
Towards an algebraic theory of typed mobile

processes

Yuxin Deng a and Davide Sangiorgi b

aINRIA and Université Paris 7, France
bUniversità di Bologna, Italy

Abstract

The impact of types on the algebraic theory of the π-calculus is studied. The type
system has capability types. They allow one to distinguish between the ability to
read from a channel, to write to a channel, and both to read and to write. They
also give rise to a natural and powerful subtyping relation.

Two variants of typed bisimilarity are considered, both in their late and in their
early version. For both of them, proof systems that are sound and complete on the
closed finite terms are given. For one of the two variants, a complete axiomatisation
for the open finite terms is also presented.

1 Introduction

The π-calculus is the best known calculus of mobile processes. Its theory has
been studied in depth [8,13]. Relevant parts of it are the algebraic theory
and the type systems. Most of the algebraic theory has been developed on the
untyped calculus; the results include proof systems or axiomatisations that are
sound and complete on finite processes for the main behavioral equivalences:
late and early bisimilarity, late and early congruence [10,5,6], open bisimilarity
[12], testing equivalence [1]. Much of the research on types has focused on
their behavioral effects. For instance, modifications of the standard behavioral
equivalences have been proposed so as to take types into account [11,13].

In this paper, we study the impact of types on the algebraic theory of the π-
calculus. Precisely, we study axiomatisations of the typed π-calculus. Although
algebraic laws for typed calculi of mobile processes have been considered in
the literature [13], we are not aware of any axiomatisation or proof system.

1 Work supported by EU project PROFUNDIS

6 February 2005

ooTibT

bbT

(b)

 b<oT,bT>b<iT,bT>oiT

boT

 obT

biT

oTiT

bT

(a)

iiT ioT

Fig. 1. An example of subtyping relation, with T = unit

The type system that we consider has capability types (sometimes called I/O
types) [11,4]. These types allow us to distinguish, for instance, the capability of
using a channel in input from that of using the channel in output. A capability
type shows the capability of a channel and, recursively, of the channels carried
by that channel. For instance, a type a : iobT (for an appropriate type expres-
sion T) says that channel a can be used only in input; moreover, any channel
received at amay only be used in output — to send channels which can be used
both in input and in output. Thus, process a(x).x̄b.b(y).b̄y.0 (sometimes the
trailing 0 is omitted) is well-typed under the type assignment a : iobT, b : bT .
We recall that āb.P is the output at a of channel b with continuation P , and
that a(x).P is an input at a with x a placeholder for channels received in the
input whose continuation is P .

On calculi for mobility, capability types have emerged as one of the most
useful forms of types, and one whose behavioral effects are most prominent.
Capabilities are useful for protecting resources; for instance, in a client-server
model, they can be used for preventing clients from using the access chan-
nel to the server in input and stealing messages to the server; similarly they
can be used in distributed programming for expressing security constraints
[4]. Capabilities give rise to subtyping : the output capability is contravariant,
whereas the input capability is covariant. As an example, we show a subtyping
relation in Figure 1, where an arrow indicates the subtyping relation between
two related types. There are three forms of types for channel names: iT, oS
and b〈T, S〉, they give names the ability to receive values of type T , send val-
ues of type S, or to do both. We use bT as an abbreviation of b〈T, T 〉. The
depth of nesting of capabilities is 1 for all types in diagram (a), and 2 for all
types in diagram (b). (The formal definitions of types and subtyping relation
will be given in Section 2.1.) Subtyping is useful when the π-calculus is used
for object-oriented programming, or for giving semantics to object-oriented
languages.

To see why the addition of capability types has semantic consequences, con-

2

sider

P
def
= νc bc.a(y).(y | c) Q

def
= νc bc.a(y).(y.c+ c.y).

These processes are not behaviorally equivalent in the untyped π-calculus.
For instance, if the channel received at a is c, then P can terminate after
2 interactions with the external observer. By contrast, Q always terminates
after 4 interactions with the observer. However, if we require that only the
input capability of channels may be communicated at b, then P and Q are
indistinguishable in any (well-typed) context. For instance, since the observer
only receives the input capability on c, it cannot resend c along a: channels sent
at a require at least the output capability (cf: the occurrence of y). Therefore,
in the typed setting, processes are compared w.r.t. an observer with certain
capabilities (i.e., types on channels). Denoting with ∆ these capabilities, then
typed bisimilarity between P and Q is written P ∼∆ Q.

In the untyped π-calculus, labelled transition systems (LTS) are defined on
processes; the transition P

α−→ P ′ means that P can perform action α and
then become P ′. In the typed π-calculus, the information about the observer
capabilities is relevant because the observer can only test processes on interac-
tions for which the observer has all needed capabilities. Hence typed labelled
transition systems (TLTS) are defined on configurations, and a configuration
∆]P is composed of a process P and the observer capabilities ∆ (we some-
times call ∆ the external environment). A transition ∆]P

α−→ ∆′]P ′ now
means that P can evolve into P ′ after performing an action α allowed by the
environment ∆, which in turn evolves into ∆′.

Capability types have been introduced in [11]. A number of variants and ex-
tensions have then been proposed. We follow Hennessy and Riely’s system [4],
in which, in contrast with the system in [11]: (i) there are partial meet and
join operations on types; (ii) the typing rule for the matching construct (the
construct used for testing equality between channels) is very liberal, in that
it can be applied to channels of arbitrary types (in [11] only channels that
possess both the input and the output capability can be compared). While (i)
only simplifies certain technical details, (ii) seems essential. Indeed, the im-
portance of matching for the algebraic theory of the π-calculus is well-known
(it is the main reason for the existence of matching in the untyped calculus).

Typed bisimilarity and the use of configurations for defining typed bisimilarity
have been introduced in [2]. We follow a variant of them put forward by
Hennessy and Rathke [3], because it uses the type system of [4] and includes
the matching construct.

The main results in this paper are a proof system and an axiomatisation for
typed bisimilarity (∼). The proof system has a simple correctness proof but
only works on the closed terms. The axiomatisation is for all finite processes.
The bisimilarity ∼ is a variant of that in [3]. For the typed bisimilarity in [3]

3

we provide a proof system for the closed terms, and an indirect axiomatisation
of all terms that exploits the system of ∼. We have not been able to give a
direct axiomatisation: the main difficulties are discussed in Section 5.1. All
results are given for both the late and the early versions of the bisimilarities.

The axiomatisation and the proof systems are obtained by modifying some of
the rules of the systems for the untyped π-calculus, and by adding a few new
laws. The proofs of soundness and completeness, although follow the general
schema of the proofs of the untyped calculus, have quite different details. An
example of this is the treatment of fresh channels in input actions and the
closure under injective substitutions, that we comment on below.

In the untyped π-calculus, the following holds:

If P ∼ Q and σ is injective on fn(P,Q), then Pσ ∼ Qσ.

Hence it is sufficient to consider all free channels in P,Q and one fresh channel
when comparing the input actions of P and Q in the bisimulation game. This
result is crucial in the algebraic theory of untyped calculi. For instance, in the
proof system for (late) bisimilarity the inference rule for input is:

If P{b/x} = Q{b/x} for all b ∈ fn(P,Q, c), where c is a fresh
channel, then a(x).P = a(x).Q.

For typed bisimilarity the situation is different. Take the processes

P
def
= a(x : obT).x̄c.c̄ Q

def
= a(x : obT).x̄c

and compare them w.r.t. an observer ∆. Consider what happens when the
variable x is replaced by a fresh channel b, whose type in ∆ is S. By the
constraint imposed by types, S must be a subtype of the type obT for x
(see Figure 1 (b)). Now, different choices for S will give different results. For
instance, if S is obT itself, then the observer has no input capability on b, thus
can not communicate with P and Q at b. That is, from the observer’s point
of view the output bc is not observable and the two derivative processes are
equivalent. Similarly if S is boT then the output c is not observable. However, if
S is bbT then b̄c.c̄ is not equivalent to b̄c, since all outputs become observable.
This example illustrates the essential difficulties in formulating proof systems
for typed bisimilarities:

(1) Subtyping appears in substitutions and changes the original type of a
variable into one of its subtypes.

(2) The choice of this subtype is relevant for behavioral equivalence.
(3) Different subtypes may be incompatible (have no common subtype) with

one another (for instance, boT and bbT in the example above; they are
both subtypes of obT).

4

A consequence of (2) and (3), for instance, is that there is not a “best subtype”,
that is a single type with the property that equivalence under this type implies
equivalence under any other types.

Another example of the consequences brought by types in the algebraic theory
is the congruence rule for prefixes: we have to distinguish the cases in which
the subject of the prefix is a channel from the case in which the subject is a
variable. This is a rather subtle and technical difference, that is discussed in
Section 4.

The rest of the paper is structured as follows. Section 2 presents the syn-
tax, semantics and typed bisimilarity for a version of the π-calculus without
parallelism. This small language already shows the major obstacles for ax-
iomatisations and hence makes the presentation of our ideas neater. Section 3
sets up a proof system for closed terms. In Section 4 we axiomatize the typed
bisimilarity for all finite terms. In Section 5 we examine other equivalences and
relate their axiomatisations or proof systems to the results obtained in the pre-
vious sections. In Section 6 we show how the operator of parallel composition
is admitted in the language. The effect on the axiomatisations is to add an
expansion law to eliminate all occurrences of the operator. Finally Section 7
contains concluding remarks and possible directions for further research.

2 A fragment of the typed π-calculus

In this section we review the π-calculus (without parallelism), capability types,
the usual operational semantics, typed labelled transition system as well as
typed bisimilarity.

2.1 Standard operational semantics

We assume an infinite set of channels, ranged over by a, b, . . ., and an infinite
set of variables, ranged over by x, y, We write ∗ for the unit value (we shall
use unit as the only base type). Channels, variables and ∗ are the names,
ranged over by u, v, Below is the syntax of finite processes (also called
terms).

P,Q ::= 0 | τ.P | u(x : T).P | ūv.P | P +Q | (νa : T)P | ϕPQ
ϕ ::= [u = v] | ¬ϕ | ϕ ∧ ψ

It has the usual constructors of finite monadic π-calculus: inaction, prefix,
sum and restriction. The match constructor is replaced by a more general

5

condition, ranged by ϕ, ψ etc, and produced by match, negation and conjunc-
tion. Mismatching like [u 6= v] abbreviates ¬[u = v]. We also use ∨, which
can be derived from ∧ as usual. Here ϕPQ is an if-then-else construct on the
boolean condition ϕ. We omit the else branch Q when it is 0. We have not
included an operator of recursion because our main results in the paper are
about proof systems and axiomatisations for finite terms. However, all results
and definitions in Section 2 remain valid when recursion is added.

There is a channel-binding and a variable-binding operator. In (νa : S)P the
displayed occurrence of channel a is binding with scope P . In u(x : T).P the
occurrence of variable x is binding with scope P . An occurrence of a channel
(resp. variable) in a process is bound if it lies within the scope of a binding
occurrence of the channel (resp. variable). An occurrence of a channel or a
variable in a process is free if it is not bound. We write fn(P) and fv(P) for
the set of free names and the set of free variables, respectively, in P . We use
n(ϕ) for all names appearing in ϕ. When ϕ has no variables, [[ϕ]] denotes the
boolean value of ϕ.

When fv(P) 6= ∅, P is an open term. We can make open terms closed by the
use of closing substitutions, ranged over by σ, σ′, σi, · · ·, which are substitutions
mapping variables to channels and acting as identity on channels (thus similar
to the concept of ground substitution used in term rewriting systems [14]). In
the calculus, the distinction between channels and variables simplifies certain
technical details; see for instance the discussion on the rules for substitutivity
of prefixes in Section 4: the rules are different depending on whether the
prefixes use channels or variables. (This is not the case in the untyped case:
for instance, [10] does not distinguish between variables and channels, but it
is quite straightforward to adapt the work to the case where there is such a
distinction.)

The standard operational semantics is presented in the so-called late style in
Table 1. The symmetric rule of sum is omitted. In a transition P

α−→ P ′,
the closed term P may become open in P ′ after performing the action α. As
usual there are four forms of actions: τ (interaction), a(x : T) (input), āb
(free output), ā(b : T) (bound output). We also use α to range over the set
of extended prefixes, which contains the tau, the input prefixes, the output
prefixes and the bound output prefixes. The bound output ū(a : T).P is an
abbreviation of (νa : T)ūa.P . We use subj (α), bn(α) and n(α) to stand for
the subject, bound name and names of α. As usual we identify terms up to
alpha-conversion.

We recall the capability types, as from [3,4]. The subtyping relation <: and
the typing rules for processes are displayed in Table 2. We write T :: TYPE to
mean that T is a well-defined type. There are three forms of types for channel
names: iT, oS and b〈T, S〉, they give names the ability to receive values of type

6

Table 1
Transition rules

in
a(x : T).P

a(x:T)−→ P
out

āb.P
āb−→ P

tau
τ.P

τ−→ P
sum P

α−→ P ′

P + Q
α−→ P ′

true
[[ϕ]] = True P

α−→ P ′

ϕ P Q
α−→ P ′ false

[[ϕ]] = False Q
α−→ Q′

ϕ P Q
α−→ Q′

open P
āb−→ P ′ a 6= b

(νb : T)P
ā(b:T)−→ P ′

res
P

α−→ P ′ b 6∈ n(α)
(νb : T)P α−→ (νb : T)P ′

T , send values of type S, or to do both. For simplicity we often abbreviate
b〈T, T 〉 to bT . As shown in [4], this extension to the original I/O types makes
it possible to define two partial operators meet (u) and join (t). But the
definitions of the two operators are rather long, so we do not repeat them and
recommend the reader to consult Section 6 of [4]. 2 Intuitively, the meet (resp.
join) of T and S is the union (resp. intersection) of their capabilities.

Proposition 1 Given types T1, T2 and S with T1 <: T2.

(1) If Ti u S are defined, for i = 1, 2, then T1 u S <: T2 u S;
(2) If Ti t S are defined, for i = 1, 2, then T1 t S <: T2 t S;
(3) T1 u T2 = T1;
(4) T1 t T2 = T2.

Proof. Following the definitions of meet and join, the result is straightforward
by structural induction on types. 2

We use ∆ and Γ for type environments. A type environment ∆ is a partial
function from channels and variables to types; we write ∆c and ∆v for the
channel and variable parts of ∆, respectively. A type environment is undefined
on infinitely many channels and variables (to make sure it can always be
extended). We will often view, and talk about, ∆c as a set of assignments of
the form a : T , describing the value of ∆c on all the channels on which ∆c is
defined. Similarly for ∆v.

We use dom(∆) to stand for the channels and variables on which ∆ is well
defined (dom(∆) can be infinite). When dom(∆)∩dom(∆′) = ∅, we use ∆,∆′

to represent the union of ∆ and ∆′. If ∆(u) is defined and takes the form iT or
b〈T, S〉, then the predicate ∆(u)↓i holds and we write ∆(u)i for T , otherwise

2 The only modification we have made is as follows. If two channel types T and S
have no common capability, then in our setting T tS is undefined, while in [4] T tS
is defined to be a maximal type, which is a supertype of every channel type.

7

the predicate ∆(u)6↓i holds, indicating that ∆ has no input capability on u.
Similarly for ∆(u)o and ∆(u)↓o (output capability). Notice that ∆(u)↓i is
covariant and ∆(u)↓o is contravariant.

Proposition 2 Suppose that u, v ∈ dom(∆) and ∆(u) <: ∆(v).

(1) If ∆(v)↓i then ∆(u)i <: ∆(v)i;
(2) If ∆(v)↓o then ∆(v)o <: ∆(u)o.

The typing rules for processes are standard except for conditions. We impose
no constraint for the types of names appearing in conditions. The reason is
discussed in the introduction. This mild modification does not affect the proofs
of the following two results [11,4,3].

Lemma 3 (Substitution) If Γ ` a : T and Γ, x : T ` P , then Γ ` P{a/x}.

Theorem 4 (LTS subject reduction) Suppose Γ ` P and P
α−→ P ′.

(1) if α = τ then Γ ` P ′.
(2) if α = a(x : T) then Γ(a) ↓i and Γ, x : T ` P ′.
(3) if α = āb then Γ(a) ↓o, Γ ` b : Γ(a)o and Γ ` P ′.
(4) if α = ā(b : T) then Γ(a) ↓o, Γ, b : T ` b : Γ(a)o and Γ, b : T ` P ′.

2.2 Typed labelled transition system

Two known TLTS were presented in [2,3], both of them were given in early
style. We prefer to write a TLTS in late style, so as to define the “late” version
of bisimilarity in a concise way.

First we extend the subtyping relation to type environments, but only con-
sidering the types of channels. So Γ <: ∆ means that Γv = ∆v, dom(∆c) ⊆
dom(Γc) and Γc(a) <: ∆c(a) for all a ∈ dom(∆c).

Definition 5 A configuration is a pair ∆]P which respects some type envi-
ronment Γ, i.e., Γ <: ∆ and Γ ` P .

The above definition implies the condition fv(P) ⊆ dom(∆v), because we
have fv(P) ⊆ dom(Γv) by Γ ` P and dom(Γv) = dom(∆v) by Γ <: ∆.
Since alpha-conversion is implicitly used throughout the paper, we may assume
bn(P) ∩ dom(∆) = ∅. Here there exists a mild difference from the definitions
of configuration given in [2,3]. We do not require the environment to have
knowledge of all the free channels used by P . The less knowledge it grasps,
the weaker testing power it owns when observing the behaviour of P . In Table
3, we present a transition system built on this definition. In the premise of rule

8

Table 2
Types and typing rules

Types:

unit :: TYPE

T :: TYPE

iT, oT :: TYPE

T, S :: TYPE S <: T

b〈T, S〉 :: TYPE

Subtyping:

T <: T

T <: T ′

iT <: iT ′

T <: T ′

oT ′ <: oT

T <: T ′

b〈T, S〉 <: iT ′

T <: T ′

b〈S, T ′〉 <: oT

T <: T ′ S <: S′

b〈T, S′〉 <: b〈T ′, S〉

Typing rules:

Γ(u) <: T

Γ ` u : T

Γ ` P Γ ` Q

Γ ` P + Q

Γ, x : T ` P Γ ` u : iT

Γ ` u(x : T).P

Γ ` 0

Γ, a : T ` P

Γ ` (νa : T)P

Γ ` P Γ ` v : T Γ ` u : oT

Γ ` ūv.P

Γ ` P

Γ ` τ.P

Γ ` P Γ ` Q n(ϕ) ⊆ dom(Γ)

Γ ` ϕ P Q

Red, P
τ−→ P ′ stands for the standard reduction relation of the π-calculus, as

given in Table 1.

Using the partial meet operation, we can extend a type environment ∆ to
∆ u u : T , which is just ∆, u : T if u 6∈ dom(∆), otherwise it differs from ∆
at name u because the capability of this name is extended to be ∆(u) u T (if
∆(u)uT is undefined, then so is ∆uu : T). In this way we can define ∆1u∆2

as the meet of two environments ∆1 and ∆2. In rule Out, the process sends
channel b to the environment, so the latter should be dynamically extended
with the capability on b thus received. For this, we use the meet operator, and
exploit the following property on types:

R <: T and R <: S imply T u S defined and R <: T u S

for any type T, S and R. (This property does not hold for the capability types
as in [11].)

The next three fundamental lemmas describe various properties of the TLTS.
They underpin many later results. The well-definedness of our TLTS is based

9

Table 3
Typed LTS

Red P
τ−→ P ′

∆] P
τ−→ ∆] P ′ Out

∆(a) ↓i
∆] āb.P

āb−→ ∆ u b : ∆(a)i] P

In
∆(a) ↓o

∆] a(x : T).P
a(x:T)−→ ∆, x : T] P

Open ∆] P
āb−→ ∆′] P ′ a 6= b

∆] (νb : T)P
ā(b:T)−→ ∆′] P ′

Res
∆] P

α−→ ∆′] P ′ a 6∈ n(α)
∆] (νa : T)P α−→ ∆′] (νa : T)P ′ Sum ∆] P

α−→ ∆′] P ′

∆] P + Q
α−→ ∆′] P ′

True
[[ϕ]] = True ∆] P

α−→ ∆′] P ′

∆] ϕPQ
α−→ ∆′] P ′ False

[[ϕ]] = False ∆] Q
α−→ ∆′] Q′

∆] ϕPQ
α−→ ∆′] Q′

on Lemma 6. The close relationship between processes and configurations
is reflected by their corresponding transitions, as can be seen in Lemma 7.
Finally Lemma 8 says that the more capabilities an environment owns, the
more behaviours it can observe on a process.

Lemma 6 (TLTS subjection reduction) If ∆]P is a configuration which
respects Γ and ∆]P

α−→ ∆′]P ′, then ∆′]P ′ is also a configuration, respecting
Γ′, where

(1) if α = τ then ∆′ = ∆ and Γ′ = Γ.
(2) if α = a(x : T) then ∆′ = ∆, x : T and Γ′ = Γ, x : T .
(3) if α = āb then ∆′ = ∆ u b : ∆(a)i and Γ′ = Γ.
(4) if α = ā(b : T) then ∆′ = ∆, b : ∆(a)i and Γ′ = Γ, b : T .

Proof. By induction on depth of inference. LTS subject reduction theorem
is needed. 2

Lemma 7 Suppose that ∆]P is a configuration.

(1) ∆]P
τ−→ ∆]P ′ iff P

τ−→ P ′.

(2) ∆]P
a(x:T)−→ ∆, x : T]P ′ iff ∆(a) ↓o and P

a(x:T)−→ P ′.

(3) ∆]P
āb−→ ∆ u b : ∆(a)i]P

′ iff ∆(a) ↓i and P
āb−→ P ′.

(4) ∆]P
ā(b:T)−→ ∆, b : ∆(a)i]P

′ iff ∆(a) ↓i and P
ā(b:T)−→ P ′.

Proof. By induction on depth of inference. 2

Lemma 8 Suppose that ∆]P
α−→ ∆′]P ′, Γ <: ∆ and Γ]P is a configuration.

Then Γ]P
α−→ Γ′]P ′ and Γ′ <: ∆′.

Proof. Straightforward by using the preceding lemma. 2

10

2.3 Typed bisimilarity

When comparing two typed actions, to require them to be syntactically the
same is too restrictive. For example one would not be able to say (νa : T1)ūa
is bisimilar to (νa : T2)ūa under the environment ∆ = u : bobT , where
T1 = boT, T2 = bbT . Therefore we do not check types in the bisimulation
game. We shall write | α | for the action α where its type annotations have
been stripped off.

P ∼∆ Q reads “P and Q are bisimilar under type environment ∆”. The type
environment ∆ is used as follows: ∆c shows the channels that are known to
the external observer testing the processes in the bisimulation game, and the
types with which the observer is allowed to use such channels. By contrast,
∆v shows the set of variables that may appear free in the processes and the
types for these variables show how the observer can instantiate such variables
(in closing substitutions). Therefore: the channels of ∆c are to be used by the
observer, with the types indicated in ∆c; the variables in ∆v are to be used
by the processes, but the observer can instantiate them following the types
indicated in ∆v.

A process is closed if it does not have free variables; similarly a type envi-
ronment is closed if it is only defined on channels. Otherwise, processes and
type environments are open. We first define ∼∆ on the closed terms, then on
the open terms. Bisimilarity is given in the “late” style [13]; we consider the
“early” style in Section 5.2.

Definition 9 A family of symmetric binary relations over closed terms, in-
dexed by type environments, and written {R∆}∆, is a typed bisimulation when-
ever P R∆ Q implies that, for two configurations ∆]P and ∆]Q,

(1) if ∆]P
α−→ ∆′]P ′ and α is not an input action, then for some Q′,

∆]Q
β−→ ∆′]Q′, |α |=|β | and P ′ R∆′ Q′.

(2) if ∆]P
a(x:T)−→ ∆′]P ′, then for some Q′, ∆]Q

a(x:S)−→ ∆′′]Q′ and for all b with
∆c ` b : ∆(a)o it holds that P ′{b/x} R∆ Q′{b/x}.

Two processes P and Q are typed ∆-bisimilar, written P ∼∆ Q, if there exists
a typed bisimulation {R∆}∆ such that P R∆ Q.

The difference w.r.t. typed bisimilarity as in [2,3] is that, in the input clause,
the type environment ∆ is not extended. In other words, the knowledge of
the external observer does not change through interactions with the process
in which the value transmitted is supplied by the observer itself (by contrast,
the knowledge does change when the value is supplied by the process; cf: rule
Out in Table 3). Therefore ∼∆ is optimised for reasoning on finite systems. To

11

deal with infinite systems, it is more suitable to use the alternative equivalence
where the environment can be extended. We shall turn to this topic in Section
5.1.

Definition 10 Two processes P and Q are bisimilar under the environment
∆ = ∆c, x̃ : T̃ , written P ∼∆ Q, if ∆]P , ∆]Q are configurations and, for all
b̃ with ∆c ` b̃ : T̃ , it holds that P{b̃/x̃} ∼∆c

Q{b̃/x̃}.

The intuition behind the above definition is that channels are capabilities while
variables are obligations of the environment. The environment is obliged to fill
in the variables at the specified types. Once the obligations are determined,
they cannot be strengthened or weakened. That’s why variables are invariant
in the subtyping relation on type environments given before.

Below we report three basic properties of typed bisimilarity.

Lemma 11 If P ∼∆ Q and ∆ <: ∆′, then P ∼∆′ Q.

Proof. By Lemma 7, 8 and the definition of typed bisimilarity. 2

The intuition behind this lemma is quite clear. When two processes exhibit
similar behaviours under an environment with stronger discriminating power,
they are also indistinguishable by a weaker environment. In the presence of
distinction between channels and variables, we have the following interesting
property for typed bisimilarity.

Lemma 12 If P ∼∆,x:T Q and S <: T then P ∼∆,x:S Q.

Proof. It follows easily from the definition of typed bisimilarity on open
terms. 2

As we said before in the introduction, generally speaking, typed behavioural
equivalences are not closed under injective substitutions. Nevertheless, if a
substitution only maps channels and variables to other channels and variables
of the same types respectively (called type-preserving substitution), we do have
the property seen in untyped π-calculus, as expressed by the lemma below.
(With a slight abuse of notation, here we use σ to stand for type-preserving
substitutions.)

Lemma 13 If P ∼∆ Q then Pσ ∼∆σ Qσ for σ injective on fn(P,Q)∪dom(∆)
and ∆σ is the type environment which maps σ(a) to ∆(a) for all a ∈ dom(∆).

Proof. Similar to the proof in untyped setting. It follows from the fact that
∆]P

α−→ ∆′]P ′ implies ∆σ]Pσ
ασ−→ ∆′σ]P ′σ, for injective type-preserving

substitution σ. 2

Since all processes are finite, and we do not use recursive types, in P ∼∆ Q,

12

the environment ∆ can always be taken to be finite (i.e., defined only on a
finite number of channels and variables): it is sufficient that ∆ has enough
names fresh w.r.t. P and Q, for all relevant types. This can be proved with
a construction similar to that in Lemma 34. In the remainder of the paper
all type environments are assumed to be finite. (If ∆ is infinite, our proof
systems in Section 3 and 5.1.1 remain sound and complete; the axiom system
in Section 4 is still sound, but its completeness proof relies on the finiteness
of ∆.) We should stress, however, that all results and definitions presented up
to this section are also valid for non-finite processes (i.e., processes extended
with recursion) and for infinite type environment.

3 Proof system for the closed terms

In this section we present a proof system for the closed terms.

The proof system P for typed bisimilarity is composed of all inference rules
and axioms in Table 4. Whenever we write P =∆ Q it is intended that both
∆]P and ∆]Q are configurations (see Definition 5 and the explanations imme-
diately follow the definition), and in this section P,Q are deemed to be closed
terms. The rules are divided into six groups, namely those for: substitutivity,
sums, looking up the type environment, conditions, restrictions and alpha-
conversion. The rules that are new or different w.r.t. those of the untyped
π-calculus are marked with an asterisk.

Tin* shows that an input prefix is not observable if the observer has no output
capability on the subject of the input. This comes as no surprise because the
only means that the observer uses for testing a process is to communicate
with it. When no communication happens, he/she simply regards the process
being tested as 0. Tout* is the symmetric rule, for output. Twea* gives us
weakening for type environments, corresponding to Lemma 11. In Ires*, the
side condition a 6∈ dom(∆) is added for the sake of clarity, but formally it is
not needed because of the definition of configurations and our convention on
bound names. Note that different types T1, T2 are used for the processes in
the conclusion. We cannot replace Ires* with two simpler rules such as

• If P =∆ Q then (νa : T)P =∆ (νa : T)Q
• (νa : T1)P =∆ (νa : T2)P ,

for equalities like (νb : biT)āb.b(x : iT).0 =a:iobT (νb : boT)āb.b(x : oT).0
could not be derived (due to the constraints given by the well-typedness of
processes). Similarly for rule Iinc*.

Iinc* and Iout* are the rules for substitutivity for input and output prefixes.

13

Table 4
The proof system P for the closed terms

Iinc* If P{b/x} =∆ Q{b/x} for all b with ∆c ` b : ∆(a)o then

a(x : T1).P =∆ a(x : T2).Q.

Iout* If P =∆ub:∆(a)i Q then āb.P =∆ āb.Q

Itau If P =∆ Q then τ.P =∆ τ.Q

Isum If P =∆ Q then P + R =∆ Q + R

Ires* If P =∆ Q then (νa : T1)P =∆ (νa : T2)Q a 6∈ dom(∆)

S1 P + 0 =∆ P

S2 P + P =∆ P

S3 P + Q =∆ Q + P

S4 P + (Q + R) =∆ (P + Q) + R

Tin* If ∆(a)6↓o then a(x : T).P =∆ 0

Tout* If ∆(a)6↓i then āu.P =∆ 0

Twea* If P =∆ Q and ∆ <: ∆′ then P =∆′ Q

Ca ϕ P Q =∆ P if [[ϕ]] = True

Cb ϕ P Q =∆ Q if [[ϕ]] = False

R1 (νa : T)0 =∆ 0

R2 (νa : T)α.P =∆ 0 if subj(α) = a

R3 (νa : T)(νb : S)P =∆ (νb : S)(νa : T)P

R4 (νa : T)(P + Q) =∆ (νa : T)P + (νa : T)Q

R5 (νa : T)α.P =∆ α.(νa : T)P if a 6∈ n(α)

A P =∆ Q if P alpha-equivalent to Q

In Iinc*, the well-definedness of the two configurations ∆]a(x : T1).P and
∆]a(x : T2).Q implies the condition: ∆(a)o <: Ti for i = 1, 2. In Iout*, the
observer knowledge of the type of b may increase when the processes emit
b themselves (for the type under which b is emitted is composed with the
possible type of b in ∆).

Compared with the proof system for untyped π-calculus [10], Tin* and Tout*
are the main differences.

Theorem 14 (Soundness of P) If P ` P =∆ Q then P ∼∆ Q.

Proof. By constructing appropriate bisimulations. 2

14

The completeness proof uses a standard strategy. By using the axioms S1-
4, R1-5 and Ca-b, we can transform each closed term into a canonical form∑
i αi.Pi. If P and Q are bisimilar, their canonical forms P ′ and Q′ are provably

equal by induction on the depth of P ′ +Q′.

Theorem 15 (Completeness of P) If P ∼∆ Q then P ` P =∆ Q, where
P and Q be closed terms.

Proof. This proof differs from the completeness proof of untyped π-calculus
[9] in one place: instead of showing that each summand of P is provably
equivalent to a summand in Q, we only require that each active summand of
P is matched by an active summand of Q, and vice versa. By active summand,
we mean that the prefix can perform actions allowed by the environment ∆.
More precisely, if ai(xi : Ti).Pi is a summand of P and ∆(ai)↓o then this
is an active input prefix. Similarly for output prefixes. Inactive summand
is provably equivalent to 0 by Tin* and Tout*, thus can be consumed by
S1. After finite steps of transformation, we have P ` P =∆

∑n
i=1 αi.Pi and

P ` Q =∆
∑m
j=1 βj.Qj, where all summands in P and Q are active.

Suppose that αi = ā(b : T1). Then ∆]P
ā(b:T1)−→ ∆, b : ∆(a)i]Pi. Hence there

is some βj = ā(b : T2) such that Pi ∼∆,b:∆(a)i Qj. Since the depth of Pi + Qj

is less than the depth of P + Q, we can use induction hypothesis to derive
P ` Pi =∆,b:∆(a)i Qj. By A we assume that the bound name b 6∈ dom(∆),
so ∆, b : ∆(a)i = ∆ u b : ∆(a)i. Therefore we have P ` āb.Pi =∆ āb.Qj by
Iout*, and furthermore P ` ā(b : T1).Pi =∆ ā(b : T2).Qj by Ires*.

Suppose that αi = a(x : T1). Then ∆]P
a(x:T1)−→ ∆′]Pi. There must exist a βj =

a(x : T2) such that Pi{b/x} ∼∆ Qj{b/x}, for all b s.t. ∆c ` b : ∆(a)o. Now
observe that the depth of Pi{b/x}+Qj{b/x} is less than the depth of P +Q,
thus it follows from induction hypothesis that P ` Pi{b/x} =∆ Qj{b/x}.
Using Iinc* we infer that P ` a(x : T1).Pi =∆ a(x : T2).Qj.

Other cases can be analyzed similarly. As a result, each active summand of P
is provably equivalent to some active summand of Q. Symmetric arguments
also hold. 2

4 Axioms for typed bisimilarity

In this section we give an axiom system for typed bisimilarity and prove its
soundness and completeness. This axiomatisation is for all finite terms of the
language given in Section 2, including both open and closed terms.

15

4.1 The axiom system

The axiom system A for typed bisimilarity is presented in Table 5. Roughly
speaking, it is obtained from P by adding some axioms for dealing with con-
ditions. In open terms usually the conditions cannot be simply eliminated
by Ca-b, so we need the axioms C1-7 and R6-7 to manipulate them. We
use the notation ϕ ⇒ ψ to mean that ϕ logically implies ψ; in C1 the con-
dition ϕ ⇐⇒ ψ means that ϕ and ψ are logically equivalent. In view of
C3 and R6, axiom R1 is redundant. The rule Iinc* of P now becomes the
concise axiom Iin* in A. Tvar* shows that a variable can only be instanti-
ated with channels that in the type environment have types compatible with
that of the variable. Tpre* is used to replace names underneath a match.
It implies, in the presence of other axioms of A, a more powerful axiom:
[x = a]P =∆ [x = a]P{a/x} if ∆(a) <: ∆(x), which substitutes through P . In
the untyped setting, Tpre* has no side condition. Here we need one to ensure
well-typedness of the process resulting from the substitution, since the names
in the match can have arbitrary — and possibly unrelated — types.

The following axioms and rules are derivable from {S1-S4, C1-C6, Tvar*}.
More derived rules are given in Appendix A.

C8 P =∆ ϕP + ¬ϕP C9 ϕPQ =∆ ϕP + ¬ϕQ

C10 [ϕ ∨ ψ]P =∆ ϕP + ψP C11 ϕ(P +Q) =∆ ϕP + ϕQ

Cnn1 [a = b]P =∆ 0 if a 6= b Tvn1 [x = a]P =∆ 0 if a 6∈ dom(∆)

Cnn2 [a 6= b]P =∆ P if a 6= b Tvn2 [x 6= a]P =∆ P if a 6∈ dom(∆)

Tv1 P =∆,x:T 0 if there exists no a ∈ dom(∆) s.t. ∆(a) <: T

Note that in Iin* and Iout*, the free names of the input and output prefixes
are channels rather than variables. Below we discuss:

(1) the unsoundness of the rules in which (some or all) the channels are
replaced by variables;

(2) other rules, that are valid for variables;
(3) why these other rules are not needed in the axiom system.

Intuitively the reason for (1) is the different usage of channels and variables
that appear in a type environment: the information on channels tells us how
these channels are to be used by the external environment, while the informa-
tion on variables tells us how these variables are to be instantiated inside the
tested processes.

To see that Iin* is unsound when the subject of the prefix is a variable, take

16

Table 5
The axiom system A
Iin* If P =∆,x:∆(a)o Q then a(x : T1).P =∆ a(x : T2).Q

Icon If P =∆ Q then ϕP =∆ ϕQ

Tvar* [x 6= a1] · · · [x 6= am]P =∆ 0 if {b ∈ dom(∆c) | ∆(b) <: ∆(x)} ⊆ {a1, · · · , am}

Tpre* [x = a]α.P =∆ [x = a](α{a/x}).P if ∆(a) <: ∆(x)

C1 ϕ P =∆ ψ P if ϕ⇐⇒ ψ

C2 [a = b]P =∆ [a = b]Q if a 6= b

C3 ϕ P P =∆ P

C4 ϕ P Q =∆ ¬ϕ Q P

C5 ϕ(ψP) =∆ [ϕ ∧ ψ]P

C6 ϕ (P1 + P2) (Q1 +Q2) =∆ ϕ P1 Q1 + ϕ P2 Q2

C7 ϕ (α.P) =∆ ϕ (α.ϕP) if bn(α) ∩ n(ϕ) = ∅

R6 (νa : T)[a = u]P =∆ 0 if a 6= u

R7 (νa : T)[u = v]P =∆ [u = v](νa : T)P if a 6= u, v

P\{Iinc*, Ca-b, R1}

∆c
def
= a : boT , b : oT and ∆

def
= ∆c, x : b〈oT, bT 〉. Then we have

[y = b]τ ∼∆,y:∆(x)o 0

because ∆(x)o = bT and no c in ∆ satisfies the condition ∆c ` c : bT and can
therefore instantiate y. However,

x(y : oT).[y = b]τ 6∼∆ x(y : oT).0.

To see this, let us look at the possible closing substitutions. In dom(∆c), a
is the only channel satisfying ∆c ` a : ∆(x), and so the only substitution
we need to consider is {a/x}. After applying this substitution, the resulting
closed terms are not bisimilar:

a(y : oT).[y = b]τ 6∼∆ a(y : oT).0

This holds because the observer can send b along a and, after the communica-
tion, y is instantiated to be b, thus validating the condition y = b and liberating
the prefix τ . When the subject of the prefix is a variable, the following rule is
needed in place of Iin*:

Iv1 If P =∆,y:∆(x)i Q then x(y : T1).P =∆ x(y : T2).Q

In rule Iout*, both the subject and object of the output prefix are channels.
The rule is also valid when the object is a variable. However, it is not valid if

the subject is a variable. As a counterexample, let ∆c
def
= a : iT ,b : bbT and

∆
def
= ∆c, x : b〈iT, bT 〉. Then we have a ∼∆ua:iT 0 but x̄a.a 6∼∆ x̄a.0 because,

under the substitution {b/x}, it holds that b̄a.a 6∼∆ b̄a.0. When the subject

17

of the prefix is a variable, we need the following rule:

Iv2 If P =∆uv:∆(x)o Q then x̄v.P =∆ x̄v.Q

We show, by means of an example, why rules Iin* and Iout* are sufficient in
the axiom system (rules Iv1 and Iv2 are derivable, see Appendix A). Consider
the equality

x(y : iiT).y ∼∆ x(y : ioT).0

where ∆
def
= a : bibT , b : ibT , x : bibT . First, we infer

y =∆′ 0 for ∆′ = ∆, y : ibT (1)

proceeding as follows:

y =∆′ [y = b]y + [y 6= b]y by C8

=∆′ [y = b]y by Tvar*

=∆′ [y = b]b by Tpre*

=∆′ [y = b]0 by Tin*

=∆′ 0 by C3

Then we derive x(y : iiT).y =∆ x(y : ioT).0 in a similar way:

x(y : iiT).y

=∆ [x = a]x(y : iiT).y + [x 6= a]x(y : iiT).y by C8

=∆ [x = a]x(y : iiT).y by Tvar*

=∆ [x = a]a(y : iiT).y by Tpre*

=∆ [x = a]a(y : ioT).0 by (1), Iin*, Icon

=∆ x(y : ioT).0 by Tpre*, Tvar*, C8

4.2 Soundness and completeness

The soundness of the axioms displayed in Table 5, and therefore of A, is easy
to be verified.

Theorem 16 (Soundness of A) If A ` P =∆ Q then P ∼∆ Q.

The remainder of the section is devoted to proving the completeness of A.
The schema of the proof is similar to that for the untyped π-calculus [10]. The
details, however, are quite different. An example of this is the manipulation
of terms underneath input and output prefixes mentioned above. We discuss
below another example, related to the issue of invariance of bisimilarity under

18

injective substitutions. In the untyped case, the process x | a (the operational
semantics of parallel composition is standard and will be given in Section 6)
is equal to x.a + a.x + τ when x is instantiated to a, to x.a + a.x otherwise.
This can be expressed by expanding the process by means of conditions: that
is, using conditions to make a case analysis on the possible values that the
variable may take. Thus, x | a is expanded to [x= a](x | a) + [x 6= a](x | a).
Now, underneath [x= a] we know that x will be a, and therefore x | a can be
rewritten as x.a+a.x+ τ , whereas underneath [x 6= a] we know that x will not
be a and therefore x | a can be rewritten as x.a+a.x. In general, the expansion
of a process with a free variable x produces a summand [x 6= a1] · · · [x 6= an]P
where a1, · · · , an are all channels (different from x) that appear free in P .
The mismatch [x 6= a1] · · · [x 6= an] tells us that x in P will be instantiated to a
fresh channel, which is sufficient for all manipulations of P involving x, since
bisimulation is invariant under injective substitutions. In the typed calculus,
by contrast, knowing that x is fresh may not be sufficient: we may also need
the information on the type with which x will be instantiated. This type
may be different from the type T of x in the type environment: x could be
instantiated to a fresh channel whose type is a subtype of T (the behavioral
consequences of this type information can be seen in the example at the end of
Section 5.1). We have therefore adopted a strategy different from that in the
proof for untyped calculi: rather than manipulating processes that begin with
“complete” sequences of mismatches — as in the untyped case — we try to
cancel them, using rule Tvar*; further, the conditional expansion of a process
takes into account also the names that appear in the type environment.

Definition 17 A condition ϕ is satisfiable if [[ϕσ]] = True for some closing
substitution σ. Given a set of names V , a condition ϕ is complete on V if for
some equivalence relation E on V , called the equivalence relation corresponding
to ϕ, it holds that ϕ ⇒ [u = v] iff uEv and ϕ ⇒ [u 6= v] iff ¬(uEv), for any
u, v ∈ V .

In the untyped setting which does not distinguish channels from variables, like
in [10], every complete condition is satisfiable, and two substitutions satisfying
the same complete condition relate to each other by some injective substitu-
tion. In this work, however, due to the distinction between variables and chan-
nels and the concept of closing substitution, there exist some conditions which
are complete but not satisfiable. For instance, ϕ = [x = a]∧ [a = b]∧ [b 6= c] is
complete on V = {x, a, b, c}, with the equivalence classes {{x, a, b}, {c}}. This
condition is not satisfiable because closing substitutions do not map channels
to other channels, then σ(a) = a 6= b = σ(b) for any closing substitution σ, i.e.,
[[ϕσ]] = False. In a typed setting, there are even fewer conditions which are
satisfiable. For a given type environment ∆ = ∆c, x̃ : T̃ we are only interested
in closing substitutions of the form (called legal substitution on ∆): σ = {b̃/x̃}
where ∆c ` b̃ : T̃ . As to the simple condition [xi = a], with xi, a ∈ dom(∆), if
∆(a) 6<: Ti, the substitution {a/xi} is illegal and not considered. So no legal

19

substitution can satisfy [xi = a], i.e., the condition is not satisfiable.

Lemma 18 If ϕ is complete on dom(∆) and ∅ ⊂ dom(∆v) ⊂ dom(∆), there
is at most one legal substitution which satisfies ϕ.

Proof. Since ϕ is complete, there is a corresponding equivalence relation E .
For ϕ to be satisfiable by a closing substitution σ on dom(∆), each equivalence
class of E , say {u1, · · · , un}, must meet the following two conditions.

• Not all ui are variables. Otherwise, for any a ∈ dom(∆c), ϕ⇒ [ui 6= a]. Then
ϕσ ⇒ [σ(ui) 6= a] for all a ∈ dom(∆c), contradicting the definition of closing
substitution, which maps variables to channels, i.e., σ(ui) ∈ dom(∆c).

• There is no more than one channel in any equivalence class. Otherwise, let
a, b be two channels and ϕ⇒ [a = b], then ϕσ ⇒ [a = b], i.e., [[ϕσ]] = False.

As a result, in each equivalence class there is one and only one channel, possibly
with some variables. So the class looks like {a, x1, · · · , xn−1} where n ≥ 1. The
substitution which satisfies ϕ must map all the variables in the equivalence
class into its unique channel. Moreover, to ensure that ϕ is satisfied by a legal
substitution, there is a third constraint imposed on the equivalence class:

• ∆(a) <: ∆(xi) for all i ≤ n− 1.

All these conditions determine the uniqueness of the legal substitution, if it
exists. 2

Lemma 19 If ϕ and ψ are complete conditions on dom(∆) and are satisfied
by the same legal substitution on ∆, then ϕ⇐⇒ ψ.

Proof. ϕ ∧ ψ is also satisfiable by the same legal substitution. Then ϕ ⇐⇒
ϕ ∧ ψ ⇐⇒ ψ because ϕ and ψ are complete conditions. 2

The following lemma shows that in the presence of complete conditions, it is
sufficient to test one substitution for typed bisimilarity of open terms.

Lemma 20 Let P ≡ ϕP ′ and Q ≡ ϕQ′, with ϕ complete on dom(∆). If σ is
a legal substitution on ∆, σ satisfies ϕ and Pσ ∼∆c

Qσ, then P ∼∆ Q.

Proof. By Lemma 18, besides σ there is no other substitution ρ = {c̃/x̃} with
∆c ` c̃ : T̃ which can satisfy ϕ. In other words, (ϕP ′)ρ ∼∆c

0 ∼∆c
(ϕQ′)ρ.

Therefore we have P ∼∆ Q by the definitions of typed bisimilarity. 2

As in [10], the definition of head normal form exploits complete conditions.
Here the difference is that we only consider those conditions which can be
satisfied by some legal substitutions, while in [10] all complete conditions are
involved because all of them are satisfiable.

20

Definition 21 (head normal form) We say that P is in head normal form
w.r.t. ∆ if P is of the form ∑

i

ϕiαi.ϕ
′
iPi

where for all i,

(1) bn(αi) 6∈ dom(∆);
(2) ϕi is complete on dom(∆) and satisfiable by some legal substitution on

∆;
(3) ϕ′i = ϕi if αi is an input or free action;
(4) ϕ′i = ϕi ∧ (

∧
v∈dom(∆)[a 6= v]) if αi = ū(a : T).

The proof of completeness is established by induction on the depth, d(P), of
a head norm form (hnf) P . Its depth is defined as:

d(0) = 0

d(
∑n
i=1 ϕiαi.ϕ

′
iPi) = 1 +max{d(Pi) | 1 ≤ i ≤ n}

Lemma 22 For each process P and environment ∆, with fv(P) ⊆ dom(∆v),
there is some H of no greater depth than P and in hnf w.r.t. ∆, such that
A ` P =∆ H.

Proof. By structural induction on processes. Let V = dom(∆). We consider
two interesting cases.

The first is when P ≡ α.P ′. Let x be any variable in V . If for each channel
a ∈ V , ∆(a) 6<: ∆(x), then we use Tv1 to derive that A ` P =∆ 0. Otherwise,
suppose Vx = {a1, · · · , an} collects all channels in V such that ∆(ai) <: ∆(x).
As in the untyped setting [10] we can infer that A ` P =∆

∑m
i=1 ψiα.ψiP

′,
where each ψi is complete on V , but not necessarily satisfiable by some legal
substitution on ∆. There are two occasions where ψi is not satisfiable.

(1) If ψi ⇒ [a = b] for a, b ∈ dom(∆c) and a 6= b, we use Cnn1 to get
A ` ψiα.ψiP ′ =∆ 0.

(2) If ψi ⇒ [x 6= a1] · · · [x 6= an] we can use Tvar* to derive that A `
ψiα.ψiP

′ =∆ 0.

So we can remove the summand ψiα.ψiP
′ if ψi is not satisfiable. All other

summands are satisfiable by some legal substitutions because ψi ⇒ [x = ai]
for one ai ∈ Vx and ψi ⇒ [x 6= b] for any other b ∈ dom(∆c).

The second case is when P ≡ ψ Q R. By induction hypothesis Q and R can
be transformed into hnf w.r.t. ∆: A ` Q =∆

∑n
i=1 ψiαi.ψ

′
iQi and A ` R =∆∑m

j=1 ψjαj.ψ
′
jRj. Let us examine the general case that n,m > 0. By C9 and

21

C11, it is easy to see that

A ` P =∆

n∑
i=1

[ψ ∧ ψi]αi.ψ′iQi +
m∑
j=1

[¬ψ ∧ ψj]αj.ψ′jRj.

Clearly ψ can be reduced to a disjunctive normal form
∨o
k=1

∧p
l=1 ϕkl where

o, p ≥ 1 and ϕkl is a match [ukl = vkl] or mismatch [ukl 6= vkl]. Let Q′
i =

αi.ψ
′
iQi. We transform each summand [ψ ∧ ψi]Q′

i as follows.

A ` [ψ ∧ ψi]Q′
i =∆ [(

∨o
k=1

∧p
l=1 ϕkl) ∧ ψi]Q′

i by C1

=∆ [
∨o
k=1(ψi ∧

∧p
l=1 ϕkl)]Q

′
i by C1

=∆
∑o
k=1[ψi ∧

∧p
l=1 ϕkl]Q

′
i by C10

Now we assert that each summand [ψi ∧
∧p
l=1 ϕkl]Q

′
i is provably equal to 0 or

ψiQ
′
i.

Let φk =
∧p
l=2 ϕkl if p > 1, and φk = True if p = 1. So by C1 we have

A ` [ψi ∧
∧p
l=1 ϕkl]Q

′
i =∆ [ϕk1 ∧ φk ∧ ψi]Q

′
i. Here ϕk1 may be a match or

mismatch. We look at match first. Let ϕk1 = [uk1 = vk1] for some uk1 , vk1 s.t.
uk1 6= vk1 .

(1) If uk1 , vk1 ∈ V , then [ϕk1 ∧ φk ∧ ψi] is semantically equivalent either to
False or to [φk ∧ ψi] because ψi is complete on V . That is, we can infer
A ` [ϕk1 ∧ φk ∧ ψi]Q′

i =∆ 0 or A ` [ϕk1 ∧ φk ∧ ψi]Q′
i =∆ [φk ∧ ψi]Q′

i.
(2) If uk1 , vk1 6∈ V , then uk1 , vk1 are channels because fv(P) ⊆ x̃. By Cnn1

we get A ` [ϕk1 ∧ φk ∧ ψi]Q′
i =∆ 0.

(3) If uk1 ∈ V and vk1 6∈ V , then vk1 is a channel but uk1 can be either a
channel or a variable.
(a) uk1 is also a channel. We infer A ` [ϕk1 ∧ φk ∧ψi]Q′

i =∆ 0 by Cnn1.
(b) uk1 is a variable, i.e., uk1 ∈ x̃. We infer A ` [ϕk1 ∧ φk ∧ ψi]Q′

i =∆ 0
by Tvn1.

When ϕk1 is a mismatch [uk1 6= vk1] we apply similar arguments. In Case 1
the result is the same. In the last two cases, using Cnn2 or Tvn2 we infer
that A ` [ϕk1 ∧ φk ∧ ψi]Q′

i =∆ [φk ∧ ψi]Q′
i. Since there are only p components

in
∧p
l=1 ϕkl, we can repeat this inference for at most p times and eventually

get either A ` [ψi ∧
∧p
l=1 ϕkl]Q

′
i =∆ 0 or A ` [ψi ∧

∧p
l=1 ϕkl]Q

′
i =∆ ψiQ

′
i.

Similar result can be got for [¬ψ ∧ ψj]αj.ψ′jRj as well.

In summary we have shown that each summand of P can either be removed
or put into the form of the summands of a hnf. 2

Theorem 23 (Completeness of A) If P ∼∆ Q then A ` P =∆ Q.

22

Proof. Let ∆ = ∆c, x̃ : T̃ . If there is no legal substitution on ∆, i.e., no ã
with ∆c ` ã : T̃ , then by Tv1 we have that A ` P =∆ 0 =∆ Q.

Below we suppose that there exist legal substitutions on ∆. By Lemma 22 we
assume that P and Q are in hnf w.r.t. ∆. Let

A ` P =∆

∑
i

ϕiαi.Pi and A ` Q =∆

∑
j

ψjβj.Qj.

For any summand ϕiαi.Pi of P , let σi be a legal substitution on ∆ which
satisfies ϕi (actually σi is the only legal substitution satisfying ϕi, according
to Lemma 18). So if ϕi ⇒ [x = a] then ∆(a) <: ∆(x) and xσi = a. By
using Tpre* we can transform the action αi into αiσi which contains no
free variable. For example, if αi = x̄y and ϕi ⇒ [x = a] ∧ [y = b], then
ϕix̄y.Pi =∆ ϕixσiyσi.Pi ≡ ϕab.Pi. Furthermore, if the action αiσi is disallowed
by the environment (e.g., αiσi = āb and ∆(a)6↓i, similar for input actions), then
by Tin* and Tout* the summand ϕiαi.Pi is provably equal to 0 and thus
can be consumed by S1. After finite steps of transformation, all remaining
summands are active, i.e., can perform some actions allowed by ∆. We do
similar transformation for Q.

Now we prove by induction on the depth of P +Q that each active summand
of P is provably equal to some active summand of Q. An active summand
ϕiαi.Pi of P gives rise to a transition ∆c]Pσi

αiσi−→ ∆′
c]Piσi. Since P ∼∆ Q,

we have Pσi ∼∆c
Qσi. So there is a matching transition ∆c]Qσi

βjσi−→ ∆′′
c]Qjσi

contributed by some active summand ψjβj.Qj of Q, with ψj satisfied by σi.
By Lemma 19 we know that ϕi ⇐⇒ ψj. From the definition of ∼∆c

we have:

(1) if αiσi = βjσi = τ then Piσi ∼∆c
Qjσi;

(2) if αiσi = βjσi = āb, for some channels a, b, then Piσi ∼∆cub:∆(a)i Qjσi;
(3) if αiσi = ā(b : T1) and βjσi = ā(b : T2) for some channels a, b then

Piσi ∼∆c,b:∆(a)i Qjσi;
(4) if αiσi = a(x : T1) and βjσi = a(x : T2), for some a and x, then for all c

with ∆c ` c : ∆(a)o it holds that Piσi{c/x} ∼∆c
Qjσi{c/x}.

Let us analyze the last two cases in details. In Case 3, σi is also a legal
substitution on ∆, b : ∆(a)i. By Lemma 20 one can infer that Pi ∼∆,b:∆(a)i Qj.
By induction hypothesis A ` Pi =∆,b:∆(a)i Qj. By Iout*, Ires*, Icon and
C1 it can be inferred that A ` ϕiā(b : T1).Pi =∆ ψj ā(b : T2)Qj. The required
result is got by using Tpre*.

In Case 4, we have that Piσi{c/x} ∼∆c
Qjσi{c/x} for all c satisfying the

condition ∆c ` c : ∆(a)o. Note that Pi = ϕiP
′
i and Qj = ψjQ

′
j. By Lemma 18,

any substitution ρ = {c̃/x̃, d/x}, with ∆c ` c̃ : T̃ , d : ∆(a)o, which can satisfy
ϕi and ψj, must coincide with σ on variables x̃. That is, ρ = σ{d/x}. Therefore
Piρ ∼∆c

Qjρ. For any other substitution, say ρ′, [[ϕiρ
′]] = [[ψjρ

′]] = False, and

23

so Piρ
′ ∼∆c

0 ∼∆c
Qjρ

′. Consequently for all ρ we have Piρ ∼∆c
Qjρ, i.e.,

Pi ∼∆,x:∆(a)o Qj. Now applying induction hypothesis, A ` Pi =∆,x:∆(a)o Qj.
It follows that A ` a(x : T1).Pi =∆ a(x : T2).Qj by Iin*. Then we can
infer A ` ϕiαi.Pi =∆ ψjβj.Qj by using Icon, C1 and Tpre*, in the listed
order. 2

5 Other equivalences

In this section we study a variant bisimilarity proposed in [3], which allows
extension of environment and enjoys a nice contextual property. Proof systems
for closed terms are given. An indirect axiomatisation is got by resorting to
the system A of Section 4. We also show that the difference between late and
early style of typed bisimilarity is characterized by one axiom.

5.1 Hennessy and Rathke’s typed bisimilarity

5.1.1 Proof system for closed terms

In the input clause of ∼ (Definition 9), the type environment ∆ is not ex-
tended. By contrast, extensions are allowed in the bisimilarity used in [3]. We
denote with �∆ the variant of ∼∆ which allows extension; its definition is
obtained from that of ∼∆ by using the following input clause:

• if ∆]P
a(x:T)−→ ∆′]P ′, then for some Q′, ∆]Q

a(x:S)−→ ∆′′]Q′ and ∆,∆′′′ ` b :
∆(a)o implies P ′{b/x} R∆,∆′′′ Q′{b/x}, for any channel b and closed type
environment ∆′′′ with dom(∆′′′) ∩ (fn(P,Q) ∪ dom(∆)) = ∅.

Similarly, ∆ can be extended in the definition on open terms.

Lemma 24 If P �∆ Q then P ∼∆ Q.

In �∆, the environment collects the knowledge of the observer relative to
the tested processes, in the sense that the environment only tells us what
the observer knows of the free channels of the processes. In contrast, in ∼∆,
the environment collects the absolute knowledge of the observer, including
information on channels that at present do not appear in the tested processes,
but that might appear later — if the observer decides to send them to the
processes. The main advantage of �∆ is that the environment is allowed to
invent an unbounded number of distinct names, so it is more suitable for
infinite systems. On the other hand, ∼∆ allows us to express more refined
interrogations on the equivalence of processes, for it gives us more flexibility in

24

setting the observer knowledge. Indeed, while �-equivalences can be expressed
using ∼ (Lemma 24), the converse is false. For instance, the processes

P
def
= a(x : boT).[x = y]τ Q

def
= a(x : boT).0

are in the relation ∼∆, for ∆
def
= a : oboT , b : bbT , y : obT . However, they are

not in a relation �Γ, for any Γ: the observer can always create a new channel of
type boT , and use it to instantiate both x and y, thus validating the condition
[x= y].

In the following lemma we give two properties of �∆. They are analogous to
Lemma 11 and 13 respectively, and can be proved as their counterparts.

Lemma 25 (1) If P �∆ Q and ∆ <: ∆′, then P �∆′ Q.
(2) If P �∆ Q then Pσ �∆σ Qσ for σ injective on fn(P,Q) ∪ dom(∆) and

∆σ is the type environment which maps σ(a) to ∆(a) for all a ∈ dom(∆).

An important property which is enjoyed by �∆ but not by ∼∆ is as follows.

Lemma 26 If P �∆ Q and a 6∈ fn(P,Q) ∪ dom(∆), then P �∆,a:T Q.

This lemma says that increasing capabilities on irrelevant channels does not
raise an observer’s discriminating power. The reason is that the observer al-
ready has the ability to create new channels, since in the definitions of bisim-
ulations we test all channels with appropriate types for the case of input.

Lemma 27 It holds that a(x : T1).P �∆ a(x : T2).Q, if the following two
conditions are satisfied.
(i) P{b/x} �∆ Q{b/x} for all b with ∆c ` b : ∆(a)o;
(ii) given c 6∈ fn(P,Q) ∪ dom(∆), P{c/x} �∆,c:T Q{c/x} for all T <: ∆(a)o.

Proof. The action of the configuration ∆]a(x : T1).P can be matched by
that of ∆]a(x : T2).Q. So we only show that P{b/x} �∆,∆′ Q{b/x} for any
b and ∆′ with dom(∆′) ∩ fn(P,Q) = ∅ and ∆,∆′ ` b : ∆(a)o. There are two
possibilities:

(1) b ∈ dom(∆). When ∆′ = ∅, the result follows from the hypothesis (i).
For other ∆′, we get the result indirectly by using Lemma 26.

(2) b 6∈ dom(∆). We consider the case that ∆′ = b : T with T <: ∆(a)o.
Base on this case, the result for other ∆′ with ∆′ = b : T,∆′′ can be
inferred from Lemma 26. From (ii) we know that P{c/x} �∆,c:T Q{c/x}.
Since bisimulation is insensitive to injective type-preserving substitutions
by Lemma 25 (2), we have P{c/x}{b/c} �∆,b:T Q{c/x}{b/c}. That is,
P{b/x} �∆,∆′ Q{b/x}, which is the required result. 2

25

We can derive a proof system for � with a simple modification of that for ∼
in Section 3. Let P ′ be the system obtained from P by replacing rule Iinc*
with Iinc′:

Iinc′ If • P{b/x} =∆ Q{b/x} for all b with ∆c ` b : ∆(a)o, and

• given c 6∈ fn(P,Q) ∪ dom(∆),

P{c/x} =∆,c:T Q{c/x} for all T <: ∆(a)o,

then a(x : T1).P =∆ a(x : T2).Q.

The quantification on T in the premises is finite: any type has only finitely
many subtypes.

Theorem 28 P ′ ` P =∆ Q iff P �∆ Q, where P and Q are closed.

Proof. According to Lemma 27, rule Iinc′ is sound. The soundness of other
rules is easy to show. The completeness proof is similar to that of P (Theo-
rem 15). 2

5.1.2 Indirect axiomatisation

The previous definition of � involves infinitely many substitutions. Neverthe-
less we show in the following lemma that there exists an efficient characterisa-
tion of the equivalence which employs only finitely many substitutions. This
characterisation result relies on the assumption that the set of subtypes of any
type is finite and the environment contains finitely many variables (the terms
could even be extended with non-finite operators such as recursion, as long as
they contain finitely many free variables). First, we introduce a notation. Let
T̃ = T1, · · · , Tn. There are only finitely many different types, say S1, . . . , Sm,
each of which is a subtype of some Ti for i ≤ n. Then we pick n fresh names
(which do not appear in ∆, P and Q) ai1, · · · , ain for each type Si and extend
∆ in the following way.

Env(∆, T̃ , P,Q)
def
= ∆ ∪ {aik : Si | 0 < i ≤ m, 0 < k ≤ n, aik 6∈ fn(∆, P,Q)}

Lemma 29 Suppose ∆
def
= ∆c, x̃ : T̃ . If for each legal substitution σ on

Env(∆, T̃ , P,Q) it holds that Pσ �
Env(∆c,T̃ ,P,Q)

Qσ, then P �∆ Q.

Proof. Let ∆1 = Env(∆c, T̃ , P,Q), and the length of the tuple T̃ be n with
n > 0. We prove a stronger result P �

∆1,x̃:T̃
Q and then conclude by Lemma

25 (1). We shall show that P{b̃/x̃} �∆1,∆′ Q{b̃/x̃} for any b̃ and closed

environment ∆′ s.t. dom(∆′) ∩ fn(P,Q) = ∅ and ∆1,∆
′ ` b̃ : T̃ . We proceed

by induction on the number of names appearing in b̃ but not in dom(∆1),

26

which is defined as follows.

num(∅) = 0

num(b̃) =

num(b1 · · · bn−1) + 1 if bn 6∈ dom(∆1)

num(b1 · · · bn−1) otherwise

• Base step. Suppose num(b̃) = 0. When ∆′ = ∅, the result follows from the
hypothesis. For other ∆′, the result is got indirectly by using Lemma 26.
• Inductive step. Suppose that the result holds for all b̃ which satisfy the
conditions in the hypothesis and num(b̃) ≤ k. Given another b̃ with num(b̃) =
k + 1. Without loss of generality we assume that there exists a c 6∈ dom(∆1)
and l ≤ n such that b1 = b2 = · · · = bl = c and bi 6= c for all i > l. Then
∆1,∆

′ can be rewritten as ∆2, c : Si for some ∆2 and Si s.t. Si ≤ Tι for all
ι ≤ l. Choose one name from {ai1, · · · , ain}, say aij, which is different from
any names in bl+1, · · · , bn, and construct a substitution

σ = {aij/x1, · · · , aij/xl, bl+1/xl+1, · · · , bn/xn}

Obviously ∆2 ` aij : T1, · · · , aij : Tl, bl+1 : Tl+1, · · · , bn : Tn and num(aij, · · ·,
aij, bl+1, · · · , bn) ≤ k. By induction hypothesis Pσ �∆2 Qσ. From Lemma 25
(2) we have

Pσ{c/aij} �∆2{c/aij} Qσ{c/aij}

i.e., P{b̃/x̃} �∆2{c/aij} Q{b̃/x̃}. As aij 6∈ dom(∆2{c/aij}), by Lemma 26 we

get P{b̃/x̃} �∆3 Q{b̃/x̃} for ∆3 = ∆2{c/aij}, aij : Si = ∆1,∆
′, which is just

the required result. 2

Below we establish a property of ∼∆, corresponding to Lemma 26 for �∆. It
allows the extension of ∆ in a limited way. The proof employs the concept of
size of a process P , written size(P), which we define as follows.

size(0) = 0 size(P + Q) = max{size(P), size(Q)}

size(α.P) = 1 + size(P) size(ϕPQ) = max{size(P), size(Q)}

size((νa : S)P) = size(P) size(P | Q) = size(P) + size(Q)

One can verify that if ∆]P
α−→ ∆′]P ′ then size(P) > size(P ′) and fn(P ′) ⊆

fn(P) ∪ bn(α).

Lemma 30 Given two closed terms P and Q, let ∆ = ∆0, c1 : T, ..., cn : T
with n ≥ size(P + Q) and ci 6∈ fn(P,Q) for all i ∈ 1..n. If P ∼∆ Q then
P ∼∆,a:T Q for a 6∈ fn(P,Q) ∪ dom(∆).

27

Proof. By induction on the size of P + Q. If size(P + Q) = 0 then it is
obvious that P ∼∆,a:T 0 ∼∆,a:T Q. Below we suppose size(P + Q) > 0. If
∆, a : T]P

α−→ ∆′]P ′ there must exist some ∆′′ s.t. ∆′ = ∆′′, a : T because a
does not affect the transition. In other words, we have ∆]P

α−→ ∆′′]P ′. Since

P ∼∆ Q, we have a matching transition ∆]Q
β−→ ∆′′′]Q′, where |α |=|β |. It

follows that ∆, a : T]Q
β−→ ∆′′′, a : T]Q′. There are two cases:

(1) α is not an input action. In this case ∆′′ = ∆′′′ and P ′ ∼∆′′ Q′. By
induction hypothesis we have P ′ ∼∆′′,a:T Q

′.
(2) α is an input action b(x : S). Then for each d with ∆ ` d : ∆(b)o it holds

that P ′{d/x} ∼∆ Q′{d/x}.
(a) If d ∈ dom(∆0) with ∆0 ` d : ∆(b)o, then n ≥ size(P + Q) >

size(P ′{d/x}+Q′{d/x}) and ci 6∈ fn(P ′{d/x}, Q′{d/x}) for i ∈ 1..n.
By induction hypothesis we have P ′{d/x} ∼∆,a:T Q

′{d/x}.
(b) If c1 : T, ..., cn : T ` d : ∆(b)o, then without loss of generality we may

assume that d = c1. It can be checked that n−1 ≥ size(P +Q)−1 ≥
size(P ′{d/x}+Q′{d/x}) and ci 6∈ fn(P ′{d/x}, Q′{d/x}) for i ∈ 2..n.
We can now appeal to induction hypothesis and get the result that
P ′{d/x} ∼∆,a:T Q

′{d/x}.
(c) If a : T ` a : ∆(b)o, then T <: ∆(b)o and thus ∆ ` c1 : ∆(b)o,

which implies P ′{c1/x} ∼∆ Q′{c1/x}. As {a/c1} is an injective type-
preserving substitution, we have

P ′{c1/x}{a/c1} ∼∆{a/c1} Q
′{c1/x}{a/c1}

i.e., P ′{a/x} ∼∆{a/c1} Q
′{a/x}. Now observe that

(i) n− 1 ≥ size(P +Q)− 1 ≥ size(P ′{a/x}+Q′{a/x}),
(ii) ci 6∈ fn(P ′{a/x}, Q′{a/x}) for i ∈ 2..n,
(iii) c1 6∈ fn(P ′{a/x}, Q′{a/x}) ∪ dom(∆{a/c1}).
By induction hypothesis we have P ′{a/x} ∼∆{a/c1},c1:T Q′{a/x}.
Note that ∆{a/c1}, c1 : T = ∆, a : T .

In summary, for each d with ∆, a : T ` d : ∆(b)o, it always holds that
P ′{a/x} ∼∆,a:T Q

′{a/x}, which is the required result. 2

We know from Lemma 24 that ∼∆ is weaker than �∆. This gives rise to
an interesting question: whether there exists some ∆∗ such that under the
extended environment ∆,∆∗ we have that P ∼∆,∆∗ Q iff P �∆ Q. We shall
give a positive answer to this question, though we did not succeed in obtaining
the counterpart of Theorem 23 for �. The encountered problem is discussed
at the end of this subsection.

We define the depth, d(T), of a type T , indicating the maximum number of
nesting of capabilities in it.

28

d(unit) = 0 d(iT) = d(oT) = 1 + d(T)

d(b〈T, S〉) = 1 +max{d(T), d(S)}

Let Γ ` P . Each name in P has a type, either recorded in the syntax of P
or in Γ. If T1, . . . , Tn are all such types, d(Γ, P) is max{d(Ti) | 1 ≤ i ≤ n}.
Now, if ∆]Pi is a configuration, for i = 1, 2, then there are type environments
Γi such that Γi <: ∆ and Γi ` Pi. In this case, we set d(P1, P2,Γ1,Γ2) as
max{d(Γ1, P1), d(Γ2, P2)}. There are only finitely many different types with
depth less than or equal to d(P1, P2,Γ1,Γ2), say S1, . . . , Sm, and ∆v is defined
on finitely many variables, say x1, . . . , xk. We can pick up n fresh (hitherto
unused) channels ai1, . . . , ain for each Si, where n = max{k, size(P1 + P2)},
and construct a type environment

Env(∆, P1, P2,Γ1,Γ2) = {aij : Sij | 0 < i ≤ m, 0 < j ≤ n}.

We say that P1 �∆ P2 under Γ1,Γ2 if Γi <: ∆ and Γi ` Pi (i = 1, 2).

Lemma 31 If P1 �∆ P2 under Γ1,Γ2 then P1 ∼∆,Env(∆,P1,P2,Γ1,Γ2) P2.

Proof. By Lemma 26 we have P1 �∆,Env(∆,P1,P2,Γ1,Γ2) P2. Then the result
follows from Lemma 24. 2

In this lemma, P1, P2 can be either closed or open. For the opposite direction,
we consider closed terms first.

Lemma 32 If ∆]Pi respects Γi, Pi is closed, for i = 1, 2, and it holds that
P1 ∼∆,Env(∆,P1,P2,Γ1,Γ2) P2, then P1 �∆ P2.

Proof. By induction on the size of P1 + P2. In the case size(P1 + P2) = 0, it
is immediate that P1 �∆ 0 �∆ P2. Below we suppose size(P1 + P2) > 0. Let
∆∗ = Env(∆, P1, P2,Γ1,Γ2). Since dom(∆∗)∩fn(P1, P2) = ∅, all actions of the
configuration ∆,∆∗]P1 can be performed by ∆]P1, and vice versa. Suppose
that ∆]P1

α−→ ∆′]P ′
1. It is easy to see that there is a matching transition

∆]P2
β−→ ∆′′]P ′

2.

(1) If α is not an input action, then | α |=| β |, ∆′ = ∆′′ and P ′
1 ∼∆′,∆∗ P ′

2.
Suppose that ∆′]P ′

i respects Γ′i for i = 1, 2. Clearly d(P ′
1, P

′
2,Γ

′
1,Γ

′
2) ≤

d(P1, P2,Γ1,Γ2) by Lemma 6. From Lemma 30 we have P ′
1 ∼∆1 P

′
2 where

∆1 = ∆′,∆∗, Env(∆′, P ′
1, P

′
2,Γ

′
1,Γ

′
2). Now it follows from Lemma 11 that

P ′
1 ∼∆′,Env(∆′,P ′

1,P
′
2,Γ

′
1,Γ

′
2) P

′
2. By induction hypothesis we get P ′

1 �∆′ P ′
2.

(2) If α is an input action a(x : T), then P ′
1{b/x} ∼∆,∆∗ P ′

2{b/x} for
all b with ∆,∆∗ ` b : ∆(a)o. Note that ∆,∆∗ ⊇ ∆1 for some ∆1 =
Env(∆,∆(a)o, P

′
1, P

′
2) by the definition of Env(∆, T̃ , P1, P2) given in the

beginning of this subsection. So for all c with ∆1 ` c : ∆(a)o we have
P ′

1{c/x} ∼∆,∆∗ P ′
2{c/x}. It can be checked that ∆1]P

′
i{c/x} is a config-

29

uration respecting Γ′i
def
= Γi,∆

∗ for i = 1, 2. As

d(∆1, P
′
1{c/x}, P ′

2{c/x},Γ′1,Γ′2) ≤ d(∆, P1, P2,Γ1,Γ2)

we have P ′
1{c/x} ∼∆2 P

′
2{c/x}, where

∆2 = ∆,∆∗, Env(∆1, P
′
1{c/x}, P ′

2{c/x},Γ′1,Γ′2)

by Lemma 30. It follows from Lemma 11 that P ′
1{c/x} ∼∆3 P ′

2{c/x}
where ∆3 = ∆1, Env(∆1, P

′
1{c/x}, P ′

2{c/x},Γ′1,Γ′2). By induction hy-
pothesis we get P ′

1{c/x} �∆1 P ′
2{c/x}. By Lemma 29 it follows that

P ′
1 �∆,x:∆(a)o P

′
2, which is the required result. 2

Lemma 33 If ∆]Pi respects Γi, for i = 1, 2, and P1 ∼∆,Env(∆,P1,P2,Γ1,Γ2) P2

then P1 �∆ P2.

Proof. Similar to the second case of the proof in Lemma 32. Let ∆ =
∆c, x̃ : T̃ and ∆∗ = Env(∆, P1, P2,Γ1,Γ2). Then for any legal substitution
σ on ∆,∆∗ we have that P1σ ∼∆c,∆∗ P2σ. We also have ∆c,∆

∗ ⊇ ∆1 for
some ∆1 = Env(∆c, T̃ , P1, P2). So for all ρ = {c̃/x̃} with ∆1 ` c̃ : T̃ we have

P1ρ ∼∆c,∆∗ P2ρ. One can prove that ∆1]Piρ is a configuration respecting Γ′i
def
=

Γi,∆
∗. Obviously d(∆1, P1ρ, P2ρ,Γ

′
1,Γ

′
2) = d(∆, P1, P2,Γ1,Γ2), so P1ρ ∼∆2

P2ρ for some environment ∆2 = ∆c,∆
∗, Env(∆1, P1ρ, P2ρ,Γ

′
1,Γ

′
2). It follows

that P1ρ ∼∆1,Env(∆1,P1ρ,P2ρ,Γ′1,Γ
′
2) P2ρ. By Lemma 32 we have P1ρ �∆1 P2ρ,

which implies P1 �∆ P2 by Lemma 29. 2

Combining Lemma 31 and 33 we have the result below.

Lemma 34 P1 �∆ P2 under Γ1,Γ2 iff P1 ∼∆,Env(∆,P1,P2,Γ1,Γ2) P2.

As a consequence of this lemma, we obtain the following theorem.

Theorem 35 P1 �∆ P2 under Γ1,Γ2 iff A ` P1 =∆,Env(∆,P1,P2,Γ1,Γ2) P2.

Directly axiomatizing� appears far from straightforward due to complications

entailed by subtyping. We consider an example. Let T
def
= unit and

∆
def
= a : oboT , y : obT

R
def
= τ.((νc : bT)ȳc.c̄+ a(x : boT).[x = y]τ)

R1
def
= τ.((νc : bT)ȳc.0 + a(x : boT).[x = y]τ)

R2
def
= τ.((νc : bT)ȳc.c̄+ a(x : boT).0).

It holds that
R +R1 +R2 �∆ R1 +R2.

30

Here y can be instantiated by channels with subtypes of obT , which can be
seen in Figure 1 (b). When y is instantiated by a channel with type boT ,
we can simulate R with R1. For other subtypes of obT , we can simulate R
with R2. That is, we have two equivalent processes, say P and Q, with a free
variable y, and the actions from a summand of P have to be matched by
different summands of Q, depending on the types used to instantiate y. It
appears hard to capture this relationship among terms using axioms involving
only the standard operators of the π-calculus.

5.2 Early bisimilarity

All bisimilarities considered so far in the paper are in the “late” style [13].
As usual, the “early” versions are obtained by commuting the quantifiers in
the input clause of bisimilarity. As in the untyped case, the difference between
late and early equivalences is captured by the axiom SP [10]:

SP a(x : T1).P + a(x : T2).Q

=∆ a(x : T1).P + a(x : T2).Q+ a(x : T3).([x = u]PQ)

All results in the paper also hold for the early versions of the equivalences,
when rule SP is added. For example, by letting the early version of ∼ be ∼e,
Ae be A ∪ {SP} and Pe be P ∪ {SP}, we can establish the counterparts of
Theorem 15 and 23.

Theorem 36 (1) P ∼e
∆ Q iff Pe ` P =∆ Q, where P and Q are closed;

(2) P ∼e
∆ Q iff Ae ` P =∆ Q.

Proof. See Appendix B. 2

6 Adding parallelism

So far the only π-calculus operator that we have not considered is parallel com-
position. When it is admitted, Table 1 should be extended with the following
three transition rules (their symmetric rules are omitted).

par
P

α−→ P ′ bn(α) ∩ fn(Q) = ∅
P | Q α−→ P ′ | Q

com P
āb−→ P ′ Q

a(x:S)−→ Q′

P | Q τ−→ P ′ | Q′{b/x}

close P
ā(b:T)−→ P ′ Q

a(x:S)−→ Q′

P | Q τ−→ (νb : T)(P ′ | Q′{b/x})

31

Table 6
Two rules for parallel composition
Ipar* Assume ∆0]P respects Γ1, ∆0]Q respects Γ2, and ∆ = ∆0, Env(∆0, P,Q,Γ1,Γ2).

If P =∆ Q and ∆ ` R then P | R =∆ Q | R
E* Assume P ≡ Σiϕiαi.Pi and Q ≡ Σjψjβj .Qj where no αi (resp. βj) binds a name free in
Q (resp. P). Let ∆]P | Q respect Γ. Then infer:

P | Q =∆

∑
i
ϕiαi.(Pi | Q) +

∑
j
ψjβj .(P | Qj) +

∑
αi opp βj

[ϕi ∧ ψj ∧ (ui = vj)]τ.Rij

where αi opp βj , ui, vj and Rij are defined as follows:
1. αi is ūiw, βj is vj(x : T) and Γ(w) <: T ; then Rij is Pi | Qj{w/x};
2. αi is ūi(w : S), βj is vj(x : T) and S <: T ; then Rij is (νw : S)(Pi | Qj{w/x});
3. the converse of (1) or (2).

In the typed setting, we incorporate the standard typing rule

Γ ` P Γ ` Q

Γ ` P | Q
into Table 2. The TLTS shown in Table 3 is now extended with one rule:

Par
∆] P

α−→ ∆′] P ′ bn(α) ∩ fn(Q) = ∅
∆] P | Q α−→ ∆′] P ′ | Q

After the above modifications, all definitions and results in Section 2 are still
valid.

To lift the results in Section 3, 4 and 5 to the full π-calculus, it suffices to
enrich Table 4 with the two rules in Table 6. As in untyped π-calculus, the
expansion law E* is used to reduce the parallel composition of two terms
into the sum of parallel-free terms. In the typed setting we add conditions on
types in order to check the typability of the resulting process Rij. Rule Ipar*
says that if ∆ cannot distinguish P from Q, then it cannot distinguish P | R
from Q | R either, provided that: (i) ∆ contains enough fresh channels; (ii) R
requires no capabilities beyond the knowledge of ∆. Note that we cannot do
without the first condition, i.e., the rule cannot be simplified as:

For any ∆, if P =∆ Q and ∆ ` R then P | R =∆ Q | R
which is unsound for ∼ (though it is sound for �). The point is that when
comparing P | R and Q | R, the observer may first increase his knowledge
by interacting with R, then distinguish P from Q by the new knowledge. For

example, let ∆
def
= a : bT, e : bT, b : T and

P
def
= a(x : T).[x 6= b]τ Q

def
= a(x : T).0 R

def
= (νc : T)ēc.

It is easy to see that P ∼∆ Q and ∆ ` R but P | R 6∼∆ Q | R. After
the interaction with R, the environment evolves into ∆, c : T . Later the new
channel c may be used to instantiate x, thus validating the condition x 6= b
and liberating the prefix τ .

The soundness of E* is easy to show. To prove that Ipar* is sound, we define

32

a family of relations R = {R∆}∆ where

R∆ = {((νã : T̃1)(P | R), (νã : T̃2)(Q | R)) | P ∼∆u∆′ Q, ∆ u∆′ ` R,

∆ = ∆0, Env(∆0, P,Q,Γ1,Γ2), ∆0 u∆′]P respects Γ1, ã : T̃1,

and ∆0 u∆′]Q respects Γ2, ã : T̃2, for some ∆0,∆
′, Γ1,Γ2}.

Then it can be proved that R is a typed bisimulation.

In general, if P ∼∆ Q then the equality P =∆ Q can be inferred in two steps:

(1) By E*, Ipar* and Twea* we infer P =∆ P ′ and Q =∆ Q′, where both
P ′ and Q′ are parallel-free terms.

(2) After the above preprocessing job, we infer P ′ =∆ Q′ by the proof systems
and axiomatisations presented in previous sections.

7 Conclusions and future work

In this work we have constructed a proof system and an axiom system for
typed bisimilarity (∼). For the variant bisimilarity proposed in [3], we have
provided a proof system for closed terms, and an indirect axiomatisation of
all terms that depends on the system of ∼. Early versions of the systems are
obtained by adding one axiom SP. All the systems are proved to be sound
and complete.

As partial meet and join operators do not exist in the original capability types
[11], we adopt in this work one of their extensions, Hennessy and Rathke’s
types [3]. An alternative path to take is to go the opposite direction and add
some syntactic constraints to capability types, thus only certain shapes of
types are legal and partial meet and join operators exist upon the legal types.
For instance, in synchronous localised π-calculus there are two forms of legal
types: oo · · · oB and bo · · · oB where B is a basic type. It is easy to see that
the two operators exist because whenever T <: S holds, then either T ≡ S or
T ≡ bT ′, S ≡ oT ′ for some T ′, which means:

(1) if T <: T1, T2 and T1 6≡ T2 then T1 u T2 = T ;
(2) if T1, T2 <: T and T1 6≡ T2 then T1 t T2 = T .

Therefore axiomatisation in synchronous localised π-calculus is a special case
of the problem addressed in this work.

33

Below we indicate some further directions of possible future work.

• Due to the difficulty discussed at the end of Section 5.1.2 we are only able to
give an indirect axiomatisation of �. We are not clear whether it is possible
to directly axiomatize the equivalence in the language considered in the
current paper.

• In our type system we allow matching names to have arbitrary types. It is
not clear how to relax our use of matching. Limiting matching to names
of compatible types might pose a problem for subject reduction. On the
other hand, allowing matching only on names with types of the form bT ,
as in [11], would seem difficult, for matching plays an important role in
axiomatisations. For example, one would not be able to rewrite x | ȳ as
x.ȳ + ȳ.x+ [x = y]τ under the type environment ∆ = x : iT, y : oT . In [3],
a particular typing rule for matching was presented, which allowed meet of
types on successful matches. It might be interesting to know whether the
presence of this typing rule would affect the validity of our proof systems.

• For the variant bisimilarity �, as well as the typed bisimilarity defined in
[13], there are results that relate them to contextual equivalences such as
barbed equivalence. It would be interesting to see what kind of contextual
equivalence (if any) corresponds to ∼.

• We do not know at present how to adapt our results to the language in [2].
We recall that the main differences are: (i) no distinction between channels
and variables, (ii) no matching construct, (iii) the use of Pierce and San-
giorgi’s types. Because of (i), some care is needed in a proof system, for
instance in defining the appropriate rules for manipulating names that will
later be bound in an input. Because of (ii), the expansion law cannot be
used without appropriate modification.

• Another issue is axiomatisations of typed weak bisimilarities. In this case,
however, types may not be so central, in that the addition of the usual tau
laws [7] might be sufficient.

Acknowledgements

We are very grateful to the anonymous referees whose comments allowed us to
improve the presentation of the paper and to amend some errors in an earlier
version.

References

[1] M. Boreale and R. De Nicola. Testing equivalences for mobile processes. Journal
of Information and Computation, 120:279–303, 1995.

34

[2] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without
matching. In Proceedings of LICS ’98. IEEE, Computer Society Press, 1998.

[3] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes
in the presence of subtyping. Mathematical Structures in Computer Science,
14:651–684, 2004.

[4] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Journal of Information and Computation, 173:82–120, 2002.

[5] H. Lin. Symbolic bisimulation and proof systems for the π-calculus. Technical
Report 7/94, School of Cognitive and Computing Sciences, University of Sussex,
UK, 1994.

[6] H. Lin. Complete inference systems for weak bisimulation equivalences in the
π-calculus. Journal of Information and Computation, 180(1):1–29, 2003.

[7] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[8] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, 1992.

[10] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Journal
of Information and Computation, 120(2):174–197, 1995.

[11] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[12] D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica,
33:69–97, 1996.

[13] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[14] H. Zantema. Termination. In M. Bezem, J. Klop, and R. de Vrijer, editors,
Term Rewriting Systems, pages 181–259. Cambridge University Press, 2003.

35

Appendix

A Some more derived rules:

Cvn [x = a]P =∆ [x = a][x 6= a1] · · · [x 6= an]P if a 6∈ {ai | 1 ≤ i ≤ n}

Tv2 P =∆ [x = a1]P + [x = a2]P + · · ·+ [x = an]P

if {b ∈ dom(∆c) | ∆(b) <: ∆(x)} = {a1, · · · , an}

Tv3 If P =∆,x:T Q then P =∆,x:S Q for S <: T

Iv1 If P =∆,y:∆(x)i Q then x(y : T1).P =∆ x(y : T2).Q

Iv2 If P =∆uv:∆(x)o Q then x̄v.P =∆ x̄v.Q

Proof. Among all the rules, the proof of Iv2 is the hardest, so we report it
below in details and omit the others.

Let {b ∈ dom(∆c) | ∆(b) <: ∆(x)} = {a1, · · · , an}. When n = 0, the result is
immediate by using Tv1. Suppose n > 0. For each i ≤ n, ∆(ai) <: ∆(x), there
are two possibilities: (i) if ∆(ai)6↓i then āib.P =∆ 0 =∆ āib.Q by Tout*; (ii)
if ∆(ai)↓i, then we have ∆(x)o <: ∆(ai)o <: ∆(ai)i by Proposition 2. There
are two cases, depending on name v.

• v is a channel, say b. It follows from P =∆ub:∆(x)o Q that P =∆ub:∆(ai)i Q by
Twea*. Using Iout*, we have

āib.P =∆ āib.Q (A.1)

Finally,

x̄b.P =∆ [x = a1]x̄b.P + · · ·+ [x = an]x̄b.P by Tv2

=∆ [x = a1]ā1b.P + · · ·+ [x = an]ānb.P by Tpre*

=∆ [x = a1]ā1b.Q+ · · ·+ [x = an]ānb.Q by (A.1)

=∆ x̄b.Q by Tpre*, Tv2

• v is a variable, say y. By hypothesis, ∆]x̄y.P and ∆]x̄y.Q are configurations,
then ∆(y) <: ∆(x)o. By Proposition 1, we have ∆ u y : ∆(x)o = ∆. Let
{b ∈ dom(∆c) | ∆(b) <: ∆(y)} = {b1, · · · , bm}. We consider the non-trivial
case that m > 0. For each i ≤ n, j ≤ m, by Proposition 2 we have

∆(bj) <: ∆(y) <: ∆(x)o <: ∆(ai)o <: ∆(ai)i.

So ∆ u bj : ∆(ai)i = ∆ = ∆ u y : ∆(x)o. Therefore we can rewrite the
hypothesis P =∆uy:∆(x)o Q as P =∆ubj :∆(ai)i Q. Using Iout*, we get the

36

result

āibj.P =∆ āibj.Q (A.2)

At last we can do the inference.

x̄y.P

=∆ [x = a1]x̄y.P + · · ·+ [x = an]x̄y.P by Tv2

=∆ [x = a1][y = b1]x̄y.P + · · ·+ [x = a1][y = bm]x̄y.P+

· · ·+ [x = an][y = b1]x̄y.P + · · ·+ [x = an][y = bm]x̄y.P by Tv2

=∆ [x = a1][y = b1]ā1b1.P + · · ·+ [x = a1][y = bm]ā1bm.P+

· · ·+ [x = an][y = b1]ānb1.P + · · ·+ [x = an][y = bm]ānbm.P by Tpre*

=∆ [x = a1][y = b1]ā1b1.Q + · · ·+ [x = a1][y = bm]ā1bm.Q+

· · ·+ [x = an][y = b1]ānb1.Q + · · ·+ [x = an][y = bm]ānbm.Q by (A.2)

=∆ x̄y.Q by Tpre*, Tv2

2

B The proof of Theorem 36

Proof. We sketch the completeness proof of clause (ii), which is carried out
by induction on the depth of P + Q; clause (i) can be shown in a similar
way. Assume that P,Q are in hnf w.r.t. ∆ and ∆ = ∆c, x̃ : T̃ . Let ∆]Q
be a configuration respecting Γ. For some complete condition ϕ which are
satisfiable by some legal substitution on ∆, let Pϕ,a be the sum of all active
summands ϕiαi.Pi of P such that {C1,Tpre∗} ` ϕiαi.Pi =∆ ϕa(x : Ti).Pi.
We write

Pϕ,a =
n∑
i=1

ϕa(x : Ti).Pi and Qϕ,a =
m∑
j=1

ϕa(x : Sj).Qj

The key of the proof is to find, for each 1 ≤ i ≤ n, a term Ri satisfying the
following two properties.

Ae ` ϕa(x : Ti).Pi =∆ ϕa(x : Γ(a)i).Ri (B.1)

Ae ` Qϕ,a =∆ Qϕ,a + ϕa(x : Γ(a)i).Ri (B.2)

Let σ = {b̃/x̃} be a substitution which satisfies ϕ and ∆c ` b̃ : T̃ . From

Pσ ∼e
∆c

Qσ we derive that Pϕ,aσ ∼e
∆c

Qϕ,aσ. Given ∆c]Pϕ,aσ
a(x:Ti)−→ ∆′]Piσ,

for each b ∈ {b ∈ dom(∆c) | ∆c(b) <: ∆c(a)o} = {c1, · · · , ck} we have a

37

matching transition ∆c]Qϕ,aσ
a(x:SJ(i,b))−→ ∆′′]QJ(i,b)σ for some function J from

[1, n] and {ci | 1 ≤ i ≤ k} to [1,m]. By the definition of hnf, Pi and QJ(i,b) are
of the form ϕP ′

i and ϕQ′
J(i,b) respectively. Here ϕ is complete on dom(∆), but

not on dom(∆) ∪ {x}. We can complete it by adding conditions on the top
which respects {b/x}. Let ϕb = [x = b] ∧ ∧

u∈dom(∆)\b[x 6= u]. It is easy to see
that

([ϕb ∧ ϕ]P ′
i)σ{b/x} ∼e

∆c
([ϕb ∧ ϕ]Q′

J(i,b))σ{b/x}.
By Lemma 20 we have [ϕb ∧ ϕ]P ′

i ∼e
∆,x:∆(a)o

[ϕb ∧ ϕ]Q′
J(i,b). By induction

hypothesis

Ae ` ϕbPi =∆,x:∆(a)o ϕbQJ(i,b). (B.3)

Now define Si,l for l ≤ k by

Si,1 = QJ(i,c1)

Si,l = [x = cl] QJ(i,cl) Si,l−1 for 1 < l ≤ k

Let Ri be defined as Si,k. Using C9 and Cvn, we decompose binary conditions
in Ri into unary conditions.

Ae ` Ri =∆,x:∆(a)o ϕckQJ(i,ck) + ϕck−1
QJ(i,ck−1) + · · ·+ ϕc1QJ(i,c1)

On the other hand by Tv2 and Cvn we have

Ae ` Pi =∆,x:∆(a)o ϕckPi + · · ·+ ϕc1Pi.

By using (B.3) we have Ae ` Pi =∆,x:∆(a)o Ri, from which we infer that Ae `
a(x : Ti).Pi =∆ a(x : Γ(a)i).Ri and Ae ` ϕa(x : Ti).Pi =∆ ϕa(x : Γ(a)i).Ri by
Iin* and Icon. So we get the property in (B.1).

Finally with axiom SP we can show by induction on 0 < l ≤ k that

Ae ` Qϕ,a =∆ Qϕ,a + ϕa(x : Γ(a)i).Si,l. (B.4)

Therefore (B.2) follows because it is the special case of (B.4) when l = k. 2

38

