
Program Transformations under

Dynamic Security Policies

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. A new static analysis is proposed for programming languages
with access control based on stack inspection. This analysis allows for
various security-aware program optimizations. A novel feature of our
static analysis is that it is parametric with respect to the security policy
in force, so it needs not to be recomputed when the access rights are
dynamically updated.

1 Introduction

Programming applications over wide area networks has emphasized issues that
had received less priority when working over local area networks. One of these
issues concerns security. In a wide area network no central authority can define
and enforce policies which regulate accesses to resources. Applications are de-
signed to be executed and interoperate with potentially malicious and untrusted
components, e.g. components originated from different, possibly unknown, ad-
ministration domains. Typically, components are developed and maintained by
different providers and may be downloaded and linked together “on demand”. At
run-time, systems interleave computational activities with meta-programming
activities, such as dynamic linking, assembling and customization of libraries,
that permit to reconfigure the application without having to restart it.

Security-aware programming languages, such as Java and C], have introduced
programmable authorization-based models to determine when a principal can ac-
cess to a resource. These languages take access control decisions by inspecting the
run-time call stack. A permission is granted, provided that it belongs to all the
principals on the call stack. The so-called privileged operations are an exception:
they are allowed to execute any code granted to their principal, regardless of the
calling sequence. This access control mechanism is known as stack inspection.

Traditionally, stack inspection has been implemented with the lazy evaluation
strategy: the call stack is only retrieved and inspected when access control tests
are performed. This strategy has some drawbacks. First, the run-time overhead
due to the analysis of stack frames may grow very high. Second, stack inspection
deeply affects interprocedural program transformations, because these optimiza-
tions may alter the structure of the call stack (see e.g. method inlining).

Another evaluation strategy for stack inspection is the eager one: the access
control context is updated at each method call (and return). However, since

security checks are statistically less frequent than cross-domain calls, production
implementations prefer to adopt the lazy strategy.

A large amount of papers [2–5, 8, 9, 11, 16, 20, 27] witnesses the interest to-
wards formally understanding and optimizing stack inspection. All these ap-
proaches share a basic assumption: the binding between a piece of code and its
permissions is made at class-loading time, and it cannot be modified at run-time.

However, starting from version 1.4.1, the Java security architecture has sup-
ports for dynamic security policies: the binding between a class and its permis-
sions can be deferred until the class is involved in an access control test. Still,
the static binding of permissions is allowed.

In this paper, we introduce a new static analysis for stack inspection, improv-
ing over previous analyses of ours, see e.g. [3]. Our present proposal is specifically
designed to tackle the issues raised by dynamic security policies. We represent
programs by control flow graphs, an idealized model not tied to any particular
language. These graphs are extracted from actual bytecode through available
control flow analysis; they feature primitive constructs for method invocations,
exceptions, and access control based on stack inspection. Our static analysis
takes as input a control flow graph, and computes an abstract graph, whose
nodes are pairs on the form 〈n, γ〉 and edges are labelled by ϕ, where:

– n is a method invocation or return, or an access control test;
– γ is an access control context, i.e. the set of protection domains visited after

the last privileged call (if any);
– ϕ is a traversability condition for the edge.

The traversability conditions are used to associate each abstract node 〈n, γ〉 with
a predicate Φ(n, γ), telling which conditions the security policy must satisfy in
order for the node to be reachable.

We prove our static analysis correct with respect to the operational semantics
of control flow graphs: if the actual security policy allows for an execution leading
to node n with access control context γ, then there exists a node 〈n, γ〉 in the
abstract graph, and the security policy satisfies the condition Φ(n, γ).

A significant novelty of our approach is that the static analysis is parametric
with respect to the security policy in force, hence it needs not to be recomputed
each time the access rights are modified.

Our static analysis provides a formal support for some security-aware opti-
mizations. In particular, we can detect (and remove):

– the redundant checks in a program, i.e. the checks which always pass;
– the dead code, which cannot be reached due to security restrictions;
– the inlineable method calls, i.e. those calls which can be safely replaced by

a copy of the called method.

Indeed, method inlining can lead to dramatic performance improvements,
for the following reasons. First, it reduces the overhead of dynamic dispatching;
second, it allows the just-in-time optimizers to work on larger blocks of code, so
making standard intraprocedural optimizations more effective.

Our static analysis establishes conditions on the security policy which ensure
when these optimizations are valid.

2

2 Program model

We model programs as control flow graphs (CFGs for short) whose nodes repre-
sent access control tests, method invocations and returns, and whose arcs repre-
sent the flow of control. We also consider a basic exception handling mechanism,
with only one type of exceptions, no nested try blocks and no finally clauses.

We do not define how CFGs are extracted from actual programs. This con-
struction is well understood and algorithms and tools exist for it; see for exam-
ple [13, 18, 25, 26]. A full treatment of exceptions requires a tailored construction
of the CFG, e.g. by the techniques presented in [7, 22].

CFGs hide any data flow information, and are therefore approximated; typ-
ically, the conditional construct is rendered as non-deterministic choice. This
approximation is safe, in the sense that any actual execution flow is represented
by a path in the CFG. However, the converse may not be true: some paths
may exist which do not correspond to any actual execution. For instance, both
branches of an “if” statement are represented, even in the cases when the same
branch is always taken at run-time.

Dynamic dispatching in object-oriented languages is another source of ap-
proximation. When a program invokes a method on an object O, the run-time en-
vironment has to choose among the various implementations of that method. The
decision is not based on the declared type of O, but on the actual class O belongs
to, which is unpredictable at static time. To be safe, CFGs over-approximate the
set of methods that can be invoked at each program point.

2.1 Syntax

Let D be a finite set of protection domains, and P be a finite set of permissions.
CFGs are defined as follows.

Definition 1. A CFG 〈N, E,Dom,Priv〉 is an oriented graph, where:

– N is the set of nodes. Each n ∈ N is associated with a label `(n), describing
the control flow primitive represented by the node. Labels give rise to three
kinds of nodes: call nodes, representing method invocation, return nodes,
which represent return from a method, and check(P) nodes, testing whether
the permission P is granted by the security policy or not. A distinguished
element nε ∈ N plays the technical role of a single, isolated entry point.

– E ⊆ N × (N \ nε) is the set of edges. There are three kinds of edges: call
edges n −→ n′, which model interprocedural flow, transfer edges n 99K n′,
which correspond to sequencing, and catch edges n 99K�n′, which correspond
to exception handling. The last two kinds represent intraprocedural flow.

– Dom : N → D is a mapping from nodes to protection domains.
– Priv : N → Bool tells whether a node enables its privileges or not.

Each CFG is associated with a security policy Perm : D → 2P , which grants
a set of permissions to each protection domain. The following treatment does
not require security policies to be fixed over time. Hereafter, we will always
abbreviate Perm(Dom(n)) with Perm(n).

3

Definition 2. The methods of a control flow graph 〈N, E〉 are the connected
components of the undirected graph 〈N, E′〉, where E′ is the symmetric closure
of the set of intraprocedural edges in E. We call µ(n) the method to which node
n belongs. The entry points of µ(n) are defined as:

ε(µ(n)) = {m ∈ µ(n) | ∃n′ ∈ N. n′ −→ m }

2.2 Semantics

The operational semantics of CFGs is defined by a transition system, whose
configurations are call stacks. Moreover, each state has a boolean tag which tells
whether an exception is active (i.e. thrown and not caught yet). If no exception
is active, a state is represented as sequence of nodes enclosed in square brackets:
for example, σ = [n0, . . . , nk] is a state whose top node is nk. If an exception
is active, we append the symbol � to the sequence of nodes, i.e. σ� abbreviates
〈σ, true〉. Pushing a node n on a stack σ is written as σ : n.

The access control context of a state is defined as the set of protection do-
mains visited after the last privileged call (if any).

Definition 3. We define the access control context Γ (σ) of a state σ as follows:

Γ ([]) = ∅ Γ (σ : n) = Γ (σ)↑n

where, for each context γ and n ∈ N , we define:

γ ↑n =

{

Dom(n) if Priv(n)

γ ∪Dom(n) otherwise

Stack inspection is modeled by the minimal relation induced by the inference
rules for the predicate ` below. The set of permissions granted to a state is just
the intersection of the permissions associated to its access control context. We
prefer to formalize stack inspection using a double indirection with access control
contexts and permissions, because our static analysis will be independent from
the security policy in force.

Definition 4. We say that a permission P is granted to a state σ under the
security policy Perm iff Γ (σ) `Perm P , where:

P ∈ Perm(D)

D `Perm P

γ `Perm P γ′ `Perm P

γ ∪ γ′ `Perm P

The transition relation B between states is defined in Table 1. A trace on
〈G,Perm〉 is a derivation 〈σ0, χ0〉B · · ·B〈σk, χk〉. An entry trace is a trace where
σ0 = [nε] and χ0 = false. The reachability relation B states when there is an
entry trace on 〈G,Perm〉 which can lead to a given state:

〈G,Perm〉 B [nε]

〈G,Perm〉 B σ σ B σ′

〈G,Perm〉 B σ′

4

`(n) = call n −→ n′

σ : n � σ : n : n′
[�call]

`(m) = return n � � � n′

σ : n : m � σ : n′
[�return]

`(n) = check(P) Γ (σ : n) `Perm P n � � � n′

σ : n � σ : n′
[�pass]

n � � ��n′

σ : n� � σ : n′
[�catch]

`(n) = check(P) Γ (σ : n) 6`Perm P

σ : n � σ : n�
[�fail]

n 6 � � ��

σ : n� � σ�
[�propagate]

Table 1. Operational semantics of CFGs.

2.3 Well-formed CFGs

We require our CFGs to obey some mild well-formedness constraints. We say
that a CFG is well-formed iff, for each n, n′ ∈ N \ nε:

`(n) = check(P) =⇒ 6 ∃n′ ∈ N. n −→ n′ (1a)

`(n) = return =⇒ 6 ∃n′ ∈ N. 〈n, n′〉 ∈ E (1b)

| ε(µ(n)) | = 1 (1c)

µ(n) = µ(n′) =⇒ Dom(n) = Dom(n′) (1d)

Priv(n) =⇒ `(n) = call (1e)

n 99K n′ ∨ n 99K�n′ =⇒ n′ 6= ε(µ(n)) (1f)

µ(nε) = nε (1g)

Constraints (1a) and (1b) ensure, respectively, that check nodes have no out-
going call edges and that return nodes do not have outgoing edges at all. Con-
straint (1c) states that each method has exactly one entry point. After this
constraint, we abbreviate n −→ ε(µ(m)) with n −→ µ(m). Constraint (1d)
says that nodes in the same method are in the same protection domain. Note
that constraints (1a)–(1d) reflect some peculiarities of Java-like bytecode: hence,
CFGs extracted from bytecode always satisfy them. The other constraints are
only technical, and help keeping the definition of our analysis short: (1e) says
that only call nodes can be privileged; (1f) that intraprocedural and interproce-
dural edges do not overlap; (1g) states that the entry point nε has no outgoing
intraprocedural flow (therefore, it only makes sense to have nε as a call node).

2.4 Adequacy of the model

We briefly discuss some of the differences between our model and the Java secu-
rity model presented in [12]. Similar considerations hold for the .NET model [21].

5

`(n) = call n −→ n′ nγ ∈ N]

nγ −→ n′(γ ↑n ∪ Dom(n′))
[]call]

nγ� ∈ N] n � � ��m
nγ� −→ mγ

[]catch]

`(n) = check(P) nγ ∈ N] n � � � m

nγ
γ `P
−−−→ mγ

[]pass]
`(n) = check(P) nγ ∈ N]

nγ
γ 6`P
−−−→ nγ�

[]fail]

`(n′) = return n � � � m nγ �ϕ n′γ′

nγ
ϕ
−→ mγ

[]return]
nγ �ϕ n′γ′� n′ 6 � � ��

nγ
ϕ
−→ nγ�

[]propagate]

Table 2. Abstract semantics of control flow graphs.

– Java allows for the dynamic instantiation of permissions (e.g. an application
that asks the user for a file name and then tries to open that file). Such
parametric permissions are on the form P (x), where x ranges over the set
of possible targets for the permissions of class P .

– in Java, a new thread upon creation inherits the access control context of its
parent. When stack inspection is performed, both the context of the current
thread and the contexts of all its ancestors are examined. In this way, a child
thread cannot obtain a resource access which is not granted to its ancestors.

– in our model, only code-centric security policies are allowed: permissions are
granted to code according to its code source, regardless of who is running it.
JAAS [17], extends the Java security model by enabling user-centric access
control policies, based on the principal who actually runs the code. Permis-
sions can be granted to principals, and the doAs method allows a piece of
code to be executed on behalf of a given subject. This is done by associating
the (authenticated) subject running the code with the current access control
context. Stack inspection ensures that subjects are taken into account when
access control is performed (see e.g. [14] for a formal specification).

– we do not model some advanced features like reflection and native methods.
Also, we do not consider the side effects of some “dangerous” permissions
(e.g. AllPermission, which may even breach the whole security system by
replacing the JVM system binaries). Besides deeply affecting security, these
features reduce the effectiveness of any analysis which aims at determining
statically the permissions granted to running code.

3 The Security Context Analysis

Given a CFG G = 〈N, E,Dom,Priv〉, our static analysis computes an abstract
graph G] = 〈N], E]〉 taking into account the evolution of the security contexts
in the traces of G. An abstract node n] ∈ N] is a triple 〈n, γ, χ〉. Intuitively, it
represents a call stack with top node n, access control context γ and exception

6

flag χ. An abstract edge n] ϕ
−→ m] models an execution that can flow from n]

to m] if the security policy in force satisfies the condition ϕ. The root of G] is
n]

ε = 〈nε,Dom(nε), false〉.
Our analysis is specified by the inference rules in Table 2. The abstract graph

is constucted starting from the root, and then applying the inference rules to
obtain new abstract edges and nodes. Technically, this is a forward, monotone
control flow analysis. The nodes are in N × 2D × Bool , and the edges are in

(N × 2D × Bool)2 × 2(2D×P). Since N , D and P are finite, then the abstract
graph is finite, too.

We here provide some intuition about the rules in Table 2. Consider]call first.
If there is a call from from node n to n′, and the access control context before
the call is γ, then the context after the call comprises the protection domain of
n′, plus either that of n if n is privileged, or γ if not. The rule]pass says that, if
a node n tests for permission P in the context γ, there is an edge labelled γ ` P
leading to m and preserving the context. Similarly, the rule]fail says that there
is an edge γ 6` P leading to an exception. The rule]return states that, if n′ is a
return and there is a call node n with context γ that matches the return node
(see definition 7 below), then there is an edge from n to m while preserving the
context γ. The rule]propagate states that, if the call n with context γ can match
a node n′ while throwing an exception, then the exception is propagated to n.

Practical considerations suggest us that the size of an abstract graph does
not grow exponentially, but it is actually linear in the number of nodes of the
original CFG. In particular:

– the exponential factor 2D above only occurs when the number of protection
domains is proportional to the number of nodes. Actually, the number of
protection domains can be considered as a constant, because it depends on
static properties of the loaded code (i.e. code origin and digital signatures).

– each security check gives rise to a bifurcation in the abstract graph. Then,
our approximation to the number of abstract nodes hides an exponential
factor in the number of checks. However, the number of security checks in
CFGs is usually small: indeed, access control tests are only inserted to guard
methods accessing critical resources.

– it is sometimes possible to partially evaluate the conditions on the abstract
edges. This because some of the protection domains can be statically bound
to permissions by the security policy. In particular, an edge labelled γ ` P
can be removed when, for some D ∈ γ with static binding of permissions, P
is not granted to D.

It is now convenient to introduce some terminology and notation. First, we
define the notion of paths over abstract CFGs (definition 5). Definition 7 is
used to determine which abstract returns (and exception propagations) match
abstract calls. This allows us to single out paths that model “valid” abstract
executions. Definition 6 introduces the concepts of traversability and reachability.
Intuitively, a path is traversable under a security policy if the policy satisfies all
the conditions on the path edges. An abstract node is reachable under the policy
if there exists a path leading to that node which is traversable under the policy.

7

Definition 5. A path from n]
0 to n]

k in G] is a sequence n]
0

ϕ1

−→ · · ·
ϕk−−→ n]

k

where, for each i ∈ 1..k, n]
i−1

ϕi
−→ n]

i ∈ E]. We denote with Π(n], m]) the set of

all paths from n] to m], and with Π(n]) the set of all paths from n]
ε to n]. We

write Π(G]) to denote all the paths in the abstract graph G].

Definition 6. Let n] ∈ N] and π = n]
0

ϕ1

−→ · · ·
ϕk−−→ n]

k. We define:

Φ(n]) =
∨

π∈Π(n])

Φ(π) Φ(π) =
∧

i=1..k

ϕi

By convention, Φ(n]) = false if n 6∈ N], and Φ(π) = true if π = [].

Definition 7. Let nγ, n′γ′χ′ ∈ N]. We write nγ �ϕ n′γ′χ′ when n −→ µ(n′),
γ′ = (γ ↑n) ∪ Dom(n′), and ∃π ∈ Π(ε(µ(n′))γ′, n′γ′χ′). w(π) = 0 ∧ Φ(π) = ϕ.
The weight of paths and edges in G] are defined as follows:

w(π) =

|π|
∑

i=1

w(π[i − 1] −→ π[i]) w(nγχ −→ n′γ′χ′) =

{

1 if n −→ n′

0 otherwise

Constraint (1f) guarantees that abstract edges representing interprocedural flow
have unit weight, while intraprocedural ones have null weight. We could remove
this technical constraint by labelling the abstract edges with their weight.

We now introduce the “concrete” counterpart of definition 6 above. The
traversability condition on a trace is the conjunction of the (unevaluated) access
control tests encountered. We formally relate the traversability of paths to that
of traces in Theorem 1.

Definition 8. Let τ = σ0χ0B`1 · · ·B`k
σkχk be a trace on 〈G,Perm〉. We define:

Φ(τ) =
∧

i=1..k Φ(σi−1χi−1 B`i
σiχi)

Φ(σ : n, χ B` σ′χ′) =











Γ (σ : n) ` P if `(n) = check(P), ` = pass

Γ (σ : n) 6` P if `(n) = check(P), ` = fail

true otherwise

Definition 9. Let Perm be a security policy. We define:

Perm |= true
Perm |= (γ ` P) ⇐⇒ γ `Perm P
Perm |= ϕ ∧ ϕ′ ⇐⇒ Perm |= ϕ and Perm |= ϕ′

Perm 6|= ϕ ⇐⇒ it is not the case that Perm |= ϕ

The following theorem states that our analysis is sound w.r.t. the operational
semantics of CFGs: for each execution trace in G, there exists a corresponding
path in G], which mimicks the evolution of the access control contexts.

Theorem 1 (Soundness of SC). Let 〈G,Perm〉 B τ = [nε] B · · · B 〈σ : n, χ〉.
Then, there exists a path π ∈ Π(〈n, Γ (σ) ∪ Dom(n), χ〉) such that Φ(π) = Φ(τ).

8

The next theorem states that our analysis is also complete: for each path
in G] and security policy Perm that satisfies its reachability condition, there
exists a corresponding execution trace in 〈G,Perm〉. This fact should not seem
bizarre: indeed, completeness is only up to the precision of the CFG, which is a
safe, approximated model of the analyzed program.

Theorem 2 (Completeness of SC). Let π ∈ Π(nγχ) and Perm be such
that Perm |= Φ(π). Then, there exist τ, σ such that 〈G,Perm〉 B τ B 〈σ : n, χ〉,
γ = Γ (σ) ∪ Dom(n) and Φ(τ B 〈σ : n, χ〉) = Φ(π).

Our analysis supports a form of incremental computation, though not in
a fully compositional way. This is particularly useful for dynamic linking of
code – the mechanism which allows a program to be extended at run-time. Our
program model does not directly support this feature: so we require the CFG
construction algorithm to correctly link the relevant CFGs, e.g. as in [23]. Indeed,
this operation cannot be performed by looking at the CFGs alone, because CFGs
do not carry enough information to restrict the set of targets of dynamically
dispatched method invocations.

We briefly show how the incremental computation of the analysis is per-
formed. Assume we have a computed G], when the CFG G′ is loaded. The CFG
construction algorithm singles out the set Ẽ of resolved edges between G and
G′, i.e. those call edges n −→ m such that n, m do not belong both to the same
CFG. The linked graph G ./Ẽ G′ contains the nodes and the edges from both G

and G′, plus the resolved edges Ẽ.
To obtain (G ./Ẽ G′)] from G], it suffices to compute the closure of the set

of rules in Table 2, starting from the set of resolved edges and from the entry
point of G′. Note that adding new executable traces to a CFG never affects the
analysis of the old ones.

4 Program Transformations

In this section we show that our static analysis provides us with an effective
basis for several code optimizations. This is not a trivial task, because performing
interprocedural optimizations in presence of stack inspection may break security.
Indeed, stack inspection deeply relies on the structure of the call stack, which
may be altered by such optimizations.

All the program transformations below have to be revalidated every time
that the security policy is updated. This form of dynamic deoptimization is
common practice in presence of just-in-time compilers, e.g. the Java HotSpot
Compiler [24]. Again, note that our static analysis needs not to be recomputed.

4.1 Elimination of redundant checks

The first application of our analysis detects the redundant checks occurring in a
program, i.e. those checks which always pass regardless of the execution trace.

9

Definition 10. Let `(n) = check(P). We say that n is redundant w.r.t. a
security policy Perm when, for each call stack σ:

〈G,Perm〉 B σ : n =⇒ Γ (σ : n) `Perm P

The following theorem states conditions to recognize redundant checks, so
enabling the compiler to safely remove them from the code. Actually, redundant
checks can only be disabled in presence of dynamic linking, because loading a
new method may add new traces where the permission is no longer granted.

Theorem 3. A check node n is redundant w.r.t. a security policy Perm if and
only if Perm 6|= Φ(nγ�) for all contexts γ.

The reachability condition Φ(nγ�) can be computed during the costruction
of the abstract graph. This requires accumulating the traversability conditions
on the edges leading to abstract check nodes.

4.2 Dead code elimination

Dead code elimination is a program transformation which prevents the com-
piler from generating bytecode for unreachable or useless pieces of code. This
optimizazion reduces both the size of the generated bytecode and the total ap-
plication running time (e.g. when code has to be downloaded from the network).

The following theorem allows to detect (and remove) those methods which
cannot be reached due to security restrictions:

Theorem 4. Let n = ε(µ(n)). If Perm 6|= Φ(nγ) for all nγ ∈ G], then there are
no σ and m ∈ µ(n) such that 〈G,Perm〉 B σ : m.

4.3 Method inlining

Method inlining is an optimization that replaces a method invocation with a
copy of the called method code. As a side effect, the protection domain of the
inlined method is ignored when performing stack inspection. Our analysis gives
us the means to compute the set of method invocations that can be safely inlined.
Intuitively, a method invocation can be inlined if the outcome of the security
checks is not affected by ignoring the protection domain of the inlined method.

We adopt the so-called original version inlining approach [15], which always
considers the original version of the callee and the current version of the caller
when performing inlinings. This can be obtained by duplicating the original code
of the inlined method. Let ṅ be the node candidate for inlining, and ṅ −→ n′. We
assume that the method invocation represented by ṅ can be statically dispatched,
i.e. it has exactly one callee, represented by µ(n′). We also require that the
protection domain of µ(n′) is isolated in the CFG, i.e. its name is different from
the other domain names (it suffices to assign to Dom(n′) a fresh name).

We formally specify in definition 11 when a method invocation can be safely
inlined. The condition (2a) below guarantees static dispatching of ṅ, as well

10

as that ṅ is not a recursive call (otherwise inlining makes little sense). The
condition (2b) says that there is a single callee: this is enforced by the original
version inlining approach. The condition (2c) ensures that the protection domain
of ṅ is isolated. These conditions, apart from ṅ being not recursive, can easily
be satisfied, as noted above. The key condition is (2d): it guarantees that, for all
the permissions that can be possibly checked after the inlined call, the security
policy agrees on the protection domains of ṅ and n′.

Definition 11. We say that ṅ −→ n′ is inlineable in G w.r.t. Perm iff:

ṅ −→ n =⇒ n = n′ ∧ n /∈ µ(ṅ) (2a)

n −→ n′ =⇒ n = ṅ (2b)

n /∈ µ(n′) =⇒ Dom(n) 6= Dom(n′) (2c)

ṅγ ⇒ mγ′

`(m) = check(P)
Dom(n′) ∈ γ′







=⇒ P ∈ Perm(ṅ) ⇐⇒ P ∈ Perm(n′) (2d)

hold for all n, m, γ, γ′, ϕ. We write ṅγ ⇒ n′γ′χ′ when:

∃π, n′′, γ′′. ṅγ −→ n′′γ′′ ∧ π ∈ Π(n′′γ′′, n′γ′χ′)

Next, we define the effect of the method inlining transformation on CFGs.
Instead of substituting ṅ for µ(n′) and adjusting the edges accordingly, we equiv-
alently operate on the semantics of the transformed CFG. The effect of the inlin-
ing of ṅ on call stacks is specified by the function inl ṅ in Table 3. Given a state
σ, inl ṅ(σ) is obtained by removing all the occurrences of ṅ in σ (except when ṅ
is in top position). The operational semantics of a CFG after the inlining of ṅ
is defined by the transition relation Bṅ in Table 3. For instance, the rules Bṅ

call1

and Bṅ
call2 state, respectively, that a method invocation proceeds as usual when

the calling node is not ṅ, otherwise ṅ is removed from the call stack.

Definition 12. Let G = 〈N, E,DomG,PrivG〉. The ṅ-inlined version of G is
Ġ = 〈N, E,DomĠ,PrivĠ〉, where:

PrivĠ(n) =

{

PrivG(ṅ) if ṅ −→ µ(n)

PrivG(n) otherwise
DomĠ(n) =

{

DomG(ṅ) if ṅ −→ µ(n)

DomG(n) otherwise

The following theorem states the correctness of method inlining: each trace
in the original CFG corresponds to a trace in the ṅ-inlined version of the CFG.

Theorem 5. If ṅ is inlineable in G w.r.t. Perm, then:

〈G,Perm〉 B τ ⇐⇒ 〈Ġ,Perm〉 B
ṅ inl ṅ(τ)

11

inl ṅ([]) = []
[inl1]

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : n′) = σ̇ : n′
[inl2]

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′
[inl3]

`(n) = call n −→ n′ n 6= ṅ

σ : n �ṅ σ : n : n′
[�call1]

`(ṅ) = call ṅ −→ n′

σ : ṅ �ṅ σ : n′
[�call2]

`(n′) = return n � � � m ṅ 6−→ µ(n′)

σ : n : n′ �ṅ σ : m
[�return1]

n 6 � � �� ṅ 6−→ µ(n′)

σ : n� �ṅ σ�
[�propagate1]

`(n′) = return ṅ � � � m ṅ −→ µ(n′)

σ : n′ �ṅ σ : m
[�return2]

n 6 � � �� ṅ −→ µ(n′)

σ : n� �ṅ σ : ṅ�
[�propagate2]

Table 3. Effect of inlining ṅ on call stacks and transitions.

5 Conclusions and related work

We have developed a technique to perform program transformations in presence
of stack inspection and dynamic security policies. The technique relies on the
definition of our Security Context Analysis. The analysis is sound and complete
with respect to the control flow graphs derived from the bytecode (recall from
Section 2 that these graphs safely approximate the actual behavior). Our anal-
ysis makes various optimizations possible. We focussed here on elimination of
redundant checks and of dead code, and on method inlining. It is worthwhile
noting that our analysis can take advantage of the control flow graphs gener-
ated by the just-in-time optimizers, e.g. the HotSpot compilers embedded in the
latest Java Virtual Machines [24]. This would also make our technique directly
exploitable by these tools, e.g. to produce larger methods by inlining, so allowing
for further optimizations.

Many authors advocated the use of static techniques in order to understand
and optimize stack inspection, among them ourselves [2–4]. As far as we can tell,
our current proposal is the first one that can deal with dynamic security policies.

Besson, Jensen, Le Mètayer and Thorn [6] formalize classes of security prop-
erties through a linear-time temporal logic. They show that a large class of
policies (including stack inspection) can be expressed in this formalism, while
more sophisticated ones (like the Chinese Wall policy) are not. Model checking
is then used to prove that local security checks enforce a given global security
policy. Their verification method is based on the translation from linear-time
temporal formulae to deterministic finite-state automata, and it can be used to
optimize stack inspection. Based on the same model, [5] develops a static anal-
ysis that computes, for each method, the set of its secure calling contexts with

12

respect to a given global security property. When a method is invoked from a
secure calling context, its execution never violates the global property. For some
optimizations, e.g. for method inlining, this technique is even too powerful, as
the information about calling contexts is unnecessary.

Esparza, Kučera and Schwoon [10] formalize stack inspection in terms of
model checking pushdown systems. Obdržálek [19] uses the same technique to
accurately model Java exception handling. A suitable combination of the two
will then be an alternative approach to ours. Since our model is specifically
tailored on stack inspection, we think that our analysis may be implemented
and exploited more efficiently than a general method such as model checking
pushdown systems.

Exploiting the access control logic of [1], Wallach, Appel and Felten [27]
propose an alternative semantics of eager stack inspection, called security-passing
style. This technique consists of tracking the security state of an execution as an
additional parameter of each method invocation. This allows for interprocedural
compiler optimizations that do not interfere with stack inspection (at the cost
of more expensive method calls).

Pottier, Skalka and Smith [20] address the problem of stack inspection in λsec,
a typed lambda calculus enriched with primitive constructs for enforcing security
checks and managing permissions, and no exception handling. Stack inspection
never fails on a well typed program, because the set of permissions granted
at run-time always includes the security context. This analysis supports all-or-
nothing optimizations that remove the security manager when all the checks are
redundant. Instead, we can single out and remove individual redundant checks.

Fournet and Gordon [11] investigate the problem of establishing the correct-
ness of program transformations in presence of stack inspection. They present an
equational theory, together with a coinductive proof technique, for the λsec cal-
culus. They study how stack inspection affects program behavior, proving that
certain function inlinings and tail-call eliminations are correct. The equational
theory is used to reason on the (somewhat limited) security properties actu-
ally guaranteed by stack inspection. Here, we are more concerned with efficient
(semantically-based) optimization procedures to be used on the field, rather than
with a general reasoning framework. Indeed, it is unclear how to (mechanically)
derive a procedure (e.g. a confluent terminating rewriting system) to ensure
correctness of program transformations under security constraints.

Koved, Pistoia and Kershenbaum [16] address the problem of computing the
set of permissions a class needs in order to execute without throwing security
exceptions. Also this analysis suffers from allowing only all-or-nothing optimiza-
tions, as in [20]. The analysis is built over access rights invocation graphs. These
flow graphs are context-sensitive: each node is associated also with its calling
context, i.e. with its target method, receiver and parameters values. In this way,
the analysis in [16] can deal with parametric permissions and multi-threading.
Our approach can gain precision through the exploitation of these graphs. We
plan to study this issue in future work.

13

References

1. M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems,
4(15):706–734, 1993.

2. M. Bartoletti, P. Degano, and G. L. Ferrari. Static analysis for stack inspection. In
U. Montanari and V. Sassone, editors, Electronic Notes in Theoretical Computer
Science, volume 54. Elsevier Science Publishers, 2001.

3. M. Bartoletti, P. Degano, and G. L. Ferrari. Security-aware program transforma-
tions. In Proc. 8th Italian Conference on Theoretical Computer Science, 2003.

4. M. Bartoletti, P. Degano, and G. L. Ferrari. Static analysis for eager stack inspec-
tion. In Workshop on Formal Techniques for Java-like Programs, 2003.

5. F. Besson, T. de Grenier de Latour, and T. Jensen. Secure calling contexts for
stack inspection. In Proc. 4th Conference on Principles and Practice of Declarative
Programming. ACM Press, 2002.

6. F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security, 9:217–250, 2001.

7. J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise modeling of
exceptions for the analysis of Java programs. In Workshop on Program Analysis
For Software Tools and Engineering, 1999.

8. J. Clemens and M. Felleisen. A tail-recursive semantics for stack inspections. In
P. Degano, editor, Proc. 12th European Symposium on Programming, volume 2618
of LNCS. Springer-Verlag, 2003.

9. U. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In
IEEE Symposium on Security and Privacy, 2000.

10. J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valua-
tions for pushdown systems. In Proc. 4th International Symposium on Theoretical
Aspects of Computer Software, 2001.

11. C. Fournet and A. D. Gordon. Stack inspection: theory and variants. ACM Trans-
actions on Programming Languages and Systems, 25(3):360–399, 2003.

12. L. Gong. Inside Java 2 platform security: architecture, API design, and implemen-
tation. Addison-Wesley, 1999.

13. D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6), 2001.

14. G. Karjoth. An operational semantics for Java 2 access control. In Proc. 13th
Computer Security Foundations Workshop. IEEE Computer Society Press, 2000.

15. O. Kaser and C. R. Ramakrishnan. Evaluating inlining techniques. Computer
Languages, 24(2):55–72, 1998.

16. L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analysis for Java. In
Proc. 17th ACM conference on Object-oriented Programming, Systems, Languages,
and Applications. ACM Press, 2002.

17. C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User authentication
and authorization in the Java platform. In Proc. 15th Annual Computer Security
Application Reference. IEEE Computer Society Press, 1999.

18. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

19. J. Obdržálek. Model checking java using pushdown systems. In Workshop on
Formal Techniques for Java-like Programs, 2002.

20. F. Pottier, C. Skalka, and S. Smith. A systematic approach to static access control.
In D. Sands, editor, Proc. 10th European Symposium on Programming, volume 2028
of LNCS. Springer-Verlag, Apr. 2001.

14

21. V. Razmov. Security in untrusted code environments: Missing pieces of the puzzle.
Dept. of Computer Science and Engineering, University of Washington, 2002.

22. S. Sinha and M. J. Harrold. Analysis and testing of programs with exception
handling constructs. Software Engineering, 26(9):849–871, 2000.

23. A. Souter and L. Pollack. Incremental call graph reanalysis for object-oriented soft-
ware maintenance. In IEEE International Conference on Software Maintenance,
Nov. 2001.

24. Sun Microsystems. The Java HotSpot Virtual Machine (Technical White Paper).
25. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,

and C. Godin. Practical virtual method call resolution for Java. In Proc. 15th
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
& Applications, volume 35(10). ACM Press, Oct. 2000.

26. F. Tip and J. Palsberg. Scalable propagation-based call graph construction algo-
rithms. In Proc. 15th ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages & Applications, 2000.

27. D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI: a security mechanism
for language-based systems. ACM TOSEM, 9(4):341–378, Oct. 2001.

15

A Proofs

Definition 13. Consider a trace τ on the following form:

σ0 χ0 B`0 σ1 χ1 B`1 · · · B`k−1
σk χk

For each i, j ∈ 0..k, we write i �τ j iff:

`i = call ∧ i = max{ h ∈ 0..j − 1 | w(τ, h, j) = 1 }

For each 0 ≤ i ≤ j ≤ k, the weight of the trace τ [i..j] is defined as follows:

w(τ, i, j) =

j−1
∑

h=i

w(`h)

where the weight of a transition with label ` is defined as:

w(`) =











1 if ` = call

−1 if ` = return or ` = propagate

0 otherwise

Lemma 1. Let τ = [nε] B · · · B 〈σ : n : n′, χ〉 be a trace of length k. Then:

n −→ µ(n′) (3a)

∃i ∈ 0..k − 1. τ [i] = σ : n ∧ i �τ k (3b)

Proof. We proceed by induction on the length of the trace. The base case k = 0
holds trivially, because σ0 = [nε] does not satisfy the premises of the lemma. For
the inductive case, assume (3a) and (3b) are true for all traces of length lower
than k. Case analysis on the rule used to deduce σk−1χk−1 B σkχk gives:

– case [call]:
`(n) = call n −→ n′

σ : n B σ : n : n′

Here (3a) follows by the fact that n −→ n′, and the index i which satisfies
(3b) is just k − 1.

– case [return]:
`(m) = return m′ 99K n′

σ : n : m′ : m B σ : n : n′

By the induction hypothesis, we have that:

∃j ∈ 0..k − 2. σjχj = 〈σ : n : m′, false〉 (4)

Since any derivation for σ : n : m′ requires at least one step, j > 0. Then,
the induction hypothesis on j − 1 gives n −→ µ(m′), and:

∃i ∈ 0..j − 1. σiχi = 〈σ : n, false〉 (5)

Since m′ 99K n′, it follows that µ(m′) = µ(n′). Then, n −→ µ(m′) implies
n −→ µ(n′). This proves (3a), and (3b) is satisfied by the index i in (5).

16

– case [pass]:

`(m′) = check(P) Γ (σ : n : m′) `Perm P m′ 99K n′

σ : n : m′ B σ : n : n′

By the induction hypothesis, n −→ µ(m′), and:

∃i ∈ 0..k − 2. σiχi = 〈σ : n, false〉 (6)

As in the previous case, µ(m′) = µ(m) implies that n −→ µ(n′), which
proves (3a). The index i given by (6) satisfies (3b).

– case [fail]:
`(n′) = check(P) Γ (σ : n : n′) 6`Perm P

σ : n : n′ B σ : n : n′�
Here (3a) and (3b) follow directly by the induction hypothesis.

– case [catch]:
m′ 99K�n′

σ : n : m′� B σ : n : n′

By the induction hypothesis, we have n −→ µ(m′), and:

∃i ∈ 0..k − 2. σiχi = 〈σ : n, false〉 (7)

Since m′ 99K�n′, then µ(m′) = µ(n′). So, n −→ µ(m′) implies n −→ µ(n′),
which proves (3a). Equation (3b) is satisfied by the index i in (7).

– case [propagate]:
m′ 699K�

σ : n : n′ : m′� B σ : n : n′�
By the induction hypothesis, we have that:

∃j ∈ 0..k − 2. σjχj = 〈σ : n : n′, false〉 (8)

Since any derivation for σ : n : n′ requires at least one step, j > 0. Then,
the induction hypothesis on j − 1 gives n −→ µ(n′), and:

∃i ∈ 0..j − 1. σiχi = 〈σ : n, false〉

Definition 14. Let τ = σ0χ0 B`1 · · ·B`k
σkχk. We define the flattening of τ as

[(τ) = [(τ, 0, k), where, for 0 ≤ i ≤ j ≤ k:

[(τ, i, j) =















σjχj if i = j

[(τ, i, h)
Φ(τ [h..j])
−−−−−−→ σjχj if i ≤ h �τ j − 1, w(`j) = −1

[(τ, i, j − 1)
Φ(τ [j−1..j])
−−−−−−−−→ σjχj otherwise

17

Lemma 2. Let τ be a trace of length k, with [(τ) = σ0χ0
ϕ1

−→ · · ·
ϕh−−→ σhχh.

h ≤ k (9a)

σ0χ0 = τ [0], σhχh = τ [k] (9b)

Φ(τ) =
∧

i=0..h ϕi (9c)

Proof. We won’t go through the details of the proof for (9a) and (9b), because
they are immediate from definition 14. The proof of (9c) is by induction on the
length of τ . If k = 0, then [(τ) = σ0χ0, and by convention,

∧

∅ = true = Φ(τ).
For the inductive case, let k > 0. We proceed by case analysis on the rule

applicable to compute [(τ, 0, k). The first rule cannot be applied, because k > 0.
The second rule, requiring h �τ k− 1, σk−1χk−1 B` σkχk and w(`) = −1, gives:

[(τ) = [(τ, 0, h)
Φ(τ [h..k])
−−−−−−→ σkχk

By the induction hypothesis, Φ(τ [0..h]) =
∧

i=0..h−1 ϕi. Then:

Φ(τ) = Φ(τ [0..h]) ∧ Φ(τ [h..k]) = (
∧

i=0..h−1 ϕi) ∧ ϕh =
∧

i=0..h ϕi

The third rule in the definition of [is applicable in any other case, and it gives:

[(τ) = [(τ, 0, k − 1)
Φ(τ [k−1..k])
−−−−−−−−→ σkχk

By the induction hypothesis, Φ(τ [0..k − 1]) =
∧

i=0..h−1 ϕi. Then:

Φ(τ) = Φ(τ [0..k − 1]) ∧ Φ(τ [k − 1..k]) = (
∧

i=0..h−1 ϕi) ∧ ϕh =
∧

i=0..h ϕi

Definition 15. We say that τ = σ0χ0 B · · · B σkχk is positive when:

∀i ∈ 1..k. w(τ, 0, i) ≥ 0

Similarly, we say that τ is strictly positive when > holds in place of ≥.

Lemma 3. Let τ be a trace of length k. Then:

0 �τ k =⇒ [(τ) = τ [0] −→ [(τ, 1, k) (10)

Proof. For k = 0, we have that 0 6�τ 0, therefore (10) holds trivially. For k > 0,
we prove (10) as a corollary of the following, more general, result.

Let τ be a strictly positive trace, of length k > 0. Then:

[(τ) = τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, k) (11)

We prove (11) by induction on the length of τ . For the base case, if k = 0
there is nothing to prove. For the inductive case, let k > 0. We proceed by case
analysis on the rule applicable to compute [(τ, 0, k). The first rule cannot be
applied, because k > 0. The second rule, requiring h �τ k − 1, τ [k − 1] B` τ [k]
and w(`) = −1, gives:

[(τ) = [(τ, 0, h)
Φ(τ [h..k])
−−−−−−→ τ [k] (12)

18

Consider τ [0..h]. Since h �τ k − 1 and w(τ [k − 1] B τ [k]) = −1, if it were
h = 0 then w(τ, 0, k) = 0, which would contradict our assumption about τ being
strictly positive. Therefore, h > 0. Since any prefix of a strictly positive trace is
strictly positive itself, we can apply the induction hypothesis on τ [0..h] to obtain:

[(τ, 0, h) = τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, h) (13)

Now consider τ [1..k]. Since h ≥ 1, the second rule in the definition of [gives:

[(τ, 1, k) = [(τ, 1, h)
Φ(τ [h..k])
−−−−−−→ τ [k] (14)

Putting together (12), (13) and (14), we obtain:

[(τ) = [(τ, 0, h)
Φ(τ [h..k])
−−−−−−→ τ [k]

= τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, h)

Φ(τ [h..k])
−−−−−−→ τ [k]

= τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, k)

The third rule in the definition of [is applicable in any other case, and it states:

[(τ) = [(τ, 0, k − 1)
Φ(τ [k−1..k])
−−−−−−−−→ τ [k] (15)

If k = 1, by the first rule in the definition of [, it follows that [(τ, 0, k−1) = τ [0]
and [(τ, 1, k) = τ [k], so we are done. Otherwise, if k > 1 we can apply the
induction hypothesis on τ [0..k−1] (a prefix of a strictly positive trace) to obtain:

[(τ, 0, k − 1) = τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, k − 1) (16)

Now consider τ [1..k]. The second rule in the definition of [is not applicable
to compute [(τ [1..k]) – otherwise it would have been applied also to compute
[(τ [0..k]). Thus, the third rule gives:

[(τ, 1, k) = [(τ, 1, k − 1)
Φ(τ [k−1..k])
−−−−−−−−→ τ [k] (17)

Putting together (15), (16) and (17), we obtain:

[(τ) = [(τ, 0, k − 1)
Φ(τ [k−1..k])
−−−−−−−−→ τ [k]

= τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, k − 1)

Φ(τ [k−1..k])
−−−−−−−−→ τ [k]

= τ [0]
Φ(τ [0..1])
−−−−−−→ [(τ, 1, k)

This concludes the proof of (11). To prove (10), we just need to show that 0 �τ k
implies that τ is strictly positive – indeed, Φ(τ [0..1]) = true follows directly by
definition 8. By definition 13 we have that, for each j ∈ 1..k, w(τ, j, k) < 1. Now,
let i ∈ 1..k. Then:

w(τ, 0, i) = w(τ, 0, k) − w(τ, i, k) > 1 − 1 = 0

19

Lemma 4. Let τ be a positive trace on 〈G,Perm〉. Let:

[(τ) = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕl−→ (σl : nl)χl

Let γ0 = Γ (σ0) ∪Dom(n0). If n0γ0χ0 ∈ N], then there exists a path:

π = n0γ0χ0
ϕ1

−→ · · ·
ϕl−→ nlγlχl

in G] such that w(π) = w(τ), and γi = Γ (σi) ∪ Dom(ni) for each i = 1..l.

Proof. Assume that τ consists of k steps: we proceed by induction on k. The
base case k = 0 requires τ = (σ0 : n0)χ0, which is positive. Since n0γ0χ0 ∈ N]

by hypothesis, the path π is just the single node n0γ0χ0, and w(π) = 0 = w(τ).
For the inductive case, let k > 0, n0γ0χ0 ∈ N]. We proceed by case analysis

on the rule applicable to compute [(τ, 0, k). The first rule cannot be applied,
because k > 0. The second rule requires h �τ k − 1, w(`k) = −1, and it gives:

[(τ) = [(τ, 0, h)
Φ(τ [h..k])
−−−−−−→ σkχk

Consider first the trace τ ′ = τ [0..h]. By definition 15 it follows that each prefix
of a positive trace is positive: therefore, τ ′ is positive. Since the length of τ ′ is
h < k − 1 < k, and n0γ0χ0 ∈ N], then the induction hypothesis gives a path:

π′ = n0γ0χ0
ϕ1

−→ · · ·
ϕl−1

−−−→ nl−1γl−1χl−1

with w(π′) = w(τ ′) and γi = Γ (σi) ∪ Dom(ni) for i = 1..l − 1.
Next, consider τ ′′ = τ [h..k − 1]. Since h �τ k − 1, by definition 13 we have

that, for each j ∈ h..k − 1, w(τ, j, k − 1) ≤ 1. Now, let i ∈ h..k − 1. Then:

w(τ, h, i) = w(τ, h, k − 1) − w(τ, i, k − 1) ≥ 1 − 1 = 0

It follows that τ ′′ is positive. Let:

[(τ ′′) = (σ′
0 : n′

0)χ
′
0

ϕ′

1−→ · · ·
ϕ′

p
−−→ (σ′

p : n′
p)χ

′
p

By lemma 2, we have that:

(σ′
0 : n′

0)χ
′
0 = [(τ ′′)[0] = τ ′′[0] = τ [h]

= τ ′[h] = [(τ ′)[l − 1] = (σl−1 : nl−1)χl−1

(18)

Let γ′
0 = Γ (σ′

0)∪Dom(n′
0). By (18), γ′

0 = γl−1 = Γ (σl−1)∪Dom(nl−1). It follows
that n′

0γ
′
0χ

′
0 = nl−1γl−1χl−1 ∈ N]. Since the length of τ ′′ is k − 1 − h < k, we

can apply the induction hypothesis to obtain a path:

π′′ = n′
0γ

′
0χ

′
0

ϕ′

1−→ · · ·
ϕ′

p
−−→ n′

pγ
′
pχ

′
p

with w(π′′) = w(τ ′′) = w(τ, h, k − 1) = 1 (because h �τ k − 1), and γ′
i =

Γ (σ′
i) ∪ Dom(n′

i) for i = 1..p.

20

By lemma 2 and definition 7, 〈σ′
0 : n′

0, χ
′
0〉 = τ [h]Bcall τ [h+1]. So, χ′

0 = false ,
and τ [h + 1] is on the form σ′

0 : n′
0 : n, for some n ∈ N such that n′

0 −→ n.
Since h �τ k − 1, by lemma 3 it follows that [(τ ′′) = τ [h] −→ [(τ, h + 1, k − 1).
Lemma 2 also ensures that the first element of [(τ, h + 1, k − 1) is just τ [h + 1]:
then, [(τ ′′) = [τ [h], τ [h + 1], . . .], that implies n = n′

1 and σ′
1 = σ′

0 : n′
0. Now,

consider the first edge in π′′, i.e. n′
0γ

′
0 −→ n′

1γ
′
1. Since w(π′′) = 1 = w(π′′[0..1]) and

the weight of a path cannot decrease by adding new nodes, then w(π′′[1..p]) = 0.
Let ϕ =

∧

i=1..p ϕ′
i. Then, by definition 7, n′

0γ
′
0 �ϕ n′

pγ
′
pχ

′
p.

Now, we have to deal with the two possible values of the label `k. Consider
first the case `k = return. By lemma 2, σ′

p : n′
p = τ [k − 1] and σl : nl = τ [k].

Since B`k
is a return transition, it follows that `(n′

p) = return, and σ′
p : n′

p must
be on the form σ′ : n′ : n′

p for some σ′ and n′. By lemma 1, there exists an index
i ∈ 1..k−2 such that i �τ k−1 and τ [i] = σ′ : n′. Definition 13 implies that, given
a trace τ and an index j, there exists a unique index i such that i �τ j. Since
h �τ k − 1 by hypothesis, then h = i, and σ′

p = σ′ : n′ = τ [i] = τ [h] = σ′
0 : n′

0.
Therefore, the Breturn rule applied at step k instances to:

`(n′
p) = return n′

0 99K nl

σ′
0 : n′

0 : n′
p B σ′

0 : nl

Then, χl = false and γl = Γ (σl)∪Dom(nl) = Γ (σ′
0)∪Dom(n′

0) = γ′
0. The]return

rule instances to:

`(n′
p) = return n′

0 99K nl n′
0γ

′
0 �ϕ n′

pγ
′
p

n′
0γ

′
0

ϕ
−→ nlγ

′
0

Therefore, the path π = π′ ϕ
−→ nlγl is in G], and:

w(π) = w(π′) + w(n′
0γ

′
0

ϕ
−→ nlγ

′
0) = 1 + 0

w(τ) = w(τ ′) + w(τ ′′) + w(σ′
0 : n′

0 : n′
p B σ′

0 : n′
0) = 1 + 1 − 1

Next, we consider the case `k = propagate. By lemma 2, σ′
p : n′

p� = τ [k − 1]
and σl : nl� = τ [k]. The Bpropagate rule instances to:

n′
p 699K�

σ′
p : n′

p� B σ′
p�

With the same arguments used above, we deduce that σ′
0 : n′

0 = σ′
p = σl : nl,

and γ′
0 = γl. By the]propagate rule:

n′
0γ

′
0 �ϕ n′

pγ
′
p� n′

p 699K�

n′
0γ

′
0

ϕ
−→ n′

0γ
′
0�

As above, the path π = π′ ϕ
−→ nlγl� is in G], and w(π) = w(τ).

21

The third rule in the definition of [is applicable in any other case. Let
τ ′ = τ [0..k − 1] and ϕ = Φ(σk−1χk−1 B`k

σkχk). The rule states that:

[(τ) = [(τ ′)
ϕ
−→ σkχk

Then, σkχk = (σl : nl)χl. By the induction hypothesis, there exists a path:

π′ = n0γ0χ0
ϕ1

−→ · · ·
ϕl−1

−−−→ nl−1γl−1χl−1

with w(π′) = w(τ ′) and γi = Γ (σi) ∪ Dom(ni) for i = 1..l − 1. By case analysis
on the value of the label `k, we have:

– case [call]. By the Bcall rule:

`(nl−1) = call nl−1 −→ nl

σl−1 : nl−1 B σl−1 : nl−1 : nl

Then, σl = σl−1 : nl−1, and χl−1 = χl = false . By definition 3:

γl = Γ (σl−1 : nl−1) ∪ Dom(nl)

= Γ (σl−1)↑nl−1 ∪ Dom(nl)

=
(

Γ (σl−1) ∪Dom(nl−1)
)

↑nl−1 ∪ Dom(nl)

= γl−1 ↑nl−1 ∪ Dom(nl)

The]call rule gives:

`(nl−1) = call nl−1 −→ nl nl−1γl−1 ∈ N]

nl−1γl−1 −→ nlγl

Then, π = π′ −→ nlγl is in G], and w(π) = w(π′) + 1 = w(τ ′) + 1 = w(τ).
– case [pass]. By the Bpass rule:

`(nl−1) = check(P) Γ (σl−1 : nl−1) `Perm P nl−1 99K nl

σl−1 : nl−1 B σl−1 : nl

Then, σl = σl−1 and χl−1 = χl = false. By definition 8, it follows that
ϕ = Γ (σl−1 : nl−1) ` P . Since nl−1 is not privileged (constraint (1e)), then:

γl−1 = Γ (σl−1) ∪ Dom(nl−1) = Γ (σl−1 : nl−1)

Then, ϕ = γl−1 ` P , and by the]pass rule:

`(nl−1) = check(P) nl−1γl−1 ∈ N] nl−1 99K nl

nl−1γl−1
γl−1 `P
−−−−−→ nlγl−1

By constraint (1d), γl = Γ (σl) ∪ Dom(nl) = Γ (σl−1) ∪ Dom(nl−1) = γl−1.

Then, π = π′ γl−1 `P
−−−−−→ nlγl is in G], and w(π) = w(π′) + 0 = w(τ ′) = w(τ).

22

– case [fail]. By the Bfail rule:

`(nl−1) = check(P) Γ (σl−1 : nl−1) 6`Perm P

σl−1 : nl−1 B σl−1 : nl−1�

Similarly to the previous case, ϕ = Γ (σl−1 : nl−1) 6` P = γl−1 6` P , and
σl : nl = σl−1 : nl−1, γl = γl−1. Then, by the]fail rule:

`(nl−1) = check(P) nl−1γl−1 ∈ N]

nl−1γl−1
γl−1 6`P
−−−−−→ nl−1γl−1�

Then, π = π′ γl−1 6`P
−−−−−→ nlγl� is in G], and w(π) = w(τ).

– case [catch]. By the Bcatch rule:

nl−1 99K�nl

σl−1 : nl−1� B σl−1 : nl

Here σl = σl−1. By constraint (1d), γl = γl−1, and, by definition 8, ϕ = true.
Then, by the]catch rule:

nl−1γl−1� ∈ N] nl−1 99K�nl

nl−1γl−1� −→ nlγl−1

The path π = π′ −→ nlγl is in G], and w(π) = w(π′) +0 = w(τ ′)+ 0 = w(τ).

Proof of Theorem 1. Let τ = [nε] B · · · B 〈σ : n, χ〉 be a trace on 〈G,Perm〉.
Since τ cannot contain intermediate states on the form [] or []�, it follows that

τ is positive. Let [(τ) = [nε]
ϕ1

−→ · · ·
ϕk−−→ (σ : n)χ. Since nε∅ ∈ N], then lemma 4

ensures that there exists a path π in G] whose last node is 〈n, Γ (σ)∪Dom(n), χ〉,
and Φ(π) =

∧

i ϕi = Φ(τ) by lemma 2.

Lemma 5. Let 〈G,Perm〉 B τ . Then:

Perm |= Φ(τ) (19a)

∀Perm′ |= Φ(τ). 〈G,Perm′〉 B τ (19b)

Proof. We first prove (19a), by induction on the length of τ . For the base case
τ = [] there is nothing to prove, because Φ([]) = true by convention. For the
inductive case, let k be the length of τ , and consider the last step τ [k−1]B`τ [k] in
the trace. According to definition 8, if ` 6∈ {pass , fail} then Φ(τ [k−1..k]) = true:
then, Perm |= Φ(τ [0..k − 1]) ∧ true follows by the induction hypothesis and by
definition 9. If ` = pass , then the last step of τ is on the form:

`(n) = check(P) Γ (σ : n) `Perm P n 99K m

σ : n B σ : m

23

By definition 8, Φ(τ [k − 1..k]) = Γ (σ : n) ` P . By definition 9:

Perm |= (Γ (σ : n) ` P) ∧ Φ(τ [0..k − 1])

⇐⇒ Γ (σ : n) `Perm P ∧ Perm |= Φ(τ [0..k − 1])

which follows by the premises of the Bpass rule and by the induction hypothesis.
The case ` = fail is similar.

For (19b), let Perm′ |= Φ(τ). The only steps in the derivation which are sen-
sitive to the security policy are those labelled pass or fail . Let `(n) = check(P),
and σ : nBpassσ : m be a transition on 〈G,Perm〉. Then, Γ (σ : n) `Perm P . Since
Perm |= Φ(τ) by (19a), then definition 8 implies that Perm |= Γ (σ : n) ` P .
Now, we have assumed that Perm′ |= Φ(τ), so Perm′ |= Γ (σ : n) ` P , too.
Therefore, Γ (σ : n) `Perm′ P , which enables the transition σ : nBpass σ : m also
on 〈G,Perm〉. The case fail is treated similarly.

Lemma 6. Let π = n0γ0χ0
ϕ1

−→ · · ·
ϕk−−→ nkγkχk be a path in G], Perm |= Φ(π)

and 〈G,Perm〉Bτ ′ B 〈σ0 : n0, χ0〉 for some τ ′ and σ0 s.t. γ0 = Γ (σ0)∪Dom(n0).
Then, there exists a positive trace τ such that 〈G,Perm〉 B τ ′ B τ , and:

[(τ) = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−−→ (σk : nk)χk (20a)

Moreover, w(π) = w(τ), Φ(π) = Φ(τ), and, for each i ∈ 1..k:

σi =

{

σi−1 : ni−1 if w(π[i − 1] −→ π[i]) = 1

σi−1 otherwise
(20b)

γi = Γ (σi) ∪ Dom(ni) (20c)

Proof. By induction on the derivation of π. The base case requires π = nεDom(nε),
τ ′ = [], σ0 = [], n0 = nε and χ0 = false . Let τ = [nε]. Then, 〈G,Perm〉B τ ′ B τ ,
and the other statements of the lemma hold trivially. For the inductive case, we
proceed by case analysis on the last rule used in the derivation of π. We consider
only the cases]call ,]return and]pass – the other cases can be treated similarly.

– case [call]. By the]call rule:

`(nk−1) = call nk−1γk−1 ∈ N] nk−1 −→ nk

nk−1γk−1 −→ nk(γk−1 ↑nk−1) ∪ Dom(nk)

Then, ϕk = true and χk−1 = χk = false. By the induction hypothesis, there
exists a positive trace τ ′′ such that 〈G,Perm〉Bτ ′Bτ ′′, w(τ ′′) = w(π[0..k−1]),
Φ(τ ′′) = Φ(π[0..k − 1]), and:

[(τ ′′) = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−1

−−−→ σk−1 : nk−1

By the Bcall rule, we have:

`(nk−1) = call nk−1 −→ nk

σk−1 : nk−1 B σk−1 : nk−1 : nk

24

Let σk = σk−1 : nk−1 and τ = τ ′′ B σk. The third rule in definition 14 gives:

[(τ) = [(τ ′′) −→ σk : nk = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−−→ (σk : nk)χk

This proves (20a). For (20b), note that σk = σk−1 : nk is coherent with
w(π[k − 1] −→ π[k]) = 1. For (20c), the induction hypothesis and def. 3 give:

γk = (γk−1 ↑nk−1) ∪ Dom(nk)

=
(

(Γ (σk−1) ∪Dom(nk−1))↑nk−1

)

∪ Dom(nk)

= (Γ (σk−1)↑nk−1) ∪Dom(nk)

= Γ (σk) ∪ Dom(nk)

To conclude the proof of this case, note that the induction hypothesis gives:

w(π) = w(π[0..k − 1]) + 1 = w(τ ′′) + 1 = w(τ)

Φ(π) = Φ(π[0..k − 1]) ∧ true = Φ(τ ′′) = Φ(τ)

– case [return]. By the]return rule, there exist n and γ such that:

`(n) = return nk−1 99K nk nk−1γk−1 �ϕk
nγ

nk−1γk−1
ϕk−−→ nkγk−1

Then, γk = γk−1 and χk = χk−1 = false. By the induction hypothesis, there
exists a positive trace τ0 (of length l0) such that 〈G,Perm〉 B τ ′ B τ0, and:

w(τ0) = w(π[0..k − 1]) (21a)

Φ(τ0) = Φ(π[0..k − 1]) (21b)

[(τ0) = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−1

−−−→ σk−1 : nk−1 (21c)

Moreover, for each i ∈ 1..k − 1:

σi =

{

σi−1 : ni−1 if w(π[i − 1] −→ π[i]) = 1

σi−1 otherwise
(21d)

γi = Γ (σi) ∪Dom(ni) (21e)

Consider the path π′′ used to derive nk−1γk−1 �ϕk
nγ. By definition 7,

nk−1 −→ ε(µ(n)), γ = (γk−1 ↑ nk−1) ∪ Dom(n), and π′′ is on the form
nk−1γk−1 −→ π′ for some π′ ∈ Π(ε(µ(n))γ, nγ) such that w(π′) = 0 and
Φ(π′) = ϕk. By the Bcall rule, we can derive:

`(nk−1) = call nk−1 −→ ε(µ(n))

σk−1 : nk−1 B σk−1 : nk−1 : ε(µ(n))

By (21e), definition 3 and constraint (1d), we have that:

γ = (γk−1 ↑nk−1) ∪ Dom(n)

=
(

Γ (σk−1) ∪ Dom(nk−1)
)

↑nk−1 ∪ Dom(ε(µ(n)))

= Γ (σk−1 : nk−1) ∪ Dom(ε(µ(n)))

25

Then, we can apply the induction hypothesis to obtain a positive trace τ1

(of length l1) such that 〈G,Perm〉 B τ ′ B τ0 B τ1, and:

w(τ1) = w(π′) = 0 (22a)

Φ(τ1) = Φ(π′) = ϕk (22b)

[(τ1) = (σ′
0 : n′

0)χ
′
0

ϕ′

1−→ · · ·
ϕ′

h−−→ (σ′
h : n′

h)χ′
h (22c)

with σ′
0 = σk−1 : nk−1, n′

0 = ε(µ(n)), χ′
0 = false , n′

h = n and χ′
h = false .

Moreover for each i ∈ 1..h − 1:

σ′
i =

{

σ′
i−1 : n′

i−1 if w(π′[i − 1] −→ π′[i]) = 1

σ′
i−1 otherwise

(22d)

Since w(π′) = 0, and the weight of a path is non-decreasing, it follows that
w(π′[i] −→ π′[i + 1]) = 0 for each i ∈ 0..h − 1. Then, by (22d), σ′

h = σ′
0 =

σk−1 : nk−1. Thus, the Breturn rule gives:

`(n) = return nk−1 99K nk

σk−1 : nk−1 : n B σk−1 : nk

Let τ = τ0 B τ1 B σk−1 : nk. We have just proved that 〈G,Perm〉 B τ ′ B τ .
By (21a) and (22a), it follows that:

w(τ) = w(τ0) + w(σk−1 : nk−1 B σk−1 : nk−1 : ε(µ(n)))

+ w(τ1) + w(σk−1 : nk−1 : n B σk−1 : nk)

= w(τ0) + 1 + 0 − 1

= w(π[0..k − 1]) + w(nk−1γk−1
ϕk−−→ nkγk) = w(π)

By (21b) and (22b), it follows that:

Φ(τ) = Φ(τ0) ∧ Φ(σk−1 : nk−1 B σk−1 : nk−1 : ε(µ(n)))

∧ Φ(τ1) ∧ Φ(σk−1 : nk−1 : n B σk−1 : nk)

= Φ(π[0..k − 1]) ∧ ϕk = Φ(π)

We now prove that τ is positive. Let i ∈ 0..l0 + l1 + 1. We have to consider
three cases. If i ∈ 0..l0 − 1, then w(τ, 0, i) = w(τ0, 0, i) ≥ 0 follows directly
from the fact that τ0 is positive. Otherwise, if i ∈ l0..l0 + l1, then, using also
the fact that τ1 is positive:

w(τ, 0, i) = w(τ0) + w(τ0[k − 1] B τ1[0]) + w(τ1, 0, i − l0) ≥ 0

The last case (i = l0 + l1 +1), is subsumed by the fact that w(τ) = w(π) ≥ 0.
Let σk = σk−1. We have still to prove that:

[(τ) = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−−→ (σk : nk)χk

26

Recall that τ is on the form:

〈σ0 : n0, χ0〉B· · ·B〈σl0 : nl0 , χl0〉B〈σ′
0 : n′

0, χ
′
0〉B· · ·B〈σ′

l1
: n′

l1
, χ′

l1
〉Bσk : nk

For i ∈ 0..l1, let σl0+i = σ′
i, nl0+i = n′

i and χl0+i = χ′
i. Let l = l0 + l1 + 1,

σl = σk, nl = nk and χl = false. Therefore, τ can be rewritten as:

〈σ0 : n0, χ0〉 B · · · B 〈σl : nl, χl〉

By (22a), w(τ, l0, l − 1) = 1 + w(τ1, 0, l1) = 1. Let i ∈ l0 + 1..l − 1. Since τ1

is positive, we have that:

w(τ, i, l − 1) = w(τ, l0, l − 1) − w(τ, l0, i) = 1 − (1 + w(τ1, 0, i)) ≤ 0

This proves that l0 = max{ i ∈ 0..l − 1 | w(τ, i, l − 1) = 1 }, i.e. l0 �τ l − 1.
Since w(τ [l− 1..l]) = −1, the second rule in def. 14 together with (21c) give:

[(τ) = [(τ0)
Φ(τ [l0..l])
−−−−−−→ σl : nl

= (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−1

−−−→ σk−1 : nk−1
ϕk−−→ σl : nl

Since nk−1 99K nk, constraint (1f) implies that it cannot be nk−1 −→ nk,
so w(π[k − 1] −→ π[k]) = 0. Then, (20b) is satisfied, because σk = σk−1.
Moreover, by constraint (1d) it follows that:

γk = γk−1 = Γ (σk−1) ∪ Dom(nk−1) = Γ (σk) ∪ Dom(nk)

– case [pass]. By the]pass rule:

`(nk−1) = check(P) nk−1γk−1 ∈ N] nk−1 99K nk

nk−1γk−1
γk−1 `P
−−−−−→ nkγk−1

Then, γk = γk−1, ϕk = γk−1 ` P and χk−1 = χk = false . By the induction
hypothesis, there exists a positive trace τ ′′ such that 〈G,Perm〉Bτ ′Bτ ′′, and:

[(τ ′′) = (σ0 : n0)χ0
ϕ1

−→ · · ·
ϕk−1

−−−→ σk−1 : nk−1

Moreover, w(τ ′′) = w(π[0..k − 1]) and Φ(τ ′′) = Φ(π[0..k − 1]). Since, by
assumption, Perm |= Φ(π) = Φ(π[0..k − 1]) ∧ (γk−1 ` P), by definition 9 it
follows that γk−1 `Perm P . Then, equation (20c) and constraint (1e) imply
that Γ (σk−1 : nk−1) `Perm P . So we can apply the Bpass rule, that gives:

`(nk−1) = check(P) Γ (σk−1 : nk−1) `Perm P nk−1 99K nk

σk−1 : nk−1 B σk−1 : nk

Let τ = τ ′′ B σk = σk−1 : nk. The induction hypothesis gives:

w(π) = w(π[0..k − 1]) + 0 = w(τ ′′) + 0 = w(τ)

Φ(π) = Φ(π[0..k − 1]) ∧ (γk−1 ` P) = Φ(τ ′′) ∧ (γk−1 ` P) = Φ(τ)

The proofs for (20a)–(20c) are trivial.

27

Proof of Theorem 2. Let π = nε∅ −→ · · · −→ nγχ be a path on G], with
Perm |= Φ(π). Let τ ′ = [], σ0 = [], n0 = nε, χ0 = false and γ0 = ∅. Then,
〈G,Perm〉 B τ ′ B 〈σ0 : n0, χ0〉, and γ0 = Γ (σ0) ∪ Dom(n0). By lemma 6, there
exists τ ′′ such that 〈G,Perm〉Bτ ′Bτ ′′B〈σ : n, χ〉 and Φ(π) = Φ(τ ′′ B〈σ : n, χ〉).
Let τ = τ ′ B τ ′′. Then, 〈G,Perm〉B τ B 〈σ : n, χ〉 and Φ(π) = Φ(τ B 〈σ : n, χ〉).
Proof of Theorem 3. Consider first the “if” part. By contradiction, assume
there exists a trace τ = [nε] B · · · B σ : n on 〈G,Perm〉 such that Γ (σ : n) 6` P .
Then, by the Bfail rule, 〈G,Perm〉 B τ B σ : n�. Let γ = Γ (σ : n). By con-
straint (1e), γ = Γ (σ)∪Dom(n). By theorem 1, there exists a path π ∈ Π(nγ�)
in G] such that Φ(π) = Φ(τ). By lemma 5, Perm |= Φ(π). Since Φ(nγ�) =
∨

{Φ(π) | π ∈ Π(nγ�) }, then Perm |= Φ(nγ�) – contradiction.
For the “only if” part, let n be a redundant check for permission P , i.e.

Γ (σ : n) ` P whenever 〈G,Perm〉 B σ : n for some state σ. By contradiction,
assume there exist a context γ such that Perm |= Φ(nγ�), i.e. there exists a
path π ∈ Π(nγ�) such that Perm |= Φ(π). (definition 6). By theorem 2, there
exist τ and σ such that 〈G,Perm〉 B τ B σ : n�, Γ (σ) ∪ Dom(n) = γ, and
Φ(τ B σ : n�) = Φ(π). Moreover, the last step in the trace must be on the form:

`(n) = check(P) Γ (σ : n) 6`Perm P

σ : n B σ : n�

because the only other rule leading to a state on the form σ : n� is Bpropagate,
which however requires n being a call node (lemma 1). Now, by definition 8:

Φ(τ B σ : n�) = Φ(τ) ∧
(

Γ (σ : n) 6` P
)

= Φ(τ) ∧ (γ 6` P)

Since Perm |= Φ(τ B σ : n�), by definition 9 it follows that Perm |= Φ(τ) and
Perm |= γ 6` P . By constraint (1e), we have that γ = Γ (σ)∪Dom(n) = Γ (σ : n).
Then, Γ (σ : n) 6` P – contradiction with the assumption of n being redundant.
Proof of Theorem 4. Let n = ε(µ(n)) and Perm 6|= Φ(nγ) for all nγ ∈ G].
By contradiction, assume that 〈G,Perm〉 B σ : m for some σ and m ∈ µ(n).
Since µ(nε) has no entry points, it must be σ 6= []. So, σ is on the form σ′ : n′.
Consider the trace τ ′ such that 〈G,Perm〉B τ ′ Bσ : m. By lemma 1, there exists
an index i such that τ ′[i] = σ′ : n′ and n′ −→ n. Let τ = τ ′[0..i] B σ : n,
and γ = Γ (σ) ∪ Dom(n). Then, lemma 5 ensures that Perm |= Φ(τ), and, by
theorem 1, there exists a path π ∈ Π(nγ) such that Φ(π) = Φ(τ). It follows that
Perm |= Φ(nγ) – a contradiction.

Definition 16. The effect of inlining ṅ −→ n′ on context γ is defined as:

Inl ṅ(γ) =

{

γ if Dom(n′) /∈ γ

(γ \ Dom(n′)) ∪ Dom(ṅ) otherwise

Lemma 7. Let ṅ be inlineable in G, and Ġ = inl ṅ(G). Then, for each state σ,

ΓĠ(inl ṅ(σ)) = Inl ṅ(ΓG(σ))

28

Proof. Let γ = ΓG(σ), σ̇ = inl ṅ(σ) and γ̇ = ΓĠ(σ̇). We proceed by induction
on the size (number of nodes) of σ. The base case is σ = []. Then, σ̇ = [],
γ = γ̇ = ∅, and ∅ = Inl ṅ(∅). For the inductive case, consider the last rule used
in the derivation of σ̇ = inl ṅ(σ). We have the two following cases:

– if σ = σ′ : n′ and top(σ′) 6= ṅ, then inl ṅ(σ) = σ̇′ : n′, where σ̇′ = inl ṅ(σ′).
Moreover, by condition (2b) of definition 11, it follows that ṅ 6−→ µ(n′). Let
γ′ = ΓG(σ′), γ̇′ = ΓĠ(σ̇′). We have to consider the following two subcases.
If PrivG(n′), then γ = {DomG(n′)}. By definition 12, we have that PrivĠ(n′)
and DomĠ(n′) = DomG(n′). Since ṅ 6−→ µ(n′), definition 16 implies that:

Inl ṅ(γ) = Inl ṅ(DomG(n′)) = DomG(n′) = DomĠ(n′) = γ̇

Otherwise, if ¬PrivG(n′), then:

Inl ṅ(γ) = Inl ṅ(γ′ ∪ DomG(n′)) by def. 3 (¬PrivG(n′))

= Inl ṅ(γ′) ∪ Inl ṅ(DomG(n′)) by def. 16

= γ̇′ ∪ Inl ṅ(DomG(n′)) by the ind. hyp.

= γ̇′ ∪ Inl ṅ(DomĠ(n′)) by def. 12

= γ̇′ ∪ DomĠ(n′) by def. 16

= γ̇ by def. 3 (¬PrivĠ(n′))

– if σ = σ′ : ṅ : n′, then inl ṅ(σ) = σ̇′ : n′, where σ̇′ = inl ṅ(σ′). Note that, by
lemma 1 and condition (2a) of definition 11, ṅ −→ µ(n′). Let γ′ = ΓG(σ′)
and γ̇′ = ΓĠ(σ̇′). We have to consider the following two subcases.
If PrivG(n′), definition 12 states that PrivĠ(n′) and DomĠ(n′) = DomG(ṅ).
Then, γ = DomG(n′) and γ̇ = DomĠ(n′), so definition 16 implies:

Inl ṅ(γ) = Inl ṅ(DomG(n′)) = DomG(ṅ) = DomĠ(n′) = γ̇

Otherwise, if ¬PrivG(n′), there are two further subcases, according ṅ being
privileged or not. If PrivG(ṅ), then PrivĠ(n′) follows by definition 12, and:

Inl ṅ(γ) = Inl ṅ(DomG(ṅ) ∪ DomG(n′)) as PrivG(ṅ), ¬PrivG(n′)

= DomG(ṅ) by def. 16

= DomĠ(n′) by def. 12

= γ̇ as PrivĠ(n′)

Otherwise, if ¬PrivG(ṅ), then:

Inl ṅ(γ) = Inl ṅ(γ′ ∪ DomG(ṅ) ∪ DomG(n′)) as ¬PrivG(ṅ), ¬PrivG(n′)

= Inl ṅ(γ′) ∪ DomG(ṅ) by def. 16

= γ̇′ ∪ DomG(ṅ) by the ind. hyp.

= γ̇′ ∪ DomĠ(n′) by def. 12

= γ̇ as ¬PrivĠ(n′)

29

Proof of Theorem 5. Let τ be on the form 〈σ0, χ0〉 B · · · B 〈σk, χk〉, with
σ0 = [], χ0 = false. Then, inl ṅ(τ) is on the form 〈σ̇0, χ0〉 Bṅ · · · Bṅ 〈σ̇k, χk〉,
where σ̇i = inl ṅ(σi) for each i ∈ 0..k. We have to prove that:

〈σ0, χ0〉 B · · · B 〈σk, χk〉 ⇐⇒ 〈σ̇0, χ0〉 B
ṅ · · · B

ṅ 〈σ̇k, χk〉

Consider the forward implication first. We proceed by case analysis on the rule
used to deduce σiχi Bσi+1χi+1. We omit a detailed discussion of the cases Bfail

and Bcatch , because they are treated similarly to Bpass and Breturn , respectively.

– case [call]:
`(n) = call n −→ n′

σ : n B σ : n : n′

Here σi = σ : n, σi+1 = σ : n : n′, and χi = χi+1 = false . Let σ′ : n =
inl ṅ(σ : n) = σ̇i. If n 6= ṅ, then rule Bṅ

call1 yields:

`(n) = call n −→ n′ n 6= ṅ

σ′ : n Bṅ σ′ : n : n′

To show that σ̇i+i = σ′ : n : n′ = inl ṅ(σ : n : n′) = inl ṅ(σi+1), it suffices to
note that rule inl2 instances to:

inl ṅ(σ : n) = σ′ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ′ : n : n′

Otherwise, if n = ṅ, then rules Bṅ
call2 and inl3 give:

`(ṅ) = call ṅ −→ n′

σ′ : ṅ Bṅ σ′ : n′

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

To prove that σ′ = σ̇, assume first that σ = []. Then, σ′ : ṅ = inl ṅ([ṅ]) = [ṅ]
implies that σ′ = [], and σ̇ = inl ṅ([]) = [],

Second, assume σ = σ′′ : n′′. Condition (2a) of definition 11 ensures that
n′′ 6= ṅ, because, otherwise, it would be ṅ −→ µ(ṅ). Then, rule inl2 gives:

inl ṅ(σ′′ : n′′) = σ̇ top(σ′′ : n′′) 6= ṅ

inl ṅ(σ′′ : n′′ : ṅ) = σ̇ : ṅ

By assumption, it is also σ′ : ṅ = inl ṅ(σ : ṅ). Therefore, σ′ = σ̇.
– case [return]:

`(n′) = return n 99K m

σ : n : n′ B σ : m

Let σ′ : n′ = inl ṅ(σ : n : n′). We have to consider two subcases.

30

If ṅ 6−→ µ(n′), let σ̇ : n = inl ṅ(σ : n). Then, lemma 1 ensures that n 6= ṅ,
hence rules inl2 and Bṅ

return1 give:

inl ṅ(σ : n) = σ̇ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ̇ : n : n′

`(n′) = return n 99K m ṅ 6−→ µ(n′)

σ̇ : n : n′ Bṅ σ̇ : m

Then, σ̇ : m = inl ṅ(σ : m) follows immediately by σ̇ : n = inl ṅ(σ : n).

Otherwise, if ṅ −→ µ(n′), let σ̇ = inl ṅ(σ). Lemma 1 and condition (2b) of
definition 11 ensure that n = ṅ. Then, rules inl3 and Bṅ

return2 give:

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

`(n′) = return ṅ 99K m ṅ −→ µ(n′)

σ̇ : n′ Bṅ σ̇ : m

To prove σ̇ : m = inl ṅ(σ : m), observe that, since top(σ) 6= ṅ is ensured by
condition (2a), then rule inl2 instances to:

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : m) = σ̇ : m

– case [pass]:

`(n) = check(P) ΓG(σ : n) `Perm P n 99K m

σ : n B σ : m

Let σ̇ : n = inl ṅ(σ : n) and ṅ −→ n′. By theorem 1 and constraint (1e),
there exist nγ ∈ G] such that γ = ΓG(σ : n). We must consider two cases. If
Dom(n′) 6∈ γ, then definition 16 gives Inl ṅ(γ) = γ. Therefore, by lemma 7:

ΓĠ(inl ṅ(σ : n)) = Inl ṅ(ΓG(σ : n)) = Inl ṅ(γ) = γ

It follows that ΓĠ(σ̇ : n) `Perm P , so the transition is also possible in Bṅ.

Otherwise, if Dom(n′) ∈ γ, then, by conditions (2a)–(2c) the state σ must be
on the form σ′ : ṅ : n′ : σ′′, for some σ′, σ′′ such that ṅ 6∈ σ′′. By lemma 1,
it follows that 〈G,Perm〉 B σ′ : ṅ. Consider the trace τ ′ = [] B · · ·σ′ : ṅ,
and let γ̇ = ΓG(σ′) ∪ Dom(ṅ). Theorem 1 states that there exists a path
π′ ∈ Π(ṅγ̇) in G]. By]call , ṅγ̇ −→ n′γ′′, where γ′′ = (γ̇ ↑ ṅ)∪Dom(n′). Let h
be the rightmost index of σ′ : ṅ : n′ in τ , k be the rightmost index of σ : n,
and i ∈ h + 1..k. It follows that σi is on the form σ′ : ṅ : n′ : σ′

i, for some
σ′

i 6= []. Then, w(τ, h, i) = |σ′
i| > 0, which, according to definition 15, means

that the trace σ′ : ṅ : n′ B · · · B σ : n is positive. Therefore, we can apply
lemma 4 to find a path π ∈ Π(n′γ′′, nγ). This proves that ṅγ̇ ⇒ nγ. Since all

31

the premises to condition (2d) in definition 11 are satisfied, we can conclude:

ΓG(σ : n) `Perm P ⇐⇒ γ′ ∪ Dom(n′) `Perm P by def. γ

⇐⇒ γ′ `Perm P ∧ P ∈ Perm(Dom(n′)) by def. 4

⇐⇒ γ′ `Perm P ∧ P ∈ Perm(Dom(ṅ)) by (2d)

⇐⇒ γ′ ∪ Dom(ṅ) `Perm P by def. 4

⇐⇒ Inl ṅ(γ) `Perm P by def. 16

⇐⇒ ΓĠ(inl ṅ(σ : n)) `Perm P by lemma 7

⇐⇒ ΓĠ(σ̇ : n) `Perm P by def. σ̇ : n

Therefore, ΓĠ(σ̇ : n) `Perm P , and the transition σ̇ : n Bṅ σ̇ : m is possible.
Note that σ̇ : m = inl ṅ(σ : m) immediately follows by σ̇ : n = inl ṅ(σ : n).

– case [propagate]:
n′ 699K�

σ : n′� B σ�
If ṅ 6−→ µ(n′), let σ̇ = inl ṅ(σ). Lemma 1 and condition (2a) ensure that
top(σ) 6= ṅ. Then, rules inl2 and Bṅ

propagate1 give:

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : n′) = σ̇ : n′

n′ 699K� ṅ 6−→ µ(n′)

σ̇ : n′� Bṅ σ̇�
Otherwise, if ṅ −→ µ(n′), then lemma 1 and condition (2b) imply that
σ = σ′ : ṅ for some σ′. Let σ̇ = inl ṅ(σ′). Then, by rules inl3 and Bṅ

propagate2 :

inl ṅ(σ′) = σ̇

inl ṅ(σ′ : ṅ : n′) = σ̇ : n′

n′ 699K� ṅ −→ µ(n′)

σ̇ : n′� Bṅ σ̇ : ṅ�
To prove that σ̇ : ṅ = inl ṅ(σ), observe that, since top(σ′) 6= ṅ is ensured by
condition (2a), then rule inl2 instances to:

inl ṅ(σ′) = σ̇ top(σ′) 6= ṅ

inl ṅ(σ′ : ṅ) = σ̇ : ṅ

For the backward implication, we proceed by case analysis on the rule used to
deduce 〈σ̇i, xi〉B〈σ̇i+1, xi+1〉. The function inl is bijective: for each inlined state σ̇,
the original state can be recovered by inserting ṅ before each n′ occurring in σ̇
whenever ṅ −→ µ(n′). A case analysis on the rule used for σ̇i Bṅ σ̇i+1 gives:

– case [call1]:
`(n) = call n −→ n′ n 6= ṅ

σ′ : n Bṅ σ′ : n : n′

Since inl is bijective, let σ : n be such that inl ṅ(σ : n) = σ′ : n. Then:

`(n) = call n −→ n′

σ : n B σ : n : n′

inl ṅ(σ : n) = σ′ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ′ : n : n′

follow by rules Bcall and inl2 , respectively.

32

– case [call2]:
`(ṅ) = call ṅ −→ n′

σ′ : ṅ Bṅ σ′ : n′

Let σ : ṅ be such that inl ṅ(σ : ṅ) = σ′ : ṅ. Then:

`(ṅ) = call ṅ −→ n′

σ : ṅ B σ : ṅ : n′

inl ṅ(σ) = σ′

inl ṅ(σ : ṅ : n′) = σ′ : n′

follow by rules Bcall and inl3 , respectively.
– case [return1]:

`(n′) = return n 99K m ṅ 6−→ µ(n′)

σ̇ : n : n′ Bṅ σ̇ : m

Since ṅ 6−→ µ(n′), by condition (2a) it follows that n 6= ṅ. So, let σ : n : n′

be such that inl ṅ(σ : n : n′) = σ̇ : n : n′. Then:

`(n′) = return n 99K m

σ : n : n′ B σ : m

inl ṅ(σ : n) = σ̇ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ̇ : n : n′

follow by rules Breturn and inl2 , respectively, while σ̇ : m = inl ṅ(σ : m)
immediately follows by the fact that σ̇ : n = inl ṅ(σ : n).

– case [return2]:

`(n′) = return ṅ 99K m ṅ −→ µ(n′)

σ̇ : n′ Bṅ σ̇ : m

Let σ : n′ be such that inl ṅ(σ : n′) = σ̇ : n′. Since ṅ −→ µ(n′), lemma 1 and
condition (2b) give that top(σ) = ṅ, i.e. σ = σ′ : ṅ for some σ′. Then:

`(n′) = return ṅ 99K m

σ′ : ṅ : n′ B σ′ : m

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

follow by rules Breturn and inl3 , respectively, while σ̇ : m = inl ṅ(σ : m)
immediately follows by the fact that σ̇ = inl ṅ(σ).

– case [propagate1]:
n′ 699K� ṅ 6−→ µ(n′)

σ̇ : n′� Bṅ σ̇�
Let σ : n′ be such that inl ṅ(σ : n′) = σ̇ : n′.

n′ 699K�

σ : n′� B σ�
inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : n′) = σ̇ : n′

follow by rules Bpropagate and inl2 , respectively.

33

– case [propagate2]:
n′ 699K� ṅ −→ µ(n′)

σ̇ : n′� Bṅ σ̇ : ṅ�
Let σ : n′ be such that inl ṅ(σ : n′) = σ̇ : n′. Since ṅ −→ µ(n′), by lemma 1
and condition (2b) there exists a σ′ such that σ = σ′ : ṅ. Then:

n′ 699K�

σ : n′� B σ�
inl ṅ(σ′) = σ̇

inl ṅ(σ′ : ṅ : n′) = σ̇ : n′

follow by rules Bpropagate and inl3 , respectively, while σ̇ : ṅ = inl ṅ(σ) im-
mediately follows by the fact that inl ṅ(σ′) = σ̇.

34

