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Abstract

This thesis studies several problems related to recovery and estima-
tion. Specifically, these problems are about sparsity and low-rankness,
and the randomized Kaczmarz algorithm. This thesis includes four pa-
pers referred to as Paper I, Paper II, Paper III, and Paper IV.

Paper I considers how to make use of the fact that the solution to
an overdetermined system is sparse. This paper presents a three-stage
approach to accomplish the task. We show that this strategy, under the
assumptions as made in the paper, achieves the oracle property.

In Paper II, a Hankel-matrix completion problem arising in system
theory is studied. Specifically, the use of the nuclear norm heuristic
for this task is considered. Theoretical justification for the case of a
single real pole is given. Results show that for the case of a single real
pole, the nuclear norm heuristic succeeds in the matrix completion task.
Numerical simulations indicate that this result does not always carry
over to the case of two real poles.

Paper III discusses a screening approach for improving the compu-
tational performance of the Basis Pursuit De-Noising problem. The key
ingredient for this work is to make use of an efficient ellipsoid update al-
gorithm. The results of the experiments show that the proposed scheme
can improve the overall time complexity for solving the problem.

Paper IV studies the choice of the probability distribution for im-
plementing the row-projections in the randomized Kaczmarz algorithm.
The result proves that a probability distribution resulting in a faster con-
vergence of the algorithm can be found by solving a related Semi-Definite
Programming optimization problem.
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1 Introduction

In many practical applications, one needs to recover some hidden quantities
from measurements. For example, the celebrated Shannon’s sampling theory
[27] is about how to recover a signal from its sampled measurements. If the
measurement process is linear, i.e. the problem can be formulated as a sys-
tem of linear equations, then the signal recovery task is to infer the original
signal from the set of linear equations which describes the the measurement
process. And usually, the signal of interest has some structural properties. For
instance, it is sparse, or it is sparse under the representation with certain basis.
The word sparse here means that only a small number of the elements in a
vector are nonzero. Such recovery task usually is termed the sparse estimation
problem. This is an active and wide range research topic. Two recent books
dedicated to this topic are [12, 13]. This section will give a very brief intro-
duction to this topic, with a focus on the case when the set of linear equations
are underdetermined.

The bold lower case will be used to denote a vector, bold upper case will
be used to denote a matrix. ‖ · ‖2 denotes the spectral norm of a matrix as well
as the l2 norm for a given vector. ‖·‖F denotes the Frobenius norm of a matrix.
N (µ, σ2) denotes the Gaussian probability distribution function with mean µ
and variance σ2. For the other notions and conventions, we will explain them
accordingly when encountered. We start with studying the following problem:

Question 1 Is it possible to solve x0 from the following set of linear equations

Ax0 = b, (1)

in which A ∈ Rm×n, x0 ∈ Rn and b ∈ Rm, given that m < n?

The answer in general is no if no other assumptions are made. The reason is as
follows. Let matrix B ∈ Rn×(n−m) be a matrix satisfying AB = 0. Then we
have that any vector of the form x0 + Bk, k ∈ Rn−m will also be a feasible
solution to (1), which follows from

A(x0 +Bk) = Ax0 +ABk = b.

Based on this, one further question can be posed as follows:

Question 2 If additional assumptions on the matrix A and x0 are made, is it
possible to recover x0 from the set of linear equations (1)?
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There are many answers to this question. Here we present one possible
solution based on the assumptions of the sparsity of the hidden vector x0 and
the spark property of matrix A.

We first introduce the concept of spark [11] for a matrix. Given matrix A,
the spark of A is defined as the minimum number of the linearly dependent
columns of A. I.e., it is given by:

spark(A) , min
x 6=0
‖x‖0, s.t. Ax = 0,

in which ‖x‖0 denotes the number of the nonzero elements in vector x.
In other words, if the spark of A is greater or equal to 2k+1 where k ∈ N,

then any 2k columns of A will be linearly independent. Inspired by this in-
tuition, and assuming that we have spark(A) > 2k and ‖x0‖0 ≤ k, then we
can recover x0 using the following approach, i.e. finding the sparsest represen-
tation of y under the basis A. Correctness of this approach will be analyzed
shortly, see also the discussions in [11].

Theorem 1 Given k ∈ N, if spark(A) > 2k and ‖x0‖0 ≤ k hold, when
solving the following optimization problem:

x̂0 = argmin
x∈Rn

‖x‖0 (2)

s.t. Ax = Ax0 = b,

one has that x̂0 = x0.

The reasoning behind Theorem 1 goes as follows. If x̂0 is different from
x0 and ‖x̂0‖0 ≤ k, Ax̂0 = b, it will imply that A(x0 − x̂0) = 0 holds, in
which ‖x0 − x̂0‖0 ≤ 2k. This leads to the fact that there exist 2k (or less than
2k) columns of matrix A which are linearly dependent. This contradicts the
fact that spark(A) > 2k.

In [11], a lower bound to the spark of a matrix is given as

spark(A) ≥ 1 +
1

µ(A)
, (3)

in which the mutual coherence of matrix A is defined as

µ(A) = max
1≤i 6=j≤n

|vT
i vj |

‖vi‖2‖vj‖2
, (4)

where vi denotes the i-th column of matrix A. From (3) and (4), we can see
that a lower dependency correlation between different columns of A will result
in a higher spark of A.
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Remark 1 Here, we discuss several examples of matrices regarding their spark
properties.

• Random matrix

When the elements of the matrix A ∈ Rm×n are generated identically
independently distributed (i.i.d.) according to the standard Normal dis-
tribution, then with high probability, spark(A) = m+ 1 holds.

• Vandermonde matrix

The Vandermonde matrix A ∈ Rm×n is defined as Ai,j = λi−1j , and
λi 6= λj if i 6= j. Since any submatrix of A with size m ×m is also a
Vandermonde matrix, the determinant of the submatrix will be nonzero.
I.e. any m columns of the matrix are linearly independent. This implies
that spark(A) = m+ 1.

• Grassmannian Frame

When µ achieves the so-called Welch bound [20], i.e. µ(A) =
√

n−m
m(n−1) ,

then the matrix A is called a Grassmannian Frame. For such class of
matrices, one has that spark(A) = m+ 1. In [25], an iterative projec-
tion method is proposed to design such Grassmannian Frames.

However, it turns out that the problem given in (2) is NP-hard to solve [16],
which leads to the following question:

Question 3 Is it possible to find a computationally tractable way to find the
solution of (2) if more assumptions are made?

To answer this question, the Restricted Isometry Property (RIP) and the l1
relaxation approach will be introduced. Sufficient conditions for the l1 relax-
ation approach based on the RIP property to recover the solution to (2) will
also be discussed.

For a given integer k, the Restricted Isometry Constant of matrix A is
defined as

δk = max
|S|≤k

‖AT
SAS − I‖2, (5)

in which AS denotes the submatrix of A with the columns indexed by the set
S, and I indicates the identity matrix with corresponding size.

Based on δk, the following relation for A is implied by (5)

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22, for∀x ∈ Rn with ‖x‖0 ≤ k.
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This property is termed the Restricted Isometry Property (RIP) of the matrix
A in [4].

Remark 2 A connection between the δ2k and the spark property of A is that
if δ2k < 1, it holds that spark(A) ≥ 2k+1. From this angle, the RIP property
can be regarded as a generalization of the spark property of a matrix.

As discussed before, the problem in (2) is NP-hard to solve, one way to get
around that is to relax the non convex ‖x‖0 with its ’convex envelope’ ‖x‖1 ,∑n

i=1 |xi|. Formally, the convex envelope for a function f(x) is defined as the
largest function g(x), which is convex and satisfies g(x) ≤ f(x). For more
discussions about the convex envelope for a non convex function, see chapter
five in [14].

By making use of the convex envelope of ‖x‖0, the optimization problem
for the l1 relaxation approach is given as:

x̂ = argmin
x∈Rn

‖x‖1 (6)

s.t. Ax = b.

Different from the approach in (2), the l1 relaxation approach can be for-
mulated as a Linear Programming (LP) problem, which is computationally
tractable. One possible way to write the formulation in (6) as an equivalent LP
problem is given as follows.

x̂ =argmin
x,t∈Rn

n∑
i=1

ti (7)

s.t. Ax = b

− t ≤ x ≤ t.

To solve the LP problem, many techniques are applicable. For instances,
the interior point method and the simplex method. Note that the l1 relaxation
approach is also termed the Basis Pursuit in the literature, see [8].

Remark 3 Except the l1 relaxation approach, the greedy methods, such as
the Orthogonal Matching Pursuit (OMP) [21] algorithm, the Iterative Hard
Thresholding (IHT) [3] algorithm and the Subspace Pursuit (SP) [9] algorithm
are alternatives for solving the problem (2). In each step, these methods refine
the estimation iteratively with cheap computations. The greedy methods work
well especially when the parameter vector is ultrasparse [26].
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Based on the RIP property, the following result for (6) can be established
[4].

Theorem 2 Suppose that ‖x0‖0 ≤ k, and the matrix A has the property that
δ2k <

√
2− 1, then by solving (6), it gives that x̂ = x0.

Remarkably, when the entries of A are i.i.d. N (0, 1
m) random variables,

and

m ≥ C

δ2
log(n/k)k + ln(

1

ε
) (8)

holds where C is a universal constant, then A will have that δk ≤ δ with
probability 1− ε. For a derivation of the result, see [1].

Note that, for such random matrix, if m = 2k, then the spark of A will
be 2k + 1, which implies that (2) is sufficient to find the k-sparse vector x0.
In order to apply (6) to recover x0, one needs to have more observations, as
indicated by the log(n/k) factor before k in (8).

Remark 4 By inspecting the reasonings behind Theorem 1, we can find that
if for any vector h satisfying Ah = 0, it holds that ‖h‖0 ≥ 2k + 1, then the
conclusion of Theorem 1 also holds. This suggests that a suitable characteri-
zation of the nullspace of A can also leads to similar results which are based
on the RIP property of A. See for example the results in [29].

Next, we will discuss how to adapt the formulation (6) to deal with the
noisy case, i.e. when (1) is replaced by the following equation

b = Ax0 + e, (9)

in which e ∈ Rm represents the noise term.

Question 4 How to get a reasonable estimate of x0 in the noisy case?

In the following, two formulations which can deal with the noisy case will
be discussed, i.e. the Quadratically Constrained Linear Program (QCLP) and
the Dantzig selector. The QCLP is given as

x̂q(ε) = argmin
x∈Rn

‖x‖1 (10)

s.t. ‖Ax− b‖2 ≤ ε,

in which ε > 0 is the tuning parameter depending on the size of the noise.

6



Remark 5 There exist similar formulations of the QCLP, which is named the
Basis Pursuit De-Noising (BPDN), and the Least Absolute Shrinkage and Se-
lection Operator (LASSO) . The BPDN is given as follows:

x̂b(λ) = argmin
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (11)

where λ > 0 is a noise level dependent tuning parameter.
The LASSO is given as follows:

x̂l(λ) = argmin
x∈Rn

‖Ax− b‖2 s.t. ‖x‖1 ≤ t, (12)

where t > 0 is a noise level dependent tuning parameter.
Note that, for a given ε > 0 in (10), there exist a corresponding λ ≥ 0 for

(11) and a corresponding t ≥ 0 for (12), such that these formulations return
the same optimizer, i.e. x̂q = x̂l = x̂b, see [24].

The performance result of (10) is stated in the following theorem, see e.g.
[6].

Theorem 3 If A satisfies the RIP property with δ2k ≤
√
2 − 1, ‖x0‖0 = k,

and the entries of e are i.i.d. N (0, σ2) random variables, then it holds that

‖x̂q(2
√
mσ)− x0‖2 ≤

8
√
1 + δ2k

√
mσ

1− (2 +
√
2)δ2k

, (13)

with probability larger than 1− exp(−c0m), in which c0 > 0 is a constant.

The formulation known as the Dantzig selector was suggested in [7] for
recovering a sparse signal in the noisy case. The Dantzig selector is given as
follows

x̂d(λ) = argmin
x∈Rn

‖x‖1 (14)

s.t. ‖AT (Ax− b)‖∞ ≤ λ,

where λ ≥ 0 is a noise level dependent tuning parameter. Different from
the QCLP, the Dantzig selector can be reformulated as a Linear Programming
problem using the same idea as transforming (6) into (7).

A similar result on the performance of (14) is summarized as follows, see
e.g. [7]:
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Theorem 4 If A satisfies the RIP property with δ2k ≤
√
2 − 1, ‖x0‖0 = k,

and the entries of e are i.i.d. N (0, σ2) random variables, then one has that

‖x̂d(2
√

log(n)σ)− x0‖2 ≤
4
√
2
√
1 + δ2k

1− (2 +
√
2)δ2k

√
k log(n)σ, (15)

with probability larger than 1− 1
n .

Remark 6 We make the following two remarks:

1. Comparing the performance bounds given by QCLP and Dantzig selec-
tor, when both m and n are fixed, (15) will give a tighter bound than
(13) when k is small.

2. Notice that, if the true support set of x0 is known, the least square esti-
mator will give the estimation of x0 with error ‖x − x0‖22 of the order
kσ2. In [2], it is proven that the Cramér-Rao bound for estimating x0

is of order kσ2. In the case when the support of x0 is unknown, the
recovery error in (15) given by the Dantzig selector is amplified by an
extra log(n) term. Such a property is termed near oracle property of the
Dantzig selector in [7].

For more discussions and comparisons between these two methods, please
see [7].

2 Paper summaries

In the following descriptions, we will follow the notations used in the previous
section.

2.1 Paper I

Paper 1 presents an approach for the estimation of a sparse vector x0 ∈ Rn

from linear observations which are perturbed by Gaussian noise. The basic
idea of the approach is to make use of the Least Squares estimator, while ex-
ploiting the sparsity information of x0. The observed signal b ∈ Rm obeys
the following system:

b = Ax0 + e, (16)

and also m > n is assumed. The method consists of the following steps:

1. A classical Least Squares Estimation (LSE);
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2. The support is recovered through a Linear Programming optimization
problem;

3. A de-biasing step using a LSE on the estimated support set.

It turns out that the LP problem in the second step can be implemented
by a soft thresholding operation. For a given value x ∈ R, when the soft
thresholding operation with threshold λ is applied, the obtained vector xth is
given as

xth =


0, if |x| ≤ λ
x− λ, if x > λ

x+ λ, if x < −λ
.

Note that xth can also be obtained by solving the following two optimiza-
tion problems:

xth = argmin
y∈R

1

2
(y − x)2 + λ|y|, (17)

and

xth = argmin
y∈R

|y| s.t. |y − x| ≤ λ. (18)

In this work, the soft thresholding operation is generated by (18). Remark that
the formulation (17) is a key ingredient for the derivation of the iterative soft
thresholding method [10, 18] and the coordinate descent method [28, 15] for
solving the BPDN problem.

The main result of this work is summarized in Theorem 2, which says
that, when the number of the observed signal increases, the estimator is able to
detect the support of the true parameters almost surely, i.e.

P
(
∩∞m=n′{T lp(m) = T }

)
= 1,

in which n′ is a fixed finite number, T lp(m) is the estimated support in the
second step when the number of observations is m, and T denotes the true
support set of x0.

2.2 Paper II

This paper studies the completion of a Hankel matrix related with the system
theory, by making use of the nuclear norm heuristic. Similar to (2), a rank
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minimization problem is formulated:

min
A∈Rm×n

rank(A) (19)

s.t.R (A) = b,

where the linear mapR : Rm×n → Rp and the vector b ∈ Rp are given.
In the same spirit of (6), rank(A) is replaced by its convex envelope func-

tion (termed the nuclear norm) ‖A‖∗ ,
∑k

i=1 σi, with {σi}ki=1 denoting the
singular values of A. Then, the nuclear norm minimization problem, i.e. the
relaxation of (19) is given as follows:

min
A∈Rm×n

‖A‖∗ (20)

s.t.R (A) = b.

In this paper, the authors study whether the nuclear norm heuristic can
recover an impulse response generated by a stable linear system, if elements
of the upper-triangle of the associated Hankel matrix were given.

For the case of a single real pole, the result is as follows. Given −1 <
h < 1, which is the real pole of the system, define the truncated impulse
response vector h ∈ Rn as h = [1, h, h2, . . . , hn−1]T , and the associated
Hankel matrix as G0 = hhT . It is evident that G0 is of rank one. Then the
nuclear norm heuristic to recover the lower triangle part of the related Hankel
matrix is applied as follows.

Ĝ0 , argmin
G∈Rn×n

‖G‖∗ (21)

s.t. G(i, j) = G0(i, j),∀ (i+ j) ≤ n+ 1,

G is Hankel.

Then it gives that Ĝ0 = G0, i.e. (21) reconstructs G0.
The conventional way to prove matrix recovery (or completion) result is by

building a certain certificate, for instance the way used in [5] and the iterative
golfing scheme advocated by [17]. These approaches all need stochastic as-
sumptions and matrix concentration inequalities [22] in order to construct the
desired certificate.

Since the setting is deterministic and the hidden matrix G0 is a structured
matrix, those techniques are not applicable to this situation. The key challenge
for the proof is to construct the certificate by exploring the structural informa-
tion of G0.
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Experimental illustrations of slightly more complicated case, i.e. the case
of two real poles, are also conducted. We observe that the nuclear norm heuris-
tic (21) will not always succeed in completing the associated Hankel matrix in
this case.

2.3 Paper III

This paper considers a preprocessing stage when solving the BPDN problem,
i.e. the screening test. More precisely, the test tries to identify the elements
of x̂b which are equal to zero with a small computational cost before actually
solving the entire optimization problem. When those elements are identified,
by screening them out, the optimization problem will be reduced to a lower di-
mensional optimization problem which gives the same solution to the original
problem.

One may wonder how it is possible to do the screening test. This could
be motivated by considering the following special case of the solution to the
BPDN. That is, for the problem described in (11)

x̂b(λ) = argmin
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (22)

it can be shown [23] that if λ > maxi|ATy| holds, then one has that x̂b(λ) =
0, which means that all the variables are shrunken out by cheap calculations
(basically the vector inner products). Despite the fact that this example is
special, it gives an intuition of why the screening idea is useful and possible.

This paper then presents an approach to implement the screening test. The
main idea of the proposed method is to make an ellipsoid approximation of
the feasible region of the related dual problem. The benefit of the ellipsoid
approximation is that by doing so, an efficient ellipsoid update rule can be
applied to shrink the ellipsoid. Such ellipsoid algorithm is inspired by the
ideas from its application in membership set identification [19].

A comparative experiment indicates that, by making use of the proposed
scheme, a smaller overall time complexity (including the time for the screening
test and the time for solving the reduced size optimization problem) can be
achieved compared to other known screening tests.

2.4 Paper IV

The Randomized Kaczmarz Algorithm (RKA) [30] is a method which solves a
system of consistent overdetermined linear equations. That is, solve x0 ∈ Rn
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from:

Ax0 = b, (23)

where matrix A ∈ Rm×n with m ≥ n is of full column rank, and b ∈ Rm.
Let aTi denotes the i-th row of matrix A, and bi is the i-th element of b. Given
the initial estimate x0, the process of the RKA reads as

xk+1 = xk +
bi − aTi(k)x

k

‖ai(k)‖22
ai(k) (24)

for k = 1, 2 · · · , where i(k) is chosen randomly, such that i(k) = j with
probability ‖aj‖22

‖A‖2F
. The following convergence result was established in [30]:

E(‖xk − x0‖22) ≤
(
1− 1

‖A‖F ‖A†‖2

)k

‖x0 − x0‖22, (25)

in which E takes the expectation with respect to the random choices of {i(l)}kl=1.
As discussed in the literature, whether the probability as suggested in [30]

is the optimal choice is unknown. This paper shows that it is possible to find a
better probability distribution for the RKA.

The key idea is to derive a tight upper bound to the convergence rate of the
RKA, and then this upper bound is optimized. It turns out that optimizing the
upper bound leads to a Semi-Definite Programming (SDP) problem - which
is a convex and hence computationally tractable. As indicated by Theorem 3
in the paper, optimizing ‖A‖F ‖A†‖2 in (25) with respect to the row norms
of A will lead to the same SDP problem. Conversely, this gives that a prob-
ability distribution resulting in a faster convergence for the RKA than the one
suggested in [30] can always be found using this approach.

Remark that: 1) Solving the resulting SDP problem could be more time
consuming than solving the original system of linear equations. Considering
this, we spent one section in the paper to suggest two ways to approximate
the SDP problem, which can be solved with less computational cost; 2) The
resulting SDP formulation is closely related with the SDP formulations arising
in the optimal input design problems [31].
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Abstract

This note studies a method for the efficient estimation of a finite number of unknown parameters from linear equations, which
are perturbed by Gaussian noise. In case the unknown parameters have only few nonzero entries, the proposed estimator
performs more efficiently than a traditional approach. The method consists of three steps: (1) a classical Least Squares Estimate
(LSE), (2) the support is recovered through a Linear Programming (LP) optimization problem which can be computed using
a soft-thresholding step, (3) a de-biasing step using a LSE on the estimated support set. The main contribution of this note
is a formal derivation of an associated ORACLE property of the final estimate. That is, when the number of samples is large
enough, the estimate is shown to equal the LSE based on the support of the true parameters.

Key words: System identification; Parameter estimation; Sparse estimation.

1 Problem settings

This note considers the estimation of a sparse parameter
vector from noisy observations of a linear system. The
formal definition and assumptions of the problem are
given as follows. Let n > 0 be a fixed number, denoting
the dimension of the underlying true parameter vector.
Let N > 0 denote the number of equations (’observa-
tions’). The observed signal y ∈ R

N obeys the following
system:

y = Ax0 + v, (1)

where the elements of the vector x0 ∈ R
n are considered

to be the fixed but unknown parameters of the system.
Moreover, it is assumed that x0 is s-sparse (i.e. there are
s nonzero elements in the vector). Let T ⊂ {1, . . . , n}
denote the support set of x0 (i.e. x0

i = 0 ⇔ i �∈ T ). Let
T c be the complement of T , i.e. T ⋃ T c = {1, 2, · · · , n}
and T ⋂ T c = ∅. The elements of the vector v ∈ R

N are
assumed to follow the following distribution

v ∼ N (0, cIN ), (2)

where 0 < c ∈ R.

Applications of such setup appear in many places, to
name a few, see the applications discussed in Kump, Bai,
Chan, Eichinger, and Li (2012) on the detection of nu-
clear material, and in Kukreja (2009) on model selection

for aircraft test modeling (see also the Experiment 2 in
Rojas and Hjalmarsson (2011) on the model selection
for the AR model). In the experiment section, we will
demonstrate an example which finds application in line
spectral estimation, see Stoica and Moses (1997).

The matrix A ∈ R
N×n with N > n is a determinis-

tic ’sensing’ or ’regressor’ matrix. Such a setting (A is
a ’tall’ matrix) makes it different from the setting stud-
ied in compressive sensing, where the sensing matrix is
’fat’, i.e. N � n. For an introduction to the compres-
sive sensing theory, see e.g. Donoho (2006); Candés and
Wakin (2008).

Denote the Singular Value Decomposition (SVD) of ma-
trix A ∈ R

N×n as

A = UΣVT , (3)

in which U ∈ R
N×n satisfies UTU = In, V ∈ R

n×n

satisfies VTV = In, and Σ ∈ R
n×n is a diagonal matrix

Σ = diag(σ1(A), σ2(A), . . . , σn(A)). The results below
make the following assumptions on A:

Definition 1 We say that {A ∈ R
N×n}N are suffi-

ciently rich if there exists a finite N0 and 0 < c1 ≤ c2
such that for all N > N0 the corresponding matrices
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A ∈ R
N×n obey

c1
√
N ≤ σ1(A) ≤ σ2(A) ≤ . . . ≤ σn(A) ≤ c2

√
N, (4)

where σi(A) denotes the i-th singular value of the ma-
trix A, c1, c2 ∈ R

+.

Note that the dependence of A on N is not stated ex-
plicitly in order to avoid notational overload.

In Rojas and Hjalmarsson (2011) and Zou (2006), the
authors make the assumption on A that the sample co-
variance matrix 1

NATA converges to a finite, positive-
definite matrix:

lim
N→∞

1

N
ATA = D � 0. (5)

This assumption is also known as Persistent Excitation
(PE), see e.g. Söderström and Stoica (1989). Note that
our assumption in Eq. (4) covers a wider range of cases.
For example, Eq. (4) does not require the singular values
of 1√

N
A to converge, while only requires that they lie in

[c1, c2] when N increases.

Classically, properties of the Least Square Estimation
(LSE) under the model given in Eq. (1) are given by
the Gauss-Markov theorem. It says that the Best Lin-
ear Unbiased Estimation (BLUE) of x0 is the LSE under
certain assumptions on the noise term. For the Gauss-
Markov theorem, please refer to Plackett (1950). How-
ever, the normal LSE does not utilize the ’sparse’ in-
formation of x0, which raises the question that whether
it is possible to improve on the normal LSE by ex-
ploiting this information. In the literature, several ap-
proaches have been suggested, which can perform as if
the true support set of x0 were known. Such property is
termed as the ORACLE property in Fan and Li (2001).
In Fan and Li (2001), the SCAD (Smoothly Clipped
Absolute Deviation) estimator is presented, which turns
out to solve a non-convex optimization problem; later
in Zou (2006), the ADALASSO (Adaptive Least Ab-
solute Shrinkage and Selection Operator) estimator is
presented. The ADALASSO estimator consists of two
steps, which implements a normal LSE in the first step,
and then solves a reweighed Lasso optimization problem,
which is convex. Recently, in Rojas and Hjalmarsson
(2011), two LASSO-based estimators, namely the ’A-
SPARSEVA-AIC-RE’ method and the ’A-SPARSEVA-
BIC-RE’ method, are suggested. Both methods need to
do the LSE in the first step, then solve a Lasso optimiza-
tion problem, and finally redo the LSE estimation.

Remark 1 This note concerns the case that x0 is a
fixed sparse vector. However, when sparse estimators
are applied to estimate non-sparse vectors, erratic phe-
nomena could happen. For details, please see the discus-
sions in Leeb and Pötscher (2008); Kale (1985).

In this note, we will present a novel way to estimate
the sparse vector x0, which also possesses the ORACLE
property while with a lighter computational cost. The
proposed estimator consists of three steps, in the first
step, a normal LSE is conducted, the second step is to
solve a LP (Linear Programming) problem, whose solu-
tion is given by a soft-thresholding step, finally, redo the
LSE based on the support set of the estimated vector
from the previous LP problem. Details will be given in
Section 2.

In the following, the lower bold case will be used to de-
note a vector and capital bold characters are used to de-
note matrices. The subsequent sections are organized as
follows. In section 2, we will describe the algorithm in
detail and an analytical solution to the LP problem is
given. In Section 3, we will analyze the algorithm in de-
tail. In Section 4, we conduct several examples to illus-
trate the efficacy of the proposed algorithm and compare
the proposed algorithm with other algorithms. Finally,
we draw conclusions of the note.

2 Algorithm Description

The algorithm consists of the following three steps:

• LSE: Compute the SVD of matrix A as A = UΣVT .
The Least Square Error estimate (LSE) is then given
as xls = VΣ−1UTy = A†y.

• LP: Choose 0 < ε < 1 and solve the following Linear
Programming problem:

xlp = argmin
x

‖x‖1 s.t. ‖x− xls‖∞ ≤ λ, (6)

where λ =
√

2n
N1−ε . Detect the support set T lp of xlp.

• RE-LSE: Form the matrix AT lp , which contains the

columns of A indexed by T lp. Let A†
T lp denote its

pseudo-inverse. Then the final estimationxrels is given

by xrels
T lp = A†

T lpy, and xrels
T lpC = 0, in which T lpC

denotes the complement set of T lp.

Note that the LP problem has an analytical solution.
Writing the ∞ norm constraint explicitly as

xlp = argmin
x

n∑
i=1

|xi| (7)

s.t. |xi − xls
i | ≤ λ, for i = 1 . . . n.

We can see that there are no cross terms in both the ob-
jective function and the constraint inequalities, so each
component can be optimized separately. From this ob-
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servation, the solution of the LP problem is given as

xlp
i =

⎧⎨
⎩
0, if |xls

i | ≤ λ

xls
i − λ, if xls

i > λ

xls
i + λ, if xls

i < −λ

for i = 1, 2, · · · , n. Such a solution xlp is also referred
to as an application of the soft-thresholding operation
to xls, see e.g. Donoho and Johnstone (1995). Several
remarks related to the algorithm are given as follows.

Remark 2 Note that the tuning parameter λ chosen as
λ2 = 2n

N1−ε is very similar to the one (which is propor-

tional to 2n
N ) as given in Rojas and Hjalmarsson (2011)

based on the Akaike’s Information Criterion (AIC).

Remark 3 The order of λ chosen as − 1
2 +

ε
2 is essen-

tial to make the asymptotical oracle property hold. In-
tuitively speaking, such a choice can make the following
two facts hold.

(1) Whenever ε > 0, x0 will lie in the feasible region
of Eq. (6) with high probability.

(2) The threshold decreases ’slower’ (in the order of
N) than the variance of the pseudo noise term
VΣ−1UTv. With such a choice, it is possible to
get a good approximation of the support set of x0

in the second step.

Remark 4 Though the formulation of Eq. (6) is in-
spired by the Dantzig selector in Candés and Tao
(2007), there are some differences between them.

(1) As pointed out by one of the reviewer, both the pro-
posed method and the Dantzig selector lie in the
following class

min
x

‖x‖1 s.t. ‖W(x− xls)‖∞ ≤ λ. (8)

If W is chosen as the identity matrix, we obtain
the proposed method; If W is chosen as ATA, then
we obtain the same formulation as given by the
Dantzig selector.

(2) As pointed out in Efron (2007), the solution path
of the Dantzig selector behaves erratically with re-
spect to the value of the regularization parameter.
However, the solution path of Eq. (6) with respect
to the value of λ behaves regularly, which is due
to the fact that, given λ, the solution to Eq. (6) is
given by the application of the soft-thresholding op-
eration to the LSE estimation. When λ increases,
the solution will decrease (or increase) linearly and
when it hits zero, it will remain to be zero. This in
turn implies computational advances when trying
to find a s-sparse solution for given s. A simple
illustration of the solution path is given. Assume
that n = 4 and xls = [2, 0.5,−1,−1.5]T , then the

Table 1
Computational steps needed for different methods

Step 1 Step 2 Step 3

LP + Re-LSE LSE ST Re-LSE

ADALASSO LSE LASSO

A-SPARSEVA-AIC-RE LSE LASSO Re-LSE

A-SPARSEVA-BIC-RE LSE LASSO Re-LSE

solution path to Eq. (6) w.r.t. λ is given as in Fig.
(1).

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xlp

λ

Fig. 1. An illustration of the solution path to Eq. (6) w.r.t.
λ. When λ equals zero, the solution to Eq. (6) is xls; when
λ increases, the solution trajectory shrinks linearly to zero
and then remains zero.

Remark 5 From a computational point of view, the
SCAD method needs to solve a non-convex optimiza-
tion problem which will suffer from the multiple local
minima, see the discussions in Trevor, Hastie, Tibshi-
rani and Friedman (2005). So, the proposed scheme is
mainly compared with techniques which can be solved as
convex optimization problems. In Table 1, we list the
computational steps needed for different methods. In the
table, the term ST means the soft-thresholding opera-
tion, the term Re-LSE means ’redo the LSE estima-
tion after detecting the support set of the result obtained
from the second step’. For a more precise description,
see the Algorithm Description section. From this table,
we can see that in the first step, all the methods need
to do a LSE estimation; in the second step, except the
proposed method (which is denoted by LP + Re-LSE),
the other methods need to solve a LASSO optimization
problem, which is more computationally involved than a
simple soft-thresholding operation as needed by the pro-
posed method; except the ADALASSO method, the other
methods need to do a Re-LSE step, which is computa-
tionally easier if the sparsity level is low. From this ta-
ble, we can also see that the main computational bur-
den for the proposed method comes from the LSE (SVD)
step.
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Remark 6 Note that the proposed method does not
need an ”adaptive step” (i.e. to reweigh the cost func-
tion) in order to achieve the ORACLE property, which
is different from the methods presented in Rojas and
Hjalmarsson (2011) and Zou (2006).

3 Analysis of the algorithm

In this section, we will discuss the properties of the pre-
sented estimator. In the following, we will use σ to de-
note the smallest singular value of A.

Remark 7 In the following sections, we assume that
the noise variance equals one, i.e. c = 1, for the follow-
ing reasons:

(1) When the noise variance is given in advance, one
can always re-scale the problem accordingly.

(2) Even if the noise variance is not known explicitly
(but is known to be finite), the support of x0 will
be recovered asymptotically. This is a direct conse-
quence of the fact that finite, constant scalings do
not affect the asymptotic statements, i.e. we can
use the same λ for any level of variance without
influencing the asymptotic behavior.

The following facts (Lemma 1-3) will be needed for sub-
sequent analysis. Since their proofs are standard, we
state them without proofs here. Using the notations as
introduced before, one has that

Lemma 1 xls = x0 +VΣ−1UTv.

Lemma 2 b = ΣVTxls − ΣVTx0 is a Gaussian ran-
dom vector with distribution N (0, I).

Lemma 3 Given d > 0, then

∫
|t|>d

1√
2π

e−
t2

2 dt ≤ e−
d2

2 .

In the following, we will first analyze the probability that
x0 lies in the constraints set of the LP problem given by
Eq. (6). Then we give an error estimation of the results
given by Eq. (6). After this, we will discuss the capability
of recovering the support set of x0 by Eq. (6), which
will lead to the asymptotic ORACLE property of the
proposed estimator.

Lemma 4 For all λ > 0, one has that

P

(
‖VTxls −VTx0‖∞ >

λ√
n

)
≤ ne−

λ2σ2

2n .

Proof By Lemma 2, and noticing that b = ΣVTxls −
ΣVTx0 is a Gaussian random vector with distribution
N (0, I), we have that

P

(
‖VTxls −VTx0‖∞ >

λ√
n

)

≤ P

(
‖ΣVTxls − ΣVTx0‖∞ >

λσ√
n

)

= P

(
‖b‖∞ >

λσ√
n

)

= P

(
∃i, such that |bi| >

λσ√
n

)

≤
i=n∑
i=1

P

(
|bi| >

λσ√
n

)
.

Application of Lemma 3 gives the desired result. �

Lemma 5 For all λ > 0, if ‖VTxls −VTx0‖∞ ≤ λ√
n
,

then ‖xls − x0‖∞ ≤ λ.

Proof Define c as c = VTxls − VTx0, so we have
‖xls − x0‖∞ = ‖V c‖∞. Analyze the ith element of Vc
that

|Vic| ≤ ‖c‖2 ≤ ‖c‖∞
√
n ≤ λ.

The first inequality is by definition, the second inequality
comes from the Cauchy inequality, the last inequality is
due to the assumption of the lemma. �

Combining the previous two lemmas gives

Lemma 6 P(‖xls − x0‖∞ ≤ λ) ≥ 1− ne−
λ2σ2

2n .

Proof The proof goes as follows

P
(
‖xls − x0‖∞ ≤ λ

)
≥ P

(
‖VTxls −VTx0‖∞ ≤ λ√

n

)

= 1− P

(
‖VTxls −VTx0‖∞ >

λ√
n

)

≥ 1− ne−
λ2σ2

2n

The first inequality comes fromLemma 5, and the second
inequality follows from Lemma 4. �

The above lemma tells us that x0 will lie inside the fea-
sible set of the LP problem as given in Eq. (6) with high
probability. By a proper choice of λ, the following result
is concluded.
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Theorem 1 Given 0 < ε < 1, and let λ2 = 2n
N1−ε , we

have that

P
(
‖xls − x0‖∞ ≤ λ

)
≥ 1− ne−c21N

ε

.

Next, we will derive an error bound (in the l2- norm) of
the estimator given by the LP formulation. Define

h = xlp − x0,

as the error vector of LP formulation. We have that the
error term h is bounded as follows:

Lemma 7 For any λ > 0, if ‖xls−x0‖∞ ≤ λ, then we
have that ‖h‖22 ≤ 4sλ2.

Proof We first consider the error vector on T c which
is given by hT c . Since ‖xls − x0‖∞ ≤ λ and x0

T c = 0,
we have that ‖xls

T c‖∞ ≤ λ. It follows from the previous
discussions that xlp is obtained by application of the
soft-shresholding operator with the threshold λ, applied

componentwise to xls, hence we obtain that xlp
T c = 0.

This implies that hT c = 0.

Next we consider the error vector on the support T , de-
noted as hT . From the property of the soft-thresholding

operation, it follows that ‖xls
T −xlp

T ‖∞ ≤ λ.Thenwe have

that ‖x0
T − xlp

T ‖∞ ≤ ‖xls
T − xlp

T ‖∞ + ‖xls
T − x0

T ‖∞ ≤ 2λ

Combining both statements gives that ‖h‖22 = ‖hT ‖22 +
‖hT c‖22 ≤ |T |‖hT ‖2∞ ≤ 4sλ2. �

Plugging in the λ as chosen in previous section, we can
get the error bound of the LP formulation. However, the
estimate xlp is not the final estimation, instead it will be
used to recover the support set of x0. The following the-
orem states this result formally. For notational conve-
nience, T lp(N) is used to denote the recovered support
from the LP formulation, and xrels(N) then denotes the
estimate after the second LSE step usingN observations.
Finally, the vector xls−or(N) denotes the LSE as if the
support of x0 were known (i.e. the ORACLE presents)
using N observations.

Wewill first get a weak support recovery result and based
on this, we further prove that the support as recovered
by the LP formulation will converge to the true support
T almost surely.

Lemma 8 Given 0 < ε < 1, and assume that the ma-
trix A has singular values which satisfies Eq. (4), with

constants c1, c2 as given there. Let x0 � min{|x0
i |, i ∈

T } ∈ R
+, and λ2 = 2n

N1−ε , then

(a) : lim
N→∞

P(T = T lp(N)) = 1,

and

(b) : lim
N→∞

P(xrels(N) = xls−or(N)) = 1.

Proof Let the vector v̄ denote v̄ = VΣ−1UTv. Since
xls = x0 + VΣ−1UTv, one has that xls = x0 + v̄, in
which v̄ follows a normal distribution N (0,VΣ−2VT ).
Without loss of generality, assume that x0

1, x
0
2, . . . , x

0
s are

the nonzero elements of x0 and their values are positive.
Since λ decreases when N increases, so there exist a
numberN1 ∈ N, such that λ < x0

2 for allN ≥ N1. In the
following derivations, we use vi,j to denote the element
in the ith row, jth column of V and v̄i denotes the ith
element of v̄. When N > N1, we have the following
bound of P(T �= T lp(N)):

P
(
T �= T lp(N)

)
= P

(
|x0

1 + v̄1| < λ, or |x0
2 + v̄2| < λ, . . . , or |x0

s + v̄s| < λ;

or |v̄s+1| > λ, or |v̄s+2| > λ, . . . , or |v̄N | > λ)

≤
s∑

i=1

P(−λ− x0
i < v̄i < λ− x0

i ) +
N∑

i=s+1

P(|v̄i| > λ)

≤
s∑

i=1

2λe
−(2

∑n

j=1
σ−2
j

v2
ij)

−1(−x0
i+λ)2

√
2π(

∑n
j=1 σ

−2
j v2ij)

+
N∑

i=s+1

e
−(2

∑n

j=1
σ−2
j

v2
ij)

−1λ2

≤
s∑

i=1

2c2
√
Nλ√
2π

e−
1
2 c

2
1N(−x0

i+λ)2 +
N∑

i=s+1

e−
1
2 c

2
1Nλ2

≤ 2c2s
√
nN

ε
2 e−

1
8 (c1x0)

2N +Ne−c21nN
ε

= CN
ε
2 e−

1
8 (c1x0)

2N +Ne−c21nN
ε

, (9)

where C = 2c2s
√
n. The second inequality in the chain

holds due to the fact that the probability distribution
function of v̄i is monotonically increasing in the interval
[−λ− x0

i , λ− x0
i ], together with results in Lemma 3.

Then we can see that both terms in (9) will tend to 0 as
N → ∞ for any fixed ε > 0, i.e. limN→∞ P(T lp(N) =
T ) = 1. For the proof of (b), notice the following relation

P
(
xrels(N) = xls−or(N)

)
≥ P

(
T lp(N) = T

)
.

From (a) we know that the right hand side will tend to
1 as N tends to infinity, hence (b) is proven. �

Based on the previous lemma, we have

Theorem 2 Given 0 < ε < 1, and assume that the ma-
trix A has singular values which satisfies Eq. (4), with
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constants c1, c2 as given there. Let x0 � min{|x0
i |, i ∈

T } ∈ R
+, and λ2 = 2n

N1−ε , then there exists a finite
number N ′ ∈ N, such that

(a) : P
(
∩∞
N=N ′{T lp(N) = T }

)
= 1

and

(b) : P
(
∩∞
N=N ′{xrels(N) = xls−or(N)}

)
= 1.

Proof From the proof in the previous lemma, we have
that when N > N1

P(T �= T lp(N))

≤ CN
ε
2 e−

1
8 (c1x0)

2N +Ne−c21nN
ε

= Ce−
1
8 (c1x0)

2N+ ε
2 ln(N) + eln(N)−c21nN

ε

= Ce
(c1x0)

2N(
εln(N)

2(c1x0)2N
− 1

8 ) + e
c21nN

ε(
ln(N)

c2
1
nNε −1)

.

Since 0 < ε < 1 and x0 > 0, one has that εln(N)
2(c1x0)2N

and ln(N)
c21nN

ε will tend to zero if N → ∞. Hence there

exists a number N2 ∈ N such that for all N > N3 �
max(N1, N2) one has that εln(N)

2(c1x0)2N
< 1

16 and ln(N)
c21nN

ε <
1
2 . Hence

∞∑
N=N3

P(T lp(N) �= T )

≤
∞∑

N=N3

Ce−
1
16 (c1x0)

2N +
∞∑

N=N3

e−
1
2 c

2
1nN

ε

≤
∫ ∞

N=N3−1

Ce−
1
16 (c1x0)

2tdt+

∫ ∞

N3−1

e−
1
2 c

2
1nt

ε

dt

= A+B.

Furthermore, it can be seen that

A =

∫ ∞

N=N3−1

Ce−
1
16 (c1x0)

2tdt < ∞.

In the following, wewill show thatB =
∫∞
N3−1

e−
1
2 c

2
1nt

ε

dt <

∞ . By a change of variable using x = 1
2c

2
1nt

ε, we have
that

B =
1

c21nε

∫ ∞

1
2 c

2
1n(N3−1)ε

x
1
ε−1e−xdx <

1

c21nε
Γ

(
1

ε

)
< ∞

with Γ the Gamma function. And hence

∞∑
N=N3

P(T lp(N) �= T ) < ∞.

Application of the Borel-Cantelli lemma [4] implies that
the events in {T �= T lp(N)}∞N=N3

will not happen in-
finitely often, i.e. there exists the number N ′ ∈ N as
defined in the assumptions of the theorem, such that
{T = T lp(N)}∞N=N ′ will hold. Hence (a) and (b) are
proven. �

4 Illustrative Experiments

This section supports the findings in the previous sec-
tion with numerical examples and make the comparisons
with the other algorithms which possess the ORACLE
property in the literatures.

4.1 Experiment 1

This example is taken from Zou (2006). The setups are
repeated as follows.

• x0 is set to be (3, 1.5, 0, 0, 2, 0, 0, 0)T ;
• Rows of matrix A are i.i.d. normal vectors;
• The correlation between the j1-th and the j2-th ele-

ments of each row are given as 0.5|j1−j2|;
• The noise term v ∈ R

N follows distribution N (0, IN ).

Based on these setups, the proposed method and
also the methods presented in Rojas and Hjalmarsson
(2011) (the A-SPARSEVA-AIC-RE method and the
A-SPARSEVA-BIC-RE methods) and Zou (2006) (the
ADALASSO method) are applied to recover x0. In this
experiment, ε for the proposed method is set to 1

3 ; λN

for ’ADALASSO’ is chosen as N1/2−γ/4 (this choice sat-
isfies all the assumptions in Theorem 2 in Zou (2006)),
and γ is set to 1; the thresholding value (for detecting
zero components from the solution of the Lasso problem)
for the ’A-SPARSEVA-AIC-RE’ and ’A-SPARSEVA-
BIC-RE’ are set to be 10−5 as suggested in Rojas and
Hjalmarsson (2011). For the comparison, we also include
the experiment result obtained by using the LASSO
method, in which we set the tuning parameter as

√
N .

In Fig. 2, for every N , experiment is repeated 50 times
to get the estimated MSE. The following abbreviations
are used in Fig. 2: (1) the curve with tag ’LSE’ gives the
MSE of the estimates by the ordinary least square algo-
rithm; (2) the curve with tag ’LP + RE-LSE’ gives the
MSE of the estimates given by the proposed algorithm;
(3) the curve with tag ’ORACLE-LSE’ gives the MSE of
the estimates by the ORACLE least square estimation;
(4) the curves with tags ’A-SPARSEVA-AIC-RE’ and
’A-SPARSEVA-BIC-RE’ give the MSE of the estimates
by the methods presented in Rojas and Hjalmarsson
(2011); (5) the curve with tag ’ADALASSO’ gives the
MSE of the estimates by the ADALASSO method pre-
sented in Zou (2006); (6) the curve with tag ’LASSO’
gives the MSE of the estimates of the LASSO method.
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Note that, whenN becomes large, the curves ’LP + RE-
LSE’ and ’ORACLE-LSE’ exactly match each other.

0 20 40 60 80 100
10−2

10−1

100

101

N

M
S

E

recovery performance

LSE
LP + RE−LSE
ORACLE−LSE
A−SPARSEVA−BIC−RE
A−SPARSEVA−AIC−RE
ADALASSO
LASSO

Fig. 2. Performance of the different estimators from N ob-
servations to estimate x0. This picture indicates that the
proposed estimator will give exactly the same performance
as the ORACLE estimator for a large N (N ≈ 75).

Fig. 3 demonstrates the efficacy of support recovery of
the LP formulation in Eq. (6) for different choices of ε.
In the plot, ’portion’ is defined as the ratio of successful
trials over the total number of trials. We conclude the
empirical observations for this experiment in the caption
of the figure.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

po
rti

on

support recovery

ε = 1/3
ε = 1/4
ε = 1/5
ε = 1/6
ε = 1/10
ε = 1/100
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0.985
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0.995
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Fig. 3. Support recovery performance of Eq. (6) for differ-
ent choices of ε. Empirically, we observe that: 1) When ε is
chosen to be small, the ratio for successful support recovery
will be larger when N is small; but when N is large, the ratio
for successful support recovery will converge slower to 100%
and oscillation exists. This can be observed in the zoomed-in
part. 2) When ε is chosen to be large, the ratio for success-
ful support recovery will be smaller when N is small; but
when N is large, the ratio for successful support recovery
will go faster to 100% and no oscillation exists, see also the
zoomed-in part in the figure.

In practice, cross validation technique could be ex-
ploited to choose the tuning parameters. In the follow-

ing, we will take the ADALASSO and the proposed
method for granted to illustrate the idea and compare
the performances for both methods when the param-
eters are obtained by the cross validation technique.
In the ADALASSO algorithm and the proposed algo-
rithm, there are two tuning parameters, namely γ for
the ADALASSO, and ε for the proposed method. In the
following part, we will apply the 5-fold cross-validation
method (see Trevor, Hastie, Tibshirani and Friedman
(2005)) to choose the tuning parameters and then com-
pare their performances based on the chosen tuning
parameters. The procedure is as follows. At first, the
tuning parameter is obtained by 5-fold cross valida-
tion, then it is applied to an independently generated
test data which has the same dimension as the training
data and the evaluation data. For different N , we run
100 i.i.d. realizations. In each realization, we record the
value ‖x̂−x0‖22, where x̂ denotes the estimate obtained
by the estimator. ε are selected from {1/8, 1/4, 1/2}, γ
are selected from {1/2, 1, 2} , and N are chosen from
{20, 50, 100, 200, 300, 500}. The results are reported in
Fig. 4.

4.2 Experiment 2

In this part, we perform an experiment for recovering
the sinusoids from noisy measurements. The data is gen-
erated as follows:

y(t) =

n′∑
k′=1

cik′ sin(wik′ t) + v(t).

Here both {wik′ }k′ and {cik′ }k′ are unknown, but we
know that the frequencies do belong to a (larger, but of
constant size) set {wk}nk=1 of n elements. By sampling
the system with period ts, we obtain the system

y = Ac0 + v, (10)

where y = [y(ts), · · · , y(Nts)]
T . The matrix A ∈ R

N×n

is defined as follows. The i-th row of A is given by

Ai = [sin(iw1ts), sin(iw2ts), . . . , sin(iwnts)] , (11)

for i = 1, · · · , N . The parameter term and noise
term are defined as c0 = [c1, c2, · · · , cn]T , and
v = [v(ts), v(2ts), · · · , v(Nts)]

T .

In this experiment, n = 10 and c0 = (1, 1, 1, 0, · · · , 0)T ,
wk = k for k = 1, 2, · · · , n. We increase N up to 500
and the noise vector v satisfies v � N (0, IN ). We also
assume that only the first three entries in {wk}nk=1 oc-
cur effectively in the system of Eq. (10) and the corre-
sponding amplitudes are set to 1, i.e. n′ = 3 and i1 = 1,
i2 = 2, i3 = 3. The sampling period ts is set to 0.1s.

The result using the proposed algorithm to recover x0

is displayed in Fig. 5. It is again clear that the proposed
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Fig. 4. This figure demonstrates the boxplots of the recovery error obtained through the ADALASSO estimator and the
proposed estimator when the tuning parameters are chosen by the 5-fold cross validation method. From this figure, we can see
that performances of both methods are similar when N is large, see the zoomed-in part in the figures. It can also be observed
that when N is small, the ADALASSO method has smaller recovery error compared with the proposed method.

estimator is as efficient as the ORACLE estimator if one
has enough samples. That is, from a finite N onwards,
the estimator couples tightly with the ORACLE estima-
tor.
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Fig. 5. Performance of applying the proposed estimator to
recovery sinusoids functions from N observations in Experi-
ment 2. This example also indicates that after a finite num-
ber the estimate is exactly equal to the ORACLE estimator.

This is indeed predicted by the theory above since theA
in Eq. (10) obeys the assumption of Eq. (4). This follows
from the proposition given as:

Proposition 1 There exist constants {Ci,j}0≤i,j≤n

which do not depend on N , such that the following
results hold. For any 1 ≤ i �= j ≤ n, one has that:

∣∣(ATA)i,j
∣∣ =

∣∣∣∣∣
N∑
t=1

sin(twits) sin(twjts)

∣∣∣∣∣ ≤ Ci,j (12)

and for any 1 ≤ i ≤ n that:

(ATA)i,i =

N∑
t=1

(sin(twits))
2 ≥ N

2
− Ci,i. (13)

The proof is given in Appendix A.With this proposition,
an application of Geršgorin circle theorem implies that
the eigenvalues of ATA will increase with the order of
N , which in turn implies Eq. (4).

5 Conclusion

This note presents an algorithm for solving an over-
determined linear system from noisy observations, spe-
cializing to the case where the true ’parameter’ vector is
sparse. The proposed method does not need one to solve
explicitly an optimization problem: it rather requires
one to compute twice the LSE step, as well to perform a
computationally cheap soft-thresholding step. Also, it is
shown formally that the proposed method achieves the
ORACLE property. An open question is to quantify how
many samples would be sufficient to guarantee exact re-
covery of x0 for given sparsity level s. In this note, we re-
sort to the asymptotic Borel-Cantelli Lemma (’there ex-
ists such a number’), but it is often of interest to have an
explicit characterization of this number. Another open
question is that how to find a suitable weighting matrix
W and how to select the λ in Eq. (8), in order to make
Eq. (8) a practical improvement of the proposed method
which also maintains the ORACLE property.
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A Proof of Proposition 4

Proof The proof of (12) goes as follows. First

∣∣∣∣∣
N∑
t=1

sin(twits) sin(twjts)

∣∣∣∣∣
=

1

2

∣∣∣∣∣
N∑
t=1

(cos(t(wi − wj)ts)− cos(t(wi + wj)ts))

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
N∑
t=1

cos(t(wi − wj)ts)

∣∣∣∣∣+
1

2

∣∣∣∣∣
N∑
t=1

cos(t(wi + wj)ts)

∣∣∣∣∣ .

We focus on bounding the term
∣∣∣∑N

t=1 cos(t(wi − wj)ts)
∣∣∣,

the bound of the other term will follow along the same
lines.

∣∣∣∣∣
N∑
t=1

cos(t(wi − wj)ts)

∣∣∣∣∣
=

∣∣∣∣Re
(
1− ej(N+1)(wi−wj)ts

1− ej(wi−wj)ts

)
− 1

∣∣∣∣
≤

∣∣∣∣1− ej(N+1)(wi−wj)ts

1− ej(wi−wj)ts

∣∣∣∣+ 1

≤ 2∣∣1− ej(wi−wj)ts
∣∣ + 1,

which is a constant which does not depend on N , so
inequality (12) is obtained.

In order to prove inequality (13), observe that

N∑
t=1

(sin(twits))
2
=

1

2

N∑
t=1

(1− cos(2twits))

≥ N

2
− 1

2

∣∣∣∣∣
N∑
t=1

cos(2twits)

∣∣∣∣∣ .

Using previous bounding method, 1
2

∣∣∣∑N
t=1 cos(2twits)

∣∣∣
is also bounded by a constantCi,i which does not depend
on N . This concludes the proof. �
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Abstract

This note addresses the question if and why the nuclear norm heuristic can recover an impulse response generated by a stable single-real-
pole system, if elements of the upper-triangle of the associated Hankel matrix were given. Since the setting is deterministic, theories based
on stochastic assumptions for low-rank matrix recovery do not apply here. A ’certificate’ which guarantees the completion is constructed
by exploring the structural information of the hidden matrix. Experimental results and discussions regarding the nuclear norm heuristic
applied to a more general setting are also given.

Key words: System Identification; Matrix Completion.

1 Introduction

Techniques of convex relaxation using the nuclear norm
heuristic have become increasingly popular in the systems
and control society, see e.g. the examples reported in [1],
[2] and the discussions therein. This note provides a novel
theoretical justifications for the usage of the nuclear norm
heuristic in an fundamental task in systems theory, i.e. to
recover the impulse response of a system from the first few
entries of the related series. Precisely, we make the follow-
ing assumptions throughout the note: (1) the provided en-
tries are exact, i.e. there is no noise present, (2) the first n
entries of the impulse response are provided while the last
n− 1 entries are to be completed. Note that this setting has
no stochastic quantities involved.

The problem considered here can be casted as a special case
of the ’matrix completion’ problem [5,6,7]. However, in the
problem considered in this work, the sampled entries are
given deterministically, while ’matrix completion’ problems
are typically analyzed using random sampling patterns. And
also in the current work, the underlying matrix is a structural
(Hankel) matrix. These differences make the theories in the
literature not applicable to this problem. While this task
can be easily solved using standard techniques [1,9], the
rationale for this work is that to provide a complete picture
for understanding how the nuclear norm heuristic performs
on this fundamental problem by some new proof techniques.

This contribution is organized as follows. The main theorem

is given in Section II. The proof of the result will be given
in section III. Section IV gives more discussions in a more
general matrix completion case and conclude the note.

The following notational conventions will be used. Vectors
are denoted in boldface, scalars are denoted in lowercase,
matrices as capital letters, and sets are represented as calli-
graphic letters. Hn denotes the set of n×n Hankel matrices,
In denotes the identity matrix of size n× n, ei denotes the
unit vector with only the i-th element to be one and all the
other elements zero, ‖ · ‖∗ represents the nuclear norm (sum
of all the singular values) of a matrix, ‖ · ‖2 represents the
spectral norm of a matrix, and ‖ · ‖F represents the Frobe-
nius norm of a matrix.

2 Results

The following theorem states the finding formally.

Theorem 1 Given −1 < h < 1, define vector h ∈ R
n

as h = [1, h, h2, . . . , hn−1]T , and matrix G0 ∈ Hn as
hhT . Consider the following application of the nuclear norm
heuristic:

Ĝ0 � argmin
G∈Hn

‖G‖∗ (1)

s.t. G(i, j) = G0(i, j), ∀ (i+ j) ≤ n+ 1.
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Then Ĝ0 = G0 and consequently, we say that (1) recon-
structs G0.

Remark 1 Since the true matrix G0 is of low rank (of rank
one), successful reconstruction of G0 up to the first 2n− 1
entries is given by the solution of

G̃ � argmin
G∈Hn

rank(G) (2)

s.t. G(i, j) = G0(i, j), ∀(i+ j) ≤ n+ 1.

The solution to this particular problem can lead to an exact
recovery of G0, see the results in [3,8,9].

2.1 Proof of Theorem 1

The sketch for the whole proof of the Theorem 1 is as fol-
lows: Lemma 1 gives a sufficient condition for the recovery
of G0 by solving eq. (1). Lemma 2 and Lemma 3 are devoted
to build a ’certificate’ which can guarantee such condition is
always satisfied under the assumptions made in Theorem 1.

For the matrices G0 and G as defined in Theorem 1, define:

H = G0 −G, (3)

Notice that all the entries of H in the upper triangle part will
be zero by construction, so H can always be decomposed as

H =

n−1∑
i=1

viGi, (4)

where {Gi}n−1
i=1 are the basis matrices with the elements of

the ith lower anti-diagonal equal to 1 and the others equal
to zero and vi ∈ R, ∀i = 1, · · · , n − 1. For instance, when
n = 3, one has that

H =

⎛
⎜⎜⎝

0 0 0

0 0 v1

0 v1 v2

⎞
⎟⎟⎠ = v1

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠+ v2

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎟⎠ . (5)

For the notational convenience, we define the following two
projection matrices, namely

P =
G0

‖h‖22
and the complement projection matrix of P as

Q = In − P.

Proposition 1 will be used in the following discussions,
which tells that the nuclear norm is the dual norm of the
spectral norm for a given matrix [7].

Proposition 1 Given A ∈ R
n×n matrix, then

‖A‖∗ = sup{tr(MA) : ‖M‖2 ≤ 1,M ∈ R
n×n}. (6)

We also need the following fact.

Proposition 2 Given H as defined in eq. (3), if H �= 0, then
QHQ �= 0.

Proof We prove that the only possibility for QHQ = 0 to
hold is when H = 0. Notice that H = (P +Q)H(P +Q),
expanding this equality, we have that

H = PHP + PHQ+QHP +QHQ.

Hence if QHQ = 0, we have that

H = PHP + PHQ+QHP

= PH +QHP.

As P = hhT

‖h‖2
2

, then the previous relation implies that H can

be represented as haT +bhT where a,b ∈ R
n. Due to the

fact that H is symmetric, so we have that

haT + bhT = ahT + hbT ,

or equivalently

h(b− a)T = (b− a)hT . (7)

Given the fact in eq. (7), the two rank-one matrices h(b−
a)T and (b−a)hT will have the same row space and column
space, which implies that b− a = kh, for some k ∈ R.

This gives that H can be written as

H = haT + bhT = haT + ahT + khhT ,

i.e.

H = (a+
k

2
h)hT + h(a+

k

2
h)T .

Let c = (c1, c2, · · · , cn)T = a + k
2h. Notice that the i-th

element of the first column of H equals hi−1c1 + ci. By
construction, the first column of H is a zero vector, hence
for i = 1, we have that 2c1 = 0, which gives that c1 = 0.
Thus the i-th element of the first column of H equals ci
which implies that c2 = · · · = cn = 0, i.e. c = 0. This
implies that H = 0 as desired. �

Lemma 1 provides a sufficient condition for Theorem 1 to
hold.
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Lemma 1 If for any H as in eq. (3), one has that

| tr(PH)| < ‖QHQ‖∗, (8)

then the optimization problem (1) recovers G0 exactly.

In other words, this lemmas says that, for any nonzero devi-
ation H from G0, one has that the nuclear norm of G0 +H
will become strictly larger when eq. (8) holds.

Proof Let V ∈ R
n×(n−1) be a matrix which satisfies

V V T = Q and V TV = In−1. Hence the sub-gradients of
‖ · ‖∗ at G0 are given as the set (see e.g. [7]):

Sh =
{
P + V BV T : ‖B‖2 ≤ 1

}
. (9)

By the property of sub-gradient, we have that for any H as
in eq. (3),

‖G0 +H‖∗ ≥ ‖G0‖∗ + 〈H,F 〉,

where F ∈ R
n×n is any matrix which belongs to Sh.

Hence, for any H as in eq. (3), if there exists one element
in Sh, i.e. one B with ‖B‖2 ≤ 1, such that

〈
H,P + V BV T

〉
> 0

or equivalently

tr(HP ) > 〈V THV,−B〉, (10)

then we have ‖G0+H‖∗ > ‖G0‖∗, which implies the claims
in Theorem 1. Hence, we are left to find a matrix which
satisfies inequality (10) given the assumption (8).

From eq. (8), we have that

| tr(HP )| < ‖QHQT ‖∗,

and since by definition of Q as a projection matrix onto an
n− 1 dimensional subspace, one has that

‖QHQT ‖∗ = ‖V THV ‖∗,

it follows that

| tr(HP )| < ‖V THV ‖∗.

Furthermore, it follows from Proposition 1 that there exists
a matrix B1 with ‖B1‖2 ≤ 1, such that

‖V THV ‖∗ =
〈
V THV,B1

〉
,

therefore,
| tr(HP )| < 〈V THV,B1

〉
.

Conversely, one has

tr(HP ) > − 〈V THV,B1

〉
= 〈V THV,−B1〉,

and hence, the inequality (10) holds for B1, which proves
the result. �

Next, we prove that the condition in Lemma 1 will always
hold whenever H �= 0. Lemma 2 constructs a matrix M0

which will be used in Lemma 3, while Lemma 3 constructs a
’certificate’ M1 explicitly which guarantees the satisfaction
of eq. (8).

The sketch for proving Lemma 2 is as follows. First, we
construct two matrices, namely the Q1 and the Q2, by con-
sidering two related linear equations. Then, we can have
four related properties about Q1 and Q2, i.e. Fact 1, Fact 2,
Fact 3 and Fact 4, which are very useful in the derivation.
Finally, we construct a matrix M0 based on Q1 and Q2.

Lemma 2 Given the matrices Gi, P,Q ∈ R
n×n defined as

before, there exists a matrix M0 ∈ R
n×n with ‖M0‖2 < 1,

such that

tr(QGiQM0 −GiP ) = 0, ∀i = 1, 2, . . . , n− 1. (11)

Proof We will give a construction of such matrix M0. Let
r > 0 denote the norm of vector h, which clearly satisfies

r2 = ‖h‖22 = 1 + h2 + · · ·+ h2n−2.

We construct two matrices Q1 ∈ R
n×n and Q2 ∈ R

n×n

which satisfy the following two equations:

r2(Q1 +Q2) = r2Q = r2In −G0

= r2In −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 h h2 · · · hn−1

h h2 h3 · · · hn

h2 h3 h4 · · · hn+1

...
...

...
. . .

...

hn−1 · · · · · · · · · h2n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

and r2(Q1 −Q2) ∈ R
n×n, which is defined in eq. (13).

The defined matrices Q1, Q2 will have the following prop-
erties:

• Fact 1:

(Q1 +Q2)(Q1 +Q2) = (Q1 −Q2)(Q1 −Q2). (14)

• Fact 2:

(Q1 +Q2)(Q1 −Q2) = (Q1 −Q2)(Q1 +Q2).
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r2(Q1 −Q2) = (13)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−hn −hn+1 −hn+2 · · · −h2n−2 h + h3 + · · · + h2n−3

−hn+1 −hn+2
.
.
. −h2n−2 h + h3 + · · · + h2n−3 −1

−hn+2
.
.
. −h2n−2 h + h3 + · · · + h2n−3 −1 −h

.

.

. −h2n−2 h + h3 + · · · + h2n−3 −1

.

.

.

.

.

.

−h2n−2 h + h3 + · · · + h2n−3 −1

.

.

.

.

.

. −hn−3

h + h3 + · · · + h2n−3 −1 −h · · · −hn−3 −hn−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• Fact 3:
Q1Q2 = Q2Q1 = 0.

• Fact 4:
Q2

1 = Q1, Q2
2 = Q2.

Fact 3 and Fact 4 basically imply that the matrices Q1 and
Q2 are projection matrices and moreover are orthogonal to
each other. Due to this observation, the matrix (Q1 − Q2)
will have eigenvalues in the set {1,−1, 0}, which clearly
means that the spectral norm of (Q1 −Q2) is 1.

These discussions lead us to consider the following choice
of M0:

M0 = −hn(Q1 −Q2). (15)

Now we can prove that matrix M0 satisfies all the equalities
given in eq. (11) based on these Facts. First, notice that
the equalities in eq. (11) are equivalent to the following
equalities

tr (Gi(QM0Q− P )) = 0, ∀i = 1, 2, . . . , n− 1. (16)

The term QM0Q − P in eq. (16) can be calculated out as
follows:

QM0Q− P = −hn(Q1 +Q2)(Q1 −Q2)(Q1 +Q2)− P

= −hn(Q1 −Q2)(Q1 +Q2)− P

= −hn(Q1 −Q2)− P

= M0 − P.

In the previous derivations, we have made use of the fact that

(Q1 +Q2)(Q1 −Q2) = (Q1 −Q2),

which could be verified by expanding the left hand side and
using the fact that both Q1 and Q2 are projection matrices.
So, to prove the the equalities in eq. (16) is equivalent to
prove that

tr (Gi(M0 − P )) = 0, ∀i = 1, 2, . . . , n− 1. (17)

Notice that M0 has the same elements as P in the lower
anti-diagonal part, so eq. (17) holds, which in turn makes

eq. (11) hold. Notice that ‖M0‖2 = |h|n, which is less than
1. This concludes that M0 is the desired matrix.

Remark 2 Here we are not constructing the matrices Q1

andQ2 explicitly. But from eq. (12) and eq. (13), the matrices
Q1 and Q2 can be reconstructed, and from which, we can
see that both Q1 and Q2 are all nonzero matrices.

We are left to prove the Facts 1, 2, 3 and 4. In order to keep
clarity of the note, we leave the detailed verifications to the
appendix. �

Based on the constructed M0 in Lemma 2, we can certify
that:

Lemma 3 For any H as given in eq. (3), we have that

| tr(PH)| < ‖QHQ‖∗. (18)

Proof We distinguish between two cases, namely

tr(PH) < ‖QHQ‖∗, (19)

and
− tr(PH) < ‖QHQ‖∗.

We will give a derivation of eq. (19), the latter inequality
follows along the same lines. With the application of Propo-
sition 1, it follows that to prove eq. (19) is equivalent to
prove that

sup
‖M‖2≤1

tr (QHQM −HP ) > 0. (20)

Notice that H =
∑n−1

i=1 viGi, and that by construction of
M0 in Lemma 2, we have that

tr (QHQM0 −HP ) =

n−1∑
i=1

vi tr(QGiQM0 −GiP ) = 0.

Next, observe that M0 is strictly inside the ball ‖M‖2 ≤ 1,
hence there exists a small value δ > 0 such that

M1 = M0 + δ(QHQ), (21)
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will also be inside the unit ball ‖M‖2 ≤ 1. Since H �= 0, it
follows that QHQ �= 0, which implies that

tr (QHQM1 −HP ) = δ tr (QHQQHQ) = δ‖QHQ‖2F
is positive. This certifies eq. (20) and hence ineq. (19), which
in turn concludes the proof of Lemma 3. �

In conclusion, application of Lemmas 1, 2 and 3 gives The-
orem 1.

3 Discussions

The previous sections studies a low rank matrix completion
problem where the matrix to be recovered is known to be
Hankel and the revealed entries follow a deterministic pat-
tern. It is shown that the nuclear norm approach gives the
correct answer in case the exact (noiseless) entries of the
upper triangular part of this matrix are provided and the sys-
tem is a single real pole stable system.

It is natural to raise the question whether the nuclear norm
heuristic will still work when the rank of the matrix G0

is larger than 1. The answer is generally negative. We will
provide an numerical illustration of this finding. Consider the
following example of a second order system. Let h1, h2 ∈ R

be the two poles which satisfy −1 < h1, h2 < 1. We further
assume that the impulse response of the system is given by

the sequence {hi−1
1 + hi−1

2 }∞i=1. let n = 10, i.e., the matrix
G0 is of size 10 × 10, then the completion problem based
on the nuclear norm heuristic is given as

Ĝ =argmin
G∈H10

‖G‖∗ (22)

s.t. G(i, j) = G0(i, j), ∀i+ j ≤ 11.

Now we can compare the value of the nuclear norm of the

optimum Ĝ with the value of the nuclear norm of G0 ob-
tained by filling out the remaining entries using the specifi-
cation of the system. Figure (1) displays the difference be-

tween the nuclear norm of G0 and Ĝ for different choices
of h1 and h2, which are chosen as h1 = −0.94 : 0.05 : 0.94
and h2 = −0.94 : 0.05 : 0.94. From this experiment, it be-
comes clear that G0 does not always has minimal nuclear
norm, and recovery by eq. (22) will not necessarily succeed.
However, it is worthwhile to mention that, in most cases,
the nuclear norm heuristic gives the correct recovery.

Hence we conclude the article with the following open ques-
tions which are left for future work: (1) A rigorous char-
acterization of when the nuclear norm heuristic will work
in the stable multiple-pole system case is in order. By in-
specting the proofs for the single pole case in this note, we
can see that the Lemmas 1 and 3 are also applicable in such
case. More precisely, When the matrix M0 in Lemma 2 is
constructed, then a ’certificate’ to guarantee the successful
completion in this general case can be constructed the same

way as in Lemma 3. However, it is evident that such a con-
struction for M0 is more complicated. So, how to construct
this matrix is left as an open question for future research.
(2) Another open question is that when the nuclear norm
heuristic doesn’t work, see the cases in the previous exam-
ple, it is interesting to find out which additional assumptions
could assist the heuristic to work. (3) Thirdly, the results in
this article assumes noiseless data, it is not clear how this
assumption can be relaxed in the noisy case.
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Fig. 1. This figure displays ‖G0‖∗- ‖Ĝ‖∗ for a range of 2 real
poles. It is seen that the nuclear norm objective value is not always
minimal for the true system G0 for many choices of h1 and h2,
implying that the heuristic will not always work for such systems.
Note that the difference is exactly equal to zero for the case where
h1 = h2 as confirmed by Theorem 1.
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A Proofs of Fact 1, 2, 3 and 4

Fact 1 is proven as follows: Notice that to prove (14) is
equivalent to prove

r2(Q1 +Q2)r
2(Q1 +Q2) = r2(Q1 −Q2)r

2(Q1 −Q2).

By definition, one has that

r2(Q1+Q2)r
2(Q1+Q2) = (r2In−G0)

2 = r4In−r2(hhT ).

So, we are left to prove that

r2(Q1 −Q2)r
2(Q1 −Q2) = r4In − r2(hhT ).

We will give expression of the elements of r2(Q1 −
Q2)r

2(Q1 −Q2) by calculating out the off-diagonal entries
and the on-diagonal entries separately.

• Off-diagonal elements (except for the last column and last
row). Take for any 1 ≤ k1, k2 < n the corresponding
columns from the matrix Δ = r2(Q1 − Q2) as (assume
that k1 < k2 without loss of generality):

Δk1
=
[−hn+k1−1,−hn+k1 , · · · ,
−h2n−2,−h2n−1,−1, · · · ,−hk1−2

]T
+ hr2en−k1+1,

and

Δk2
=
[−hn+k2−1,−hn+k2 , · · · ,
−h2n−2,−h2n−1,−1, · · · ,−hk2−2

]T
+ hr2en−k2+1.

So, the (k1, k2) and (k2, k1) elements of r2(Q1 −
Q2)r

2(Q1 −Q2) are given by the inner-product:

ΔT
k1
Δk2 =[−hn+k1−1,−hn+k1 , · · · ,−hn+k1−k2−1

]
[−hn+k2−1,−hn+k2 , · · · ,−h2n−1

]T
+
[−h2n+k1−k2 ,−hn+k1−k2+1, · · · ,−h2n−1

]
[−1,−h, · · · ,−hk2−k1−1

]T
+
[−1,−h, · · · ,−hk1−2

]
[−hk2−k1 ,−hk2−k1+1, · · · ,−hk2−2

]T
+ hr2(h2n+k1−k2−1 + hk2−k1−1).

Reorganizing the equation, we have that

ΔT
k1
Δk2 = −(hk2+k1−2 + hk2+k1 + · · ·+ h2n+k2+k1−4)

= −hk1+k2−2r2,

which is as desired.
• Off-diagonal elements (in the last column and last row).

Take for any 1 ≤ k < n and n the corresponding columns
from the matrix Δ = r2(Q1 −Q2) as:

Δk =
[−hn+k−1,−hn+k · · · ,

−h2n−2,
n−1∑
i=1

h2i−1,−1, · · · ,−hk−2

]T
,

and

Δn =

[
n−1∑
i=1

h2i−1,−1, · · · ,

−hn−k−3,−hn−k−2,−hn−k−1, · · · ,−hn−2
]T

.

So, the (k, n) and (n, k) elements of r2(Q1−Q2)r
2(Q1−

Q2) are given by the inner-product

ΔT
kΔn = − (hn+k−1 + hn+k + · · ·+ h3n+k−4)

+ (hn+k + hn+k+2 + · · ·+ h3n−k−5)

− (hn−k−1 + hn−k+1 + · · ·+ h3n−k−5)

+ (hn−k−1 + hn−k+1 + · · ·+ hn+k−4).

Reorganizing the equation, we have that

ΔT
kΔn = −(hn+k−2 + hn+k−1 + · · ·+ h3n+k−4)

= −hn+k−2r2,

as desired.
• The (k, k) entries where 1 ≤ k < n. We need to verify

the following equation:

(h2n+2k−2 + h2n+2k + · · ·+ h4n−4)

+ (h+ h3 + · · ·+ h2n−3)2 + (1 + h2 + · · ·+ h2k−4)

= (1 + h2 + · · ·+ h2n−2)2 − (1 + h2 + · · ·+ h2n−2)h2k−2,

which is equivalent to verify that

(1 + h2 + · · ·+ h4n−4) + (h+ h3 + · · ·+ h2n−3)2

(A.1)

= (1 + h2 + · · ·+ h2n−2)2.

This can be verified by the following:

⇔ (1− h2)(1− h4n−2) + h2(1− h2n−2)2

(1− h2)2
=

(1− h2n)2

(1− h2)2

⇔ 1 + h4n − 2h2n = (1− h2n)2.
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• The (n, n) entry. We need to verify the following equation:

(
n−1∑
i=1

h2i−1

)2

+ (1 + h2 + · · ·+ h2n−4)

= (1+h2+· · ·+h2n−2)2−(1+h2+· · ·+h2n−2)h2n−2,

which is equivalent to verify that

(1 + h2 + · · ·+ h4n−4) + (h+ h3 + · · ·+ h2n−3)2

= (1 + h2 + · · ·+ h2n−2)2.

This equality has been verified in eq. (A.1). In sum, we
have proved the Fact 1.

For the proof of Fact 2, we need to notice that the vector h
lies in the null space of the matrix Δ = r2(Q1 − Q2). As
matrix Δ is a square Hankel matrix, so it is to prove that
any column of Δ is orthogonal with h.

• The first (n-1) columns (except for the last column). Take
for any 1 ≤ k < n the corresponding column from the
matrix Δ, i.e.

Δk =
[−hn+k−1,−hn+k, · · · ,

−h2n−2,
n−1∑
i=1

h2i−1,−1, · · · ,−hk−2

]T
.

We have that:

ΔT
k h =− (hn+k−1 + hn+k+1 + · · ·+ h3n−k−3)

+ (hn−k+1 + hn−k+3 + · · ·+ h3n−k−3)

− (hn−k+1 + hn−k+3 + · · ·+ hn+k−3),

which is zero. This proves that all the first (n-1) columns
of matrix Δ are orthogonal to vector h.

• The n-th column. The n-th column of matrix Δ is also
orthogonal to vector h, which is certified by the following
calculation.

ΔT
nh = (h+h3+· · ·+h2n−3)−(h+h3+· · ·+h2n−3) = 0

Since (Q1−Q2)h = h(Q1−Q2) = 0, we have that (Q1−
Q2)P = P (Q1 −Q2) = 0. With this observation, the Fact
2 can be concluded by the following:

(Q1 +Q2)(Q1 −Q2) = (Q1 −Q2)(Q1 +Q2)

⇔ (In − P )(Q1 −Q2) = (Q1 −Q2)(In − P )

⇔ P (Q1 −Q2) = (Q1 −Q2)P.

This concludes the proof of Fact 2.

For the proof of Fact 3, the reasoning goes as follows: By
expanding the equations in Fact 1, and canceling the com-

mon terms in both sides, we have that

Q2Q1 +Q1Q2 = −Q2Q1 −Q1Q2.

By the same operation on the equation in Fact 2, we have
that

Q2Q1 −Q1Q2 = −Q2Q1 +Q1Q2.

From these two equations, we can calculate out Q1Q2 =
Q2Q1 = 0, which concludes the proof of the Fact 3.

For the proof of the Fact 4, we need to notice that as vector
h lies in the null space of Q1 −Q2, so we have that

(Q1 −Q2)P = 0.

Together with (Q1+Q2)P = 0, we have that Q1P = 0 and
Q2P = 0. So we have that

Q1 = Q1(Q1 +Q2 + P ) = Q2
1 +Q1Q2 +Q1P = Q2

1,

Q2 = Q2(Q1 +Q2 + P ) = Q1Q2 +Q2
2 +Q2P = Q2

2,

which concludes the proof of Fact 4.
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ABSTRACT

Consider the Basis Pursuit De-Noising (BPDN) estimator for recov-
ery of unknown, sparse parameters. This note presents an ellipsoid-
based, two-stage screening test method which aims to reduce a-priori
the dimensionality of the resulting optimization problem. The new
elements of the proposed method are given by (i) using an efficient
ellipsoid approximation scheme in both stages and (ii) making bet-
ter use of the information which has been calculated during the first
stage. A comparative experiment indicates that this procedure can
lead to better overall time complexity compared to known screening
tests, while screening away more irrelevant variables in a prepro-
cessing stage.

1. INTRODUCTION

We will first introduce the Basis Pursuit De-Noising (BPDN) esti-
mator briefly in the following. Let n ∈ N denotes the number of ob-
servations, and m � n denotes the dimensionality of the problem.
Given a measurement vector x ∈ R

n, m dictionary vectors(atoms)
bi ∈ R

n. Let these atoms be organized in a matrix B ∈ R
n×m

such that the ith column of B equals bi. Assume that there is an
(unknown) vector w0 ∈ R

m (which is assumed to be sparse) and a
vector e ∈ R

n (which represents noise), such that

x = Bw0 + e.

The task is to recover w0 from x and B. A survey of techniques
applicable to this task is given in [3, 4].

A reasonable estimate w = (w1, . . . , wm)T of w0 is given by
solving the following problem for a given λ > 0:

min
w∈Rm

1

2
‖x−Bw‖22 + λ‖w‖0, (1)

where ‖w‖0 =
∑m

d=1 I(wd �= 0), with the indicator I(z) equals to
one iff z holds true, and zero otherwise. Here the parameter λ > 0
regulates the tradeoff between the data fit and representation com-
plexity.

While (1) is non-smooth, non-convex, and strictly NP-hard
[8], one often resorts to solving the convex BPDN which serves as
tractable proxy to (1) by solving

w̄ = argmin
w∈Rm

1

2
‖x−Bw‖22 + λ‖w‖1, (2)

where the convex L1-norm is defined as ‖w‖1 =
∑m

d=1 |wd|. Here,
the norm ‖ · ‖1 is regarded as the convex envelope to the non-convex
‖ ·‖0. This estimator (2) is sometimes referred to as to the Least Ab-
solute Shrinkage and Selection Operator (LASSO) estimator. As in
[1], we also assume that ‖x‖2 = 1 and ‖bi‖2 = 1 for i = 1 . . .m.

The formulation of BPDN has found many interesting applications
and theoretical results, in particular because of the facts that:

• Since the BPDN boils down to a convex optimization prob-
lem, it can be solved efficiently with well-known tools as the
Interior Point Method (IPM) [5]. This is a general numer-
ical solver for problems of convex optimization. Extensive
research on this particular problem resulted in a wide variety
of numerical solvers which obtain better practical as well as
theoretical performance by exploiting more structure infor-
mation of the problem. For an up-to-date collection of such
methods, please consult1.

• Theoretical excitement stems from the fact that recoverabil-
ity(such as the support of w0,or some ’good’ estimations of
w0) of w0 can be guaranteed under certain conditions of the
measurement matrix B (Restricted Isometry Property, Null
Space Property, Spherical Section Property, etc, see [3, 4])
and the sparsity level of w0. Such guarantees come in differ-
ent forms as surveyed in [3, 4] and citations therein.

According to the reference [1], the Lagrangian dual to problem (2)
is given as follows:

θ̄ = argmax
θ∈Rn

1

2
‖x‖22 − λ2

2

∥∥∥θ − x

λ

∥∥∥2

2

s.t. |θTbi| ≤ 1, ∀i = 1, 2, . . . ,m. (3)

The optimal solutions w̄ to problem (2) and θ̄ to problem (3) are
connected through eq. (4) and eq. (5). We refer the readers to the
reference[1] for details.

x =

m∑
i=1

w̄ibi + λθ̄, (4)

and

θ̄Tbi ∈
{
sign(w̄i) iff w̄i �= 0

[−1, 1] iff w̄i = 0.
(5)

Define the halfspace H(y) for y ∈ R
n as

H(y) =
{
z : zTy ≤ 1

}
⊂ R

n.

Let L(y) be the corresponding hyperplane

L(y) =
{
z : zTy = 1

}
⊂ R

n.

The reasoning behind the construction of a screening test goes as
follows. From eq. (3), (4) and (5), we can see that if θ̄ is not on

1http://ugcs.caltech.edu/˜srbecker/wiki/Category:Solvers



L(bi) nor L(−bi), then w̄i will be zero. This is a crucial observa-
tion for screening tests as pointed out in [1, 2, 6]. The idea is then to
make a set Q ⊂ R

n which contains θ̄, and check for i = 1, . . . ,m,
whether L(bi) or L(−bi) intersects Q or not. If for i, no intersec-
tion takes place, one can conclude that w̄i is zero, and it doesn’t need
to be included in later stages of the optimization problem. That is,
this corresponding dictionary bi is screened away in the subsequent
optimization problem.

The aim of this paper is to reduce m before actually solving (2).
That is, we aim to filter out (or screen out) as many different columns
of B as possible, before performing the convex optimization prob-
lem (2) completely. Such preprocessing stage could then lead to
subsequent less time and memory intensive optimization procedures
since m could be reduced severely. An important point is that such
screening stage should not be too computationally involved to per-
form.

Some test methods have been devised already in [1, 2, 6] with
different levels of effectiveness. This note introduces a two-stage
ellipsoid based screening test which further improves the screening
performance. This means that in total, the computational cost includ-
ing the cost for the screening test and the cost for the subsequent op-
timization will be reduced. Our strategy is composed of two stages,
which in general are:

1. Approximate the basic potential region Q for θ̄ with an ellip-
soid, and then perform the ’intersection test’. If neither L(bi)
nor L(−bi) intersect with this ellipsoid, then the correspond-
ing w̄i is set to zero. This is similar to the tests as performed
in the traditional screening tests.

2. In the second stage, a new approximation of the potential re-
gion of θ̄ based on the information which is obtained earlier
(we only choose one halfspace which shrink the volume most,
details are given in section 3). Then another round screening
test is obtained based on this updated ellipsoid. Note that, this
stage, the test is only carried out on those atoms with haven’t
been determined to be screened out in the first stage.

Our method is motivated as follows: (1) the update rule of the ellip-
soid approximation is simple; (2) while performing the ’intersection
test’ in the first round, information can also be used for obtaining a
tighter approximation of the potential region of θ̄; (3) the ’intersec-
tion test’ in every round also requires low time cost.

We will use the following notational conventions throughout. A
lower-case letter denotes a scalar, a boldface lowercase denotes a
vector and a boldface capital denotes a matrix. This paper is orga-
nized as follows. Section II describes the ellipsoid related results,
including the update rule, and some related geometrical results. Sec-
tion III describes our algorithm in detail. Section IV gives experi-
mental results indicating the efficacy of the method, and compares
to existing approaches. Section IV concludes this paper and points
towards interesting open avenues for further research.

2. ELLIPSOID RELATED RESULTS

In this section, we will give the ellipsoid update rule and some re-
lated results. These results will be used in the forming of our pro-
posed algorithm in the following sections.

2.1. Ellipsoid Update Rule

Given a halfspace represented as

Hh(xp,g) =
{
z ∈ R

n : gT (z− xp) + h ≤ 0
}
,

and the corresponding hyperplane as

Lh(xp,g) =
{
z ∈ R

n : gT (z− xp) + h = 0
}
,

where h ≥ 0,g,xp ∈ R
n are given, and an ellipsoid

E(xp,Pp) = {z ∈ R
n : (z− xp)

TP−1
p (z− xp) ≤ 1},

where Pp ∈ R
n×n and Pp 
 0. Then the ellipsoid with the

minimum volume which contains the intersection of Hh(xp,g) and
E(Pp,xp) could be represented as

E(xu,Pu) =
{
z ∈ R

n : (z− xu)
TP−1

u (z− xu) ≤ 1
}
.

Here we define{
xu = xp − 1+αn

n+1
Ppḡ

Pu = n2(1−α2)

n2−1

(
Pp − 2(1+αn)

(n+1)(α+1)
Ppḡḡ

TPp

)
,

(6)

where ḡ = g√
gTPpg

and α = h√
gTPpg

.

The derivation of this update rule is given in [5]. It has found
main application for bounding convex sets as in the membership set
method [7] as commonly used in system identification. It also plays
an important historic role in finding polynomial time solver for solv-
ing Linear Programming (LP) problems [5]. In the following, we
will give a rule which decides if a hyperplane intersects with an el-
lipsoid or not.

2.2. Intersection test

Lemma 1 Given h > 0,xp ∈ R
n,g ∈ R

n,Pp ∈ R
n×n. Define

α =
h√

gTPpg
.

If |α| > 1, then the intersection of the hyperplane Lh(xp,g) with
the ellipsoid E(xp,Pp) is empty.

Proof 1 From a geometric viewpoint, this lemma follows by the fol-
lowing reasoning. Since

{z : gT (z− xp) + h = 0}
∩ {z : (z− xp)

TP−1
p (z− xp) ≤ 1} = ∅, (7)

holds if and only if

{z : gTP
1
2
p z + h = 0} ∩ {z : zT z ≤ 1} = ∅. (8)

Notice that the distance from 0 to the hyperplane given as {z :

gTP
1
2
p z+ h = 0} is equal to

|h|√
gTPpg

.

Hence it follows that if |α| > 1, the intersection will be empty. This
concludes the proof.

In the following, we will characterize how much of the volume will
be shrunken by the update.



2.3. Shrinkage of the Volume

Lemma 2 Define

α =
h√

gTPpg
.

If 0 ≤ α ≤ 1, then one has that after the ellipsoid update as depicted
in eq. (6), the volumes are shrunken as:

vol (E(xp,Pp))

vol (E(xu,Pu))
=

nn

(1 + n)(n2 − 1)
n−1
2

(1− α)(1− α2)
n−1
2 .

Proof 2 We have that

vol2 (E(xp,Pp))

vol2 (E(xu,Pu))
=

|Pu|
|Pp| (9)

=

∣∣∣n2(1−α2)

n2−1

(
Pp − 2(1+αn)

(n+1)(α+1)
Ppḡḡ

TPp

)∣∣∣
|Pp|

=

|n2(1−α2)

n2−1
P

1
2
p

(
I − 2(1+αn)

(n+1)(α+1)
P

1
2
p ḡḡ

TP
1
2
p

)
P

1
2
p |

|Pp|

=

(
n2(1− α2)

n2 − 1

)n ∣∣∣∣I − 2(1 + αn)

(n+ 1)(α+ 1)
P

1
2
p ḡḡ

TP
1
2
p

∣∣∣∣
=

(
n2(1− α2)

n2 − 1

)n ∣∣∣∣1− 2(1 + αn)

(n+ 1)(α+ 1)
ḡTPpḡ

∣∣∣∣
=

(
n2(1− α2)

n2 − 1

)n ∣∣∣∣1− 2(1 + αn)

(n+ 1)(α+ 1)

∣∣∣∣
=

n2n

(1 + n)2(n2 − 1)n−1
(1− α)2(1− α2)n−1,

as desired.

Remark 1 From both lemmas, we see that α plays a remarkable
role. This factor not only let us decide whether the hyperplane will
intersect with the ellipsoid or not, but also can help to characterize
how much the volume of the updated ellipsoid will be shrunken. Es-
pecially, from Lemma 2, we can see that the larger α is, the more the
volume of the updated ellipsoid will shrink.

3. ALGORITHM

Using the same notations as in [1, 2], we define λmax = maxi |xTbi|.
The vector b∗ is defined so as to satisfy λmax = xTb∗. It can be
verified that x/λmax is a feasible solution to the dual (3). In order to
avoid the trivial case, we assume that λ < λmax as in [1, 2]. Define
the region R1 ⊂ R

n as

R1 = {θ : bT
∗ θ ≤ 1}

⋂{
θ : ‖θ − x/λ‖2 ≤

√
1/λ− 1/λmax

}
.

We can see that R1 is a a region where θ̄ will locate in. This region
has been referred to as a ’dome’ in [2] (an intersection of a halfspace
and a ball). As discussed before, if for i ∈ {1, . . . ,m} neither of
the hyperplanes L(bi) or L(−bi) intersects with R1, then w̄i has
to equal zero. In the references, the authors bound R1 with differ-
ent balls (different center and radius), which led them to convenient
yet effective test as the ’SAFE/ST1’,’ST2’,’ST3’ test [1, 6] or the
’dome’ test[2]. The ’dome’ test is considered to be the most effec-
tive one in the sense of its effectiveness (the number of irrelevant
atoms screened out) and low computation cost. Hence, in the exper-
iment part we will mainly compare the proposed screening test with

the ’dome’ test. As stated briefly in the previous part, the proposed
test will consist of two stages. The formal and precise descriptions
are given as follows.

b*
b̂

0

x/lmax

x/l

x

A

B

Fig. 1. A schematic explanation of the idea behind the 2-stage,
ellipsoid-based screening test when n = 2. The unit circle Sn−1 at
the top indicates the unit sphere including the vectors {bi,−bi}mi=1

and x. The circle at the bottom indicates the set of vectors θ with
distance to x

λ
equal to ‖x

λ
− x

λmax
‖2. Hence, the optimum θ̄ of

problem (3) will be inside this circle. The solid lines indicate the
hyperplanes L(b∗) and L(b̂) as explained in Subsections 3.1 and
3.2. The first stage of the test computes an ellipsoid estimation of the
dome R1 = A

⋃
B which contains θ̄. Then a first round of ellipsoid

based screening is applied, and many of the irrelevant dictionary
atoms will be screened away. As a byproduct, those calculations
give the halfspace H(b̂) which shrinks the volume of the ellipsoid
estimation the most. So, the potential region of θ̄ will be shrunken
from R1 to region B. In the second stage of the test, screening is ap-
plied to the remaining dictionary atoms using the updated ellipsoid.

3.1. Stage 1

1. Compute the minimum volume ellipsoid containing R1.
This calculation is a direct consequence of the update
rule described in section 2, in which xp = x

λ
, g = b∗,

h = λmax
λ

− 1, and Pp = ( 1
λ
− 1

λmax
)In. Denote the

updated ellipsoid as

E1(x1,P1) = {z : (z− x1)
TP−1

1 (z− x1) ≤ 1},

where{
x1 = xp − 1+αn

n+1
Ppḡ

P1 = n2(1−α2)

n2−1

(
Pp − 2(1+αn)

(n+1)(α+1)
Ppḡḡ

TPp

)
,

(10)
in which ḡ = g√

gTPpg
and α = h√

gTPpg
.

2. Test for any i = 1, . . . ,m whether L(bi) or L(−bi) inter-
sect with E1(x1,P1) or not. If both do not intersect, then set



w̄i = 0. Formally, calculate

α+
i =

bT
i x1 − 1√
bT
i P1bi

,

and

α−
i =

−bT
i x1 − 1√
bT
i P1bi

.

If |α+
i | > 1 and |α−

i | > 1 hold together, or equivalently if√
bT
i P1bi < min{|bT

i x1 + 1|, |bT
i x1 − 1|}, (11)

then set w̄i = 0.

Remark 2 Eq. (11) is a direct application of Lemma 1 in Section 2.

Stage 1 gives an ellipsoid approximation to the ’dome’ area R1. As
we have seen in the previous section, the proposed screening test is
also convenient to compute as described above. An interesting fact is
that, while we are doing the screening, if eq. (11) does not hold, one
has the fact that the corresponding halfspace intersects with ellipsoid
E1(x1,P1). Since α−

i and α−
i have been calculated in hand, we

see from Lemma 2 that α−
i , α

+
i actually also indicate the volume

shrinkage of the ellipsoid approximation of the intersection. The
lager they are, the more the volume will shrink. This motivates the
next stage which causes no extra significant computational overhead.

3.2. Stage 2

1. Choose the the maximum value α̂ from {α+
i , α

−
i }mi=1 which

satisfies 0 < α̂ < 1. Denote the corresponding halfspace as

H(b̂) and the hyperplane as L(b̂). In the ellipsoid update

rules as in eq. (6), let g = b̂ and h = b̂Tx1 − 1 in order to
compute the updated ellipsoid

E2(x2,P2) = {z : (z− x2)
TP−1

2 (z− x2) ≤ 1},
where{

x2 = x1 − 1+αn
n+1

P1ḡ

P2 = n2(1−α2)

n2−1

(
P1 − 2(1+αn)

(n+1)(α+1)
P1ḡḡ

TP1

)
and in which ḡ = g√

gTP1g
and α = h√

gTP1g
.

2. For i = 1, . . . ,m, if w̄i is not screened away yet during the
first stage, test wether√

bT
i P2bi < min{|bT

i x2 + 1|, |bT
i x2 − 1|}. (12)

If this holds, then set w̄i = 0.

4. ILLUSTRATIVE EXAMPLES

This part describes an example which indicates the efficacy of the
proposed screening test, and compares result with earlier proposed
screening tests. In our example, we choose the dictionary atoms
{bi}mi=1 sampled randomly from a unit normally distributed ran-
dom variable, and then normalize each of them to norm one. we
generate the normalized vector x in the same way. In this example,
we let n = 10 and m = 200. Estimation problems of this size are
typical in applications of BPDN, while the relative low-dimensional
nature will already indicate the benefit of the proposed technique.
The displayed figures are obtained by averaging out results over 50
randomizations of the experiment. In Fig. 2, results of different
screening tests are given:
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Fig. 2. Performance of the different screening test methods, includ-
ing the ’Dome test’, the ’ST3 test’, the ’1-stage ellipsoid test’, ’2-
stage ellipsoid test’. The x-axis represents λ

λmax
, the y-axis repre-

sents the proportion of the number of the screened out zero elements
in w̄. This result illustrates a significant benefit of the proposed 2-
stage screening test for appropriate range of λ/λmax.
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Fig. 3. Improvement of the performance of the ’2-stage ellipsoid
test’ and the ’Dome test’. The x-axis represents λ

λmax
, the y-axis

represents the ratio of proportions of the number of the screened out
zero elements in w̄. Larger values indicate less remaining dictionary
elements after the ’2-stage, ellipsoid test’. This plot indicates that
the present test can have a significant gain in terms of number of
screened out dictionary elements for an appropriate range of λ

λmax
.

1. the ST3 method [1], in Fig. 2, with the tag ’ST3’;

2. the 1-stage ellipsoid method as derived in Subsection 3.1
(only performing the first stage), in Fig. 2, with the tag
’1-r-Ellip’;

3. the Dome test method [2], in Fig. 2, with the tag ’Dome’;

4. the 2-stage ellipsoid method as proposed in Section 3 (includ-
ing both stages), in Fig. 2, with the tag ’2-r-Ellip’.

From these figures, we observe the following:

1. When the ratio λ
λmax

is relatively small (in this example less
than 0.3), then all the screening test methods are relatively in-
effective. But in other words, this phenomena is reasonable.
If λmax is fixed, when λ

λmax
is small (which means that λ is

small), then the dome R1 will become very large, and all hy-
perplanes {L(bi), L(−bi)}i could be expected to intersect
the dome with more chance. In the extremal case that λ → 0,
any screening test would do poor, meaning that such tests can-
not be applied straightforwardly to the noiseless Basis Pursuit
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Fig. 4. Comparison of the average time cost when ’screening with
the Dome test, and solving the reduced BPDN’, and ’screening with
the proposed 2-stage, ellipsoid test, and solving the reduced BPDN’,
The x-axis represents λ

λmax
, the y-axis represents the time needed to

solve a corresponding complete problem. This result indicates that
the improved screening capacity of the 2-stage ellipsoid screening
test does not result in computational overheads, and may well lead
to computational speedups.

(BP) case.

2. When λ
λmax

is between 0.35 to 0.8, we see that the ’Dome
test’ and the ’1-stage ellipsoid test’ perform quite similar
(their performance curve nearly overlapping) to each other,
but do slightly better than ’ST3 test’. However, the 2-stage
ellipsoid test outperforms those as more irrelevant variables
are screened away, the quantitative improvement can be seen
from Fig. 3. This phenomena means that, in this case, it’s
better to use the 2-stage ellipsoid method to do screening.
Here, we need to notice that the time cost for the ’2-stage-
ellipsoid test’ is also quite low. Fig. 4, displays the time
cost for solving the same BPDN problem with ’Dome test’
for screening and ’2-stage ellipsoid test’ for screening. After
screening, we solve the reduced dimension BPDN problem
with ’cvx’ [5], using the internal Sedumi solver. We can
see the time-saving of adopting the ’2-stage-ellipsoid test’
method for screening.

3. When λ
λmax

is larger than 0.8, it appears that all the methods
give very similar performance. This is due to the fact that
in this case the dome area is relatively small, and most of
the hyperplanes {L(bi), L(−bi)}i will not intersect this area
(which means that most coefficients of the solution are zero
for such λ).

Again, note that by construction the screening tests are conservative,
that is, they cannot screen variables away which would be nonzero
in the final solution. Or, no performance can be lost, the screening
stage can only be beneficial since the resulting optimization problem
has smaller dimensionality.

5. CONCLUSION

This note presented an improvement of a screening test method for
the BPDN problem. The motivation is based on an ellipsoid approx-
imation of the potential region for θ̄, while the involved quantities
are found to be useful in the second stage. This second stage leads
to improved screening capabilities, only requring quantities which
were computed in the first stage anyway. Through simulations it
is found that such screening test is most effective when the ratio

λ
λmax

is moderate. The comparative experiment shows that, the pro-
posed ’2-stage ellipsoid’ method results in both effectiveness (more
irrelevant dictionary atoms are screened away) and efficiency (the
time cost for solving the whole optimization problem is reduced)
improvement over the state-of-art screening test method.

However, the following questions remain open: (1) Starting with
a feasible point x

λmax
, the present approach uses an initial potential

region for θ̄ which is the ’dome’ region R1. Can we find a better
starting feasible point in order to make the initial ’dome’ region more
accurate? (2) Can we find a way to generalize the method (includ-
ing the ’SAFE/ST1’, ’ST2’, ’ST3’, ’Dome test’, and the proposed
method) to the the case where 1/λ → ∞ as in Basis Pursuit (BP)?
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Abstract—The Randomized Kaczmarz Algorithm is a random-
ized method which aims at solving a consistent system of over
determined linear equations. This note discusses how to find
an optimized randomization scheme for this algorithm, which
is related to the question raised by [2]. Illustrative experiments
are conducted to support the findings.
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I. PROBLEM STATEMENT

In this note, we discuss the Kaczmarz Algorithm (KA)[4],

in particular the Randomized Kaczmarz Algorithm (RKA) [1],

to find the unknown vector x ∈ R
n of the following set of

consistent linear equations:

Ax = b, (1)

where matrix A ∈ R
m×n,m ≥ n, is of full column rank,

and b ∈ R
m. Since [4], the KA has been applied to different

fields and many new developments are reported. For instance,

in [6], the author study the RKA when applied to the case

of the linear systems are inconsistent. In [5], RKA is applied

to the Computer Tomography. In [7], the authors present a

method to accelerate the convergence of the RKA with the

application of the Johnson-Lindenstrauss Lemma. In [8], the

authors analyze the almost sure convergence of the RKA when

proper stochastic properties of matrix A are introduced. In [9],

the authors presented a practically more efficient approach to

solve the linear systems by projecting to different blocks of

rows of A, and a randomization technique is applied to find a

good partition of the rows.

The KA can be described as follows. Let us define the

hyperplane Hi as:

Hi = {x|aTi x = bi},
where the i-th row of A is denoted as aTi and the i-th element

of b is denoted as bi. Geometrically, the solution of (1) can

be thought as the intersection of all hyperplanes {Hi}mi=1, and

the KA seeks to find the solution by successively projecting to

the hyperplanes from an initial approximation x0. The process

is mathematically written as

xk+1 = xk +
bi − aTi xk

‖ai‖22
ai, (2)

where i = mod(k,m)+1. Here we use the Matlab convention

mod(·, ·) to denote the modulus after the division operation.

Fig. 1 illustrates the algorithm in a low dimensional case.

The key difference between the RKA and the KA is

that RKA chooses the rows following a specified probability

distribution. More precisely, the probability for selecting aTi

Fig. 1. A geometrical interpretation of the algorithm. Here, m = 4 and
n = 2, and the solution x to Ax = b is represented by the point o. We can
see that by this sequence of projections, xk converges to the solution.

is given as
‖ai‖2

2

‖A‖2
F
. Note that this probability is proportional to

the row norms.

Although the KA is simple to state, its rate of convergence

is still not completely explored. While for the RKA, with

the predescribed choice of the probability distribution, the

following convergence result is set up in [1]:

E(‖xk − x‖22) ≤ (1− κ(A)−2)k‖x0 − x‖22, (3)

in which κ(A) = ‖A‖F ‖A†‖2, and with E concerning the

random choices of rows in the RKA.

However, it is argued in [2] that ’Assigning probabilities
corresponding to the row norms is in general certainly not
optimal’. In the follows, we will try to find an optimized

probability distribution for selecting the rows from A, so that

a better performance can be obtained. The distribution vector

is derived by minimizing an upper bound to the convergence

rate which can be obtained by solving a convex optimization

problem.

This note is organized as follows. The next section discusses

the main results; In section 3, we discuss how to approximately

solve the arising Semi-Definite-Programming (SDP) problem

with smaller computational cost; In section 4, illustrative

experiments will be conducted to verify the findings; Finally,

we draw some conclusions in section 5.

II. OPTIMIZED RKA

In the following, for convenience of discussion, we will

introduce a new matrix B ∈ R
m×n. Let bT

i denote the i-th



row of B, which is defined as

bi =
ai

‖ai‖2
, ∀i = 1, · · · ,m, (4)

i.e. every row of the matrix B is a normalized version of the

corresponding row of matrix A.

Let p ∈ R
m be a probability distribution vector (i.e. p ≥ 0,

1Tp = 1) for selecting the rows in the RKA method and let

pi denote the ith element of p.

Assume that currently we have xk−1, and based on xk−1,

the next approximation xk is given by (2), in which the index

i is chosen randomly according to p. By the property of the

projection operation, we have that

‖xk − x‖22 = ‖xk−1 − x‖22 sin2(αi), (5)

in which αi denotes the angle between xk−1 − x and the

selected bi, i.e. the normal direction of the chosen hyperplane.

Based on the previous formula, we have that

E·|xk−1
(‖xk − x‖22) = ‖xk−1 − x‖22

m∑
i=1

pi sin
2(αi), (6)

in which E·|xk−1
denotes the expectation operator conditioned

on xk−1. It follows that:

m∑
i=1

pi sin
2(αi) ≤ sup

y∈Rn,y �=0

m∑
i=1

pi sin
2(βi) � Ω1, (7)

and
m∑
i=1

pi sin
2(αi) ≥ inf

y∈Rn,y �=0

m∑
i=1

pi sin
2(βi) � Ω2, (8)

in which βi denotes the angle between y and bi.

Based on the relations in (6), (7) and (8), we have that

E·|xk−1
(‖xk − x‖22) ≤ Ω1‖xk−1 − x‖22, (9)

and

E·|xk−1
(‖xk − x‖22) ≥ Ω2‖xk−1 − x‖22. (10)

By iterating the relations given in eq. (9) and eq. (10), the

following results follow.

Theorem 1: We have that

E(‖xk − x‖22) ≤ Ωk
1‖x0 − x‖22, (11)

and

E(‖xk − x‖22) ≥ Ωk
2‖x0 − x‖22, (12)

in which the expectations are taken with respect to all the

random choices of the rows up to time k.

Remark 1: Note that Ω1 < 1 can be guaranteed if p is a

strictly positive vector. This can be proven by a contradiction

argument as follows. If Ω1 = 1, and since sin2(βi) ≤ 1
for any i and

∑m
i=1 pi = 1, we have that sin2(βi) = 1, i.e.

cos(βi) = 0 holds for all i. Considering that rank(A) = n,

i.e. rank(B) = n, hence xk − x can not be orthogonal

to the vectors {bi}mi=1, and the result follows. Based on

this observation, we can see that exponential convergence in

expectation can be obtained by a wide range of probability

distribution vectors. This finding extends the result in [1],

which only guarantees the exponential convergence for a given

specific choice of the probability distribution vector. �
According to Theorem 1, in order to get a better per-

formance, we need to find a probability distribution vector,

such that Ω1 can be made as small as possible. When the

optimized Ω1 is obtained, we can also have a lower bound

to the convergence speed of the RKA based on Ω2. In the

following, we will first derive a closed form for Ω1 and Ω2,

and then introduce a convex optimization problem to calculate

the probability distribution vector p̂ which minimizes Ω1.

Notice that
m∑
i=1

pi sin
2(βi) = 1−

m∑
i=1

pi cos
2(βi),

so in order to minimize Ω1, equivalently, we can maximize

the following

inf
y∈Rn,y �=0

m∑
i=1

pi cos
2(βi).

If we restrict ‖y‖2 = 1, then we have that

cos2(βi) = yTbib
T
i y.

Therefore
m∑
i=1

pi cos
2(βi) =

m∑
i=1

piy
Tbib

T
i y,

where the right hand side equals

yTBT diag(p)By.

Notice that

min
y∈Rn,‖y‖2=1

yTBT diag(p)By = σn(B
T diag(p)B),

in which σn(·) denotes the smallest singular value of the

matrix. The previous discussions can be summarized as:

Theorem 2:

Ω1 = 1− σn(B
T diag(p)B). (13)

Similarly, we have that:

Corollary 1:

Ω2 = 1− σ1(B
T diag(p)B), (14)

in which σ1(·) denotes the maximal singular value of the

matrix.

Notice that minimizing Ω1 is equivalent to maximizing

σn(B
T diag(p)B), then we can solve the following problem

instead:

max
p∈Rm

σn(B
T diag(p)B) (15)

s.t. 1Tp = 1;

pi ≥ 0, i = 1, . . . ,m.

This problem can be rewritten as the following SDP prob-

lem, in which t̂ denotes the optimized σn and p̂ denotes the



corresponding probability distribution vector:

(p̂, t̂) = argmax
p∈Rm,t∈R

t (16)

s.t. 1Tp = 1;

pi ≥ 0, i = 1, . . . ,m;

BT diag(p)B − tIn � 0.

After solving the optimization problem of (16), p̂ is applied

to the RKA to select the rows. Such a scheme will be

abbreviated as ORKA in the following.

Remark 2: There exist cases such that Ω1 = Ω2, i.e. there

exists a vector p, such that

σ1(B
T diag(p)B) = σn(B

T diag(p)B),

i.e. BT diag(p)B = 1
nIn. In such cases, Ω1 = Ω2 = 1 − 1

n ,

and the optimized probability distribution obtained by solving

eq. (16) is the same as suggested in [1]. It can be verified that

when the columns of A are orthogonal and of equal norm,

then such property will hold. �
Remark 3: The optimization problem (16) can also be

formulated as

q̂ = argmin
q∈Rm

1Tq (17)

s.t. BT diag(q)B − In � 0;

qi ≥ 0, i = 1, . . . ,m.

in the sense that t̂ = 1
1T q̂

and p̂ = t̂q̂.

Since q in (17) is nonnegative, one has that 1Tq = ‖q‖1.

It is known that the l1 norm minimization problem is likely to

return sparse solutions[11], which gives that q̂ is likely to be

sparse. In the experiment section, we will also illustrate this

phenomena. �
Next, we discuss the relation between the ORKA and the

RKA. It is obvious that the projection operations in (2) depend

only on the corresponding normal vectors of the hyperplanes

{Hi}mi=1, so we can optimize κ(A) = ‖A‖F ‖A†‖2 subject to

the norms of the rows of matrix A. The optimization problem

is given as

min
{‖ai‖2}m

i=1

κ(A) = ‖A‖F ‖A†‖2.

Define q ∈ R
m, in which qi = ‖ai‖22 for i = 1 · · ·m. Then

the previous optimization problem can be written as

min
q

√
1Tq

σn(A)
.

Set 1Tq = 1 and notice the fact that ATA = BT diag(q)B,

then we can rewrite the previous problem as follows

(q̂, σ̂n) = argmax
q∈Rm,σn(A)∈R

σ2
n(A) (18)

s.t. 1Tq = 1;

qi ≥ 0, i = 1, . . . ,m;

BT diag(q)B − σ2
n(A)In � 0.

It can be observed that this optimization is equivalent to the

problem given by (16).

We conclude this observation in the following theorem.

Theorem 3: The ORKA can do at least as good as the RKA,

in the sense that if we optimize κ(A) over the norms of rows

of A, we obtain the same probability distribution vector as the

one obtained by the ORKA.

III. FURTHER DISCUSSIONS

Note that although the formulation in (16) is convex, it is

still time consuming to solve this SDP optimization problem.

In this section, we will discuss two possibilities to solve it

approximately , which can alleviate some of the computational

cost. One approximation of (16) is obtained by relaxing the

constraint BT diag(p)B − tIn � 0 by the following linear

constraints:

bT
i diag(p)bi ≥ t; ∀i = 1, . . . ,m. (19)

It is due to the fact that, for two positive semidefinite matrices

P1, P2 ∈ R
n×n, if P1 � P2, then P1(i, i) ≥ P2(i, i) holds for

i = 1, · · · , n. Such relaxation reduces the SDP problem into a

Linear Programming (LP) problem, which is computationally

easier to solve.

In order to get a better relaxation, we introduce another

approximation method which relates to the research of Optimal
Input Design [10]. Notice that tr(BT diag(p)B) = 1, i.e.

the summation of all the singular values of BT diag(p)B
is fixed, then maximizing σn(B

T diag(p)B) means that we

want all the singular values of BT diag(p)B to be close. This

leads us to consider maximizing the product of the singular

values of BT diag(p)B, or maximizing the determinant of

BT diag(p)B. As the log function is monotonically increas-

ing, we can optimize the following

max
p∈Rm

log |BT diag(p)B|, (20)

in which | · | denotes the matrix determinant. Optimizing this

quantity subject to the same constraints of (15) boils down

to solve the so-called D-Optimal Design problem. One simple

iterative algorithm to solve such problem has been suggested

in [12], which is given as

p0i =
‖ai‖2
‖A‖2F

; i = 1, . . . ,m;

pt+1
i = pti

bT
i (B

T diag(pt)B)−1bi

n
; i = 1, . . . ,m. (21)

Here, pt denotes the estimation at time t, and pti denotes its

i-th element. It has been proven in [13] that for this algorithm,

log |BT diag(pt)B| decreases monotonically w.r.t. t. We will

make use of such property to approximately solve (15) when

the objective function is replace by (20). More discussions will

be given in next section.

IV. EXPERIMENTS

In this section, we will conduct experiments to illustrate

the efficacy of the presented methods. The setup of our

experiment is given as follows. The matrix A is first generated

by randn(m,n) in Matlab with m = 200 and n = 20, after

that, each row is normalized, and then scaled with a random



number which is uniformly distributed in [0, 1]. The reason for

generating A as such is that in the first stage, the generated

rows of A will have different directions which are uniformly

distributed on the sphere Sn−1[14]; and in the second stage,

different rows of A with be assigned with different norms,

which is directly related to the probability distribution vector

chosen in [1]. x is generated by randn(n,1), and b is generated

as b = Ax. We will compare the Mean Square Error (MSE)

along the projection path obtained by all these methods, the

first is the one suggested in [1] (abbreviated as RKA), the

second is the one obtained by the SDP optimization given

by (16) (abbreviated as ORKA) and the third is the one

obtained by the LP approximations given by (19) (abbreviated

as LPORKA), the last is the one obtained by the iterative

method to solve the D-Optimal Design criteria (abbreviated

as ITEORKA). We iterate (21) for 10 times in this experiment.

For each method, we run the experiment 2000 times to get

the averaged performance. The CVX toolbox1 is used to solve

the SDP and LP optimization problems. From the experiment,

we can observe that the time for solving the LP problem in

LPORKA is close to the time needed for the 10 iterations

of (21), and the time needed for solving (16) in ORKA is

approximately 7 times as them.

Fig. 2. The curves demonstrate the MSE for different methods. We can
see that the ORKA improves the convergence speed the most; the LPORKA
method and the ITERKA method also improve the convergence speed, and
the ITEORKA method improves more than the LPORKA method.

V. CONCLUSION

This note discusses the possibility and methodology to find

a probability distribution vector for selecting the rows of A
to result in a better convergence speed of the Randomize

Kaczmarz Algorithm. The lower bound and upper bound for

the convergence speed is derived first. Then an optimized

probability distribution vector is obtained by minimizing the

upper bound, which turns to be given by solving a convex

optimization problem. Properties of the approach are also

discussed along the note.

1http://cvxr.com/

Fig. 3. An illustration of the probability distribution vectors obtained by
different methods. Note that there are 68 zero elements of the probability
distribution vector obtained by the ORKA method, which is 34% sparsity of
the total length.
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