Licentiate thesis 2013-006

Difference Methods with Boundary and Interface Treatment for Wave Equations

Kristoffer Virta

22 October 2013


Wave motion in acoustic and elastic media is highly influenced by the presence of outer boundaries and media interfaces. The solutions to the equations governing the wave motion at any point in the domain as a function of time can be sought either through analytical or numerical techniques.

This thesis proposes provably stable finite difference schemes to accurately investigate wave interaction with boundaries and interfaces. Schemes for the acoustic wave equation in three spatial coordinates, general domains and heterogeneous media and the elastic wave equation in two spatial dimensions and layered media are presented. A study of the Rayleigh surface wave in almost incompressible media is carried through. Extensive numerical experiments designed to verify stability and accuracy as well as applicability to non - trivial boundary and interface phenomena are given.

Available as PDF (5.88 MB)

Download BibTeX entry.