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Abstract

Many process calculi have aspects in common, such as parallel composition,
name passing and notions of bisimilarity. This abstract covers the beginning of

an attempt to create a generic library for these calculi in the automatic
theorem prover Isabelle. The goal of the project is to make the library
powerful enough to verify both extensions of existing calculi as well as

completely new ones.
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1 Introduction

There are several tools available to perform verification on process calculi: The
Concurrency Workbench [2] for CCS and The Mobility Workbench [7] for the
π-calculus to name a few. These are specialised tools which can perform preset
tasks such as model- or bisimulation-checking of agents. They work well. They
are fast and automatic as long as the agents they are working on have a finite
state space. Using theorem provers, like Isabelle [5], it is possible to model
agents with infinite state space. Moreover, it is possible to perform proofs on
the actual calculi themselves. It must be stressed that these provers are not
automatic – Isabelle needs to be “hand held” to a larger degree and the two
methods would complement each other.
One of the main goals of the project is to make a generic library in Isabelle
to reason with different varieties of process calculi – different calculi often have
aspects in common, such as parallel composition, name passing and notions of
bisimilarity. If a generic library can be created in Isabelle, new operators or
even entirely new calculi could be added and verified reusing the old proofs.

2 Modelling CCS in Isabelle

The first step has been to model CCS in Isabelle. The operational semantics
(except for relabelling) have been added as have strong and weak bisimilarity as
well as equivalence of agents. Isabelle has also been used to prove that strong
bisimilarity is a congruence.

2.1 Defining the operational semantics

The operational semantics of CCS has been implemented in Isabelle using an
inductively defined set. The set consists of tuples of the form (P, α, P ′) where
P is an agent, α is an action, and P ′ is an α-derivative of P . Every rule in the
operational semantics is used as an inductive rule for the set with the base case
of the semantics representing the base case of the set definition. The operational
rules with their corresponding set rules can be found in table 1.

2.2 Weakening the transitions

The operational semantics described above is used when defining strong bisim-
ilarity. In order to describe weak bisimilarity and equivalence the transitions
must be weakened somewhat by allowing for hidden τ -transitions, also called

silent actions. The transitions for weak bisimilarity and equivalence are
α̂

=⇒ and
α

=⇒ respectively where
α

=⇒ specifies at least the τ -actions occurring in α and
α̂

=⇒ specifies nothing about the τ -actions occurring in α [3]. The operational
semantics for the two transitions can be found in table 2. They are modelled in
Isabelle using inductively defined sets – just as the regular transition system.

2.3 Bisimulation and congruences

Two processes are said to be bisimilar if they can mimic each others actions.
The bisimulation relations are co-inductive ones and are extensively covered in
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Table 1: The operational semantics for CCS and the construction rules for the
inductively defined set. The symmetric versions (of the rules marked with †)
have been elided. These inductive definitions are not exactly the ones used in
Isabelle. They have been altered somewhat to make them easier to read.

[Act]
α.P

α

−→ P
(α.P, α, P ) ∈ actsSet

[Sum] P
α

−→ P ′

P+Q
α

−→ P ′

† (P, α, P ′) ∈ actsSet =⇒ (P + Q, α, P ′) ∈ actsSet

[Com] P
α

−→ P ′

P |Q
α

−→ P ′|Q
† (P, α, P ′) ∈ actsSet =⇒ (P |Q, α, P ′|Q) ∈ actsSet

[Com3] P
α

−→ P ′ Q
ᾱ

−→ Q′

P |Q
τ

−→ P ′|Q′

[(P, α, P ′) ∈ actsSet ; (Q, ᾱ, Q′) ∈ actsSet ] =⇒
(P |Q, τ, P ′|Q′) ∈ actsSet

[Res] P
α

−→ P ′

ν(β)P
α

−→ ν(β)P ′

α /∈ {β, β̄} [(P, α, P ′) ∈ actsSet ; α /∈ {β, β̄}] =⇒
(ν(β)P, α, ν(β)P ′) ∈ actsSet

Table 2: The operational rules for
α

=⇒ and
α̂

=⇒.

α
=⇒ ≡ P

α

−→P ′

P
α

=⇒P ′

P
α

=⇒P ′ P ′
τ

=⇒P
′′

P
α

=⇒P
′′

P
τ

=⇒P ′ P ′
α

=⇒P
′′

P
α

=⇒P
′′

α̂
=⇒ ≡

P
α̂

=⇒P
α = τ P

α

=⇒P ′

P
α̂

=⇒P ′

[3]. Isabelle not only supports inductively defined sets but co-inductively de-
fined ones as well so creating co-inductively defined sets containing the tuples
of all bisimilar agents comes very natural. The way they are modelled can be
found in Table 3.
The proofs that have been done so far are proofs that strong bisimulation is a
congruence – that is an equivalence relation and substitutive under all combi-
nators. We are also one transitivity proof short of proving that equivalence is a
congruence. Since bisimulation is a co-inductive definition the proofs have been
made by reasoning about the greatest fixed point – adding all possible deriva-
tives of a combinator to the bisimulation relation should preserve the greatest
fixed point. Weak bisimulation is not a congruence as the Sum rule breaks this
premise.

2.4 Future work

The goal of this project is to make a generic library for reasoning about process
calculi in Isabelle. What most notably is lacking at the moment is name passing
– something which is very common in other calculi. The next step will be to
extend the library to include the π-calculus [4] which is a calculus for mobile
processes which supports the passing of names across links. This becomes prob-
lematic as notions of α-equivalence has to be taken into account. Some work
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Table 3: The co-inductive definition of strong bisimulation ∼, weak bisimulation
≈ and equivalence =. Again, for readability reasons, this is not exact Isabelle
notation.

∼ ≡ [∀αQ′.Q
α

−→ Q′ −→ (∃P ′.P
α

−→ P ′P ′ ∼ Q′;

∀αP ′P
α

−→ P ′ −→ (∃Q′.Q
α

−→ Q′P ′ ∼ Q′] =⇒ P ∼ Q

≈ ≡ [∀αQ′.Q
α

−→ Q′ −→ (∃P ′.P
α̂

=⇒ P ′P ′ ≈ Q′;

∀αP ′P
α

−→ P ′ −→ (∃Q′.Q
α̂

=⇒ Q′P ′ ≈ Q′] =⇒ P ≈ Q

= ≡ [∀αQ′.Q
α

−→ Q′ −→ (∃P ′.P
α

=⇒ P ′P ′ ≈ Q′;

∀αP ′P
α

−→ P ′ −→ (∃Q′.Q
α

=⇒ Q′P ′ ≈ Q′] =⇒ P = Q

has already been done in this area by Röckl and Hirschkoff [6] and collabora-
tion with them is underway. Care must also be taken not to make the library
to specialised. A few attempts have already been made to add operators from
CSP [1] to the existing implementation with good results.
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