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Abstract

Numerical simulation of stochastic biochemical reaction networks
has received much attention in the growing field of computational sys-
tems biology. Systems are frequently modeled as a continuous–time
discrete space Markov chain, and the governing equation for the prob-
ability density of the system is the (chemical) master equation. The
direct numerical solution of this equation suffers from an exponential
growth in computational time and memory with the number of react-
ing species in the model. As a consequence, Monte Carlo simulation
methods play an important role in the study of stochastic chemical
networks. The stochastic simulation algorithm (SSA) due to Gillespie
has been available for more than three decades, but due to the multi–
scale property of the chemical systems and the slow convergence of
Monte Carlo methods, much work is currently being done in order to
devise more efficient approximate schemes.

In this thesis we review recent work for the solution of the chemical
master equation by direct methods, by exact Monte Carlo methods
and by approximate and hybrid methods. We also describe two new
and conceptually different numerical methods to reduce the compu-
tational time when studying models using SSA. A hybrid method is
proposed, which is based on the separation of species into two subsets
based on the variance of the copy numbers. This method yields a sig-
nificant speed-up when the system permits such a splitting of the state
space. A different approach is taken in an algorithm that makes use of
low-discrepancy sequences and the method of uniformization to reduce
variance in the computed density function.
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1 Introduction

The copy number of the macromolecules participating in typical models of
e.g. gene regulation is often small. Ribonucleic acid (RNA), the template
from which proteins are synthesized, can as an example be present in the
range of zero to a few molecules. Transcription factors, proteins directly
involved in gene regulation by binding to the DNA might in a typical model
vary from ten to a few hundred molecules. This is easily understood, consid-
ering the small volume in which the networks operate. The cell volume of E.
Coli is in the order of 10�15 l, where a concentration of 1nM (nanomolar)
roughly corresponds to 1 molecule. In this setting, the much used reaction
rate equations (RREs), being equations for the time evolution of the concen-
trations of the chemical species, can not be trusted to capture the dynamics
accurately. Treating the participating species as discrete entities offer a bet-
ter picture of the system state, as we are able to model stochastic effects and
study higher moments of the distribution of the copy numbers of the species
as well as the correlation between different proteins. Indeed, in much recent
work it has been suggested that a stochastic modeling is required in order
to explain system behavior, see e.g. [4, 23, 60, 65, 81].

The most frequently occurring mathematical model for chemical reac-
tions on the mesoscale is a continuous–time discrete–space Markov process
(CTMC). The state is the copy number of the different chemical species,
and the governing equation for the probability density function (PDF) is
the chemical master equation (CME). The CME is a consequence of the
Markov property, and has a simple interpretation as a balance equation for
the probability density. Each species in the model adds one dimension to the
problem, and the computational work to obtain a direct numerical solution
grows exponentially with the dimension. As a consequence, computation of
the PDF by the solution of the CME by a näıve discretization is infeasible
for all but low–dimensional problems.

A different approach is to use Monte Carlo (MC) methods to study the
time evolution of the jump process. This approach has been used for a long
time in many different application areas, and the method goes under differ-
ent names in different fields. The kinetic MC method was first introduced
in [1, 85], and in the case of well stirred chemical reactions Gillespie was
able to put the method on a theoretical foundation, introducing the much
used Stochastic Simulation Algorithm (SSA) [34]. By replication, statisti-
cal quantities such as expected values and correlation coefficients can be
computed. In one sense, Monte Carlo simulation is insensitive to the dimen-
sionality of the problem, since the work grows linearly with the number of
reaction channels in the model. However, the method suffers from a poor
convergence rate, and computation of the PDF can be very time consuming
due to the vast number of trajectories that need to be generated. Also,
the reaction networks are often stiff due to the presence of different time
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scales. This can make the simulation of many interesting models practically
impossible, even if the number of different species is modest.

The insufficiency of the macroscopic equations, in combination with the
need for fast simulation of increasingly complex biochemical models, has thus
created a need for new numerical methods and this has become one main
focus area in the field of computational systems biology. Much progress has
been made both in the development of direct methods for the CME and in
improvements of the Monte Carlo method. The purpose of this thesis is to
provide a thourough review of the work that has been done in this area as
well as to describe our contributions. In particular, one approach has been to
develop hybrid methods, linking the deterministic, macroscale regime to the
mesoscale, and in this way reducing the complexity and the stiffness of the
problem. We have developed a new such method method which is discussed
in Papers A and B. In paper C, we take another approach, reducing the
variance in the estimator of the PDF and thus the number of trajectories
needed in order to compute an accurate solution.

The remainder of this thesis is organized as follows. In Sect. 2 the
mesoscale model is introduced and the CME stated. Here, we also briefly
discuss other models of chemical reactions and their relation to the jump
process. Direct solution methods are reviewed in Sect. 3 and in Sect. 4.1 and
Sect. 4.2 we discuss exact and approximate stochastic simulation. Sect. 4.3
reviews hybrid and multiscale methods and the papers on which this thesis
is based are summarized and put into their context in Sect. 5. Finally, we
mention a few important directions of future work and look beyond the
setting of well stirred systems in Sect. 6.

2 Stochastic modeling of chemical reactions in well

stirred systems

In this section we consider a system of N chemical species whose copy num-
bers are the random variables Xi; i = 1; : : : N . The state vector is X =fX1; : : : ;XNg and a realization of this variable is denoted x = fx1; : : : ; xNg,
which takes values in the integer lattice ZN+. The stochastic process fXtgt�0

is a collection of such stochastic variables, and a realization of this process
will often be referred to as a trajectory or sample path. The conditional
probability Pr(X(t) = xjX(t0) = x0) is denoted p(x; tjx0; t0).

The chemical species participate in M chemical reactions R1; : : : ; RM ,
that change the state in discrete jumps. We will denote the state change
vector nr, and it defines how the chemical reaction r changes the state.
A reaction is in this notation written as x ! x + nr. A simple example
is the association of two proteins X1 and X2 forming a third species X3,X1 +X2 ! X3, where nr = [�1;�1; 1]. To each individual reaction is asso-
ciated a propensity function, !r(x), which is such that !i(x)dt is interpreted

2



as the probability that one reaction Ri occurs in the infinitesimal time in-
terval [t; t + dt). For the reaction above this propensity can e.g. take the
form !r(x) = kax1x2, where ka is a mesoscopic rate constant. Other func-
tional forms are used when we consider for example enzymatic reactions.
The parameters in the models are in some cases known from experiments.
The problem of inferring these parameters from given data is a challenging
problem, both from a computational and an experimental point of view.
However, the methods we discuss in this paper are all concerned with the
forward problem, and rates are considered given. s

We regard the molecules as homogeneously distributed in a system vol-
ume Ω. This is reasonable when we can assume that the molecules undergo
many non–reactive collisions between each occurrence of a reaction. In this
setting, the model we consider for the chemical system is a continuous–time
discrete–space Markov process. Roughly speaking, given that the process
is in state x at time t, the probability to be in a state x0 at a later time
is independent of the state at any time s < t. The master equation is an
equivalent reformulation of the well known Chapman–Kolmogorov equation,
but easier to use in practical applications. It can be compactly written as�p(x; tjx0; t0)�t =

MXr=1

[!r(x� nr)p(x� nr; tjx0; t0)� !r(x)p(x; tjx0; t0)]

(1)
For a derivation of the master equation and basic properties, see e.g. [83,
Chap. V] and [36]. An intuitive interpretation of the master equations is as
a balance equation for the density. The first term is the flux of probability
into state x by (feasible) reactions and the second term is the outflow. An
exact consequence for the first moment E[X(t)] =

P
x2ZN

+
xp(x; t) is the set

of equations ddtE[Xi] =

MXr=1

nr;iE[!r(X)]; i = 1; : : : ; N: (2)

For linear propensity functions !r(x) this givesddtE[Xi] =

MXr=1

nr;i!r(E[X]); i = 1; : : : ; N: (3)

Introducing the concentration of species Xi, hXii = E[Xi]=Ω and using (3)
we recognize the much used macroscopic reaction rate equationsddthXii =

MXr=1

nr;i!̃r(hXi); i = 1; : : : ; N; (4)
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where !̃r is an appropriate scaling of the mesoscopic rate function !r. This
set of equations, however, is not an exact consequence of (1) or (2), but
provides a good approximation when the copy numbers are large.

The master operator is linear, and the CME can be written compactly�p(x; tjx0; t0)�t = Mp(x; tjx0; t0): (5)

Though conceptually simple, the work required to solve the CME directly
in the straightforward manner is prohibitive for higher dimensions. Even so,
the complete picture obtained from the knowledge of the full PDF have mo-
tivated many attempts to reduce the computational work and these methods
are reviewed in Sect. 3.

A systematic way of approximating the CME is van Kampen’s Ω–expansion
[83, Chap. X], where Ω is often interpreted as the system volume. To lowest
order, we obtain the macroscopic equation (3). The second order expan-
sion is often termed the linear–noise approximation, and it has been used
to compute approximate solutions of the CME in a systems biology con-
text by Elf and Ehrenberg in [20]. Engblom suggested a method based on
a systematic approximation of the moment equation (2) in [24], and this
approach, the RREs and the linear noise approximation are compared in
several examples by Ferm et al. [30]. Another approximation of the gen-
eral master equation that has been used to study biochemical networks is
the Fokker–Planck (FP), or forward Kolmogorov, equation. It is a master
equation for Itô–diffusions (for an introduction, see e.g. [64, Chap. 7]) and
derived by Planck as a second order approximation of the master equation
for a general Markov process. For a more complete discussion see e.g. [83,
Chap. VIII]. The numerical solution of the FP equation is studied in the
thesis by Sjöberg [77].

In between the discrete jump Markov process and the continuous macro-
scopic description, chemical reaction networks are frequently modeled as a
continuous stochastic process. The chemical Langevin equation is a stochas-
tic differential equation (SDE)dX(i)t =

MXr=1

nr;i!r(Xt)dt +

MXr=1

nr;ip!r(Xt)dBt; i = 1; : : : N; (6)

where Bt is standard Brownian motion, and its master equation is the FP
equation. Kurtz has shown that in the thermodynamic limit Ω ! 1 the
difference between the jump process and the process Xt in (6) is propor-
tional to log (Ω) for polynomial !r [32, pp. 254–255]. This means that
for finite times the difference between the corresponding concentration pro-
cesses (Xt=Ω) dissapears asymptotically as log (Ω)=Ω, giving some validity
to (6) and thus to the FPE. The relevance of arguments based on the ther-
modynamic limit can be questioned for the study of biochemical systems

4



in a finite volume. Gillespie instead advocates the validity of eq. (6) in the
presence of a ”domain of macroscopically infinitesimal time intervals” [37].

The methods considered in the following all build on the formalism de-
scribed above. Many other mathematical frameworks have been used to
study genetic networks. For a recent review, see [16].

3 Direct solution methods for the CME

The direct, näıve solution of the CME is conceptually simple. The master
operator is linear and time–independent, and given a truncation of the state
space (which is a subset of the lattice of non-negative integers) the PDF
at time t is given by p(x; t) = eAtp(x; 0). In a few dimensions and with a
small state space, this is a feasible approach. However, it is unlikely that
these systems will be of much interest to the modeler. The possibility of
obtaining an accurate solution and avoiding the O(N�1=2) convergence of
Monte Carlo methods has led to the development of methods that reduce
the state space in different ways. Using the Fokker-Planck approximation,
and thus going from a discrete to a continuous state space, Sjöberg et al.
use the finite volume method to obtain solutions at lower cost than for
stochastic simulation methods [22, 79]. Further gains are made using space–
time adaptivity by Ferm et al. [31] and problems in up to five dimensions are
solved efficiently by [77]. The FPE approximation may not be sufficiently
accurate for some of the species in the model if they are present in very few
copies, and Sjöberg devises a hybrid CME-FPE method [78] to deal with
this.

Many methods based on state space aggregation have appeared. Ferm
and Lötstedt propose a method that aggregates states and derive a master
equation for the average in the larger cells, thus reducing the state space
for the CME. They further use adaptivity to efficiently obtain solutions in
low dimensions [29]. A discrete spectral method is developed by Engblom
[25] where he obtains adaptivity implicitly in the choice of basis. A similar
method is proposed by Deuflhard et al. in [17]. The sparse grids method has
been adapted to solve the CME by Hegland et al. and they solve a problem
in 10 dimensions in [42]. They further rely on the efficient computation of
the action of the matrix exponential on vectors in order to evolve the PDF
in time [75]. Huber used sparse grids to solve a problem in 100 dimension
for a special type of cascade in [46].

Munsky and Khammash propose to use the finite state projection method
(FSP) [62], where states that are more unlikely to be reached in a finite time
are grouped together, thus reducing the state space considerably. Peles et
al. combine the FSP method with approximations based on singular per-
turbation theory to further improve on the method by taking the time scale
separation into account [66]. These methods use an explicit computation of
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the matrix exponential, while Burrage et al. uses Krylov methods [6, 75].
This approach are improved further by MacNamara et al. [57] and MacNa-
mara gives a thourough overview of the Krylov FSP method in his thesis
[58]. A different approach is taken by Zhang et al. [86] where they propose to
use external uniformization to solve the CME efficiently for models with few
species. Sidje et al. also use this in combination with inexact matrix–vector
products in [76].

4 Monte Carlo methods

Even though much progress has been made in the area of direct solution
methods the most common way to study systems in higher dimensions is to
use Monte Carlo methods. In Sect. 4.1 we review the Gillspie algorithm and
recent work to improve the efficiency of exact MC simulation. Approximate
simulation methods are discussed in Sect. 4.2 and hybrid and multi–scale
methods are reviewed in Sect. 4.3.

An important aspect of the methods described is their implementation.
The Systems Biology Markup Language (SMBL), a standard format for
sharing models, has been developed by Hucka et al. [47]. Many different
software packages supporting this standard have been developed and are
publically available. A recent review covering approximate methods, hybrid
methods and some available software is provided by Li et al. in [51].

4.1 Exact stochastic simulation

The Markov property implies that the time between events is exponentially
distributed with parameter equal to the sum of the rates of all individual
events. Discrete event simulation of a Markovian system basically amounts
to sampling a time for the next event from this distribution and selecting
the reaction that occurs at that time. These are the basic steps of the
widely used kinetic Monte Carlo (KMC) method. Young and Elcock [85]
and independently Lebowitz, Bortz and Kalos [1] introduced the method,
known as the KBL algorithm.

Gillespie made kinetic Monte Carlo popular in the chemical and bio-
chemical communities, naming the algorithm the Stochastic Simulation Al-
gorithm (SSA) in his seminal papers [34, 35]. In Gillespie’s original paper,
he describes two equivalent formulations of the method, the first reaction
method (FRM) and the direct method (DM). The DM is more efficient than
the FRM, and is outlined in Algorithm 1. We denote the propensity of an
event !r(x), where r is an index of the particular event, r = 1; : : : R and x is
the current state of the system. Figure 4.1 shows results from a simulation
of a model of the heat shock response (HSR) in E.Coli, taken from [12]. The
model consist of 28 chemical species participating in 61 reactions. To the
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Algorithm 1 The direct method (DM)/KBL algorithm

Initialize: Compute all propensities !r(x); r = 1; : : : ;M , t = 0.
while t < T do

Compute the sum of the propensities, � =
PMr=1 �r(xj).

Draw to random numbers u1 and u2 from the uniform distributionU(0; 1).

Sample the next reaction time (by inversion), � = � log(u1)� .
Sample the next reaction event (by inversion), i.e find r such thatPr�1i=1 !i(x) < �u2 <Pri=1 !i(x)
Update the state vector, x = x� nr.t = t + �

end while

left we see the path of a single trajectory and to the right the estimated
marginal PDF of one of the species based on 103 trajectories.
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Fig. 1: The hsr model simulated to a final time 50s. The figure shows one trajectory
of the species �32 (left) and its approximated density (right). As can be seen,
the resolution of the PDF is poor, and much more trajectories would be needed
to compute a good approximation using the MC method. This however, is time
consuming due to the stiffness of the model, see the text and Fig 2 for more details.

The Gillespie algorithm is of fundamental importance in computational
systems biology, and efforts have been made to improve its efficiency. In the
DM, the selection of the next reaction channel to execute is made by a linear
search, giving a complexity O(R). More efficient formulations have been
obtained by improving on this step of the algorithm. The first of these was
made in the application area of epitaxial crystal growth. Maksym divided
the set of reactions into subsets [59], giving a complexity of O(R1=2). Blue
et al. extended this approach by subsequent division of subsets [5], where
a K-level method results in a search time proportional to R1=K . Taking
K to the limit, they achieved the complexity O(logR) using a binary tree
structure. An overview of these methods and some other improvements
is presented by Schulze in [73, 74]. More known to the systems biology
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community is the Next Reaction Method (NRM) by Gibson and Bruck [33].
In this work they dealt with two additional optimizations. By switching
to absolute time, they were able to reduce the number of random numbers
needed in each step from two to one. They also introduced the use of a
dependency graph, minimizing the number of propensities that need to be
recalculated for every timestep. For every reaction channel, the time until
that reaction occurs is computed and maintained in an indexed priority
queue (efficiently implemented as a binary heap). The selection of the next
event is done in constant time, while the update of the propensities is done
in logarithmic time. The cost for maintaining the priority queue is relatively
high and the method has its main merits for systems with many reaction
channels and where relatively few propensities change with each reaction.
Such systems arise when diffusion is added to the models and the reaction–
diffusion master equation is simulated. For such models, a variant of the
NRM called the Next Subvolume Method (NSM) has been developed by Elf
et al. [21] and can be thought of as a clever combination of the ideas of
NRM and Maksym’s method.

Biochemical network models are often stiff in that some reactions may
be much faster than the others. This is often due to very large reaction
constants or that species that participate in these reactions are present in
large copy numbers. We are frequently interested in the species with low
copy numbers, for which the effects of fluctuations are most pronounced.
The interesting dynamics of these variables are often given on a timescale
determined by the slow reactions. However, for a stiff system the SSA will
spend a large fraction of the CPU time sampling the fast events, in which
the slow species may or may not participate. This is the motivation for
the approximate and hybrid methods discussed later, but also for some of
the exact methods. Cao, Li and Petzold suggest that an optimization of
the reaction ordering, placing the most frequently occurring events first in
the reaction list, combined with a dependency graph, outperforms the NRM
even for moderately large systems. Their optimized direct method (ODM)
[12] relies on time scale separation to keep the average search depth small.
In the ODM, the reaction ordering is determined prior to the simulation
by a presimulation for a shorter time, or with few trajectories. If the copy
numbers of the species change much from the initial values, this optimal
order may change drastically during the course of simulation. In the sort-
ing direct method (SDM) by McCollum et al. [61], the optimal ordering is
maintained during the simulation by reordering the reaction list. This paper
also contains a detailed overview of the difference in the implementation of
DM, NRM, ODM and SDM. Li and Petzold illustrate the efficiency of the
logarithmic method in [52].

The HSR model is an example of a very stiff system and has been used
to illustrate the need for multi scale methods in e.g. [7]. Fig. 2 shows the
number of executions of each reaction when the system is simulated with a
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single trajectory to the final time Tf = 500s. Clearly, a few reactions are
much faster than the others, taking up almost all computing time. Table.
4.1 illustrates the difference in performance of the DM, ODM and NRM by
comparing the time needed to generate an ensemble of 103 trajectories on
a MacBook Core Duo 2.0 GHz laptop with 2GB ram. The ordering of the
reactions in the DM run corresponds to Fig. 2.

10 20 30 40 50 60
0

2

4

6

8

10

12

14
x 10

6

Reaction Channel

Fig. 2: The number of occurrences of each event when the system was simulated
with a single trajectory to Tf = 500s. We clearly see the stiffness of the model in
that six out of 61 reactions are responsible for almost all events.

Method DM ODM NRM
CPU time [s] 3734 1978 4036

Table 1: A comparison of the CPU time needed to simulate an ensemble of 103

trajectories to a final time Tf = 50s. The different methods were implemented in
the C programming language wrapped in Matlab mex–files, and all use sparse state
update. As can be seen, optimizing the reaction ordering makes simulation much
faster. Also, the overhead associated with maintaining the heap makes NRM less
efficient for this stiff but comparatively small model.

A different approach is taken by Hellander, where variance reduction is
obtained by uniformization and quasi–Monte Carlo [43]. There the aim is to
reduce the number of trajectories needed to compute an approximation of
the PDF at the price of a higher cost per trajectory. Another recent effort
to reduce the number of simulations is found in [55].

While parallelization of a single trajectory is hard, it is very beneficial to
generate ensembles of trajectories in parallel. Li has implemented SSA on
clusters [80] and Li et al. on the graphics processing unit [53, 54]. Field pro-
grammable gate arrays have also been used to simulate biochemical reaction
networks in [71, 84].
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4.2 Approximate methods

As seen in the previous section, exact stochastic simulation has been im-
proved substantially since the introduction of the method. Even so, as for
the direct methods, there is an inherent limitation in the amount of speed-up
obtainable. A different approach to make simulation of larger, stiff systems
possible is to introduce some approximation in order to reduce the stiffness
or the number of species in the stochastic model. Clearly, such methods
could be made much faster than the exact methods. However, in this cat-
egory of methods the Markov chain is no longer simulated exactly, so the
validity of the approximations become a major issue. An important and
rapidly evolving approximate MC method is the so called �–leap method.
It was introduced by Gillespie in 2001 [38] and rely on the existence of a
macroscopic time where the propensities change slowly, cf. [37]. The basic
idea is to let several (fast) reactions fire in the same time interval. The
number of events in that interval is approximately Poisson distributed, and
can thus be conveniently sampled. The early versions of the algorithm had
the problem that negative populations can arise, and several methods have
been proposed to deal with this. One way of avoiding negative populations
is to abandon the Poisson approximation, as in the binomial leaping method
developed independently by Tian et al. [82] and Chatterjee et al. [14] or
based on the multinomial distribution by Pettigrew et al. in [67]. Cao et al.
instead improve on the Poisson methods in several papers, see e.g. [8, 10, 11].
Anderson takes a different approach, introducing post–leap checks in [2].

4.3 Hybrid and multiscale methods

Quite a few methods have emerged, combining the meso and macroscales in
order to reduce stiffness. A general strategy here is to mix the determin-
istic description using reaction–rate like or Langevin equations for subsets
of the reactions, the chemical species or both. It has been illustrated in
many cases that the speedup obtained using this strategy can be substan-
tial. However, as for the approximate stochastic methods, they rely on the
validity of different approximations. Haseltine and Rawlings combine deter-
ministic or Langevin equations for fast reactions with SSA for slow channels
[40]. Saliz and Kaznessis devise a hybrid method in which they partition the
reactions and evolve the process defined by the fast reactions with the chem-
ical Langevin equation [70]. Puchalka and Kierzek combine the NRM with�–leaping [68] in their ”maximal time step method”. Lötstedt and Ferm
propose a dimension reduction strategy [56] and Hellander and Lötstedt use
this to partition the species based on their variance in [44]. E and Vanden–
Eijnden suggest an inner SSA for the fast scale, and an outer for the slow
scale in their nested SSA (nSSA) [18, 19]. Erban et al. use the equation-
free framework to handle the different time scales [27]. Samant and Vlachos
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propose another multiscale MC algorithm in [72].
Many methods based on the quasi–steady state and partial equilibrium

assumptions have emerged. Rao and Arkin improve the efficiency of the SSA
by using Michaelis–Menten kinetics in their QSSA [69]. A similar approach
is taken in [7, 9] where Cao et al. use the stochastic partial–equilibrium
assumption of a ”virtual fast system”. Cao and Petzold further combine this
approach with �–leaping in [13]. Goutsias expands on ideas from [40, 69] in
[39].

5 Summary of papers

In this section, we give a brief summary of the papers on which this the-
sis is based. In these three papers, two different new numerical methods
are described. Paper A and Paper B deal with a hybrid method based on
dimension reduction of the CME [56] and falls in the category of methods
in Sect. 4.3. Paper C on the other hand, accounts for a new exact Monte
Carlo method where we achieve variance reduction and an improved con-
vergence rate by the use of low–discrepancy sequences and the method of
uniformization combined with SSA.

5.1 Paper A

In this paper we devise a new hybrid method based on the separation of the
set of reacting species X = fX1;X2; :::;XSg into one subset with smaller
relative variance, Y = fYigni=1 and one whose components need stochastic
treatment, X0 = fX 0igmi=1, m+n = S. The continuous species in the set Y are
modeled as normally distributed random variables with a small variance �2,
pairwise independent and independent of X0. The discrete species in X0 are
simulated using SSA to approximate the marginal probability distribution,
and the expected values y of the species in the set Y are given by the system
of ordinary differential equationsdydt =

RXr=1

Xx2Zm
+

nr;i!(x;y)pX0 (x; t); i = 1; : : : ; n; (7)

where !(x;y) are propensity functions and R is the number of different
chemical reactions.

If the sum in (7) is evaluated directly, the exponential growth is not
avoided. Instead, it is approximated using a quasi–Monte Carlo method.
This obviously introduces another source of error, but makes a fast solution
of the ODEs possible. The improvement of simulation time comes from two
sources: dimension reduction, giving a smaller state space and a smaller
number of reaction events in the SSA simulations, and reduction of stiff-
ness when fast reactions involving only species in Y are handled by the
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deterministic equations (7). The resulting ODE system is likely to be stiff.
This however, is efficiently handled using an implicit, adaptive time stepping
scheme. The time step controller takes both the error in the PDF and the
error in the computation of the right hand side sum into account.

In this setting, we report improvements of execution time for a reduced
model of a signalling cascade by a factor of 10 compared to SSA for the
completely stochastic system.

5.2 Paper B

The purpose with this paper is to further illustrate the potential of the hybrid
method from Paper A, as well as to compare and contrast the method to a
direct method. We apply the hybrid method described in Paper A on a very
stiff model of a mitogen activated protein kinase (MAPK) cascade with 22
species [45]. The summation of the right hand side is done differently, since
we do not aim to compute the density at each time step, and we report
a speedup compared to the ODM by more than two orders of magnitude
when we simulate the system with a few stochastic species. The paper is
coauthored with Markus Hegland, who solves the CME for a similar model
in fewer dimensions with the sparse grids method.

5.3 Paper C

In Papers A and B, the purpose of the dimension reduction is to reduce
the average time per trajectory, and thus compute the solution of the CME
faster. In Paper C, on the other hand, the aim is to reduce the variance in
the estimate of the PDF. This is achieved by applying a quasi–Monte Carlo
method for the simulation of discrete–time Markov Chains [50]. In order to
apply the method, the CTMC is transformed into a DTMC subordinate to
a Poisson process using the method of uniformization or Jensen’s method
[48]. The probability that the system is in state xi at time T is writtenp(xi; T ) =

1Xk=0

Pr(NT = k)pk(xi; k): (8)

where NT 2 Po(�maxT ) is a Poisson random variable and pk(xi; k) is the
probability of the discrete time chain resulting from the uniformization being
in state xi at step k. pk(x; k) is approximated from realizations generated
with SSA modified to incorporate the QMC method. The variance reduction
comes from the introduction of correlation between trajectories, while each
individual trajectory is still a correct realization of the process. The only
approximation made is when the sum in (8) is truncated. This error can be
made arbitrary small and the method thus falls in the category of exact MC
methods in Sect. 4.1.
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In this way, we reduce the number of replications needed to arrive at
an accurate approximation of the PDF. It is demonstrated in one example
with four species and one with eight species that this can be achieved if
the systems are non–stiff and of moderate dimensionality. Even if this is
useful in its own right, we anticipate that the method’s main merits will be
in the combination with other hybrid and multi scale that reduce stiffness.
In particular, the modified systems obtained by the partitioning of species
in Paper A will be both less stiff and of lower dimensionality and they will
thus be well suited for simulation by this method.

6 Beyond homogeneous models – spatiotemporal

dynamics

In this section we introduce some of our most recent work and outline some
directions of future work. As has been outlined in this thesis, much effort has
been invested into the development of more efficient numerical methods for
the study of biochemical networks. Undoubtedly, much work remains to be
done, as models become larger and more complex. However, there are many
processes in the living cell that can not be explained in a well–stirred context.
Examples include signaling pathways where the spatial organization plays an
important role for the function of the system, e.g. MAPK kinase cascades,
where translocation of ERK to the nucleus leads to the activation of many
transcription factors. The macroscopic equation in most use is here the
(non–linear) reaction–diffusion equation��t = ∆ + R(): (9)

Being based on the same approximation as the RREs, it suffers from
the same limitation: when the number of molecules become small, the ap-
proximation is not valid. It is possible to formulate a master equation that
includes diffusion, the reaction-diffusion master equation (RDME), where
the geometry is discretized with small computational subvolumes. The dif-
fusion is then treated as jumps from a cell to adjacent cells. This approach
has been used by e.g. Elf et al. to study the effect of stochasticity on a few
different systems [21, 28]. They have also developed the software mesoRD
[41], based on the next subvolume method (NSM) [21].

While the homogeneous problem often presents considerable computa-
tional difficulties, spatiotemporal simulation is even worse. The dimension-
ality of the problem becomes very high, even for a very small number of
computational cells. Solving the RDME for the density by direct methods
is not likely to be possible for realistic problems and even an approximation
by replication of MC simulations is probably going to be too time consuming
for most problems. Instead, insight into the dynamic behavior of the system
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must be gained by studying a small number of trajectories. The simulation
will still have the same issue of stiffness due to different time scales of the
reactions, but will in addition require the generation of very large number
of diffusion events. The diffusion of the different species may in turn vary
in rate due to e.g. different molecular size or localization in the cell. An
important challenge for the future in the field of computational systems biol-
ogy is therefore to develop more efficient methods for simulation of spatially
dependent models. A step in this direction has been taken by Engblom et
al. [26], where NSM is extended to simulations on an unstructured mesh
by making connections to the finite element method. In addition to mak-
ing complex geometries easy to handle, we also suggest a hybrid method
to speed up simulation when the number of some of the species is large by
treating diffusion of those species macroscopically. We are currently working
on software that implements this method using COMSOL Multiphysics 3.4
[15] to handle meshes and pre and postprocessing, and we hope to make it
available to the public in the near future. Fig. 6 shows a stochastic simu-
lation of the MinD–MinE system from [28] simulated with our code. The
results are in good agreement with the simulations on a structured mesh
with mesoRD in [28].

Even though the diffusion makes the time scale separation less apparent
than in the homogeneous case, we anticipate that some of the ideas from
the approximate and hybrid methods reviewed in the previous sections can
be adapted to this setting. In particular, we have made a first attempt to
apply tau–leaping to a simple model problem, and are currently continuing
to develop the hybrid method proposed in [26].

We also believe that it is important to consider how more complicated
mechanisms of cellular transport should be modeled and simulated. As
an example, it has been suggested that simple diffusive transport may not
be a sufficient means of signal propagation in MAPK pathways since slow
diffusion and high phospatase activity may attenuate the signal too much. It
is suggested by Kholodenko that microtubuli dependent endocytic trafficking
may be important in these type of networks [49]. If it is important to
consider these mechanisms in a stochastic spatiotemporal model, and how
to model it in a computationally tractable manner is an open question. The
method developed by us in [26] can be extended to include convection terms,
but this may be an oversimplification. Explicit treatment of microtubuli
would be prohibitively expensive since they are too small to be resolved by
a discretization, but it may be possible to devise efficient multiscale methods
that take active transport into account and we believe that it is worthwhile
to investigate this further.

The environment in a cell is crowded and the size of most of the chemical
species in typical models is relatively large. It is therefore natural to question
the validity of normal diffusion, especially when we consider diffusion in
membranes [3, 63]. Many models of complex phenomena inside the cell will
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inevitably involve 2-D like diffusion on membrane surfaces and 3-D diffusion
in the cytosol or inside organelles. Maybe we need to allow for different
diffusion models in different parts of the cell, and how to introduce this into
the mesoscopic model in a correct and feasible way is also an interesting
direction of future work.

Apart from this last section, this thesis has been focused on numeri-
cal methods for solving the chemical master equation in high dimension or,
when the systems consist of too many species to yet permit a complete solu-
tion, more efficient simulation methods to study realizations of the process.
While the dimensionality of the problem is a severe limiting factor in the
homogeneous models, it will not directly be the increase of chemical species
in spatiotemporal models that will be limiting when we turn to more com-
plicated models of the cell. Instead, it will be the inevitable multiscale and
multiphysics nature of any detailed description of intracellular phenomena
that will pose the largest challenge.

Future methods will need to handle biochemical reactions and differ-
ent types of transport mechanisms happening on different time scales, and
in the same time combine different descriptions of processes, going from a
stochastic microscopic description of some, a mesoscopic model of others
all the way up to the deterministic macroscopic models when appropriate.
Also, different descriptions of the same process may be appropriate in dif-
ferent regions in space and time, so an efficient method should ideally adapt
both the model and the necessary resolution to the local requirements. This
will be a fundamental and exciting challenge for the methods development
branch of systems biology in the future.
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(a) t=10s (b) t=40s

(c) t=50s (d) t=56s

(e) t=65s (f) t=70s

Fig. 3: Simulation of a model of MinD oscillations in E. Coli on an unstructured
mesh with the method developed in [26]. At t = 0s, no MinD is present on the
membrane. After an initial period when the number of molecules are increasing on
the whole membrane in (a)–(b), the membrane bound MinD oscillates from pole to
pole in (c)–(f).
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[77] P. Sjöberg. Numerical Methods for Stochastic Modeling of Genes and
Proteins. PhD thesis, Uppsala University, 2007.
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