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Abstract

The memory system is the key to performance in contemporary computer systems.
When designing a new memory system, architectural decisions are often arbitrated
based on their expected performance effect. It is therefore very important to make
performance estimates based on workloads that accurately reflect the future use of
the system. This thesis presents the first memory system characterization study of
Java-based middleware, which is an emerging workload likely to be an important
design consideration for next generation processors and servers.

Manufacturing technology has reached a point where it is now possible to fit
multiple full-scale processors and integrate board-level features on a chip. The
raised competition for chip resources has increased the need to design more ef-
fective caches without trading off area or power. Two common ways to improve
cache performance is to increase the size or associativity of the cache. Both of
these approaches come at a high cost in chip area as well as power.

This thesis presents two new cache organizations, each aimed at more efficient
use of either power or area. First, the Elbow cache is presented, which is shown
to be a power-efficient alternative to highly set-associative caches. Secondly, a se-
lective cache allocation algorithm is presented, RASCAL, that significantly reduces
the miss ratio at a limited cost in area.
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1. Introduction

The growing disparity between processor and memory speed has made the mem-
ory system the bottleneck of computer system performance. To overcome the ever
increasing latencies, high-speed caches are used extensively. The most important
factors involved in cache design are access time, chip area, power consumption and
miss ratio. The power consumption factor has traditionally been ignored. How-
ever, current high-performance processor designs have reached a level of power
consumption at which it is no longer practical from a cooling and electrical cost
perspective to further push the power envelope[67]. Power has consequently be-
come a first-class design constraint[50].

Two commonly used approaches to reducing the miss ratio in a cache is to in-
crease the associativity, or to increase its size. Current trends in processor design
make both options increasingly expensive. The trend towards chip multiprocessors
[43][8] is limiting the cache size, since by reducing the cache size per processor
additional processors may fit on a chip. The trend towards power-aware designs
is making associativity expensive, since power consumption scales with associa-
tivity. This thesis will present two schemes to improve cache efficiency. The first
organization improves the associative property1 of a cache without increasing its
associativity, while the second increases the effective capacity of a cache without
increasing its size.

When designing the memory system of a new computer system, it is common
to use simulation in combination with benchmarks that represent the workload of
the system. By comparing the simulation results of an existing design with those
of the new design, computer architects are able to approximate the performance
associated with various design options. Since different applications have radically
different memory characteristics, it is important to make design trade-offs based
on the performance of the type of applications that is likely to run on the sys-
tem. Server vendors typically emphasise commercial benchmarks, and in particu-
lar database workloads, since a large fraction of computer systems are employed
as database servers. The long design cycle of modern processors and systems,
commonly in the range of three to seven years, makes it important to use modern
workloads so that the system is optimized for the workloads that will be relevant
when the system is deployed.

A new workload that is gaining importance due to its rapid and widespread
use is Java-based middleware. Middleware is an important building blocks in e-
commerce systems, gluing together databases with webservers and applications.
The fact that they are commonly transaction-oriented Java applications makes them
quite different from conventional number-crunching or database-style workloads.

1Associative propertyis theability to toleratecachecon�icts.
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2. Memory System Behavior of Java Middleware

Java-based middleware, and application servers in particular, are rapidly gaining
importance as a new class of workload for commercial multiprocessor servers.

An application server is a piece of software that provides an abstraction layer
to N-tier application developers. They typically provide services such as thread
pooling, load balancing and database connection pooling and allow the application
writer to focus on the business rule implementation instead of application perfor-
mance.

In Paper A, we present a detailed characterization of the memory system be-
havior of both the ECperf and the SPECjbb benchmark. As with all benchmarks,
it is important that it realistically represents the workload. Ironically, the ECperf
benchmark code has been adopted by application developers as an example of how
to write an 3-tier application [75] making ECperf a very relevant benchmark for
this type of application.

Our results show that it is important to isolate the behavior of the middle tier.
We find that these workloads have small memory footprints and primary working
sets compared with other commercial workloads (e.g., on-line transaction process-
ing) and that a large fraction of the working sets are shared between processors.
We observed two key differences between ECperf and SPECjbb. First, ECperf has
a larger instruction footprint, resulting in much higher miss rates for intermediate-
size instruction caches. Second, SPECjbb’s data set size increases linearly as the
benchmark scales up, while ECperf’s remains roughly constant. This difference
leads to opposite conclusions on the utility of moderately sized (i.e., 1 MB) shared
caches in a chip multiprocessor.

Discussion
This is the first step towards understanding the characteristics behind this kind of
workload. As the workload matures and its performance-dependent factors are bet-
ter understood, its characteristics are likely to change. Further advances in garbage
collection and other JVM technology are also likely to change the memory behav-
ior of the workload.

3. Optimizing Cache Performance

Cache memory design is constrained by a multitude of trade-offs. Traditionally a
low miss ratio combined with an access time that doesn’t restrict cycle time has
been the main objective for memory system architects. As power consumption is
emerging as a first class design constraint, all aspects of processor design have to be
re-evaluated from a power cost perspective. In a modern processor it is not uncom-
mon that 90 percent of the chip area is occupied by caches and that they account for
a significant fraction of the chip power consumption[46][22]. In a timing-critical
cache design the tag and data are read out in parallel. The higher associativity
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of the cache the more data is read out simultaneously yielding roughly a linear
cost in dynamic power. In Paper B we propose a cache organization targeted as a
low-power alternative to highly associative caches, the Elbow cache.

Memory system performance is strongly linked to the amount of cache hits and
misses. In order to reduce miss ratio, a large number of replacement algorithms
has been devised. In Paper C we take the orthogonal approach of proposing a
selective allocation strategy. Hence, instead of only selecting what to replace on
a cache miss, we chose whether a piece of data should be allocated or not. The
scheme is based on the observation that a large fraction of data that are accessed
does not benefit from cache allocation. By not allocating some data, the data that
do get allocated, are able to reside in the cache for a longer period of time.

Both cache organizations presented in this thesis are based on the concept of
Cache Allocation Ticks, CAT. CAT is a time metric for caches, first introduced in
Paper C. The scheme is based on a global counter that is incremented for each
cache allocation in combination with a timestamp per cache item. These times-
tamps enable a coarse recency ordering that is still fine-grained enough to distin-
guish between recent and old items. CAT also has the advantage of changing the
“tick-rate” after the current miss-ratio and thus increases or decreases the resolu-
tion of the timestamps as needed. Therefore it is possible to use relatively small
timestamps.

In Paper B we extend the idea of a skewed cache by adding a relocation strat-
egy yielding an average miss ratio that is comparable to the miss ratio of an 8-way
set-associative cache. We also quantify the power consumption of a skewed cache
organization as well as the proposed Elbow cache and compare it to set-associative
caches. We find that the Elbow cache consumes up to 48% less energy than an
8-way set-associative cache.

In paper Paper C we demonstrate how a selective allocation algorithm com-
bined with a small staging cache can drastically increase the effectiveness of a
cache. We also show that CAT is a fairly accurate and application-independent
way of detecting good allocation candidates.

Discussion
If the staging cache used in the RASCAL cache is looked up before accessing the
main cache it can be expected to result in a very power efficient cache. This is how-
ever neither discussed nor quantified in Paper C. Both of the cache organizations
presented in this thesis are evaluated from a first-level cache perspective. However
nothing prevents them from being employed in other types of caches such as TLBs,
L2s, trace caches, or directory structures.

The Elbow cache was evaluated using the workloads from Paper A. Unfortu-
nately at the time when Paper C was written we did not have access to this type of
workload; and therefore the evaluation does not include them.
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4. Future Work

We plan to evaluate the Java middleware workload from a processor architecture
perspective and compare it to the SPEC benchmarks which are commonly used as
performance evaluation basis for processors. Our initial findings show that there
are substantial differences between these workloads. We also intend to look into
various options of making the memory system speculation aware and tolerant. This
is warranted by the high degree of speculation expected from future processors.

5. Contribution of this thesis

Paper A This paper is the first paper to analyze the new Java middleware workload
and emphaze the importance of studying the middle tier in isolation.

Paper B We present the new Elbow cache organization. This is also the first paper to
provide a dynamic power consumption evaluation of a skewed cache organi-
zation as well as for the proposed Elbow cache scheme.

Paper C Introduces the CAT cache time metric and points out the large miss ratio re-
duction that can be obtained by selective allocation. This paper also presents
the Rascal cache organization.
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Abstract

Java-based middleware, and application servers in particular, are rapidly gain-
ing importance as a new class of workload for commercial multiprocessor servers.
SPEC has recognized this trend with its adoption of SPECjbb2000 and the new
SPECjAppServer2001 (ECperf) as standard benchmarks. Middleware, by defi-
nition, connects other tiers of server software. SPECjbb is a simple benchmark
that combines middleware services, a simple database server, and client drivers
into a single Java program. ECperf more closely models commercial middleware
by using a commercial application server and separate machines for the different
tiers. Because it is a distributed benchmark, ECperf provides an opportunity for
architects to isolate the behavior of middleware. In this paper, we present a de-
tailed characterization of the memory system behavior of ECperf and SPECjbb

8



using both commercial server hardware and Simics full-system simulation. We
find that the memory footprint and primary working sets of these workloads are
small compared to other commercial workloads (e.g., on-line transaction process-
ing), and that a large fraction of the working sets are shared between processors.
We observed two key differences between ECperf and SPECjbb that highlight the
importance of isolating the behavior of the middle tier. First, ECperf has a larger
instruction footprint, resulting in much higher miss rates for intermediate-size in-
struction caches. Second, SPECjbb’s data set size increases linearly as the bench-
mark scales up, while ECperf’s remains roughly constant. This difference can lead
to opposite conclusions on the design of multiprocessor memory systems, such as
the utility of moderate sized (i.e., 1 MB) shared caches in a chip multiprocessor.

A.1 Introduction

Architects have long considered On-Line Transaction Processing (OLTP) and De-
cision Support Systems (DSS) as important workloads for multiprocessor servers.
The recent shift toward 3-tier and N-tier computing models has created a large and
rapidly-growing market for Java-based middleware, especially application servers.
Still, middleware workloads are not yet well understood, and there are few ac-
cepted benchmarks that measure the performance of middle-tier applications. This
is due both to the recent emergence of middleware as a mainstream workload and
to the fact that 3-tier workloads are by nature difficult to install, tune and run.

We present a detailed characterization of two Java-based middleware bench-
marks, SPECjbb and ECperf (now SPECjAppServer2001 [62]), running on shared-
memory multiprocessors. ECperf more closely resembles commercial middleware
applications because it runs on top of a commercial application server and is de-
ployed on a 3-tiered system. The distributed nature of ECperf also facilitates mon-
itoring the behavior of each tier independently. ECperf, however, is difficult to
install and run. It requires the coordination of several machines and several pieces
of software. SPECjbb is also a Java middleware benchmark. It is an attractive al-
ternative to ECperf because although it models a 3-tiered system, it is a single Java
program that can be run on any Java Virtual Machine (JVM). SPECjbb includes
many common features of 3-tiered systems in a single program running on a single
machine.

The goal of this paper is to understand the memory system behavior of these
middleware benchmarks, to gain insight into the behavior of Java-based middle-
ware, and to provide useful data and analysis to memory systems designers tar-
geting middle-tier servers. We focus on mid-range (up to 16 processor) shared-
memory multiprocessors because many application servers target these systems.
We also investigate whether or not the simple SPECjbb benchmark behaves simi-
larly enough to the more complex ECperf to be considered representative of com-
mercial middleware applications. We find that these Java-based middleware appli-
cations have moderate CPIs compared to previously-published commercial work-
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loads (between 2.0 and 2.8 for ECperf). In particular, memory related stalls are
low, with misses to main memory accounting for as little as 15% of the data stall
time and 5% of total execution time. Conversely, sharing misses occur frequently
in both workloads, accounting for over 60% of second-level cache misses on larger
systems. SPECjbb is similar to ECperf in many ways, but there are important dif-
ferences between the two benchmarks. ECperf has a larger instruction working
set, but a lower data cache miss rate. Furthermore, the memory footprint of ECperf
remains nearly constant as the benchmark scales up, whereas the memory use of
SPECjbb grows linearly with database size. We show that this difference can lead
to opposite conclusions on some design decisions, like the utility of shared level-
two caches in a chip multiprocessor.

A.2 Background

The emergence of the Internet and World Wide Web has triggered a shift in enter-
prise computing from a two-tiered, client-server architecture to a 3-tiered architec-
ture (see Figure A.1), where a Web browser is now used universally as a database
client. For databases, connection to the Web allows users to access data without
installing a client program. For Web pages, databases provide dynamic content
and permanent storage. Software that connects databases to Web pages is known
as ”middleware.” Much of the middleware used today is written in Java. Two of
the most popular Java middleware architectures are Java Servlets and Enterprise
Java Beans (EJB). The two are often used together, with Servlets implementing the
presentation logic and EJB providing the business rules. Application servers host
both Servlets and EJB and provide them with communication with both back-end
databases and front-end web clients. Recently, Web-connected database applica-
tions have also been deployed in an ”N-Tier” architecture in which the presen-
tation logic is separated from the business rules. The presentation logic can be
implemented by stateless servers and is sometimes considered to be a first-tier ap-
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plication. N-Tiered architectures allow the application server to focus entirely on
the business logic.

A.2.1 SPECjbb Overview

SPECjbb is a software benchmark designed to measure a system’s ability to run
Java server applications. Inspired by the On-Line Transaction Processing Bench-
mark TPC-C, SPECjbb models a wholesale company with a variable number of
warehouses. Beyond the nomenclature and business model, however, there are few
similarities between TPC-C and SPECjbb. TPC-C is intended to measure the per-
formance of large-scale transaction processing systems, particularly databases. In
contrast, SPECjbb was written to test the scalability and performance of JVMs and
multiprocessor servers that run Java-based middleware. It emphasizes the middle-
tier business logic that connects a back-end data store to a set of thin clients, and is
implemented entirely in Java.

SPECjbb models a 3-tiered system, but to make the benchmark portable and
easy to run, it combines the behavior of all 3 tiers into a single application (see
Figure A.2). Instead of using a commercial database engine like most real 3-
tiered systems, SPECjbb stores its data in memory as trees of Java objects [63].
The SPECjbb specification calls for running the benchmark with a range of ware-
house values. In an official SPECjbb run, the benchmark is run repeatedly with
an increasing number of warehouses until a maximum throughput is reached. The
benchmark is then run the same number of times with warehouse values starting at
the maximum and increasing to twice that value. Therefore, if the best throughput
for a system comes with n warehouses, 2n runs are made. The benchmark score is
the average of runs from n to 2n warehouses. This large number of separate bench-
mark runs would take prohibitively long in simulation. Therefore, in our simulation
experiments, we selected 3 values for the number or warehouses to represent the
range of values that would be included in a publishable SPECjbb result for our
hardware configuration. In order to simplify our monitoring simulations, we report
results from the steady state interval of SPECjbb running with the optimal number
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of warehouses at each system size.

A.2.2 ECperf Overview

ECperf is a middle-tier benchmark designed to test the performance and scalability
of a real 3-tier system. ECperf models an on-line business using a ”Just-In-Time”
manufacturing process (products are made only after orders are placed and supplies
are ordered only when needed). It incorporates e-commerce, business-to-business,
and supply chain management transactions. The presentation layer is implemented
with Java Servlets, and the business rules are built with EJB. The application is
divided into the following four domains, which manage separate data and employ
different business rules. The Customer Domain models the actions of customers
who create, change and inquire about the status of orders. The customer inter-
actions are similar to On-Line Transaction Processing (OLTP) transactions. The
Manufacturing Domain implements the ”Just-In-Time” manufacturing process. As
orders are filled, the status of customer orders and the supply of each part used to
fill the order are updated. The Supplier Domain models interactions with external
suppliers. The parts inventory is updated as purchase orders are filled. Finally, the
Corporate Domain tracks customer, supplier and parts information. The ECperf
specification supplies the EJB components that form the core of the application.
These components implement the application logic that controls the interaction be-
tween orders, manufacturing and suppliers. In particular, that interaction includes
submitting various queries and transactions to the database, and exchanging XML
documents with the Supplier Emulator. Four separate agents participate in the
ECperf benchmark, each of which is run on a separate machine or group of ma-
chines. Each of these parts is represented by a box in Figure A.3.

Application Server The application server, shown in the center of Figure A.3,
hosts the ECperf Java Beans. Together, they form the middle tier of the system,
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which is the most important component to performance on ECperf.

Database The next most important part of the system, in terms of performance,
is the database. Though ECperf does not overly stress the database, it does require
the database to keep up with the application server and provide atomic transactions.

Supplier Emulator Suppliers are emulated by a collection of Java Servlets hosted
in a separate web container.

Driver The driver is a Java program that spawns several threads that model cus-
tomers and manufacturers. Each high-level action in ECperf, such as a customer
making a new order, or a manufacturer updating the status of an existing order, is
called a ”Benchmark Business Operation,” or ”BBop.” Performance on ECperf is
measured in terms of BBops/minute. Although performance on ECperf is mea-
sured in terms of throughput, the benchmark specification requires that 90% of all
transactions are completed within a fixed time [33][52]. In our experiments, how-
ever, we relaxed the response time requirement of ECperf and tuned our system to
provide the maximum throughput regardless of response time.

A.2.3 Enterprise Java Beans

ECperf is implemented using Enterprise Java Beans (EJB), a part of the Java 2 En-
terprise Edition (J2EE) standard. EJB are reusable Java components for server-side
applications. In other words, they are building blocks for web-service applications.
They are not useful until they are deployed on an application server. Inside the
server, an EJB ”container” hosts the beans and provides important services. In par-
ticular, EJB rely on their containers to manage connections to the database, control
access to system resources, and manage transactions between components. Often
the container is also responsible for maintaining the persistent state of the beans
it hosts. The application server controls the number of containers and coordinates
the distribution of client requests to the various instances of each bean.

A.2.4 Java Servlets

Servlets are Java classes that run inside a dynamic web server. Servlets can commu-
nicate with a back-end database through the Java DataBase Connectivity (JDBC)
API. Session information can be passed to Servlets either through browser cookies
or URL renaming.

A.2.5 Java Application Servers

To host ECperf, we used a leading commercial Java-based application server. That
server can function both as a framework for business rules (implemented in EJB)
and as a host for presentation logic, including Java Servlets. As an EJB container,
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it provides required services such as database connections and persistence manage-
ment. It also provides better performance and scalability than a naı̈ve implementa-
tion of the J2EE standard. Three important performance features of our particular
server are thread pooling, database connection pooling, and object-level caching.
The application server creates a fixed number of threads and database connections,
which are maintained as long as the server is running. The application server al-
locates idle threads or connections out of these pools, rather than creating new
ones and later destroying them when they are no longer needed. Database con-
nections require a great deal of effort to establish and are a limited resource on
many database systems. Connection pooling increases efficiency, because many
fewer connections are created and opened. In addition, connection pooling allows
the application server to potentially handle more simultaneous client sessions than
the maximum number of open connections allowed by the database at any time.
Thread pooling accomplishes the same conservation of resources in the Operating
System that database connection pooling does in the database. Our experience tun-
ing the application server showed that configurations with too many threads spend
much more time in the kernel than those that are well tuned. Object-level caching
increases performance in the application server because instances of components
(beans) are cached in memory, thereby reducing database queries and memory al-
locations. The application server used in this study is one of the market leaders
(we are not able to release the name due to licensing restrictions). In all of our
experiments, a single instance of the application server hosted the entire middle
tier. Many commercial application servers, including ours, provide a clustering
mechanism that links multiple server instances running on the same or different
machines. The scaling data presented in section 4 does not include this feature
and only represents the scaling of a single application server instance, running in a
single JVM.

A.3 Methodology

We used a combination of monitoring experiments on real hardware and detailed
full-system simulation to measure the memory system behavior of our middleware
workloads. The native hardware enabled us to perform our measurements on a
complete run of the benchmarks while our simulation study offered us the oppor-
tunity to change the memory system parameters. On the native hardware, we used
the Solaris tool psrset to restrict the application threads to only run on a subset of
the processors available on the machine. The psrset mechanism also prevents other
processes from running on processors within the processor set. This technique en-
abled us to measure the scalability of the applications and to isolate them from
interference by other applications running on the host machine.
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A.3.1 Hardware Setup

We ran both SPECjbb and the application server of ECperf on a Sun Enterprise
6000 server. The E6000 is a bus-based snooping multiprocessor with 16 248-MHz
UltraSPARC II processors with 1 MB L2 caches and 2 GB of main memory. The
UltraSPARC II processors are 4-wide and in-order issue. For ECperf, we ran the
database on an identical Sun E6000, and the supplier emulator and driver were each
run on a 500 MHz UltraSPARC IIe Sun Netra. All the machines were connected
by a 100-Mbit Ethernet link.

A.3.2 Benchmark Tuning

Tuning Java server workloads is a complicated process because there are several
layers of software to configure, including the operating system, the JVM, and the
application itself. Tuning 3-Tier Java applications is more complicated still, be-
cause the application server and database must be properly configured as well.

Operating System (Solaris 8) We optimized Solaris for running large server pro-
grams by enabling Intimate Shared Memory (ISM), which increases the page size
from 8 KB to 4 MB and allows sharing of page table entries between threads. This
optimization greatly increases the TLB reach, which would otherwise be much
smaller than the application server’s large heap.

JVM (HotSpot 1.3.1) We configured the JVM by testing various thread synchro-
nization and garbage collection settings. We found that the default thread synchro-
nization method gave us the best throughput on ECperf and SPECjbb. In all cases,
the heap size was set to the largest value that our system could support, 1424 MB.
We tuned the garbage collection mechanism in the virtual machine by increasing
the size of the new generation to 400 MB. A large new generation leads to fewer,
but longer, partial collections and better total throughput. Our multiprocessor sim-
ulations of SPECjbb were run with HotSpot 1.4.0. In order to be as consistent
as possible with both our uniprocessor simulations and the multiprocessor simu-
lations of ECPerf, we used the same heap and new generation sizes in all of our
experiments.

Application Server For ECperf, we tuned the application server for each proces-
sor set size by running the benchmark repeatedly with a wide range of values for
the size of the execution queue thread pool and the database connection pool. For
each processor count, the configuration settings used were those that produced the
best throughput.

Database ECperf uses a small database, which fit entirely in the buffer pool of
our database server. We found that the performance of ECperf was unaffected by
other database settings.
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A.3.3 Simulation Environment

We used the Simics full-system simulator [44] to simulate ECperf and SPECjbb
running on several different system configurations. Simics is an execution-driven
simulator that models a SPARC V9 system accurately enough to run unmodified
Solaris 8. To determine the cache behavior of the applications without commu-
nication, we configured Simics to model a 1-processor E6000-like SPARC V9
system with 2 GB of main memory running Solaris 8. To run ECperf, we sim-
ulated four such machines connected by a simulated 100-Mbit Ethernet link. The
reported cache statistics for ECperf were taken from the simulated machine that
ran the application server. For these experiments we extended Simics with a de-
tailed memory system simulator [47]. The memory system simulator allowed us to
measure several cache performance statistics on a variety of caches with different
sizes, associativities and block sizes. In order to evaluate the communication be-
havior of these workloads and their suitability to a shared-cache memory system,
we also simulated multiprocessor configurations of each workload. We were not
able to simulate a multi-tiered configuration of ECperf running on a multiproces-
sor. Instead, we simulated a single 16-processor machine where the application
server was bound to 8 processors. We then filtered out the memory requests from
the other 8 processors, and fed only the requests from the application server pro-
cessors to our memory system simulator. We use the methodology proposed by
Alameldeen, et al. [5] to account for the inherent variability of multithreaded com-
mercial workloads. We present the means and standard deviations (shown as error
bars) for all measured and most simulated results.

A.4 Scaling Results

Java-based middleware applications, like most commercial workloads, are through-
put-oriented. Understanding how these applications scale up to both larger multi-
processors and larger data sets is important for both hardware and software devel-
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Figure A.5: Execution Mode Breakdown vs. Number of Processors

opers. In this section, we analyze how ECperf and SPECjbb scale on a Sun E6000
system. Despite our best efforts to tune these workloads, we were unable to even
come close to achieving linear speedup. Figure A.4 shows that ECperf scales super-
linearly from 1 to 8 processors, but scales poorly beyond 12 processors. ECperf
achieves a peak speedup of approximately 10 on 12 processors, then performance
degrades for larger systems. SPECjbb scales up more gradually, leveling off after
achieving a speedup of 7 on 10 processors. In the remainder of this section we
present an analysis of the factors that contribute to the limitations on scaling. We
find that both benchmarks experience significant idle time (approximately 25%)
for systems with 10 or more processors, apparently due to contention for shared
software resources. Memory system stalls are the second major factor, causing the
average cycles per instruction to increase by as much as 40%. Finally, although
garbage collection does impact performance, on larger systems it accounts for only
a fraction of the difference between measured and linear speedup.

A.4.1 Resource Contention

We used a variety of Solaris measurement tools to identify the bottlenecks in
ECperf and SPECjbb. Figure A.5 shows a breakdown of the time spent in various
execution modes as measured by the Solaris tool mpstat. The four modes are run-
ning the operating system (system), running the benchmark (user), stalled for I/O
(I/O), and stalled for other reasons (idle). Figure A.5 illustrates one important dif-
ference between ECperf and SPECjbb. ECperf spends significant time in the oper-
ating system, while SPECjbb spends essentially none. This is not surprising, since
SPECjbb emulates all three tiers on a single machine, using memory-based com-
munication within a single JVM. Conversely, ECperf uses separate machines for
each tier, requiring communication via operating system-based networking code.
For ECperf, the system time increase from less than 5% for a single-processor run,
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Figure A.6: CPI Breakdown vs. Number of Processors

to nearly 30% for a 15-processor system. We hypothesize, but have been unable to
confirm, that the increase in system time arises from contention in the networking
code. Both workloads incur significant idle time for larger system sizes, reaching
25% for 15 processors. Some of this idle time is due to garbage collection. Like
most currently available systems, the JVM we ran uses a single-threaded garbage
collector. That is, during collection only 1 processor is active and all others wait
idle. We estimated the fraction of idle time due to garbage collection by multi-
plying the fraction of processors that are idle during collection by the fraction of
time spent performing garbage collection. Figure A.5 shows that the bulk of the
idle time is due to factors other than garbage collection. The increase in idle time
with system size suggests that there is contention for shared resources in these
benchmarks. The application server in ECperf shares its database connection pool
between its many threads, and the object trees in SPECjbb are protected by locks,
both of which could lead to contention in larger systems. However, the fact that
the idle time increases similarly for both benchmarks indicates that the contention
could be within the JVM.

A.4.2 Execution Time Breakdown

Idle time alone explains at most half the degradation in speedup (75% non-idle time
times 15 processors is approximately 11, not the 8 we observe). To identify other
limits to scalability, we used the integrated counters on the UltraSPARC II proces-
sors to measure and breakdown the average cycles per instruction (CPI) across a
range of system sizes. While CPI is not a good indicator of overall performance
on multiprocessors-e.g., because of the effect of the idle loop-it gives a useful in-
dication of where the time goes. Figure A.6 presents the CPI, broken down into
instruction stalls, data stalls, and other (which includes instruction execution and
all non-memory-system stalls). The overall CPI ranges from 1.8 to 2.4 for SPECjbb
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Figure A.7: Data Stall Time Breakdown vs. Number of Processors

and 2.0 to 2.8 for ECperf. These are moderate CPIs for commercial workloads run-
ning on in-order processors. Barroso, et al. report CPIs for Alpha 4100 systems of
1.3 to 1.9 for decision support database workloads and as high as 7 for a TPC-B on-
line transaction processing workload. The CPI increases by roughly 40% and 33%
for ECperf and SPECjbb, respectively, as the number of processors increase from
1 to 15. Assuming instruction path lengths remain constant (see Section A.4.4.),
the increase in CPI would account for most of the remaining performance degra-
dation. Figure A.6 also shows that data stall time is the main contributor to the
increase in CPI. On a single processor run, data stall time accounts for only 15%
and 12% for ECperf and SPECjbb, respectively. However for a 15-processor sys-
tem, this increases to 35% and 25% for ECperf and SPECjbb, respectively. Figure
A.7 presents an approximate decomposition of the data stall time. Because some
factors are estimated using frequency counts multiplied by published access times,
the total does not always exactly sum to one. Approximately 60% of the data stall
time is due to misses in the L2 cache, with the bulk of the remainder being L2
hits. Conversely, store buffer stalls, the cycles spent waiting for a full store buffer
to be flushed, account for only 1% to 2% of the total execution time. Similarly,
read-after-write hazard stalls, which occur if a load is not separated enough from a
store, account for only 1% of the time.

A.4.3 Cache-to-Cache Transfer Ratio

Figure A.7 also illustrates that cache-to-cache transfers represent a significant frac-
tion of the data stall time for multiprocessor systems. For larger multiprocessors,
cache-to-cache transfers account for nearly 50% of the total data stall time. Cache-
to-cache transfers are an important factor because many multiprocessor systems
take longer to satisfy a miss from a processor’s cache than from main memory. On
the E6000, the latency of a cache-to-cache transfer is approximately 40% longer
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Figure A.8: Cache-to-Cache Transfer Ratio

than the latency of an access to main memory [20]. For NUMA memory systems,
this penalty is typically much higher-200-300% is not uncommon [15]-because of
the indirection required by directory-based protocols. To dig deeper, we measured
the cache-to-cache transfer ratio for SPECjbb and ECperf by counting the ”snoop
copyback” events reported in cpustat. In the UltraSPARC II processor, a snoop
copyback event signifies that a processor has copied a cache line back to the mem-
ory bus in response to a request by another processor. Figure A.8 shows that the
fraction of L2 cache misses that hit in another cache starts at 25% for two proces-
sors and increases rapidly to over 60% for fourteen processors. This is comparable
to the highest ratios previously published for other commercial workloads [9]. Fig-
ure A.8 also shows cache-to-cache transfers occur even for 1 processor. These
transfers are possible because the operating system runs on all 16 processors, even
when the application is restricted to a single processor. Snoop copybacks occur
when the processor running the benchmark responds to a request from another
processor running in the operating system.

A.4.4 Path Length

Comparing Figure A.4 to Figure A.6 reveals an apparent contradiction. ECperf
scales super-linearly as the system size increases from 1 to 8 processors, even
though the average CPI increases over the same range. This surprising result oc-
curs because the instructions executed per BBop decreases even more dramatically
over the same range (not shown). The decrease in instruction count more than com-
pensates for the longer average execution time per instruction. We hypothesize that
this drop is due to object-level caching in the application server. Constructive inter-
ference in the object cache allows one thread to re-use objects fetched by another
thread.
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A.4.5 Garbage Collection Effects

Both workloads spend a considerable amount of time doing garbage collection. To
determine the impact of the collection time on scalability, we compared the mea-
sured speedup to the speedup with the garbage collection time factored out. That
is, we subtracted the garbage collection time from the runtime of the benchmark
and calculated speedup in the usual way. The solid lines in Figure A.9 represent the
speedup of ECperf and SPECjbb as measured. The dotted lines display the speedup
of the benchmarks with the garbage collection time factored out. The difference
in throughput with and without the garbage collection is small, but statistically
significant for ECperf up to 6 processors. For SPECjbb and ECperf on larger sys-
tems, the difference is not statistically significant. We originally hypothesized that
the high percentage of cache-to-cache transfers we observed in both SPECjbb and
ECperf was due to garbage collection. Our JVM (HotSpot 1.3.1) uses a genera-
tional copying collector and is single-threaded. Therefore, during collection, all
live new generation objects are copied by the collection thread regardless of which
thread had created them and regardless of their location in the cache of a particular
processor. For example, in a system that uses a simple MSI invalidation protocol,
any new generation data in the M state cached at a processor that is not performing
the collection will be read by the collector thread through a costly cache-to-cache
transfer. This will result in the original copy of the data being invalidated. After
the garbage collection is performed, the previous owner of the block will have to
reacquire the block to access it. If the data is still residing in the garbage collector’s
cache, that access will result in another costly cache-to-cache transfer. Contrary to
our hypothesis, the benchmark generates almost no cache-to-cache transfers dur-
ing garbage collection. We counted the number of snoop copyback events every
100 ms during a run of SPECjbb. Figure A.10 illustrates this dramatic drop in the
cache-to-cache transfer rate during the 3 garbage collections that occurred in our
measurement interval. The HotSpot 1.3.1 JVM has an option to trace the garbage
collection in a program. We used that output to verify that the decreases in the
snoop copyback rate occurred during garbage collection periods. Since our JVM
uses a single-threaded garbage collector, only one processor is active during the
collection. That by itself would explain a drop, but Figure A.10 shows that the
cache-to-cache transfer rate drops to almost zero during the garbage collection pe-
riods. Even the single processor which is performing the collection causes fewer
cache-to-cache transfers.

A.4.6 Benchmark Scaling Differences

One of the most striking differences between SPECjbb and ECperf is the effect
that scaling the benchmark size has on memory behavior. Like most commer-
cial workload benchmarks, official measurements of SPECjbb and ECperf require
that the benchmark size increase with input rate. In other words, faster systems
must access larger databases. In SPECjbb, the input rate is set by the number of
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warehouses, which determines the number of threads in the program in addition to
the size of the emulated database. ECperf has a similar scaling factor, the Orders
Injection Rate. However, because the database and client drivers run on differ-
ent machines, increasing the Orders Injection Rate has much less impact on the
middle-tier memory behavior. Figure A.11 shows the average heap size immedi-
ately after garbage collection in SPECjbb and ECperf. The size of the heap after
collection is an approximation of the amount of live data. As the scale factor (i.e.,
warehouses) increases, SPECjbb’s memory use increases linearly through approx-
imately 30. Beyond 30 warehouses, the average live memory decreases because
the generational garbage collector begins compacting the older generations. This
slower collection process results in dramatic performance degradation (not shown).
By contrast, the memory use of ECperf increases up to an Orders Injection Rate
of approximately 6, then remains roughly constant through 40. This result sug-
gests that using SPECjbb could lead memory system designers to overestimate the
memory footprints of middleware applications on larger systems.

A.5 Cache Performance

The previous section showed that memory system stalls were a significant detri-
ment to scalability on the Sun E6000. To understand this behavior more deeply,
we used full-system simulation to evaluate a variety of memory system configu-
rations. Our simulation results show that whereas the scaling properties of these
workloads are similar, the cache behavior of ECperf is quite different from that of
SPECjbb. ECperf has a small data set and a low data-cache miss rate. SPECjbb
puts significantly more pressure on the data cache, particularly when it is config-
ured with a large number of warehouses. Although ECperf has a smaller data cache
miss rate than even the smallest configuration of SPECjbb, a higher fraction of its
total memory is shared between threads. Wider sharing and a smaller data working
set make shared-caches a more effective design for that workload.
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Figure A.12: Instruction Cache Miss Rate
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Figure A.13: Data Cache Miss Rate
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Figure A.14: Distribution of Cache-to-Cache Transfers (64 Byte Cache Lines)

A.5.1 Cache Miss Rates

Figure A.12 and Figure A.13 present the instruction and data cache miss rates,
respectively, for a uniprocessor system with a range of cache sizes. All configura-
tions assume split instruction and data caches, 4-way set associativity and 64-byte
blocks. We simulated SPECjbb with three different scaling factors (1, 10, and 25
warehouses) to examine the impact of the larger memory sizes discussed in Sec-
tion A.4.6. These graphs demonstrate that both benchmarks place at most moderate
demand on typical level one (L1) and level two (L2) caches. Typical L1 caches,
falling in the 16 KB-64 KB range, exhibit miss rates of 10-40 misses per 1000 in-
structions. For typical L2 cache sizes of 1 MB and larger, the data miss rate falls
to less than two misses per 1000 instructions. Instruction misses are even lower,
falling well below one miss per 1000 instructions. The two benchmarks behave
similarly, but do have two notable differences. First, ECperf has a much higher
instruction cache miss rate for intermediate size caches (e.g., 256 KB). Second, the
data miss rate for SPECjbb with one warehouse is roughly comparable to that for
ECperf, but it increases by as much as 30% as the data set scales to 25 warehouses.
This result is not surprising, given that SPECjbb’s live data increases linearly with
the number of warehouses (see Figure A.11).

A.5.2 Communication Footprint

To provide insight into the communication behavior of the workloads, we mea-
sured the footprint of the data causing cache-to-cache transfers. As shown in Figure
A.14, all of the cache-to-cache transfers observed in SPECjbb came from 12% of
the cache lines touched during the measurement period, and over 70% came from
the most active 0.1% of cache lines. For both benchmarks, a significant fraction
of the communication is likely due to a few highly contended locks. The single
cache line with the highest fraction of the cache-to-cache transfers accounted for
20% of the total for SPECjbb and 14% for ECperf. This resembles earlier find-
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ings for databases and OLTP workloads [20]. In contrast to SPECjbb, however,
the most active 0.1% of cache lines in ECperf account for only 56% of the cache-
to-cache transfers. Furthermore, the cache-to-cache transfers are spread over half
of the touched cache lines. A major contributor to this difference between ECperf
and SPECjbb is SPECjbb’s emulated database. The object trees that represent
the database are updated sparsely enough that they rarely result in cache-to-cache
transfers. Figure A.15 shows the cumulative distribution of cache-to-cache trans-
fers versus the amount of data transferred (on a semi-log plot). This graph shows
that even though SPECjbb has a larger total data set, ECperf has a larger commu-
nication footprint on an absolute, not just a percentage, basis.

A.5.3 Shared Caches

The high cache-to-cache transfer rates of these workloads suggest that they might
benefit from a shared-cache memory system, which have become increasingly
common with the emergence of chip multiprocessors (CMPs) [51]. Shared caches
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have two benefits. First, they eliminate coherence misses between the proces-
sors sharing the same cache (private L1 caches will still cause coherence misses,
but these can be satisfied on-chip much faster than conventional off-chip coher-
ence misses). Second, compulsory misses may be reduced through inter-processor
prefetching (i.e., constructive interference). The obvious disadvantage of shared
caches is the potential increase in conflict and capacity misses. To evaluate shared
caches, we used Simics to model an 8-processor SPARC V9 system with four dif-
ferent memory hierarchies. In the base case, each processor has a private 1 MB L2
cache, for a total of 8 caches. In the other three cases, the eight processors share
one, two, and four 1 MB caches. The total size of all caches is the product of the
cache size (i.e., 1 MB) and the number of caches. Figure A.16 shows the data miss
rates for ECperf and SPECjbb as the number of processors per cache increases. For
ECperf, the benefit of reducing coherence misses more than makes up for the addi-
tional capacity and conflict misses. ECperf has the lowest data miss rate when all
eight processors share a single cache, even though the aggregate cache size is 1/8
the size in the base case (i.e., private caches). Sharing had the opposite effect on
SPECjbb. Even though SPECjbb had a significant fraction of cache-to-cache trans-
fers, the larger data set size (due to the emulated database) results in an increase in
overall miss rate for 1 MB shared L2 caches.

A.6 Related Work

Work This paper extends previous work by examining examples of an important
emerging class of commercial applications, Java-based middleware. Cain, et al.
describe the behavior of a Java Servlet implementation of TPC-W, which models
an online bookstore [14]. Though the Servlets in their implementation are also
Java-based middleware, that workload is also quite different than ECperf, since
it does not maintain session information for client connections in the middle tier.
The Servlets share a pool of database connections in that implementation like the
application server in ECperf. However, no application data is exchanged between
the Servlets. Previous papers have presented the behavior of commercial applica-
tions. Among the most notable are those that describe the behavior of Database
Management Systems (DBMS) running the TPC benchmarks, TPC-C and TPC-H
[4][9]. Ailamaki, et al. report that DBMS’s spend much of their time handling
level-1 instruction and level-2 data misses [4]. Barroso, et al. report that the mem-
ory system is a major factor in the performance of DBMS workloads, and that
OLTP workloads are particularly sensitive to cache-to-cache transfer latency, espe-
cially in the presence of large second level caches [9]. These studies demonstrate
that the execution time of DBMS is closely tied to the performance of the memory
system. Other studies have also examined Java workloads. Luo and John present
a characterization of VolanoMark and SPECjbb2000 [41]. VolanoMark behaves
quite differently than ECperf or SPECjbb because of the high number of threads
it creates. In VolanoMark, the server creates a new thread for each client connec-
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tion. The application server that we have used, in contrast, shares threads between
client connections. As a result, the middle tier of the ECperf benchmark spends
much less time in the kernel than VolanoMark. SPECjbb also has a much lower
kernel component than VolanoMark. Marden, et al. compare the memory system
behavior of a PERL CGI script and a Java Servlet [47]. Chow, et al. measure
uniprocessor performance characteristics on transactions from the ECperf bench-
mark [15]. They present correlations between both the mix of transaction types
and system configuration to processor performance. Shuf, et al. measure the cache
performance of java benchmarks, including pBOB (now SPECjbb). They find that
even fairly large L2 caches do not significantly improve memory system perfor-
mance [62]. Their measurements, however, are limited to direct-mapped caches
and uniprocessors, while we consider multiprocessors with 4-way set-associative
caches. They also find that TLB misses are a major performance issue. Although
we did not specifically measure TLB miss rates, we found that using the intimate
shared memory (ISM) feature of Solaris, which increases the page size from 8 KB
to 4 MB, increased performance of ECperf by more than 10%. Barroso, et al. [9]
and Olukotun, et al. [51] discuss the performance benefits of chip multiproces-
sors using shared caches. We extend their work by evaluating the impact of shared
caches on SPECjbb and ECperf. 7.

A.7 Conclusions

In this paper, we have presented a detailed characterization of two popular Java-
based middleware benchmarks. ECperf is a complex, multi-tier benchmark that
requires multiple machines, a commercial database system, and a commercial ap-
plication server. In contrast, SPECjbb is a single application that is trivial to install
and run. The distributed nature of ECperf makes the installation and management
of that benchmark more difficult, but it also provides an opportunity to isolate the
behavior of each tier individually. We find that both workloads have low CPIs and
low memory stall times compared to other important commercial server applica-
tions (e.g., OLTP). Running on the moderate size multiprocessors in our study, both
workloads maintained small data working sets that fit well in the 1 MB second-level
caches of our UltraSPARC II processors. More than half of all second-level cache
misses on our larger systems hit in the cache of another processor. SPECjbb closely
approximates the memory behavior of ECperf except for two important differences.
First, the instruction working set of SPECjbb is much smaller than that of ECperf.
Second, the data memory footprint of SPECjbb is larger than that of ECperf, es-
pecially as the benchmark scales up for larger system sizes. The difference in
behavior could lead memory system designers toward different conclusions. For
example, our simulation results demonstrate that ECperf is particularly well suited
to a shared-cache memory system even when the total cache size is limited to 1
MB. In contrast, the reduction in total cache capacity causes SPECjbb’s perfor-
mance to degrade. This study compares two middleware benchmarks, running on
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a specific combination of hardware, operating system, Java virtual machine, appli-
cation server, and database system. Further study is needed to determine how well
these results apply to other Java middleware and different versions of the under-
lying hardware and software. However, we believe that as middleware becomes
better understood, it will prove increasingly important to isolate its behavior from
the effects of other software layers.
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Abstract

Increasing the associativity is a common way to reduce the performance-detri-
mental conflicts in a cache. From a dynamic cache power perspective this associa-
tivity comes at a high cost. In this paper we present miss ratio performance and
dynamic power estimates for a skewed cache and also for the organization pro-
posed in this paper, the elbow cache. We will show that by extending a skewed
cache organization with a relocation strategy we can obtain a miss ratio that is
comparable to the miss ratio of an 8-way set-associative cache, while consuming
up to 48% less dynamic power.
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B.1 Introduction

Power is a scarce resource in contemporary processor designs. To bridge the ever
increasing memory gap, multiple levels of SRAM caches have been employed.
Caches have become a common way to spend the large quantities of transistors
made available by the rapid advancements in process technology. The power con-
sumption of current high-performance processors has reached a level at which it is
no longer practical from a cooling and electrical cost perspective to further push the
power envelope [67]. It is therefore important to conserve power across the chip.
Caches, due to their extensive use through out the memory system, is a natural
place for optimization.

The emerging trends towards chip multiprocessors and Symmetric MultiThread-
ing (SMT) are making shared on-chip caches increasingly common. When mul-
tiple threads share a cache it has been shown that the likelihood of destructive
sharing, caused by inter-thread conflict misses increases [40][18]. Hence more
conflict-tolerant caches than the 2 or 4-way set-associative caches commonly em-
ployed today is likely to benefit performance.

Skewed 2-way associative caches have been shown to perform comparable with
a 4-way set-associative cache [58]. We have found that with an improved replace-
ment strategy based on victim relocation, a skewed cache can obtain the miss ratio
comparable with an 8-way set-associative cache. We call this scheme the elbow
cache.

In a conventional n-way set-associative cache, the associativity comes with
an increased cost in dynamic power consumption since n different locations are
probed in the cache for each access. A 2-way skewed cache on the other hand,
only probes two locations in each access thereby consuming less energy than the
similarly performing 4-way set-associative cache. We will in this paper quantify
the power consumption of a skewed cache and compare it both to set-associative
caches and the proposed elbow cache organization.

The power consumption of current architectures consists almost entirely of dy-
namic power. However as process technology advances, the static power consump-
tion is projected to occupy an increasingly large portion of the total power budgets.
The elbow cache organization presented here is evaluated from a dynamic power
consumption aspect. However the proposed architecture may very well be com-
bined with leakage power reduction techniques [19][34][76].

The contribution of this paper is twofold:

� We present a new scheme, the elbow cache, based on a skewed cache orga-
nization.

� We present a dynamic power evaluation for both a skewed cache and an
elbow cache organization.
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Figure B.1: Describing a skewed cache organization.

B.2 The Skewed Associative Cache

The skewed associative cache was first introduced by Seznec et. al. [58][60]. A
skewed cache is conceptually divided into multiple sub-banks each indexed by a
different hash function. For a skewed 2-way associative cache, the idea is that
cache blocks that map to the same location in BANK I are likely to map to different
locations in BANK II. This is illustrated in Figure B.1 with cache blocks A, B and
C, conflicting in the set-associative but not the skewed case. Mapping conflicts
of this type, which are common due to the repetitive and striding nature of data
accesses, are what a skewed cache is targeted at reducing. The effectiveness is of
course highly dependent on the skewing functions chosen. Thorough discussions
on skewing functions are provided in [12][58][59][60]. We have throughout this
paper used the XOR-based skewing functions proposed by Bodin and Seznec [12],
where two subsets, ��� and ��� , of the address bits are XOR’ed together as described
below. Let � be the one bit rotational shift1 on an � -bit number and � represents
the XOR-function. The skewing functions are then:

� �
	��������������� (B.1)� ��	��������	�������������� (B.2)

B.2.1 Timestamp-Based Replacement

One of the challenges with skewed caches is the replacement algorithm. Since
there are no fixed sets, any combination of victim pairs, one from each bank, is
possible. This makes it difficult to implement an exact ordering-based replacement
algorithm like LRU [10]. Instead, approximative algorithms like NRUE2 has been
proposed [12]. One way of providing an ordering between cache blocks is to store
a timestamp for each block. Then, at replacement, the block with the least re-
cent timestamp is chosen for eviction. This kind of timestamp-based replacement

1Theleastsigni®cantbit shiftedbecomesthemostsigni®cantbit.
2Not RecentlyUsed,Enhanced
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Figure B.2: Describing an elbow cache replacement.

algorithm for skewed caches was evaluated in [64] and found to out-perform the
NRUE-replacement algorithms which, to our knowledge, is the best performing
replacement algorithm proposed for skewed caches. Section B.3.1 provides details
of the timestamps used in this paper.

B.3 The Elbow Cache

The use of timestamps as replacement metric enables a global, temporal ordering of
all blocks in the cache. This ordering property is exploited by the scheme proposed
in this paper, the elbow cache. An elbow cache extends a skewed organization by
carefully selecting its victim and, in the case of a conflict, move the conflicting
cache block to its alternate location. In a sense, the new data item “uses its elbows”
to make space for conflicting data instead of evicting it.

Each block in the cache has an associated timestamp. In the common case, a
cache hit, the elbow cache works just as a skewed cache except that it, concurrently
with the hit, updates the timestamp for the accessed block with the current time.

In the case of a cache miss there are four possible victims: The two primary lo-
cations, hashed to by the address that generated the miss, and also the two alternate
locations of the data currently in the primary location. Figure B.2a illustrates this,
where blocks A and B are in the primary locations (i.e. where the new data item
X can be placed) and C and D are the alternate locations of A and B respectively.
Which cache block to select for eviction is determined by retrieving and comparing
the four timestamps associated with the blocks. Among the four blocks, the one
with the oldest timestamp is selected as the victim. If the victim resides in one of
the alternate locations, data from the primary location is moved there, overwriting
the victim and thereby making room for new data to be filled into its old position
(Figure B.2b). Note that reallocation may only occur in the case of a cache miss
and only if one of the alternate locations (C or D) is chosen as victim. A more
detailed discussion on the proposed implementation is provided in section B.6.
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Summary of actions:

Hit:�
The data and the tag of the two possible locations of X is read.�
The hit is detected�
The current time is written to the timestamp associated with X.

Miss:�
The data and the tag of the two possible locations of X is read.�
X is detected as a cache miss.�
The alternate locations of A and B, C and D are computed and the timestamps of A,
B, C and D are retrieved.�
The oldest cache block C is chosen as victim.�
If the victim, C, resides in a alternate location not accessible to X, another block, A,
that is accessible to X, is moved there and X is allocated where A used to be.

B.3.1 CAT-Timestamps

The timestamps associated with each cache block use the unit Cache Allocation
Ticks (CAT), first introduced in [31]. The scheme is based on a

�
-bit3 global

counter which is incremented each time a new cache block is allocated in the cache.
For every cache hit, a part of the current CAT-counter value is written to the times-
tamp corresponding to the cache block that was accessed.4 To limit the area over-
head of the timestamp array, the timestamps are composed of only the five most
significant bits of the CAT-counter value.

� � �����	��
�
������� ���	��
�
��������� �	��
�
������ �� ��� � �	��
�
�� � ���
Figure B.3: Calculating the timestamp distance.

At the time of a replacement the timestamps of the cache blocks are retrieved
and the CAT-distance

�
for a timestamp

� ���
is calculated as shown in Figure B.3,

where
� �	��
 


is the current value of the global CAT-counter and � is the number
of bits in the timestamp. The cache block with highest distance is chosen for re-
placement. Note that since the CAT-counter is only incremented on replacements
it will not be able to provide an exact ordering, since multiple cache blocks may be
accessed during the same CAT-interval.

3The maximum counter value is four times the number of blocks in the cache ( !#"$&%('*),+.-�$&%,/ !�0214365 ). This is largeenoughto avoid aliasingof thereplacementmetric.
4Similarly to updatingtheLRU-bits in a pseudoLRU-replacementalgorithm.Notethatthenew

timestampsimplyoverwritestheold sono read-modify-writeoperationis needed.
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CAT-based timestamps give a coarse recency ordering that is still fine-grained
enough to distinguish between recent and old data. CAT has the advantage of
changing the “tick-rate” after the current miss ratio and thus increases or decreases
the resolution of the timestamps as needed. Therefore, even relatively small times-
tamps provide a good replacement metric. A sensitivity study has shown that 5-bit
timestamps are sufficient [64].

B.4 Methodology

Our performance results are reported in terms of miss ratio reduction compared
with a conventional 2-way set-associative cache of the same size. We have opted
to study the cache behavior in isolation and therefore do not present execution
time approximations. However, the positive effect of reduced miss ratio on over-
all performance is well established. Estimations of the dynamic power and ac-
cess time of the elbow organization was obtained by modifying the Cacti 3.2
model [61]. We have throughout this paper assumed a process technology of 100
nm and simulated caches with a single read/write port. The source code of our
model together with a brief documentation of our modification can be found at
http://user.it.uu.se/˜martink/elbow project/Elbow.html.

B.4.1 Simulation

We used the Simics full system simulator [44] to simulate our different work-
loads. The Simics setup simulated a SPARC-V9 system running an unmodified
Solaris 9 operating system. Our evaluation is based on the SPECint 2000 and
SPLASH-II benchmark suites together with two Java workloads. The input data
sets for SPLASH was taken from [56] while SPEC was run with the reference
dataset. For the SPEC and Java runs we fast-forwarded 1 Billion instructions into
the benchmark before warming up the caches for 500 Million instructions. The
measurements was then obtained for the next 500 Million instructions. Details of
the SpecJBB and ECperf setup can be found in [32].

For the multi-processor benchmarks (SPLASH, ECperf and SpecJBB) we sim-
ulated a multithreaded system with four threads5 sharing the same data cache. To
get a more realistic access pattern for these benchmarks with respect to thread inter-
leaving, stall information from the cache simulator was feed back into Simics. We
used a memory hierarchy consisting of a 64KB, 4-way set-associative L1-cache;
a 20 cycle latency, 2MB, 8-way set-associative L2-cache and a 100 cycle latency
memory, to generate a baseline access trace. All the organizations evaluated was
then simulated using this trace.

The elbow cache is compared to a number of conventional caches with various
5Eachbenchmarkprogramwas thereforealso run with four threadssharingthe sameaddress

space.
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degrees of associativity6 as well as to a skewed cache that also uses CAT-timestamp
based replacement. We present results for 64KB data caches with 64-byte block.
Result data for other cache sizes (8KB, 16KB, 32KB, 128KB) and instruction and
unified-caches are available at http://user.it.uu.se/˜martink/elbow project/Elbow.html.

B.5 Results

In this section we will present miss ratio performance results and dynamic power
estimations for a 2-way skewed cache, the elbow cache as well as 2, 4 and 8-way
set-associative caches.

SPECint SPLASH-2 Java
BZIP2 2.69% BARNES 0.68% ECPERF 1.35%
CRAFTY 1.85% CHOLESKY 0.68% SPECJBB 8.33%
EON 0.31% FFT 0.33%
GAP 0.68% FMM 0.17%
GCC 7.11% LU C 0.12%
GZIP 4.95% OCEAN C 0.14%
MCF 30.69% RADIOSITY 0.19%
PARSER 6.17% RADIX 0.10%
PERLBMK 2.47% RAYTRACE 1.26%
TWOLF 10.03% VOLREND 0.22%
VORTEX 2.56% WATER N 0.11%
VPR 5.04% WATER S 0.07%
Average 6.21% 0.34% 4.48%

Table B.1: Miss ratios for the 64KB, 2-way set-associative reference cache.

B.5.1 Miss Ratio Performance

We present our performance evaluation in the terms of miss ratio reduction com-
pared to a 2-way set-associative cache, where miss ratio reduction (MRR) is com-
puted as ������� =1-

��� ����

	(� ������� � ��
�	2� ��� )�������� . Table B.1 shows the miss ratios for the 2-way
set-associative cache. We find that a CAT-based skewed cache performs compara-
ble to an 4-way set-associative cache. Previous studies has shown that increasing
the set-associativity beyond 4-way show a very low miss ratio reduction for com-
putation insensitive uniprocessor workloads such as SPEC [24]. Our results (Fig-
ure B.4) confirm this and we also observe that the limited miss ratio improvement
achieved by the elbow cache is similar to that of an 8-way set-associative cache for
5 out of 12 benchmarks.

6Theset-associative cacheswassimulatedwith a perfectLRU-replacementalgorithm.
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Figure B.4: Miss ratio reduction for uniprocessor data cache (SPECint), compared
with a 2-way set-associative cache.

B.5.2 Shared Caches

The recent trend towards multithreaded processors has made shared caches an in-
teresting field for memory system designers. These type of architectures com-
monly share the same L1 cache [17][37][69][38]. To evaluate our design in this
context, we simulated four threads sharing a single data cache. As can be seen
in Figure B.5 there is a substantial miss ratio reduction when increasing the set-
associativity from 2-way to 4-way and also when increasing to 8-ways. This is
indicating a high amount of conflict misses and that conflict reducing measures
beyond 4-way set-associativity are worthwhile. The results show that our pro-
posed elbow cache indeed fulfills these requirements and on average out-performs
an 8-way set-associative cache in terms of miss ratio reduction for the SPLASH
benchmark suite. For the ECperf benchmark, the two skewed caches out-perform
the 8-way set-associative cache, which show a barely noticeable improvement. For
SpecJBB however, the 8-way performs slightly better than the others.

B.5.3 Power Consumption

The power consumption in an integrated circuit can be defined as:
������� ��� " �	� ��
 ������ 3 ����������� ���� � ���� � 3 � ��� ���������

We have focused our power evaluation on dynamic power. We expect that the
elbow cache organization has a very limited effect on both short-circuit power and
leakage power compared to conventional set-associative caches.
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Figure B.5: Miss ratio reduction for a data cache shared by 4 threads (SPLASH
and Java), compared with a 2-way set-associative cache.

Dynamic Power

As process technology scale to smaller feature sizes, the power consumed by the
cache’s sense-amplifiers makes up an increasingly large fraction of the access
power.7 Since the number of words read out in parallel is a factor in how many
bit-lines and sense-amplifiers that needs to be activated during an access, associa-
tivity comes at an increasing cost in power.

A common approach to reduce the access time and power consumption of a
cache is to divide the SRAM-cell array into subarrays. Depending on the optimal
aspect-ratio and subarray size, bit-line-wise and word-line-wise divisions are ap-
plied. In our evaluation, the subarray arrangements for each particular organization
was given by Cacti’s optimization function.

As can be seen in Figure B.6, the per lookup power for both the skewed and
elbow caches8 is 20% higher than for a 2-way set-associative cache, while a 4-way
and 8-way consumes 16% and 48% more power per cache lookup respectively than
the elbow cache.

Stores are handled in the same way in all organizations i.e. the tag comparison
is done in sequence with the data array access and only affects the particular word
that is being written to. Therefore, the dynamic power consumption for stores is
approximately the same for the elbow cache as for a conventional cache.

More details of our implementation assumptions is presented in section B.6.

Miss Ratio-Dependent Dynamic Power Consumption

The dynamic power consumed by a cache can be computed as (B.3) below, where
�����

denotes the power consumed by loads, see Figure B.6, and
��� �

represents the
7As canbeobservedby runningCactiwith differentcon®gurationsandtechnologies.
8Thepower estimatesareidenticalif bothcachesusetimestamp-basedreplacement.
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power associated with stores.

���������
	���������������������������! ! 
(B.3)

������"�#$��%&��')(+*,�-�/.102�354����36679898:�;')(<	���8989.10����4�����66798$8
������667$898

(B.4)
���=��>� -?@#BAC������667$898D��'�(�	���8989.102�3�4���0276 -#B6�
�E�F#B�G4�HJILKLM,027@ F#B6���E��#B�

(B.5)

The power consumed by cache fills are collapsed into the term
�ON �QP!P . In a

conventional cache, skewed or set-associative, the load power (
��� �

) is the number
of accesses, hits and misses, multiplied with the power consumed per access. If
we assume identical load and store miss ratios for all organizations, and hence the
same external (L2) and cache fill power consumption and at the same time factor
out the write power,9 the remaining cache load power components can be expressed
as (B.4) for a conventional cache.

In an elbow cache, due to the energy associated with a relocation, the cache
power is also dependent on how often relocations occur, which in turn depend
on the miss ratio. Hence, in the case of zero percent miss ratio and therefore no
relocations, the elbow cache will consume power similarly to a skewed cache. For
non-zero miss rates the power consumption will increase linearly with the miss
rate and relocation frequency. Formula (B.5) shows the average load power for the
elbow cache.

Figure B.7 shows the power reduction for the
� ���

component of the elbow
cache compared with a 4-way and a 8-way set-associative cache at different miss
ratios and relocation frequencies. If the relocation frequency is assumed to be one
relocation every two misses (1-out-of-2), we observe that break-even compared to

9Sincethetaganddatais lookedupsequentiallyin thecaseof awrite, thewrite power is approx-
imatelythesamefor all organizations.
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Figure B.7: Load power reduction for an Elbow cache compared against 4-way and
8-way set-associative caches for different relocation frequencies.

4-way and 8-way caches occurs at a miss ratio of 5% and 25% respectively. If
we restrict the relocation frequency to be at most one out of four misses or one
out of eight misses, we push the break-even point versus an 8-way set-associative
cache onto 50% and 100% miss ratio respectively. The effect on the miss ratio of
limiting the relocation frequency can be seen in Table B.2. It shows that the miss
ratio effect is negligible for the 1-out-of-4 restriction but becomes noticeable for
the 1-out-of-8 restriction. By limiting the relocation frequency we also limit the
peak power consumption in the cache, which would otherwise be extremely high
due to the worst-case situation with 100% miss ratio with a relocation on every
miss.

Relocation limit Avg. miss ratio reduction
SPECINT SPLASH-II JAVA

Elbow unrestricted 14.02% 16.55% 9.58%
Elbow 1-out-of-2 13.95% 16.63% 9.91%
Elbow 1-out-of-4 13.34% 15.86% 9.65%
Elbow 1-out-of-8 12.81% 14.99% 9.47%
8-way 15.26% 13.15% 8.05%
4-way 11.82% 10.04% 7.32%
Skewed 10.42% 12.60% 8.76%

Table B.2: The average miss ratio effect of limiting the relocation frequency. Nor-
malized to the miss ratio of a 2-way set-associative cache.
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B.5.4 Access Time

The access time of a cache is very important for its performance [25], since cache
access time may dictate the processor cycle time [23].10 Our Cacti results show that
the elbow cache has an access time that is 4% lower than a 4-way set-associative
and 5% lower than an 8-way. Note that this proposal is focused on timing-critical
caches where tag and data are accessed in parallel. If the latency of sequential tag
and data lookup is tolerable, such a design is of course far better from a dynamic
power perspective. This may however result in up to 60% higher access time [74].

B.6 Elbow Implementation Discussion

This section describes the assumed implementation of the elbow cache on which
our modified Cacti-model was based and for which our performance benchmarks
were simulated.

B.6.1 Issues with Skewed Caches

There are a few issues surrounding skewed caches that one must bear in mind.
Since the elbow cache is an extension of the skewed cache concept it will inherit
these issues, but whenever a skewed cache design is feasible, the elbow cache
should be considered as a viable alternative.

The additional critical-path delay introduced by the skewing functions is one of
the drawbacks. We will discuss how this problem can be addressed in the following
section. Another drawback, primarily affecting L1 caches, is that an additional
number of address bits are required by the skewing functions to calculate the index.
This makes virtually-indexed caches infeasible for realistic cache sizes.

B.6.2 Additional Structures

The elbow cache implementation requires some additional structures compared to
a set-associative cache. First a separate timestamp structure must be provided to
hold the timestamp of each cache block in the cache. Assuming a 64-byte cache
block size this gives a timestamp array size of less than 2% of the data array. The
timestamp array is separated per bank so that BANK I has one timestamp array and
BANK II has another.

Secondly, the skewing functions must be added. In all of our experiments we
have assumed the hash-functions (B.1) and (B.2) described earlier in Section B.2,
which are both XOR-based. To avoid adding skewing delay to the critical path we
have opted to use a pass-transistor layout [73] for the XOR-functions (Figure B.8).
If bits � and � -bar in the address are available before � and � -bar, this design can be
used to reduce the skew-delay to an order of magnitude less than that of a logical
gate. If the bit � is taken from the physical part of the address that does not need

10For pipelinedcacheswith multi-cycleaccesstimesit is slightly lessimportant.
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Figure B.8: Pass-transistor based skewing functions.

to be translated via the TLB, this criteria is fulfilled. This solution has forced us
to limit the number of bits that is used by the skewing function. If we assume a
page size of 8KB,11 an address � can be written as � � � � ��� � � � � ��� � � � � � � � � � ��� �
were bits � � belong to the physical part and � � to the virtual part. Bits � ��� � � � � � � � �
are used to index the word in each block. For our 64KB, 2-way elbow cache that
has 512 blocks in each bank, bits � � � � �	� � � � � � � � � � ��
 � would be XOR’ed with bits

� � ��� � � � � � � � � to produce an ideal skewing function.12 If we instead only apply the
XOR-function to the sets � ��� � � � � � � ��
 � and � ��� � � � � � � � � , and let � � and ��� fill in the
missing two most significant bits, we get a more restricted skew, but one were the
pass-transistor layout is possible. All performance results reported in this paper
use this type of skewing function, since the performance of skewed caches is not
very sensitive to this type of restrictions [71].

The third requirement to implement an elbow cache is the replacement logic
needed to compute alternative locations for possible victims and to compute and
compare timestamp distances. Note that the replacement logic is off the critical
path and is therefore less performance critical.

B.6.3 Physical Layout

In the physical layout of our elbow cache, the two logically separate way-banks are
interleaved into one physical bank, so that bit-line � from BANK I is placed close to
bit-line � from BANK II, similar to the layout that of a 2-way set-associative array
(Figure B.9). By doing so, we get a better aspect-ratio on the array and simplify
the design of the way-select logic. This also helps in implementing the block-move
functionality, since the bit-lines of any two bit-cell pairs affected by the move will
be physically adjacent. To be able to look up both logical banks concurrently, two
decoders are required. Each decoder is connected to half of the cells in the array.
We assume that the additional word-lines can be routed in a different metal layer
making extra word-line spacing unnecessary.

It is still possible to make subarray divisions with this arrangement, but when
11This includesarchitecturesthatusespagecoloring.
12Theinverseaddressbits alsoneededby theaddressdecoderareobtainedin thesameway.
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Figure B.9: The physical implementation.

splitting an array bit-line-wise, restrictions must be made on the skewing functions
so that an address is always mapped into the same subarray by both way-functions.
In the particular layout for our 64KB elbow cache however, these restrictions are
less rigid then the ones already posed by our solution to remove the skewing delay,
and do therefore not affect performance.

B.7 Related Work

Some of the earlier work that has addressed the issue of reducing cache con-
flicts [25] is presented here. Jouppi [30] presented the victim cache, primarily
for use in direct-mapped caches. Topham and Gonzales [68] studied the use of
hash-functions for indexing a cache. Agarwal and Pudar [2] suggested column-
associativity for improving direct-mapped caches. Seznec and Bodin [60] pio-
neered the work on skewed-associative caches. Further work on skewed caches is
presented in some of their later papers [12][58][59]. The elbow cache organization
was first evaluated from a pure performance centric view in [64]. Karlsson and
Hagersten [31] showed the usefulness of CAT-timestamps as block survival time
metric in the RASCAL-cache. Spjuth [64] showed that by extending the elbow
cache idea to n relocation steps a further reduction in miss ratio can be achieved.

Recently many proposals has been made to reduce the dynamic power con-
sumption in various memory structures on-chip [7][1][35][11][16][26][77]. These
type of studies has commonly been performed using energy simulators such as
Cacti [61] or Wattch [13].

An interesting power reduction scheme employed in the L2 designs of Alpha
21164 and UltraSparc III is sequential tag and data lookup. That is, the tag match
is done first and after a match has been detected the corresponding matching way is
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accessed. This greatly reduces the power consumption but comes at a high access
time penalty. This since the tag side is often the slower path and therefore dictates
the access time. To overcome the slow access time of sequential access and still
accessing only one way, Powell et. al. proposes a method, Way-prediction [53], to
predict which way to access. This method has the drawback of multiple hit times,
a correctly predicted hit and a mispredicted hit, and a significant prediction table
size.

Another power saving approach is to shutdown unnecessary parts of the cache
during periods of low utilization. Albonesi proposed the idea of Selective cache
ways [6] where unneeded ways in a cache is shutdown.

B.8 Future Work

The use of timestamps enables more elaborate CAT-distance based replacement
schemes. A more restrictive algorithm for deciding when to relocate, could also be
a possible approach to further reduce power consumption.

The power consumption and performance of the elbow cache could easily be
scaled by dynamically disabling the relocation mechanism or shutting off one of
the banks. One may therefore consider evaluating the elbow cache in the context
of dynamic cache resizing. In combination with multiple step relocation this could
yield a very scalable cache design.

B.9 Conclusion

The multithreaded nature of emerging processors and the shared caches that fol-
lows, are likely to increase the need for highly conflict tolerant caches. In this
paper we propose a new cache organization, based on a skewed 2-way associative
cache, called the elbow cache. It extends a skewed cache by relocating conflicting
cache blocks to their alternate locations. Our results show that the elbow cache
out-performs an 8-way set-associative cache for 13 out of 26 benchmarks while
performing comparably for another 4 benchmarks.

We have also presented a dynamic power evaluation for the proposed scheme
and a skewed cache where we compared them to set-associative caches. Since
the skewed and elbow caches only looks up two locations on a cache access, their
per access power consumption is significantly lower than that of an 8-way set-
associative cache. The elbow cache power consumption is close to that of a skewed
2-way associative cache for workloads with low miss-ratio. Additional power is
consumed by the relocations sometimes performed during cache fills. Hence the
elbow cache power consumption is relatively low in the common case of high hit
ratio, but increases as the hit ratio drops. This can be contrasted to a highly associa-
tive cache, often chosen to cover the worst-case scenario, where the dynamic power
is constant irrespective of whether the application benefits from high associativity
or not.
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We believe that the complexity increase contributed to the elbow cache imple-
mentation is limited. We also believe that the amount of power saved by an elbow
implementation make up for the complexity increase, especially considering the
high complexity and constrained power budgets of today’s processors.
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Abstract

The behavior of the memory hierarchy is key to high performance in today’s
GHz microprocessors. The cache level closest to the processor is limited in size
and associativity in order to match the short cycle time of the CPU. Even though
only data objects reused soon again will benefit from the small cache, all accessed
data objects are normally allocated in the cache.

In this paper we demonstrate how an “optimal” selective allocation algorithms,
based on knowledge about the future, can drastically increase the effectiveness of
a cache. The effectiveness is further enhanced if the allocation candidates are tem-
porarily held in a small staging cache before making the allocation decision. We
also present an implementable selective allocation algorithm based on knowledge
about the past (RASCAL) which measures re-use distance in the new time unit
Cache Allocation Ticks, CAT. CAT is shown to be a fairly accurate and application-
independent way of detecting good allocation candidates.
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C.1 Introduction

Cache systems are designed to minimize the average access time for memory ref-
erences. Uniprocessor cache misses can be classified into the three categories:
conflict, compulsory and capacity misses [25]. The amount of conflict misses can
be reduced by a more associative cache, or by the introduction of a victim cache
[30]. Larger cache lines and a number of prefetching algorithms have been pro-
posed to reduce compulsory misses, while the conventional approach for reducing
capacity misses is simply to increase the size of the cache - a brute force approach
often enabled by a manufacturing process shrink. However, at the lower levels of
the cache hierarchy, a larger cache may not be feasible, since the cache size can
be limited by the speed requirements of the CPU. The access time of the L1 is
often tied to the pipeline architecture such that a larger and slower L1 cache would
effectively slow down the CPU pipeline.

The introduction of the VIPT, Virtually Indexed Physically Tagged, scheme
[72], that removes the TLB lookup from the critical path, also limits the cache
size. Aliasing problems arise if the L1 cache size is larger than the page size.1

Sometimes this is circumvented by a more associative cache, but there is also a
limit to the degree of associativity achievable in the fast L1. Agarwal et al. predict
that due to advances in chip technology the CPU performance will be bound by
communication constraints rather than by capacity limitations [3]. They predict
the number of SRAM bits reachable in one CPU cycle to decrease over time – yet
another negative impact for the L1 cache size. Chip Multiprocessors (CMP) with
several CPUs, each with its own L1 cache, sharing the same die is another reason
to keep the L1 caches small.

We conclude that the first-level caches are likely to remain small relative to the
active working set of most applications and that selective cache allocation should
be studied. By a more selective L1 allocation, the data objects well suited for the
L1 cache will reside longer in the L1 cache. This will increase the effective cache
size of the L1 cache and remove some of the capacity misses.

The contributions of this paper is three-fold:

� We suggest streaming the data through a small staging cache before deciding
about the L1 allocation and demonstrate its effect on an optimal allocation
algorithm.

� We suggest a new time-stamp based allocation algorithm based on the new
time unit cache allocation ticks, CAT.

� We compare three different implementation options for selective cache allo-
cation.

1Somecomputervendorsemploy restrictionson the virtual-to-physicalmappingthat relax this
requirementsomewhat.
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The rest of this paper is outlined as follows. First, we discuss different selec-
tive allocation schemes and discuss their advantages and drawbacks. Secondly, we
evaluate the ”optimal” allocation algorithm and show how a small staging cache
can drastically improve its effectiveness. We then propose the new timestamp
based algorithm, RASCAL. Finally we propose a feasible implementation of the
algorithm and compare it’s performance to some of the other algorithms presented.

C.2 Related work

The importance of cache allocation decisions have already been partly addressed in
some CPU architectures by the introduction of dedicated load and store instructions
hinting where in the memory hierarchy an accessed datum should be installed. One
example is the UltraSPARC’s VIS instruction set, which has block load and block
store instructions that bypass the cache hierarchy. These instructions can for ex-
ample be used in a bcopy loop to avoid polluting the caches with copy data, which
are unlikely to be reused soon again. The UltraSPARC III CPU also has a special
prefetch once instruction that installs the data in a fully associative 2 kB prefetch
cache accessed in parallel with the L1 cache. That way, the larger L1 will not get
polluted from prefetched data that are likely to be used only once. The instruction
prefetch many is used to prefetch data that should be installed in the normal L1
data cache. Another approach to selective caching has been taken in the imple-
mentation of the HP PA7200 CPU [39], which has a small parallel assist cache in
addition to a large, one-cycle latency off-chip cache. All cache lines are initially
allocated in the assist cache and, upon replacement, allocated in the off-chip cache,
unless a certain spatial only hint was specified in the instruction fetching the data.
If so, the data will bypass the off-chip cache. While the allocation decision could
be controlled by static compiler analysis, such analysis can sometimes be hard. We
therefore believe that there is a need for a hardware algorithm, which dynamically
can identify the data objects worthy of allocation in the L1 cache.

Several approaches for efficient dynamic management of the L1 data cache
have been proposed lately. In the algorithms, allocation decisions are based either
on the address of the instruction accessing the data, or on the data address. Most
of the schemes propose a statically partitioned cache consisting of several sub-
caches, where each sub cache is tailored for a certain category of cache blocks
[21][49][55] [54][57]. Cache blocks are allocated in different sub-caches based on
their type of reuse in terms of spatial and temporal locality. Tomasko et al. also
proposed a statically partitioned cache [42], and allocates scalar and array data in
different sub-caches. Srinivasan et al. takes a different approach where the cache
is statically partitioned into critical/non-critical sub caches [65]. Critical loads are
here defined as loads that must complete early in order not to degrade the pipeline
performance. The drawback of using a statically partitioned cache for different
categories of data is that it may perform worse than a conventional cache if the
access pattern of a program doesn’t suit the partitioning of the cache.
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Several cache bypass schemes have also been proposed where some cache
blocks are not allocated in the cache upon a cache miss [70][28][48]. The cache
allocation algorithms introduced by Tyson et al. [70] and Johnson and Hwu [28]
are based on access frequency and prevent frequently accessed cache blocks from
being replaced by less frequently used cache blocks.

We present an address-based run-time algorithm, the RASCAL algorithm, in
Section C.5.3. The distinguishing feature of our proposal is that we stream cache
blocks through a small staging cache before making the L1 allocation decision.
The algorithm does not explicitly make any distinction between cache blocks of
different reuse categories or access frequencies nor does it statically divide the
cache into different sub-caches for different categories. Instead we monitor each
allocation and adaptively make allocation decisions based on the duration between
recent cache allocations. The model most similar to our proposal is the MAT model
introduced by Johnson and Hwu [28][27][29]. The MAT model is discussed in
detail in section C.5.1.

C.3 Evaluation methodology

All evaluations are performed using the Simics full-system simulator simulating a
Sun SPARC machine running Solaris 7 [45]. Since SIMICS has a modest slow-
down rate we were able to study applications from SPLASH2 and SPEC CPU2000
with (close to) realistic problem size. We have restricted our evaluation in this
paper to data references only. All caches are write-around and assume a perfect
write buffer. A cache block size of 64 byte is used unless otherwise stated. Since
this paper focuses on reducing misses in small caches, we have opted to isolate
our study to the cache performance of the first-level cache. The SPLASH-2 appli-
cations were run to completion using the problem sizes suggested by Woo et al.
[56]. The SPEC CPU2000 benchmarks were run with the reduced input data sets
suggested by KleinOsowski et al. [36].

In order to get an upper bound for our allocation algorithm, we have first stud-
ied an optimal exclusion/allocation algorithm [48] based on future knowledge. The
basic idea is that, if the cache line singled out by the replacement algorithm will be
referenced sooner than the new cache line, the new cache line will not get allocated
in the cache. Note that we do not change the replacement algorithm and will only
compare the new cache block with the victim that was singled out by the existing
replacement algorithm, i.e., the optimal allocation algorithm we are using is not
the same as optimal replacement algorithm suggested by others [10, 66]. While
the optimal allocation algorithm cannot feasibly be implemented, it represents the
optimal allocation strategy and initially convinced us that this area is indeed worth
exploring. This algorithm will be referred to as the optimal algorithm.
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the L0 is a 4-way associative 2 kB cache.
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Figure C.2: The baseline architecture.
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C.4 Staging Cache L0

We have observed that a large fraction, often a majority of, the objects allocated
in an L1 cache has temporal properties ill suited for the L1 cache. Some of these
objects are never accessed before being replaced, while others have an intense, but
short-lived, reuse pattern, e.g., objects with only spatial locality and read-modify-
write objects with a load/store pair in a short time distance. These objects are
reused shortly after the allocation but are not touched again before replacement
and will spend most of their L1 tenure unused (which is later illustrated by Fig
C.6). Neither of these object types make efficient use of the L1 cache. It’s the
objects with a long-lived temporal locality; the ones reused over and over again
during a long time interval, that make the best use of the L1-cache. We label
these three classes of cache lines non-temporal (NT), short-lived temporal (ST),
and long-lived temporal (LT) locality.

Figure C.1 shows the performance of the optimal algorithm, OPT L1, using
the metric miss ratio reduction, which is defined as 1 -

��� ����� 	2� ��� �� ��� � ���� � ��� 	2� ��� � � 
�����
 �  � 
 ��� � ��� � � .
Where the studied caches and the Conventional cache they are compared to have
the same size and organization. The optimal algorithm will effectively avoid allo-
cation of NT objects. However, it will happily allocate the ST objects.

In order to neither allocate the NT nor the ST objects the L1 cache, all cache
blocks can be streamed through a small staging cache, called L0, before the L1
allocation decision is made. On a cache lookup, the L0 is accessed in parallel with,
and has the same access time as, the L1 cache. On a cache miss, the cache block
is allocated in L0. The L0 victims are, based on the selection algorithm, either
allocated in the L1 or bypassed. Figure C.2 shows the organization of the L0 and
L1 cache. By delaying the allocation decision until after the L0 cache, most of
the NT and ST objects have become inactive and will not get allocated in the L1.
The graph in Figure C.1 shows that adding the L0 cache significantly improves the
effect of the optimal algorithm.

The potential performance gain of selective allocation is further shown in Fig-
ure C.3, comparing three options for improving a 2-way, 32 kB cache: doubling the
cache size, doubling the associativity, and optimal allocation decision in combina-
tion with small staging cache L0. For all of the applications, optimal allocation
with L0 performs better than twice the associativity (a 4-way LRU cache of the
same size), and for ten of the fourteen applications the optimal algorithm performs
comparably with a cache twice the size, while maintaining the same degree of as-
sociativity. We conclude that a selective allocation in combination with a small
staging cache can have a huge impact on the miss rate of a small 2-way cache.
Next, we will study different practical algorithms for implementing selective allo-
cation.
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Figure C.3: Miss ratio reduction compared to a conventional cache (2-way 32 kB).

C.5 Selective Allocation

C.5.1 The MAT model

The MAT model by Johnson and Hwu bases its allocation decision on access fre-
quency [28][27][29]. The MAT model monitors accesses per macro block, which
is defined as a contiguous block of memory small enough that cache blocks be-
longing to the same macro block are likely to display the same usage pattern. Each
macro block has a hit counter associated with it, which is incremented upon a hit to
a cache block belonging to the macro block. The hit counters are stored in a cache
structure called the Memory Address Table, MAT, which stores access frequency
information for some of the macro blocks. Upon a cache miss the macro block
hit counter of the victim selected by the replacement algorithm is decremented and
compared to the new cache block. If the victim has the highest macro block counter
value the cache block generating the miss will not be allocated in the main cache
but instead in a separate smaller cache called the bypass buffer.

Since the first MAT publication[28], the MAT model has been enhanced by
adding the notion of a decrementing counter, decr ctr, per macro block in the MAT
[27][29]. The decrementing counter of a macro block is incremented by one on ev-
ery conflict for a cache location held by the macro block and cleared to zero upon a
cache hit to the macro block. Upon a conflict, the access counter is decremented by
the value of decr ctr plus one instead of just decrementing by one as in the original
MAT model. The MAT models require quite complex hardware circuitry since on
every cache hit a counter must be incremented through a read-modify-write oper-
ation. It also requires, as previously mentioned, a separate cache structure holding
the access and decrementing counters.

C.5.2 The AAA algorithm

This algorithm is based on the existence of a staging cache L0, as shown in Figure
C.2. The algorithm audits each cache block during its tenure in the L1. The audi-
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tion result is kept in the L2 cache and will allow for allocation into L1 for as long
as the cache block “performs well”. We call this the Audition-based Allocation Al-
gorithm, AAA. The algorithm uses an allocation history bit per cache block in the
L1 cache. When a cache block is accessed in the L1 cache the allocation history
bit is set. The allocation history bit value of the last L1 tenure is stored in L2 as
meta data and follows the cache line into the L0 from the L2. Cache blocks that are
evicted from the L0 cache with their allocation history bit cleared are bypassed,
while cache blocks with the bit set are allocated in the L2 with their allocation
history bit set to zero. In this study we have assumed that storing meta data in
memory is expensive and have opted to “forget” the last audition result upon L2
eviction. Cache blocks that are allocated directly from memory get their allocation
history bit set in the L0, which will allow for a new L1 audition.

While the advantage of the AAA algorithm is its simplicity and low implemen-
tation cost, an obvious problem with this scheme is that the algorithm has no way
of detecting and changing its decision if a cache block was wrongfully classified as
a bypass type. This may cause severe performance penalty from repeated bypasses
of cache blocks that would benefit from allocation in the L1 cache. This problem
is somewhat eased since whenever a cache block generates an L2 miss the cache
block is given a new audition.

C.5.3 RASCAL– timestamp-based allocation

The Runtime Adaptive Cache ALlocation, RASCAL, algorithm is also based on
the existence of a staging cache L0 and has some meta data stored together with
the cache block. Each cache block has a timestamp storing its last time of allocation
decision2 stored together with the allocation history bit in the meta data. A cache
block with a cleared allocation history bit will still be allocated in L1 if the elapsed
time since the last L0 eviction is short enough. We call the elapsed time the reuse
distance. If the reuse distance is shorter than the expected survival time3 in the L1
cache, we concludes that the previous allocation decision was either an incorrect
bypass decision, or that the cache block was prematurely evicted due to a conflict,
and that the cache block should indeed be allocated in the L1. This makes up for
the problem identified for the AAA algorithm. However, there are two practical
problems to be solved for such an algorithm: long timestamps are expensive to
store as meta data and the threshold for a short enough reuse distance must be
determined.

The problem is that the expected survival time in a cache varies for different ap-
plications, as can be seen in Figure C.4. It shows the distribution of cache survival
time, measured in number of memory references, for each replaced cache line in
a conventional 2-way 32 kB cache. In other words, how long time did each cache
line survive untouched before replacement? As can be seen in Figure C.4 there
is not a generally applicable upper limit where the cache survival time converges

2Thetime of thelasteviction from L0 SeeFig 2.
3Definedastheelapsedtime betweenacacheblock's lasthit andit' s replacement.
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across the applications and subsequently no universal reuse distance threshold to
be used in our algorithm.

Using CAT time

If we measure reuse distance in the time unit cache allocation ticks (CAT), i.e., a
time unit incremented each time a cache line is allocated in the cache, the applica-
tions share a similar behavior in terms of upper bound for the survival time, as we
can see in Figure C.5. In the CAT time system the survival time of a cache block
is less than twice the number of blocks in the cache, i.e., 1024 in our example, for
approximately 90% of the cache blocks over all the applications. We’ll use this
value as the reuse threshold in RASCAL. If a cache block has a reuse distance
larger than the reuse threshold, we can conclude that it is unlikely that the cache
block would have survived if allocated. We also decide not to allocate the cache
block in L1 upon L0 eviction since we expect that the next reuse distance of the
cache block will be similar to its previous reuse distance.

The intuitive explanation to why survival time measured in CAT time, instead
of wall clock time, is more application independent is helped by thinking about the
average lifetime for a cache block in a cache. The lifetime4 of a cache block is on
average B CAT, where B is the number of cache blocks that can reside in the cache5.
This holds since all the B objects in the cache age one CAT unit each time a cache
object is replaced and since exactly one object is inserted and replaced in each
time unit. In fact, the average lifetime is independent of the cache organization.
Since the average lifetime B CAT, extends to all cache organizations and since the
average survival time by definition is always less or equal to the average lifetime.
The average survival time is always less or equal to B.

The CAT time in RASCAL is implemented by a single counter in the L1 cache
which is incremented for each L1 allocation. The value of the CAT time at L0
eviction is written into the cache block’s meta data in L1, if allocated, or in L2 if
bypassed. The value does not change during the cache block’s tenure in L1 and L2
and will remain the same until its next eviction from L0. At this point in time, its
value will be compared to the current CAT time in order to make its next allocation
decision.

Allocation history counter

We have found that using a 3-bit allocation history counter provides more stable
results than using a single allocation history bit. A cache block with a history
counter set to zero is bypassed while cache blocks with positive history counters
are allocated. When a cache block is reused within the reuse threshold or hit during
its L1 tenure, the allocation history counter is set to 7. If a cache block with a

4Lifetime is de®nedasthetime from allocationto replacement.
5This further assumesthat the entirecachecontainsvalid dataanddoesthereforenot hold for

coldstart-upandmultiprocessors.
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Figure C.6: Fraction of cache blocks never touched before replacement from L1.
For all but one application more than half of the replaced objects are never touched
in an L1 using an always allocate scheme. RASCAL allocation reduces that num-
ber by about two thirds.

non-zero history counter is evicted without the hit-bit set, the history counter is
decremented. A cache block generating an L2 miss is allocated in L1.

CAT simulation parameters

The CAT counter is implemented by a 5-bit CAT counter. We have found that using
5 bits generates a tolerable amount of false detections6. The RASCAL algorithm
therefore requires a total of 8 bits per cache block in L2. Note that the RASCAL
CAT time stamp of the cache block is only accessed at the time of eviction from
the L0 cache, which should be off the critical path. The reuse history bit is set
on a cache hit and the reuse history counter is set to 7 on a cache hit and decre-
mented on L0 eviction. None of these operation should add to the critical path of
an LRU cache. The MAT model will however need one associative lookup to find
the counter and a counter increment for each cache hit. While it will be more costly
to achieve this without adding to the hit time of the cache, we still think it is doable
and have not added any extra latency for the MAT hit time.

Figure C.6 shows how the RASCAL allocation reduces the fraction of cache
lines never touched before replacement from the L1 cache compared to a system
which always allocates L0 victims in the L1.

6TheCAT is incrementedevery
� ��� � � � ��� � ����� � �) replacement.Sinceweareusing5 timestampbits

it will spinaroundevery
� ��� � � � ��� � ����� � �) � 2

�

replacement,which will leadto somefalsedetection.
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128byte linesize Conventional RASCAL
Memory Memory Overhead Reduction

Application Overhead[CPI] 1-w 2-w 4-w

FFT 0,240 9% 2% 1%
RADIOSITY 1,662 4% 2% 2%

VOLREND 0,705 93% 14% 6%
RADIX 0,225 6% 3% 3%
LU NC 1,149 59% 2% 0%

CHOLESKY 0,288 36% 6% 3%
OCEAN C 0,863 3% 1% 1%
WATER N 0,082 42% 3% 1%
WATER S 0,059 66% 9% 1%

LU C 0,095 55% 13% 0%
OCEAN NC 0,223 14% 6% 1%

BARNES 0,175 14% 1% 1%
RAYTRACE 0,137 24% 8% 4%
EQUAKE B 0,138 30% 4% 2%

VPR PLACE M 0,243 77% 67% 41%
VPR ROUTE M 0,435 28% 17% 11%

AMMP B 3,231 0% 0% 0%
MCF L 3,300 8% 1% 1%

Table C.1: Memory System overhead in terms of CPI.
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OPT L1 
16 kB 1-way
RASCAL 
16 kB 1-way + 1 kB 4-way
MAT Decr_ctr 
16 kB 1-way + 1 kB 4-way
MAT 
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AAA
16 kB 1-way + 1 kB 4-way
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Figure C.7: Miss ratio reduction compared with a conventional cache (16 kB 1-way
with 32 byte cache block size) using 1 kB L0 and bypass buffer.
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Figure C.8: Miss ratio reduction compared with a conventional cache (32 kB 2-way
with 64 byte cache block size).
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C.6 Experimental Results

Figure C.7 and C.8 shows the miss rate reduction for the evaluated allocation
schemes. The configuration used in the simulations presented in Figure C.7 is
the base configuration used in[29]. The MAT model was implemented with an
infinite macro block table, instead of a MAT cache, an 8-bit access counter and a
4-bit decrementing counter in the MAT decr ctr model. The comparison is made
between caches of the same size and organization and with identical L0 and bypass
buffer. The presented RASCAL and AAA algorithms were evaluated with a 1 MB
4-way L2. The RASCAL algorithm requires a total of 8 bits per cache block in the
L2 cache, which corresponds to less than 2 percent SRAM overhead. 7

As can be seen in Figure C.7 the performance of the AAA algorithm is very
good for some applications while extremely poor for other applications. The MAT
model shows some improvement for the 16 kB direct-mapped cache but for the
2-way associative 32 kB case the performance is worsened. As can be seen in
table 2, 3 and 4 it is a general trend that the effectiveness of the MAT model is
decreasing with more associative L1 caches. We believe that the reason for this is
the effectiveness of the LRU replacement algorithm, which in itself makes sure that
the least frequently used data is evicted first. Thereby reducing the effect of less
frequently used data evicting highly used data. The enhanced MAT model, MAT
Decr ctr, shows an improved performance compared to the original MAT model,
but some applications still shows a miss ratio increase compared to a conventional
cache. The RASCAL algorithm shows a strictly positive miss rate improvement
over a conventional cache although for some applications the improvement is quite
modest. In order to get an idea of how the overall performance is affected by
the RASCAL algorithm. We have computed the memory system overhead in
terms of a highly simplified CPI model, where the CPI memory overhead is de-
fined as ld fraction � L1 miss ratio � (L2 hit ratio � L2 hit penalty+ L2 miss ratio

� L2 miss penalty), and measured how the memory system overhead is affected by
the RASCAL algorithm. We have assumed an in-order superscalar CPU issuing on
average two instructions per cycle, an L2 miss penalty of 150 cycles and an L2 hit
penalty of 15 cycles.

The memory overhead study also includes five SPEC CPU2000 benchmarks.
As can be seen in Table 1 the memory overhead reduction for a direct-mapped
cache is substantial for a majority of the applications, but decreases for more as-
sociative caches. The same observation can be made in the Table 2, 3, and 4 in
the Appendix, where the miss ratio reduction for the RASCAL algorithm and the
MAT model is presented with varying cache block sizes and associativity for a 16
kB L1. Table 2, 3, and 4 also contains the absolute miss rates for the applications.
By comparing Table 2, 3, and 4 one can observe that both RASCAL and MAT
show a larger miss rate reduction when the cache block size is increased. This is
due to the increase in capacity misses, which is targeted by the algorithms. The

7Assuminga cacheblocksizeof 64 byte.
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two benchmarks VOLREND and VPC PLACE M show the largest cut in memory
overhead of all the applications.

C.7 Future Work

This paper describes our initial work with the runtime adaptive selective cache al-
location algorithm, RASCAL. This field is largely unexplored to date. We believe
that new algorithms can improve its performance further by more aggressive by-
passing schemes. We plan on continuing this work by studying dynamic threshold-
adjustment algorithms. In our study, different applications benefited from different
threshold settings. We would further like to combine this scheme, which is targeted
at removing capacity misses, with schemes that are targeted at conflict misses, such
as a victim cache. We also intend to extend our evaluation with more benchmarks
with larger working sets, where there is potentially an even bigger need for selec-
tive allocation.

C.8 Conclusion

We have demonstrated that a fourth cache property, allocation policy, is a potential
cache enhancement scheme as cache size, associativity and replacement strategy.
Using an optimal allocation policy, a 2-way 32 kB cache was shown to outperform
a cache with twice the associativity and perform comparably to a double sized
cache for many applications. We have also proposed a practical way to detect cache
lines that would benefit from caching based on their past reuse history measured
in the new time unit ”cache allocation ticks” (CAT). We have also proposed a
practical low-cost implementation of the RASCAL algorithm, which has shown a
stable performance improvement across all the studied benchmarks.
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Miss ratio Miss ratio Miss ratio

Application CONV RASCAL MAT CONV RASCAL MAT CONV RASCAL MAT
FFT 0,0424 13% 11% 0,0341 6% 4% 0,0317 5% 0%
RADIOSITY 0,2462 11% 11% 0,2004 8% 3% 0,1779 5% -3%
VOLREND 0,0849 93% 74% 0,0069 21% 16% 0,0054 8% 5%
RADIX 0,0383 16% 17% 0,0316 12% 7% 0,0284 9% 0%
LU_NC 0,2403 51% 50% 0,1181 1% 3% 0,1172 0% 1%
CHOLESKY 0,0856 9% 13% 0,0735 7% 11% 0,0670 4% 7%
OCEAN_C 0,1449 2% -2% 0,1360 1% -7% 0,1391 4% -2%
WATER_N 0,0168 20% 28% 0,0157 1% 21% 0,0155 0% 12%
WATER_S 0,0086 61% 46% 0,0032 7% 8% 0,0031 2% 6%
LU_C 0,0310 63% 65% 0,0093 13% 14% 0,0076 1% -1%
OCEAN_NC 0,0914 7% 4% 0,0853 5% 3% 0,0923 12% 11%
BARNES 0,0365 15% 23% 0,0340 14% 28% 0,0347 17% 36%
RAYTRACE 0,0288 28% 25% 0,0207 12% 14% 0,0184 8% 11%
EQUAKE_B 0,0177 31% 33% 0,0119 4% 8% 0,0115 3% 7%
VPR_PLACE_M 0,0624 89% 80% 0,0126 67% 47% 0,0058 37% 26%
VPR_ROUTE_M 0,0787 22% 19% 0,0622 9% 6% 0,0581 5% 2%
AMMP_B 0,5125 1% 2% 0,5074 0% 2% 0,5064 0% 2%
MCF_L 0,4004 5% 7% 0,3796 2% 2% 0,3763 1% 2%

1-w 2-w 4-w

32 byte cache block
Miss ratio reduction Miss ratio reduction Miss ratio reduction

Table C.2: Absolute miss rates for a conventional cache and miss ratio reduction
for RASCAL and MAT varied over different associativities using a 32 byte cache
block size and 2 kbyte L0 and bypass buffer.

Miss ratio Miss ratio Miss ratio

Application CONV RASCAL MAT CONV RASCAL MAT CONV RASCAL MAT
FFT 0,0292 19% 14% 0,0223 8% 4% 0,0208 7% 1%
RADIOSITY 0,1981 13% 11% 0,1591 12% 2% 0,1424 14% 2%
VOLREND 0,0955 94% 81% 0,0069 25% 21% 0,0053 11% 11%

RADIX 0,0410 13% 18% 0,0348 9% 10% 0,0322 9% 7%

LU_NC 0,2108 63% 60% 0,0785 2% 4% 0,0773 0% 3%

CHOLESKY 0,0573 26% 26% 0,0401 8% 9% 0,0364 5% 4%

OCEAN_C 0,0773 4% -6% 0,0710 2% -13% 0,0725 4% -9%

WATER_N 0,0149 31% 29% 0,0106 1% 6% 0,0104 1% 2%

WATER_S 0,0087 70% 54% 0,0025 11% 10% 0,0023 2% 5%

LU_C 0,0297 71% 73% 0,0059 22% 18% 0,0043 1% -9%

OCEAN_NC 0,0730 12% 12% 0,0649 2% 5% 0,0648 2% 5%

BARNES 0,0345 12% 20% 0,0324 4% 20% 0,0336 4% 24%

RAYTRACE 0,0236 33% 26% 0,0161 15% 14% 0,0140 9% 11%

EQUAKE_B 0,0173 46% 42% 0,0095 6% 10% 0,0090 3% 9%

VPR_PLACE_M 0,0692 86% 79% 0,0183 75% 62% 0,0066 49% 35%

VPR_ROUTE_M 0,0833 28% 23% 0,0611 13% 9% 0,0542 7% 2%

AMMP_B 0,5184 2% 2% 0,5130 0% 1% 0,5108 0% 1%

MCF_L 0,3233 5% 7% 0,3050 2% 3% 0,3020 2% 2%

64 byte cache block

1-w 2-w 4-w

Miss ratio reduction Miss ratio reduction Miss ratio reduction

Table C.3: Absolute miss rates for a conventional cache and miss ratio reduction
for RASCAL and MAT varied over different associativities using a 64 byte cache
block size and 2 kbyte L0 and bypass buffer.

Miss ratio Miss ratio Miss ratio

Application CONV RASCAL MAT CONV RASCAL MAT CONV RASCAL MAT

FFT 0,0231 32% 28% 0,0153 9% 13% 0,0144 7% 12%

RADIOSITY 0,1495 14% 13% 0,1202 10% 9% 0,1154 10% 13%

VOLREND 0,1509 97% 94% 0,0061 29% 22% 0,0047 15% 13%

RADIX 0,0443 11% 19% 0,0386 5% 12% 0,0371 5% 10%

LU_NC 0,1962 71% 68% 0,0591 2% 4% 0,0578 0% 3%

CHOLESKY 0,0477 51% 44% 0,0228 11% 11% 0,0203 6% 7%

OCEAN_C 0,0437 11% 0% 0,0376 3% -9% 0,0381 4% -6%

WATER_N 0,0160 49% 42% 0,0080 3% 3% 0,0077 1% 1%

WATER_S 0,0111 80% 65% 0,0022 19% 14% 0,0018 3% 3%

LU_C 0,0312 71% 77% 0,0045 39% 33% 0,0025 2% -1%

OCEAN_NC 0,0681 25% 22% 0,0577 13% 10% 0,0513 2% 0%

BARNES 0,0302 17% 18% 0,0254 2% 8% 0,0256 1% 7%

RAYTRACE 0,0222 41% 33% 0,0138 16% 16% 0,0119 10% 14%

EQUAKE_B 0,0160 60% 50% 0,0069 13% 13% 0,0063 7% 9%

VPR_PLACE_M 0,0753 82% 74% 0,0277 79% 72% 0,0096 62% 51%

VPR_ROUTE_M 0,0970 30% 25% 0,0695 19% 15% 0,0585 13% 7%

AMMP_B 0,5171 1% 2% 0,5130 0% 1% 0,5114 0% 0%

MCF_L 0,2739 5% 7% 0,2578 1% 3% 0,2566 2% 3%

128 byte cache block

1-w 2-w 4-w

Miss ratio reduction Miss ratio reduction Miss ratio reduction

Table C.4: Absolute miss rates for a conventional cache and miss ratio reduction
for RASCAL and MAT varied over different associativities using a 128 byte cache
block size and 2 kbyte L0 and bypass buffer.
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