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Abstract

Many important traits in plants, animals and humans are quantitative, and most
such traits are generally believed to be regulated by multiple genetic loci. Standard
computational tools for analysis of quantitative traits use linear regression models
for relating the observed phenotypes to the genetic composition of individuals in
a population. However, using these tools to simultaneously search for multiple
genetic loci is very computationally demanding. The main reason for this is the
complex nature of the optimization landscape for the multidimensional global op-
timization problems that must be solved. This thesis describes parallel algorithms
and implementation techniques for such optimization problems. The new com-
putational tools will eventually enable genetic analysis exploiting new classes of
multidimensional statistical models, potentially resulting in interesting results in
genetics.

We first describe how the algorithm used for global optimization in the stan-
dard, serial software is parallelized and implemented on a grid system. Then, we
also describe a parallelized version of the more elaborate global optimization al-
gorithm DIRECT and show how this can be deployed on grid systems and other
loosely-coupled architectures. The parallel DIRECT scheme is further developed
to exploit both coarse-grained parallelism in grid or clusters as well as fine-grained,
tightly-coupled parallelism in multi-core nodes. The results show that excellent
speedup and performance can be archived on grid systems and clusters, even when
using a tightly-coupled algorithms such as DIRECT. Finally, a pilot implementa-
tion of a grid portal providing a graphical front-end for our code is implemented.
After some further development, this portal can be utilized by geneticists for per-
forming multidimensional genetic analysis of quantitative traits on a regular basis.
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1 Introduction

Some disorders, e.g. cystic fibrosis and Huntington’s disease in humans, are caused
by a single gene. Historically, genetics has been quite successful in locating the genes
responsible for such monogenic traits. However, most economically and medically
important traits in plants, animals and humans are determined by a combination of
an unknown number of genes (normally several) and environmental factors. Examples
are susceptibility to breast cancer, diabetes, heart disease, malaria in humans, lean meat
production in farm animals, and crop yield in corn and rice. Normally, these multifac-
torial traits are quantitative, i.e. they can be measured on a continues scale. Locating
the regions in the genome affecting such quantitative traits is a great challenge, and
even though much progress has been made during the last decade, the development of
more powerful analysis tools is needed.

Which regions in the genome that affect a multifactorial trait can be examined by
setting up a statistical model of the relation between the observed trait and the genetic
composition of individuals in experimental populations. The regions are called QTL
(Quantitative Trait Loci) and the procedure of finding them is called QTL mapping.
Here, the genetic composition of all individuals in the experimental population is de-
termined at a set of marker locations in the genome. Together with the observed values
of the trait, this data is input to a QTL mapping computer code where the computa-
tion of the model fit and the search for the most probable positions of the QTL in the
genome are implemented using numerical algorithms. Once the most probable set of
QTL positions are determined, further computations are needed to establish the statis-
tical significance of the result. Reviews of QTL mapping methods are given in e.g. [53]
and [26].

Because of the complexity of the computations in the mapping procedure, stan-
dard software can normally only perform mapping of a single QTL at a time. This
thesis describes new computational algorithms and their implementations on high-
performance computers for QTL mapping using models containing several, possibly
interacting loci. Using such a model makes the mapping procedure very computation-
ally demanding. Finding the most likely position ofd QTL influencing a trait results
in that ad-dimensional global optimization problem must be solved. To determine
the statistical significance of the result, 1000-10000 such problems must possibly be
solved. The evaluation of the objective function is performed by computing the statis-
tical model fit for a given set ofd QTL positions in the genome, and if an elaborate
model is used each model fit computation can be quite time-consuming.

So far, standard QTL mapping software [11,15,47,60] have used a robust but com-
putationally expensive algorithm for solving the global optimization problem. Fur-
thermore, the computational requirement of this algorithm grows exponentially withd.
Models with multiple QTL are still fitted on a regular basis using a technique where
a sequence of one-dimensional mapping problems are solved. However, it is not clear
how accurate this technique is for general QTL models and the interest in simultane-
ous mapping of multiple QTL has increased lately. Partly, the interest is motivated
by analysis of real data sets [19, 61, 64] where certain interactions [18] between pairs
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of QTL have been found to only be detectable by solving the full two-dimensional
optimization problem.

1. In paper A, we show that it is possible to perform at least a few high-dimensional
QTL mapping computations using the standard (robust but demanding) global
optimization algorithm. The computations are performed using different types of
parallel computers, including grid systems. The parallel code described in paper
A also provides a basis for the implementation of the more efficient optimization
schemes presented in papers B and C in a variety of high performance computing
environments.

2. In papers B and C, we describe parallel versions and implementations of the DI-
RECT scheme for global optimization, and we use the parallel codes to perform
representative QTL analysis computations using models with up to 5 QTL. Sev-
eral types of parallelism are exploited, and flexible implementations on shared
memory systems, clusters and grid systems are described.

Paper B describes how the DIRECT algorithm is parallelized by partitioning the
search space, arriving at an implementation for grid and other loosely-coupled
systems. In paper C, multithreading is added at an inner level for improved
performance on systems with multicore nodes.

3. In paper D, a preliminary version of a grid portal is implemented. This portal uti-
lizes the parallelized code described above and provides a pilot implementation
of some of the functionality needed by biologists to be able to use the software
on a regular basis.

The remainder of this summary is organized in the following way: Section 2 dis-
cusses genetics and the representative models that are necessary to understand the prob-
lems that we deal with in this thesis. Sections 3 and 4 deal with the computational
aspects of the problem and how it relates to the QTL problem. High performance com-
puting and its use in QTL analysis is the topic of Sections 5. The data sets that we have
used in our experiments are briefly discussed in Section 6, and Section 7 gives a brief
summary of the papers A,B,C and D which complete this thesis. Some future work
envisaged is highlighted in Section 8.

2 Genetics, Multifactorial Traits and QTL

In this section, we start by giving a brief introduction to basic genetics. Then we
introduce the concepts of multifactorial and quantitative traits and quantitative trait
loci (QTL), which are central to the work in this thesis. Finally, a brief review of the
QTL models and the QTL mapping procedures used in papers A-D is given.
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2.1 Basic Genetics

The genetic information in organisms is encoded in long strands of DNA (deoxyri-
bonucleic acid) calledchromosomes. For example, humans have2× 23 chromosomes,
pigs have2 × 19 and maize have2 × 10. The data is built up of four different molec-
ular building blocks, commonly calledgenetic bases, denoted by A,C,G and T. Using
this notation, the genetic structure of a chromosome or a part of a chromosome can be
described. The DNA has a double-helix structure, where A only bonds with T and G
only with C. This base-pairing effect is exploited in the replication of DNA.

The function of a major part of the DNA is still unknown. Some portions of the
DNA contain code for RNA (ribonucleic acid) production, and these DNA segments
are referred to asgenes. A specific genetic position in the chromosome is called alocus
(pl. loci). Every gene has its fixed locus, but it may appear in different versions,alleles.
The polymorphism caused by the different alleles is the basis for the study of genetics.

Figure 1: The central dogma of genetics

When a gene is activated, this often leads to the production of a protein. The most
important steps in this process are described in Figure 1. Proteins are the basic chemi-
cal compounds that make up the structure of cells and direct their activities. Normally,
organisms are capable of producing thousands of different proteins which have differ-
ent functions (there is some overlapping of the tasks that they perform).
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Phenotypes and Genotypes

A phenotypeis a measurable trait of an individual (e.g. blood group, hair color and
body weight for humans). A phenotype depends on the individualsgenotype, i.e. the
genetic information in the DNA, and often also the environment. The fraction of the
phenotypic variation that is determined by the genetic information is called theheri-
tability of the trait. For example, blood group is only genetically determined, while the
heritability of lung cancer is very small.

Genetic Effects

The chromosomes are organized in pairs ofhomologouschromosomes. In each pair,
one is inherited from the father and the other from the mother. This means that for a
simple trait, we have two alleles of the DNA segments affecting it. Individuals with the
same allele in both chromosomes are calledhomozygoteswhile those with different al-
leles are calledhetrozygotes. For a completelydominantallele, its genetic instructions
are followed if it is present in at least one of the chromosome pairs, while a completely
recessivealleles instructions come into play only if it is present in both chromosomes.
Dominance and recessitivity are often considered as deviations fromadditivity, where
the effect of two alleles equals the sum of the individual effects, i.e. the phenotype of
the heterozygote is equal to the mean of the two possible homozygotes.

The concepts of recessitivity and dominance are used for homologous alleles at the
same locus. When the total effect of genes at multiple loci is different from the sum of
the individual effects, this is calledepistasis.

Crossover, Genetic Linkage, Genetic Markers and Genetic Distance

In the process ofmeiosis, the homologous chromosomes exchange large segments
when germ cells, i.e. egg and sperm cells, are formed. As a result of this, each chro-
mosome that a child inherits from a parent will normally contain segments from both
grandparents. For example, there are on average 2-3 suchcrossoversper chromosome
during human meiosis.

Two loci are said to belinkedif there is a tendency for them to be inherited together.
Loci on different chromosomes are unlinked because they segregate independently. If
the loci are located close together on the same chromosome they will normally be
linked. However, because of recombination this is not always the case. The further
apart the loci are the more likely it is that a recombination will occur, and if the loci are
very far apart there is an equal chance that they will be on either chromosome in the
pair and they are thus unlinked.

Using genetic markers, i.e. known DNA sequences that can be identified in ex-
periments, the pattern of inheritance can be tracked through families. Also, finding a
marker linked to a genetic disorder can lead to location of the gene causing the disor-
der. Genetic markers provide an important tool forgenetic mapping, i.e. the process of
connecting a trait to a locus in the genome.
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The distance between loci can be expressed as physical or genetic distance. The
physical distance is the number of base pairs between them. The genetic distance
is defined by the average crossover frequency between the loci, and is expressed in
Morgan, M. or centi-Morgan, cM. Genetic distance can be measured with a marker
analysis over generations in a pedigree, counting how often two markers located on the
same chromosome in the paternal generation are separated in the next generation.

Genetic Variation

Together with environmental effects, genetic variation is the origin of trait differences
between individuals in a population. Genetic variation can occur due tomutations, i.e.
a change of the base pairs in the DNA molecule. When reproductive cells containing
a mutation combine to produce offspring, the mutation will be present in all cells of
the offspring. Mutations can occur due to exposure to mutagens such as radiation and
chemicals that destroy DNA. A mutation can result in that the instructions that direct
the production of proteins is changed, which in turn can affect traits of the offspring.
Most mutations are harmless in the sense that they do not result in any deleterious
changes to traits. Also, mutations are an important driving force in evolution since the
corresponding change of a trait may be helpful to the survival of the species. However,
sometimes mutations cause problems in the functions of an organism. These problems
are then calledgenetic disorders.

2.2 Traits

Traits are often classified according to its inheritance pattern. Basically, this can be
single-gene or multifactorial.

Single-Gene Traits

Single-gene (also called Mendelian or monogenic) traits are caused by variations in
the DNA sequence of a single gene. For example, cystic fibrosis, sickle cell anemia,
Marfan syndrome, Huntington’s disease, and hereditary hemochromatosis are disorders
in humans which are single-gene disorders. Single-gene traits are inherited in a few,
recognizable patterns, for example autosomal dominant or autosomal recessive. For a
disorder with autosomal dominant inheritance, an affected individual has at least one
affected parent, the disorder affects either sex and can be transmitted by either sex, and
an affected heterozygous individual has a 50% chance of passing the defect on to their
offspring. Examples of autosomal dominant conditions in humans are achondroplasia
and Huntington disease. In autosomal recessive inheritance, affected individuals are
usually born by unaffected parents, i.e. a parent can be a carrier of the mutation without
being affected. Cystic fibrosis has a autosomal recessive inheritance pattern.

The first step involved in a genetic study of a trait is to do a pedigree study where
the family tree is studied for certain phenotypic patterns. For mutations caused by a
single gene, the inheritance pattern can then often be identified. The next step is to
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map the trait to a specific chromosome and locus. Sometimes, visual examination of
the chromosomes is enough, for example if a large part of a chromosome is missing.
However, in most cases the isolation of the locus is done by using genetic markers and
linkage analysis. The markers are used in paternity tests to check which chromosomes
were inherited from each parent. These genetic markers can also be used to see if a
particular marker has a similar inheritance pattern with the trait under study. If so, it
can be assumed that the marker is located close to the mutated gene. After the initial
mapping analysis, the identified region is narrowed down, for example by introducing
more genetic markers. Once the region is sufficiently small, several techniques can be
used to locate the specific gene and sequence it.

Multifactorial and Quantitative Traits

Multifactorial (also called complex or polygenic) traits are affected by variation in
multiple genes and often also the environment. For example, genes that influence breast
cancer susceptibility in humans have been found on several chromosomes [30]. For
multifactorial traits, it is normally quite hard to identify the genetic loci affecting the
trait. Simple pedigree methods can not be used because the effect of segregation of
alleles of one gene is at least to some degree concealed by the effect of other genes
and environmental effects. Thus, individuals with identical genotypes usually exhibit
different phenotypes and simple patterns such as dominance or recessiveness are not
present. As noted earlier, most economically and medically important traits in humans,
animals and plants are multifactorial, and identifying the genetic variation affecting
these traits is an important problem in genetics.

Multifactorial traits that can be measured on a continuous scale are calledquan-
titative. A gene can be seen as a variable withK possible states, where each state
corresponds to a possible allele-pair combination. If a trait is affected byn indepen-
dent genes, there areKn different genotypes available. According to the central limit
theorem of statistics, the overall phenotype will be normally distributed ifn is large
enough. The phenotype difference between similar genotypes can be small, and fur-
ther blurred by environmental variation, giving a continuous distribution overall.

If the heritability is large, many genes are needed to give a continuous distribution.
If the heritability is small, the trait can be continuous even with a small number of
genes because of environmental effects. If a complex trait has a normal distribution,
it will have a mean (µ) and a variance (σ). The variance can be assumed to be the
composed of a genetic and an environmental component,

σ2
P = σ2

G + σ2
E .

The broad sense heritability is given by

H2 =
σ2

G

σ2
P

,

and measures the importance of genetic variation relative to the environmental con-
tribution for the studied trait.
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Table 1: Some heritability values based on twin studies
Trait Heritability
Longevity 0.29
Height 0.85
Maximum heart rate 0.84
Memory 0.47
Verbal ability 0.63
Maximum blood lactate 0.34
Weight 0.63

As an illustration, Table 1 shows the heritability for some quantitative traits in
humans determined using twin studies. As the identical twins share the same genes,
the variance between members of an identical twin pair is equal toσ2

e .

Experimental populations

By providing a form of ”controlled genetic variation”,experimental populationsare
very important sources of information for analyzing the genetics behind a multifactorial
trait. An individual that is homozygous at all locus is said to beinbred. Starting with
two inbred lines of a species, different kinds of controlled crossed can be bred, for
example:

• F1: Produced by crossing individuals from two different inbred lines. The indi-
viduals in the first F1 generation will all be genetically identical and heterozy-
gous for all loci. The F1 generation is the basis for other crosses, like F2 or a
backcross, which are used for the genetic analysis.

• F2 (or Intercross): Produced by crossing individuals from the same F1 genera-
tion.

• Backcross:Produced by crossing individuals from the F1 generation with indi-
viduals from either of the two parental lines.

Both F2 and backcross individuals will exhibit genetic variation because of crossover,
and this variation is modeled in the statistical framework used for the analysis.

For some organisms, like humans and many other mammals, it is not possible to
create inbred populations. In some cases, for example for farm animals, outbred pop-
ulations created by breeding programs can still be employed for creating experimental
populations that can be used for genetical analysis of the traits that were subject to
breeding. Also, organisms where inbred populations are available, like mice, are often
used as model organisms for e.g. humans.

The non-genetic effects on a trait can be controlled when searching for genes in
plants and animals by placing them in controlled environments.

7



2.3 Quantitative Trait Loci, QTL

A QTL (quantitative trait locus) is a location/region in the genome that affects a quan-
titative trait. Finding the important QTL for a trait is the first step in a genetic analysis
of the trait.

Historically, the field of quantitative genetics was mainly focused on the study of
the aggregate effects of all the genes causing variation. This approach has given esti-
mates of the genetic contribution to the observed phenotypic variation (heritability) and
also the genetic correlation between various traits. For example, this type of knowledge
has been used in animal breeding programs for a long time. However, during the last
decades, significant progress has been made in the development of methods for map-
ping the effects of a trait to locations in the genome,QTL mapping. This has resulted in
that several major genes responsible for quantitative traits have been located [24,31].

One of the key developments in this area has been the establishment of large collec-
tion of genetic markers, which can be used to construct genetic maps of experimental
and domestic species. These maps help to identify regions of the genome that may
have a statistical association with the phenotype under study.

Genetic mapping of QTL

The first step in a standard QTL mapping experiment is to construct an experimen-
tal population as described above. In experimental populations the heritability can be
increased by reducing the environmental influence by maintaining a constant environ-
ment for all individuals.

Genetic analysis of QTL can be done using a candidate gene approach or by using
a genome scan based on linkage analysis. The papers A-D describe algorithms and
implementations for the genome scan/linkage analysis approach. Here, multiple ge-
netic markers are used to identify the regions in the genome that affect the trait. This
method is general in the sense that it may provide that new and previously unlocated re-
gions/genes are identified. However, it is important to select markers having sufficient
information to maximize the probability to detect the co-segregation between marker
and QTL [14, 36]. Since the markers will be located some distance apart, genome
scanning can only resolve a QTL location with 10-30cM resolution. It is necessary to
invoke other methods to locate the QTL more precisely [23].

In practice, the genome scan approach is often combined with candidate gene
analysis. If a gene has been previously identified to influence the trait under study,
or if a gene in a another organism with sequence similarity and exhibiting similar vari-
ations in phenotype has been found, these genes can be used as candidate genes. Using
statistical methods, the effect of the candidate gene on the variation of the quantitative
trait can be analyzed. This approach has the disadvantage that only a limited region of
the genome is analyzed, also this method will not provide information about new QTL.
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QTL models

Models for the statistical association between genetic markers and QTL are reviewed
in e.g. [26]. Some standard models can be found in [48]. Various statistical methods
can be used when evaluating the models, ranging from simple ANOVA (Analysis of
variation) tests to more complex approaches.

A QTL can be modeled by an allele substitution effect, which is commonly called
an additive effect. In many cases the heterozygote phenotype deviates from the mean
of the two homozygote, i.e. the trait is partly dominant or recessive. A dominance
effect can be modeled by including a parameter for the deviation of the heterozygous
phenotype from the mean of the two homozygotes. Using data from a backcross pop-
ulation, the combined effect of the additive and dominance effects of a locus can be
modeled, while an F2 population allows separation of the additive and a dominance
effects in the model. In general, several traits are considered in each study and the level
and direction of dominance depends on each trait.

The additive and dominance effects are also refereed to asmarginal genetic effects
since they only depend on a single locus. Quantitative traits are normally affected by
the products of multiple genes.Epistasiseffects describe such interaction between
genes, i.e. when the action of one gene is modified by one or several other genes.

The F2 also makes a more thorough investigation of epistasis possible, but a large
population size is needed to obtain the same power to detect epistasis.

The first QTL mapping techniques were based on linkage analysis between single
markers and phenotype [62, 65]. A major problem with this kind of analysis is that it
is not possible to distinguish a closely linked QTL of small effect and a loosely linked
QTL of large effect (linked to a single marker). Later, the development ofinterval
mapping[33, 43, 45] solved this problem, providing schemes where it is possible to
estimate both the effect and the position of a QTL.

Figure 2: Relationship between additive and dominant effects

To illustrate the type of mathematical models used in QTL mapping, we consider an
F2 population with a particular potential QTL having alleles Q and q. Then the possible
genotypes are then qq, QQ, Qq and qQ. Letyi denote the phenotype of individuali and
bµ the average phonotype of the population. Also, letbadd denote the additive effect,
bdom the dominance effect, andεi the environmental noise. The model is then described
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by the equations

qq : yi = bµ − badd + εi

qQ or Qq : yi = bµ + bdom + εi

QQ : yi = bµ + badd + εi

This is illustrated in figure 2 and can be summarized as

yi = bµ + ai
addbadd + ai

dombdom + εi,

where the indicator variables are defined byai
add = −1 andai

dom = 0 for genotype
qq; ai

add = 0 andai
dom = 1 for genotypes qQ or Qq; andai

add = 1 andai
dom = 0

for genotype QQ. Using this type of model, the three parametersbµ, badd andbdom

can be estimated. Using the same type of approach, models with different parameters
can be formed. As a general rule, there should be many observations (individuals) per
parameter in order to obtain reliable estimates. This means that large populations are
required to make analysis with models with many parameters applicable.

Single QTL models of the type described above can be generalized for multiple
QTL [39,57,66,67] by adding more terms to the model. Also, it is possible to include
epistatic interactions [61].

In general, assume that a model includingd QTL is used and that a sequential map
of the chromosomes and the genetic information within them is given. A position in the
genome is identified by a numberx ∈ [0, G], whereG is the total genome length. Let
the vectorx = [x1 x2 . . . xd] denote potential positions of thed QTL and letm be the
number of individuals in the experimental population. Also, letk be the total number
of parameters in the model and let the vectory contain them phenotype observations,
the vectorb contain thek regression parameters and the vectorε contain them noise
components. A general QTL model can then be written as

y = A(x)b + ε, (1)

where the design matrixA(x) is anm × k matrix of coefficients for fixed effects
and QTL effects. Here, only the QTL effects depend onx. The matrixA has one row
per phenotype observations while the number of columns is given byk = kfix+kQTL.

Maximum Likelihood and Linear Regression Statistics

Any set ofd hypothetical QTL positionsx can be used as input when buildingA(x),
but the genotypes of the individuals are (at best) only known at the marker loci. Several
approaches can be used for estimating the regression parameters at loci between mark-
ers. One standard approach is maximum likelihood interval mapping [42, 45]. Here
the parameter estimation is a nonlinear problem which must be solved iteratively, often
using the EM [25] or ECM algorithms [55]. Another standard approach is the linear
regression method [33, 54]. Since only a single, linear least-squares problem needs to
be solved, this method is normally much less computationally expensive than if the
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maximum likelihood approach is used. When multiple QTL are included in the model,
this becomes an important criterion when selecting the statistical approach. The main
objective of the QTL analysis is to detect important regions for further experimental
study, and using linear regression methods may make models including multiple QTL
computationally feasible. This is also the approach used in this thesis. However, it
should be noted that by implementing an alternative routine for maximum likelihood
estimation, the codes presented in papers A-D can be easily modified to include also
this approach.

In [41], and analytic and numerical investigation of the difference between QTL
mapping based on maximum likelihood and linear regression is made. This study indi-
cates that the maximum likelihood-based methods can in some cases be more accurate,
precise and powerful. However, the methods were not compared for real data, where vi-
olations of model assumptions such as unequal variance within QTL genotype classes,
segregation distortion and unusual inheritance patterns are likely to be present. It is dif-
ficult to asses the relative properties of the two approaches for analysis of experimental
data sets.

Genetic Background Effects and Forward Selection

Methods for mapping of single QTL where the effects of other QTL believed to be
present is taken into account have been derived [38, 39, 66]. When a QTL has been
identified it can then be included in the model as a fixed effect, and then additional
searches for other QTL can be made. This procedure is calledforward selection, and
drastically reduces the computational demand compared to a simultaneous search for
multiple QTL. However, as remarked earlier, it has been shown [18] that such methods
can be ineffective in detecting interacting QTL.

Significance and Randomization Testing

Since QTL mapping involves multiple statistical tests throughout the genome, the se-
lection of a significance threshold is a key issue of the procedure. Since the use of a
nominal significance threshold will lead to an elevated type I error (large number of
false positives) various methods have been suggested to deal with the multiple com-
parisons [12, 44, 45, 63]. Empirical estimation of the overall significance thresholds
can be done in a wide range of population designs by re-sampling techniques such as
randomization testing [22]. Here the observed trait values are randomly shuffled over
individuals (genotype) generating a sample with the original marker information, but
with trait values randomly assigned over genotypes. The major drawback is that this
method requires that on the order of 1000 independent QTL mapping problems are
solved, implying the corresponding increase in computational complexity.
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3 The Computational Problems in QTL analysis

The goal of a QTL search is to optimize the model fit over all possible positionsx.
Using linear regression interval mapping, this corresponds to computing the optimal
residual sum of squares,RSSopt according to

RSSopt = min
b,x

(A(x)b− y)T (A(x)b− y), (2)

The locationx that minimizes (2) is denoted byxopt, and is the most probable set of
QTL positions for the given model. The expression (2) is a separable non-linear least-
squares problem where the model is a linear combination of non-linear functions. The
solution of (2) can be separated into two parts: For linear regression interval mapping,
the inner problem will be a linear least-squares problem given by

RSS(x) = min
b

(A(x)b− y)T (A(x)b− y). (3)

We refer to the process of solving (3) asevaluating the objective function. If another
statistical approach is used, e.g. maximum-likelihood interval mapping, the evaluation
of the objective function will instead require the solution of a non-linear problem.

The outer problem,

min
x

RSS(x), (4)

is referred to as theglobal search problem. This is ad-dimensional, non-linear global
optimization problem.

3.1 Evaluating the Objective Function

Given a particular set of QTL positionsx, the solution of the inner problem (3) de-
termined the model fit for the linear regression statistical model. The least-squares
problem can be solved using any standard algorithm. However, more efficient schemes
that take the specific structure of the QTL mapping problems in to account [49] have
also been developed.

3.2 Solving the Global Search Problem

The global optimization problem (4) normally has a large number of local minima. In
Figure 3, a surface plot of a part of a typical objective function for a problem where
d = 2 is shown.

In principle, the global search should be performed over allx in a d-dimensional
hypercube, where the side is given by the size of the genome. However, the optimal
value of RSS(x) is independent of the ordering of QTL in the set. Therefore the
problem exhibits ad!-fold symmetry and the search space can be reduced accordingly.

There are two levels of structure in the search space; The outer level is given by
that the hyper-cube consists of a set ofCd d-dimensional, unequally sizedchromosome
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Figure 3: Part of a typical optimization landscape for a model whered = 2

combination boxes, cc-boxes, which can be identified by ad-vector of chromosome
numbers. The function (3) is continuous within a cc-box, but discontinuous at the cc-
box boundaries. The second level of structure is defined by the genetic markers. Each
cc-box consists of a set ofd-dimensional, unequally sizedmarker boxes, m-boxes,
defined by the marker positions and the endpoints of the chromosomes. The function
(3) is smooth within an m-box, but in general has a discontinuous derivative at the
m-box boundaries.

The global search problem is solved using some global optimization scheme. In
the next section, we first give a brief overview of global optimization problems and
some classes or algorithms that can be used for solving them. Then we describe the
DIRECT algorithm in some more detail. This is the basis of the parallel algorithms and
implementations for QTL analysis in papers B and C. Finally, we give an account for
earlier work on global optimization schemes for serial and parallel QTL computations.

4 Global Optimization

The objective of an algorithm for global optimization is to locate the globally best
objective function value in the presence of multiple local optima. Global optimization
problems arise in many areas where non-linear models are used. Examples are found
in a range of applications in engineering design and scientific modeling as well as in
biotechnology and financial planning.

A general global optimization problem can be formulated as
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min f(x)
subject tox ∈ D

(5)

where the objective functionf : Rd → R fulfills some regularity criterion (e.g.
Lipschitz continuity),x is a d-vector of decision variables, and the feasible setD is
non-empty. There is no straight-forward general algebraic characterization of the so-
lution to a global optimization problem, corresponding to the Karush-Kuhn-Tucker
conditions for local optimization problems. Also, if no global information about the
function, e.g. a global Lipschitz constant, is available there is in general no way of
guaranteeingthat the solution obtained by a finite algorithm is a global optimum. This
property has given global optimization a bad reputation as an “unsolvable problem”.
However, in practice there are many algorithms available, and some of them are often
surprisingly successful. Some of these schemes are general in nature and applicable to
large classes of problems, while others are tailored for specific problem types.

4.1 Algorithms for Global Optimization

If a local optimization method is applied to a global optimization problem then, de-
pending on the starting point, the scheme can be trapped in a local minimum which
is not the global optimum. Hence, special global search algorithms have to be used.
These can be divided into different classes, e.g.:

• Exact methods, that exploit some known global information about the objective
function to guarantee that the solution is found to some pre-set accuracy, versus
heuristic methodsthat use some heuristic scheme to find a global minimum with
supposedly high probability.

• Deterministic methods, that generate the same sequence of approximations if
they are applied to the same problem repeatedly, versus stochastic methods where
the approximations have an element of randomness included.

Some examples of methods are, further described in e.g. [58], are:

• Exhaustive Search:This is a brute-force method where the objective function is
evaluated for all points in a fine mesh covering the search space. For an objective
function with a known Lipschitz constant, the accuracy of this type of procedure
is given a-priori. Also, this type of algorithm is normally very easy to implement.
However, if the search space is large and/or the objective function is expensive
to evaluate, the computational cost of an exhaustive search algorithm will often
be prohibitive. The basic exhaustive search scheme provides a basis for other,
more efficient deterministic algorithms, e.g., of branch and bound-type.

• Branch and Bound: This is a class of methods where, after evaluation of the
objective function at certain points, search space regions where the minimum
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can not be located are recursively cut away. To be able to perform such pruning
of the search tree, some global information about the objective function must be
available.

• Random Search: This is a random version of the exhaustive search algorithm
where the objective function is evaluated at randomly chosen points instead of
on a predefined mesh. Again, for problems with large search spaces and/or ex-
pensive objective function evaluations, the cost can be prohibitive. The basic
random search scheme provides a basis for evolutionary algorithms.

• Evolutionary Algorithms: This is a large class of methods containing e.g. ge-
netic algorithms. These schemes mimic evolution, starting with a population of
search space points (individuals) represented by a set of data (a genome). Using
operators such as mutations and crossover, the population reproduces to form a
new generation. The fitness (objective function values) of the offspring is evalu-
ated, and individuals with better function values are kept in the population with
higher probability than the others. Genetic algorithm are rather easy to imple-
ment and often exhibit robust behavior, but they also often need many evaluations
of the objective function to produce a good result.

• Simulated Annealing: This type of method is based on mimicking the cooling
process of metals, where the atoms tend to crystalize in a configuration which
corresponds to a global minimum in energy. Thus, the objective function is the
energy state and the change in the design variables is similar to the change of the
positions of the atoms during the cooling process. The optimization starts at a
random point in the design space and makes a random step. If this step reduces
the energy of the total system then the change is accepted and the algorithm
proceeds. If the energy is not reduced, the move is either accepted or rejected
based on some random probability function.

A problem with algorithms with pre-determined accuracy, like exhaustive search,
is that the computational work normally grows exponentially with the number of vari-
ablesd. For high-dimensional problems such algorithms can not be used, and we have
to accept that some form of heuristics is included in the scheme. Algorithms for global
optimization can be compared based on the following characteristics:

• Generality - The algorithm is applicable to wide ranges of problems.

• Robustness - The algorithm reliably computes the correct solution (up to some
accuracy) in a reasonable amount of time and independently of how it is initial-
ized.

• Efficiency - The algorithm computes the correct solution quickly

• Ease of use - The algorithm is easy to implement and understand, and it does not
use a large number of user-determined parameters.
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4.2 DIRECT

The DIRECT algorithm was first described in [40]. It falls into a category of global
optimization algorithms which can be calledBranch without Bound. Normally, the
algorithm is implemented such that, if it is run for a long time, it performs an exhaustive
search. However, DIRECT initially tries to focus the search to the “most interesting”
regions of the search space. This could be compared to algorithms of Branch and
Bound-type, where search space regions where the optimum can not reside are fully
excluded from further search based e.g. on a Lipschitz criterion. However, DIRECT
is related to the Lipschitz approach in the sense that in the algorithm, DIRECT views
the Lipschitz constant as an unknown parameter that is used to decide whether local or
global search should be given priority. Some properties of DIRECT are that it:

• can be easily applied to problems with simple constraints.

• does not use any derivative information.

• neither uses a Lipschitz constant, nor any estimate of it.

• if the objective function is Lipscitz continues, the algorithm will eventually solve
the optimization problem to a predetermined accuracy (since the scheme then
performs an exhaustive search). However, as for exhaustive search, DIRECT
can be directly applied to problems with a discontinues objective function.

A number of implementations of DIRECT are available, including various minor
[1,7,13] and sometimes major modifications [10,29,35] of the original algorithm. The
name DIRECT is short-hand for the phraseDIviding RECTangles, which indicates how
the algorithm works. The following description of a DIRECT implementation is found
in [13]:

The first step in the DIRECT algorithm is to transform the search space to
be the unit hypercube. The function is then sampled at the center-point of
this cube. Computing the function value at the center-point instead of do-
ing it at the vertices is an advantage when dealing with problems in higher
dimensions. The hypercube is then divided into smaller hyperrectangles
whose center- points are also sampled. Instead of using a Lipschitz con-
stant when determining the rectangles to sample next, DIRECT identifies
a set of potentially optimal rectangles in each iteration. All potentially op-
timal rectangles are further divided into smaller rectangles whose center-
points are sampled. When no Lipschitz constant is used, there is no natural
way of defining convergence (except when the optimal function value is
known as in the test problems). Instead, the procedure described above is
performed for a predefined number of iterations.
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The DIRECT algorithm

We now give a more detailed description of the original DIRECT algorithm. As in-
dicated above, the first step is to transform the search space into the unit hyper-cube,
i.e.,

Ω = {x ∈ Rd : 0 ≤ xi ≤ 1, i = 1...d}
The algorithm works in this normalized space, referring to the problem-specific space
only when making function calls. The algorithm is initiated by computingf(c1), where
c1 is the center of the normalized search space. The next step is to evaluate the objective
function at the pointsc1 ± δei, i = 1, ..., d, whereδ is one-third of the side-length of
the hyper-cube andei is the ith unit vector. Next, the pair-wise minimums for each
direction are computed,

wi = min(f(c1 + δei), f(c1 − δei)), 1 ≤ i ≤ d,

and the boxes with the smallest values ofwi are divided into thirds so thatc1 ± δei are
the centers of new hyper-rectangles. This pattern is repeated for all directions, choosing
the next direction by determining the next smallestwi.

The algorithm now enters a loop where potentially optimal hyper-rectangles are
identified, divided appropriately, and the objective function values at the centers of the
new hyper-rectangles are sampled. Letε > 0 be chosen, and letfmin be the currently
best function value. A hyper-rectanglej is said to be potentially optimal if there exists
someL̂ > 0 such that

f(cj)− L̂dj ≤ f(ci)− L̂di, ∀i , and

f(cj)− L̂dj ≤ fmin − ε|fmin|
In this definition,cj is the center of hyper-rectanglej, anddj is the distance from

cj to a vertex. The definition of the potentially optimal hyper-rectangles is based on
an estimate of the smallest function value possible in each hyper-rectangle. The un-
known parameter̂L is assumed to provide the maximum rate of change of the objective
function, i.e. it is the Lipschitz constant. The first equation is used to select the hyper-
rectangle which has the smallest objective function value within a group of similarly
sized hyper-rectangles. The second equation is used to make that DIRECT does not
always select the hyper-rectangle with the best current objective function value, hereby
making sure that the search does not get trapped in a local optimum.

Figure 4 gives a geometric representation of the how the definition above is used.
Each point in the graph represents a hyper-rectangle in the search space. The poten-
tially optimal hyper-rectangles that form the lower convex hull of the set of points.
These points are the ones selected for subdivision in the next phase of the algorithm.
The parameterε is used so thatf(cj) exceeds our current best solution by a non-trivial
amount. Experiments have shown that, provided1 × 10−2 ≤ ε ≤ 1 × 10−7 the value
for ε has a negligible effect on calculations. In papers B-D, we useε = 1× 10−4
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Figure 4: Convex Hull, source [29]

In general, there are more than one potentially optimal rectangle found in each
iteration. Once these potentially optimal hyper-rectangles have been identified, the it-
eration is completed by dividing them. The divisions are restricted to be done along the
longest direction(s) of the hyper-rectangle. This restriction ensures that the rectangles
will shrink in every direction. If the hyper-rectangle is a hyper-cube, divisions will be
done in all directions as was the case for the initial step.

In Figure 5, the DIRECT division pattern for three DIRECT iterations applied to
a test problem is illustrated. For each iteration, the potentially optimal rectangles are
marked as grey.

Termination

For most, if not all, widely used methods for global optimization, no well-founded,
practical stopping criterion is available. This is also the situation for DIRECT. For a
problem with a known Lipschitz constant the algorithm can of course be run until a
sufficiently accurate exhaustive search has been performed, but this approach can not
be used in practice. Some form of heuristics must be used in the stopping criterion.
One popular solution is to run the algorithm until a predetermined number of function
evaluations have been performed. Another approach, which is the one chosen in papers
B-D, is to combine a finest resolution of the mesh with a criterion where a predefined
number of objective function evaluations have been performed without any further im-
provement of the global minimum.

Parallelization

In [10], a parallel DIRECT algorithm is implemented. This code uses a version of the
DIRECT algorithm, called aggressive DIRECT. Here, the idea of using the Lipschitz
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Figure 5: DIRECT iterations, source [28]

constant is discarded and all hyper-rectangles with the smallest objective function in
each class are divided. This provides additional parallelism. The implementation uses
a master-slave model where a single copy of the central hyper-rectangle data structure
is updated and the objective function evaluations are distributed.

In [34], a parallelization strategy for the original DIRECT algorithm is described.
This work is further developed in [35], where a parallelized algorithm suitable for very
large scale problems is described. This code uses both search-space level and complex-
hull-level parallelization, and the approach is somewhat similar to what is described in
paper C. However, one important difference is that in paper C, the original algorithm
is modified to be applicable also on very loosely-connected systems like grids.

4.3 Global Optimization for QTL mapping problems

The global search problem in QTL analysis described in Section 3 is a global opti-
mization problem ind dimensions. The first models for mapping of QTL we presented
in [33,45]. These models were able to model the effect of single QTL (d = 1) and the
implementations used exhaustive search for solving the global optimization problem.
Later, models were developed which were able model the effect of multiple QTL and
their interactions. Some exhaustive search problems whered = 2 have been solved to
detect epistatic QTL [21, 27, 37, 46]. The reason for the prohibitive cost ford > 2 is
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that an exhaustive search on ad-dimensional 1 cM mesh in anG cM genome requires
Gd solutions of the kernel problem. In a typical example,G = 2, 500 cM and an ex-
haustive search ford = 3 would require16 × 109 function evaluations. If exhaustive
search is considered to be the only viable optimization method, performing QTL map-
ping using simultaneous search for two QTL combined with randomization testing is
even today a very demanding computation.

One of the early approached to tackle this problem was to reduce the computational
complexity by reducing the search regions [42], increasing the step size in the exhaus-
tive search, or ignoring effects such as epistasis in the model. However, this reduces
the accuracy and statistical power of the search. Also, models that use forward selec-
tion [38,39,66] were developed. However, as remarked earlier, such models have been
shown to be less efficient for detecting epistatic QTL [18].

In [19], a genetic optimization algorithm implemented in a library has been used
for QTL anaysis problems whered = 2. The genetic algorithm had some difficulty
in finding the global optimum when epistasis was included in the model. It was ob-
served that the genetic algorithm sometimes failed when a QTL pair lacked significant
marginal effects. This can be explained by that the genetic algorithm has an inherent
forward selection property.

Lately, the DIRECT scheme described above has also been applied for solving the
global search problem [50], leading to a dramatic improvement in efficiency compared
to when exhaustive search is used. Some of the results are summarized in Figure 6.

Figure 6: Results for QTL analysis, source [52]

In [50], the original DIRECT algorithm is adopted to take the special structure of
the search space into account. The function (3) is discontinuous between cc-boxes,
and therefore the search space is divided into cc-boxes all ready at initialization, and
the center of each box is sampled. This is sufficient to fulfill the Lipschitz continuity
condition of DIRECT, since the Lipschitz method is used for bounding (4) within (and
not across) hyper-boxes. Also, in contrast to the original method, the box sizes are not
normalized in order to retain the relation between the distance measurecM and change
in the genotype. Finally, the algorithm does not divide boxes smaller than1cM further.

In [51], further improvements of the DIRECT scheme for the global search problem
are presented. Here, a hybrid global-local scheme is developed where DIRECT is
run for a fixed number of function evaluations and then a local search is performed
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Table 2: Stopping rule parameters. The minimum number of function evaluations
allowed without improvement of minimum

d Nf

2 841
3 11487
4 117740
5 965468
6 6597367

as a refinement step. When a hyper-rectangle smaller than a certain limit is chosen
for subdivision it is sent to the local phase. There it is first investigated if the box
lies completely within a m-box. If not the box is divided along the marker interval
boundaries, ensuring that the local algorithm is only applied within a region where the
objective function is smooth. Three different methods were used for the local search:

• DIRECT

• Steepest Descent

• Quasi-Newton

The DIRECT scheme in [51] is terminated whenNf function evaluations have
been performed without further improvement of the optimal value. For a model with
d QTL, the size of the search space isGd/d!. This motivates thatNf is chosen as
Nf = (Palg.G)d/d!, where the parametersPalg was determined by performing a large
number of numerical experiments, adjustingPalg so that the global optimum is located
in each data set. The values forNf is Table 2 have been calculated based on these
values.Palg.G for DIRECT without any local search is 41. The values for other local
search algorithms can be found in [51].

5 High Performance Computing: Systems and Program-
ming Models

The term High Performance Computing (HPC) refers to the use of parallel computing
systems such as clusters and supercomputers for solving computational problems. The
systems contain multiple processing nodes connected with some type of interconnect.
Today, HPC is a standard tool in many research fields. Computational Science and En-
gineering, i.e. mathematical modeling and large scale simulations, is becoming a third
pillar of research in science and technology, complementing theory and experiments.
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5.1 HPC Computer Architectures

Symmetric Multiprocessors (SMPs) and Chip Multicore Processors (CMPs)

A symmetric multiprocessor, or SMP, is a parallel computer architecture where several
identical processors are connected to a single, shared main memory. This allows each
of the processors to access all data in the global memory, i.e. the system has shared
address space. Communication between the processors is performed via the shared
memory, and the time required for communicating a single data entry is comparable
to a reference to the main memory. The tightly-coupled shared memory system is
rather costly, and it also imposes a scalability limit for how many processors that can
be attached to it. Today, SMPs are often used for running commercial applications like
databases and other transaction systems and e.g. web servers.

During the last couple of years, chip multicore processors, or CMPs, have emerged.
These are microprocessors which can be viewed as having the processors and part of
the memory system of an SMP on a single chip. When programming a CMP, the same
type of programming models as for an SMP can be used. However, new targets for
optimization should be considered since, e.g., communication between the cores of a
CMP is much faster than a main memory reference.

Clusters

A computer cluster is a set of computer nodes connected via a high-speed interconnect.
Each node has a local memory, and a processor can not directly access the memory in
another node. Instead, transfer of data is handled by some form of message passing.
The cluster nodes can have a single processor or they can be SMP systems with several
processors. Today, most new clusters have nodes with one or more CMP processors.
For clusters, it is easier to provide the scalability needed to build very large paral-
lel computers, and the largest systems in the world are clusters. The cluster network
is cheaper than the SMP memory system, and since the cluster nodes are normally
commodity components, clusters often provide a cost-effective way of achieving the
computing power needed.

Grids

A grid is a possibly heterogeneous collection of computers connected to each other via
the internet. The administration of the grid, including scheduling of work and set-up of
communication, is handled by a software layer called the middleware. A grid is a highly
loosely-coupled parallel computer system, and the behavior is often non-deterministic
since there is interaction with many other users and applications.

A primary advantage of grid systems is that of cost. Commodity hardware comput-
ing nodes are combined, and together they can provide the same processing power of
a supercomputer at a fraction of the cost. Also, distributing the hardware makes issues
such as cooling and power requirements easier to deal with. For parallel computing,
the primary disadvantages are the slow communication and the stochastic nature of
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scheduling. Also, since the grid approach is rather new, the complex middleware sys-
tems still need to be improved.

To be suitable for implementation on grid systems, an algorithm must be pleasantly
parallel in the sense that the main part of the work can be subdivided into sufficiently
large chunks that can be executed in a highly independent way, but where possibly
some local/serial preprocessing, synchronization at a few workflow stages, and/or some
local/serial postprocessing can be included.

Many challenging problems like protein folding, financial modeling, earthquake
and climate modeling have already been approached using grid computing. Grid com-
puting is also recently introduced as a way of providing computing power in a com-
mercial setting, selling cpu-capacity to clients requiring it on an on-demand basis.

5.2 Programming models

MPI

The message passing interface (MPI) [4,32] is a language independent communication
protocol, mainly aimed at cluster architectures with local memory nodes. For such
systems, it has become the de-facto standard for parallel programming. There are many
implementations of message passing sharing the MPI API. MPI bindings are available
for C and Fortran, and also for languages like Java and Python. It should be noted that
MPI libraries are normally also available on shared memory systems, implying that
message passing codes can be executed without modification on these systems also.

OpenMP

On a parallel computer with a shared memory, a programming model where several
threads of control are run simultaneously, communicating via memory references, is
often used. For computational applications, OpenMP has become the most widely used
tool of this type. Using a shared memory model, the data does not have to explicitly
partitioned over the different processors and it is often easier to get a parallel code
going than if a message passing model is used. However, shared memory programming
is also error-prone, since it is easy to introduce e.g. race conditions when modifying
shared variables.

OpenMP consists of a set of compiler directives and a few routines to interact with
the run-time environment. Most vendors provide implementations of OpenMP, and re-
cently OpenMP is also added in the the Gnu compilers. Using a shared memory model
combined with compiler directives provides a possibility of introducing the parallelism
incrementally in a serial program, where work on one portion of the program at a time
can be done without dramatic changes in the code. OpenMP also provides for both
coarse-grained and fine-grained parallelism.

Traditionally, OpenMP has been used for large-scale shared memory systems of
SMP type. However, with the deployment of personal computers with multicore chips,
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the OpenMP programming model will possibly be used much more widely in the fu-
ture.

Distributed Shared Memory

The most cost-effective and scalable way to build an HPC system is possibly via a
cluster with local memory nodes. However, for the programmer there are many advan-
tages offered by the shared memory model. Thus there has been much effort in trying
to combine these two approaches, providing a programming environment for using a
virtual shared memory. Unified Parallel C (UPC) [8], Linda [20] and JavaSpaces [3]
are some of tools along these lines.

Hybrid Local Memory - Shared Memory programming

Both MPI and OpenMP are portable across a wide variety of platforms. MPI codes are
usually written to dynamically decompose the problem among MPI processes. These
processes run their piece of the problem on different processors usually having their
own local memory. OpenMP codes, on the other hand, have directives that describe
how parallel sections or loop iterations are to be split up among threads. On a cluster
with SMP nodes, a hybrid programming models where MPI is used at an outer (node)
level while OpenMP is used inside a node is natural. Developing hybrid codes present
additional challenges compared to using only a single level of parallelism. The code
should perform correctly with what ever combination of multithreading and message
passing. Hybrid code will possibly be used widely when clusters and grids with multi-
core chips will become standard.

5.3 QTL mapping using HPC systems

Most of the popular QTL softwares [11, 15, 60] are built from serial codes in C or R,
and some of them are plug-ins to other software such as Matlab. These codes are used
on single processors only, and we do not know of any attempts to parallelize them.

However, parallelizing the exhaustive search algorithm for the global search in QTL
mapping problems is a rather straight-forward task. A first implementation was also
presented in [17], where a two dimensional search was parallelized by distributing the
calculations for cc-boxes over the different processors. The code was written in Fortran
90, and MPI was used for message passing. Computations where genetically interest-
ing results were derived were performed on a cluster and a Cray T3E system. The
code used a master-slave model where all the slaves performed their local calculations
independently and the results were output to files. These output files were then merged
afterwards to form the final result. Also, the genetic algorithm described in [16] has
been parallelized using the same code base by including calls to the parallelized PGA-
Pack library.

For grid systems, the gridQTL project [2] aims at grid-enabling the application
QTLexpress [60] and making it accessible via a grid portal.
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6 Data Sets

For the experiments in Papers A-D, we have used two representative data sets. One
data set consists of experimental data from two F2 crosses between outbred lines of
wild boars and domestic pigs [9] with 191 individuals and a genome size of 2300cM.
All the studied traits for this data set were growth related. The other set of data is
derived by simulating a mouse F2 intercross with 500 individuals, more details can be
found in [51].

7 Summary of attached papers

In papers A-D, we describe several flexible parallel algorithms and implementations for
simultaneous mapping of multiple QTL using the linear regression statistical method
and different global optimization methods for solving the global search problem.

In the papers, we use the models described in Section 2 and the data sets described
in Section 6 as representative examples. We do not consider the relevance of the models
used, nor do we consider the important problem of which statistical model to use.
Also, we do not attempt to establish the statistical significance of the results, and we
do not draw any form of genetic implications from the computations. However, the
algorithms and implementations described in the papers provides a basis for future
studies of all these issues, and for performing complete QTL mapping analysis using
models including multiple QTL.

7.1 Paper A

The codes regularly used for QTL analysis by geneticists are serial and use the brute-
force exhaustive search algorithm for solving the global search problem.

In paper A, we develop a parallelized code for simultaneous search of multiple,
possible interacting, QTL using the standard exhaustive search algorithm. Even though
this scheme is very computationally expensive, a parallel implementation is valuable.
Using results for representative data sets and models computed using exhaustive search,
it is possible to accurately evaluate the accuracy and efficiency of more elaborate op-
timization methods. Also, the code can be used as a basis for implementing other
schemes for performing the global search,

When searching ford QTL, the search space for the problem is ad-dimensional
hypercube, where each side is given by the size of the genome. The genome is divided
into C chromosomes. This means that we can view the search space as a collection
of d-dimensionalchromosome combination boxes, cc-boxes. Since genes on different
chromosomes are unlinked, the objective function is normally discontinuous at the
cc-box boundaries. This means that the QTL search could be viewed as essentially
consisting ofn ≈ Cd/d! independent global optimization problems, one for each cc-
box included in the search space.
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This partitioning of the problem is a natural basis for a straight-forward paralleliza-
tion of multi-dimensional QTL searches:

do (in parallel) i=1:n
l_sol(i) = global_optimization(cc-box(i));

end
Find the global solution among l_sol(:);

Since the objective function evaluations (model fit computations) are rather expen-
sive, the work for performing global minimization in a cc-box is almost exclusively
determined by the number of calls to the objective function evaluation routine. For an
exhaustive search algorithm, this number is known a priori. However, since the size
of the different cc-boxes varies a lot (the chromosomes have very different lengths),
the work will be very different for different boxes. Hence, the two main issues when
implementing a parallel version of exhaustive search is load-balancing and granularity
for the parallel loop.

The parallel code is based on existing serial QTL codes in Fortan 90 and C. The
implementation uses a hybrid, two-level scheme scheme for partitioning the tasks cor-
responding to global optimization in cc-boxes over a set of parallel processors. On the
outer level a static partitioning of tasks is used, and on the inner level dynamic partition-
ing is exploited. For the outer, static level a separate code partitions the cc-boxes over
ps different jobs. The preparation code stores the description of the partitioning inps

input files, which are then used byps instances of the computational code. A job con-
trol script submits theps computational jobs and wait for them to finish. Finally, when
all jobs have finished, a small separate code compares the local results and outputs the
global optimum. The inner, dynamic level of parallelization is implemented using a
MPI master-slave model. The master process maintains a queue of tasks, each consist-
ing of global optimization in a single cc-box. These tasks are dynamically handed out
to the worker processes as soon as they have completed their previous task.

The outer level parallelism, using a job control script, is easily implemented on
various parallel architectures, including grids. The inner level parallelism requires the
availability of MPI, and can normally be used only within clusters. We perform exper-
iments using the Swedish national grid system Swegrid [6], and the results show that
the scheduling policies used in this system normally favors using only the outer level
parallelism. For comparison, we also perform experiments using a shared memory
server (SunFire 15k).

7.2 Paper B

In [50, 51], the global optimization algorithm DIRECT is used instead of exhaustive
search for solving the global search problem in QTL mapping. In paper B, we discuss
how to parallelize this tightly-coupled algorithm efficiently on loosely-coupled systems
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such as grids. We describe a new version of the algorithm, based on partitioning the
search space and removing some of the global communication at an outer level of the
algorithm. We show that, for the QTL mapping problems, the serial performance of the
new version of DIRECT is in fact sometimes better than that of the original algorithm.

The implementation of the parallel DIRECT scheme is based on an existing C
code [51]. The code uses the same type of outer level parallelism as in paper A; First
a separate code is used to partition the global search space into local search spaces,
cc-box-sets. The partitioning code stores the cc-box-set data on separate files which
are used as input by the DIRECT code which run on each node. A job manager scrip
submits each job with a different cc-box-set and waits for them to finish and gets the
final output. For a grid system each job is described in a job description file, and when
using a cluster or a shared memory system a similar batch script is used. For each job,
the executable is the same, the only difference is in the cc-box-set file which describes
the local search space. Once the code is executed it outputs the local minimum. The
job-manager script downloads each of these outputs and computes the global minimum
using a minor serial computation.

For the DIRECT algorithm, it is not possible to determine the work for each cc-box
set beforehand. It is not known where the algorithm will perform most of the objective
function evaluations. However, a block-cyclic distribution of the cc-boxes is used to
get reasonable load balance.

Again, we perform experiments on the Swegrid system and an Sunfire 15k shared
memory server. We also performed some experiments using a cluster with a standard
interconnect.

7.3 Paper C

With the introduction of multicore processors, a new level of parallelism is becoming
available. In the future, clusters and grids will have nodes with one or more multi-
core processors. In paper C we enhance the parallel DIRECT code from paper B by
introducing thread-level parallelism at an inner level.

There are several levels of parallelism available within the DIRECT algorithm. In
paper B, a partitioning of the search space was used. Several cc-boxes were blocked
together and DIRECT was executed for the corresponding search region. Here, each
search can be performed independently. In paper C, we add thread-level parallelism,
implemented using OpenMP, to parallelize the initialization of the different cc-boxes
in each cc-box set, and also when evaluating the objective function in the potentially
optimal hyper-rectangles inside the DIRECT scheme. The resulting hybrid scheme,
where threading and search space partitioning are both utilized, mainly targets com-
puting resources like grids and clusters with shared memory or multicore nodes.

We perform experiments mainly on a cluster with dual-processor nodes where each
processor has two cores. The results show that normally a combination of search space
partitioning and multithreading results in the most efficient computations.
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7.4 Paper D

A problem with grid systems is that an important set of tools is still missing. When
using the grid, the researcher has to use a scripting language for job submission. For
example, using the ARC middleware in the Swegrid [6] infrastructure, we have to write
a xRSL (extended Resource Specification Language) file that describes the hardware
and software requirements of the job. If we want to submit multiple jobs (assuming
each job is independent of the others) then we must build scripts for this purpose.
Also, submitting multiple jobs usually requires developing a ’babysitting’ applications
which check if the jobs have completed and then downloads the results. These tasks
can preferably be undertaken by a grid portal. Such a portal can be specific to an
application ( application portal) or it can be generic.

In paper D, we present a pilot implementation of the QTL mapping software pre-
sented in Papers A-C within the Lunarc Application Portal framework [5]. A GUI-
based interface for submitting grid jobs for the parallel DIRECT code is developed.

We implemented this system using the Lunarc application portal framework on one
of the clusters in the Swegrid system.

8 Future Work

The experiments performed in this thesis have been aimed at evaluating the perfor-
mance of the new algorithms and implementations. No experiments attempting to de-
rive results of interest in genetics have been attempted. It would be a natural step to
use the software framework developed for performing genetically interesting investi-
gations. This require further development of the grid portal to arrive at a tool which
is easy to use for biologists. Exhaustive testing of the grid portal needs to be done,
and the development should be done in close collaboration with users. The proper GUI
design should be created. Also, functionality for users to upload their own data sets
and examine the results needs to be added and integrated in the system.

In [51], a hybrid global-local algorithm based on DIRECT is developed. This
scheme has been shown to perform better for the data sets examined. We have not
used the hybrid algorithm in our code, and it would be interesting to examine if the
efficiency of the parallel DIRECT implementations can be improved too.

We can use different objective functions and models for QTL interactions. These
different models would possibly give different genetic outcome. It is rather easy to
modify the code so that other models are used. Variance component based models
for QTL analysis is an interesting area. The genetic models and the computational
methods used for the objective function evaluation in this type of work are different
to the ones used in this thesis. These objective function evaluations are much more
expensive, indicating that the need for parallel computing is even larger. Recently, new
formulations of the the model and new algorithms have been studied [56,59]. It would
be highly interesting to combine these schemes with our parallelized global search
routines.
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Thread-level parallelism will be available in all future clusters and grid nodes. How
to harness that power is also interesting; we have evaluated some of this in paper C.
However, further development of algorithms and codes for multicore chips is needed
to fully take advantage of the architectural properties of these systems.
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