are not needed anymore. Our intuition is that a process P may be
replaced by 0 whenever P is triggered by some name a and the behavior of the
whole scope of a is unaffected by the removal of P . We now define formally “P
is triggered by some name a” (formally, “process P is guarded by a”) and “the
behavior [. . . ] is unaffected” (formally, this is a barbed simulation).



GC-Null
Q[�]

(Q,0) ∈ GC
GC-Remove

(νa : N)(P |Q)� (νa : N)P Q[a]

( (νa : N)(P |Q), (νa : N)P ) ∈ GC

GC-Sum
( (νa : N)(P |Q), (νa : N)P ) ∈ GC

( (νa : N)(P |(Q + R)), (νa : N)(P |R) ) ∈ GC

GC-Repl
( (νa : N)(P |Q), (νa : N)P ) ∈ GC
( (νa : N)(P |!Q), (νa : N)P ) ∈ GC

Fig. 5. Definition of GC

Definition 1 (Guard). We write P[a] (“P is guarded by a”) whenever

– P = a(x).Q, P = a〈x〉.Q, P = (ka).Q,
– P = !P ′ where P ′

[a] or
– P = (νb : N)P ′ where P ′

[a] and a 6= b.

Definition 2 (Barb). We write P ↓a (“P has a barb a”) whenever P ≡ (νb1 :
N1) . . . (νbn : Nn)(a〈b〉.Q + R|S) and P ↓a (“P has a barb a”) whenever P ≡
(νb1 : N1) . . . (νbn : Nn)(a(x).Q + R|S) (with a /∈ {b1, . . . , bn} in both cases).

Definition 3 (Barbed Simulation). Let R be a relation on processes. If, for
any processes P and Q such that PRQ and for any guard ζ we have P ↓ζ⇒ Q ↓ζ
and P −→ P ′ ⇒ Q −→ Q′ with P ′RQ′, then R is a barbed simulation. If PRQ
for some barbed simulation we say that Q simulates P , written P � Q.

Figure 5 contains our definition for the Elimination of Dead Processes. Recall
that we examine the scope of a name and only remove processes guarded by
that name – with the exception of �. Rule GC-Null states that any process
guarded by � can be safely removed, while rule GC-Remove formalizes our
intuition: within the scope of name a, if Q is guarded by a and the process
obtained by removing Q from the scope can simulate the original process, then
Q is dead and may be removed. Rules GC-Sum and GC-Repl extend removing
respectively to sums and replications. Note that, since replicated processes are
always guarded, !(a〈x〉.P + a(y).Q) is not a valid process and therefore causes
no garbage-collection problems.

Definition 4 (Elimination of dead processes). Let GC be the smallest rela-
tion defined by the rules of Figure 5. If (A,B) ∈ GC, we say that A is garbage-
collectable into B by Dead Process Elimination.

Note that, in defining GC, we chose to focus on a relation which only requires
the examination of a given term. Although some more powerful relations exist,
this restriction actually corresponds to the fact that examining a whole network
is not an option for a garbage-collector. Also note that we chose not to encompass
all mechanisms for rewriting processes by removing bits without affecting the



outcome. While it would have been relatively easy to define a larger relation
GC, we consider that, say, removing prefixes or allocations or removing processes
before they get a chance to become active, rather than being garbage-collectors,
are other forms of compile-time or run-time optimizations.

A simple example Let us consider A
4
= (νa : N)!a(x).B. Since B may hinder

resource recovery, we may wish to garbage-collect A into 0. From GC-Remove,
we see that a term such as A is garbage-collectable into A′ 4

= (νa)0 by dead
process elimination. Since A′ −→ 0 by R-Autoclean, this term is, in fact, “as
good as 0”. Hence, replacing A by A′ corresponds to what we wish to do.

Garbage-collecting a deadlock Similarly, let us define A
4
= a(x).b〈x〉.P and

B
4
= b(x).a〈x〉.Q and let us consider C

4
= (νa : Na)(νb : Nb)(A|B). Since C

is deadlocked, we may also wish to garbage-collect it into 0.
Let us then define a relation R by (νb : Nb)(A|B)R(νb : Nb)A. Since the only

ζ such that (νb : Nb)(A|B) ↓ζ is a, since we also have (νb : Nb)A ↓a and since
there is no process D such that (νb : Nb)(A|B) −→ D, R is a barbed simulation.
Hence, by GC-Remove, we have ((νb : Nb)(A|B), (νb : Nb)A) ∈ GC. Similarly,
we have ((νa : Na)A, (νa : Na)0) ∈ GC. Hence, once again, using GC to provide
a garbage-collected version of C corresponds to what we wish to do.

As we have seen, GC gives us a notion of garbage-collectable terms. However,
as this relation is undecidable, no compiler or runtime support could track GC-
related terms. Therefore, we now present a mechanism to include a number of
simple rules whose role is to approximate GC.

Definition 5 (Garbage-collector). A garbage-collector −→GC is a relation
between processes such that P −→GC Q =⇒ (P,Q) ∈ GC.

Rather than specifying a garbage-collection algorithm, we leave the actual
garbage-collection mechanism as a parameter of the language. Let us write
−→GC for this parameter, which must be a garbage-collector. To obtain full
Cπ, with respect to core Cπ, the only addition is the following rule:

R-GC
P −→GC Q

P −→ Q

Do note that, informally, compositional type systems with a subject reduction
property for core Cπ in which 0 is always typable, with any type, also have a
subject reduction property in full Cπ.

2.4 Examples

In these examples, we write P ←↩ x whenever all occurences of name x in P have
the form (kx).R. Let us consider the smallest relation −→GC1 defined by the set
of rules of Figure 6. Relation −→GC1 is a simple garbage-collector which could
be easily and efficiently implemented and which, although limited, is powerful
enough to collect some simple examples.



�(x).P −→GC1 0 (1) (νa : N)(P |a(x).Q) −→GC1 (νa : N)P if P ←↩ a (3)
�〈x〉.P −→GC1 0 (2) (νa : N)(P |a〈x〉.Q) −→GC1 (νa : N)P if P ←↩ a (4)

(νa : N)(P |Q) −→GC1 (νa : N)P

(νa : N)(P |!Q) −→GC1 (νa : N)P
(5)

Fig. 6. A garbage-collector.

GC1 is a garbage-collector Due to space constraints, we shall only give an outline
of the proof. We prove by induction that for all A and B, A −→GC1 B implies
(A,B) ∈ GC. Let us start by proving this property for rule (3).

Let us consider R, the smallest relation such that, for all P such that
P ←↩ a, if (νa : N)(P |a(x)Q) −→∗ R and R ≡ (νa1 : N1, . . . , a : N, . . . , an :
Nn)(P ′|a(x)Q) then (R, (νa1 : N1, . . . , a : N, . . . , an : Nn)P ′) ∈ R. One shows
that R is a barbed simulation. Consequently, for a, b, x P and Q such that
rule (3) holds, we have ((νa : N)(P |a(x).Q), (νa : N)P ) ∈ R, hence (νa :
N)(P |a(x).Q)� (νa : N)P . By Gc-Remove, ((νa : N)(P |a(x).Q), (νa : N)P )
is in GC. This proves that only garbage-collectable terms are garbage-collected.

Proof for rule (4) is almost identical. The other proofs are trivial.

Putting GC1 to work In the following example, we shall use an instanciation of
Cπ using rule GC1 as our garbage-collection parameter.

Let us consider the bounded memory manager BRMn and its bad client
ROGUE as defined in Section 2.2. BRMn|ROGUE may be reduced in several
steps into (νc)(BRM ′

n|c(x)), where BRM ′
n is the bounded memory manager

with one resource locked and awaiting release, namely c. By definition of BRMn,
we have BRM ′

n ←↩ c. Hence, by rule (3), (νc)(BRM ′
n|c(x)) −→GC1 (νc)BRM ′

n.
By definition of BRMn, we then have (νc)BRM ′

n −→∗ BRMn. In other words,
although the bad client froze while holding resource c, GC1 was powerful enough
to eventually recover c.

3 Type-based proofs for resource-bounds

3.1 The type system

Now that we have extended the π-calculus so as to make it aware of resources
being released, we may define a type system which permits us to prove that
resources are properly used. Namely, we intend to prove that systems which
properly balance allocation and deallocation of resources have finite resource
usage. Remember that, in Cπ, (νc : N) stands for the allocation of some of the
available resources while (kc) permits to wait for the recovery of these resources.
We will thus write (νc : K, e) where K is some type information on the created
name and e is the number of allocated resources. This lets us define formally the
resource usage of a process:

Definition 6 (Resource usage). We write Res(P ) for the number of resources
process P currently uses, as defined by



Processes T ::= t t ∈ N Communications K ::= [N, z] z ∈ Z
Names N ::= K, e e ∈ N | Ssh

Fig. 7. Grammar for the resource types

– if P = (νc : Kc, ec)Q then Res(P ) = ec + Res(Q)
– if P = Q + R then Res(P ) = max(Res(Q), Res(R))
– if P = Q|R then Res(P ) = Res(Q) + Res(R)
– in all other cases, Res(P ) = 0

Do note that the resource usage of c(x).(νd)P is zero as this process has not
allocated any memory yet.

Full grammar for the type system is given on Figure 7. It includes entries
for the type of processes and names. Typing environments, ranged over with Γ ,
are lists of associations of the form c : N , where c is a name and N a type. We
write Γ (c) = N to represent the fact that name c is associated to type N while
Γ, c′ : N ′ stands for environment Γ extended with c′ : N ′. By convention, we
have Γ (�) = N for any N . For any name c, Γ (c) = K, e expresses the fact that
the nature of c is K and that c occupies e resources until it is deallocated. K
may be either [V, z] if c is a channel which may be used to communicate names
of type V or Ssh if c is not a channel. In the first case, z is used to balance the
accounting of the effects of processes triggered by the communication.

Deallocation strategies, ranged over with Λ, are lists of names. The typing
judgement for a process is of the form Γ ;Λ ` P : t and expresses the fact that P
may use up to t resources under assumptions Γ and provided the deallocation in
P of names appearing in Λ is taken into account. Keeping track of deallocations
prevents erroneously counting that two finalizers registered for the same name
deallocate the resources twice.

The typing rules are given on Figure 8. While T-Nil specifies that 0 may
always be typed and may take into account the deallocation of any number of
names, T-Repl specifies that !P may be typed if and only if P does not require
any resource and does take into account any deallocation – in other words, if
the effect of P is accounted for somewhere else, presumably by taking advantage
of communication cost balancing. T-New may only be applied whenever the
deallocation of the allocated name has somehow already been taken into account
and it specifies the fact that (νx : K, e).P requires e more resources than P .
T-Sum is applicable only when both processes may be typed under the same
environments and strategies, and the number of resources occupied corresponds
to the worst case scenario. T-Par, on the other hand, sums the contributions of
both processes to the amount of resources allocated, as well as the list of names
whose deallocation has been taken into account – the deallocation of one name
may be taken into account only once. T-Finalize1 and T-Finalize2 permit the
typing of finalizations. While the first of these rules does take into account the
deallocation of a name, both by decreasing the number of necessary resources and
by specifying into Λ that the deallocation has been taken into account, the second
rule does neither, so as to allow the typing of several finalizers for the same name



T-Nil Γ ; Λ ` 0 : t
T-New

Γ, x : (K, e); Λ, x ` P : tP

Γ ; Λ ` (νx : K, e)P : tP + e
x /∈ Λ

T-Repl
Γ ; ∅ ` P : 0

Γ ; Λ `!P : t
T-Sum

Γ ; Λ ` P : t Γ ; Λ ` Q : t

Γ ; Λ ` P + Q : t

T-Par
Γ ; ΛP ` P : tP Γ ; ΛQ ` Q : tQ

Γ ; ΛP ∪ ΛQ ` P |Q : tP + tQ

ΛP ∩ ΛQ = ∅

T-Finalize1
Γ ; Λ ` P : tP Γ (x) = , e

Γ ; Λ, x ` (kx).P : tP − e
tP ≥ e, x /∈ Λ

T-Finalize2
Γ ; Λ ` P : tP Γ (x) = ,

Γ ; Λ ` (kx).P : tP

x /∈ Λ

T-Read
Γ (c) = [N, z], Γ, x : N ; Λ ` P : tP

Γ ; Λ ` c(x).P : tP + z
x /∈ Λ, tP + z ≥ 0

T-Write
Γ (c) = [N, z], Γ ; Λ ` Q : tQ Γ (y) = N

Γ ; Λ ` c〈y〉.Q : tQ − z
tQ − z ≥ 0

Fig. 8. Typing rules for resource-bounds checking

or of a finalizer for a name which will only be known at runtime. For instance,
T-Finalize2 will be used to type a(x).(kx).P as the actual name which will
be deallocated depends on the context. Similarly, when typing (ka).P | (ka).Q,
using T-Finalize1 on either (ka).P or (ka).Q will force a into Λ, hence forcing
us to use T-Finalize2 to type the rest of the process – hence counting only
once the resources set free during (ka). Rules T-Read and T-Write permit the
typing of communications. Note first that T-Read may only be applied when the
deallocation of x has not been taken into account as x is dynamically bound and
we do not know whether its deallocation may already have been accounted for
under another name. Let us now consider a communication between A = c(x).P
and B = c〈y〉.Q. As either A or B may be enclosed within a replication, we may
use z to make sure tP +tQ appears in the typing of A (if z = −tP ), in that of B (if
z = tQ), or balanced between these processes. Note that T-Sum, T-Finalize1,
T-Read and T-Write rely on a resource expansion property (Theorem 1) to
ensure that effects remain positive.

Properties We then have the following properties:

Theorem 1 (Resource expansion). If we have Γ ; ∅ ` P : t, then for any
u ≥ t, we also have Γ ; ∅ ` P : u.

Theorem 2 (Resource control). If we have Γ ; ∅ ` P : t and P −→∗ Q then
we also have Res(Q) ≤ t.



In other words, this type system permits us to find bounds on resources used
by processes. This results are comparable to Resource control theorems in [10,
12] or to the Absence of over/under-flow theorem in [2].

3.2 Examples

Balancing costs Let us consider once again processes A
4
= c(x).P and B

4
=

c〈y〉.Q. Let us suppose we have Γ (c) = [Nc, zc], , Γ (y) = Nc, Γ, x : Nc; ∅ ` P : tP
and Γ ; ∅ ` Q : tQ.

Depending on the exact process we wish to type, we may need different
values of zc. For instance, if we wish to type A | B, with zc = 0, we simply have
Γ ; ∅ ` A | B : tP + tQ. Let us now consider rather process A | !B. Although
B is enclosed under a replication, Q will probably not be triggered an infinite
number of times. Actually, Q will be triggered at most as many times as c〈y〉.Q
may be actually reduced, in other words as many times as there are receptions
on channel c. Therefore, in this case, instead of accounting for the cost of Q in B,
it is preferable to consider that each reception on channel c costs an additional
tQ. To do this, it is sufficient to have z = tQ. We then have Γ ; ∅ ` A : tP + tQ
and Γ ; ∅ ` B : 0. Hence, Γ ; ∅ ` A | !B : tP + tQ.

Note that z does not have actually to be exactly equal to tQ: the operation
is also possible with z ≥ tQ, albeit at the cost of a greater approximation, as
we have Γ ; ∅ ` A | !B : tP + z. Of course, by symmetry, we could have handled
!A | B in the same fashion.

Bounded Memory Manager Recall that the expression of the bounded resources
manager BRMn uses names l (the placeholder for resources, with type Nl), c
(the actual resource being created, with type Nc) and alloc (the channel used
to communicate requests, with type Γ (alloc)). By convention, we will assume
that both c and l occupy 1 resource. The actual value of Nl, Nc and Γ (alloc),
however, depends on the property we wish to prove.

For example, a desirable property is that BRMn must be bounded in its
resource usage while the action of requesting a name through alloc does not
induce any cost for a client. To prove this, we may use the types as in the First
typing of Figure 9. With such types, we have Γ ; ∅ ` BRMn : n+1, which proves
that BRMn is bounded indeed. The fact that requesting a name through alloc
is “free” is specified in the type of alloc by the fact that z = 0.

We may also wish to prove that BRMn actually occupies at most 1 resource
while requesting a name through alloc costs 1 resource to the client. This prop-
erty corresponds to the Second typing of Figure 9. With such types, we have
Γ ; ∅ ` BRMn : 1, which proves that BRMn occupies at most 1 resource. The
fact that requesting a name through alloc costs 1 resource is specified in the
type of alloc by the fact that z = −1.



Resource usage is bounded Each request costs 1

Nl [ ,1], 1 [ ,0], 1
Nc , 1 , 1
Γ (alloc) [[Nc, 0], ,0], [[Nc, 0], ,−1],

Fig. 9. Typing BRMn.

4 Conclusion

We have introduced the Controlled π-calculus in order to permit the design
and modelling of resource-aware protocols. Beyond adding to the π-calculus the
ability to wait for the recovery of resources, we have presented a definition of
garbage-collection and dynamic dead processes elimination in parallel systems.
We have enhanced this calculus with a type system created to allow simple proofs
on resource-bounds – a type system which may handle traditional replication,
not just recursion as in our earlier works [10, 12].

Note that, although our type grammar only permits integer costs, it should
be quite easy to rework the type system so as to permit variables. We could then
obtain results such as “this process requires 3 ·ea +7 ·eb−2 ·ec resources”, where
ea, eb and ec are the resources required by the allocation of a, b and c. This
would permit us to refine the information on the costs of protocols and systems.

We are also currently trying to expand Cπ to handle explicit distribution, as
this kind of extension seems natural. In order to obtain semantics of finalization
close to that of Java, OCaml or C], we are investigating the use of type systems
with causality [4, 13] so as to prevent the appearance of name �. We also wish
to try and apply our results to existing implementations of the π-calculus.

Another aspect we are planning to study is the possibility of using finalization
as an element of specification for secrecy: as (kx).P guarantees that P will not
be triggered as long as name x is still present somewhere in the system, this kind
of property may be used to model protocols which must guarantee that they do
forget informations (e.g. unless the user specifically asks that her password must
be remembered, her webbrowser must forget it).

Related works Many works consider names as resources in the π-calculus and of-
fer different mechanisms for protecting resources from being exposed or misused,
without trying to account for allocation or deallocation [8, 9]. Other works [6] use
linear types to prove bounds on the number of communications on channels in
the π-calculus without considering allocation, deallocation or garbage-collection.

Garbage-collection for functional languages has been investigated in [7], al-
though without finalization or guarantees on resource-bounds. On the other
hand, a primitive similar to k has been proposed along with a type system to
design memory-bounded functional programs [5], with no extension to concur-
rency. This @ primitive, however, is related to manual deallocation rather than
automatic garbage-collection. Process algebras have also been designed by us
and others [2, 10, 12] with explicit allocation and deallocation of cells (ambients,
agents, . . . ) and type systems to offer resource-bounds guarantees. However,



these calculi are specifically designed for this purpose, the main resource entity
is a cell rather than a name and there is no notion of dead processes or finaliza-
tion. Note that the main idea of BoCa [2] is actually quite close to our bounded
resources manager with the addition of distribution. It is, however, built in the
language and seems limited to only one kind of resources. Also note BoCa uses
a different, dynamically typed, mechanism of guarded replication for preventing
uncontrolled spawning of processes.

Our work is also related to some attempts at designing and modelling gar-
bage-collectors for distributed calculi. Among these, a work on groups in π-
calculus [14] offers a definition of dead process elimination close to ours. However,
to the best of our knowledge, no such work provides either synchronization and
reuse of resources or resource-bounds guarantees.
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