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Abstract

The information conveyed by genetic markers such as Single Nuc-
leotide Polymorphisms (SNPs) has been widely used in biomed-
ical research for studying human diseases, but also increasingly
in agriculture by plant and animal breeders for selection pur-
poses. Specific identified markers can act as a genetic signature
that is correlated to certain characteristics in a living organism,
e.g. a sensitivity to a disease or high-yield traits. Capturing
these signatures with sufficient statistical power often requires
large volumes of data, with thousands of samples to analyze and
possibly millions of genetic markers to screen. Establishing stat-
istical significance for effects from genetic variations is especially
delicate when they occur at low frequencies.

The production cost of such marker genotype data is therefore
a critical part of the analysis. Despite recent technological ad-
vances, the production cost can still be prohibitive and genotype
imputation strategies have been developed for addressing this
issue. The genotype imputation methods have been widely in-
vestigated on human data and to a smaller extent on crop and
animal species. In the case where only few reference genomes are
available for imputation purposes, such as for non-model organ-
isms, the imputation results can be less accurate. Group test-
ing strategies, also called pooling strategies, can be well-suited
for complementing imputation in large populations and decreas-
ing the number of genotyping tests required compared to the
single testing of every individual. Pooling is especially efficient
for genotyping the low-frequency variants. However, because
of the particular nature of genotype data and because of the
limitations inherent to the genotype testing techniques, decod-
ing pooled genotypes into unique data resolutions is a challenge.
Overall, the decoding problem with pooled genotypes can be de-
scribed as as an inference problem in Missing Not At Random
data with nonmonotone missingness patterns.

Specific inference methods such as variations of the Expectation-
Maximization algorithm can be used for resolving the pooled
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data into estimates of the genotype probabilities for every in-
dividual. However, the non-randomness of the undecoded data
impacts the outcomes of the inference process. This impact is
propagated to imputation if the inferred genotype probabilities
are to be devised as input into classical imputation methods for
genotypes. In this work, we propose a study of the specific char-
acteristics of a pooling scheme on genotype data, as well as how
it affects the results of imputation methods such as tree-based
haplotype clustering or coalescent models.
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Chapter 1

DNA sequencing and
genotyping in the big data
era

1.1 Technologies for sequencing the DNA and gen-
otyping markers

Representation of chromosomes, DNA, and nucleotides

The genetic code of the living organisms is encoded within genetic material
which consists of DNA molecules. The visible characteristics, or phenotype,
of an organism as well as the biological reactions of the metabolism are
mostly the result of the expression of the genetic code. The DNA molecule
is double-stranded and has remarkable stability properties when replicated,
divided and shared through the sexual reproduction, which is the core as-
sumption for parentage and population genetic studies.

One of these characteristic properties is the complementarity of the two
strands, that is the nucleotide (or base) adenine (A) is always paired to
thymine (T) while the cytosine (C) is paired to the guanine (G). Therefore,
the DNA molecule is usually denoted a sequence of pairs of bases (bp). The
complementary strands are oriented, by convention the reference strand has
a forward orientation, which corresponds to the orientation of transcriptions
of the genes. The chromosomes are sequences of DNA that are stored in
a compacted form in the nucleus of the cells. In mammalian species, the
chromosomes have a length with an order of magnitude of 108 bp. In the
case of diploid species as human, each chromosome can be paired to its
homolog, which shares the same structural features and the same genes at
the same loci (genetic positions). The exact sequence of the DNA of each of
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4 Chapter 1. DNA sequencing and genotyping in the big data era

the homologous chromosomes depends however on its parental source that
can carry different alleles at corresponding loci. The combination of alleles
is described as a genotype. The processes of mutation and recombination
that arise in DNA over generations constitute the basis of genetic diversity.
This diversity can be studied by describing and measuring the allelic vari-
ations between individuals of the same species. Figure 1.1 shows a simplified
representation of a pair of human chromosomes and their sequence of nuc-
leotides.
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Figure 1.1:
Simplified representation of chromosomes, DNA, and

nucleotides for a diploid species.

Historical evolution of DNA sequencing and successive improve-
ments

DNA sequencing consists in determining the nucleotide sequence of selected
parts of the DNA of an organism. The DNA sequencing technologies are
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usually classified in successive generations that have been developed since
the late 1970’s. The first-generation sequencing, originally synonymous to
Sanger sequencing, lets the scientists identify the sequences after separating
the DNA fragments on polyacrylamide gel [19, 24, 26].

The second-generation DNA sequencing is mostly represented by the
Next-Generation Sequencing (NGS) technologies. The NGS machines oper-
ate a massive parallelization of the sequencing by using multiplexed schemes
for the DNA probes. This type of sequencing has drastically cut the cost of
sequencing and facilitated Whole Genome Sequencing (WGS) projects.

Research continues into newer generations of sequencing technologies,
with multiple avenues including single molecule sequencing with long reads,
real-time sequencing, and nanopore sequencing. To the difference of the two
former generations that requires the DNA to be copied e.g. with poly-
merase chain reaction (PCR) in order to have sufficient quantities, the
third-generation sequencing techniques operate without DNA amplification.
Therefore, these techniques are expected to further decrease the cost of
large-scale DNA sequencing. The third-generation sequencing technologies
[54] let the research community hope for achieving ultra-low cost sequencing.

Technologies for genotyping variants of interest in the DNA

Millions of genetic positions in the human DNA have been identified as
known positions of genetic variation, which are referred to as variant pos-
itions or markers. One category of genetic markers are Single Nucleotide
Polymorphisms (SNPs), which means that each of the two chromosomes in
a pair might show one of the alleles of a given pair only, depending on the
individual. The pair of nucleotides can be any combination from the set A,
T, G, C and varies for each locus. The complementary nature of the two
DNA strands let the representation of the DNA be simplified as a single
strand of nucleotides as shown on Figure 1.1. SNPs are not adjacent to each
other in the nucleotidic sequence.

The genotyping technologies are designed to detect which nucleotide is
present at these single genetic positions. Each version of the nucleotides
is an allele which is identified when calling the genotype Usually, the two
alleles of a SNP are arbitrarily typed as reference or alternate (Figure 1.1).
This typing choice is unrelated to the allele frequencies in a population even
if it is common to choose the reference allele being the most frequent or
the ancestral one. The degree of statistical correlation between the frequen-
cies of the allele arrangements over two SNPs can be expressed as Linkage
Disequilibrium (LD). The larger the LD is, the more chances the alleles
are inherited together. The resulting series of alleles that derives from the
same parent constitute a haplotype. From the computational perspective,
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SNPs have the advantage that they can be represented as binary entities
at the locus, where 0 would denote the reference allele and 1 the alternate
allele. Commonly, the genotype of a SNP is represented as a ternary entity
representing the total allele count in the locus, with the possible values of
{0, 1, 2}. A locus having twice the same allele, and hence genotype 0 or 2 is
said to have a homozygous genotype, else (genotype 1) it has a heterozygous
genotype.

The fluorescent detection of nucleotide on DNA arrays was developped in
the late 90’s and 2000’s. A microarray is a glass plate with one well for each
SNP to be genotyped, one individual can therefore be tested for thousands
or millions of positions on a single plate. On each chip, there is a collection of
short fragments of synthetic DNA probes (less than 100 bp in size) that are
complementary to the sequences where the SNP of interest is located. The
probes are attached on a chip [24]. After denaturation, amplification and
fragmentation of the DNA, the allele discrimination is done by hybridizing
nucleotides marked with a fluorescent dye (dNTP*). The SNP alleles are
determined based on the color of the fluorescent signal on the chip.

Usually, a sample which is homozygous at the locus of interest returns
either a red or a green light signal depending on the allele which is detected.
For the heterozygotes, both the reference and the alternate alleles are de-
tected on the chip such that the light signal that is returned combines both
red and green fluorescence into a yellow dye. Figure 1.2 [1] illustrate an
example of a chip. As for DNA sequencing, the color intensity of the signal
measured when reading the array is not linearly proportional to the allelic
concentration in the samples. If the fluorescence sensor is correctly calib-
rated and the DNA sample is not too concentrated, some methods however
allow for deducing a quantitative measure of the concentration.

The call rate denotes the proportion of SNPs that can be detected
without ambiguity when reading the microarray. Usually, the SNPs with
a consequently low call rate are deleted in post-processing before using the
genotype data for other analyses such as imputation or Genome-Wide Asso-
ciation Studies (GWAS). Affymetrix and Illumina are today two dominating
manufacturers of SNP microarrays.

Each microarray is designed for a selected set of variants. If a reference
genome is available, the set of SNPs that are targeted can be positioned
with respect to this genome. A reference genome is obtained from a genome
assembly experiment which relies on the sequenced data in a cohort of indi-
viduals. For instance, in the 1000 Genomes Project (1KGP), the genomic
data was positioned based on the GRCh37 and GRCh38 maps. These maps
were created from two different studies of human genome assembly [49, 50].
Traditionally, the SNPs can also be positioned based on an adequate genetic
map. What differentiates the sets of SNPs targeted is their density, that is
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to say how many SNPs par kbp are genotyped. Nowadays, the manufactur-
ers offer SNP microarrays for variant sets in different species, ranging in size
from a few thousands to millions of markers per individual. When genotyp-
ing a large population of individuals, there are thousands of millions wells to
read and process. In comparison to whole sequence data, the characteristics
of the SNP data are their sparse and discontinuous, possibly noisy nature.

Genotyping can also be achieved based on the Next Generation Sequen-
cing (NGS) technologies, in that case it is called Genotyping By Sequencing
(GBS). Especially, the NGS technologies have benefited genotyping by con-
siderably reducing the costs since the sequencing can be done in parallel for
numerous individuals [25].

Figure 1.2:

Example of an Illumina BeadChip microarray for SNP

genotyping.

Upper panel: The BeadChip in this example is made of 12 cells
on a glass plate and marked with a identifying number at its
bottom. Each cell has thousands of micro wells where the DNA
probes are fixed. After hybridization, the cells are scanned with
red and green fluorometry.

Lower panel: Zoom-in on a cell. The software combines and
interprets the results as colors.
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1.1.1 Practical applications sequence and genotype data

Mapping phenotypes to genetic profiles

The Human Genome Project was carried out based on sequence data from
machines that automated the Sanger technique and led to the sequencing
of the first whole human genome in 2003 [19]. The DNA sequencing tech-
nologies have had a significant impact on biomedical research as they have
enabled large-scale genomic studies by providing a genetic basis for investig-
ating the susceptibility and the heritability to both common and rare human
diseases. This kind of research also opens up prospects for future applica-
tions as the personal genome project [46] and personalized medicine based
on genetic profiles. The biomedical research often makes use of the results
of the GWAS. The purpose of these studies is to find statistical relationships
between genotypes and phenotypes [5] in a selected population. Often, the
phenotype of interest is the status for a disease as diabete. In such case,
the results of GWAS enable to relate the risk for developing the disease to a
specific genetic profile, which is commonly defined as a polygenic risk score
[20].

Beyond the human applications, internationally accessible whole or par-
tial genome sequences data sets are nowadays available for thousands of
species. They open the opportunity for comparative genomics studies that
aim to capture the molecular mechanisms in organisms [46] and find applic-
ations in e.g. environmental or ecological studies.

Agriculture has also benefited from the improvements in sequencing tech-
nologies. Genetic data, especially genetic markers as SNPs, serve as support
for Marker Assisted Selection in crops [25, 29] and animal farming [2]. Such
studies are in particular interested in Quantitative Trait Loci (QTL) and
SNPs for genomic selection [13, 25]. Genomic selection aims to use the
estimated breeding value for choosing which individuals in an animal or
plant population will be used for founding the next generation in a breeding
process. The breeding value for the current generation is the predicted rela-
tionship between different haplotypes showing specific QTL alleles at some
loci that are in LD. The density of markers in the set that is considered
affects the estimated breeding value. Overall, the applications using DNA
sequence data for domesticated e.g. the mouse Mus musculus and wild spe-
cies e.g. the thale cress Arabidopsis thaliana have been less investigated
than the human data and there are fewer standard data sets available.

Among the most used and standard genotype maps for human are The
HapMap project, the 1000 Genomes Project and more recent similar ones
as the UK Biobank or the SweGen resource [3, 49, 48, 50]. Some of these
data sets are created in view of medical applications e.g. the UK Biobank
data, which includes rich phenotypic data that is required for calculating
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polygenic risk scores [20].

Outlooks and challenges with the sequencing technologies

In conjunction with the improvement of the efficiency of the sequencing
technologies, many research fields have increasingly used larger volumes of
generated sequence data.

For instance in medical research, the genotyped markers have helped to
analyze the heritability and potential genetic causes, or genetic propensity,
to develop cancer, diabetes, and heart diseases. The understanding of ge-
netic factors related to diseases opens up prospects towards individualized
medicine that is tailored for each patient based on its genetic profile e.g.
targeted drug treatments.

Agriculture also benefits from the information that are mined from ge-
nomic data. Specifically in breeding and selection programs for crops or
livestock [2, 19, 46], the selection of phenotypes with high agricultural value
can be accelerated and sharpened based on predictions from the genotype
data. In many food crops, phenotypes of interest could be an increased
drought or pest resistance, as well as higher yields or improved nutritional
value. Genomics-assisted breeding of plant species has for example used
GBS technologies [25]. Not only the domesticated organisms but also wild-
life monitoring can be boosted with genomic data.

In the case of human data though, privacy concerns have emerged with
human genetic testing [30] and the access to personal data e.g. GDPR has
reshaped the legal framework.

Regarding the technical aspects, the current sequencing technologies still
have limitations for the statistical studies based on the sequenced data. For
example, only short reads are produced with NGS technologies [26], which
makes the technology inappropriate for genome assembly purposes and for
the analysis of genomic variations that could be observed in longer segments.
The single positions read from SNP genotyping cannot capture all the struc-
tural variants in the genome either, and sometimes fail at capturing the LD
[24]. Moreover, the microarray-produced genotype data is also sparse and
often noisy [54], which requires specific data (pre)processing as well as ad-
equate statistical treatments. Other single-molecule DNA sequencing such
as the Pacific Biosciences (PacBio) sequencing and the Oxford Nanopore
Technologies (ONT) are emerging alternatives that produce long-reads with
high accuracy [33], and therefore provide better data about the LD inform-
ation.
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1.2 Using group testing for sequencing and geno-
typing purposes

Despite the progress of sequencing, the production cost of genetic data can
still be a concern for projects involving extreme sample counts, especially
for non-model organisms, where costs per test tend to be higher. Such issues
can for instance arise in agriculture where many animal or plant genomes
have not been broadly investigated and sequenced. For these, the data
sets currently available may lack sufficient quality, and the creation of new
data sets is likely to be more expensive because of the limited concurrence
between the retailers. Group testing, or pooling, is relevant in this context
of large-scale sequencing and genotyping at low cost.

Beyond the technological effort for parallelizing and automating sequen-
cing and genotyping, pooling represents a supplementary strategy for redu-
cing the cost of large-scale genomic testing [24]. For sequencing purposes,
pooling is intended to be used in addition to the NGS technologies in order
to further reduce the costs of processing. DNA pooling has been success-
fully used since the 90’s for among others large-scale association studies for
human diseases [45] and later for breeding and selection purposes as in rice
for pooled genotyping in rice [17] or cattle [2]. However, for low-frequency
variants, many individuals need to be genotyped in order to have sufficient
statistical power. In the case of pooling for GWAS, often a multivariate
regression model is often used for processing the genotyping from pooled
samples. These regression models have specific strategies for accommodat-
ing with missing or erroneous data.

1.2.1 Categorization of group testing schemes

Principle of pooling

In a broad sense, the general pooling problem consists in identifying a few
deviating items in a population in an accurate and efficient way [36]. The
samples are mixed together, or pooled, and tested in groups, which reduces
the total number of tests performed compared to individual testing. Usually,
the tests have a binary outcome e.g. the infection status for a disease. A
defective item, for example an infected individual, returns a positive test
result, whereas the other items return a negative one. A core assumption
underlying pooling is that the test result for a pool is positive as soon as at
least one of the items in the pool is positive. For instance, numerous studies
have been recently published about practical applications of pooling for
population screening and the identification of groups of individuals that were
infected with the severe acute respiratory syndrome coronavirus 2 (SARS-
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Cov-2) [22, 42]. Whenever the test result for a group was positive, the entire
group was considered to be possibly infected, or at least exposed. This type
of testing has been mostly used in the US in some schools across the country.

For genotyping purposes, the pooled testing at each SNP consists in
calling on a chip the alleles at this locus in a solution where the DNA is
mixed from several individuals assigned to the same group. As described
previously, the light signal returned by the chip depend on the allelic com-
position of the DNA mix.

The pooling problem addresses the question of how to form pools in
an optimized way. Various objectives can be targeted when solving the
optimization problem, such as finding a design that minimizes the number
of pools, that limits the pool size, or that accommodates for testing errors
[36].

Families and categories of group testing schemes

Two main categories of group testing are common in the literature. The
first one is combinatorial group testing which relies on the assumption that
the maximum number of defective items in the population to be tested is
known and fixed to some integer. The second category is probabilistic group
testing where a fixed probability is set for any item to be defective.

When pooling and testing are repeated s times and every new iteration
depends on the results of preceding one, the pooling design is said to be
s-staged, or adaptive. If the procedure for forming the pools and testing
them is specified independently from any other results and for 1 stage only,
the pooling design is nonadaptive [36].

Every SNP-chip is manufactured for a predetermined set of SNPs. Hence,
using a SNP-chip implies that the genotypes of thousands or millions of
SNPs in the targeted set are tested simultaneously. This setting does not
allow for adaptive testing of single SNPs or a subset of the SNPs targeted.
Therefore, only nonadaptive group testing (NGT) algorithms can be used
for SNP genotyping purposes [14, 56].

Strategies for constructing deterministic designs

Various methods that have been investigated for constructing deterministic
pooling designs such as pooling-deconvolution, shifted transversal design
(STD) and its hypergraph extensions, multiplexed schemes or compressed
sensing [14, 16, 23, 24, 36].

In the research we have conducted, we have used the nonadaptive and
STD-based approach [51] that constructs overlapping pools and arrange the
pools into blocks. The block construction is repeated over the entire popu-
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lation such that each sample to be genotyped is assigned to a block. Section
1.3.1 in this chapter provides more details about the terminology of pool-
ing. The designs used for DNA library screening or rare variant frequency
estimation are not necessarily overlapping ones [53].

1.2.2 Properties and parameters of deterministic and non-
adaptive pooling designs

Definitions and notation

A pooling design defines an algorithm that determines encoding and decod-
ing rules. Assigning the samples to pools corresponds to an encoding step
[23]. The pooling problem consists in identifying the deviating items based
on the outcomes of the pooled tests. The process of determining the test
results for any individual from the pooled outcomes is referred to as the
decoding step of the pooling design. For example, both in the STD study
[51] and in the DNA Sudoku scheme [55], the decoding step for this design
follows pattern-consistency rule.

A NGT design with repeated blocks can be described in a compact way
for each block with a design matrix that we denote M . M is a matrix with
binary entries of dimensions (T,B), where each of the T rows represents
a pool and each of the B columns represents a sample. The entry 1 at
coordinates (i, j) indicates that the sample j belongs to the pool i, otherwise
the entry is 0. An example of a design matrix, largely based on the STD
and the DNA Sudoku, is given in the next section of this chapter.

Let y = [y1, . . . , yT ] be the vector indicating the test outcomes for the
pools. Likewise, we denote x = [x1, . . . , xB] the vector representing the test
outcomes for the individuals. The relationship between the outcomes of the
pooled tests in y and the decoded results for every sample represented by
x can be modelled as the ceiled result of the multiplication of the design
matrix M by the outcome vector y

y = ⌊M · x⌋ (1.1)

Solving the pooling problem consists in finding the vectors x that satisfy
1.1 given the outcomes in the vector y are observed. Typically for this
purpose, it is desirable the design matrix M is d-disjunct. This means the
design guarantees exact reconstruction of the vector x if there are at most
d ‘faulty‘ items in it. d is also called decoding robustness.

Performance-critical parameters of the pooling design

Let us define the reduction factor ρ = B
T based on the suggestion in [56] for

an under-sampling ratio. Optimizing the pooling design consists in finding a
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trade-off between the reduction factor and the decoding robustness. Ideally,
both ρ and d are as large as possible. If there are more than d defective
samples in the population to be pooled, some items are missing after pooling
because they cannot be decoded.

Theoretical studies have explored different methods for constructing
designs that are relevant in different contexts. Constructing optimal pool-
ing designs can also lead to time and memory complexity challenges [36]. In
our research, we have experimented one design which is detailed in the next
section, and studied it only practically for genotyping applications.

1.3 Example of a Nonadaptive Overlapping Re-
peated Blocks design for SNPs genotyping

This section introduces the simple case of STD that is used in Paper I and
II for simulating experiments of pooled genotyping. Given the character-
istics of the design, we choose to designate it by the name Nonadaptive
Overlapping Repeated Blocks (NORB) pooling design.

1.3.1 NORB parameters and design matrix

A NORB pooling design can be described with the following properties:

• The population to be tested is divided in blocks of equal size B [56].
In our experiments, we have chosen B = 16.

• That is, if the study population consists of 160 individuals, a block
unit is repeated 10 times.

• Within each block, we assign the individuals to pools, such that each
pool consists of 4 samples and each sample is part of W = 2 pools. In
other words, there are 2 pools overlapping at each sample. Moreover,
each of the T = 8 pools in the block intersects any of the other pools
λ = 1 time.

• The blocks and the pools are assigned only once for one testing stage,
that is the algorithm is nonadaptive.

This NORB scheme can be represented by the following design matrix
M :
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M =




C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

R1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
R4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
R5 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
R6 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
R7 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
R8 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




With this NORB design, the matrix M is said being d-disjunct if Equa-
tion 1.2 involving the maximal value for λ and the minimum one for W is
verified:

d =

⌊
Wmin − 1

λmax

⌋
(1.2)

The decoding robustness of the design d is defined as the maximum
number of carriers of the alternate allele in the block that can be identified
with certainty. Our design has a decoding robustness d = 2−1

1 = 1.

In the case of genotype testing, identifying the carriers does not imply
that the exact genotype of these items can be resolved as it could be either
heterozygous or homozygous for the alternate allele. The reduction factor of
the pooling design is ρ = 2, which means that half the number of tests are
necessary for genotyping the pools compared to doing one test per individual.

1.3.2 Representation of a pooling block

As an alternative to the design matrix, we have used within our studies a
more intuitive, graphical representation of pooling blocks. Figure 1.3 shows
this block representation as a 4× 4 square grid. The B = 16 individuals fill
the cells of the grid. Each row of the grid consists of 4 samples that belong
to the same pool, and likewise for the columns of the grid. That is, there
are T = 4+4 = 8 pools in a block. Each sample intersects one row and one
column of the grid, which corresponds to the weight of the design, W = 2.
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Figure 1.3:
Representation of a NORB pooling block as a square

grid.

1.3.3 Algorithms for encoding and pattern-consistency de-
coding

While earlier implementations of overlapping pooling schemes [53, 55, 15]
were interested in identifying a binary test outcome (carrier of a rare variant
or not), our research has focused on a ternary outcome (heterozygote and
two kinds of homozygotes).

Algorithm 1 presents pseudocode for determining the pooling outcome of
a pool based on the genotype of the samples being part of the pool (encoding
step).

Algorithm 1 Genotype encoding with a NORB pooling design

Pjk is the genotype of the kth pool at the jth marker
Gij is the genotype of the ith individual at the jth marker
k is the kth pool
for all j do
for all k do
if {Gij = 0}, i ∈ k then
Pjk ← 0

else if {Gij = 2}, i ∈ k then
Pjk ← 2

else
Pjk ← 1

end if
end for

end for
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As soon as the pools implicated have different genotypes, then the gen-
otype of the individual that is part of these pools cannot be retrieved with
certainty. The individual is asserted to be homozygous for the reference
allele i.i.f. it participates to at least one reference-homozygous pool, and by
symmetry, the sample is decoded as homozygote for the alternate allele i.i.f.
at least one of the pools is alternate-homozygote. Similarly to previously,
we use the notation Gij ∈ {0, 1, 2,−1}, where −1 stands for the case of a
missing genotype. The rule for genotypes decoding is described in Algorithm
2. Given the symmetry property for the reference and the alternate alleles,
the decoding procedure is similar for the genotypes {0, 2}.

Algorithm 2 Genotype decoding with a NORB pooling design

Pijk is the genotype of the kth pool at the jth marker in which the indi-
vidual i participates
Gij is the genotype of the ith individual at the jth marker
k is the kth pool
for all j do
for all i do
if {Pijk = 0}, i ∈ k then
Gij ← 0

else if {Pijk = 2}, i ∈ k then
Gij ← 2

else if {Pijk ∈ {0, 1}}, i ∈ k then
Gij ← 0

else if {Pijk ∈ {1, 2}}, i ∈ k then
Gij ← 2

else if {Pijk = 1}, i ∈ k ∩ {Pijk = 0}, i /∈ k then
Gij ← {1, 2}

else if {Pijk = 1}, i ∈ k ∩ {Pijk = 2}, i /∈ k then
Gij ← {0, 1}

else
Gij ← −1

end if
end for

end for

If the decoding robustness is exceeded, the rule-based method fails to
accurately decode genotypes and fill them in as completely missing (−1 when
none of the alleles is assayed) or partially ({0, 1}, {1, 2} when the presence
of one allele is definite but the other allele is indeterminate.

The nested tests in Algorithms 1 and 2 are computationally costly. De-
pending on the programming language, more efficient alternatives can be
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implemented practically, as suggested in [55]. We developed for example
a code used in both Paper I and II which performs the decoding and the
encoding steps with vector-matrix computations. Encoding in a simulation
context as well as decoding for simulated or actual data can be run inde-
pendently for different genetic markers, making them suitable for parallel
execution.

1.4 Overview of the remaining chapters

Chapter 2 details the characteristics of the missing data following NORB
pooling. Defining the typology for the missing genotype data determines
what methods can be used for inferring the missing genotypes from the com-
binatorial constraints imposed by the pooling design chosen. We propose a
few examples of inference methods that can be implemented for estimating
the genotype probabilities in pooled data. Chapter 3 presents two main
families of algorithms that can be used for imputing unassayed or missing
genotype data. For each family, minimal examples are provided for demon-
strating how pooled genotypes impact the imputation model compared to
usual data sets. Both Papers I and II are studies implementing a method for
estimating the most likely genotypes in pooled data with a NORB design.
Paper I is a simulation of a practical application of the use of pooled data
followed by genotype imputation. Paper II focuses on the statistical char-
acteristics and the consistency of the data produced by various versions of
our method for producing genotype probability estimates during decoding.





Chapter 2

Probabilistic decoding
methods of pooled
experiments for genotype
imputation

This chapter addresses the need of tailored inference methods for estimating
genotype data in cases where full decoding is impossible in a NORB pooling
design. In that sense, the pooling algorithm can be defined as the missing-
ness mechanism. The specific characteristics of the structure of the missing
data in pooled experiments determine which statistical inference methods
are suitable, as well as their potential caveats due to the peculiar dependence
structure in the data set.

2.1 Structure and characteristics of the missing-
ness in NORB pooled data

2.1.1 Minimal example of a NORB pooling design

For readability, we use hereafter a smaller example than the 4 × 4 pooling
block. The 2× 2 minimal example is only intended for illustrative purposes
– for one thing its dimensions imply that pooling in this scenario will not
reduce the number of tests performed. This pooling design would require
2 + 2 tests in total for rows and columns, which is equivalent to the number
of individuals if they were to be tested separately.

The square block representation for a 2 × 2 pooling design with the
definitions used in Chapter 1 is shown in Figure 2.1.

19
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Figure 2.1: X is the true complete genotype data for each individual I. Z is the possibly
incomplete data after pooling and decoding.

2.1.2 Graph representation of the pooling algorithm as a
missingness mechanism

As described by Mézard et al. [35] for studying missingness in view of
missing data inference, Directed Acyclic Graphs (DAGs) can be used for
representing a missingness mechanism. In our research, the NORB pooling
process can be interpreted as the missingness mechanism. Figure 2.2 shows
the DAG representation of the 2× 2 NORB pooling design.

2.1.3 Classification of the missingness mechanism

There are three main categories of missingness described in the literature
that are defined based on the dependence structure in a data set with missing
items. As introduced on Figure 2.2, we use the variable Z for representing
the pooled and decoded data which is possibly missing. That is, a realization
of Z can generate both observed and unobserved data. The nature of the
dependence between the missingness status Ri of any item i in a pooling
block and both the other observed and unobserved items in the block let us
distinguish the following categories:

• Missing Completely At Random (MCAR): the missingness status is
independent of the data, observed or not.

• Missing At Random (MAR): the missingness status depends only on
observed data Y

• Missing Not At Random (MNAR): the data is neither MCAR nor
MAR.

In this section, we use the 2 × 2-study case shown in Figure 2.3 for
illustrating the dependencies in NORB pooled data. Figure 2.3 shows a
heterogeneous example with a mix of all genotypes, where 1 pool (P4) is
tested being homozygous for the reference allele. After decoding, both Z2
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Figure 2.2: DAG representation of a 2 × 2 NORB pooling design. We use notations
similar to the ones proposed by Mézard et al. [35]. The nodes Pi are represented as square
nodes since their value corresponds to the direct result of a genotyping test. The variables
Xi and Zi, represented with circle nodes, are individual genotypes in the block. X stands
for the true data and the dotted lines represent the fact this data is accessible only in the
case of a pooling simulation, otherwise only the data P is known. Z stands for the pooled
and decoded data which is possibly missing. R is a variable indicating the missingness
status of Z. The edges on the left-hand side of the DAG indicate what samples Xi belong
to which pools Pi, this corresponds to the encoding stage of the pooling algorithm. On
the right-hand side, the edges connect the pools from which the genotyping results are
combined to be decoded into an individual genotype Zi.
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?
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Figure 2.3: The left-most block shows the values for the true data X and the right-most
block shows the pooled and decoded values Z.
All three possible genotypes are present among the items X, however by chance the
homozygous ones for the reference allele are placed in the same column-pool.
In this example, the pooling pattern is ψ = ((0, 2, 0), (1, 1, 0)) as both P1 and P2 are
tested with genotype 1, as well as P3 is, and P4 is homozygous for the reference allele.
The individual genotypes Z1 and Z3 are missing after pooling.

and Z4 can therefore be identified as homozygotes for the reference allele,
whereas Z1 and Z3 are missing.

For any NORB pooling block, we define its pooling pattern
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ψ = (nGrows , nGcolumns
), where nGrows (resp. nGcolumns

) is a triplet of integer
values that denote, in this order, the number of row-pools (resp. column-
pools) having genotype 0, 1, and 2. For instance, the pooling pattern in
Figure 2.3 is ψ = ((0, 2, 0), (1, 1, 0)).

Dependency between the missingness status and the observed data

The result of the pooled genotyping test for P1 impacts the decoded value
for both the genotypes Z1 and Z2. Therefore, given a particular outcome
for Z2 and the jointly observed result for the pool P1, some values of Z1

are inconsistent. For instance, if Z2 = 0 is observed as in Figure 2.3, this
constrains Z1 ̸= 0. Indeed, if X1 = 0 ∧ X2 = 0, the pooling algorithm
produces the result shown in Figure , that is the observed pooling pattern
is ψ = ((1, 1, 0), (1, 1, 0)).

P1

P3 P4

P2

P3 P4

0

2 0

0 P1

P3 P4

P2

P3 P4

0

? 0

0

Figure 2.4: The most left block shows the values for the true data X and the most right
block shows the pooled and decoded values Z.
Both homozygous genotypes are present among the items X, but no heterozygous ones.
By chance, the homozygotes for the reference allele are placed in the same column-pool
P4 and the same row-pool P1.
In this example, the pooling pattern is ψ = ((1, 1, 0), (1, 1, 0)) ̸= ((0, 2, 0), (1, 1, 0)) and
only the genotype Z3 is indeterminate.

In other words, the missingness status of Z1 is conditioned on the ob-
served value of Z2.

Dependency between the missingness status and the unobserved
data

The test result for the pool P3 affects the decoded values for both Z1 and
Z3. Hence, the pooling algorithm imposes Z3 = 2 =⇒ Z1 ̸= 2. Indeed,
if X1 = 2 ∧ X3 = 2, the pooling algorithm produces the result shown in
Figure 2.5, that is the observed pooling pattern is ψ = ((0, 2, 0), (1, 0, 1))
and the pooling block is fully decoded.

In other words, the missingness status of Z1 is conditioned on the unob-
served value of Z3.

Figure 2.6 shows the DAG equivalent to Figure 2.3 with the dependencies
between the variables highlighted in blue. Through the example of the
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Figure 2.5: The left-most block shows the values for the true data X and the right-most
block shows the pooled and decoded values Z.
Only homozygous genotypes 0 and 2 are present among the items X, and by chance the
homozygotes for the same allele are placed in the same column-pools P3 and P4.
In this example, the pooling pattern is ψ = ((0, 2, 0), (1, 0, 1)) ̸= ((0, 2, 0), (1, 1, 0)) and all
individual genotypes can be decoded.

relationships between Z1, Z2, and Z3, we reveal that the missingness status
of an item in a NORB pooling block depends both on the other observed and
unobserved items. In accordance with the definitions given at the beginning
of this section, we can therefore characterize the undecoded items in NORB
pooling as being missing not at random.

The examples in Figures 2.3, 2.4, and 2.5 illustrate valid and invalid
configurations forX given a pooling block pattern. It means that the missing
items cannot be reordered in a different order than the one imposed by the
pooling design, and therefore follow so called nonmonotone patterns [41, 52].

2.2 A tailored inference method for pooled geno-
type data

We implement custom probabilistic decoding methods for NORB genotype
pooling for two main reasons:

• In practical applications to genetics such as in the DNA Sudoku study,
primarily a deterministic decoding method was suggested for the scen-
ario of detecting alternate allele carriers within a marker, regardless
of zygosity status. For our genotyping purposes, we need to extend
the procedure to a decoding method suited for a ternary outcome,
namely two opposite heterozygous genotypes and one heterozygous.
We have proposed in Paper I and II an EM-based inference method
which can be seen as a probabilistic decoding procedure for a NORB
poling design.

• The method we propose should be put in the perspective that it is
designed to be complemented by a genotype imputation step, as in-
vestigated on the 1000 Genomes Project data set in Paper I. That
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Figure 2.6: Only the decoding step from the pools into individual genotypes is shown,
since the behavior during decoding is the focus of this chapter. The variable R is not
represented, instead the node Zi is colored in orange if its value is missing. These choices
for the representation are made in order to align the matrix representation of the pooling
block and its DAG representation. The plain edges highlighted in blue indicate which
items are involved in the decoding algorithm for the missing item Z1. The dashed blue
arrows illustrate that the value of Z1 is conditioned on both Z2 and Z3. The value for Z1

is obtained from the genotyping result of P1 and P3. As X2 (not represented here) also
affect the tests result for P1, the observed value Z2 indirectly affects the missingness status
of Z1. Similarly, the value of the missing variable Z3 indirectly impacts the underlying
value of Z1 as P3 involves both X1 and X3.
This example of pooling block illustrates the MNAR mechanism imposed by NORB pool-
ing as the missingness status of the decoded genotypes depends on observed as well on
missing variables participating in the same pools.

means, not only the accuracy of the inferred genotypes from pool-
ing matters, but also to what extent the computed estimates for the
genotype probabilities benefit the performance of different imputation
methods.

2.2.1 Statistical framework for estimating the missing items
in pooled data with a NORB design

As the statistical framework for our research is largely described in Papers
I and II, this section presents only briefly some elements of this framework.

Vector notation of the data

Let us model the pooling mechanism as the data mapping t
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t : X −→ Z
x 7−→ z

where x = (x1, x2, ..., xn) and z = (z1, z2, ..., zn) are vectors of genotypes.
We are interested in studying possible inversions of the mapping t for estim-
ating the missing values in z as the most likely genotype probabilities for
x.

The true genotype data at any marker for a sample i is represented by a
probability simplex xi = [p0i, p1i, p2i]

⊤. The three simplex values represent,
in order, the probability of the genotype being a homozygote for the reference
allele, a heterozygote, and a homozygote for the alternate allele. Similarly,
the pooled and decoded genotype data for the same sample i is denoted
zi = [p̃0i, p̃1i, p̃2i]

⊤.

Formulation of the inference problem in NORB pooled data

The inference problem can be partitioned into a series of maximum likeli-
hood estimation problems conditioned on each missing data pattern, that is
to say each pooling block pattern ψ. It is common for likelihood maximiz-
ation problems for arbitrary complex models to be solved iteratively using
Expectation-Maximization (EM) approaches [21].

The empirical likelihood of the complete data in a pooling block is defined
as

Lψ(x) =
B∏

b=1

xb (2.1)

For any pattern ψ, the objective is to compute point estimates (p̂0i, p̂1i, p̂2i)
of the genotype probabilities for any item i in the pooling block. The estim-
ation consists in maximizing the empirical likelihood in equation 2.1, that
is

∀ b ∈ [1, B] (p̂0i, p̂1i, p̂2i) = argmax
x

Lψ(xb) (2.2)

2.2.2 Expectation-Maximization based methods

A detailed description of the EM-based estimation methods we have used
can be found in Papers I and II, as well as a few numerical examples.

Therefore, we here only illustrate the general idea for one iteration (m)
in Figures 2.7 and 2.8 and highlight some specific features of our EM-based
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estimation method for pooled genotype data. Paper II involves several vari-
ations of the main steps presented here. On the whole, the various EM
versions perform rescaling and marginalization of the expected frequencies
of genotypes and/or alleles in different ways.

Expectation step

The expectation step, or E-step, enumerates all data completions of z for
a pooling block having the pattern ψ, as illustrated in Figure 2.7 (I) and
2.8 (II). Some of the enumerated completions might be invalid in the sense
that they map to a decoded vector of genotypes which is inconsistent with
ψ. Figure 2.7 (II) proposes a few examples of invalid completions for the
pooling pattern ψ = ((2, 2, 0), (2, 2, 0)) in a 4× 4 pooling block.

From an algorithmic point of view, the enumeration can be implemented
as a dynamic recursion in a ternary tree with nB levels where each node
has a genotype value in {0, 1, 2}. The invalid completions correspond to
branches in the tree that are pruned, which makes the complexity of the
algorithm unpredictable to a certain extent. This dynamic recursive task
poses some computational challenges due not only to the size of the search
space (the tree might have up to 4.3 × 107 terminating leaves), but also
because of the irregular length of the branches depending on the pooling
pattern considered. Other strategies can be chosen for the enumeration,
such as a Forward-Backward-like algorithm.

At the initial iteration, the genotype probabilities for any item in the
block to be decoded can be chosen freely as long as they sum up to 1. For
each data completion x enumerated, its expected proportion E[x|z;ψ](m) is
computed as in Equation 2.3.

E[x|z;ψ](m) =
Pr(x|z;ψ)(m)

∑
x
Pr(x|z, ψ)(m)

=
Pr(z|x;ψ)Pr(x)(m−1)

∑
x
Pr(z|x;ψ)Pr(x)(m−1)

(2.3)

In the case of invalid data completion, Pr(z|x;ψ) = 0, otherwise Pr(z|x;ψ) =
1.

Pr(x)(m−1) =
B∏
b=1

Pr(xb)
(m−1) is the probability of x computed based

the individual posterior probabilities at the iteration (m− 1).
E[x|z;ψ] represent the expected proportion of every valid data comple-

tion given that we observe the pattern ψ.

Maximization step

The maximization step, or M-step, calculates for every item in x the prob-
ability of each genotype from the expected frequencies computed at the
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E-step:

(p̃0, p̃1, p̃2)
(m) =

xE[x|z;ψ](m)

∑
x
xE[x|z;ψ](m)

(2.4)

where (p̃0, p̃1, p̃2)
(m) are vectors of estimated genotype frequencies for all

samples in the block at iteration m.

Rescaling step

Consecutively to the usual E- and M-step, we implement rescaling operations
as follows:

• First, dividing every item in (p̃0, p̃1, p̃2)
(m) by its individual prior and

normalizing the result aims to guarantee the consistency of the method.

• Second, explicitly up-scaling the probabilities for heterozygotes by a
factor of 2. This relates to our representation of a single heterozygous
state, while there are actually two distinct heterozygote genotypes.
Even with a uniform prior, the heterozygous state should thus be twice
as common. We refer to this effect as heterozygotes degeneracy.

• Once the convergence criterion is met, a final down-scaling of the es-
timated genotype probabilities is performed. This step is implemented
in view of using the genotype probabilities as input in genotype im-
putation algorithms that internally double the probabilities for the
heterozygotes. By down-scaling, we avoid an over-representation of
the heterozygous genotypes in imputation.

2.2.3 Quality of the estimates of the genotype probabilities

As seen previously, the NORB pooled data is MNAR, such that the EM-
based methods might produce biased estimates [43]. Paper II focuses on
the nature and the extent of this bias by investigating the consistency of
the EM-reconstructed empirical distribution of the pooled data. We use a
divergence criterion for evaluating the consistency of the distribution of the
reconstructed data with respect to the true data distribution.
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Figure 2.7:
A Maximum-Likelihood-like method for decoding pool-

ing blocks.

Enumeration example for a 4× 4 block with a pattern ψ = ((2, 2, 0), (2, 2, 0)).
(I) Enumerating the valid layouts compatible with this pattern results in 56 outcomes. Over these
combinations, the homozygotes having genotype 0 (resp. the heterozygotes 1 and the opposite
homozygotes 2) appears 48 times (resp. 88 and 88), such that the estimated genotypes distribution
fitted to the layout is (0.214, 0.393, 0.393). This corresponds to a Maximum Marginal Likelihood
estimation.
(II) For a given set of genotypes, some permutations result in a genotype vector that is not
compatible with the observed pooling pattern ψ.
(III) Simulating pooling consists in a first encoding step which resolves the genotype of the row-
and column-pools: 2 rows have genotype 0, 2 have genotype 1, none has genotype 2, and similarly
for the column-pools. The second step decodes the pooled data into individual genotypes. After
decoding, the 4 missing items are placed on two distinct pairs of row and column, while the other
items are decoded homozygotes (genotype 0).
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Figure 2.8:
A self-consistent method for estimating ambiguous

pooled genotypes with heterozygotes degeneracy.

The figure shows the same pooling block as in Figure 2.7.
(I) The genotype probabilities for any sample in the pooling block are initialized to a prior value
of (0.25, 0.5, 0.25).
(II) The enumeration of the valid data completions is executed in the same way as in Figure 2.7.
For each valid completion, the prior genotype probabilities are used to compute the likelihood of
the given completion. The likelihood of each completion is later used as a weighing factor.
(III) The most likely genotypes counts are computed based on the likelihood of every valid com-
pletion.
The second step decodes the pooled data into individual genotypes. After decoding, the 4 missing
items are placed on two distinct pairs of row and column, while the other items are decoded
homozygotes (genotype 0).
(IV) Rescaling is applied for accounting for heterozygotes degeneracy and layouts collapsing, as
well as a final down-scaling step if the computed estimates are to be used in genotype imputation.





Chapter 3

Statistical genotype
imputation for missing
markers in large populations

In this chapter, we present statistical computational methods achieving gen-
otype imputation. Imputing the genotype of markers consists in inferring
the most likely genotype at these markers when they are missing, based on
the known genotype data available for other markers. Data can be missing
for different reasons: the DNA material might for example be damaged as
with ancient samples, or the genotype data is not reliable after the genotyp-
ing technique returned noisy results or of poor quality (e.g. low coverage or
low calling rate). Commonly, imputation methods are used for decreasing
the cost of large-scale studies based on the genotype data of markers e.g. in
GWAS. Given a chosen set of markers of interest in a study population, only
part of these markers will be assayed with genotyping techniques. For the
remaining part which is unassayed, computational methods are used for im-
puting the data. The best-performing imputation methods have shown high
accuracy, however they usually give less accurate results for rare variants.

In our application, genotype data is missing because of the pooling tech-
nique applied. The characteristics of group testing, which were discussed in
previous chapters, pose new challenges for current imputation algorithms.

3.1 Introduction

On a general level, the imputation problem can be formulated as resolving
ambiguous or unknown genotypes in a study population using probabilistic
predictions [28] employing population-wide genetic information. The pre-
dictions are derived from different information types available, commonly a
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set of densely genotyped and subsequently phased individuals serving as as
a reference for estimating the unassayed genotypes of study individuals, and
relatedness between the individuals if such data are provided.

We focus on population-based methods, designed for dealing with unre-
lated individuals. There are also family-based methods including pedigree
information in the imputation process, but we have not considered them
here. They would be worth investigating in further research work associ-
ated to plant breeding, where ancestry and descent information of lines are
available over several generations. While other approaches can be found
in the literature, we describe only two groups within the population-based
methods that have been dominating in the field of genotype imputation
[12, 28]. The first group encompasses the coalescence-based models e.g.
MaCH and Impute2, as well as an implementation developed locally called
Prophaser [4], closely modelled on MaCH, but tailored for being used with
genotype probabilities as input data. The second group is illustrated by the
tree-clustering models e.g. Beagle. Both approaches are iterative and they
have been reported [12, 28] among the best performing ones. MaCH and
Impute2, as well as Beagle, have been essentially designed for solving the
imputation problem in populations where the genotype data is fully missing
for all individuals at some markers, that is to say the genotypes are missing
completely at random. In Paper I, we showed that Prophaser performs well
on pooled data whereas the performance of the Beagle model was negatively
affected by pooling [18].

3.1.1 Definitions and notations

Let us denote Θ being a set of nh template haplotypes at nj loci. Depending
on the imputation strategy used, Θ is built upon the reference panel and/or
the ni individuals from the study population. For each of the ni individuals
of the study population, Hij j ∈ [1, nj ] is a pair of haplotypes at marker j
for the i-th individual and we denote Hi the sequence of nj haplotypes over
all markers. Similarly, Gi,j is the genotype (pair of alleles) at marker j for
the i-th individual and Gi the sequence of nj genotypes. In other words,
any study sample i is modelled as a sequence of either haplotype states or
genotypes.

3.1.2 Mathematical formulation of the imputation problem

Both population-based models are iterative statistical methods that yield
probabilistic predictions of the genotypes for the missing marker data. For
each marker imputed at locus j for the individual i, the probabilistic pre-
dictions calculated for the genotype can be formulated as in Equation 3.1.
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Commonly, this prediction is discretized as the best-guess genotype value
[28] and formatted as GT. The GT value is the genotype having the highest
probability in the predicted probability tuple. The GT format can be a
phased genotype if each of the alleles is attributed to the parental haplotype
(maternal or paternal haplotype), else the genotype is said to be unphased.

pija = Pr(Gij = a|Θ,Gi), a ∈ {0, 1, 2},
∑

a

pija = 1 (3.1)

That is, the genotype of any marker at locus j for the individual i is
conditioned both on the other haplotypes Θ in the population that are used
as templates, and on the genotypes observed at the other loci in the sequence
Gi.

3.1.3 Hidden Markov Models for modelling haplotypes and
sequences of genotypes

Both coalescent and tree-clustering methods implement Hidden Markov
Models (HMMs). A graphical representation of a generic HMM for gen-
otype imputation is given in Figure 3.1.

Using a notation consistent with the classical HMM treatment by Ra-
biner [40], the HMMs used in imputation models can be characterized as
follows:

1. The number of states nh in the model equals the number of template
haplotypes, or the number of pairs of template haplotypes. The hidden
state i is denoted si in Figure 3.1.

2. There are 2 distinct observation symbols per haplotype i at the locus j,
one for each allele e.g. Gij = 0 or Gij = 1 in Figure 3.1. If the hidden
state is a pair of haplotypes, there are 22 observation symbols for each
hidden state, each of them corresponding to a phased genotype.

3. The transition probability distribution from state si1 to si2 is F =
{fsi1,si2}. F is either explicitly parametrized with a recombination rate
ρ as in coalescent models, or implicitly captured through the counts
of haplotype clusters when building the tree in the Beagle model. The
transition from one haplotype state to another between two consecut-
ive markers mimics a historical recombination event. It is correlated
to the LD between markers.

4. The probability of emitting the symbol aj from the state si is G =
{gsi(aj)}. The observed genotypes model possibly erroneous copies of
the haplotypes and hence express mutation events. These events are
explicitly parametrized in coalescent models with the mutation rate µ.
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5. The initial states are determined or randomly assigned based on the
observed haplotypes in the population to impute (see examples in the
Sections 3.2.3 and 3.3.2). We denote S the initial distribution of the
states.

A HMM model designed for genotype imputation is typically used for
solving three problems for any study sample i [32], which are:

Problem 1 Given a sequence of observations e.g. a sequence of genotypes
Gi and the model parameters (F ,G,S), the HMM lets one compute
the probability of the sequence Pr(Gi|F ,G,S). The computation is
executed with the Forward-Backward algorithm which sums the prob-
abilities of observing Gi over all possible sequences of hidden states
e.g. haplotypes.

Problem 2 Given a sequence of genotypes Gi and the model parameters
(F ,G,S), the Viterbi algorithm determines the most likely sequence
of haplotypes Hi from which Gi derives.

Problem 3 The Baum-Welch algorithm adjusts the model parameters (F ,G,S)
such that Pr(Gi|F ,G,S) is maximized.

In coalescent models, the most likely sequence of genotypes for each
study individual is computed iteratively by using the three algorithms listed
above at each iteration. The Impute2 model however uses fixed model para-
meters and hence simplifies the Problem 3, whereas MaCH reevaluates the
model parameters at each iteration. Prophaser as used in Paper I executes
only one iteration of the MaCH model.

Tree-based clustering, in the form implemented in Beagle, is an empir-
ical model determined by the counts of similar segments found across the
template haplotypes.

For both the coalescent and the tree-based models, the hidden states
underlying the Markov chain of the HMM are defined by single or aggregated
template haplotypes. The strategy for choosing the template haplotypes
used as hidden states notably differs between the coalescent and the tree-
clustering approaches. An illustrated example is given later in this chapter
(Sections 3.2.3 and 3.3.2).

3.2 Coalescent models

3.2.1 The coalescence principle

The coalescent models in this family rely on the so called principle of co-
alescence [27, 32] which asserts that the haplotypes in a homogeneous pop-
ulation tend to be similar. The variations found between the haplotypes
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Figure 3.1:

Trellis of the observation sequence
(G1, G2, G3, G4) for an HMM with 4 states.
The thick arrows indicate the most probable transitions.
Each state si represent a template haplotype. fsi1,si2 is
the probability to transition from the hidden state si1 to
the hidden state si2 which depends on the linkage disequi-
librium (LD) between the two successive loci. gsi(aj) is the
probability to emit the symbol aj from the state si. In the
case of coalescent models, the recombination and the muta-
tion probabilities are modelled with the explicit parameters
ρ and µ. The most likely sequence of states (s2, s1, s1, s4)
can be seen as a mosaic of template haplotypes.
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are explained through a combination of the genetic events of recombination
and mutation over time. These events are assumed to be rare over small
genetic distances and limited time-spans, there are therefore great similarit-
ies between haplotypes in different individuals within a population [12, 47].
MaCH and Impute2 exploit the linkage disequilibrium (LD) between mark-
ers for capturing the genetic patterns across haplotypes.

3.2.2 Specific aspects of the coalesent models

For each sample i of the study population, the coalescent models computes
the probability of the observation sequence Gi based on Equation 3.2. Im-
pute2 and MaCH proceed by sampling sequences of states through the trellis
of haplotypes as in Figure 3.1.

The hidden states underlying the Markov chain of the HMM are the
haplotypes (single haplotypes or haplotype pairs depending on the model)
which are selected from a set of template haplotypes. The way this set of
template haplotypes is constituted varies with the imputation method used.

Pr(Gi|Θ, µ, ρ) =
∑

H

Pr(Gi|H, µ) · Pr(H|Θ, ρ) (3.2)

The factor Pr(Gi|H, µ) models mutation (µ is an explicit parameter or
not depending on the model type) along the Markov chain of hidden states,
and the factor Pr(H|Θ, ρ) models recombination (whether ρ is explicit or
not) from a hidden states to its emitted symbol at a marker.

Impute2 uses fixed probabilities of recombination events that are provided
in a fine-scale recombination map as LD values between the markers. These
values depend on the physical distance between the markers [31, 34, 47].
The distance between the markers is provided in the form of a genetic map
that is calculated from a genome assembly.

MaCH reevaluates the recombination and mutation probabilities at each
iteration once all the study samples have been processed, based on the last
sampled sequences of haplotypes.

Selection of the template haplotypes

Impute2 selects the template haplotypes from the reference panel and the
study population based on similarity to the individual being phased (’in-
formed selection’ of conditioning states) [27, 28]. MaCH randomly selects
a subset from the reference and the study population [32]. The subsetting
strategy maximizes the use of available information while limiting the size
of the state space in the Markov chain.
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Haplotype phasing

Impute2 executes at every iteration two steps that are haplotype phasing
and actual genotype imputation [34]. In the HMM used for phasing, the
transition probabilities are the probabilities that the hidden state switches
between two consecutive assayed markers (observed genotypes). At the first
iteration, the haplotypes in the study population are randomly phased and
the initial transition probabilities are equal for all hidden states. Phasing the
haplotypes of every study sample is executed in the Impute2 model sampling
the most likely state path in a Markov Chain Monte Carlo (MCMC) scheme.
The resulting path can be seen as a compound of template haplotypes,
therefore the expression ”mosaic of haplotypes” is frequently employed [28,
32, 38].

The MaCH model performs path sampling as well but proceeds back-
wards, which is different from the regular Viterbi algorithm. At every locus,
MaCH uses the forward probabilities of the possible paths through the tem-
plates weighted by the likelihood of the current estimate for sampling an
updated sequence of haplotypes. This technique adjusts the likelihood of
the sampled sequence locally at each marker without recomputing the like-
lihood of the entire path. The final sequence of nj haplotypes sampled for
each study individual is used in its turn as one of the templates in the
processing of additional individuals.

Genotype imputation

In the Impute2 model, the genotype imputation step reuses the results of
the computations in the phasing step for computing the marginal probability
of each genotype 0, 1, 2 for any missing item. The model assumes that the
phased haplotypes were sampled from a population that conforms to Hardy-
Weinberg Equilibrium (HWE). The genotype probabilities are derived from
the allelic probabilities [27] in the entire population.

MaCH does not directly compute the genotype probabilities at each
marker, but the path sampling for each individual is performed in a way such
that the sequences of haplotypes are edited consistently with the observed
genotypes (Problem 3). The genotype probabilities at missing markers are
deduced after the last iteration from the counts of sampled genotypes over
all iterations.

Complexity and computational performance

Impute2 and MaCH form the HMM hidden states by selecting nh tem-
plate haplotypes in both the reference and the study population, such there
is a constant number n2h hidden states at each of the nj diploid markers.
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Thanks to a memory-saving technique implemented in the forward-backward
algorithm, both methods have a memory complexity O(√nj) for each indi-
vidual. The time complexity grows linearly as the size of the study popula-
tion and quadratically with the number of template haplotypes [27]. Non-
etheless, several papers point out computational time issues with MaCH
[12, 28, 37] when compared to the other methods mentioned. One reason
is the reevaluation of the crossover and the mutation rate parameters after
each iteration.

By contrast, Beagle operates a dimension reduction of the hidden states
space thanks to its clustering approach, which has been shown to be par-
ticularly efficient when imputing large data sets. The successive releases for
Beagle have improved the software performance in this direction [7, 8, 9, 12,
11].

3.2.3 Minimal examples of phasing and imputation in ran-
domly missing and pooled genotype data

The illustrations presented in this section are based on the example used by
Howie and Marchini [28, 34].

The reference panel consists of phased haplotypes from individuals. Each
haplotype is a sequence of alleles at the markers of interest, inherited from
the mother or the father.

The study sample consists of genotypes with sparse data at the same
markers, where the haplotypes are unphased. Let us define two marker sets
as follows:

• The set of markers T which consists of markers for which the genotypes
are known in both the reference panel and the study population,

• The set of markers U which consists of markers for which the geno-
types are assayed in the reference panel only and missing in the study
population.

Figures 3.2 and 3.4 illustrate the definitions for the haplotypes and the
marker sets. We consider the examples of two different study populations
at the same loci:

1. A study population where the genotype data is missing fully at ran-
dom. Whenever a marker is assayed, the genotypes are known for all
samples, and conversely when a marker is unassayed, the genotype
data is missing for all study samples (M(C)AR data).

2. A study population where the genotype data is missing due to a NORB
pooling process. The markers are likely to be missing for only some
samples, or entirely missing at common variants (MNAR data).
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The HMM employed for phasing uses haplotypes from the reference as
panel as well as those currently in T as templates. For simplicity, our
figures will show template haplotypes chosen exclusively from the reference
population. Figure 3.3 shows the phased haplotypes of three study samples
after one iteration of the phasing-imputation algorithm with M(C)AR data,
as well as the resulting imputed genotype for one sample.

If prior genotype probabilities are provided for any missing genotype,
they are specified with the factor Pr(Gi|H,G, µ) in Equation 3.2. The prior
genotype probabilities affect the phasing step and the resulting mosaic of
haplotypes. In Paper I, we have investigated how pattern-adaptive estimates
of the genotype probabilities in pooled data can improve the accuracy of the
phasing step and consequently benefit genotype imputation.

3.3 Tree-based haplotype clusters models

Beagle is the software illustrating tree-based haplotype clustering. It has
been developed and improved by Browning and Browning since 2006 [7, 6,
8, 9, 10, 11, 12]. The different versions of Beagle have shown competitive
accuracy and computational performance in various settings, including very
large data sets. The software has been tested on human [28] as well as
on animal and crop species genomic data [39]. Thanks to the clustering
approach that reduces the state space dimension, Beagle has been shown
being particularly efficient on large data sets and the successive releases
have improved the method performance in this direction. Browning and
Browning have adopted an alternative approach to coalescence for exploiting
sequence variations that feature a given genetic structure in a population.

3.3.1 Specific aspects of the Beagle model

Construction of the template haplotypes

At each iteration of Beagle, the algorithm includes a preliminary model-
building step which uses all haplotypes available in the reference panel and
the study population. More recent versions of Beagle implement an iter-
ative weighing of the reference vs. the study haplotypes, such that the
reference panel affects the model building more at the first iterations [7].
The model-building step consists in fitting a HMM with nj levels to the ob-
served haplotype data. The levels correspond to an ordered sequence of nj
markers. The resulting model that is built can be described as a Variable-
Length Markov Chain (VLMC) where the number of template haplotypes
that condition phasing and imputation varies at each marker. This feature is
a notable difference to the coalescent models where the number of template



40
Chapter 3. Statistical genotype imputation for missing markers in

large populations

Reference set of haplotypes (from at least 5 diploid reference individuals)

H1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H2 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0

H3 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H4 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H5 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0

H6 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H7 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H8 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

H9 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H10 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

Study sample with partially assayed genotypes

I1 1 ? ? ? 1 ? 1 ? 0 2 2 ? ? 2 2 0

I2 0 ? ? ? 2 ? 2 ? 0 2 2 ? ? 2 ? 0

I3 1 ? ? ? 2 ? 2 ? 0 2 1 ? ? 2 ? 0

I4 2 ? ? ? 2 ? 2 ? 1 2 1 ? ? 2 2 0

I5 1 ? ? ? 1 ? 1 ? 1 2 2 ? ? 2 ? 0

I6 1 ? ? ? 2 ? 2 ? 0 2 1 ? ? 2 ? 1

I7 2 ? ? ? 1 ? 1 ? 1 2 1 ? ? 2 ? 1

I8 1 ? ? ? 0 ? 0 ? 2 2 2 ? ? 2 2 0

Study sample T : Typed genotypes

I1 1 1 1 0 2 2 2 0

I2 0 2 2 0 2 2 2 0

I3 1 2 2 0 2 1 2 0

I4 2 2 2 1 2 1 2 0

I5 1 1 1 1 2 2 2 0

I6 1 2 2 0 2 1 2 1

I7 2 1 1 1 2 1 2 1

I8 1 0 0 2 2 2 2 0

Study sample U : partially Untyped genotypes

I1 ? ? ? ? ? ? ? 2

I2 ? ? ? ? ? ? ? ?

I3 ? ? ? ? ? ? ? ?

I4 ? ? ? ? ? ? ? 2

I5 ? ? ? ? ? ? ? ?

I6 ? ? ? ? ? ? ? ?

I7 ? ? ? ? ? ? ? ?

I8 ? ? ? ? ? ? ? 2

Figure 3.2:

Data sets involved in phasing and imputation
for a coalescent model with M(C)AR data.
The data sets consist of a 10 haplotype reference panel and
an 8 individual study population. The marker genotypes
at 16 loci are represented as integers being the sum of their
two alleles for readability. In this particular examples, the
template haplotypes come from the reference panel only.
The study population is split into a set T with assayed
genotypes and the complementary set U with unassayed
genotypes. With M(C)AR genotype data, the markers are
either fully missing for all study individuals, or fully as-
sayed.

haplotypes used is constant along the sequence of markers.

A minimal example is provided in the Section 3.3.2 of this chapter.

At each level j of the tree, the child nodes at level j + 1 are derived by
splitting the observed haplotypes according to their alleles at the current
marker. For biallelic markers, any node will have up to two children, de-
pending on what alleles are actually present in the considered haplotypes
at marker j + 1. The tree is extended at each locus such that two loci are
connected by an edge.

After processing the last marker at locus nj , the edges of the tree are
weighted by the number of observed haplotypes passing through them.
Every template haplotype initially has a unit weight [7]. At the very first
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Study sample with partially assayed genotypes

I1 1 ? ? ? 1 ? 1 ? 0 2 2 ? ? 2 2 0

I2 0 ? ? ? 2 ? 2 ? 0 2 2 ? ? 2 ? 0

I3 1 ? ? ? 2 ? 2 ? 0 2 1 ? ? 2 ? 0

I4 2 ? ? ? 2 ? 2 ? 1 2 1 ? ? 2 ? 0

I5 1 ? ? ? 1 ? 1 ? 1 2 2 ? ? 2 ? 0

I6 1 ? ? ? 2 ? 2 ? 0 2 1 ? ? 2 ? 1

I7 2 ? ? ? 1 ? 1 ? 1 2 1 ? ? 2 ? 1

I8 1 ? ? ? 0 ? 0 ? 2 2 2 ? ? 2 2 0

Phasing and haplotype assignment

I1
0 ? ? ? 1 ? 1 ? 0 1 1 ? ? 1 1 0

1 ? ? ? 1 ? 1 ? 0 1 1 ? ? 1 1 0

I4
1 ? ? ? 1 ? 1 ? 0 1 0 ? ? 1 ? 0

1 ? ? ? 1 ? 1 ? 1 1 1 ? ? 1 ? 0

I8
1 ? ? ? 0 ? 1 ? 1 1 1 ? ? 1 1 0

0 ? ? ? 0 ? 0 ? 1 1 1 ? ? 1 1 0

Study sample with imputed genotypes

I1 1 1 1 1 1 2 1 0 0 2 2 0 2 2 2 0

I2 0 0 1 0 2 ? 2 ? 0 2 2 ? ? 2 ? 0

I3 1 ? ? ? 2 ? 2 ? 0 2 1 ? ? 2 ? 0

I4 2 ? ? ? 2 ? 2 ? 1 2 1 ? ? 2 2 0

I5 1 ? ? ? 1 ? 1 ? 1 2 2 ? ? 2 ? 0

I6 1 ? ? ? 2 ? 2 ? 0 2 1 ? ? 2 ? 1

I7 2 ? ? ? 1 ? 1 ? 1 2 1 ? ? 2 ? 1

I8 1 ? ? ? 0 ? 0 ? 2 2 2 ? ? 2 2 0

Figure 3.3:

Mosaic of haplotypes from phasing and imputa-
tion for a coalescent model with M(C)AR data.
The phasing step computes the most likely pair of mo-
saic haplotypes for any study sample, based on the tem-
plate haplotypes (only the reference panel here) and the
assayed genotypes. At each locus, the likelihood of every
possible pair of haplotypes is computed, which results in
n2h × nj = 102 × 16 = 1600 operations for every study
sample. The missing genotypes are imputed as the most
likely emitted symbol from the phased haplotypes. The im-
puted genotypes are represented as the sum of the alleles
that are carried by the two haplotypes at the locus e.g. I1
has genotype 1 = 0 + 1 for the three first imputed markers
since the red segment of haplotype carries the allele 0 at
these loci, and the orange haplotype carries the allele 1.

iteration, all haplotypes available in the reference panel and in the study
population are used. The nodes are merged at every level of the tree ac-
cordingly to a threshold computed from downstream haplotypes frequencies
[6, 10, 11].

The merging process results in haplotypes that are clustered based on
a frequency criterion of the allele sequences [7]. Node mergers will occur
depending on the linkage disequilibrium between successive loci, such that
the number of nodes locally increases with the linkage disequilibrium [12].
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Reference set of haplotypes (from at least 5 diploid reference individuals)

H1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H2 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0

H3 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H4 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H5 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0

H6 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H7 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H8 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

H9 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H10 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

Study sample with decoded genotypes after NORB pooling

I1 ? ? 2 ? ? ? ? ? 0 2 2 ? ? 2 ? 0

I2 ? ? 2 ? 2 ? ? ? 0 2 2 ? ? 2 ? 0

I3 ? ? 2 ? 2 ? ? ? 0 2 ? ? ? 2 ? 0

I4 2 ? ? ? 2 ? ? ? ? 2 ? ? ? 2 ? 0

I5 ? 0 2 ? ? ? ? ? ? 2 2 ? ? 2 ? 0

I6 ? 0 2 ? 2 ? ? ? 0 2 ? ? ? 2 ? ?

I7 2 0 2 ? ? ? ? ? ? 2 ? ? ? 2 ? ?

I8 ? 0 ? ? ? ? ? ? ? ? 2 ? ? 2 ? 0

Study sample T : Typed genotypes

I1 2 0 2 2 2 0

I2 2 2 0 2 2 2 0

I3 2 2 0 2 2 0

I4 2 2 2 2 0

I5 0 2 2 2 2 0

I6 0 2 2 0 2 2

I7 2 0 2 2 2

I8 0 2 2 0

Study sample U : partially Untyped genotypes

I1 ? ? ? ? ? ? ? ? ? ?

I2 ? ? ? ? ? ? ? ? ?

I3 ? ? ? ? ? ? ? ? ? ?

I4 ? ? ? ? ? ? ? ? ? ? ?

I5 ? ? ? ? ? ? ? ? ? ?

I6 ? ? ? ? ? ? ? ? ? ?

I7 ? ? ? ? ? ? ? ? ? ? ?

I8 ? ? ? ? ? ? ? ? ? ? ? ?

Figure 3.4:

Data sets involved in phasing and imputation
for a coalescent model with MNAR data.
The data sets are the reference panel of 10 haplotypes and
study population of 8 individuals. The marker genotypes
at 16 loci are represented as integers being the sum of their
two alleles for readability. In this particular examples, the
template haplotypes come from the reference panel only.
The study population is decoded from a pooled genotype
testing, with the same split as used in Figure 3.2. With
MNAR genotype data, some markers can be missing for
only a subset of individuals, partially dependent on their
actual genotype, something that affects the results of phas-
ing imputation.

Haplotype phasing and genotype imputation

Beagle can perform both phasing and imputation simultaneously, but phas-
ing can also be done beforehand, either with Beagle or with other software
e.g. Impute2. For each target individual, phasing is done by sampling the
most likely haplotypes with the Viterbi algorithm from the clustered tree,
conditioned on the observed genotypes. Missing alleles are randomly im-
puted according to the observed allele frequencies, which are themselves
derived from the haplotype estimates. The newly sampled haplotypes are
used as estimates in the next iteration of the algorithm for updating the
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haplotype tree. The genotype probabilities at each locus are eventually
computed from the last estimated tree. By applying merging, weighting
and pruning in the successive trees, Beagle captures the population-specific
diversity through the haplotype patterns, without explicitly modeling re-
combination or mutation events as sources of genetic variation [12].

Complexity and computational performance

The number of template haplotypes obtained with clustering is less than the
initial number of haplotypes in the reference panel and the study population.
Therefore, the size of the state space of the HMM used for imputation is
decreased, which is a key factor of the computational efficiency of Beagle in
terms of memory as well as time consumption.

3.3.2 Minimal examples of a leveled HMM from M(C)AR
and MNAR data

The reference panel and the study population are identical to the examples
previously shown for the coalescent models in order to facilitate the com-
parisons between these two families of imputation models. Figures 3.5 and
3.6 show the initiation of the model building step in the case of imputation
of M(C)AR data, based on the research of Browning and Browning [7, 10].
Figures 3.7 and 3.8 contain the corresponding illustrations for the MNAR
case of decoding pooled NORB data.

Genotype data missing fulling at random: M(C)AR data

This example corresponds to the classical imputation scenario studied in
Paper I.

After sampling alleles at unknown markers and randomly phasing the
genotypes, the reference panel and the study population would correspond
to the state shown in Figure 3.5. The tree shown in Figure 3.6 are derived
from the counts presented in Table 3.1.

In practice, the number of haplotypes to use should be much larger
(several hundred) such that the clustering model has sufficient statistical
power, but this number is kept small for the sake of the example.

Genotype data missing not at random: pooled data

This example corresponds to the joint pooling and imputation scenario stud-
ied in Paper I.

After sampling alleles at unknown markers and randomly phasing the
genotypes, the reference panel and the study population would correspond



44
Chapter 3. Statistical genotype imputation for missing markers in

large populations

Reference set of haplotypes (from at least 5 diploid reference individuals)

H1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H2 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0

H3 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H4 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H5 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0

H6 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H7 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H8 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

H9 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H10 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

Study sample with randomly phased haplotypes and alleles sampled

I1 1 0 1 0 1 ? 0 ? 0 1 1 ? ? 1 ? 0

0 1 1 0 0 ? 1 ? 0 1 1 ? ? 1 ? 0

I2 0 1 1 0 1 ? 1 ? 0 1 1 ? ? 1 ? 0

0 1 1 0 1 ? 1 ? 0 1 1 ? ? 1 ? 0

I3 1 0 0 1 1 ? 1 ? 0 1 0 ? ? 1 ? 0

0 0 1 0 1 ? 1 ? 0 1 1 ? ? 1 ? 0

I4 1 0 1 0 1 ? 1 ? 1 1 0 ? ? 1 1 0

1 0 1 1 1 ? 1 ? 0 1 1 ? ? 1 1 0

I5 1 0 1 0 0 ? 1 ? 1 1 1 ? ? 1 ? 0

0 1 1 1 1 ? 0 ? 0 1 1 ? ? 1 ? 0

I6 0 0 1 0 1 ? 1 ? 0 1 1 ? ? 1 ? 0

1 0 1 0 1 ? 1 ? 0 1 0 ? ? 1 ? 1

I7 1 1 0 0 1 ? 1 ? 1 1 0 ? ? 1 ? 0

1 0 1 1 0 ? 0 ? 0 1 1 ? ? 1 ? 1

I8 1 1 1 1 0 ? 0 ? 1 1 1 ? ? 1 ? 0

0 0 0 0 0 ? 0 ? 1 1 1 ? ? 1 ? 0

Figure 3.5:

Example of initiation of the VLMC with sparse
M(C)AR data.
The unassayed genotypes in the study population to be
imputed were randomly phased and the alleles chosen pro-
portionally to the observed allele frequency at each marker.
For instance, at the second marker (2nd column of the ref-
erence panel and the study population), the genotypes are
fully unassayed. The observed frequency of the allele 0 is
the one observed in the reference panel only, which is equal
to 4

10 = 0.4 (0.6). In the study population, the 16 unknown
alleles are randomly assigned in these proportions, that is
to say 16× 0.4 ∼ 6 haplotypes carry the allele 0.

to the state shown in Figure 3.7. The tree representation is shown in Figure
3.8, based on the counts in Table 3.2.

3.4 Conclusion

In this chapter, the illustrated examples with coalescent models in Section
3.2.3 and the Beagle model in Section 3.3.2 reveal the impact of pooling on
haplotype phasing and genotype imputation. Pooling notably modifies the
frequencies of observed genotypes from which the template haplotypes are
determined, which in its turn affects the sampling operations performed in
the HMMs. How much the pooled genotype frequencies differ from the true
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Haplotype Count

0000 3
0001 0
0010 4
0011 0
0100 0
0101 0
0110 3
0111 1
1000 0
1001 1
1010 4
1011 2
1100 1
1101 0
1110 3
1111 4

Table 3.1:
Haplotype counts in M(C)AR data.
The counts are obtained after completing the missing data
based on the observed allele frequencies at each marker.

Haplotype Count

0000 2
0001 0
0010 3
0011 1
0100 0
0101 0
0110 0
0111 1
1000 0
1001 0
1010 9
1011 3
1100 0
1101 0
1110 4
1111 3

Table 3.2:
Haplotype counts in MNAR data.
The counts are obtained after completing the missing data
based on the observed allele frequencies at each marker.
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Figure 3.6:

Example of VLMC with haplotypes from
sparse M(C)AR data.
The tree is formed from haplotype counts for the 4 first
markers in Figure 3.5. The root of the tree {H} is not a
marker. A0 represent the allele 0 and A1 the allele 1. Grey
nodes and branches indicate that the allele sequences that
were not observed in the available set of haplotypes.

ones depends the allele frequency at the markers. This relationship is not
linear but is related to the hypergeometric distribution [14]. If the HWE
holds for the genotype frequencies in the population, the pooled genotype
frequencies will deviate from this equilibrium, which may deteriorate the
imputation accuracy of the models relying on the HWE assumption. In the
case of Beagle, the number of haplotypes and the length of the considered
marker sequences in the examples are too small for fully demonstrating the
effect of pooling on the node merging step. Nevertheless, the trees presented
in Figures 3.6 and 3.8 let us notice clear variations in the counts of haplo-
types. As a consequence, the resulting VLMC which define the template
haplotypes have very different structures and the impact of this modifica-
tion on the convergence of the imputation algorithm has not been studied
to our knowledge. Paper I investigates more thoroughly the consequences of
pooling on genotype imputation by comparing the imputation accuracy in
two scenarios, one of which corresponding to a M(C)AR case and the other
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Reference set of haplotypes (from at least 5 diploid reference individuals)

H1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H2 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0

H3 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H4 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H5 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0

H6 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

H7 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

H8 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

H9 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H10 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0

Study sample with partially assayed genotypes

I1 1 1 1 0 ? ? ? ? 0 1 1 ? ? 1 ? 0

1 0 1 0 ? ? ? ? 0 1 1 ? ? 1 ? 0

I2 1 0 1 0 1 ? ? ? 0 1 1 ? ? 1 ? 0

0 1 1 1 1 ? ? ? 0 1 1 ? ? 1 ? 0

I3 1 0 1 1 1 ? ? ? 0 1 ? ? ? 1 ? 0

1 0 1 0 1 ? ? ? 0 1 ? ? ? 1 ? 0

I4 1 0 1 0 1 ? ? ? ? 1 ? ? ? 1 ? 0

1 0 1 0 1 ? ? ? ? 1 ? ? ? 1 ? 0

I5 0 0 1 1 ? ? ? ? ? 1 1 ? ? 1 ? 0

1 0 1 0 ? ? ? ? ? 1 1 ? ? 1 ? 0

I6 1 0 1 0 1 ? ? ? 0 1 ? ? ? 1 ? ?

0 0 1 0 1 ? ? ? 0 1 ? ? ? 1 ? ?

I7 1 0 1 0 ? ? ? ? ? 1 ? ? ? 1 ? ?

1 0 1 1 ? ? ? ? ? 1 ? ? ? 1 ? ?

I8 1 0 1 1 ? ? ? ? ? ? 1 ? ? 1 ? 0

1 0 1 0 ? ? ? ? ? ? 1 ? ? 1 ? 0

Figure 3.7:

Example of initiation of the VLMC with sparse
MNAR data.
The unassayed genotypes in the study population to be im-
puted were randomly phased and the alleles chosen propor-
tionally to the observed allele frequency at each marker. For
instance, at the second marker (2nd column of the reference
panel and the study population), the genotypes are par-
tially unassayed. The observed frequency of the allele 0 is
the one observed in the reference panel and for 8 haplotypes
from the study population, which is equal to 12

18 ∼ 0.7. In
the study population, the 16 unknown alleles are randomly
assigned in these proportions, that is to say 8 × 0.7 ∼ 6
haplotypes carry the allele 0. As a result, the allelic pro-
portions are notably different relative the ones in Figure
3.6.

one to a MNAR case.
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Figure 3.8:

Example of VLMC with haplotypes from
sparse MNAR data.
The tree is formed from haplotypes counts at the 4 first
markers in Figure 3.7. The root of the tree {H} is not a
marker. A0 represent the allele 0 and A1 the allele 1. Grey
nodes and branches indicate that the allele sequences that
were not observed in the available set of haplotypes. The
observed haplotypes include the ones in the pooled study
population. Because of the different allelic proportions at
each marker, the tree of haplotypes is looking different than
the tree form M(C)AR data. Some haplotypes e.g. 0110
are missing compared to the previous example in Figure
3.5, while other ones are over represented e.g. the haplotype
1010. This might have a significant impact on the later node
merging step and notably modify the template haplotypes
used for imputation, which in turn will affect the accuracy
of the imputation results.



Chapter 4

Summary and future work

The work presented in this thesis describes pooling techniques tailored for
genotype data of SNPs in the broader context of genotype imputation.

We have introduced the general context of genotype imputation and its
relevance in many research fields, as well as the cost issue of large-scale geno-
typing. We have argued that a pooling technique augmented by imputation
could contribute to address this cost challenge. The complementary nature
of group testing for identifying items occurring at low frequency especially
improves the genotyping accuracy of the rare variants. The rare variants are
usually delicate to impute in a population, while determining the genotype
of the samples at these markers they can be very valuable in e.g. biomedical
association studies or marker-assisted selection in breeding.

We have investigated different strategies of pattern-consistent decoding
for the pooled genotypes with the 4 × 4 NORB design we chose. These
strategies are implemented in the simpool program that computes the most
likely genotype probabilities of any sample in a pooling block. We however
showed that the probabilistic decoding step in genotype pooling implies
specific challenges that are due on the one hand to the ternary nature of the
genotype data, on the other hand to the pooling design itself that introduces
structural dependencies between the missing and the non missing genotypes
in the pooled data.

Finally, we have demonstrated that the specific structure of the pooled
genotype data poses some difficulties for imputation, both with coalescent
and clustered tree methods. We have proposed hypotheses about the mech-
anisms underlying these difficulties, we believe they can be explained by
imbalances in the missing data rate which is correlated the allelic frequen-
cies at the markers to be imputed. Genotype imputation from pooled data
has nonetheless shown good performance overall with the coalescence-based
algorithm Prophaser. These promising results open opportunities for ap-

49



50 Chapter 4. Summary and future work

plications in biomedical research as well as in animal and plant breeding.

In order to evaluate the relevance and the efficacy of pooling for genotype
imputation, we conducted in Paper I a study comparing two scenarios of
genotype imputation in a study population sampled from the 1000 Genomes
Project. The first scenario simulates a situation where the data set to impute
consists of markers that are either fully assayed in the study population to be
genotyped, or fully missing for all samples. In this usual setup for genotype
imputation, the genotype data is missing at random (MAR data). The
existing methods for genotype imputation such as the coalescent models of
MaCH or Impute2, as well as the Beagle model, have been developed for a
usage in this scenario, and they have demonstrated very good accuracy and
computational performance.

The second scenario simulated in Paper I implements genotype pool-
ing with a 4 × 4 NORB design in the study population in a first step,
followed by genotype imputation in a second step. The genotype data in
this setup is missing not at random and shows nonmonotone missingness
patterns (MNAR data), which impacts negatively the accuracy and the per-
formance of the imputation methods. In order to address the particularities
of the missing data in the case of pooling, we proposed two new tools. First,
a self-consistent iterative algorithm (simpool) for inferring the most likely
genotype of any missing item in a pooling block, based on the observed
patterns of the pools. The probabilistic estimates computed with simpool
partly overcome the difficulties encountered when imputing decoded data
from pooling. Second, an extended coalescent method (Prophaser) that is
able to make use of the estimates computed by simpool for improving the
accuracy of imputation with pooled data. On the whole, the results presen-
ted in Figure 4 in Paper I demonstrate that the usage of pooling augmented
by imputation benefits especially the genotyping of rare variants. While
imputation in usual settings performs the best over all markers, we found
that the rare variants are however efficiently identified thanks to pooling
and imputed more accurately.

As the strategies for inference with MNAR data are more complex than
with MAR data, Paper II proposes an investigation of the consistency of the
genotype distribution reconstructed with the simpool algorithm. We evalu-
ated the distributional consistency based on a divergence criterion. The new
insights provided by this study let us improve the original algorithm, such
that the versions of simpool implemented later output genotype probabilit-
ies that show higher consistency with the true genotype distribution. These
results should be nonetheless interpreted in the context of genotype imputa-
tion in further investigations, that is to what extent the more consistent
genotype probability estimates improve imputation accuracy.

Based on the results presented in Paper I, a short preliminary study of
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the incorrectly imputed genotypes for a given pooling pattern let us believe
that we should investigate to what extent a second iteration of both simpool
and Prophaser on the data set. We will execute this second iteration from
the imputed data set in Paper I.

Moreover, as our findings might benefit the plant breeding science, we
also plan to carry out an experiment of joint pooling and imputation for
genotype data with a crop species such as the diverse MAGIC Wheat inbred
lines [44].
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METHODOLOGY

A joint use of pooling and imputation for

genotyping SNPs
Camille Clouard1*, Kristiina Ausmees1 and Carl Nettelblad1

Abstract

Background: Despite continuing technological advances, the cost for large-scale genotyping of a high number

of samples can be prohibitive. The purpose of this study is to design a cost-saving strategy for SNP

genotyping. We suggest making use of pooling, a group testing technique, to drop the amount of SNP arrays

needed. We believe that this will be of the greatest importance for non-model organisms with more limited

resources in terms of cost-efficient large-scale chips and high-quality reference genomes, such as application in

wildlife monitoring, plant and animal breeding, but it is in essence species-agnostic.

The proposed approach consists in grouping and mixing individual DNA samples into pools before testing

these pools on bead-chips, such that the number of pools is less than the number of individual samples. We

present a statistical estimation algorithm, based on the pooling outcomes, for inferring marker-wise the most

likely genotype of every sample in each pool.

Finally, we input these estimated genotypes into existing imputation algorithms. We compare the imputation

performance from pooled data with the Beagle algorithm, and a local likelihood-aware phasing algorithm

closely modeled on MaCH that we implemented.

Results: We conduct simulations based on human data from the 1000 Genomes Project, to aid comparison

with other imputation studies. Based on the simulated data, we find that pooling impacts the genotype

frequencies of the directly identifiable markers, without imputation. We also demonstrate how a combinatorial

estimation of the genotype probabilities from the pooling design can improve the prediction performance of

imputation models. Our algorithm achieves 93% concordance in predicting unassayed markers from pooled

data, thus it outperforms the Beagle imputation model which reaches 80% concordance. We observe that the

pooling design gives higher concordance for the rare variants than traditional low-density to high-density

imputation commonly used for cost-effective genotyping of large cohorts.

Conclusions: We present promising results for combining a pooling scheme for SNP genotyping with

computational genotype imputation on human data. These results could find potential applications in any

context where the genotyping costs form a limiting factor on the study size, such as in marker-assisted

selection in plant breeding.

Keywords: Pooling; Imputation; Genotyping
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Background1

Genotyping DNA markers at high density2

Biological and medical research e.g. association stud-3

ies or traits mapping have been interested in Single4

Nucleotide Polymorphisms (SNPs) genotypes because5

of their numerous advantages as genetic markers [1].6

Among the various tools performing SNP genotyping,7

the genotyping chips technology (bead-chips) is well-8

suited for processing many variants at a time.9

In association studies, SNPs are used to differenti-10

ate subpopulations or individuals from one another11

when they can be clustered into informative patterns12

of genetic variation within a sample. Tens or hun-13

dreds of thousands of SNPs are often required for14

achieving relevant, informative, and significant associ-15

ations or mapping [2]. Despite their abundance, many16

of the SNPs carrying variation patterns of relevance17

can be categorized as (extremely) rare variants, e.g.18

variants with a population frequency less than 1%.19

Consequently, a large cohort of individuals should be20

processed to detect these variations and their effects.21

Computational approaches based on appropriate algo-22

rithms offer solutions for increasing both the amount23

of genotyped markers and the study population size24

at a reasonable cost. The computational solutions rep-25

resent a midway to the dilemma of choosing between26

genotyping a large population at low-density only, or27

obtaining high-density genotypes sets but for a re-28

stricted number of individuals.29

*Correspondence: camille.clouard@it.uu.se

1, Division of Scientific Computing, Department of Information Technology,

Uppsala University, Läderhyggsvägen 2, 75105 Uppsala, Sweden

Full list of author information is available at the end of the article

A common method to reduce the genotyping cost 1

is to genotype a low-density (LD) set of markers in 2

a study population and to infer a high-density (HD) 3

one. The inference process, which we refer to as classi- 4

cal imputation, is based on a reference population that 5

is assumed to be similar to the study one, and where 6

the genotypes of all markers are known. Imputation 7

methods have demonstrated high accuracy for infer- 8

ring unassayed genotypes in a population. Nonetheless, 9

several studies found imputation usually performs less 10

well for the rare variants relatively to the common ones 11

[3–7]. 12

Saving genotyping costs with combinatorial group 13

testing techniques 14

Pooling is a group testing technique that aims to iden- 15

tify defective samples in a population with the fewest 16

tests possible. Its usage for genetic screening or com- 17

pressed genotyping was suggested in the 1990s [8]. Nu- 18

merous studies have proposed the use of pooling for 19

tackling the cost issue for DNA processing [9–11], for 20

instance when conducting DNA variant detection tasks 21

on 96-well PCR-plates. Pooling turns out to be par- 22

ticularly efficient when dealing with the detection of 23

rare variants, as other applications in association stud- 24

ies also show with human [9], animal, and crop data 25

[12, 13]. In this context, the carriers of rare variants are 26

seen as the ”defective” items. The applications of DNA 27

pooling in association studies has been mostly used for 28

estimating allelic or haplotype frequencies that are de- 29

rived from the pooled genotype frequencies. Several 30

papers proposed statistical models that incorporate 31

error-correction mechanisms for taking into account 32
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the noisy genotype data from pools. In some cases, the1

statistic used for testing the allelic association is cor-2

rected with the variance of the estimates in the case3

and the control populations [14–17]. In other cases,4

the models relies on linear regression models for han-5

dling the genotyping errors when estimating the allelic6

or haplotypic frequencies [18]. More recently, genotype7

pooling in cattle has been suggested as an avenue for8

more efficient breeding value estimates in large popu-9

lations [19].10

We propose to implement a similar pooling strat-11

egy in order to reduce the cost of SNP genotyping,12

without sacrificing the power to detect carriers of low-13

MAF (minor allele frequency) variants or shrinking the14

study population size. In practice, this is accomplished15

by pooling samples before them being tested on the16

SNP chips, with each sample being included in mul-17

tiple pools. The individual genotypes are then recon-18

structed based on the test results from the pools. Our19

study does not target to estimate the overall allelic fre-20

quencies at markers, it rather aims to find a large-scale21

and moderate-cost genotyping method that focuses on22

the accuracy of every individual genotype estimated.23

Various combinatorial group testing schemes have24

been explored in the literature. These schemes, also25

called pooling designs or algorithms, can be split into26

two families, the sequential and the non-adaptive. In27

the first case, groups (or pools) are consecutively built28

from the data and tested in several steps whereas in29

the latter, all groups are constructed and tested at once30

simultaneously. Since we test all markers on the SNP31

chip simultaneously in our pooling design, only non-32

adaptive group testing (NGT) algorithms are suitable 1

for our study [2, 20]. 2

For uniquely identifying and keeping track of every 3

individual contribution to the pool, the designs with 4

overlapping pools were found to be effective and accu- 5

rate [2, 21–23]. Among the strategies that have been 6

studied for assigning the individuals into overlapping 7

pools, we found mentioned in the literature the DNA 8

Sudoku approach [9] and the Shifted Transversal De- 9

sign (STD) [24, 25]. Both present a deterministic algo- 10

rithm for recovering the individual test results from 11

the pools. We have also noted other approaches as 12

compressed sensing [2, 24, 26] which are particularly 13

suitable for processing the rare variants and incorpo- 14

rate probabilities in the decoding step. Our design is a 15

simple case of STD which partitions the samples to be 16

pooled into repeated blocks, where each block corre- 17

sponds to a pair of layers [20]. Given the characteris- 18

tics of the pooling design we implement in this study, 19

we designate it by Nonadaptive Overlapping Repeated 20

Block (NORB) design. 21

When attempting to decode individual genotypes 22

from the pools, some ambiguity may arise, resulting in 23

missing genotype data for some individuals and mark- 24

ers [2, 9]. This drawback is particularly strong when 25

the defective and the non-defective items are in com- 26

parable proportions in the population. In our setting 27

where defectives correspond to minor allele carriers at 28

SNPs, this situation is likely to be encountered with 29

the common variants. As suggested by He et al. [23], 30

a likelihood framework can be used for formulating 31

the pooling problem as an extension to the combina- 32
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torial methods. The authors found that the likelihood1

framework and its flexibility is especially suitable for2

applications that target the accurate genotyping of a3

population. In this study, we propose to first estimate4

the likely distribution for each incomplete pooling out-5

come, and then do a full imputation of all missing6

genotypes in the data set using more traditional geno-7

type imputation methods.8

Improving pooled genotyping results with imputation9

methods10

Genotype imputation refers to computational ap-11

proaches for inferring genotypes based on incomplete12

or uncertain observational data in a population. Many13

well-performing algorithms for imputation use Hidden14

Markov Models (HMM) [3, 27] that exploit haplotype-15

frequency variations and linkage disequilibrium. Other16

statistical methods such as SNP-tagging based ap-17

proaches can be found but are not as accurate.18

Imputation has been widely used on human genetic19

data [27–29], but also on plant or animal DNA more20

recently [30, 31]. To consider pooling and imputation21

together has been suggested for improving the decod-22

ing process performance when genotyping rare variants23

[10].24

On a general level, the imputation problem can be25

formulated as resolving ambiguous or unknown geno-26

types with predictions by aggregating population-wide27

genetic information [3]. Besides the reference popula-28

tion, some imputation methods can incorporate the re-29

latedness between the study individuals, if such data30

are provided.31

We focused on population-based imputation meth- 1

ods, designed for dealing with unrelated individuals. 2

An extensive investigation of the performance-critical 3

parameters that drive imputation is out of the scope of 4

this study, as well as the family-based methods which 5

include pedigree information in the computations. Due 6

to the very common case of very large populations with 7

significant cost constraints in important applications 8

such as animal and plant breeding, we believe that 9

pedigree-aware imputation methods could form an ex- 10

cellent fit with pooling in that context. 11

Within the population-based methods, two main ap- 12

proaches have been dominating for a long time, namely 13

the tree-based haplotypes clusters and the coalescent 14

models [3, 32]. More recent approaches tend to build on 15

these, but they locally subsample the references based 16

on index searches. We have not included those in this 17

study, since the decoding of pools renders complex pat- 18

terns of genotype probabilities. 19

Both population-based models are statistical meth- 20

ods that yield probabilistic predictions for the missing 21

genotypes. They implement HMM based on template 22

haplotypes, but with some differences. In coalescent 23

models, the probabilistic estimation of the genotypes 24

at unassayed markers is computed from a stochastic 25

expectation-maximization (EM) method. Tree-based 26

clustering, implemented in the Beagle software, is an 27

empirical model determined by the counts of similar 28

segments found across the template haplotypes. For 29

both the coalescent and the tree-based models, the hid- 30

den states underlying the Markov chain of the HMM 31

are defined by single or aggregated template haplo- 32
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types. The way this set of template haplotypes is con-1

stituted varies with the imputation method used. The2

transition from one haplotypic state to another be-3

tween two consecutive markers mimics a historical re-4

combination event, while the emitted symbols of the5

HMM are the genotypes, which are modeled as possi-6

bly erroneous copies of the hidden pair of haplotypes7

and hence express mutation events. Depending on the8

approach, recombination and mutation phenomena are9

either explicitly parametrized, or captured implicitly.10

Among the coalescent models, MACH and IM-11

PUTE2 have been found to perform the best in differ-12

ent studies [27, 29, 33, 34]. We implemented a similar13

method based on [35] and we refer to this algorithm as14

Prophaser [36] in this paper. To the difference of the15

common practice in MACH and IMPUTE2, Prophaser16

uses all the available template haplotypes as hidden17

states in the HMM. All aforementioned methods and18

software run one HMM for each study individual, and19

yield probabilistic estimates of the missing genotypes.20

IMPUTE2 and MACH form the HMM hidden states21

by selecting h template haplotypes in both the refer-22

ence and the study population, such there is a constant23

number h2 hidden states at each of the j diploid mark-24

ers. Hence, these methods have a complexity O(jh2) in25

time for each study individual [37], and the time com-26

plexity grows linearly as the size of the study popula-27

tion. Despite the use of a memory-saving technique re-28

computing parts of the forward-backward table on the29

fly, turning the memory complexity to O(√jh2), sev-30

eral papers point out computational efficiency issues31

with MACH [3, 27, 32] when compared to the other32

methods mentioned. By contrast, Beagle operates a di- 1

mension reduction of the hidden states space thanks to 2

its clustering approach, which has been shown to be 3

particularly efficient when imputing large data sets. 4

The successive releases have improved the software 5

performance in this direction [32, 38–41]. In this study, 6

we use Beagle as a comparison baseline for imputation. 7

Scope of the study 8

In this paper, we present a new cost-effective geno- 9

typing approach based on the joint use of a pooling 10

strategy followed by imputation processing. We ana- 11

lyze how a pooling procedure, applied on a large data 12

set, impacts what we can conclude about the under- 13

lying distribution of genotype frequencies in the study 14

population. 15

We also evaluate how conventional imputation meth- 16

ods perform when given such a pooled data set which 17

has an unusual and characteristic genotype distribu- 18

tion. Specifically, we investigate if refining the specifi- 19

cation of ambiguous genotypes based on the combina- 20

torial outcomes can improve imputation performance. 21

The proposed specific pooling scheme is not unique, 22

however it proves to be a reasonable starting point for 23

evaluating the promise of such designs. Furthermore, 24

we focus solely on the computational aspects of de- 25

termining genotypes. In practice, proper schemes for 26

performing pooling and SNP genotype quality control 27

would be needed. The resilience of imputation meth- 28

ods to patterns of fully missing markers or fully ran- 29

dom genotyping noise is well-known and therefore also 30

not a focus of this study. 31
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Methods1

Genotyping scenarios2

In order to first evaluate how bead-chip genotype data3

respond to pooling treatment and second, how imputa-4

tions methods perform on pooled data, we designed the5

following simulation experiment. We build two marker6

sets with genotype data from a human population7

at low respectively high density (LD resp. HD data8

sets) by extracting only those markers from the 10009

Genomes Project (1KGP) data set that are present10

in one lower-density and one higher-density Illumina11

bead-chip in common use. We then compare the per-12

formance of two approaches for genotyping markers13

at high-density. The first approach serves as a base-14

line and simulates a usual study case where part of15

the markers are genotyped at low density in a target16

population, and the rest of the markers are imputed17

based on a high-density reference panel. The second18

approach evaluates genotyping markers at a high den-19

sity from pools of individuals and then using imputa-20

tion for those individual genotypes that are not fully21

decodable from the pooling.22

Data sets and data preparation23

We use data from the well-studied reference resource24

made available by the 1KGP, more specifically phase 325

v5 [21, 29, 42–44], providing genotype data over 250426

unrelated human individuals across 26 subpopulations27

analyzed worldwide [45].28

We select markers from chromosome 20 that has29

been studied in several previous papers [5, 41, 46]. This30

chromosome spans approximately 63 million DNA31

base pairs [42]. Within the 1KGP in the phase 3 ver-32

sion released 2015, 1, 739, 315 variants are genotyped 1

as biallelic SNPs, out of which 1, 589, 038 (91.4%) have 2

a minor allele frequency (MAF) less than 5%. These 3

are called rare or low-frequency variants [37, 47]. 4

After selecting the biallelic SNPs, we retain mark- 5

ers that are common to both the 1KGP chromosome 6

20 data set and analyzed on the Illumina bead-chip 7

products Infinium OmniExpress-24 Kit and Infinium 8

Omni2.5 - 8 Kit. Intersecting the markers from the Il- 9

lumina arrays and the markers genotyped in the 1KGP 10

for the chromosome 20 yields two overlapping experi- 11

mental maps. The map derived from the OmniExpress 12

bead-chip consists of 17, 791 biallelic markers, out of 13

which 17, 015 markers are shared with the map derived 14

from the Omni2.5 bead-chip which lists in total 52, 697 15

markers (see Figure 2a). With respective densities of 1 16

SNP per 3.5 kb and 1 SNP per 1.19 kb, we hence ob- 17

tain low-density (LD) and high-density (HD) marker 18

sets [38]. 19

For simulating imputation, the 2504 unrelated hu- 20

man samples are randomly split into two populations, 21

regardless of their subpopulation. The first one is the 22

reference panel (PNL) with 2264 individuals, the lat- 23

ter is the study population (STU) with 240 individuals, 24

thus observing proportion PNL:STU-sizes of ca. 10 : 1 25

as in [3]. For the classical imputation scenario simula- 26

tion, we delete in the STU population genotype data 27

for the markers only present in the HD data set and 28

keep fully genotyped at LD the 17, 015 markers com- 29

mon to both maps. In the pooling scenario, we keep all 30

the 52, 697 HD in STU and simulate pooled genotypes 31

as described hereafter. In PNL, we keep the genotype 32
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data for all LD and HD markers for both scenarios.1

Figure 1 gives an overview of the experimental steps2

carried out in both scenarios.3

Figure 2 illustrates the composition of the different4

data sets composition before imputation. In both sce-5

narios, after imputation, the study population is even-6

tually fully genotyped at HD markers.7

Group testing design for simulating pooled genotyping8

from microarrays data9

The study population is further processed with pooling10

simulation, which yields missing genotypes spread in11

the data.12

Based on the DNA Sudoku study [9], we define criti-13

cal parameters for optimizing the design which are the14

number of individuals per block, the number of inter-15

secting pools per block holding each pair of samples,16

and the number of pools that hold any given sample.17

These parameters and the pooling algorithm can be18

mathematically formulated as a binary k ×m matrix19

M with k rows representing pools and m columns rep-20

resenting samples.M is called the design matrix of the21

scheme.22

NORB parameters and design matrix We choose23

nB = 16 samples for the block size with pools of degree24

4, a samples’ weight equal to 2, and a pool intersection25

value equal to 1. Hence, we get a number of pools per26

block equal to 8. The reduction factor ρ is 2, or equiv-27

alently the number of individuals is twice the number28

of pools within a block.29

Square representation of a block We introduce a30

graphical representation of a pooling block with geno-31

types at a given SNP, according to the chosen pa- 1

rameters. As described by Ngo and Du in their tax- 2

onomy of nonadaptive pooling designs [25], a sim- 3

ple transversal design can be represented as a grid. 4

The rows and columns {Pt}1≤t≤T are the pools, and 5

{Gi}1≤i≤nB
∈ {−1, 0, 1, 2} the individuals’ genotypes 6

which is, in order, interpreted as ’missing genotype’, 7

’homozygous for the reference allele’, ’heterozygous’, 8

’homozygous for the alternate allele’. 9

P5 P6 P7 P8

P1 G1 G2 G3 G4

P2 G5 G6 G7 G8

P3 G9 G10 G11 G12

P4 G13 G14 G15 G16

10

Pooling is simulated on the genotypes in the study 11

population (STU data set) for the imputation scenario 12

2 (pooled HD data). STU was created in view of having 13

a size which is a multiple of the block size chosen, i.e. 14

STU has a size Bstu ∗ nB = 15 ∗ 16, where Bstu is 15

the number of pooling blocks formed from the study 16

population. At every SNP, we implemented the pooling 17

simulation as described hereafter. 18

Encoding and decoding rules With the design we have 19

selected for our experiment, simulating pooling on 20

items involves an encoding step followed by a decoding 21

step. Two examples of genotype pooling simulation are 22

shown in Figure 3a and Figure 3b. 23

First, the encoding step simulates the genotype out- 24

come for a pool from the combination of the individual 25
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genotypes in it. SNP chip genotyping detects which1

alleles are present in the sample at each SNP (0 for2

the reference allele or 1 for the alternate allele) on the3

chip. That means, in the simulation of the pooling en-4

coding step, a pool has genotype 0 (respectively 2) if5

and only if all samples forming the pool are homoge-6

neous and have homozygous genotype 0 (resp. 2). Any7

other intermediate combination of a pool from samples8

having heterogeneous genotypes 0, 1, or 2 results in a9

heterozygous pool with genotype 1.10

In the second step, decoding the individual geno-11

types from their intersecting pools is done while as-12

suming there was no genotyping error. In our design,13

every sample is at the intersection of two pools. If both14

pools have genotype 0 (or 2), the sample has geno-15

type 0 (or 2). Also, since a pool has a homozygous16

genotype if and only if all contributing samples have17

the homozygous genotype, this implies that any indi-18

vidual at the intersection of a homozygous pool and19

a heterozygous one must be homozygous. In the case20

of a pooling block with exactly one carrier of the al-21

ternate allele (Figure 3a), if exactly two pools have a22

heterozygous genotype 1 (pools P3 and P5 in Figure23

3a), we deduce the individual at their intersection has24

the alternate (or reference) allele, but we cannot state25

if two copies of this allele are carried (genotype 2, or26

0 in the symmetrical case where the reference allele is27

the minor one) or only one (genotype 1). In this case,28

ambiguity arises at decoding, in other words, genotype29

data is reported as missing. To fully assess the proba-30

ble state of the genotypes of each sample in a pooling31

block, not only the pools where a sample is included32

have to be considered but also the full block. We pro- 1

pose to make use of the constraints imposed by the 2

outcome for each pool to estimate the genotype dis- 3

tribution for any undecoded sample. This includes the 4

distribution between heterozygote and homozygote for 5

decoded carriers. 6

Figure 3c and Figure 3d show some results we ob- 7

tain after simulating pooling and imputation at two 8

markers for 4 × 16 = 64 samples in the study popu- 9

lation: Figure 3c is an example for a common variant 10

and Figure 3d illustrates the case of a rarer variant. In 11

practice, genotyping pools of samples on microarrays 12

requires computational processing of the decoding step 13

only. 14

Estimation of the genotype probabilities from 15

combinatorial information 16

At the block level, the pooling scheme implies possi- 17

ble and impossible latent genotypes for a given sam- 18

ple. For example, a decoded block comprising twelve 19

REF-homozygous and four missing genotypes as in 20

Figure 3b imposes the constraint at least two out of 21

the four samples are minor allele carriers (i.e. geno- 22

type in {1, 2}), whereas the other missing samples can 23

have any genotype in {0, 1, 2}. Consequently, within 24

these four unknown sample states, the probability of 25

encountering actual homozygous-REF is lower than in 26

a case where the missingness pattern of genotypes is in- 27

dependent of the actual genotype value, as is typically 28

the case in imputation from low to higher density. By 29

proceeding in a similar way for any observable pool- 30

ing block, we propose to explicitly model the expected 31

distribution of each incompletely decoded genotype. 32



Clouard1 et al. Page 9 of 29

Genotype representations1

In this paper, beyond the G representation introduced2

previously, we use the genotype probabilities (GP)3

format, which expresses any genotype as a probabil-4

ity simplex over the three zygosity categories. G and5

GP are equivalent representations, for example if all6

genotype states are uniformly equally likely to be ob-7

served, this results in a genotype probability GP =8

(0.33, 0.33, 0.33) (i.e. G = −1). A determined genotype9

has one of the following probabilities: GP = (0, 0, 1),10

(0, 1, 0), or (1, 0, 0) (i.e. G = 2, G = 1, or G = 0).11

Statistical formulation of the genotype decoding12

problem13

We introduce hereafter the notations and definitions14

which frame the pooling procedure as a statistical in-15

ference problem in missing data. In this framework,16

we later present an algorithm for estimating the most17

likely genotype at any missing entry conditioned on18

the configuration of the pooling block. Our strategy19

proceeds by enumerating genotype combinations for20

the missing data that are consistent with the data ob-21

served from the pooling blocks, and uses that enumer-22

ation to compute an estimate of the latent genotype23

frequencies.24

Model distribution for the genotypes Let the genotype25

G be a random variable with three outcomes 0, 1, and26

2. The genotype probabilities π are expressed as27

π = (p0, p1, p2) (1)

where (p0, p1, p2) are the probabilities for the geno- 1

type 0, 1, and 2 at a given variant for a given sample. 2

Therefore, we model the complete (not pooled) geno- 3

type data within a pooling block as an array x of size 4

16× 3 (nB = 16) where each data point xi is a proba- 5

bility simplex [p0i, p1i, p2i]. Each probability simplex is 6

an indicator vector, since the genotype is fully known. 7

x = (x1, x2, . . . , x16) (2)

∀i ∈ [1, 16] xi =




p0i

p1i

p2i




(3)

Since the samples are randomly assigned to pooling 8

blocks, the genotype probabilities xi are independent 9

from each other. 10

Furthermore, we denote z the prior probabilities for 11

genotypes that follow pooling and pool decoding. z is 12

another list of probabilities, where some genotypes are 13

fully decoded, some are fully unrecoverable, and some 14

indicate carrier status, without being able to distin- 15

guish between a heterozygous genotype or a homozy- 16

gous one as on Figure 3a. The pooled genotypes are 17

represented by 18

z = (z1, z2, . . . , z16), (4)

∀i ∈ [1, 16] zi =




p̃0i

p̃1i

p̃2i




(5)
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The data zi for each cell of a pooling block is1

modelled with the simplex of genotype probabilities2

(p̃0i, p̃1i, p̃2i).3

Mapping of the data space We denote layout the data4

for the full genotypes x, which is represented as a list of5

genotype probabilities for each individual in the block.6

We denote t the function transforming x into z. Since7

there are several complete layouts x that could give8

the same result z after pooling, t is a many-to-one9

mapping10

t : X −→ Z (6)

x 7−→ z (7)

where X is the space of complete observations, and11

Z is the space of decoded pooling blocks.12

Given the priors zi for any sample, the problem to13

solve is to estimate a posterior probability distribution14

π̂i = (p̂0i, p̂1i, p̂2i) for the three genotypes {0, 1, 2} in15

any individual, i.e. recovering a probability distribu-16

tion from which the true genotype xi can be said to17

be sampled, as a probabilistic inversion of t.18

Inherently to the NORB design chosen, the assort-19

ment of observable z is finite and constrained. More-20

over, any individual genotype zi depends on the geno-21

types of the pools intersecting it, but also on all other22

pools in the block. Therefore, any sample zi in the full23

set of probabilities z representing the pooling block24

can be parametrized by the pool configuration and the25

possible intersections.26

Valid layouts in block patterns Let ψ be the pooling 1

block pattern described as ψ = (nGrows
, nGcolumns

), 2

where nGrows
(resp. nGcolumns

) are the counts of 3

row-pools (resp. column-pools) with encoded geno- 4

types (0, 1, 2). For example, on Figure 3a, the 8 5

pools can be described with the block pattern ψ = 6

((3, 1, 0), (3, 1, 0)) since there are 3 row-pools having 7

genotype 0, 1 having genotype 1, none having geno- 8

type 2, and the same for the column-pools. On Figure 9

3b, the pooling pattern is ψ = ((2, 2, 0), (2, 2, 0)). 10

We denote Zψ the space of decoded pooling blocks 11

showing the pattern ψ, and correspondingly Xψ the 12

space of the set of valid layouts for ψ. A layout is said 13

to be valid with respect to the pattern ψ if applying 14

pooling simulation to x lets us observe ψ from z. In 15

other words, the valid layouts are 16

Xψ = {tψ(x) ∈ Zψ : x} . (8)

The Additional file shows examples of valid and in- 17

valid layouts for the same observed pooling pattern. 18

Parametrizing the data mapping Let (r, c) ∈ {0, 1, 2}2 19

be the genotype pair of two intersecting pools, such 20

that any zi is conditioned on (r, c) . We note that if 21

(r, c) = (1, 1), the decoding of the intersected individ- 22

ual genotype zi is indeterminate. In other cases, the 23

intersected genotype is fully recoverable as with (0, 1) 24

(resulting in zi = [1, 0, 0]⊤). The pair (r, c) = (0, 2) is 25

not consistent with any genotype, therefore it is never 26

observed. 27
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Based on these notations, we seek to approximate the1

most likely genotype probabilities {π̂i} in missing data2

that are consistent with xi by using inversion sampling3

of the priors zi with respect to tψ. That is to say,4

Pr(xi|ψ; r, c) = t−1
ψ

(
Pr(zi|ψ; r, c)

)
. (9)

Computing the estimate of the posterior for the miss-5

ing outcomes as π̂ := π̂i in a pooling block with pattern6

ψ by inverse transform sampling is a numerical prob-7

lem that can be solved as a maximum likelihood esti-8

mation (MLE) based on the enumeration of all valid9

layouts.10

Maximum Likelihood type II estimates11

We propose to partition Z into {Zψ}ψ∈Ψ. This enables12

to marginalize the likelihood over ψ, r, c and lets the13

problem be solved as a series of separate probability14

simplex MLE problems in each sample subspace Zψ.15

The marginal likelihood is sometimes found as type16

II-likelihood (ML-II) and its maximization (MMLE)17

as empirical Bayes method. We present as supplemen-18

tary information a method for computing π̂ by max-19

imizing the marginal likelihood of any observed pat-20

tern ψ and deriving genotype posterior probabilities21

estimates (see Additional file). The MMLE example is22

also well-suited for introducing how we conduct a sys-23

tematic and comprehensive enumeration of the valid24

layouts for a given pattern ψ.25

Self-consistent estimations 1

Motivation and general mechanism As a natural ex- 2

tension to the MMLE in presence of incomplete data 3

[48], we implemented a method for estimating the un- 4

known genotypes probabilities inspired by the EM al- 5

gorithm. The following procedure is applied for each 6

set of parameters ψ, r, c. 7

We initiate the prior estimate of any entry in the 8

block to zi = [0.25, 0.5, 0.25]⊤. This choice is based on 9

the assumption that, without information about their 10

frequencies, both alleles at a marker are expected to 11

be equally likely carried. 12

The algorithm iteratively updates π̃ := z̃i by alter- 13

nating between computing the likelihood of the valid 14

layouts using the prior estimate (E step) and deriv- 15

ing the posterior estimate from the frequencies of the 16

genotypes aggregated across the data completions (M 17

step). The M step can incorporate a rescaling opera- 18

tion of the proportions of genotypes that we designate 19

as heterozygotes degeneracy resampling. Eventually, 20

the E and M steps produce a self-consistent estimate 21

π̂ [49] (see Additional file for a calculation example). 22

Heterozygote degeneracy arises from the internal 23

representation we use for the genotypes under the 24

pooling process. Indeed, the two heterozygous states 25

carrying the phased alleles pairs (0, 1) or (1, 0) are 26

collapsed into a single heterozygous genotype GP = 27

(0, 1, 0) (or equivalently G = 1). In a way analogous to 28

for example the particles paths in particles filter mod- 29

els, we define this collapsing as heterozygous degen- 30

eracy. For instance, a layout involving 4 heterozygous 31

genotypes should be subdivided into 24 micro layouts 32
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combining alleles pairs (0, 1) and (1, 0). More generally,1

the heterozygous degeneracy has order 2n1 , where n12

is the number of items having genotype 1 in the layout.3

In practice, enumerating these micro layouts would in-4

crease the computation time a lot. Instead, we include5

the higher probability for heterozygotes internally in6

the model, taking the degeneracy into account when7

normalizing, and again when producing the final like-8

lihoods to be used in the imputation process, where a9

uniform distribution is the expected structure for data10

without any informative prior.11

Equations of the optimization problem We proceed in12

a way identical to MMLE for enumerating all possible13

completions for the nm unknown genotypes. At each14

iteration m, The E step calculates first the marginal15

likelihood of every layout by sampling its genotypes16

from π̃(m−1)|ψ. The mixing proportion E[x|z, π̃, ψ](m)
17

of each layout is computed from all aggregated likeli-18

hoods and for any z ∈ Zψ. A breakdown of the formula19

for E[x|z, π̃, ψ](m) is provided in the Additional file.20

The M step recomputes the genotype frequencies21

(p̃0, p̃1, p̃2) by applying MLE to the likelihoods calcu-22

lated at the E step.23

p̃k
(m) =

∑
x⊂X

nk E[x|z, π̃, ψ](m)

∑
k

∑
x⊂X

nk E[x|z; π̃, ψ](m)
, (10)

k ∈ {0, 1, 2} (11)

where nk is the counts of genotype k observed in the24

layout x.25

Since we do not compute the distribution of the geno- 1

type frequencies from the allelic dosage, we suggest a 2

resampling step after the M step that artificially ac- 3

counts for the heterozygous degeneracy. Hence, we in- 4

troduce arbitrary weights w = (w0, w1, w2) = (1, 2, 1) 5

for rescaling (p̃0, p̃1, p̃2). If we do not account for 6

the heterozygote degeneracy, we pick these weights as 7

w = (1, 1, 1). 8

p̃
(m)′
k =

wk p̃
(m)
k

p̃
(m−1)
k

, k ∈ {0, 1, 2} (12)

p̃
(m)′′
k =

p̃
(m)′
k∑

k

p̃
(m)′
k

(13)

π̃(m) = (p̃
(m)′′
0 , p̃

(m)′′
1 , p̃

(m)′′
2 ). (14)

At the last iteration, when the algorithm has con- 9

verged, the final estimate of π̃ is computed from a 10

modified version of rescaling, where we compensate for 11

the artificial upscaling used in the previous steps 12

p̂k
(m)|ψ =

(1/wk) p̃
(m)
k∑

k

(1/wk) p̃
(m)
k

, k ∈ {0, 1, 2} (15)

π̂|ψ = (p̂0
(m), p̂1

(m), p̂2
(m)) (16)

Such self-consistent iterative methods provide local 13

distribution estimates for the undecoded genotypes at 14

the pooling block level, based on information from the 15

pooling design. They are independent of the overall 16

MAF in the population because of the choice we made 17

for the prior, and do not take into account the genetic 18
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variations specific to the population and its structural1

traits.2

Imputation for retrieving missing genotypes3

For each sample in the study population, we use4

the aforementioned estimated genotype probabilities5

π̃|ψ, r, c as prior beliefs θG in imputation. Figure 26

summarizes the experimental settings for both this7

scenario and the classical one. We compare the im-8

putation performance on pooled SNP genotype data9

of two population-based algorithms, representing each10

the haplotype clustering approach and the coalescence11

principle.12

A haplotype clustering method: Beagle13

In this work, Beagle is used in its 4.0 version and with14

the recommended default parameters. This software15

version is the best performing release having the fea-16

tures needed for this study. Beagle 5.0 is available but17

this version does not support logged-GP (GL) data18

type as input.19

We use the HapMap GRCh37 genetic map suggested20

by Beagle developers and consistent with the genome21

assembly underlying the version of the 1KGP data22

used [38]. In practice though, we have not noticed clear23

deterioration when conducting imputation on pooled24

data without providing any genetic map.25

For the classical imputation scenario, we before-26

hand verify equivalent results and performance are27

obtained both if Beagle is run on genotypes in a28

GT format or GL format. In the first case, unas-29

sayed HD markers were set to ./. and in the latter,30

to (−0.481,−0.481,−0.481). As advised in the docu-31

mentation, we imputed the entire STU population in 1

the same batch. 2

In the pooling scenario, we used the same reference 3

panel, but we deliberately chose to run Beagle sample- 4

wise for avoiding the very specific genetic structure of 5

pooled data being used as template haplotypes. Pre- 6

liminary testing showed a clear deterioration in results 7

if this was not done. 8

A coalescence-based method for haplotype phasing and 9

imputation: Prophaser 10

The original version of MACH did not support GL as 11

input study data, in contrast to IMPUTE2. The main 12

motivation for writing the Prophaser [36] code was to 13

implement this feature with full control of e.g. cutoff 14

thresholds for close-to-zero probabilities. The reference 15

panel is read from GT data. 16

Prophaser phases and imputes unassayed markers 17

sample-wise and independently from the rest of STU. 18

Whereas MACH and IMPUTE2 include strategies for 19

selecting a subset of reference samples for computa- 20

tional efficiency reasons, we decided to consistently use 21

the full reference panel as templates in a single itera- 22

tion estimation. Hence, Prophaser uses all reference 23

haplotypes as templates. 24

Evaluation of the experimental design 25

We quantified the performance of the two genotyping 26

scenarios with the concordance rate and cross-entropy. 27

In both cases, the original data from 1KGP in the 28

study population were used as the ground truth, and 29

the predicted data were the imputed genotypes in the 30

same study population. 31
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Concordance The most widely used imputation qual-1

ity metric is the genotype concordance measure which2

counts the number of matches between the true and3

the best-guess imputed genotypes. A homozygous4

genotype imputed as heterozygote (or conversely) is5

counted as a half mismatch, and a homozygote im-6

puted to its opposite homozygote as a full mismatch.7

Concordance sometimes appears as its complementary8

formulation with the discordance rate [3]. Several pub-9

lications refer to the concordance rate directly as the10

genotype accuracy rate [39] or as imputation accuracy11

[32], whilst the discordance rate is designated as the12

imputation error rate [33, 38].13

Cross-entropy In the studies presenting the succes-14

sive Beagle software versions, the accuracy in the sense15

of the concordance does not quantify how similar the16

imputed genotypes are to the true ones. This has al-17

ready been pointed out by e.g. Nothnagel et al. [27].18

As an example, we can consider the two following19

cases: (a) a true genotype G = 1 being imputed with20

GP = (0.56, 0.42, 0.02), and (b) a genotype G = 121

being imputed with GP = (0.7, 0.28, 0.02). Using the22

best-guess genotype definition, both genotypes will be23

imputed as G = 0 and hence a discordance of one24

point, but the prediction (a) is ”weaker” since it has a25

lower best-guess likelihood (0.56 < 0.7). In that sense,26

the prediction (a) should be considered as less signif-27

icant than the (b) one even if both are wrong. There-28

fore, we introduce the cross-entropy metrics χ as a29

divergence measure of the predicted genotype distri-30

bution. The cross-entropy we propose is defined as in31

equation 17 at the j-th marker for N individuals im- 1

puted. 2

χj =

N∑
i=1

(
−

2∑
g=0

Pr(Gij = g) log(Lijg)
)

N
(17)

where Lijg is the genotype likelihood (or posterior 3

imputed genotype probability) for the genotype state 4

g at the j-th marker for the i-th individual. For low- 5

probability genotypes, we used a cut-off of log(10−5) 6

if the genotype probability was less than 10−5. 7

Computational tools 8

Due to their computational costs, imputation algo- 9

rithms were run on compute servers. The comput- 10

ing resources were provided by SNIC through Uppsala 11

Multidisciplinary Center for Advanced Computational 12

Science. This infrastructure provides nodes (compute 13

servers) of two 10-core Xeon E5-2630 V4 or two 8-core 14

Xeon E5-2660 processors running at 2.2 GHz, with 128 15

to 512 GB memory. 16

Results 17

Genotype distribution before imputation 18

The LD and HD marker sets built for the exper- 19

iment both contain SNPs in the whole allelic fre- 20

quency range but the markers are unevenly dis- 21

tributed over this range. Table 1 provides further de- 22

tails about the uneven distribution. We aim to ana- 23

lyze the uncommon variants at a finer scale and vi- 24

sualize their joint response to pooling and imputa- 25

tion. Therefore, the bins chosen are tighter towards 26
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the least MAF values and the boundaries set to1

[0.0, 0.02, 0.04, 0.06, 0.1, 0.2, 0.4, 0.5] for the intervals.2

The most rare variants (MAF < 2%) represent a3

substantial share of the studied SNPs with 520 markers4

in the LD dataset and 12775 in the HD dataset. One5

should note that even denser chips, or the full marker6

set of called SNPs in the 1KGP dataset, are even more7

extreme in this regard.8

Table 2 shows the proportion of assayed and deter-9

mined genotypes before imputation in the LDHD sce-10

nario and in the pooled HD scenario.11

Already at the preimputation stage, the pooling12

mechanism proves to be particularly efficient for cap-13

turing the most rare variants (MAF < 2%) with14

98.1% determined genotypes before imputation. In the15

LDHD scenario, only 0.41% of the genotypes are as-16

sayed in the most rare variants before imputation. In17

total, there are 67.7% unassayed genotypes before im-18

putation in the LDHD scenario and 44% in the pooled19

HD scenario. The proportions of known genotypes20

however varies depending on the MAF.21

Whilst the proportion of known genotypes seems to22

augment as the MAF increases in the LDHD scenario,23

a negative correlation between the known data rate24

and the MAF is noticed in the pooling case. Indeed,25

the proportion of fully decoded genotypes is less than26

10% for MAF exceeding 30%. Such markers are com-27

mon variants. Since both alleles have roughly the same28

frequency in the population, heterozygotes and mixed29

genotypes within pools will be far more common as30

on Figure 3b, or with even more carriers of the minor31

allele in the block. To summarize, there is a significant32

correlation between true genotypes and the probabil- 1

ity of the genotype being decoded, and that correlation 2

is further dependent on the MAF of the marker. The 3

proportions of known genotypes before imputation per 4

MAF-bin in the LDHD scenario is actually fixed by the 5

choice made for the LD map. In other words, chang- 6

ing the LD map will modify the distribution of known 7

markers. In the pooled HD scenario, the proportions 8

mostly depend on the MAF of every marker and the 9

HD map chosen has a limited impact on the distribu- 10

tions of known markers per MAF-bin. 11

The distribution of heterozygous and homozygous 12

genotypes obtained in each MAF-bin from both data 13

deletion (LDHD scenario) and pooling simulation 14

(pooled HD scenario) are presented on Figure 4. To the 15

difference of the LDHD data set, the pooled HD one 16

let some markers being half-genotyped in that sense 17

one out of the two alleles can be determined before im- 18

putation. For example in the markers having a MAF 19

less than 2%, in addition to the large share of exactly 20

determined genotypes (GT =M/M), most of the inde- 21

terminate genotypes are yet half-known (GT = ./m). 22

The pooling process never fully decodes the true het- 23

erozygous genotypes, hence the proportion of unas- 24

sayed genotypes will be large in common markers. 25

Only the homozygous genotypes can be determined 26

from pooling with our design. For the LDHD scenario, 27

the heterozygous genotypes that are naturally present 28

in the study population at the markers on the LD map 29

are observed in the preimputation data set. These ob- 30

servations highlight the very different compositions of 31

the LDHD and the pooled HD data sets before impu- 32
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tation. On the whole, the distribution of the observed1

and assayed genotypes in the population is unevenly2

affected by pooling and depends on the MAF.3

Genotyping accuracy after imputation4

Table 2 also shows the proportion of genotypes that5

are imputed exactly to the true one. Table 3 provides a6

closer insight into the imputation performance of Bea-7

gle and Prophaser in terms of exact matches for the8

genotypes at undecoded markers only in the pooled9

HD scenario.10

Figure 5 presents the genotyping accuracy for im-11

puted markers in both the LDHD and the pooled HD12

scenarios. The concordance and cross-entropy metrics13

are presented for comparison. Preliminary experiments14

(unpublished results) showed that the strategy of us-15

ing pooling patterns-adapted GL values instead of un-16

informed ones improves the imputation accuracy.17

In the LDHD scenario, Beagle shows as expected18

very good performance with an average concordance of19

98.5% and low entropy (0.05). The performance is sta-20

ble across the MAF range on average, though there is a21

larger variation in accuracy for more common variants.22

In the pooled HD scenario, while the overall proportion23

of missing data is lower, Beagle’s performance drops24

substantially (79.6% concordance on average and a25

cross-entropy score of 3.43). The wide envelope for the26

cross-entropy also indicates that the amplitude of pre-27

diction errors on the marker level varies widely in the28

pooled HD scenario. The haplotype-clustering model29

seems to struggle with the unusual genetic structure30

of pooled data.31

Prophaser achieves higher accuracy than Beagle in 1

the LDHD scenario, showing nearly 99% average con- 2

cordance and 0.04 cross-entropy score. As for Bea- 3

gle, the concordance is stable but more spread for 4

higher MAF (less accurate). In the pooled HD sce- 5

nario, Prophaser clearly outperforms Beagle for imput- 6

ing the undecoded genotypes by maintaining an aver- 7

age concordance of 92.6% and a cross-entropy score of 8

0.31. The quantile envelopes for both metrics demon- 9

strate that Prophaser gives stable performance for 10

most markers, while the results for Beagle show a 11

much greater variation. It is naturally important not 12

only that the average concordance or entropy is good, 13

but that any single imputed marker of possible impor- 14

tance is trustworthy. Despite the weaker performance 15

on the pooled HD data compared to the LDHD sce- 16

nario, Prophaser proves the ability to use the uncertain 17

decoded genotypes from pooling for successful impu- 18

tation. 19

Table 2 gives a detailed view of the number and pro- 20

portions per MAF bin of exact genotypes, both in the 21

LDHD and in the pooled HD data sets, before and af- 22

ter imputation. It reveals the benefit that is obtained 23

from gneotyping pooled samples for the variants hav- 24

ing a MAF less than 2%. Prophaser indeed succeeds 25

in raising the proportion of exactly matched genotypes 26

after imputation by 0.3%. This gain is not negligible 27

given the very low frequency of the variations in such 28

markers. 29

Computational performance 30

For Beagle, the compute server (node) was two 10- 31

core processors running at 2.2 GHz with 128 GB mem- 32
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ory. For Prophaser the node resources were two 8-core1

processors running at 2.2 GHz, with 128 GB mem-2

ory. Computation times per study sample were about3

7 minutes for Beagle respectively 6 hours 40 minutes4

for Prophaser, and the memory requirements for each5

sample consumed about 2.2 GiB (resp. 35 GiB) of6

memory. In the classical scenario, it is even possible7

to run Beagle on all study samples together in about8

20 minutes using ca. 12 GiB memory and to get the9

same accuracy results. Hence, accordingly to the re-10

sults found in other studies, Beagle demonstrates an11

excellent computational efficiency in imputing large12

data sets. Prophaser is on the contrary computation-13

ally very expensive, as mentioned to be a drawback14

in the literature with similar algorithms. However, we15

have not yet optimized the performance of our imple-16

mentation.17

Discussion18

As we could expect, pooling enables efficient identi-19

fication of carriers of rare variants within the pop-20

ulation, but yields high missing data rates for more21

common variants. Several studies have indeed shown22

that the distribution of the undecoded items is hy-23

pergeometrical and correlated to the minor allele fre-24

quency [2, 11]. In the case of low-MAF SNPs, the25

pools are mostly homogeneous and homozygous, or26

contain at most one rare variant carrier as on Fig-27

ure 3a. Blocks as on Figure 3b are unlikely to be ob-28

served for these SNPs. Indeed, with respect to HWE29

in a random mating population, rare variant carriers30

would almost exclusively be heterozygotes. The pool-31

ing design used in this study guarantees a theoreti-32

cal perfect decodability of the samples genotype if at 1

most one sample in the block is carrying the minor 2

allele (d0 = 1, calculated as in the DNA Sudoku [9]). 3

The results presented in Table 2 comply with the the- 4

oretical limiting decoding power. The upper bound for 5

MAF with high certainty of decodability is calculated 6

as δMAF = d0×G1

2×nB
= 1×1

2×16 ≈ 3.1%. Our results for the 7

pooled HD scenario show that the number of known 8

markers before imputation drops when the MAF is 9

larger than 2%, and decreases even more when the 10

MAF is greater then 4%. SNPs having a MAF be- 11

low this boundary of 3.1% are expected to be nearly 12

fully assayed in the study population or decoded as 13

rare variant carriers, such that pooling provides a use- 14

ful complementary process to imputation for achieving 15

accurate genotyping of rare variants that are usually 16

more difficult to impute. Other pooling designs can 17

be explored for increasing the decoding power. With a 18

given pooling design, hybrid procedures consisting of 19

imputation from a fully a assayed LD set and a pooled 20

HD set are further alternatives to consider. Similarly 21

to the representation [22] suggested for evaluating the 22

pooling design performance for clone-based haplotyp- 23

ing, we think that quantifying the genotyping effort 24

in relation to the decoding rate and to the MAF as 25

a performance ratio of pooled genotyping could be a 26

future criterion for choosing a pooling design depend- 27

ing on the markers data set and its characteristics. 28

Considering the very good performance of imputation 29

in a LDHD scenario and the complementary nature 30

of a pooled scenario that excel at capturing the rare 31

variants, one could also imagine a more sparse pool- 32
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ing scheme, such as a 5x5 design, with a dense chip,1

augmented by full LD testing of some or all individ-2

uals. This would give the imputation process a clear3

scaffold to start out from, together with very accurate4

information for carriers of rare variants. It also opens5

perspectives for genotyping on even denser chips tar-6

geting very rare variants (MAF < 0.02) without large7

increase in laboratory costs.8

We have presented algorithms that locally adapt the9

genotype frequencies to every pooling block, but we be-10

lieve further research could be conducted for improving11

the GL estimates. In our context, the resulting proba-12

bilities after decoding should be evaluated in terms of13

to what extent they improve the imputation results.14

Imputation on pooled data yielded notably differ-15

ent performance depending on the imputation method16

family used. The clustering model as implemented in17

Beagle seems to suffer from the pooled structure in the18

data. We think the clusters built collapse together hap-19

lotypes that are substantially different, but can have20

superficial similarities after the decoding of pooled21

data. This fact also results in the decoded popula-22

tion looking systematically different from the reference23

population. We showed with the Prophaser algorithm24

that the coalescence assumption supports an imputa-25

tion model that delivers high accuracy in pooled geno-26

type reconstruction, at a computational cost. This is27

consistent with other studies [29, 50] that have found28

the coalescent methods to be robust towards unknown29

genetic population structures. From the perspective of30

the method, the systematic bias introduced by the de-31

coding is similar to unknown population structure. By32

using all the reference haplotypes from the panel dur- 1

ing imputation, Prophaser might overcome the pitfall 2

of sensitivity to deviant genetic structure as mentioned 3

in [3]. As a result, allele frequencies assessed in the 4

study population are no longer consistent with the ef- 5

fective frequencies differences expressing genetic vari- 6

ation found in the reference panel. While the reason 7

presented in that paper is chip quality, we face simi- 8

lar biased structural heterogeneity issues with pooled 9

data. 10

This initial investigation of the performance of pool- 11

ing and imputation as a combined way to recover 12

genotypes is purely based on simulations, in the ab- 13

sence of genotyping errors. In quality control data from 14

chip manufacturers, detection power for alleles can be 15

found on a per-SNP level. Actual detection perfor- 16

mance could be influenced by the amount of DNA con- 17

tributed from various samples within a pool. Our in- 18

tention is to continue to explore our approach on actual 19

assays, in partnerships where cost-effective genotyping 20

on a massive scale is a real concern. 21

It should be noted that our probabilistic decoding 22

method could be modified to account for genotyping 23

errors, and that it will be crucial to consider the over- 24

all effect of errors in decoding individual SNPs and 25

how those errors in turn affect the ability of the impu- 26

tation methods to properly reconstruct the haplotype 27

mosaic, since it is the accuracy of that mosaic of refer- 28

ence haplotypes that in turn will influence imputation 29

performance. 30
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Conclusions1

The findings of this study suggest that pooling can2

be jointly used with imputation methods for achiev-3

ing accurate SNPs at high density while reducing the4

actual number of genotyping procedures done on mi-5

croarrays. However, the atypical structure introduced6

by pooling in the genotype data requires specific atten-7

tion and processing for ensuring the best imputation8

performance possible.9

Overall, pooling impacts the allelic and genotypic10

distributions, and introduces a specific structure in the11

genetic data which does not reflect their natural dis-12

tribution. We have described a statistical framework13

that formalizes pooling as a mathematical transfor-14

mation of the genotype data, and we have proposed15

in this framework an algorithm for estimating the la-16

tent values of undecoded genotypes. Lastly, thanks to17

a simulation on real human data, we have shown that18

a coalescence-based imputation method performs well19

on pooled data, and that informing imputation with20

estimates of the latent missing genotypes improves the21

prediction accuracy. We also presented an implementa-22

tion (Prophaser) of this imputation method for pooled23

genotype data. Overall, this study provides a first pro-24

totype for the computational aspect of a SNP genotyp-25

ing strategy at a reduced cost by halving the number26

of microarrays needed compared to a full sample-wise27

genotyping.28
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Chr20 x OmniExpress
2504 samples
52697 markers

Reference panel
2264 samples
52697 markers

Study population
240 samples

52697 markers

52697 markers
17015 markers

Imputation 
accuracy

Scenario LDHD Scenario pooled HD

Filtering

Pooling simulation at each marker (see Figure 3)

Imputation
(Beagle compared to 

Prophaser)

1

Imputation

Figure 1: Experimental steps for creating the data sets in the pooling and classical imputation scenarios

The original data set ”Chr20 x OmniExpress” consists of the genotype data of 2,504 samples at 52,697 SNPs. The set of
markers is created by intersecting the variants present on both bead-chips from the Illumina manufacturer and the data for the
chromosome 20 in the 1KGP.
The original data set is randomly split into a reference panel and a study population. In the LDHD scenario, all markers in the
HD data set that are not present in the LD data set are filtered out in the study population. In the pooled HD scenario, the
study samples are first assigned to blocks and pools, second the pools are genotyped at all markers in the HD data set, and last
the genotype of each sample is decoded from the pools at every marker. See Figure 3 for an example of the simulation steps in
1 block at 1 marker. The imputation step is performed in both scenarios from the reference panel, with Beagle on the one hand
and Prophaser on the other hand. The genotyping accuracy in each scenario is computed by comparing the imputed genotypes
with the true ones in the original data set for the study population.
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(a) Venn diagram of the makers composition on the Illumina bead-chips Omni2.5 - 8 (HD) and Omniexpress - 24 (LD)

35682 77617015

HD only: 35682

HD: 52697 markers

LD only: 776

LD: 17015 markers

(b) Populations data sets used for comparison in two imputation scenarii

  

1. Classical imputation scenario (LDHD) 2. Imputation from pooled data (pooled HD)

Reference set of haplotypes: N=2264, 2*52697 totally 
assayed haplotypes

H1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0

H2 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0

H3 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

... 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0

Study samples: N=240, 17015 assayed genotypes + 35682 
unassayed genotypes

I1 1 ? ? ? 1 ? 1 ? 0 ? 2 ? ? 2 ? 0

I2 0 ? ? ? 2 ? 2 ? 0 ? 2 ? ? 2 ? 0

I3 1 ? ? ? 2 ? 2 ? 0 ? 1 ? ? 2 ? 0

I4 2 ? ? ? 2 ? 2 ? 1 ? 1 ? ? 2 ? 0

Study samples: N=240, 52697 partially or totally 
(un)assayed genotypes
θ
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? Pr(Gij ) = (0.33, 0.33, 0.33) ? Pr(Gij ) = θG

Figure 2: Markers data sets used for the study population in the pooling and classical imputation scenarios

Figure 2a: LD and HD markers data sets from intersecting Illumina bead-chips x 1KGP chromosome 20.
Figure 2b: Missing genotypes repartition and values in a classical imputation scenario (1.), and in an imputation scenario from
pooled data (2.) where the genotypes probabilities θG are estimated from the configurations of the pooling blocks.
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Figure 3: Examples of genotype pooling simulation at the block level

Subfigure 3a: Configuration with 1 sample carrying the minor allele. This carrier is identified after pooling, but not if it has a
heterozygous (1) or a minor homozygous (2) genotype.
Subfigure 3b: Configuration with 2 samples carrying the minor allele. At least 2 of the 4 samples highlighted in grey are minor
allele carriers, but the genotypes of these 4 samples are indeterminate.
The first step is encoding and pooling. Encoding assigns every sample to a pool and defines its pool coordinates. For instance in
subfigure 3a, the sample at the top-left corner of the matrix has coordinates (1, 5). Pooling computes the genotype of a pool as
if its would tested on a SNP-chip. Pool 5 (P5, most left) has genotype 1: both alleles 0 and 1 are detected among the samples.
Pool 1 has genotype 0 because only the allele 0 is detected. The decoding step infers the pooled genotype of each sample from
the genotypes of its coordinates. The genotype can be −1 i.e. indeterminate when both coordinates have genotype 1, or fully
determined else. In subfigure 3a, the sample with coordinates (3, 5) carries the alternate allele, but there can be 1 or 2 copies
of it.
ψ is the observed pooling pattern that results from grouped genotyping, given as the number of row- and column-pools having
the genotypes (0, 1, 2). In the example 3a, there are 3 row-pools having genotype 0, 1 row-pool having genotype 1 and 0 having
genotype 2, likewise for the column-pools.

Subfigures 3c and 3d: Simulation example of genotype pooling and imputation outcomes for markers from the 1KGP data
(chromosome 20). The genotypes are represented as unphased GT. From top to bottom: true genotype data, pooled genotypes,
imputed genotypes.
Subfigure 3c: SNP 20:264365, MAF = 0.4625.
Subfigure 3d: SNP 20:62915126, MAF = 0.00625.
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(a) Decoded and missing genotypes in LDHD data
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(b) Decoded and missing genotypes in pooled HD data
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Figure 4: Decoded and missing genotypes in data for both imputation scenarios

The minor and major alleles are denoted m and M. For simplicity, the simulated decoded genotypes from pooling are represented
in GT format. We remind adaptive GL are provided later in the experiment for running imputation on data informed with the
pooling outcomes. Half-decoded (GT = M/. or ./m) and not decoded (GT = ./.) genotypes are considered as missing data. The
relative genotypes proportions are scaled in [0, 1] within each bin.
Subfigure 4a: The markers only in the LD data set are fully assayed, all other markers have been deleted.
Subfigure 4b: True heterozygous genotypes (dark blue) are never fully decoded, whereas the rare variants are almost all fully
decoded or at least one of the two alleles is determined.
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(a) Concordance: LDHD data
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(b) Concordance: pooled HD data
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(c) Cross-entropy: LDHD data
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(d) Cross-entropy: pooled HD data
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Figure 5: Genotypes imputation accuracy in a classical and a pooled scenario

Subfigures 5a and 5b: concordance (based on best-guess genotype)
Subfigures 5c and 5d: cross-entropy (based on posterior genotypes probability) metrics. All markers from the HD map have been
used for computing the metrics (52,697 markers).
Beagle (labeled as ”beagle”) performance is in blue, and Prophaser (labeled as ”phaser”) in orange.
The central line is the median and the shadowed areas delimit the percentiles 0.0, 0.01, 0.25, 0.75, 0.99, 1.0. The x-axis was built
from 0.05-long MAF bins within which each marker concordance score was computed as the mean score of the 500 previous and
500 next markers sorted per ascending MAF.
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MAF 0.00-0.02 0.02-0.04 0.04-0.06 0.06-0.10 0.10-0.20 0.20-0.40 0.40-0.50 Total

LD map (counts) 520 779 673 1537 3969 6561 2976 17015
HD map (counts) 12775 5235 2823 4766 9009 12613 5476 52697

LD map (%) 0.987 1.478 1.277 2.917 7.532 12.450 5.647 32.288
HD map (%) 24.242 9.934 5.357 9.044 17.096 23.935 10.392 100

Table 1: Markers counts and proportions on the LD and the HD maps per MAF bin

The counts are given in the two first rows of the table, the proportions in the two last ones. The proportions are given relatively to
the total number of SNPs on the HD map. The HD map is on the whole 3 times denser than the LD map but the density is not
uniformly increased over the MAF bins. Almost 25% of the markers on the HD map are very rare variants (MAF < 0.02), that is
25 times denser than on the LD map where they represent less than 1% of the markers.

MAF 0.00-0.02 0.02-0.04 0.04-0.06 0.06-0.10 0.10-0.20 0.20-0.40 0.40-0.50

Scenario: LD + HD

Number before imputation 520.000 779.000 673.000 1537.000 3969.000 6561.000 2976.000

Number after imputation
Beagle 12699.362 5167.613 2776.687 4673.658 8804.892 12301.371 5337.921
Phaser 12727.142 5193.438 2793.221 4705.346 8870.104 12396.258 5379.408

Proportion before imputation 0.041 0.149 0.238 0.322 0.441 0.520 0.543

Proportion after imputation
Beagle 0.994 0.987 0.984 0.981 0.977 0.975 0.975
Phaser 0.996 0.992 0.989 0.987 0.985 0.983 0.982

Scenario: pooled HD

Number before imputation 12534.608 4826.542 2396.671 3481.896 4249.592 1853.529 159.575

Number after imputation
Beagle 12565.650 4892.246 2478.292 3778.296 5637.525 5407.479 1941.162
Phaser 12755.854 5184.621 2758.079 4532.467 7964.742 9858.467 4012.725

Proportion before imputation 0.981 0.922 0.849 0.731 0.472 0.147 0.029

Proportion after imputation
Beagle 0.984 0.935 0.878 0.793 0.626 0.429 0.354
Phaser 0.999 0.990 0.977 0.951 0.884 0.782 0.733

Table 2: Exact genotypes in markers per data MAF bin

The number of markers is given as the average over all samples in the study population per bin. The proportion of markers is given
relatively to the number of markers per bin. To the difference of concordance, only full matches with the true genotype are counted,
not half-matches.
For the LD + HD scenario, the number of exact genotypes before imputation is equal to the number of variants on the LD map.
For the pooled HD scenario, the number of exact genotypes before imputation is equal to the average number of genotypes that
are fully determined after pooling simulation.
Simulating pooling followed by imputation with Phaser yields a gain in accuracy for the very rare variants (MAF < 0.02) which
are almost all exactly genotyped. This gain is not negligible given the low occurence of these variations.

Additional Files1

Additional file — Estimating genotype probabilities in pooled blocks with marginal likelihoods, self-consistency and heterozygotes degeneracy2

This file provides further details about the self-consistent procedure, based on the Expectation-Maximization method, that we implemented for computing3

genotype probabilities at undecoded items in pooled blocks.4
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MAF 0.00-0.02 0.02-0.04 0.04-0.06 0.06-0.10 0.10-0.20 0.20-0.40 0.40-0.50

Phaser 0.932700 0.886214 0.849634 0.820339 0.783430 0.745528 0.724745
Beagle 0.124773 0.156686 0.187206 0.227121 0.287044 0.329487 0.334919

Table 3: Proportion of exact genotypes after imputation for indeterminate data in the pooled HD scenario per
data MAF bin

This table focuses on the genotypes that are indeterminate after the pooling simulation. The proportion is calculated for these
markers only and relatively to the number of markers in the bin.
For the very rare variants (MAF < 0.02), the indeterminate genotypes are the rare allele carriers. Phaser succeeds in imputing
exactly most of them from the provided prior genotype probabilities estimates.
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Abstract

For applications with biallelic genetic markers, group testing techniques, synonymous to pooling techniques,
are usually applied for decreasing the cost of large-scale testing as e.g. when detecting carriers of rare genetic
variants. In some configurations, the results of the grouped tests cannot be decoded and the pooled items are
missing. Inference of these missing items can be performed with specific statistical methods that are for example
related to the Expectation-Maximization algorithm. Pooling has also been applied for determining the genotype of
markers in large populations. The particularity of full genotype data for diploid organisms in the context of group
testing are the ternary outcomes (two homozygous genotypes and one heterozygous), as well as the distribution
of these three outcomes in a population, which is often ruled by the Hardy-Weinberg Equilibrium and depends on
the allele frequency in such situation. When using a nonoverlapping repeated block pooling design, the missing
items are only observed in particular arrangements. Overall, a data set of pooled genotypes can be described
as an inference problem in Missing Not At Random data with nonmonotone missingness patterns. This study
presents a preliminary investigation of the consistency of various iterative methods estimating the most likely
genotype probabilities of the missing items in pooled data. We use the Kullback-Leibler divergence and the L2
distance between the genotype distribution computed from our estimates and a simulated empirical distribution
as a measure of the distributional consistency.

Background

Purposes of group testing

Pooling is a group testing technique addressing how to
confidently identify a category of items, called ’defec-
tives’, in a population, with as few tests as possible.
Group testing has found numerous applications with
DNA data for e.g. the purpose of large-scale sequencing
or genotyping at reduced cost.

A pooling algorithm for genetic data

In an other study [1], we have explored the usage of a Non
Overlapping Repeated Block (NORB) design for simu-
lation pooling on genotype data, similar to the design
suggested by Erlich et al. [2]. Figure 1(a) presents the
principle of such a pooling experiment.

The NORB procedure divides the population into B
equally sized blocks of nB individuals. In the encoding
step of pooling, every block systematically defines how
many pools are formed from the nB items and the map-
ping of individual items to different pools. The genotype

of a pool is determined by the alleles that are detected
among the pool members at the testing step. In the de-
coding step, the algorithm attempts to retrieve the geno-
type of any item based on the genotypes of the intersect-
ing pools. In some cases, the decoding fails to confidently
identify the genotype of an item and returns it as missing.

Erlich et al. [2] originally presented a NORB algo-
rithm for decoding the genotypes into a binary response,
that is, whether any genotype is a carrier of a rare variant
or not. In our research, we extend the proposed decoding
to a more general case of a ternary outcome, determin-
ing if the genotype is homozygous for the reference al-
lele, heterozygous, or homozygous for the alternate allele.
We suggest for this purpose an algorithm based on the
Expectation-Maximization (EM) method that models all
possible pooling configurations and computes the most
likely genotype of every item involved in each configura-
tion. The items that cannot not be confidently identified
are assigned to a genotype which we call ’adaptive’. Such
a genotype is a local consistent block-wise estimate of the
genotype probabilities (GP) for these specific items. Fig-
ure 1(b) shows one example of our block-adaptive decod-
ing algorithm, where a block configuration is identified by

1



its pooling pattern ψ.

In this study, we investigate the consistency of our
adaptive estimates compared to the pre-pooling genotype
values.

Probabilistic formulation of the
NORB pooling problem

Data sets

Representation of the genotype data

We model the genotype data at any marker for a sample
i as a probability simplex [p0i, p1i, p2i]

⊤, which stand, in
this order, for the probability of the genotype being a ho-
mozygote for the reference allele, a heterozygote, and a
homozygote for the alternate allele.

True genotype data

The pre-pooling data set, or true data set, consists of
n genotypes at each genetic position. Each data point
is a genotype x which is fully known, that is to say
[p0i, p1i, p2i]

⊤ is one of the three simplex in

X =







1
0
0





0
1
0





0
0
1





,

At any position, the n individuals in the popula-
tion are i.i.d. data points which sampled at frequencies
θ = [θ0, θ1, θ2]

⊤. They form an empirical distribution πn

x ∼ πn(x) (1)

x = (x1, x2, . . . , xn) ∀i ∈ [1, n] xi =



p0i
p1i
p2i


 (2)

Under the assumption the HWE holds at each marker,
the population-wide frequencies of the three genotypes at
any marker are directly related to the alternate allele fre-
quency (AAF) that we denote f . Therefore, the model
of equation 1 can be reduced to a distribution which only
depends on the variable f

x ∼ πn(x; f) (3)

We note θ̂(f) = En [x; f ] the empirical risk minimizer
ERM estimating the mean of πn(x; f). Assuming HWE
let the ERM be expressed as a single-variable parameter,
that is

θ(f) =



(1− f)2
2f(1− f)

f2


 (4)

As f is a continuous quantity, we discretize it for con-
venience in the simulation as the delimiting values of 21
equally-sized bins in the range [0.0, 1.0]. For each value
of f , we simulate n = 160 genotypes (10 pooling blocks
of 16 samples) for 10 genetic positions, that is a number
m = 200 simulated markers.

The true genotypes x are assigned to B = 100 inde-
pendent pooling blocks of nB = 16 samples

xB = (x1, x2, . . . , x16), (5)

and these blocks are used for simulating NORB pool-
ing and decoding as the examples shown on Figure 1.

Pooled decoded genotype data

Let us describe pooling as a transformation t that maps
the complete data x to the incomplete data z as follows

t : X −→ Z (6)

x 7−→ z (7)

The vector z consists of n genotypes resulting from
simulating pooling and decoding on the true data x

z = (z1, z2, . . . , zn) ∀i ∈ [1, n] zi =



p̃0i
p̃1i
p̃2i


 (8)

and, correspondingly to equation 5, the pooled data
within a block b are denoted

zB = (z1, z2, . . . , z16), (9)

Depending on the pooling block configuration, the de-
coding is successful (or unambiguous) if the genotype zi
is a simplex as the ones in X (white items on Figure 1).
In this case, zi is said to be determined. If the decoding is
ambiguous, the genotype is said to be indeterminate and
it is considered as missing (orange items on Figure 1).

We introduce V the vector of indices in z for which the
data is fully observed, and correspondingly y = {yk}, k ∈
V the vector of observed genotypes i.e, determined af-
ter decoding. Conversely we use V to denote the vec-
tor of indices in z for which the data is unobserved, and
u = {uk}, k ∈ V the vector of indeterminately decoded
genotypes.

2



We are interested in studying the mappings t for any
value of f . However, the pooling decoding process gener-
ating z cannot be formulated in a closed-form expression.
Therefore, we model z as a sample from an unknown dis-
tribution

z ∼ π̃n(z; f) (10)

We consider that the distribution π̃n(f) has an em-
pirical mean ϕn(f).

Characteristics of the missing data for the unde-
coded items in pooling blocks

The missing data u can be categorized as Missing Not At
Random (MNAR) data [3], since it inherently depends
on the other genotypes observed in each pooling block,
as well as on the unobserved AAF at the given genetic
position. Because of the NORB setting used, the miss-
ingness patterns in the pooled decoded data are by design
nonmonotone.

Piece-wise estimates of the genotype prob-
abilities in MNAR data with nonmonotone
missing patterns

In another study (unpublished research), we propose a
method for computing the most likely probability of each
of the unobserved items u by inverse transform sampling.

The finite set of possible nomonotone missingness pat-
terns can be categorized into subsets of block patterns ψ.
All patterns with the same block pattern are just permu-
tations of that pattern as illustrated on Figure 2.

The proposed method exhaustively enumerates all
block patterns. For each pooling block having the pattern
ψ, the probability of any genotype in zB is conditioned
on ψ. The variable f is marginalized and depending on
the algorithm version implemented, any missing item in
u is substituted with a fixed prior probability that can
be initialized to any simplex. The missing data estima-
tion problem over all patterns is solved piece-wise as a
series of either Maximum Marginal Likelihood Estima-
tion (MMLE) or EM [4].

Our method produces self-consistent estimates of the
most likely genotype probabilities for any item in u.

Using the computed estimates in place of any missing
genotype in u, we reconstruct a fully observable vector
z as if the pooled genotypes would be sampled from a
distribution

z ∼ π̂n(z) (11)

The different versions we have implemented and tested
correspond to variations of an EM inference method:

0. The reconstructed distribution z corresponds to a
a naive uninformed completion of the data, where
any item in u is set to (1/3, 1/3, 1/3). That is, all
genotypes are equally likely, as they would be in
the case of a ”neutral” HWE and f = 0.5 at any
marker.

1. The GP are sampled based on the expected allele
frequency f in the entire block, that is from a bino-
mial distribution with parameters f and 32 = 16×2
as each genotype is a pair of alleles. The expected
allele frequency is initialized to f = 0.5 and then
deduced at each iteration from the priors for the
genotypes e.g. f = 0.5Pr(G = 1) + Pr(G = 2).
The posterior estimates for the GP are calculated
with an iterative adjustment of the fixed priors. At
each iteration, the posterior GP are divided by the
prior and normalized in order to ensure the self-
consistency of the algorithm. Moreover, since the
heterozygotes estimates are degenerated, the poste-
rior GP are rescaled by reweighing each genotype
probability in the simplex and normalized in order
to compensate for the degeneracy.

2. Similar to 1., but each of the 33 possible allele count
outcomes in the block has an individual iteratively
fitted probability. The lowest count of alleles is the
case of a pooling block where all items have a geno-
type G = 0. Conversely, if all items have a genotype
G = 2, the allele count sums up to 32. Therefore,
there are in total 33 = 32 + 1 possible allele count
outcomes in a pooling block. At every iteration, the
alleles for every individual in the block are sampled
from the allelic binomial distribution (reference or
alternate allele), and the GP posterior is deduced
from the allelic frequencies before rescaling it with
the GP prior.

3. Similar to above, but the allelic proportions are used
as such and not as binomial parameters.

4. Similar to 2., but the alleles are sampled geometri-
cally. The posterior genotype frequencies are di-
rectly used as priors at next iteration, without
rescaling them with the former prior. On the whole,
this process is very close to an EM algorithm.

We approximate the mean of the reconstructed dis-
tribution distribution with the empirical risk minimizer
ϕ̂n = En [z].

In this study, we evaluate the quality of the recon-
structed empirical distributions π̂n from the various ap-
proaches presented above, with respect to the simulated
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empirical distribution πn from which they were gener-
ated. We conduct a preliminary study of the quality of
the reconstructed data based on two consistency criteria.

Clustered bootstrap sampling for
pooled genotype data with a NORB
design

Statistics for studying the consistency of
empirical distributions

We use the following statistics to do a preliminary study
of the consistency of the reconstructed empirical distri-
bution π̂:

• The L2 norm δ̂n = ||π̂n(z)−πn(x)||2 which has been
suggested for testing goodness-of-fit for densities in
e.g. [5].

• The Kullback-Leibler divergence ν̂n = DKL(πn, π̂n)
as suggested in e.g. [6], defined for the genotype
data at one marker as

DKL =
1

n

n∑

i=1

2∑

g=0

−pg,i log
(
pg,i
p̂g,i

)
(12)

If the pooled reconstructed data z are consistent with
x , we expect δ̂n ≈ 0 and ν̂n ≈ 0.

Statistics computed on every marker having frequency
f in each f -bin.

Pooled genotype data reconstruction in
the case of infinite sample size

The simulated genotype data and the reconstructed data
from point-wise estimates have finite sample size n. We
assume the distribution π̂n is consistent with the distribu-
tion πn. In the case of infinite sample size when n→∞,
we expect the behavior

π̂n(z) −→ π∗(z) (13)

For addressing the variability issue for the estimated
statistics with a finite sample size n, we use a bootstrap
resampling method to compute confidence intervals (CI)

for both statistics ν̂n and δ̂n.

Motivations for using clustered bootstrap
sampling

Because of the NORB design chosen, the dependencies
between the samples in the pooled genotype data vec-
tors z and z are particular. Every block is independent

from the B−1 other ones but within a pooling block, the
samples are no longer i.i.d.

∀k ∈ [1, B] ∀j ∈ [1, nB ] z
k
j ⊥̸⊥ {zk−j} (14)

where zk−j is any sample but the j-th one in the k-th
block.

Construction of the clustered bootstrap
samples

Assimilating a pooling block to a cluster of data, we im-
plement a specific bootstrap method for clustered data,
largely based on the two-stage bootstrap described in [7].
However, if our block data are exchangeable (the order of
the blocks does not matter) as in the two-stage bootstrap,
the data within a block are not.

Let us form K bootstrap samples from the data z by
randomly choosing with replacement C clusters in the B
blocks

∀k ∈ [1,K] Z∗
k = {Z∗

k,1, Z
∗
k,2, . . . , Z

∗
k,C} (15)

In each bootstrap sample, we randomly sample a sin-
gle data point per block such that the equation (15) be-
comes

∀k ∈ [1,K] Z∗
k = {z∗k,1, z∗k,2, . . . , z∗k,C} (16)

For each bootstrap sample from z, we pick the same
block and sample indices in the pre-pooling data x

∀k ∈ [1,K] X∗
k = {x∗k,1, x∗k,2, . . . , x∗k,C} (17)

We note the mean of the k-th bootstrap sample as

Z̄∗
k· = C−1

C∑

c=1

z∗k,c, (18)

similarly for X̄∗
k·, such that K × C = N . The boot-

strap estimators of the Kullback-Leibler divergence and
the L2-norm are formed as

∀k ∈ [1,K] ν̂N,k = D(X̄∗
k·, Z̄

∗
k·) (19)

δ̂N,k = ||X̄∗
k· − Z̄∗

k·||2 (20)

ν̂N has a bootstrap estimated variance of

V̂N = K−1
K∑

k=1

(
ν̂N,k −K−1

K∑

k=1

ν̂N,k

)2

(21)

In pratice, we choose K = ⌊0.8B⌋. The 1 − α CI for
the bootstrap statistics is hence defined as
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T̄Nα =

{
ν : |ν − ν̂N | ≤

√
V̂N qα

}
, (22)

similarly for δ̂N .

Results

We do not claim to do any hypothesis test about the con-
sistency, we are rather interested in preliminary results
that let us visualize the dissimilarity between the simu-
lated and reconstructed empirical distributions. The re-
sults presented are to be considered in the perspective of
genotype imputation. Most methods achieving genotype
imputation essentially consist in a HMM-based inference
of the missing genotype data in a population and for a
given set of markers. They generally assume that the
genotypes at a marker in the population are at HWE.
Genotype imputation produces posterior genotype prob-
ability estimates for each individual at each marker. The
imputation algorithms internally double the prior geno-
type probability for the heterozygotes, so we need to
rescale the simpool estimates by doubling the heterozy-
gotes and normalizing every probability simplex in order
to render how the reconstructed distribution would be
used in the imputation method. Therefore, the results
presented compare statistics calculated from the rescaled
reconstructed distribution.

We use a ternary plot for representing a a geno-
type probability simplex. Ternary plots, synonymously
de Finetti diagrams, are a standard representation of 3-
dimensional data [8, 9, 10]. This representation provides
a first intuitive visualization of the distributions as well
as the distances between the different genotype estimates.
The ternary plots presented are produced with a specific
Python package [11].

Figure 3 shows an example of annotated ternary plot
for the estimates computed in a pooling block of pattern
((2, 2, 0), (2, 2, 0)). Table 1 gives the coordinates of every
data point projected on the ternary axes on Figure 3 in
order to facilitate the interpretation of the ternary plot.

Figure 4 shows the empirical means of the rescaled
data in each AAF-bin on a ternary plot. The ’true’ line
represents the distribution from which the data x is sam-
pled. The heterozygotes are under-represented in all re-
constructed distributions, which indicates that the sim-
pool algorithm tends to favor the inference of homozygous
genotypes. For example, in place of two missing items,
two opposite homozygotes are more likely than two het-
erozygotes. The closest reconstruction of the pooled dis-
tribution is achieved with the version 4 of simpool.

The L2 distance measures shown on Figure 5 present
the same characteristics as the DKL measures. Since the

reference and alternate alleles for biallelic markers have
symmetrical properties, the allelic frequency is commonly
presented as Minor Allele Frequency (MAF) rater than
AAF. The minor allele is either the alternate or the ref-
erence one depending on its frequency. The L2 distance
is a commonly used metrics that reveals how far the data
points forming the empirical ’true’ and the empirical re-
constructed distribution are. If the metrics is equal to
0, the data points have identical coordinates. This is for
example the case if MAF = 0 on Figure 5, that is to
say the population studied is purely homozygous for the
major allele at the marker considered. Given the NORB
pooling design used in this experiment, all genotypes are
decoded as homozygous for a pure homozygous popula-
tion. Therefore the decoded data are identical to the true
one and the L2 norm is null. However, we are more inter-
ested in studying the distributional consistency between
the ’true’ and the reconstructed distributions than the
distance between single points. Indeed, since the GP es-
timates are to be used as prior probabilities for genotype
imputation, we need to consider the dissimilarity between
the distribution from this perspective. In genotype im-
putation in a population and especially at the phasing
step, the posterior genotype probabilities computed for
the indeterminate markers depend on the Linkage Dise-
quilibrium (LD) between the markers. The LD renders
the probability that the genotypes of a sequence of mark-
ers in parent individuals are inherited together by the off-
spring. This metrics is correlated to the physical distance
between the markers in the DNA but the relationship is
not linear, such that the L2 distance is not the most well-
suited metrics for apprehending how the prior genotype
probabilities might impact the imputation. The concept
of DKL is more relevant for studying the distributional
consistency and quantifying the information loss between
probabilities, therefore we prefer to focus on describing
the divergence results of the bootstrap resampling.

The divergence DKL between πn and π̂n across range
of the MAF values is shown on Figure 6. It presents
the same characteristics as the confidence intervals for
the L2 distance. DKL quantifies as a single measure the
dissimilarity between the reconstructed distribution and
the ’true’ distribution it was pooled from. Overall, all
CI-envelopes reveal a correlation between DKL and the
MAF. As for the L2 distance, the minimum is observed
if the data is purely homozygous (MAF = 0) since all
items are fully decoded to homozygotes. The least di-
vergence is also achieved if both alleles are in equal pro-
portions (MAF = 0.5). Around MAF = 0.5, all pooled
genotypes are very likely to be missing and this results
in nearly uniform estimates (π̃ ∼ ( 13 ,

1
3 ,

1
3 )) regardless of

the version of simpool that is used. After rescaling, the

5



estimates are almost equal to (0.25, 0.5, 0.25) which are
the HWE proportions used for generating the ’true’ data
set when MAF = 0.5. The situation is very similar to
the case of fully missing data with equally likely geno-
types for each of the unassayed markers, which is on the
whole the assumption made by most imputation methods.
The divergence of the reconstructed distributions reaches
a maximum around 0.05 forMAF = 0.2, except from the
reconstruction with the version 4 of simpool for which the
maximum is shifted to MAF = 0.3. When MAF = 0.2,
the homozygotes for the major allele are dominating in
the true data, whereasMAF = 0.3 coincides with the fre-
quency at which the heterozygotes are the most frequent
in a population at HWE.

When designing simpool, we expected our estimates
to be closer to the true distribution than the default case
of uniform data completion (version 0). Figure 6 however
shows that the estimates from the versions 1, 2, 3 are al-
most identical to the naive version 0. In other words, the
computed estimates do not add much information about
the most likely genotype. As it is already suggested by
Figure 4, the reconstructed distribution is the most con-
sistent with the ’true’ data when using estimates com-
puted with the version 4 of simpool. This reconstruction
is also the most accurate, as the narrow curve envelope in-
dicates. The version 4 of simpool was implemented while
conducting this study as we noticed that the earlier ver-
sions 1, 2, 3 were not satisfying. The version 4 intends to
improve the consistency of the reconstructed pooled dis-
tribution. While DKL still correlates to the MAF, it is
significantly lower (at most 0.012) than with the previous
versions (up to 0.055) and is almost null for MAF = 0.5.
The divergence measures reveals that we have succeeded
in capturing better the the ’true’ distribution when re-
constructing the pooled data.

Conclusions

Many studies have proposed powerful algorithms for de-
coding binary outcomes from pooled data and NORB is
one pooling design example that has been investigated.
When the test outcomes are ternary (G = 0, 1, 2) as for
genotyping biallelic markers, the DNA Sudoku method
described in [2] is not robust enough for decoding the
pooled genotypes. We implement in [1] various EM-based
estimation methods specifically tailored for reconstruct-
ing the incomplete genotype data from a NORB pooling
design.

The findings of the present study should be put in
the context of the genotype imputation that we are in-
terested in with our research [1]. Indeed, it is essential
that the GP estimates forming the reconstructed distri-

bution favor the downstream imputation of the correct
genotype. In this perspective, the consistency between
the reconstructed distribution and the ’true’ one is more
relevant than the physical closeness of the point-wise GP
estimates. Therefore, the quality metrics should not only
focus on the divergence from the true data but also re-
ward the information gain they bring to the pooled data.

In this paper, we made a preliminary analysis of the
consistency of these various GP reconstruction methods
in with a divergence and a distance measure. In order
to account for the limitations of the numerical represen-
tation of the genotypes in simpool, we have introduced
the concept of heterozygotes degeneracy. However, the
first versions of simpool did not appear to be satisfying
and we therefore explored variations with the explicit in-
tent to minimize the values of the KL divergence. The
later versions of simpool were implemented as we started
investigating the consistency of the reconstructed distri-
bution. Thanks to a geometrical sampling of the alleles at
each iteration, the improved simpool algorithm manages
to capture better the allelic distribution at the level of the
pooling block, as well as the derived genotype frequencies.
The version 4 of simpool uses the same initial prior prob-
abilities for each missing item regardless of the pooling
pattern in a block. Another strategy, possibly improving
the consistency of the reconstructed pooled distribution,
could choose the initial allelic priors depending on the
pooling pattern observed.

It is difficult to assess fromDKL only which of the het-
erozygous or homozygous genotypes contribute the most
to the divergence. A further analysis of the divergence
in relation to the heterozygosity rate might enlight new
improvements that could be made in the GP estimation
method. Moreover, a broader investigation of the infor-
mation gain brought by our adaptive GP estimates to
imputation would be suitable, especially compared to a
naive uninformed completion. We suggest for this pur-
pose to study the imputation results we obtained in an
earlier paper [1] with the results we would obtain for the
same pipeline but replacing the reconstructed estimates
with values of later simpool versions e.g. version 4 as they
have the highest consistency.
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Artwork

Figure 1:

Example of pooling simulation with a NORB algorithm.
A pooling block of nB = 16 samples is modelled as a square matrix, the rows and the columns
form 8 intersecting pools of 4 samples each. The encoding step assigns the 4 individual geno-
types to a pool and pooling is done as follows: the genotype of a pool is 0 (resp. 2) iff all sam-
ples are 0 (resp. 2), as for example the top row-pool. In all others cases (allelic-heterogeneous
pools), the genotype of the pool is 1, as for example the leftmost column-pool (green frame).
The decoding step reconstructs the genotype of every sample based on the intersecting pools.
Decoding is successful if at least 1 homogeneous pool (genotype 0 or 2) is involved. Otherwise,
the genotype of the sample is indeterminate and considered as missing.

A block is described by its pooling pattern ψ = (nGrows , nGcolumns) where nGrows (respectively
nGcolumns) gives the number of row-pools (resp. column-pools) in the block having the genotype
0, 1, and 2.

Subfigure (a): the pooled genotypes are decoded into integer genotypes (GT format) in
{0, 1, 2,−1} representing, respectively, a homozygote for the reference allele, a heterozygote, a
homozygote for the alternate allele, or a missing item. In this example, there are 4 indeter-
minate samples. The pooling pattern ψ is ((2, 2, 0), (2, 2, 0), and the sample highlighted by a
black square is intersected by pools having genotype 0 and 1.

Subfigure (b): the pooled genotypes are decoded to adaptive genotype probabilities (GP
format) that are computed with a Maximum Marginal Likelihood estimation method. We
qualify the genotype probabilities as ’adaptive’, as we estimate them relatively to the pattern
of the pooling block that the samples are part of. Four samples have an ambiguous genotype,
for which none the genotype probabilities is 1. ψ is the same as on the subfigure (a).
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Figure 2:

Permutations of block patterns.
Examples of two pooling patterns obtained from two distinct permutations from the same set
of genotypes. λ denotes the subvector of blue-colored genotypes that are possible completions
of z.

Subfigure (a): The carriers of the alternate allele e.g. having the genotype 1 or 2 are located
on different rows and different columns, such that they never show up in the same pool. In the
three pooling blocks shown, the pooling pattern ψ = ((2, 2, 0), (2, 2, 0)) is the same while they
result from different permutations of the completed data z.

Subfigure (b): The carriers of the alternate allele are located on different columns but the
same rows, such they are genotyped together in the row pool. The three pooling blocks shown
have the same pooling pattern ψ = ((3, 1, 0), (2, 2, 0)).

version Pr(G=0) Pr(G=1) Pr(G=2)

0 0.250000 0.500000 0.250000
1 0.141208 0.572528 0.286264
2 0.143231 0.606085 0.250684
3 0.134242 0.627877 0.237881
4 0.313383 0.654295 0.032322

Table 1: Rescaled most likely genotype probabilities computed by different versions of the simpool algorithm for
undecoded items in a pooling with pattern ψ = ((2, 2, 0), (2, 2, 0))
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Figure 3:

Example of de Finetti diagram: Genotype probabilities estimates for the
missing data in a pooling block with pattern ψ = ((2, 2, 0), (2, 2, 0)).
The annotations on the three axes indicate the coordinates of the orange point that is the GP
estimate computed with the version 2 of simpool. The orange lines represent the projection of
the data point on the axes. The values for all the data points displayed are given in Table 1.
Each of the tops of the triangle is the position for a fully known genotype, either homozygous
or heterozygous.
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Figure 4:

De Finetti diagram of the averaged genotype probabilities in true and re-
constructed pooled data for each allele frequency bin.
The series of points represent the mean genotype probabilities computed from genetic markers
with increasing allele frequency f : the smallest frequencies (from f = 0.05) are located at
the bottom right corner Hom. 00 (Pr(G = 0) is almost 1) and the largest frequencies (up to
f = 0.95) are located at the bottom left corner Hom. 11 (Pr(G = 2) is almost 1). The ’true’
points and line in yellow show the bin-averaged genotype probabilities from the true data set
used to simulate pooling. The other points show the bin-averaged genotype probabilities from
rescaled pooled data that was completed with different versions of simpool.
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Figure 5:

95% bootstrap confidence intervals for the L2 distance.
The distributional L2 distance is computed between a ’true’ empirical distribution and re-
constructed empirical distributions. The true data consists of genotypes sampled under the
HWE assumption, and used for simulating genotype pooling experiments. The reconstructed
distributions consist of decoded pooled data and different estimates of the missing data that
are computed with various versions of the simpool algorithm. Each data point in the recon-
structed distribution is rescaled before averaging the genotype probabilities in each MAF-bin.
The rescaling takes into account the heterozygotes degeneracy. The allele frequency is pre-
sented as MAF since the reference and the alternate alleles have symmetrical properties when
the genotype data are pooled. A null value for the L2 distance indicates that the reconstructed
distribution is perfectly consistent with the true one. The L2 distance computed from a re-
constructed distribution based on the simpool version 4 has a different shape from all other
versions and is the most consistent one. This is the only version of simpool that uses a geo-
metrical resampling of the genotypes at each iteration of the algorithm.
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Figure 6:

95% bootstrap confidence intervals for the Kullback-Leibler divergence.
The distributional divergence is computed between a ’true’ empirical distribution and recon-
structed empirical distributions. The true data consists of genotypes sampled under the HWE
assumption, and used for simulating genotype pooling experiments. The reconstructed dis-
tributions consist of decoded pooled data and different estimates of the missing data that
are computed with various versions of the simpool algorithm. Each data point in the recon-
structed distribution is rescaled before averaging the genotype probabilities in each MAF-bin.
The rescaling takes into account the heterozygotes degeneracy. The allele frequency is pre-
sented as MAF since the reference and the alternate alleles have symmetrical properties when
the genotype data are pooled. A null value for the divergence indicates that the reconstructed
distribution is perfectly consistent with the true one. Notably, the DKL computed from a
reconstructed distribution based on the simpool version 4 has a different shape from all other
versions and is the most consistent one. This is the only version of simpool that uses a geo-
metrical resampling of the genotypes at each iteration of the algorithm.
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