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Abstract

Dynamical systems are often expressed in either continuous or
discrete time. Some biomedical processes are however more suit-
ably modeled as impulsive systems, which combine continuous
dynamics with abrupt changes of the state of the system. This
thesis concerns two such systems: the pharmacokinetics of the
anti-Parkinson’s drug levodopa, and the testosterone regulation
in the human male. Despite the differences between these sys-
tems, they can be modeled in similar ways. Modeling entails
not only the model, but also the methods used to estimate its
parameters. Impulsive dynamics can enable simpler representa-
tions compared with using continuous dynamics alone, but may
also complicate the estimation procedure, since standard tech-
niques often cannot be used. The contributions of this thesis are
therefore both in model development and parameter estimation.

Model development is the topic of Paper I. It presents a model
of the multi-peaking phenomenon in levodopa pharmacokinet-
ics, which is manifested by secondary concentration peaks in the
blood concentration profile of the drug. The remaining papers
focus on estimation, in a setup where a sequence of impulses is
fed to a linear plant, whose output is measured. Two estimation
techniques are considered. The first is presented in Paper II and
uses a Laguerre domain representation to estimate the timing
and weights of the impulses. The second combines estimation
of the impulsive input with estimation of the plant parameters,
which represent the elimination rates of testosterone-regulating
hormones. This problem is particularly challenging since increas-
ing the estimated elimination rates and the number of impulses
generally improves the model fit, but only models with sparse
input signals are practically useful. Paper III addresses this is-
sue through a novel regularization method. The uncertainties in
model and measurements encountered when working with clin-
ical hormone data add another layer of complexity to the prob-
lem; methods for handling such issues are described in Paper IV.
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Chapter 1

Introduction

Most humans interact with a variety of systems on a daily basis, be it their
phones, cars, houseplants, or even their own bodies. Whether man-made or
naturally occurring, understanding such systems is crucial for many of the
problems we are facing, both as individuals and as a society. In numerous
branches of science, systems are described by models constructed with the
tools of mathematics. Such mathematical models can serve various pur-
poses. One common goal is to predict or control the behavior of a system
without performing more experiments than necessary, which could be costly
or dangerous. A car manufacturer, for example, may replace prototypes
with fluid mechanical modeling; a medical doctor may determine drug doses
from models of how a substance affects patients.

The focus of this thesis is mathematical models of two biomedical sys-
tems; one is describing how an anti-Parkinson’s drug is distributed in the
body, the other concerns the regulation of testosterone in men. These sys-
tems may seem quite different, but have one thing in common: both are
well described by models containing both continuous dynamics and discrete
impulses. To explain how these models work, and why we use them, an
introduction to mathematical modeling is needed.

1.1 Mathematical modeling

Mathematical models are classified depending on various properties. The
models in this thesis are dynamic, as opposed to static, which means that
they describe the evolution of the state of a system over time. Other clas-
sifications include whether model variables are continuous or discrete, and
whether the model is linear, which roughly means that the output scales well
with the input. Models also fall on a spectrum depending on how they are
derived. One extreme is first-principles modeling, where the model is based

3



4 Chapter 1. Introduction

directly on the laws of physics, the other is data-driven modeling, which is
the basis of machine learning today. The terms white-, gray- and black-box
models are also used to describe this spectrum.

Parametric models is a related concept. Such models are defined by a
model structure and a finite number of parameters. In first-principles model-
ing, all parameters are essentially constants of nature, but more commonly,
estimating some or all parameters from measured data is required when
creating a parametric model. Non-parametric models, on the other hand,
are characterized by the lack of a fixed model structure; they are instead
inferred directly from data.

Dynamic models are normally expressed with either differential or dif-
ference equations, depending on whether time is considered a continuous or
discrete variable. We use the letters p and q, respectively representing differ-
entiation and time-shift, to mark this difference. Linear dynamical systems
are particularly well understood, which is one reason why they are the focus
of, e.g., introductory university courses in automatic control. Truly linear
systems are rare in the real world, but the techniques described in the basic
control courses are nonetheless applied in countless technical applications.
This illustrates a general principle, where the choice of model depends both
on the system itself, and the purpose of the modeling. A simple model will
generally permit faster computations, and be easier to analyze and interpret
than a complex one. It may therefore often be preferred, even if the complex
model provides a more accurate description of the system.

1.1.1 Hybrid systems

Some systems include processes of vastly different time-scales. The injec-
tion or oral administration of a drug for example is a much faster process
than the distribution and elimination of the drug in the body. Under such
circumstances, the details of the fast process may be irrelevant for the over-
all behavior of the system, making it more useful to model such processes
as discrete events. The resulting type of model, with both continuous and
discrete dynamics, is called a hybrid system1. Such systems can be found
all around us, as the following example illustrates.

Example 1.1. Consider pouring a glass of water. It can be modelled math-
ematically by an integrator as

y(t) =

∫ t

0
u(τ) dτ,

1Calling it a “hybrid model” would be more consistent with the presentation so far,
however “hybrid system” is the established notation.
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where u(t) is the volumetric flow into the glass and y(t) is the volume of
water in the glass. The integrator is linear, since∫ t

0
cu(τ) dτ = c

∫ t

0
u(τ) dτ,∫ t

0
u1(τ) dτ +

∫ t

0
u2(τ) dτ =

∫ t

0

(
u1(τ) + u2(τ)

)
dτ.

These equations imply that if we double the water flow (letting c = 2), we
get twice as much water in the glass, and if we pour water into two identical
glasses separately, and then sum their contents, we get the same amount of
water as if the combined flow was poured into one glass directly.

But the integrator is not always an accurate model of the glass of water.
For example, if we keep pouring, the glass will at some point be full, after
which adding more water will lead to overflow, while the volume of water
in the glass remains constant. This sudden transition from one type of
continuous dynamics to another indicates that the glass of water is a hybrid
system. Note that this system is nonlinear; if we combine the contents of
two glasses that are 60% full, the result is one glass that is 100% full, but
not more.

1.2 Biomedical applications

In this thesis, a specific class of hybrid systems where the discrete events
are represented by impulses is used to model biomedical processes. Two
applications are considered: the pharmacokinetics of the Parkinson’s disease
drug levodopa and the regulation of testosterone in the human male.

Parkinson’s disease is characterized by the death of nerve cells in a region
of the brain called the substantia nigra, which normally produces dopamine.
The resulting dopamine deficiency leads to motor symptoms such as tremors
and rigidity, which are the primary symptoms of the disease [20]. Levodopa
is a precursor to dopamine which is administered to Parkinson’s patients
to increase the dopamine concentration in the brain, and thus reduce the
Parkinsonian symptoms. Levodopa is used since it can cross the blood-brain
barrier, whereas dopamine cannot, which enables oral administration of the
drug [27]. However, since levodopa also can inhibit gastric emptying [40],
this gives rise to a feedback loop which is the believed cause of secondary
peaks in the levodopa concentration in the blood following administration.

The testosterone regulation involves the three hormones gonadotropin
releasing hormone (GnRH), luteinizing hormone (LH) and testosterone (Te).
GnRH is released in pulses, which stimulates the secretion of LH, which in
turn stimulates the release of Te [52]. Similarly to levodopa, blood samples
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Figure 1.1: LH blood concentration sampled at 10-minute intervals from a
healthy 41-year old male. Data from clinical experiments described in [28].

of LH will also display distinct peaks, when measured over time; an example
concentration profile is shown in Figure 1.1.

Neither of these systems is fully understood, and they are furthermore
affected by both external disturbances and internal interactions with other
systems in the organism. Just one example is the circadian rhythm, which
affects both the gastric emptying [17], and the testosterone level [53]. There
are furthermore limitations on both the quality and the quantity of measured
data.

1.2.1 Modeling approaches

When faced with complex and interconnected biomedical systems, different
modeling choices can be made. The systems biology approach is to create
the model by combining a large number of basic building blocks, such as
models of individual cells, into networks. Such first-principles models have
the benefit of a clear connection with the underlying biochemical mechan-
isms, but may be computationally demanding and, due to the variability
inherent to these systems, hard to validate [23]. Another route, which is
viable in data-rich applications, is to use machine learning to identify key
features in the data, as is done with, e.g., ECG-measurements to classify
cardiac arrhythmias [41]. A third alternative is to use simple models, which
do not aim to describe the systems in all details, but rather capture their
main dynamics.

An important question is how complex dynamic behaviors of the sys-
tem are reconciled with the model. In the systems biology approach, such
dynamics can form from the simple constituents of the model through emer-
gence. In machine learning, complex behaviors can be reproduced thanks to
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large and flexible models. However, even simple models can display complex
dynamics, through two different routes.

The first is to incorporate stochasticity, i.e. randomness in the model.
This is particularly motivated for processes where individual random events
have a large impact on the overall behavior. Chemical reaction kinetics
are for example often modeled with ordinary differential equations, which
approximates the number of reactant species as a real number. However, if
the number of species is low, this approximation is not valid, and a stochastic
approach is more suitable [32].

The second concerns deterministic models; here the key to complex be-
havior is nonlinearity. Whereas linear differential equations can be solved
analytically, and their behaviors therefore are well understood, the solutions
to nonlinear dynamical systems can generally only be approximated through
simulations. This makes the systems harder to predict and analyze, but also
makes them more interesting mathematically. For some nonlinear systems,
such as the famous Lorenz system [30], the solutions are highly sensitive
to the initial conditions. Such systems are called chaotic2, and have solu-
tions that are completely unpredictable on a longer time-scale, even if the
equations governing the system are known exactly. The Lorenz system was
developed to represent atmospheric convection, but chaos can also occur in
biological systems, for example, in the behavior of heart cells during cardiac
arrhythmias [39].

1.2.2 Impulsive biomedical systems

Keeping the aforementioned system uncertainties and data limitations in
mind, the models in this thesis are kept relatively simple; discrete impulses
are combined with linear continuous and deterministic dynamics. However,
this hybrid setup nonetheless results in complex behaviors and non-trivial es-
timation problems. An established model of this type is the impulsive Good-
win’s oscillator [5], which is a closed-loop testosterone regulation model. The
specified model class makes the models more white- than black-box, but the
timing and weights of the impulses, as well as the parameters of the con-
tinuous part of the model, are generally unknown. An important topic in
this thesis is how to determine these from concentration measurements such
as those in Figure 1.1.

2Conditions regarding periodicity and topological mixing are also required for a proper
mathematical characterization of chaos.
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1.3 Outline

This thesis consists of two parts. Chapter 1–4 make up the first, which intro-
duces concepts and provides background theory for the four papers, which
are found in the second part. Chapter 2 contains descriptions of hybrid and
impulsive systems in general, and of the particular impulsive biomedical
models we use. Chapter 3 introduces the topics of system identification and
estimation, and their application to impulsive systems. Finally, Chapter 4
presents conclusions and future research directions.

The following papers are included in the thesis:

Paper I: Impulsive feedback modeling of levodopa pharmacokin-
etics subject to intermittently interrupted gastric emptying

H. Runvik, A. Medvedev and M. Kjellsson. “Impulsive feedback
modeling of levodopa pharmacokinetics subject to intermittently
interrupted gastric emptying”. In: 2020 American Control Con-
ference (ACC). Online, 2020.

Summary: In this paper we introduce a closed loop model aimed at ex-
plaining the multi-peaking phenomenon in levodopa pharmacokinetics using
impulses. The resulting model is a version of the impulsive Goodwin’s os-
cillator with several adaptions to suit this particular application.

Contribution: The idea originated from Alexander Medvedev, while I
extended the setup to be suitable for the pharmacokinetic application. Both
of us contributed to the technical work and the writing, with comments and
feedback from Maria Kjellsson.

Paper II: Laguerre domain estimation of an input impulse train
to a continuous linear time-invariant system

H. Runvik, and A. Medvedev. “Laguerre domain estimation
of an input impulse train to a continuous linear time-invariant
system”. In 59th IEEE Conference on Decision and Control
(CDC). Online, 2020.

Summary: In this paper a method for estimating an input signal in the
form of a sequence of impulses from the output of a linear plant is presented.
The signals and the estimation problem are formulated with orthogonal basis
functions, in an approach that generalizes previous work where the response
of a single impulse was considered.

Contribution: The idea originated from Alexander Medvedev. I did
the technical work and most of the writing, with significant mathematical
guidance and support from Alexander.
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Paper III: Input sequence and parameter estimation in impulsive
biomedical models

H. Runvik and A. Medvedev. “Input sequence and parameter
estimation in impulsive biomedical models”. In 2022 European
Control Conference (ECC). London, 2022.

Summary: In this paper we introduce a new approach for estimating
both the parameters and the impulsive input of a linear plant. The estim-
ation is based on a parameter-dependent least squares formulation derived
in a previous work, but the problem is treated more systematically here.
The main contribution is a novel method for resolving the trade-off between
input sparsity and fit to data.

Contribution: I came up with the idea of this paper, and I also did the
technical work and the majority of the writing, with help from Alexander
Medvedev.

Paper IV: Robust one-step estimation of impulsive time series

H. Runvik and A. Medvedev. “Robust one-step estimation of
impulsive time series”. arXiv preprint, arXiv:2304.13394. 2023.

Summary: In this paper the algorithm from Paper III is refined and
extended in two main directions. First, the assumptions and parameters
required from the user are minimized. Second, the algorithm is adapted to
work well with clinical hormone data, mainly through improved robustness
against measurement errors.

Contribution: I came up with the idea of this paper, and I also did the
technical work and the majority of the writing, with help from Alexander
Medvedev.

The following papers are of relevance to this thesis, but not included:

H. Runvik and A. Medvedev. “Impulsive time series modeling
with application to luteinizing hormone data”. In Frontiers in
Endocrinology. Vol. 13. 2022.

A. Proskurnikov, H. Runvik and A. Medvedev. “Cycles in im-
pulsive Goodwin’s oscillators of arbitrary order”. arXiv preprint,
arXiv:2302.01364. 2023.





Chapter 2

Impulsive models of
biomedical systems

The models in this thesis have two things in common: they describe biomed-
ical systems, and they combine continuous dynamics with discrete impulses,
which means that they are instances of hybrid systems. This type of models,
and the underlying biomedical systems, will be presented in this chapter.

2.1 Hybrid systems

Hybrid dynamical systems take many forms. They can represent mechanical
phenomena, such as backlash or stick-slip friction. They can describe biolo-
gical systems, such as the blinking of fireflies [34]. They may also be caused
by discrete events that are engineered in otherwise continuous settings, such
as switched control systems [35]. The diversity of hybrid phenomena makes
it difficult to describe them in a unified framework. One general formulation
of hybrid systems, introduced in [3], is

ẋ(t) = Fi(t)(x(t), u(t)),

i(t) = G(i(t−), x(t−), u(t)),

x(t) = R(i(t−), x(t−), u(t−)),

y(t) = O(i(t), x(t), u(t)),

(2.1)

where t ∈ R denotes time, x(t) ∈ Rn and i(t) ∈ {1, . . . , N} are the con-
tinuous and discrete states of the system, u(t) and y(t) are the input and
output signals, each Fi(t) is a smooth function, the map G defines the dis-
crete state-transitions from i(t−) to i(t), where i(t−) denotes left-sided limit,
R is a reset map which causes jumps in the continuous states, and O is the
output function. An alternative is to describe the system with constrained

11



12 Chapter 2. Impulsive models of biomedical systems

differential and difference inclusions [8]. To examplify how hybrid systems
are formulated, we return to the water-pouring example.

Example 2.1. Consider the model from Example 1.1, and let v denote the
volume of the glass. This hybrid system can be expressed using (2.1) with

F1(x(t), u(t)) = u, F2(x(t), u(t)) = 0,

G(1, x(t), u(t)) =

{
2 if x(t) = v

1 otherwise
, G(2, x(t), u(t)) = 2,

R(i, x(t), u(t)) = x(t), O(i(t), x(t), u(t)) = x(t),

where the glass overflows when i(t) transitions from 1 to 2.

2.1.1 Impulsive systems

Impulsive systems are closely related to hybrid systems, and can, depending
on the definitions that are used, also be seen as a subclass of hybrid systems.
A common mathematical formulation of impulsive systems, given in, e.g.,
[14], is

ẋ(t) = F (x(t)), x(0) = x0, (x(t), t) /∈ S,

∆x(t) = I(x(t)), (x(t), t) ∈ S,
(2.2)

where F and I are continuous functions, and S ⊂ [0,∞) × Rn defines the
resetting set. This class of systems is more restrictive than the hybrid sys-
tems, but there are also impulsive systems that cannot be written as (2.1)
due to the explicit time dependence in (2.2). Only if the impulse times are
intrinsic to the system, i.e., if they can be expressed as conditions of the
form x(t) ∈ Sx, can an impuslive system be recast on the form (2.1). In
biomedicine, the pharmacokinetics of a drug administered according to a
fixed schedule is an example of externally determined impulse times, while
the feedback of hormones can be modeled with intrinsic impulse times.

2.2 Biomedical modeling

Many biological systems have a set of features in common. First, they de-
scribe nonnegative quantities such as concentrations of substances or chem-
ical energy. Second, these quantities tend to decrease towards an equilib-
rium, due to thermodynamic dissipation. Third, the dissipation is coun-
teracted through a positive control mechanism, which keeps the state of
the system within a normal range by replenishing the substances or energy
levels. In control engineering, such feedback would typically be implemen-
ted with the goal of reaching a steady-state solution. However, examples
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Figure 2.1: The Hill function withK = 2 and different values of the exponent
n.

ranging from the macro-scale, such as the annual hibernation cycles of some
animals, down to the metabolism, signaling and DNA synthesis of single cells
[47, 36], show that oscillations are often the preferred feedback mechanism
in nature.

2.2.1 Goodwin’s oscillator

The Goodwin model or Goodwin oscillator was developed to describe en-
zyme regulation in bacteria and other cells [10, 11]. Its typical configuration
consists of a third order linear continuous time plant composed of a chain
of compartments, and a feedback law governed by a static, positive and
bounded nonlinear function H. The model is formulated mathematically as

ẋ1(t) = −b1x1(t) +H(x3(t)),

ẋ2(t) = −b2x2(t) + g1x1(t),

ẋ3(t) = −b3x3(t) + g2x2(t).

H is often represented by a sigmoidal Hill function of the form

H(y) =
yn

Kn + yn

where the positive parameters K and n respectively determine the inflection
point and the steepness of the curve (see Figure 2.1).

The Goodwin oscillator has precisely the features of positivity, dissip-
ation and positive feedback signals described above. This has presumably
contributed to its popularity as a core model for various biological systems
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and as a prototypical example for theoretical investigations of biological os-
cillators [9]. However, to achieve oscillatory solutions, a steep nonlinear
feedback is required; for the Hill function, the exponent n must be larger
than 8 [12]. Such values of n are often seen as unrealistically large, at least
when compared to the enzyme kinetics the original model represents. The
continuous-time dynamics also make the Goodwin oscillator a less suitable
model when processes with distinctly hybrid characteristics are considered.
For example, the electrical behavior of neurons [19] and heart cells [13] are
governed by impulses, which makes a hybrid, impulsive modeling paradigm
more suitable.

2.2.2 The impulsive Goodwin’s oscillator

The impulsive Goodwin’s oscillator is a version of the Goodwin oscillator
which was developed to capture the pulsatile nature of the feedback in endo-
crine systems [5]. The model contains a linear plant of the same type as the
original model, but the input to the plant, rather than being a continuous
signal, here consists of a train of instantaneous impulses, occurring at times
τk with weights dk, k = 1, 2, . . . These are determined through a feedback
mechanism according to

dk = F (y(τk)), τk+1 − τk = Φ(y(tk)),

where F and Φ are bounded positive functions, which are assumed to re-
spectively be non-increasing and non-decreasing, and are denoted the amp-
litude and frequency modulation functions. In analogy with the original
formulation, these functions are often assumed to be Hill functions. The
resulting model structure, which is illustrated in Figure 2.2, is an example
of a pulse-modulated system.

It is perhaps not obvious how the impulsive Goodwin’s oscillator fits into
the model structures of hybrid and impulsive systems, given by (2.1) and
(2.2). However, by introducing an auxillary state x4, which is governed by

ẋ4(t) = −1, x4(t) ̸= 0; ∆x4(t) = Φ(yt), x4(t) = 0,

and thus functions as a timer, the oscillator can be expressed in a form
consistent with both (2.1) and (2.2).

In contrast with the continuous-time model, the impulsive Goodwin’s os-
cillator has no fixed point; instead, periodic, quasiperiodic or chaotic solu-
tions can occur. These rich nonlinear dynamics emerging from a simple
model also makes it interesting from a mathematical perspective, apart
from the biomedical applications. Previous work investigating properties
of solutions to different versions the impulsive Goodwin’s oscillator include
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x1

x2

x3F,Φ

Figure 2.2: Schematic representation of the impulsive Goodwin’s oscillator.

[55], which studies the effect of time delays, [46], which includes an addi-
tional feedback loop, and [33], which incorporates a circadian rhythm in the
model.

2.2.3 Pharmacokinetic models

Biomedical models describing the uptake, transformations, distribution and
elimination of drugs in the organism are developed in the field of phar-
macokinetics (PK). Pharmacokinetic and pharmacodynamic (PD) models
are often combined and denoted PK/PD models; the latter investigates the
therapeutic and adverse effects of the drug on the organism. Linear compart-
mental models of a similar type as in the Goodwin oscillator are extensively
used in compartmental PK analysis. The compartments can here represent
blood, organs, or other tissues which the drug is distributed to. Impulsive
input signals are also common, as the administration of bolus drug doses
(both oral and through injection) conventionally are modeled as instantan-
eous events. Sequences of impulses, or closed-loop models, are less common
in PK/PD models. However, since drugs are often administered periodically
to reduce symptoms or keep a stable concentration of the active substance, it
can be motivated to consider the closed-loop model. In some cases, intrinsic
feedback loops can also occur.

Parkinson’s and levodopa

Parkinson’s disease is a common progressive neurodegenerative disorder.
Both environmental and genetic factors increase the risk of developing Par-
kinson’s disease, but its cause is still unknown. The disease is characterized
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by the loss of dopaminergic neurons in the substantia nigra which leads to
Parkinsonian motor symptoms, but other regions of the nervous system are
also affected, and non-motor symptoms are also common [20].

Since no cure for Parkinson’s disease is known, treatments are focused
on symptom relief. The most efficacious drug for this purpose is levodopa,
which normally is administered orally, absorbed in the small intestine, and
transported via the blood into the brain, where it is converted to dopam-
ine. The resulting increased dopamine concentration improves some, but not
all Parkinsonian symptoms [27]. However, due to metabolism and dopam-
ine conversion outside the central nervous system, the fraction of levodopa
reaching the brain is small. By administering levodopa with benserazide
or carbidopa, peripheral metabolism is inhibited, which leads to increased
bioavailability and decreased plasma elimination of the drug [22].

The therapeutic regimen of levodopa is also complicated by several other
pharmacokinetic features, such as proteins from ingested meals competing
for the same facilitated transport across the intestinal mucosa and different
factors affecting the gastric emptying [6]. The latter has in particular been
associated with secondary peaks in the levodopa plasma concentration pro-
file [40], where interference of the gastric emptying by dopamine results in
an intrinsic feedback loop.

Pharmacokinetic modeling aims at finding models that are consistent
with observed behaviors, but does not always aim to recreate the physiolo-
gical mechanisms of the underlying system. For example, a double-peak
concentration profile may be represented with parallel absorption compart-
ments [7]. In contrast, Paper I models the interrupted gastric emptying
with an impulsive feedback mechanism. The model structure, displayed in
Figure 2.3, is similar to the impulsive Goodwin’s oscillator, however an ad-
ditional compartment representing the stomach is introduced to capture the
total amount of the drug in the system being bounded. This modification
leads to the introduction of a stable equilibrium of the system, in contrast
with the original model. Comparisons against clinical data from [43] indicate
that the model is feasible; however, it has two main weaknesses. First, the
extension compared to the impulsive Goodwin’s oscillator makes the model
rather complex in relation to its descriptive power. Second, the impulsive
model is not entirely consistent with the suspected cause of multi-peaking,
i.e. intermittent interruptions of the gastric emptying. Sparse and large im-
pulses in the flow through the pylorus are not supported by physiological
evidence, while more frequent impulses would be averaged out on time scale
of the sampled data, making it simpler to model the interruptions as reduc-
tions of an otherwise steady flow. Indeed, this has already been suggested
in [37].
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Figure 2.3: Levodopa pharmacokinetics model with feedback.

2.2.4 Endocrine modeling

The endocrine system transfers information between different parts of the
body via hormones. This communication enables the regulation of the in-
ternal environment and behavior of the organism, and is therefore of critical
for the normal functioning of the body. Hormones are produced in several
glands and transported through the bloodstream to target cells, whose re-
ceptors interact with the hormone, resulting in modifications of the cell’s
function or activity [15]. Hormone activity is regulated through feedback
loops, where one hormone can stimulate or inhibit the secretion of others.

Apart from being spatially distributed in the body, endocrine systems
also operate over multiple time scales, which can range from tenths of
seconds (e.g., the bursts of neurons) to weeks (e.g., the female ovarian cycle).
As a consequence, the scope of mathematical models is often limited to spe-
cific modules or pathways in the system, and particular temporal resolutions
[1].

The complexity of endocrine systems makes them challenging to model.
An interdisciplinary approach is therefore recommended in [54], where the
importance of the interaction between experiments and mathematical mod-
eling is highlighted. A central topic is how to transition from high-resolution
models, which accurately describe phenomena on the cellular level, to mod-
els representing the whole system. The heterogeneity of cells and the signi-
ficance of this heterogeneity in their interactions make modeling strategies
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based on combining large numbers of identical cell models unviable [26]. In-
stead, simple mathematical models can often provide valuable explanations
for the complex behaviors of these systems [25, 26].

In this thesis, we consider models of entire hormone axes. Such models
typically consist of a relatively low number of compartments, where hormone
secretion, elimination and interaction are modeled by ordinary differential
equations. The models may also include stochastic elements (see, e.g., [21]),
but we will only consider deterministic formulations.

Testosterone regulation

One of the major endocrine systems in humans and other mammals is the
hypothalamic-pituitary-gonadal (HPG) axis. It is primary involved in the
development and regulation of reproductive systems, such as the menstrual
cycle in females, but it also contributes to the regulation of other systems
in the body, such as the immune system [42]. The HPG axis involves gon-
adotropin releasing hormone (GnRH), which is secreted from the hypothal-
amus gland, luteinizing hormone (LH) released from the pituitary gland, and
either estrogen or testosterone (Te), respectively released from the ovaries
and testes.

The endocrine models in this thesis primarily represent the male HPG
axis, which also is the system the impulsive Goodwin’s oscillator was de-
signed to describe. The three states of this model thus represent the con-
centrations of these three hormones, and the impulsive feedback is used to
capture the pulsatile nature of the secretion of GnRH, which is regulated
by the testosterone concentration. This axis also includes features such as
time-delays, circadian variations, and additional feedback-loops [50]. These
are not included in the original impulsive Goodwin’s oscillator, but corres-
ponding modifications of the model have been investigated, as discussed in
Section 2.2.2.

Since the GnRH concentration normally cannot be measured in peri-
pheral blood, due to dilution and rapid metabolization [4], the pulsatile
events can only be inferred indirectly from other hormone concentrations.
How this is done mathematically will be presented in the next chapter.



Chapter 3

Identification and estimation
of impulsive systems

We have so far presented a model type, and two biomedical systems it can be
applied to. However, another ingredient required to build useful models is
measured data, which connects the abstract model with the real world. The
systematic use of data to build mathematical models is known as system
identification. That is therefore the starting point of this chapter, where we
explore how estimation and identification are applied to impulsive systems.

3.1 System identification

System identification is a data-driven driven approach to mathematical mod-
eling of dynamical systems. The methods employed in this thesis differ from
those traditionally used in this subject, described in, e.g., [29] or [45], but
the conceptual approach of system identification is nonetheless useful to
contextualize the problems we are considering.

A typical setup in system identification is depicted in Figure 3.1. It
involves a system with measured inputs and outputs, that is subject to
unmeasured disturbances. Discrete-time representations are used for both
the system and the data which are denoted u(n), y(n) for n = 1, 2, . . . , N .
Note that, since multiple inputs and outputs are possible, u(n) and y(n) may
be vectors. Starting from such a system, the identification process involves
four steps:

1. Design and conduct experiments on the system, and collect the data;

2. Choose a set of candidate models M, also known as the model struc-
ture;

19
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G(q)

v

u y

Figure 3.1: A discrete-time system G(q) with input u and output y, subject
to a disturbance v.

3. Use the data to select the most suitable model in M, according to
some fixed criterion;

4. Validate the model, i.e., test whether the selected model is good enough
for its intended purpose.

Design of experiments and collection of data is not part of this thesis, and
the chosen model structure was described in Chapter 2. The rest of this
chapter will therefore focus on steps 3 and 4.

3.1.1 Evaluating candidate models

Selecting a model in M often means estimating the values of a set of para-
meters, defined by the model structure, so that the discrepancy between
the output of the model, and the measured data is minimized. Common
approaches to this problem include subspace methods, which identify state-
space models, and methods aimed to minimize the prediction error of the
model. We will use the latter to illustrate how system identification can
work. The prediction of the model is its output at time n, given all meas-
ured data up to time n− 1, and is written as

ŷ(n|θ) = g(θ,Zn−1),

where Zn is the collected data

Zn = {(y(1), u(1)), y(2), u(2)), . . . , y(n), u(n))},

and g(θ,Zn−1) defines how the model output depend on these previous
data and the parameter vector θ, which has dimension d and is assumed to
belong to a set DM ⊆ Rd. The goal of prediction error methods is to find
the parameter estimate θ̂ that minimizes the criterion

V (θ,ZN ) =
1

N

N∑
n=1

ℓ(y(n)− ŷ(n|θ)), (3.1)
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where ℓ is a scalar loss function, i.e.

θ̂ = argmin
θ∈DM

VN (θ,Zt). (3.2)

If the loss is chosen as

ℓ(y(n)− ŷ(n|θ) = ∥y(n)− ŷ(n|θ)∥22,

where ∥ · ∥2, is the Euclidean norm, we arrive at a least squares problem.
This type of problems, and how to solve them, are described in Section 3.2.1.

3.1.2 Model validation

Model validation is often based on two criteria: fit to data and model sim-
plicity. A more complex model will generally give a better fit, so there is a
trade-off between these factors. A central question is whether the additional
features incorporated by a more complex model are relevant to describe the
system, or random disturbances in the particular set of data. By performing
model validation on a data set that is separate from the estimation data,
such overfitting can be detected. To prevent overfitting, regularization can
be employed.

The idea of regularization is to penalize more complex models in optim-
ization formulations such as the prediction error minimization (3.2). Model
complexity is determined by the number of nonzero elements of θ̂, as zero
elements effectively reduces the dimension of the parameter vector. LASSO
(least absolute shrinkage and selection operator) is one common form of reg-
ularization, where a penalty on the 1-norm of θ is added in the minimization,
so the criterion gets the form

V (θ,ZN ) =
1

N

N∑
n=1

ℓ(y(n)− ŷ(n|θ)) + λ∥θ∥,

where the positive parameter λ determines the degree of regularization. This
free parameter can be viewed either as an advantage or a disadvantage of
the method. It gives the user more control of the estimation results, but it
also puts a burden on the user determine its value, and can introduce more
subjectivity in the estimation.

Model selection

Model validation is closely related to the choice of M; if the estimated
model is not good enough, a different set of candidate models might be
needed. To compare different model structures, statistical model selection
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G(p)
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y

Figure 3.2: A continuous-time system G(p) with impulsive input u and
output y, subject to a disturbance v.

techniques can be used. They typically form a single criterion by combining
the model fit with the number of parameters in the model, which enables
the comparison of estimated models with different complexities. Different
criteria, such as the Akaike and Bayesian information criteria have been
proposed for this purpose; derivations and comparisons between these are
provided in [44].

3.1.3 Impulsive systems

The impulsive system identification problems studied in this thesis are based
on the open-loop setup displayed schematically in Figure 3.2. When com-
pared with the typical system identification setup described above, two dif-
ferences can be noted. First, the input signal cannot be measured, instead
it is only assumed to be of a predefined class, namely a sequence of im-
pulses. Second, although the measured data, i.e., the collection of blood
samples, are in discrete time, the models are not. As a consequence, iden-
tification of these models requires other approaches than traditional system
identification, but there are still similarities in the principles and underlying
techniques. This identification setup also bears resemblance to time series
analysis. There discrete-time signals are analyzed, often under the assump-
tion that they are the output of a dynamic system, whose input signal is
(unmeasured) white noise. The measured concentration profiles we consider,
which are driven by impulses, may thus be called impulsive time series.

3.2 Parameter estimation

Parameter estimation is a central part of system identification, but statistical
estimation is also a broad subject in its own right, with applications in many
other areas of science and engineering. We present a few concepts from this
subject here, which are of relevance for the subsequent section.
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3.2.1 Least squares

In the view of statistical inference, the prediction error criterion function
(3.1) is an instance of a class of estimators where a criterion function of the
form

M(θ) =
1

N

N∑
n=1

mθ(Xn, Yn), (3.3)

is minimized [49, Ch. 5]. Here mθ is a known function and X1, . . . Xn and
Y1, . . . Yn respectively are the independent and dependent variables of the
problem. Such estimators are calledM -estimators and also include the well-
known least squares estimators, which are defined by

mθ(Xn, Yn) = ∥Yn − fθ(Xn)∥22,

where fθ is called the model function. These estimators are attractive the-
oretically, through the connection with maximum likelihood estimators, and
can also be efficiently computed.

Maximum likelihood

A common statistical approach to estimation is to model the observations
as a sample of an unknown probability density function p(Y ; θ), where

Y =
[
Y ⊺
1 Y ⊺

2 . . . Y ⊺
N

]
.

In maximum likelihood estimation, the parameters maximizing the likeli-
hood function p(Y ; θ) are sought, however the problem is normally reformu-
lated using the negative logarithm

ℓ(θ;Y ) = − log(p(Y ; θ)),

which results in the estimation formulation

θ̂ = argmin
θ∈DM

ℓ(θ;Y ).

If all estimation errors ϵn = Yn − fθ(Xn) are assumed to have independent
and identical probability density functions pϵ, the log-likelihood becomes

ℓ(θ;Y ) = −
N∑

n=1

log pϵ(Yn − fθ(Xn)),

and if pϵ is the Gaussian density function, the maximum likelihood and
least squares estimates coincide. This connection provides an important
theoretical justification for using the least squares criterion, but one should
remember that the common assumption of Gaussian errors does not always
hold.
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Least squares solution

Least squares problems can be divided into two types. Linear least squares
problems are characterized by fθ depending linearly on the parameters θ,
which results in mθ in (3.3) being defined by

mθ(Xn, Yn) = ∥Yn − ϕ⊺(Xn)θ∥22,

where the vector ϕ(Xn) does not depend on θ. Such problems have the
benefit that the solution can be explicitly calculated by the formula

θ̂ =
( N∑

n=1

ϕ(Xn)ϕ
⊺(Xn)

)−1
N∑

n=1

ϕ(Xn)
⊺Yn,

provided that the matrix
∑N

n=1 ϕ(Xn)ϕ
⊺(Xn) is invertible.

If fθ is nonlinear, iterative methods are usually required to obtain a
solution. Starting from an initial guess θ̂0, an update rule of the form

θ̂k+1 = θ̂k + gk,

is then repeatedly applied until convergence. One common choice for the
function gk is given by Newton’s method, which can be applied if M(θ) is
twice differentiable. In this method, M(θ) is approximated as a quadratic
function and the update rule is based on minimizing this function, which
yields

gk =
(
∇2M(θ̂k)

)−1∇M(θ̂k),

where ∇ and ∇2 respectively denote gradient and Hessian.

3.2.2 Robust estimation

Least squares estimators have several advantages, but they also have the
weakness that their performance can be severely degraded in the presence
of outliers, i.e. data points that differ significantly from other observations.
This is particularly relevant for biomedical applications, where outliers can
be common due to measurement errors.

Various methods have been suggested as alternatives to, and modifica-
tions of the least squares estimator, to make it more robust. A large class of
these are also M -estimators. Intuitively, the problem with the least squares
approach is that the criterion function grows too much when an error |ϵn|
is large, so that a few outliers can have an outsized effect on the overall
estimate. In statistical terms, the problem is that the observations do not
adhere to the assumptions of the maximum likelihood estimator of identical
Gaussian distributions.
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Robust M -estimators are formulated with

mθ(Xn, Yn) = ρ(Yn − fθ(Xn)) = ρ(ϵn),

where the function ρ satisfies

ρ(−z) = ρ(z), argmin
z

ρ(z) = 0,

and grows slower than quadratically for large |ϵn|. For example, the Huber
loss function [18] is defined by

ρ(z) =

{
1
2z

2 for z < k,

k|t| − 1
2z

2 for z ≥ k
,

and thus grows linearly for errors exceeding the constant k. The Tukey loss
function [48] is instead constant for large |ϵn|. Other approaches to robust
estimation either down-weight or remove data points that are identified as
outliers. M -estimators are often computed by solving weighted least squares
problems, through the method of iteratively reweighted least squares [16],
which illustrates how this approach is closely related to the down-weighting
strategy.

3.3 Estimation of biomedical systems

There are particular challenges with working with biomedical data, such as
large model uncertainties and measurement errors. But for impulsive time
series, there are additional difficulties caused by the input being unknown.
We will consider the estimation of only the impulsive input next, before
proceeding to a combined input and parameter estimation scheme.

3.3.1 Impulse train estimation

The problem of impulse train estimation is closely related to time-delay
estimation. That is a form of system identification, where the parameter ∆t
should be identified from the measured input and output in a setup

y(t) = G(p)u(t−∆t) + v(t),

where G(p) is a continuous-time linear system and v(t) is a noise term. In
impulse train estimation, the input is not measured, and should instead be
estimated. However, since it consists of a sequence of impulses, which are
weighted and delayed instances of the same Dirac delta distribution, similar
estimation approaches can be used for the two problems.
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Figure 3.3: The first three Laguerre functions.

Impulse train estimation has received significantly less attention than
the time-delay estimation, where a range of different delay estimation tech-
niques have been proposed [2]. One class of methods estimates the delay
by representations in specific bases; [2] lists three: time domain, frequency
domain, and Laguerre domain.

In Paper II, the impulse train estimation problem is approached in the
Laguerre domain, which means that signals are represented as sums of
basis functions of the form of Laguerre functions. These are polynomially
weighted exponential functions (see Figure 3.3), which make them suitable
to represent the impulse response of a stable linear system.

3.3.2 Impulsive time series estimation

The endocrine and pharmacokinetic models presented in the previous chapter
both give rise to a particular estimation problem. For a system given by

ẋ1(t) = −b1x1(t) + ξ(t),

ẋ2(t) = −b2x2(t) + g1x1(t),

y(t) = x2(t),

the impulsive input signal ξ(t) should be estimated simultaneously with b1
and b2, from sampled measurements of the output signal. In the pharma-
cokinetic model, b1 and b2 are the time constants of levodopa absorption in
the gut and elimination in the blood, y(t) is the blood concentration of the
drug, and ξ(t) represents the flow through the pylorus. In the endocrine
model, b1 and b2 instead represent the elimination rates of GnRH and LH,
y(t) is the LH concentration in blood and ξ(t) defines the pulsatile release
of GnRH.
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Similar setups are studied in endocrinology, with the key difference that
the input there is represented by a smooth signal, rather than a sequence of
impulses. Estimation is then based on the formulation of y(t) as a convolu-
tion integral

y(t) =

∫ t

0
S(z)E(t− z) dz,

where S(z) is the secretion of the measured hormone, and E(t) is the im-
pulse response function, which defines the elimination of the hormone. Con-
sequently, the estimation becomes a deconvolution problem, which can be
solved if S(t) is assumed to have some predefined profile. This deconvolution
approach has been employed extensively since it was first suggested in [51].

The setup with an impulsive input signal enables other estimation meth-
ods for this problem. In [31], it was solved using a LASSO-regularized least
squares approach, which also is employed in Paper I. The topic of Paper III
and IV is a refinement of this approach, which utilizes a one-step estimation
method.

One-step estimation

Two important and connected problems of the estimation problem we con-
sider are that the number of input impulses is unknown, and that it al-
ways is possible to obtain a better fit to the data by adding more impulses.
However, a solution with many impulses corresponds to a model with many
parameters, and, as discussed in Section 3.1.2, such models are not desirable.
Furthermore, separate data sets for validation are in general not available;
validation efforts are also hampered by large variations in the impulsive
input even for the same individual.

Regularization and model selection are routinely utilized when problems
of this type are solved, to avoid overfitting and ensure that the sequence
of input impulses is sparse. An alternative method to achieve this goal is
one-step estimation. It is based on finding a preliminary estimate of the
linear time constants, which generally will not be accurate, but is chosen
so that the corresponding estimated input signal is sparse. As in nonlinear
least squares, Newton’s method is then used to improve this estimate, by
approximating the residual sum of squares as a quadratic function which
is minimized. However, only a single iteration is performed. The same
strategy of improving a preliminary estimate with a single Newton step
is also employed in the framework of M -estimators, with the purpose of
obtaining an estimator with certain desirable asymtotic properties, i.e. in
the limit when the number of measurements tend to infinity [49, Ch. 5.7].

A preliminary version of this method is presented in Paper III, while
Paper IV contains various refinements and extensions of the approach. A
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robust version of the method is in particular presented, which utilizes the
robust risk minimization approach of [38]. This method greatly reduces the
influence of outliers by decreasing the effective sample size, which makes the
one-step method more useful for clinical data where outliers are common.
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Conclusions

The topic of this thesis has been the application of models with impulses
to describe biomedical systems; the main contributions are a novel model
describing the multi-peaking phenomenon in levodopa pharmacokinetics,
and new and improved methods for estimation of impulsive systems.

Although hybrid systems is a relatively young field of research, the ap-
proach of combining discrete events with continuous dynamics to describe
biological processes is not new; for example, Lapicque’s integrate-and-fire
neuron model [24] was developed more than a century ago. The long history
of these models indicates that, although instantaneous events such as im-
pulses are mathematical idealizations that usually are not realized in nature,
the hybrid framework is a useful tool for describing biological processes in a
parsimonious way. This thesis illustrate that hybrid systems also can sim-
plify the mathematical analysis; for example, the estimation approach in
Paper III and IV utilizes the simplicity of the impulse response, in a way
that does not generalize to a continuous-time formulation in an obvious way.

On the other hand, hybrid dynamics may also restrict how a model can
be used. Established methods in, e.g., automatic control often assume a
model that is either continuous or discrete, and the non-smooth dynamics
prohibits techniques that require differentiability, such as various optimiza-
tion methods. It is thus recommended to both consider how well the under-
lying process is represented by a discrete event, and the implications for the
use of the model, when deciding whether to incorporate hybrid dynamics in
a model.

4.1 Future work

A promising future research direction emanating from this thesis is further
developments of the one-step estimation algorithm. The method has been

29
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shown to work well on clinical endocrine data as well as synthetic data sets.
The former gives rise to a particularly challenging estimation problem due
to uncertainties in the data and model, and the inherent sensitivity of the
formulation; consequently, a substantial uncertainty in the estimates can
be expected. A suitable direction for reducing this uncertainty would be
to incorporate further constraints on the impulse estimates. Physiological
limitations and feedback mechanisms could then guide the estimation pro-
cedure.

A second area worthy of more investigation is the application of this
algorithm to other systems. It has so far been used on a somewhat restricted
class of systems where the impulsive input is fed to a linear plant, but many
other real-world systems could be represented if a more general class of
linear or nonlinear plants were considered. Since the theoretical basis of the
algorithm at present is limited—analytical derivations have been made in
Paper IV, but the motivation for using the method is mostly empirical—such
generalizations would probably require further theoretical investigations. A
goal of such combined analytical and empirical work could be to find general
criteria defining which systems the method feasibly can be applied to.
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Impulsive feedback modeling
of levodopa pharmacokinetics
subject to intermittently
interrupted gastric emptying

Abstract

A novel modeling approach capturing the multiple peak phenomenon in oral
levodopa administration is proposed. Multiple peaks in the blood plasma
concentration of the drug are attributed to the effects caused by gastric
emptying. The developed model describes the instances of interrupted gast-
ric emptying by an impulsive feedback of the dopamine concentration in
the brain acting on the pyloric sphincter. A combination of the continuous
levodopa clearing dynamics and the impulsive feedback results in a hybrid
model, whose solutions are positive and bounded. The stability proper-
ties of the model are studied by means of a Poincaré map describing the
propagation of the continuous model states through the firings of the im-
pulsive feedback. Model feasibility is illustrated on data sets obtained in
clinical experiments.

1 Introduction

Pharmacokinetics (PK) studies what happens to substances, e.g. pharma-
ceutical drugs, administered to a living organism, often in terms of time
excursions of blood plasma concentrations. Typically, a single oral drug
administration results in a rapid increase in the drug plasma concentration
until a peak value is reached, followed by an exponential decline due to
the drug molecules clearing from the body. Yet, double or multiple con-
centration peaks have also been observed after a single oral dose of certain
drugs. Causes of secondary peaks have been classified into physicochemical,
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formulation, and physiological factors [3]. By effectively splitting a single
bolus dose into a number of smaller doses that take action at delayed in-
stants, the multiple peak phenomenon postpones the intended therapeutic
effect. Furthermore, since the number and timing of the secondary peaks
are patient-specific and depend as well on other factors, the oral way of drug
administration can result in somewhat erratic treatment response.

Conventional compartmental PK models are struggling to capture sec-
ondary peaks and more advanced dynamical paradigms involving feedback
are sought for, see [12]. A feasible but limiting way of portraying the
double-peak phenomenon explored there is the introduction of a variable
gastric emptying rate. Another approach is to use two parallel absorption
compartments, which was proposed to describe the pharmacokinetics of le-
vodopa/carbidopa microtablets in [16].

Symptomatic treatment of Parkinson’s disease (PD) is based on the
dopamine precursor levodopa [11]. Levodopa is normally administered to-
gether with a DDC-inhibitor, such as carbidopa, which prevents the conver-
sion of levodopa to dopamine outside the brain. This increases the plasma
level and half-life time of the levodopa [14], which allows a greater proportion
of the administered dose to reach the brain.

Double-peak profiles in levodopa serum concentrations are often ob-
served but the exact mechanism behind the phenomenon is not completely
understood. Levodopa is only absorbed once it reaches the proximal part of
the intestine, i.e. the duodenum. As the transit time through the small in-
testine is three to four hours while the plasma elimination half-life levodopa
is short, gastric emptying is a major determinant for onset of symptom re-
lief. In young and elderly healthy volunteers, single and multiple doses of
levodopa have been reported to delay gastric emptying. For instance, in
healthy elderly, the time to 90% gastric emptying was increased from 40min
to 65min in the presence of levodopa, [15], and a pattern of gastric empty-
ing consisting of 2 rapid phases separated by a plateau was present in most
cases.

Gastric emptying is normally regulated by the physicochemical prop-
erties of the food through neuroendocrine control mechanisms [5]. Neural
control of gastric emptying is implemented by the neurons located in the
solitary nucleus of the brainstem, while the vagus nerve exerts both inhibit-
ory and excitatory effects on the stomach and connects it to the brain (the
brain-gut axis).

Hormones that regulate gastric emptying (e.g. cholecystokinin, ghrelin,
leptin) are released from the intestine and pancreas [5]. They also facilit-
ate the connection between the gastrointestinal tract function and energy
metabolism, body weight, food intake, etc.

The pylorus is a complex anatomic structure controlling the flow from
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the stomach to the intestines and adjusting it to physiological needs [13]. It
is tightly closed only intermittently and arrests all flow out of and into the
stomach. Gastric emptying is the result of numerous pulses of flow across
the pylorus and delayed emptying may arise from disordered sequencing of
contractions, [6].

Cholecystokinin (CCK) is a hormone synthesized in the gut and brain.
The primary function of CCK is to decrease food intake but it also inhibits
gastric emptying, promotes pancreatic secretions, and causes pylorus con-
traction [10]. There are two different subtypes of CCK receptors: CCK-1
and CCK-2. CCK-1 receptors are primarily found in the gastrointestinal
tract, while CCK-2 receptors are mostly distributed in the tissues of central
neural system (CNS). Stimulation of CCK-2 receptors in the brain reduces
the release of dopamine. It is suggested that dopamine signaling may func-
tion as a feedback to the CNS that mediates adjustments in intake according
to the caloric density of a meal, while the exact pathways are not known [4].
Biological evidence from non-primates suggests that dopamine can stimulate
the secretion of CCK [1].

This paper particularly addresses the oral levodopa administration and
focuses on the multiple peak phenomenon in the PK due to intermittently
interrupted gastric emptying. The main contribution of the present work
is twofold: First, a novel PK model for oral administration of levodopa is
developed by capturing the impact of gastric emptying on the drug con-
centration in the blood by a pulse-modulated feedback. Second, the model
parameters are fitted to patient data, thus demonstrating the model feasib-
ility and opening up for its identification. A perspective application of the
mathematical model is in smart dispensers of levodopa microtablets [7].

The rest of the paper is structured as follows. First, the model equations
including the feedback mechanism are presented and motivated. Next, a
Poincaré map of the model is analyzed regarding its asymptotic behavior and
convergence to a fixed point. Finally, model parameter values are estimated
from experimental data and the feasibility of the feedback mechanism is
demonstrated.

2 Model development

On a conceptual level, the physiological process to be mathematically de-
scribed can be outlined as follows. A single dose of orally administered
levodopa reaches the stomach. When the dopamine concentration in the
brain is low, the pylorus is open and dissolved levodopa proceeds to the
duodenum, where it is adsorbed into the bloodstream. After crossing the
blood-brain barrier, levodopa turns into dopamine. High concentration of
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Figure 1: A schematics of the organs participating in the multiple peak
phenomenon in the single-dose levodopa administration, interpreted as a
pulse-modulated system.

dopamine causes an intermittent pylorus contraction, conceivably by inter-
acting with CCK. The levodopa flow across the pylorus is then disrupted
until the dopamine peak subsides and the pylorus orifice opens again. This
results in the observed multiple peaks in the levodopa blood concentration.

In a model, this can be captured by interpreting the disrupted levodopa
flow across the pylorus as a train of independent subdoses, whose timing
and mass are modulated by the dopamine level. The process is illustrated in
Fig. 1. The overall system is comprised then of a continuous plant controlled
with a pulse-modulated feedback. The administered levodopa dose d > 0 is
transferred across the pylorus as a train of subdoses dn ≥ 0, n = 0, 1, 2, . . .
at times tn, n = 0, 1, 2, . . . such that d =

∑∞
n=0 dn.

Let r(t) denote the amount of levodopa in the stomach at time t. Fol-
lowing Fig. 1, at the point of discontinuity tn, a subdose of levodopa flows
across the pylorus. The drug content in the stomach is then instantaneously
reduced by

r(t+n ) = r(t−n )− dn, (1)

where the minus or plus in a superscript denotes the left-sided and right-
sided limit, respectively,

dn = F (vB(tn), r(tn)) , (2)

and vB is the dopamine concentration in the brain. The subdose increases
the levodopa concentration in the duodenum, denoted vD(t), by

vD(t
+
n ) = vD(t

−
n ) +

dn
ω
,



2. Model development 43

where ω > 0 is the (constant) volume of the duodenum.
The amplitude modulation function 0 ≤ F (vB, r) ≤ r relates the mag-

nitude of the jump to the current dopamine concentration in the brain and
the levodopa dose left in the stomach. The function F (·, ·) is assumed to
be non-decreasing in the first argument. To account for the latency in the
communication between the brain and the pylorus, the next jump instant is
calculated as

tn+1 = tn +Φ(vB(tn)) , (3)

where the frequency modulation function Φ(·) satisfies

0 < Φ1 ≤ Φ(·) ≤ Φ2, (4)

and Φ1,Φ2 are constant parameters.
In between jumps, first-order elimination dynamics are assumed

v̇D = −aDvD.

The model compartment for the blood is described by

v̇C = −aCvC + bCvD.

Finally, levodopa produces dopamine in the brain, once again, according to
first-order dynamics

v̇B = −aBvB + bBvC.

The dopamine concentration vB modulates the process of forming levodopa
subdoses portrayed by (2) and (3).

Summing up, the complete model can be written in a state-space form
as

ẋ = Ax+Bξ(t), y = Cx, (5)

where the states are given by

x⊺ =
[
vD vC vB

]
,

the system matrices are

A =

−aD 0 0
bC −aC 0
0 bB −aB

 , B =

 1
ω
0
0

 , C⊺ =

00
1

 , (6)

and ξ(t) defines the train of subdoses formed according to

ξ(t) =

∞∑
n=0

dnδ (t− tn) , (7)
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where the timing of the impulses is defined by (3), the amplitudes are given
by (2) and δ(·) is the Dirac delta function. The initialization of the system
is given by a set of initial values for the continuous states,

x(0)⊺ =
[
vD0 vC0 vB0

]
,

and a fixed time t0 > 0 for the first subdose.

3 Model analysis

From the fact that only a single-dose administration of levodopa is con-
sidered, and all the involved drug molecules will eventually clear out, the
system described by (5) and (7) is bounded and expected to tend towards
a point of equilibrium, as t → ∞. However, the impulsive feedback in the
model is discontinuous, which gives rise to hybrid closed-loop dynamics and
complicates the analysis of the model behavior. A suitable way to circum-
vent this difficulty is to sample the system at the points of discontinuity and
derive a Poincaré map that describes the propagation of the continuous state
vector x(t) through the instants tn, n = 0, 1, 2, . . . . This is possible since Φ
is bounded from above and below. It is furthermore assumed that the ei-
genvalues of A, given by aD, aC and aB are distinct, since they correspond
to distinct biological processes; aD and aC describe levodopa clearing in dif-
ferent compartments, while aB corresponds to the half-life time of dopamine
in the brain.

Following previous work [2] and defining xn = x(t−n ), a solution to (5)
gives rise to the discrete map, propagating the continuous dynamics through
the feedback firings

xn+1 = Q (xn) , (8)

where

Q(x) = eAΦ(Cx) (x+ F (Cx, r)B) . (9)

To explicitly relate the available pool of levodopa in the stomach to the
subdoses produced by the impulsive feedback, (1) is written as

rn+1 = rn − F (Cxn, rn) , r0 = d, (10)

where the notation rn = r(t−n )) is introduced. The relation between rn and
dn can then be expressed as

rn = d−
n−1∑
i=0

di.
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At equilibrium, the pool of levodopa in the stomach is depleted and no
more drug reaches the duodenum, implying F (Cx, r) = 0. Thus, a fixed
point x0 of (8) satisfies

x0 = eAΦ(Cx0)x0. (11)

Obviously, the only type of fixed point admissible in the model at hand is
an equilibrium. With a strictly positive Φ(x) and a Hurwitz A, the only
solution to equation (11) is x0 = 0. The equilibrium of the Poincaré map is
therefore

x0 =
[
0 0 0

]⊺
,

r0 = {y ∈ R+|F (0, y) = 0}.

Notice that this equilibrium point also corresponds to the equilibrium point
of the continuous part of (5). The discrete state variable of the impulsive
(hybrid) model governed by (3) is unbounded.

The considered model possesses an equilibrium and admits a zero solu-
tion. Therefore, it differs greatly from the impulsive Goodwin’s oscillator
covered in, e.g., [2] and [17], despite the similarities in the mathematical
formulation. Two distinctive features of model (5), (7) introduced by design
render the solutions converging to the equilibrium. First, the amplitude
modulation function allows F (·, ·) = 0. Second, the closed-loop system is
driven by an exogenous positive signal that asymptotically converges to zero
while the impulsive Goodwin’s oscillator is, in its original form, an autonom-
ous system.

3.1 Stability analysis

To analyze the stability of the derived equilibrium point x0, a Lyapunov
function is used. This analysis is simplified by the positivity of the system.
Indeed, the linear continuous part of the model in (5) is positive since A is
Metzler and the initial conditions and input signals are positive, while (10)
is positive by the construction of F .

Exploiting model positivity, the following linear Lyapunov function is in-
troduced, which corresponds to the total amount of levodopa and dopamine
in the system

V (x̃) = vS +
aD
bC
vD +

aDaC
bCbB

vB +
1

ω
r. (12)

where x̃ =
[
x⊺ r

]⊺
. When x̃ is restricted to be non-negative, this function

is also non-negative, and zero only when x̃ is zero. The Lyapunov function
can be applied to the Poincaré map, by evaluating the difference

V
(
Q̃(x̃)

)
− V (x̃),
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where Q̃(x̃) =
[
Q⊺(x) r−F (Cx,r)

]⊺
.

Theorem 1. Consider the system defined by

xn+1 = eAτn (xn + F (Cxn, r)B) ,

where τn > 0, n = 0, 1, 2, . . . and the matrices A, B and C are given by (6).
If the amplitude modulation function satisfies

0 ≤ F (·, η) ≤ η,

and F (·, η) = 0 ⇐⇒ η = 0, then Lyapunov function (12) is decreasing for
all x̃ ∈ R4

+ and the fixed point x̃0 = 0 is asymptotically stable.

Proof. See Appendix A.

Theorem 1 can now be applied to map (9), with τn = Φ(Cxn), since the
frequency modulation function is bounded according to (4), and the states
xn are (element-wise) positive. The stability of the equilibrium point of
the Poincaré map means that the continuous states of the hybrid system
also will tend towards this equilibrium, since the continuous trajectories in
between the impulse times are bounded.

4 Model feasibility

To demonstrate model feasibility, the model fit to clinical data is discussed in
this section. This work is conducted in two steps. First, the parameters of an
open-loop model consisting of the states vS and vD, and the driving impulses,
are identified from clinical data. Then a closed-loop model, corresponding
to the system presented in previous sections, is created. The parameters of
the modulation functions in the impulsive feedback are chosen so that the
simulated levodopa blood concentration of the closed loop system is close to
the corresponding open loop results.

The experimental data, described in detail in [16] and consisting of lon-
gitudinal measurements of the levodopa concentration in the blood after a
single oral dose of Flexilev®, is used to estimate the impulses and model
dynamics. Flexilev® is administered in the form of water dissolved tab-
lets, containing 5mg of levodopa and 1.35mg of carbidopa monohydrate [9].
Maximum plasma concentrations of levodopa are reached after approxim-
ately 45min. Each patient in the cohort was administered an individualized
dose of Flexilev® constituting 150% of their normal morning dose of le-
vodopa with blood sampled every 20min, measuring the concentration of
levodopa.
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Figure 2: Double-peak levodopa blood concentration profile in clinical exper-
iment data and simulated by an open-loop model with estimated impulses.

4.1 Subsystem estimation

Based on the available measurements, only the subsystem consisting of vD
and vC is considered in this step. The optimization method presented in
[8] is used for the estimation, utilizing a constraint on the ℓ1-norm of the
impulse amplitudes to ensure sparsity of the solution. Applied to the data
set for each patient, the result of the optimization is the impulse times and
amplitudes and the aD and aC coefficients. The parameters bC and ω cannot
be separately identified, but their fraction is used to scale the impulses so
that the impulses sum to the entire dose. The data and the estimates for
one patient, exhibiting the characteristic double-peak profile, are displayed
in Fig. 2. The more pronounced peaks in the model predictions compared
to the observations are caused by the undersampling of the rising fronts of
the levodopa concentration profiles. This allows the optimization algorithm
to select one of the model time constants very fast to maximize the fit
during the rest of the data set. More frequent sampling would alleviate this
problem.

Examination of the estimation results reveals that the impulses identi-
fied for the open-loop system cannot qualitatively correspond to the impulses
generated by an impulsive feedback. Consider again Fig. 2, and compare this
concentration profile to one with a single peak, e.g. the hypothetical case
where dopamine concentration would be unaffected by the levodopa concen-
tration. Since the total dose would be the same in both cases, the second
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impulse would need to occur earlier in the single-peak case and close enough
to the first impulse not to be noticed in the resulting blood concentration
profile. This cannot be achieved with the proposed modulation functions
where the second impulse time t1 would be the same in both cases, since vB
would be the same at t0. Thus, additional impulses have to be produced by
the feedback to comply with the observed behavior.

4.2 Closed-loop model

A complete parameterized model with impulsive feedback can be constructed
based on the estimated dynamics and impulses. The estimated model is
extended for this purpose with the dynamics of the dopamine concentration
in the brain and suitable modulation functions for the feedback. Notably, the
applied model estimation procedure does not constitute system identification
but only illustrates the model feasibility.

The estimation is performed for two patients with complex PK responses
to the levodopa dose. Both patients display a distinct plateau in the decay
in the concentration profile, as well a slower than exponential decay during
the later part of the profile. This behavior is well explained by the multiple
impulses driving the system, as shown in Fig. 3. These patients were chosen
over those with simpler concentration profiles, since a profile with one or
two impulses would lead to a trivial estimation task.

4.3 Modeling assumptions

As there is no measurement of the dopamine concentration in the brain, the
dynamics of this state are not estimated and a fixed half-life time is assumed
instead. Since the parameter bB only acts as a scaling of vB, which can be
compensated for in the feedback, bB = aB is set for simplicity.

4.4 Feedback model

The modeling constraints presented in the previous sections guide the con-
struction of the modulation functions that define the impulsive feedback
law. The functions generally need to be bounded and monotonous, which
means that a nonlinear function with a sigmoidal curve is sought for. The
Hill function is therefore a suitable candidate. This function, in different
versions, is commonly used in pharmacometrics and can be expressed in the
following way

f(x) =
1

1 + (x/h)p
.

The parameter p ∈ R+ is termed as the Hill function order and de-
termines the steepness of the curve, while h ∈ R+ scales the argument. A
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Figure 3: Multi-peak levodopa blood concentration profile in clinical exper-
iment data and simulated by an open-loop model with multiple estimated
impulses. The last impulse corresponds to an additional dose of levodopa
that is not part of the experiment protocol and administered to alleviate
severe symptoms in the patient at that time.

higher-order Hill function resembles a step function but is differentiable.
The frequency modulation function is chosen as a Hill function of the

form

Φ(vB) = k1 + k2
(vB/h1)

p1

1 + (vB/h1)p1
,

where p1, h1, k1 and k2 are positive real parameters. The amplitude modu-
lation function is composed of two factors

F (vB, r) = f(r)F0(vB),

F0(vB) =
1

1 + (vB/h2)p2
,

where p2 and h2 are positive real parameters and 0 ≤ F0 ≤ 1. The factor
f(r) is given by

f(r) = α

(
−1

4
+

(
(r + 3α

8 )/(31.5α/8)
)2

1 +
(
(r + 3α

8 )/(31.5α/8)
)2
)
,

which is a Hill function that is parameterized to describe a smooth saturation
function, where α is the saturation level. The saturation represents the
physical limitation in transport of liquid through the pylorus. The function
f satisfies 0 ≤ f(r) ≤ r by its construction.
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4.5 Feedback law verification

The modulation function parameter values in Table 1 were chosen manually
(i.e. without any identification algorithm) to match the estimated dynamics
and impulses for two patients diagnosed with Parkinson’s disease, i.e. Pa-
tient 13 and Patient 14. The estimated models driven by the corresponding
impulsive feedback law are compared with the same model driven directly
by the estimated impulses in Fig. 4 and Fig. 5. The results for the scenarios
when the dopamine concentrations remain low and constant thus keeping
the pylorus orifice open are also displayed in these plots for reference.

Table 1: Modulation function parameters.

Patient ID p1 p2 h1 h2 k1 k2 α

13 2 2.5 1 2.4 3.8 95 0.65
14 4 3 5 3.9 6 133 1.4

For both patients above, the estimation results for the open-loop models
contain an extra impulse toward the end of the simulation. In each case, this
is due to an out-of-protocol levodopa dose, administered to alleviate severe
symptoms in the patient at the time. Since both time and dose of adminis-
tration is known, the last impulse can be used to verify the parametrization
of the model for each patient.

To do this, the estimated impulses are first moved in time, so that they
coincide with the administration times. For impulses occurring at the pen-
ultimate sampling point, this can be done without changing the estimated
blood concentration at any sampling point, if the impulse amplitudes are
suitably rescaled. The resulting amplitude is then compared with the value
given by the amplitude modulation function, where r is given by the admin-
istered dose. The results are summarized in Table 2, where λfb denotes the
impulse amplitudes from the modulation function.

Table 2: Impulse amplitudes for out-of-protocol levodopa administration.

Patient ID λsc (mg) λfb (mg) Administered dose (mg)

13 71.0 62.6 100
14 48.8 130.6 150

For Patient 13, the modulation function predicts an amplitude that is
similar to the estimated value. The difference is considerably greater for
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Figure 4: Levodopa blood concentration and impulses, with impulses based
on estimation, dopamine feedback and constant dopamine level.

Patient 14. However, for this patient, the pre-dose blood levodopa con-
centration is significantly higher than one would expect after an overnight
washout, indicating that unaccounted levodopa administrations might have
occurred during the experiment. This could explain the poor results for the
amplitude verification.

4.6 Discussion

The close similarity between the results from simulation with the feedback
model and the estimated impulses driving open-loop dynamics depicted in
Fig. 4 and Fig. 5 confirms that the proposed impulsive feedback model can
reproduce the multi-peak behaviors observed in clinical experiments.

When, on the other hand, the feedback loop is broken and substituted
with a constant dopamine level, the multi-peak behaviour does not occur.
The levodopa is in this case transported to duodenum through a fast se-
quence of impulses, which are almost indistinguishable in the resulting blood
concentration profile. This is an important result, meaning that it is specific-
ally the neuroendocrine feedback mechanism and not the pharmacokinetics
that causes the multi-peak phenomenon.

An important difference between the estimated impulse train in the open-
loop model and the impulses generated by the feedback is that the feedback
produces a significantly greater number of impulses throughout the simula-
tions. The first estimated impulse is typically replaced by two smaller ones
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Figure 5: Levodopa blood concentration and impulses, with impulses based
on estimation, dopamine feedback and fixed dopamine level.

and very low amplitude impulses are introduced at low levels of remaining
levodopa. This highlights a conceptional conflict between the model estima-
tion, where sparsity is desired in order to avoid overfitting, and the feedback
mechanism, which requires more frequent and lower amplitude impulses in
order to produce results that are consistent with the underlying biology.
The intrinsic difficulty in distinguishing between a single impulse and sev-
eral impulses close to each other that is pointed out in [8] can also clearly be
seen in the results in this work. How to reconcile these different objectives
in obtaining a certain output profile is a question to be addressed in future
research.

A Proof of Theorem 1

Inserting (9) into (12) to evaluate the evolution of the Lyapunov function
over one time step gives

V
(
Q̃(x̃)

)
− V (x̃) = − ω−1 (c1(x1 + F (Cx, r)) + c2x2 + c3x3) ,
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where ci are given by

c1 = aCaBβD
(
1− e−aDτ

)
+ aDaBβC

(
1− e−aCτ

)
+ aDaCβB

(
1− e−aBτ

)
c2 =

aD
bC (aC − aB)

(
aC
(
1− e−aBτ

)
− aB

(
1− e−aCτ

))
c3 =

aDaC
bCbB

(
1− e−aBτ

)
,

where

βD =
1

(aC − aD) (aB − aD)
, βC =

1

(aD − aC) (aB − aC)
,

βB =
1

(aD − aB) (aC − aB)
,

αi =
3∏

j=1
j ̸=i

1

aj − ai
, i = 1, 2, 3.

Now show that ci, i = 1, 2, 3 are positive whenever τ > 0. For c1, we notice
that τ = 0 =⇒ c1 = 0. It is therefore sufficient to verify the positivity of
the derivative

dc1
dτ

= aDaCaB
(
βDe

−aDτ + βCe
−aCτ + βBe

−aBτ
)
.

The symmetry of this expression means that we can assume aD < aC < aB.
We then eliminate βB to get

dc1
dτ

=
aDaCaB
aD − aC

(
e−aDτ − e−aBτ

aD − aB
− e−aCτ − e−aBτ

aC − aB

)
,

where the expressions both outside and inside the parenthesis are positive.
The positivity of c2 and c3 is easier to verify, again by starting from τ = 0
and calculating the derivative. Since F (Cx, r)) is positive, we get that V (x̃)
is decreasing for x̃ ∈ R4

+.
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Laguerre domain estimation
of an input impulse train to
a continuous linear
time-invariant system

Abstract

A novel estimation algorithm for the times and weights of a finite num-
ber of impulses constituting the input signal of a known continuous linear
time-invariant system from the output signal of the latter is proposed. The
intended application area is the estimation of pulsatile input in biomedical
systems. The output signal is assumed to belong to L2 and be represented
in Laguerre domain. A generalization of the Laguerre domain to distri-
butions is utilized to incorporate Dirac δ-functions into the mathematical
framework. The estimation algorithm utilizes the Laguerre parameter p to
regularize an otherwise ill-conditioned problem. The viability of the method
is demonstrated on simulated and experimental data exhibiting a double-
peak decay in the concentration of an anti-Parkinsonian drug after a single
dose administration.

1 Introduction

In biomedical applications dealing with e.g. hormone secretion in endocrine
systems and the pharmacokinetics of many drugs, concentration profiles
displaying a rapid increase followed by an exponential decay are often en-
countered. Such a profile can be mathematically described as the impulse
response of a dynamical system. However, this behaviour may also repeat
itself, which motivates the study of the response to an impulse train.

In many endocrine systems, hormones are released repeatedly over the
day in a pulsative matter, but not periodically in mathematical sense [5].

59
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When direct measurement (blood sampling) is impossible, deconvolution is
often employed to reconstruct these pulses [18].

The impulse train model is applicable to pharmacokinetics of orally ad-
ministered drugs, when a single dose of a drug produces multiple plasma
concentration peaks [3]. In particular, this behavior is exhibited by the
anti-Parkinsonian drug levodopa, whose pharmacokinetics can be captured
by an impulsive feedback model [13].

In the present work, the estimation of the (firing) times and weights of
an input impulse train from the output signal of a given dynamical system is
therefore considered. The response of a system to an impulse train is seldom
addressed, in contrast with single impulse response. In [9], the estimation
of the impulsive input and the parameters of a linear system was performed
for sampled data under a sparsity constraint. The proposed approach has
been applied to endocrine data in [10]. Finite-memory observers [12] have
also found application in state estimation of systems with impulsive input
[11].

The matter of delay estimation is closely related to the problem under
consideration. In [6], delay estimation from the response of a continuous
system to a single was studied in Laguerre domain.

Laguerre functions are particularly useful for analyzing impulse responses.
Being a set of polynomially weighted and normalized exponential functions
[8], they offer a natural basis for capturing the signal form of solutions to
linear time-invariant (LTI) differential equations.

The main contribution of this paper is an algorithm estimating the im-
pulse times and weights from the Laguerre spectrum of the output signal of
a continuous LTI system. It is, to the best of our knowledge, the first time
this estimation problem has been treated in the Laguerre domain.

The rest of the paper is organized as follows. First necessary background
information on the representation of signals and systems in the Laguerre
domain is provided. Then the Laguerre representation of the impulse train
is derived, motivating the use of the matrix pencil method to solve the
estimation problem. Finally, the estimation algorithm is presented and its
performance is investigated on both numerical and experimental data.

2 Laguerre domain representation

Let L0, L1, . . . denote the sequence of Laguerre polynomials [16]. The con-
tinuous Laguerre function of order k is then defined in time domain as

lk(t) =
√

2p e−2pt Lk(2pt),

where p > 0 denotes the Laguerre parameter.
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The Laguerre functions form an orthonormal basis in L2[0,∞) and can
therefore be used to express any signal y(t) ∈ L2 as an infinite series

y(t) =

∞∑
k=0

yklk(t), (1)

where the sequence of the Laguerre coefficients yk is square summable and
the coefficients are calculated as

yk =

∫ ∞

0
lk(t)y(t) dt. (2)

The signal y(t) is thus uniquely represented by its Laguerre spectrum, which
also defines the Laguerre transform of the signal, according to L {y} =
{yk, k = 0, 1, . . . }. The inverse Laguerre transform is then given by (1). Fur-
ther, the following shorthand notation is utilized {yk, k = 0, 1, . . . } ≜ {yk}.
By analogy with Fourier transform, {yk} is termed the Laguerre domain
representation of y(t).

2.1 Linear time-invariant dynamics

Consider the continuous linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = Cx(t), (3)

where A,B,C are the system matrices, x is the state vector and u, y ∈
L2[0,∞) are scalar input and output signals. In Laguerre domain, with {uk}
and {yk} as the input and output, the continuous model in (3) transforms
into an equivalent discrete system

xk+1 = Fxk +Guk, x0 = 0,

yk = Hxk + Juk, (4)

where the system matrices are given (see [1]) by

F = −(pI −A)−1(pI +A), G = −
√

2p(pI −A)−1,

H =
√
2pC(pI −A)−1, J = C(pI −A)−1B.

Note that the linearity and causality of the continuous system carry over
to the Laguerre domain description. Discrete-time techniques can thus be
readily applied to (4) in Laguerre domain and mapped back to the time
domain through the inverse Laguerre transformation, see, e.g., [1].
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2.2 Impulses and delays

As mentioned above, the Laguerre transform maps a signal in L2 to a square-
summable sequence. However, since impulses, i.e. Dirac δ-functions, do not
belong to L2, the transform does not apply to impulse trains. However, a
generalization of the Laguerre transform proposed in [7] can be used. By
replacing (2) with the Laguerre sharp transform, in the following denoted
as L #{·}, the transform can be applied to both signals in L1 and finite
measures. The coefficients of this transform are evaluated as

y#k =

∫ ∞

0
(l0 ∗ y)(t)lk(t) dt. (5)

The original definition of the Laguerre sharp transform in [7] is double-sided,
i.e. on the whole real line. Here, a single-sided version of the transform is
utilized to enable handling initial conditions. The proposition below sum-
marizes important properties of the transform derived in [7].

Proposition 1 ([7]). The set of all functions f , such that L #{f} ∈ ℓ2,

constitutes a Hilbert space L#
2 , which includes all integrable and square-

integrable functions, i.e.

(L1 ∪ L2) ⊂ L#
2 .

Furthermore, the following properties hold:

� If y ∈ L2 and L {y} = {yk}, then L #{y} = {∇yk},

� Every finite signed measure has a Laguerre sharp transform that is
unique,

� If µDτ is a probability measure with all mass in a single point τ ∈
R+ (i.e. a Dirac measure), L #{y} = {∇lk(τ)}, where ∇ is the first
difference operator, i.e. ∇lk = lk − lk−1 , ∇l0 = l0.

Since the generalized probability distribution of a Dirac measure at
τ ∈ R+ is the Dirac δ-function δ(t − τ), it follows that the Laguerre sharp
transform of a unit impulse is given by the difference between Laguerre
functions evaluated at the time of the impulse. In particular, the following
applies to a unit impulse at time zero.

Corollary 1. Let δk denote the Kronecker delta. Then

L #{δ(t)} =
√

2pδk.

Proof. Follows from lk(0) =
√
2p for all k.
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The first difference relations that result from the Laguerre sharp trans-
form justify the formal use of the traditional Laguerre transform, even for
impulses. Evaluating the transform of δ(t − τ) to {lk(τ)} still produces a
one-to-one mapping between the time and Laguerre domain and any oper-
ation performed on this sequence has an equivalent one defined on the first
difference of it. In what follows, Laguerre spectra and Laguerre coefficients
will therefore refer to the traditional transform, to unify the notation.

The spectra of impulses shifted in time can be obtained from the Laguerre
domain description of delay systems. In [2], it is shown that a pure (point)
continuous time delay of duration τ between the output y and input u relates
the Laguerre spectra according to

yk = e−κ/2

 k∑
j=1

L
(−1)
j (κ)uk−j + uk

 . (6)

Here κ = 2pτ and L
(−1)
k denotes the associated Laguerre polynomial L

(α)
k |α=−1

[16]. If the input signal is an impulse at time ν > 0, so that the output im-
pulse is delayed to time τ + ν, the relation

Lk(2p(τ + ν)) =

k∑
j=0

L
(−1)
j (2pτ)Lk−j(2pν)

is obtained and, if furthermore ν = 0, the result is

Lk(2pτ) =
k∑

j=0

L
(−1)
j (2pτ). (7)

2.3 Impulse train

Consider now a finite sequence of impulses, i.e.

u(t) =

n∑
i=1

λiδ(t− ti), (8)

where {λi} is the set of the (real) impulse weights and {ti} is the ordered set
of the positive impulse times. In the intended application areas, the impulse
weights are normally non-negative, but this is not assumed in what follows.
The Laguerre spectrum of (8) is given by

uk =

n∑
i=1

λilk(ti). (9)
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Introduce the following vector comprised of the coefficients

U⊺
r =

[
u0 u1 . . . ur

]
.

This vector can be decomposed as

Ur = ΛrW, (10)

where

Λr =


L0(2pt1) L0(2pt2) . . . L0(2ptn)
L1(2pt1) L1(2pt2) . . . L1(2ptn)

...
...

...
Lr(2pt1) Lr(2pt2) . . . Lr(2ptn)

 ,
W ⊺ =

[
w1 w2 . . . wn

]
,

and

wi =
√

2p e−pti λi.

The matrix Λr can be factorized in terms of the Vandermonde matrix

Vr =


1 1 . . . 1

2pt1 2pt2 . . . 2ptn
...

...
...

(2pt1)
r (2pt2)

r . . . (2ptn)
r

 ,
and the following lower triangular matrix with rows given by the Laguerre
polynomial coefficients:

Πr =


c00 0 . . . 0
c10 c11 . . . 0
...

...
...

cr0 cr1 . . . crr

 ,
where cik is the coefficient of term k of Laguerre polynomial i. This leads to

Ur = ΠrVrW,

where Πr is known in advance. The matrix Πr is also invertible since the
diagonal elements, corresponding to the leading coefficients of the Laguerre
polynomials, are always nonzero. This fact, together with the form of the
matrices Vr and W , enables the calculation of {λi} and {ti} from the ele-
ments of Ur by the matrix pencil method.
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3 Estimation algorithm

3.1 The matrix pencil method

The matrix pencil method [20] is an estimation technique that can be ap-
plied to extract information from signals with an underlying matrix pencil
structure. The method is based on the following matrix construction that
enables the transformation of the estimation problem to a generalized eigen-
value problem.

Let Dw = diag(W ), Dα = 2p diag(T ), where

T ⊺ =
[
t1 t2 . . . tn

]
,

and consider the pair of matrices

X0 = Vr−L−1DwV
⊺
L−1, X1 = Vr−L−1DwDαV

⊺
L−1,

where L ∈ N is the so-called pencil parameter. If n ≤ L ≤ r − n, the
non-zero generalized eigenvalues of the matrix pair X1, X0 are precisely the
elements of Dα. The matrices X0 and X1 can furthermore be constructed
from the vector Ũr = Π−1

r Ur. Denoting its elements

Ũ⊺
r =

[
ũ0 ũ1 . . . ũr

]
,

the i:th row and j:th column entries of X0 and X1 are respectively given by
ũi+j−1 and ũi+j . It is therefore theoretically possible to determine the delay
times {ti} by solving the generalized eigenvalue problem, and the weights
{wi} by solving linear equation (10).

3.2 Related problems

The applicability of the matrix pencil method to the Laguerre domain im-
pulse train estimation highlights the similarity between the problem at hand
and other problems where the matrix pencil method is shown to be helpful.
These typically involve sums of complex exponentials, e.g. in electromag-
netic applications [17]. The connection to these problems can be further
appreciated by considering the asymptotic relation (given in e.g. [16]) of
Laguerre polynomials to trigonometric functions

Lk(z) =
e

z
2

π1/2(kz)1/4
cos
(
2
√
kz − π

4

)
+O

(
1

k3/4

)
, (11)

which holds as k → ∞. The considered estimation problem can thus also
be interpreted as the problem of finding the weights and frequencies of a
sum of sinusoidals, albeit with frequencies and amplitudes that depend on
k. One can in particular see a similarity to the problem of super-resolution,
described in [4]. There, sparse data, in the form of an impulse sequence, are
extracted from a frequency-limited Fourier transform of the signal.
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Figure 1: Condition number of Πr as a function of r in logarithmic scale.

3.3 Numerical considerations

The following two observations regarding the numerical properties of the
proposed method can be made:

1. The magnitude of the leading Laguerre polynomial coefficient decreases
rapidly with the polynomial order, causing Πr to be poorly condi-
tioned.

2. If ti ≈ tk, i ̸= k, both Λr and Vr are poorly conditioned.

The first point is illustrated in Fig. 1. The condition number growth is faster
than exponential, which makes numerical implementations sensitive to noise
and limits the number of Laguerre coefficients that can be used in practice.
The second point will be addressed later in this paper.

3.4 Impulse train estimation

Consider the problem of estimating the input impulse train given by (8),
i.e. the sets {λi} and {ti}, along with their cardinality n, from the output
y(t) of (3). In the absence of uncertainty, the cardinality of the sets can be
evaluated by the technique outlined in Section 3.1, since the number of non-
zero generalized eigenvalues of the pair X0, X1 is the same as the number of
impulses in the input train [20].

Following [20], uncertainty can be handled by utilizing a rank-truncated
More-Penrose pseudo-inverse when the eigenvalue problem is solved. A sin-
gular value decomposition ofX0 is used for this purpose. Finding the number
of impulses then becomes a matter of choosing a suitable threshold, under
which singular values are discarded. However, the observed conditioning
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problems of the matrices involved in the input impulse train estimation
make this approach infeasible in the present case. Even with minimal noise
levels, the thresholding method often fails to identify the correct generalized
eigenvalues. A significant complication arises as the means of determining
both the number of essential eigenvalues and which eigenvalues to choose to
perform the estimation are missing.

To address the ill-posedness, an algorithm that utilizes the Laguerre
parameter to regularize the problem and estimates the number of eigenvalues
as well as their values is proposed. The Laguerre parameter is frequently
used for this purpose, as the conditioning of Laguerre domain estimation
problems generally depends on the parameter value, see, e.g., [19].

The method is outlined in Algorithm 1. It is based on an empirical obser-
vation that many Laguerre parameter values yield good estimates of ti, but
these estimates do not necessarily correspond to the largest singular values
of X0. Therefore, the Laguerre input and output spectra are evaluated, and
the corresponding ti are estimated, for different Laguerre parameter values.
The algorithm then proceeds by identifying the ti that most Laguerre para-
meter values have in common, and terminating the search once the similarity
of the remaining ti is too low.

4 Results

Algorithm 1 is applied to two types of data. First, analytically calculated
Laguerre spectra of impulse trains corrupted by additive noise are utilized
to generate synthetic data. Then the estimation is performed on a levodopa
blood concentration profile from a clinical experiment. The same parameters
for the estimation algorithm are used in both cases, see Table 1.

Table 1: Estimation parameters.

L r pmin pmax ttol α

7 13 0.04 5 0.02 0.3

4.1 Synthetic data

The Laguerre spectrum of two impulses with unitary weight, at times t1 = 1,
t2 = 1.5, was analytically generated by means of (9). The low number of
impulses is motivated by simplicity. White Gaussian noise was then added
to the spectrum, with a standard deviation of 1% of the mean Laguerre
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Algorithm 1 Laguerre impulse train identification

Set the following:
Feasibility region R for delay times
Minimal ratio α
Delay time tolerance ttol

Setup Laguerre parameter grid P of length m
for each pi in P do
Calculate output Laguerre spectrum
Solve generalized eigenvalue problem
Calculate corresponding delay time
Let Ei include these times

end for
Discard delay times not in R
Sort remaining delay times in an array S
Let n = 0, b = true
while b do
n = n+ 1
Let Sn be the longest sequence in S, such that they are all equal within
the tolerance ttol
if length of Sn > αm then
Remove Sn from S
Find all indices i such that no element of Ei is in Sn
Remove all elements of Ei from S

else
Let b = false

end if
end while
for all i such that an element of Ei is in Sn do

Find the elements of Ei that are in Sj , 1 ≤ j ≤ n
Solve for delay times and weights using these elements

end for
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coefficient magnitude, and then Algorithm 1 was applied to recover the
impulse times and weights.

The estimation results are illustrated in Fig. 2, where the estimation
errors are plotted as function of p. The algorithm recovers the delay times
and weights correctly, with a notable performance improvement for higher
values of p. The uncertainties in both the delay time and the weight es-
timates are decreasing and a greater proportion of the Laguerre parameter
values produce estimates within the prescribed tolerance. The result makes
sense in view of (11), as a larger value of p yields a greater separation of the
frequencies in this approximation.

Experiments where α and ttol were changed were also performed at this
point; α does not impact the estimation results significantly, while a smaller
ttol decreases the estimation errors, but increases the number of estimation
fails.

The effect of the time separation between impulses was investigated next.
The estimation was performed repeatedly with different values of t2 such
that t1 = 1 ≤ t2 ≤ 1.5. The results for different noise levels are presented
in Fig. 3. In Fig. 4, the estimation result as function of impulse separation
and Laguerre parameter value is displayed, with 1% noise. The ability to
distinguish the delay times is clearly dependent on the noise level. Interest-
ingly, the algorithm does not fail completely when the separation is too low,
instead a single impulse between the true signals is identified. Although not
being mathematically accurate, such merging estimate behavior is desirable
in practice, where the effect of two impulses can be well approximated with
a single one. There is however a transition region where neither one nor
two impulses are estimated, which grows with the noise level. As demon-
strated in [10], the sampled response of a linear system to two impulses is
indistinguishable from the response to a single impulse, when the separation
between the impulses is sufficiently small.

4.2 Experimental data

The levodopa plasma concentration measured in a patient diagnosed with
Parkinson’s disease was used in this estimation. The data come from a
clinical experiment where a single dose of levodopa was administered orally
after an overnight wash-out, as described in [15]. The concentration profile
have been modified by removing a fixed offset caused by a low but non-
zero initial levodopa plasma concentration of the patient. The dynamics are
modelled as a linear second-order system driven by an impulse train as in
[13]. The finite-dimensional model was identified using the least-squares-
based algorithm from [10]. A corresponding Laguerre domain model was
calculated and deconvolution with the estimated Laguerre spectrum of the
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Figure 2: Errors of estimated impulse times and weights, and estimation
status, as function of the Laguerre parameter p, for an impulse train with
1% additive noise.

Figure 3: Estimated impulse times for different impulse time separations
with 0.1%, 1% and 5% noise.
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Figure 4: Estimation result as function of Laguerre parameter and impulse
separation.

output was used to approximate the Laguerre spectrum of the impulse train.

Deconvolution is generally an ill-posed problem, with various regulariz-
ation techniques suggested in literature to robustify solutions, see, e.g., [14].
In this work, the system

Yr = ΘUr,

where Yr is the output spectrum and

Θ =


J 0 . . . 0
HG J . . . 0
... 0

HF r−1G HF r−2G . . . J

 ,
was solved directly for Ur, since a relatively low number of Laguerre coeffi-
cents is considered.

Algorithm 1 was then executed, yielding the delay time and weight es-
timates depicted in Fig. 5. There it can be seen that four impulses are
identified in an interval of Laguerre parameter values. Fig. 6 shows that
simulation of the estimated model gives a close resemblance between the
results and the data, and the variations in the weight estimates produce
negligible changes in the results. In Fig. 7, the estimated Laguerre spectra
for the output and impulse train, for p = 3.5, are depicted.

This experiment highlights again the difficulty in differentiating between
impulses with little separation in time. Here, two impulses rather than four
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Figure 5: Estimated impulse times and weights as function of the Laguerre
parameter p, for the levodopa data. The estimates are set to zero if they
are outside the error tolerance.

would be intuitively expected, given the shape of the concentration profile.
The three impulses used for the first peak is most likely a result of the linear
interpolation of the rising front in the concentration profile, which cannot
be well reproduced as the response of a single impulse.

5 Conclusions

A Laguerre domain approach to the problem of impulse train estimation
from the output of an LTI system has been presented. Results from sim-
ulated and experimental data show that the proposed algorithm works as
intended, and opens up for future research in this area. This includes im-
proving the theoretical foundation of the algorithmic approach, further in-
vestigations of the observed impact of the Laguerre parameter value on the
estimates, and possible extensions of the algorithm to allow for other classes
of input signals.
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Figure 6: Comparison between simulated system and actual data, and the
estimated impulses, for three Laguerre coefficients.

Figure 7: Estimated impulse train and output Laguerre spectra when p =
3.5.
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Abstract

A hybrid model for biomedical time series comprising a continuous second-
order linear time-invariant system driven by an input sequence of positively
weighted Dirac delta-functions is considered. The problem of the joint es-
timation of the input sequence and the continuous system parameters from
output measurements is investigated. A solution that builds upon and re-
fines a previously published least squares formulation is proposed. Based on
a thorough analysis of the properties of the least squares solution, improve-
ments in terms of accuracy and ease of use are achieved on synthetic data,
compared to the original algorithm.

1 Introduction

Signals exhibiting slow, dissipative dynamics that are interrupted by mul-
tiple rapid bursts occur in many biological systems. Common examples
are found in, e.g., endocrinology, since pulsatility is recognized as a funda-
mental property in the secretion of most hormones [9]. In pharmacokinetics,
multi-peaking phenomena in drug concentration [2] can also display such
characteristics. There is no generally accepted approach to mathematical
modeling of these behaviors. In the endocrine case, a popular construct
features a linear plant to portray the hormone elimination fed with an input
signal that represents the secretion episodes. For instance, a Gaussian in-
put signal shape is assumed in [6], which enables deconvolution-based input
estimation.

To avoid additional assumptions, a pulsatile time series is modeled by
a linear plant with impulsive input in this work. In closed loop, this setup
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was developed for modeling testosterone regulation in [1], while a similar
model was employed for pharmacokinetic applications in [4]. The estima-
tion of the input sequence and continuous plant parameters is treated. Least
squares (LS) methods were previously used to address this hybrid identific-
ation problem [5], [7], while a Laguerre domain approach was employed for
the input estimation in [3]. The present work is based on the same op-
timization formulation as [7], where LASSO (least absolute shrinkage and
selection operator) regularization was used. Yet, a more rigorous estimation
procedure is achieved based on a comprehensive analysis of the underlying
optimization problem. The main contribution is in the optimization prob-
lem analysis that underpins the theoretical foundation of the identification
approach. Further, the resulting estimation method does not require user-
defined data-dependent parameters and displays better performance as well
as ease of implementation.

The rest of the paper is organized as follows. First, the model and estima-
tion problem are formulated. Then, an analysis of the parameter-dependent
characteristics of the LS solution is performed and shown to enable an effi-
cient estimation of the parameters in the noise-free case. Finally, the method
is generalized to account for noise and uncertainties and experimental results
for synthetic data are presented.

2 Estimation problem

2.1 Model description

Consider the impulsive sequence

ξ(t) =
∞∑
k=0

dkδ (t− τk) , (1)

where δ(·) is the Dirac delta function and dk and τk determine the positive
impulse weights and times. It is fed into a linear time-invariant compart-
mental state-space model

ẋ = Ax+Bξ(t), y = Cx, x =
[
x1 x2

]⊺
, (2)

where

A =

[
−b1 0
g1 −b2

]
, B =

[
1
0

]
, C =

[
0
1

]⊺
, (3)

with positive parameters b1, b2, g1. Defining the Heaviside step function as
H(t) and assuming the initial state x(t0) = x0, the output of the system can



2. Estimation problem 81

in a straightforward manner be calculated as

y(t) = C
(
eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bξ(τ) dτ
)

= CeA(t−t0)x0 +
∞∑
k=0

g1dkz(b1, b2, t− τk),

where

z(b1, b2, t) =
e−b2t− e−b1t

b1 − b2
H(t).

2.2 Estimation problem formulation

Let the output of (2) be sampled, possibly irregularly, over a finite horizon
and result in the measurements y(tk), where k = 1, . . . ,K and tk < tk+1,
thus yielding the vector

Y =
[
y(t1) . . . y(tK)

]⊺
.

Since an impulse in between two sampling times cannot be distinguished
in the sampled output from a pair of impulses that occur at the sampling
times [7], the impulses are without loss of generality restricted to occur at
the sampling times. Then it holds that

Y = Φ(b1, b2)θ, (4)

where
Φ(b1, b2) =

[
φ(b1, b2, t1) . . . φ(b1, b2, tK)

]⊺
,

φ(b1, b2, ti) =


e−b2(ti−t1)

z(b1, b2, ti − t1)
...

z(b1, b2, ti − tK)

 ,
θ =

[
x2(t1) d1 . . . dK−1

]⊺
.

Notice that Φ(b1, b2) is square and that the state x2(t1) is included in the
formulation rather than x0, since x2(t1) and d1 uniquely determine the state
of the system for t > t1.

Further, the combined impulse and parameter estimation in system (2)
is treated, i.e. the parameters dk, k = 1, . . . ,K and bi, i = 1, 2 are sought.
Notice that g1 = 1 can be assumed, as changing this parameter corresponds
to scaling of the impulses. Furthermore, assume that b1 < b2.
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An LS optimization formulation introduced in [7] is employed to the
problem in hand. In the estimation, b∗i , i = 1, 2 denote the true parameter
values while bi represent the parameters in the LS formulation

θ̂(b1, b2) = argmin
θ

∥Y − Φ(b1, b2)θ∥2, (5)

where ∥·∥ is the Euclidean vector norm. The parameter-dependent objective
function makes the setup resemble a multi-parametric programming problem
(see, e.g., [8]). We also use the notation d∗k for the true impulse weights
while dk represent their estimates for given parameter values b1 and b2 (we
suppress the dependency for ease of notation).

In the noise-free case, the optimization formulation is unconstrained.
The estimate of θ can therefore be calculated via a matrix inversion (the
invertibility of Φ is shown in [7]). In the presence of noise or uncertainties,
the impulse weights are restricted to be non-negative, which results in a
constrained LS problem.

2.3 Estimation principle

In the noise-free case, the estimation is based on the following properties of
the optimization problem in (5), which are given in Proposition 1.

� If b1 + b2 > b∗1 + b∗2 and b1 > b∗1, all impulse estimates solving (5) have
positive weights;

� If b1 + b2 < b∗1 + b∗2 and b1 < b∗1, all impulse estimates solving (5) that
do not correspond to true impulses have negative weight.

The properties above give rise to the division of the parameter space depicted
in the left subplot of Fig. 1. The idea is to utilize the structure of this space
to identify b∗1 and b∗2. A problem arises in the regions marked as unknown,
where the signs of the impulse weights solving the optimization problem vary
depending on the data. However, theoretical reasoning regarding simplified
cases (see Section 3.1) indicates that the parameter space will be divided
qualitatively according to the right subplot of Fig. 1. This is also observed
in numerical experiments. The quantitative behavior (i.e. the slopes of
the curves) depends on the values of b∗1, b

∗
2 and the distribution of impulses

and sampling instances. This refined partitioning enables navigation in the
parameter space to the point (b∗1, b

∗
2), as described in Section 3.2.

When noise or uncertainties are present, the parameter space is no longer
divided in well-defined regions, as impulses of both signs typically appear
in most of the parameter space. However, it is still possible to estimate the
boundary of the region with positive impulses, which we denote γP . If the
noise level is low enough, it is also possible to find an approximation of the
true parameter values.
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Almost all impulses negative

All impulses positive

b1

b2

Unknown

Unknown

b2

Almost all impulses negative

All impulses positive

Mixed

(b∗1, b
∗
2) (b∗1, b

∗
2)

b1

Figure 1: The division of the b1-b2 parameter space, relative to the true
parameter values (b∗1, b

∗
2), in terms of the solutions to (5). Left: regions with

guaranteed signs of impulse weights. Right: region boundaries according to
the analysis in Section 3.1 and numerical experiments. “Mixed” indicates
that both positive and negative impulses are present.

3 Noise-free estimation

We will first show how the b1-b2 parameter space is divided into the regions
indicated above. The analysis is based on the following lemma.

Lemma 1. Let y(t) be the response of system (2) to the input d1δ(t − t1)
with x0 =

[
0 0

]⊺
. Denote the response of an estimate of (2) with the

parameters b̂1, b̂2 to the input d̂1δ(t − t̂1) as ŷ(t). Assume that b̂1 + b̂2 >
b1 + b2, b̂1 > b1 and b̂1 > b̂2. Then, there exist at most two τ > max{t1, t̂1}
such that y(τ) = ŷ(τ).

Proof. See Appendix A.

Provided that the impulse sequence is sparse (i.e. that the set S below
is nonempty), the result above can be used to characterize the properties
of the solution to (2) in two cases, where the estimated system is either
faster or slower than the true dynamics. These are defined in the following
proposition.

Proposition 1. Consider LS problem (5) with the initial condition x2(t1) =
0. Assume that the noise-free measurements Y are produced by (2) and let
S = {k ∈ {1, . . . ,K} | d∗k = 0}. If b1 + b2 > b∗1 + b∗2 and b1 > b∗1, then dk > 0
for k = 1, . . .K. If b1 + b2 < b∗1 + b∗2 and b1 < b∗1, then dk < 0 for k ∈ S.

Proof. See Appendix B.
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Note that Lemma 1 and Proposition 1 apply only when the initial state
is zero, while the optimization formulation in (5) allows a nonzero initial
value for x2 (a nonzero initial x1 can be represented by an impulse and is
thus not included in the estimation). However, since the contribution from
the initial state tends to zero exponentially, the proposition is expected to
hold in the case of nonzero initial conditions too.

3.1 Boundaries of the sign-definite impulse regions

The proposition above does not provide information about the region which
is marked as unknown in the left subplot of Fig. 1. To gain understanding
of the behavior in this region, consider a simplified case of three sampled
measurements of the response to a single impulse at time t = 0. Denote it
as y∗(t) and assume that it is generated by (2) with the parameter values
b∗1, b

∗
2. Let y(t) be the response of the same system but with parameters

b1, b2. The boundary between solutions with positive and negative impulse
weights is then defined by the case when y(t) intersects y∗(t) precisely at the
sampling times (i.e. no additional positive or negative impulses are required
to explain the behavior). If the curves intersect at the times τ, ν, µ, the
relation between b1, b2 and b∗1, b

∗
2 is given by a solution to the equation

(χτ − ψτ )(ωµ − ων) + (χν − ψν)(ωτ − ωµ)

+ (χµ − ψµ)(ων − ωτ ) = 0, (6)

where χ = eb1−b∗2 , ψ = eb1−b∗1 and ω = eb1−b2 . Note that equation (6) has
b1 = b2 as another, infeasible solution. By solving (6) for ω, an expression
for b2 would be obtained. However, since solving (6) algebraically for ω is
not possible in a general case, only equidistant sampling, i.e. ν = τ + c, µ =
τ + 2c, where c > 0, is considered. The feasible solution then becomes

b2 = b1 − ln(ω) = b1 −
1

c
ln
(χτ+c − χτ+2c − ψτ+c + ψτ+2c

χτ − χτ+c − ψτ + ψτ+c

)
≜ b1 −

1

c
ln
(ω1

ω2

)
,

where the solution naturally is b2 = b∗2 if b1 = b∗1. Taking the derivative with
respect to b1 yields

db2
db1

= −1 + (χτ+c − ψτ+c)
( 1

ω1
− 1

ω2

)
.

Since b1 < b2, it follows that χ < ψ and 0 < ω1 < ω2. That leads to the
inequality

−∞ <
db2
db1

< −1.
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Figure 2: The pairs of estimates b1, b2 resulting in intersections between
y(t) and y∗(t) at times 1, 1 + c, 1 + 2c for different values of c and b∗1 = 0.5,
b∗2 = 1.5. The dotted lines represent the theoretical limits for the borders
given in Proposition 1.

The second derivative, given by

d2b2
db21

= c
(
χτ+c − ψτ+c

)(
− 1

ω1
− 1

ω2
+
(
χτ+c − ψτ+c

)( 1

ω2
1

− 1

ω2
2

))
> 0,

shows that the derivative changes monotonously. Finally, if the samples are
shifted in time relative to the impulse, b2 changes according to

db2
dτ

=
1

c
(b1 − b2)ψ

τ+c(1− ψc)
( 1

ω2
− 1

ω1

)
.

If b1 < b∗1, then ψ < 1, which makes the expression positive, while b1 > b∗1
makes it negative, i.e. a shift in time causes a pivot of the curve around the
point (b∗1, b

∗
2). The resulting curves are illustrated in Fig. 2.

If more than three measurements are considered, each triplet of meas-
urements generates a separate b2-boundary. For a non-equidistant triplet,
the qualitative behavior of the corresponding solution to (6) appears to be
similar to that of the equidistant case in numerical experiments. Since a
solution with only positive impulses requires that parameter estimates are
above all these boundaries, the limiting case, which defines the curve γP ,
corresponds to the largest value of b2 for a given b1. For solutions with al-
most all impulses being negative, the converse holds. Adding more impulses
does not alter this behavior. As all boundaries intersect at b1 = b∗1, b2 = b∗2,
and triplets with different time shifts produce different slopes according to
the above discussion, this explains the non-smoothness of the boundaries at
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this point illustrated in Fig. 1. Note that the presented analysis only is valid
if the impulses are sufficiently sparse, i.e. there are instances with at least
three sampling times in between two impulses.

3.2 Estimation algorithm

The following procedure is suggested to solve the estimation problem in the
absence of noise. Let d(c) denote the distance between the pair of points
where the boundaries of the positive and negative impulse regions (see Fig. 1)
intersect with the line b1 = 2b2 + c. Since the boundaries meet at the point
(b∗1, b

∗
2), minimization of d(c) with respect to c recovers the values of b∗1

and b∗2. The points of intersection which determine d(c) can be calculated
with the bisection method, by considering the signs of the estimated impulse
weights obtained from solving (5) at points along the line b1 = 2b2+c. Once
b∗1 and b∗2 are calculated, Algorithm 1 in [7] is used to calculate the impulse
times and weights.

No further details on this algorithm are provided, as only estimation
under uncertainties is relevant in applications.

4 Estimation under uncertainty

4.1 Estimation of b1 and b2

To represent noise or model uncertainty, we consider the modification of (4)

Y = Φ(b1, b2)θ + ϵ,

where ϵ is a zero-mean noise vector. The parameter space is then no longer
divided as in Fig. 1, since the region of mixed impulse weights then covers a
larger area and, in particular, includes (b∗1, b

∗
2). A non-negativity constraint

for the impulse weights is for this reason added to (5). In the absence of
noise, this would leave the region above γP unaffected, while rendering the
residual sum of squares

∥Y − Φ(b1, b2)θ̂(b1, b2)∥2 ≜ g(b1, b2) (7)

nonzero in the rest of the parameter space. In particular, for a fixed value
b2 = b̄2 such that (b̄1, b̄2) is on γP , g(b1, b̄2) is expected to be decreasing in
b1 when b1 < b̄1. In the noisy setting, the qualitative behavior tends to be
similar, but the residual sum is nonzero even for b1 > b̄1. We will utilize
this property to estimate γP using the following result.
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Lemma 2. Let f(x) = c1(x−x∗)2+ c2, where c1, c2 > 0. Define Nf (x) and
x̂ by

Nf (x) = − f(x)

df(x)/dx
,

x̂ =argmin
x

Nf (x) + min
x
Nf (x),

s.t. min
x
Nf (x) > 0.

Then x̂ = x∗.

Proof. Straightforward minimization.

The minimization problem stated in the lemma is applied to the residual
sum of squares g(b1, b̄2), i.e. the function is assumed to be approximately
quadratic, somewhat similarly to Newton’s method in optimization. The
point of this technique is that the objective function only is required to
be quadratic below γP , so the optimization can be performed even though
g(b1, b̄2) does not have a unique minimum close to γP .

Generalizing to incorporate both b1 and b2 in the formulation, and con-
straining the permitted number of impulses (mimicking the effect of the
constraint on minNf above), we arrive at the formulation

(b̂1, b̂2) = argmin
b1,b2

Ng(b1, b2) + min
b1,b2

Ng(b1, b2),

s.t. #{dk > dmin} ≤ Π,
(8)

where

Ng =
−g(b1, b2)

∂g(b1, b2)/∂b1
,

Π is the maximal permitted number of impulses, dmin is the threshold for
counting an impulse and # denotes cardinality. It should be noted that
the cost function, together with the impulse number constraint, constitute
a nonconvex optimization problem which admits multiple local minima.

It is however not obvious that a solution to (8) approximates (b∗1, b
∗
2),

and not some other point on γP . Indeed, the numerical experiments in the
next section demonstrate that the estimation works well with relatively low
levels of noise and a frequent sampling, but with a higher noise level, only an
estimate γ̂P of this boundary can be found. The corresponding optimization
formulation then becomes

b̄1 =argmin
b1

Ng(b1, b̄2) + min
b1

Ng(b1, b̄2),

s.t. #{dk > dmin} ≤ Π,
(9)

where (b̄1, b̄2) is the intersection between γ̂P and b2 = b̄2.
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4.2 Estimation algorithms

As the optimization problems (8), (9) are non-convex, we use gridding to
solve them, utilizing the finite difference over the grid points to approx-
imate the derivative in Ng. That means that, in the low-noise case, the
parameter combination in the grid which minimizes Ng is used in the calcu-
lation, while in the high-noise case, for each b2-grid point, the minimizing b1
is used. Finally, to determine the location and weights of the impulses, all
impulses below a user-defined threshold are removed and adjacent impulses
are merged. The resulting procedure is summarized in Algorithm 1.

Algorithm 1 Impulse and time constant estimation

1: Calculate (b̂1, b̂2) from (8) (low noise) or solve (9) for b̄1 = b̂1 for a given
b̄2 = b̂2 (high noise)

2: Calculate θ̂(b̂1, b̂2) from (5)
3: Let S = {k ∈ {1, . . . ,K} | d̂k < dmin}
4: Solve (5) with all dk with k ∈ S constrained to be zero
5: Merge adjacent non-zero impulses according to Algorithm 1 in [7]

Figure 3: Examples of sampled synthetic data with low (top) and high
(bottom) levels of additive measurement noise.
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5 Numerical experiments

The proposed estimation technique is evaluated on synthetic data consisting
of the response to three impulses with additive zero-mean Gaussian meas-
urement noise. Two Monte Carlo experiments with 100 realizations were
performed; one with low noise variance (experiment A) and one with a more
realistic (i.e. higher) noise level (experiment B). In the former case, a
comparison is made with the implementation in [7]. The parameters of the
experiments are specified in Table 1, while examples of data realizations are
shown in Fig. 3. The parameter values of the estimation algorithms are
given in Table 2.

Table 1: Monte Carlo experiment parameter distributions (left) and fixed
values (right). U[·,·] denotes uniform distribution, ∆τi and ∆ti are the time
separation between consecutive impulses and samples respectively, σ is the
noise standard deviation and τend is the time between the last impulse and
the end of the time horizon.

b∗1 U[0.4,1.4]

b∗2 − b∗1 U[0.3,1.3]

d∗i U[0.1,1]

∆τi U[1,5]

A B

σ 2× 10−4 0.0015
∆ti 0.25 0.5
τend 5 5

Table 2: Estimation algorithm parameters. ∆b is the distance between the
grid points and d̄ denotes the mean impulse weight.

b1 range [0.5b∗1, 0.5(b
∗
1 + b∗2))

b2 range [0.5(b∗1 + b∗2), 1.5b
∗
2]

∆b 0.02
dmin 0.05d̄
Π 0.5K

5.1 Estimation from low noise data

The low-noise version of Algorithm 1 was used on synthetic data with ad-
ditive measurement noise of low variance. The results are compared with
the ℓ1-constrained estimation algorithm in [7], implemented with the same
b1-b2-grid. To account for the regularization that is required in that method,
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gridding was also performed over possible values of the regularization para-
meter λmax, and the Akaike information criterion was used to determine its
value. As displayed in Table 3, the current implementation performs better.

Table 3: Root mean squared errors for parameters estimated using Al-
gorithm 1 (A1) and regularized LS [7] (A2).

A1 A2

b1 0.0105 0.0234
b2 0.0255 0.0582
di 0.0164
τi 0.0745

The estimated input was also evaluated. In 78% of the realizations, a
correct number of impulses were estimated whereas the remaining had an
average of 1.77 extra impulses caused by the noise. The impulses correspond-
ing to the true input sequences were identified, and the resulting estimation
errors are given in Table 3. Both the timing and weights of the impulses are
estimated with satisfactory accuracy.

5.2 Estimation from realistic data

Here the high-noise version of Algorithm 1 was employed on data with a
higher noise level, and less frequent sampling than the previous case, over
a grid of b2-values. In Fig. 4, the estimate γ̂P for one data set is displayed,
together with the true parameter values and γP . The resulting average
Euclidean distance between γ̂P and (b∗1, b

∗
2) over all realizations is 0.0122.

The curve evidently tends to be close to the true parameters, but a strategy
to obtain the best estimate along this curve has not been found.

6 Conclusions

A novel estimation technique for a class of continuous second-order systems
with impulsive input has been presented. It builds upon previous work
[7], but outperforms that method on synthetic data with low noise and
also has the advantage of not requiring any data-dependent user-defined
parameters. Under strong uncertainty, only an implicit relation between
the plant parameters can be determined. It is hypothesized that under
such circumstances, unique parameter values generally cannot be reliably
estimated. A more thorough analysis of this issue, and its implications on
estimations from clinical data, are possible future research directions.
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Figure 4: The γP -boundary, its estimate γ̂P generated using Algorithm 1
(with a higher grid resolution for improved visual appearance), and the true
parameter values for one synthetic data realization.

A Proof of Lemma 1

Let x̂i, i = 1, 2 denote the states of the estimated system. First, consider
the case of the two outputs being tangent for some τ > max{t1, t̂1}, i.e.
x2(τ) = x̂2(τ) and ẋ2(τ) = ˙̂x2(τ). The dynamics for x2 and x̂2 then gives

x̂1(τ) = x1(τ) + (b̂2 − b2)x2(τ), (10)

which is used to calculate second derivative:

¨̂x2(τ)− ẍ2(τ) = ˙̂x1(τ)− b̂2 ˙̂x2(τ)− ẋ1(τ) + b2ẋ2(τ)

= (b1 − b̂1 + b2 − b̂2)x1(τ) + (b2 − b̂1)(b̂2 − b2)x2(τ).
(11)

Two separate cases establish the sign of this expression:

� If b̂2 − b2 ≤ 0 then (b2 − b̂1)(b̂2 − b2) ≤ 0, so ¨̂x2(τ)− ẍ2(τ) is negative
since (b1 − b̂1 + b2 − b̂2) < 0;

� If b̂2 − b2 > 0, then (10) implies x̂1(τ) > x1(τ) and thus ˙̂x1(τ) =
−b̂1x̂1(τ) < −b1x1(τ) = ẋ1(τ). Applying this to the first row of (11)
gives ¨̂x2(τ)− ẍ2(τ) < 0.

It follows that x̂2(t) ≤ x2(t) in a neighborhood of τ .
Now assume that x2(ν) = x̂2(ν), for some ν ̸= τ and that there are no

intersections between x2(t) and x̂2(t) for t between τ and ν (otherwise use
that intersection to define ν). Using (10) and the dynamics of the first states

x1(t) = d1 e
−b1(t−t1), x̂1(t) = d̂1 e

−b̂1(t−t̂1),
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an expression for ˙̂x2(ν)− ẋ2(ν) can be calculated as

˙̂x2(ν)− ẋ2(ν) = (b2 − b̂2)x2(ν) + x̂1(ν)− x1(ν)

= (b̂2 − b2)
(
x2(τ) e

−b̂1(ν−τ)−x2(ν)
)
+ x1(τ)

(
e−b̂1(ν−τ)− e−b1(ν−τ)

)
=

d1
b1 − b2

(
(b̂2 − b2) e

−b2ν(e(ν−τ)(b2−b̂1)−1)

+ (b1 − b̂2) e
−b1ν(e(ν−τ)(b1−b̂1)−1)

)
.

Since ˙̂x2(ν)− ẋ2(ν) = 0 for ν = τ , the sign is established by the derivative

d

dτ
( ˙̂x2(ν)− ẋ2(ν))

=
d1

b1 − b2

(
(b̂2−b2)(b̂1−b2) e−b̂1(ν−τ)−b2τ +(b1−b̂2)(b̂1−b1) e−b̂1(ν−τ)−b1τ

)
.

Now use b̂2 − b2 > b1 − b̂1, b̂1 − b2 > b1 − b̂2 to get

d

dτ
( ˙̂x2(ν)− ẋ2(ν))

>
d1

b1 − b2

(
(b1 − b̂1)(b1 − b̂2) e

−b̂1(ν−τ)−b2τ +(b1 − b̂2)(b̂1 − b1) e
−b̂1(ν−τ)−b1τ

)
=

d1
b1 − b2

(b1 − b̂1)(b1 − b̂2) e
−b̂1(ν−τ)

(
e−τb2 − e−τb1

)
> 0.

This implies that ˙̂x2(ν) − ẋ2(ν) is positive when τ > ν, which in turn
implies that x̂2(t) > x2(t) for t > ν and close to ν. Since x2(t) and x̂2(t)
are continuous and there are no intersections between x2(t) and x̂2(t) for
ν < t < τ , this is contradictory with x̂2(t) ≤ x2(t) for t in a neighborhood
of τ . Since the case τ < ν leads to a contradiction in the same way, one
can conclude that if x2(τ) = x̂2(τ) and ẋ2(τ) = ˙̂x2(τ), a ν ̸= τ such that
x2(ν) = x̂2(ν) does not exist.

Now suppose that there are more than two intersections between x2(t)
and x̂2(t). Since x̂2(t) depends linearly on d̂1, it is then possible to reduce
this weight until two of the intersections are reduced to one tangent point,
while other intersections still exist (or possibly also are reduced to tangent
points). But in the tangent case, there can be no other intersections between
the curves, so there cannot be more than two intersections between x2(t)
and x̂2(t).

B Proof of Proposition 1

We only show the case b1 + b2 > b∗1 + b∗2 and b1 > b∗1, as a similar technique
can be used in the other case.
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Let x∗i , i = 1, 2 and xi, i = 1, 2 respectively denote the states of the true
and the estimated system. Consider the output of the estimated system, if
it were driven by the same impulses as the true system. Since x2(t) depends
monotonously on both b1 − b2 and b2, it then follows that x2(t) < x∗2(t) for
all t > t1. Since x2(t) depends linearly on the impulse weights, the weight
of the first impulse d1 can be increased so that x2(t2) = x∗2(t2). Utilizing
the asymptotic behavior of the systems and Lemma 1, it can be shown that
in this case x2(t) < x∗2(t) for t > t2. Now apply the same technique for
the whole optimization horizon, i.e. at every tk, increase the impulse weight
(generally from zero) so that x2(tk+1) = x∗2(tk+1). Since this results in a
solution that is optimal, and the solution is unique (see [7]), it follows that
all estimated impulses are positive.
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Robust one-step estimation
of impulsive time series

Abstract

The paper deals with the estimation of a signal model in the form of the
output of a continuous linear time-invariant system driven by a sequence of
instantaneous impulses, i.e. an impulsive time series. This modeling concept
arises in, e.g., endocrinology when episodic hormone secretion events and
elimination rates are simultaneously estimated from sampled hormone con-
centration measurements. The pulsatile secretion is modeled with a train
of Dirac impulses constituting the input to a linear plant, which repres-
ents stimulated hormone secretion and elimination. A previously developed
one-step estimation algorithm effectively resolves the trade-off between data
fit and impulsive input sparsity. The present work improves the algorithm
so that it requires less manual tuning and produces more accurate results
through the use of an information criterion. It is also extended to handle
outliers and unknown basal levels that are commonly recognized issues in
biomedical data. The algorithm performance is evaluated both theoretically
and experimentally on synthetic and clinical data.

1 Introduction

Estimating the parameters of a dynamical model from measured data is a
fundamental part of system identification. Typically, knowledge of both in-
put and output signals is assumed, but in some applications, the input can
neither be controlled, nor measured. In such cases, the identification is a
matter of time-series estimation. The present paper considers a particular
setup of this type, where the input signal consists of a sequence of im-
pulses, and the parameters and the input signal are estimated from sampled
measurements of the model output, which consequently are termed as an
impulsive time series.

97
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Impulsive time series estimation is particularly relevant in biological con-
texts, where systems driven by intrinsic impulsive feedback mechanisms that
are hard to measure or model sometimes occur. Typical examples include
gait models [14], muscle activation [9], and population models in ecology
[8]. We will focus on a problem in endocrinology, where the secretion events
and clearance rates of hormones are estimated from blood concentration
measurements. In the traditional approach for solving this problem, each
secretion event is represented by a function of a predefined shape, while a
linear hormone clearance model is used. As a result, the output of the sys-
tem is given by a convolution integral, and the model estimation constitutes
a deconvolution problem. Software utilizing deconvolution include AutoDe-
con [5] and WINSTODEC [17]; see also the overview in [3]. Other methods
that have been proposed include the Bayesian approach in [6] and the con-
strained least squares formulation in [11]. The present method builds upon
the latter work where Dirac impulses, rather than continuous functions, are
utilized to represent the pulsatile secretion.

Due to physiological, ethical, and experimental limitations, the sampling
rate of clinical endocrine data is often low compared to the half-life times of
the involved substances. Combined with uncertainties in both measurements
and models, this leads to a challenging estimation problem. There is in
particular a fundamental trade-off between impulsive input sparsity and fit
to data that needs to be addressed, regardless of which estimation technique
that is employed. For example, the deconvolution methods mentioned above
implement statistical tests (AutoDecon) and regularization (WINSTODEC)
to avoid overfitting.

The goal of the current work is to formulate and solve the combined
parameter and input estimation problem in a way that, on the one hand,
imposes minimal additional assumptions, heuristics or manual tuning, and
on the other hand, is feasible when faced with the challenges related to
clinical data, such as measurement outliers and unknown basal levels. A
hybrid model, i.e., a model where both continuous and discrete dynamics
are included, turns out to be beneficial for this goal. The model we use
is based on the closed-loop model of testosterone regulation introduced in
[12, 1], with the feedback mechanism disregarded in the current work. The
secretion events are represented by instantaneous impulses in this model.
Naturally, such impulses are mathematical constructs that do not occur
in real biological systems, but when the duration of the secretion bursts is
significantly shorter than the sampling time of the series, this approximation
is motivated. Here it leads to a tractable mathematical formulation and
enables the use of a one-step estimation method that was introduced in [16].

In statistics, one-step estimation methods refer to estimators where a
preliminary estimate is improved upon by performing a single step of New-
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ton’s method, rather than the more common situation where this is re-
cursively repeated until convergence. The motivation is that, under certain
conditions, the asymptotic properties of the estimator do not improve by
taking multiple steps (see, e.g., [20, Ch. 5.7]). Our method is also based on
performing a single Newton step, but the motivation is different. Here it is
employed to address the ill-posedness of the problem, by finding an initial
estimate of the elimination rates such that the estimated impulsive input
is guaranteed to be sparse, and then using the Newton step to refine this
estimate while preserving the input sparsity.

An earlier version of the method considered here was used in [15] to
estimate the elimination rates and secretion events in luteinizing hormone
(LH) data sets collected from healthy males. That work showed the prom-
ise of the method, but also revealed a number of limitations when it was
applied to clinical data. The main contribution of this paper is to address
the shortcomings of the algorithm, by adding the following features to the
estimation method:

� Point estimates for all parameters, obtained by extending the estima-
tion algorithm with a novel regularization method and an information
criterion;

� Basal level estimation through a direct generalization of the one-step
algorithm;

� Robustness against measurement outliers in the data through the in-
corporation of a robust least squares solver;

� Detection of outlying hormone profiles.

The rest of the paper is outlined as follows. In Section 2, the model
and estimation problem are introduced and the general estimation strategy
and its application to a first-order system are provided. In Section 3, the
implementations of the above listed features are presented. The resulting
estimation algorithm is applied to synthetic and clinical data in Section 4,
followed up by discussion and conclusions in Section 5.

2 Model and estimation problem

The impulsive time series is defined as the (possibly irregularly) sampled
output measurements y(tk), k = 1, . . . ,K of a system of the form

y(t) = y0 +G(p)ξ(t), (1)
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where G(p) is a linear time-invariant single-input single-output system with
p denoting the differential operator, y0 is a constant offset, and ξ(t) a se-
quence of time-shifted Dirac delta-impulses with positive weight, i.e.

ξ(t) =
∞∑
n=0

dnδ (t− τn) ,

where dn > 0, τn > 0. In endocrine applications, y(tk) is a hormone con-
centration measured in blood samples, y0 is the basal level of this hormone,
ξ(t) represents the pulsatile hormone secretion, and G(p) describes the linear
elimination and stimulated secretion of the involved hormones. The operator
G(p) will thus admit a minimal state-space realization in the form of a com-
partmental model, and ξ(t) will generally not be available for measurement.
The impulsive time-series estimation problem now consists of evaluating the
weights dn, the times τn, y0 and the parameters of G from y(tk).

2.1 Estimation strategy

The basis of the estimation strategy is a least squares formulation derived in
[11], which assumes a second-order G(p) with a particular parametrization,
which we describe in Section 3. In this formulation, the linear plant para-
meters and the basal level form a vector ω which belongs to a set Dω ⊆ Rm

and is estimated by a least squares method, while the impulse times are
assumed to coincide with the sampling times.

The impulse weights and initial states of the system can then be collected
in a vector θ, which is estimated by

θ̂(ω) = argmin
θ

||Y (ω)− Φ(ω)θ||2,

s.t. θ ≥ 0,
(2)

where Y (ω) is given by

Y (ω) =
[
y(t1)− y0 . . . y(tK)− y0

]⊺
,

and the regressor Φ(ω) is derived from the linear dynamics. We now con-
centrate out θ and consider the residual sum of squares

f(ω) = ∥Y (ω)− Φ(ω)θ̂(ω)∥2.

It would seem like the estimation problem now could be solved by minimizing
f with respect to ω. This is however not possible, as a perfect fit to any data
can be obtained with a dense input and sufficiently fast linear dynamics, or
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a sufficiently low basal level. In [16], the following strategy was introduced
to solve this problem. Consider the function

f †(ω) = ∥Y (ω)− Φ†(ω)θ̂†(ω)∥2,

where Φ†(ω) and θ̂†(ω) are restricted to only include elements corresponding
to the true impulse times. This implies that minimizing f †(ω) will give a
least squares solution ω̂, but, since the impulse times are unknown, so is f †.
However, if f †(ω) and f(ω) are approximately equal in a subset S of Dω,
the estimation can be performed through the following steps:

1. Find a suitable point ω̄ ∈ S;

2. Approximate f(ω) by its second-order Taylor expansion around ω̄,
denoted fq(ω);

3. Let ω̂ = argminω∈Dω
fq(ω);

4. Determine the impulse times by (2) with ω = ω̂.

Note that steps 2–3 correspond to a single step in Newton’s method in
optimization. In the case of a scalar ω, a candidate for ω̄ is obtained by

ω̄ = argmin
ω∈Dω

Nf (ω),

s.t. df(ω)/dx < 0,
(3)

where

Nf (ω) = − f(ω)

df(ω)/dω
,

and the constraint prevents infeasible solutions with perfect fit to the data,
which corresponds to f(ω) = df(ω)/dω = 0. The motivation for using the
point ω̄ is two-fold. It is firstly at a reasonable distance to ω̂, a property
that will be elaborated upon in Section 2.2.1. Secondly, it also simplifies
the minimization of fq, as it removes the need of second derivatives in the
calculation since

dNf (ω)

dω

∣∣∣∣
ω=ω̄

= 0

implies
df(ω)/dx

d2f(ω)/dx2

∣∣∣∣
ω=ω̄

=
f(ω)

df(ω)/dx

∣∣∣∣
ω=ω̄

= Nf (ω̄),

which leads to the estimate

ω̂ = ω̄ +Nf (ω̄). (4)

As a consequence, the step in Newton’s method in optimization coincides
with a step in Newton’s root finding algorithm, see Fig. 1. The main down-
side with this strategy is that (3) does not generalize in a natural way to a
vector-valued ω.
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Figure 1: Residual sum of squares f(ω) decreases monotonously (blue line).
Quadratic approximation at ω̄ gives a function fq(ω) (red line), whose min-
imum ω̂ is used as a parameter estimate. The tangent of f(ω) at ω̄ crosses
zero at ω̂.

2.1.1 Estimating the impulses

Steps 1–3 described above follow the strategy in [15]. However, for step 4,
a refinement is proposed in the present work. In the presence of noise, the
solution to (2) with ω = ω̂ is generally not sparse, so one has to decide which
elements of θ̂ correspond to nonzero impulse weights. In [15], this was de-
cided through manually chosen parameters, while an ℓ1-regularization was
used in [11] for a similar purpose. But, recalling that the input is sparse
when ω = ω̄, the same sparsity can be enforced when ω = ω̂. However, even
when ω = ω̄, the determination of nonzero impulse amplitudes is not obvi-
ous, particularly since numerical solutions to (2) typically have no elements
exactly equal to zero. To avoid such ambiguities, we suggest to regularize
the solution at ω = ω̂ so that the residual sum approximately equals fq(ω̂).

2.2 The case of first-order dynamics

As a preliminary case, the estimation of an impulsive time series with first-
order continuous dynamics is considered in this section. This simplified
setup is adopted mainly to enable a tractable analytical analysis of the
estimation method, but versions of the methods presented here are also
applied in the second-order case. The model is written in state-space form
as

ẋ = −bx+ ξ(t), y = x, (5)

where the parameter b > 0 is estimated along with the input signal. As
a convention, we let ω be the estimated parameter and b denote the true
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parameter value. The initial state is not included in the estimation since
it can be represented by an impulse at time zero. The impulse times and
amplitudes are also not uniquely identifiable, since an impulse between two
sampling times can be simultaneously shifted in time and re-scaled while
leaving the output unaffected. The impulse times are therefore restricted to
occur at the sampling times, which leads the regressor and parameters of
(2) to become

Φ(ω) =


e−ω(t1−t1) 0 . . . 0

e−ω(t2−t1) e−ω(t2−t2) . . . 0
...

...
...

e−ω(tK−t1) e−ω(tK−t2) . . . e−ω(tK−tK)

 ,
and

θ =
[
d1 d2 . . . dK

]
.

2.2.1 The initial estimate

The initial estimate ω̄ should satisfy two criteria. First, it should result in a
sparse estimated input signal. As shown for a second-order system in [16],
this is achieved when the elimination rate is sufficiently slow. To explain
this further, let d̂n(ω) denote the elements of θ̂(ω) and consider the integrals

Z =

∫ ∞

0
y(t) dt =

1

b

∑
n

dn,

∫ ∞

0
ŷ(t) dt =

1

ω

∑
n

d̂n(ω),

where ŷ is the output corresponding to the estimated impulse weights d̂n(ω)
and the number of impulses is assumed to be finite. Under the natural
assumption that ∫ ∞

0
ŷ(t) dt ≈ Z,

the sum
∑

n d̂n(ω) is approximately proportional to ω. A low value of ω
then acts as an ℓ1-constraint, which gives rise to sparse solutions.

The second criterion is that ω̂ − ω̄ should be small, for the quadratic
approximation of f to be accurate. We thus want ω̄ to be as large as
possible, while keeping the input sparse. The consequences of determining
ω̄ by solving (3) are analyzed next; derivations of the results are given in
Appendix A. Consider the response of a single impulse with the weight d for
system (5), with the output measurements subject to i.i.d additive Gaussian
noise with variance σ2. Equation (3) then leads to the approximate relations

Nf (ω̄) = ω̂ − ω̄ ≈
√
c0
c2
, (6)
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where c0 = (K − 1)σ2 and

c2 =

K∑
k=1

(
∂α0

∂ω

∣∣∣
ω=b

− tkd

)2

e−2btk , α0 = d

K∑
k=1

e−(b+ω)tk

K∑
k=1

e−2ωtk

.

In the limit when the noise variance goes to zero, ω̂ approaches b and the
approximation becomes strict. If equidistant sampling with a period of T
now is assumed, the point

ω̃ = b−
√
c0
c2

ebT
√
π/2√

(K − 1)(1− e−2bT )
(7)

gives an approximation of an upper limit for ω̄ such that multiple impulse
estimates are unlikely to appear. If ω̂ is close to the true parameter value,
the condition ω̄ < ω̃ corresponds to

K ⪆
π e2bT

2(1− e−2bT )
+ 1.

In the experiments in Section 4.1.1, T = 0.5 and b is of the order of 1, which
gives K ⪆ 7.8. The calculation of ω̃ is based on several approximations
and it should therefore not be interpreted as an exact bound. However, (7)
still indicates that ω̄ is likely to give a sparse input signal if the sampling
frequency is high and K is large. Also note the square root of K − 1 in this
equation, which limits the sensitivity of ω̃ with respect to K. As a result,
ω̃ − ω̄ grows relatively slowly with K, i.e. ω̄ is not unnecessarily far from
this limit.

2.2.2 Sensitivity analysis

Sensitivity analysis of the estimation method is presented here. For detailed
derivations, see Appendix A.

For simplicity, the impulse response of (5) is again considered, with
sampled measurements subject to Gaussian i.i.d noise. The parameter c2
introduced above then relates to the Fisher information I(b) for the para-
meter b and, by the Cramér-Rao bound, the variance of its estimate as

I(b) = c2
σ−2

≤ Var(ω̂).

Combined with (6), that leads to the approximate relation

Var(ω̂) ⪆

(
Nf (ω̄)

)2
K − 1

, (8)
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which becomes a proper inequality when the noise level approaches zero, and
an equality whenK furthermore tends to infinity, under the assumption that
a single (correct) impulse is estimated (which the analysis in Section 2.2.1
indicates should happen when K → ∞). This indicates that a short Newton
step and a large K corresponds to a good estimate.

Since inequality (8) only provides a lower bound and does not take the
particular estimation method given by (3), (4) into account, the accuracy
of the one-step estimation method needs to be investigated. To this end,
the sensitivity of the estimate with respect to higher order terms of f is
determined. Consider the case

f(ω) = fc3(ω) = c0 + c2(ω − b)2 + c3(ω − b)3, (9)

i.e. a third-order term is introduced to represent deviations from the quad-
ratic assumption that the estimation strategy builds upon. The first-order
effect of this is an error that scales with c3 as

E =
3c0
2c22

c3 +O(c23). (10)

Since c0 scales with the noise and c2 scales with the impulse weight squared,
the factor 3c0/2c

2
2 is typically small. For example, with d = 0.5, T = 0.5,

σ = 0.01, K = 10, which roughly correspond to the parameter values in
the experiments in Section 4.1.1, c0 = 9× 10−4, c2 = 0.0906 and 3c0/2c

2
2 =

0.165. Deviations from the quadratic assumption and the use of the one-step
estimation strategy are therefore not expected to contribute significantly to
the overall uncertainty of the estimate, in particular if the noise level is low.
This is also in line with the numerical experiment in Section 4.1.1.

2.3 Implementation

2.3.1 Optimization formulation

The strict constraint on the derivative in (3) cannot be implemented numer-
ically. We therefore use the modified formulation

ω̄ = argmin
ω∈Dω

Nf (ω),

s.t. df(z)/dz ≤ 0,∀z ≤ ω,
(11)

which restricts the search space to the region where f(ω) is monotonously
decreasing. However, experiments with synthetic data have shown that this
region is not restrictive enough, in that it sometimes permits estimates with
unreasonably large values of ω̄, compared to the true parameter value. A
constraint on the total number of estimated impulses was used in [15] to
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prevent this, but that requires the specification of a somewhat arbitrary
threshold for counting in an impulse, which is undesirable. We instead
suggest to add a small positive constant ε to f , which acts as a regularization.
If it is set to be of the same order of magnitude as the noise variance,
which in the endocrine case can be approximated through the measurement
uncertainty, it has a negligible effect on Nf (ω) in the range of values of ω
that is relevant for the estimation.

2.3.2 Optimization solution

For reasons discussed in Appendix A, the function Nf can display multiple
local minima. For simplicity, we therefore suggest gridding to solve (11)
and to approximate the derivative of f using finite differences over the same
grid.

3 Robust endocrine estimation

We now turn to the model which was studied in [11, 16, 15] and also is the
main focus of this paper. It has the form

ẋ =

[
−b1 0
g1 −b2

]
x+

[
1
0

]
ξ(t), y = y0 +

[
0 1

]
x, (12)

i.e. G(p) in (1) is specialized here to a second-order system. It could rep-
resent a number of hormone axes, but has mainly been applied to hormones
from the male reproductive axis, which also is the application we consider
here. The states of the system then correspond to the concentrations of gon-
adotropin releasing hormone (GnRH) and luteinizing hormone (LH) and b1
and b2 represent their respective elimination rates. The coefficent g1 de-
scribes the secretion rate at which LH is stimulated by GnRH, but, since it
is not uniquely identifiable, g1 = 1 is assumed without loss of generality.

Two version of the vector ω are considered:

ω =ω1 =
[
b1 b2

]
,

ω =ω2 =
[
b1 b2 y0

]
,

respectively corresponding to a known (i.e. zero) and unknown constant
basal level. The set Dω is assumed to be a hypercube in the corresponding
coordinate space, i.e. the parameters are restricted to intervals Ib1 , Ib2 , Iy0 .
The expressions for θ and Φ(ω), see (2), are given by

Φ(ω) =
[
φ(b1, b2, t1) . . . φ(b1, b2, tK)

]⊺
,
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where

φ(b1, b2, ti) =
[
eb2(ti−t1) z(b1, b2, ti − t1) . . . z(b1, b2, ti − tK−1)

]⊺
,

θ =
[
x2(t1) d1 . . . dK−1

]⊺
,

z(b1, b2, t) =
e−b2t− e−b1t

b1 − b2
H(t),

and H is the Heaviside step function.
A difference compared to the first-order case is that impulses that occur

between sampling times can be uniquely represented by impulses at the
sampling times [11]. Furthermore, with ω as a vector, it is no longer possible
to use (3) directly to find an initial estimate. In [16], two approaches were
presented to resolve this, when the basal level is fixed. In the case of very
low measurement noise, (3) was used anyway, but with Nf (ω) defined with
a partial derivative with respect to the slower elimination rate, and the
minimization being performed over both parameters. With a higher noise
level, gridding over one parameter and optimizing over the other produced
a set of possible solutions, in the form of a curve γ in the set Dω of the
parameter space. In [15], this curve was shown to coincide with the posterior
distribution from a Markov-chain Monte-Carlo estimator, i.e. it represents
a direction of high variance in Dω. However, for practical applicability of
the method, point estimates are also required when the noise level is higher.

3.1 Point estimates

A method for identifying point estimates along the curve γ is presented in
this section. For simplicity, the basal level is assumed to be known, while
the case of unknown constant basal level is covered in the next section.
The curve γ is defined by all points (b1, b̂2(b1)) ∈ Ib1 × Ib2 , where b̂2(b1) is
determined by

b̄2(b1) = argmin
b2∈Ib2

Nf (b1, b2),

s.t. ∂f(b1, z)/∂z ≤ 0, ∀z ≤ b2,
(13)

b̂2(b1) = b̄2(b1) +Nf (b1, b̄2(b1)),

where

Nf (b1, b2) = − f(b1, b2)

∂f(b1, b2)/∂b2
.

Motivated by the analysis of the first-order dynamics in Section 2.2, it
is expected that estimates along γ display a beneficial trade-off between
input sparsity and fit to the data. To explain the method used to compare
these estimates, more details on the impulse estimation procedure outlined
in Section 2.1 are needed.
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3.1.1 Impulse estimation

The impulses are estimated through regularization, where some estimated
weights in θ̂ are set to zero. However, since the corresponding impulses are
constrained to the sampling times, whereas in reality, impulses will almost
surely occur between these, the estimated weights are not used directly.
Instead, the regularization is performed based on the impulses obtained by
merging consecutive impulses, according to Algorithm 1 in [11].

Let mk denote the weight of the impulse obtained by merging impulse
k and k + 1. To determine which pairs that should be used to form each
merged impulse (impulse k could be combined with either impulse k − 1 or
k + 1), the following linear integer programming formulation, which finds
the combination which minimizes the total sum of the impulse weights, is
used:

P̂ = argmin
P

D⊺P,

s.t. p1,k + p2,k−1 + p2,k = 1 for k = 2, . . .K,

p1,1 + p2,1 = 1,

pi,k ∈ {0, 1} for k = 1, . . .K, i = 1, 2,

where

D⊺ =
[
d1 . . . dK m1 . . .mK−1

]
,

P ⊺ =
[
p1,1 . . . p1,K p2,1 . . . p2,K−1

]
,

and p2,k indicates that impulses k and k+1 are merged, while p1,k indicates
that impulse k is not merged. By its construction, the minimization will
tend to merge most impulses.

When the linear programming formulation is applied to the impulse es-
timates obtained from (2) with the parameters b1, b̂2(b1), the nonzero ele-
ments of P̂ define a set of impulses. We now define the function f̂n as the
residual sum of (2), when the n largest of these impulses are included, and
let ĉ0 denote the quadratic approximation of f evaluated at b̂2(b1), i.e.

ĉ0(b1) = fq(b1, b̂2(b1)) =
1

2

(
Nf (b1, b̄2(b1))

)2∂2f(b1, b2)
∂b2

∣∣∣∣
b2=b̄2(b1)

. (14)

The number of impulses to include is then given by

n0(b1) = argmin
n∈N

|f̂n(b1, b̂2(b1))− ĉ0(b1)|, (15)

i.e. for each b1, the estimated input is given by the n0(b1) largest impulses
defined by P̂ , which results in the residual sum of squares f̂n0(b1)(b1, b̂2(b1)).
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3.1.2 Comparing estimates

We now have parameters corresponding to the two criteria needed to eval-
uate the estimates along γ; n0(b1) characterizes the input sparseness and
f̂n0(b1)(b1, b̂2(b1)) the fit to data. Define the setN = {n ∈ N | ∃b1 s.t. n0(b1) =
n}. To obtain point estimates along γ, a first step is to determine the set of
Pareto-efficient estimates

b̂
(n)
1 = argmin

b1:n0(b1)=n
f̂n(b1, b̂2(b1)), b̂

(n)
2 = b̂2(b̂

(n)
1 ),

for n ∈ N . As a further refinement, an information criterion (see e.g. [18])
can be used to identify a single estimate. We use the Bayesian information
criterion (BIC) for this purpose. Observing that n impulses correspond to
2(n + 2) estimated parameters, and assuming Gaussian i.i.d. noise, the
number of impulse estimates given by this criterion is

nBIC = argmin
n∈N ;n≤nmax

{
K log

(
f̂n
(
b̂
(n)
1 , b̂2(b̂

(n)
1 )
))

+ 2(n+ 2) logK
}
,

where nmax ∈ N is an upper bound of the number of parameters. Finally,
the corresponding estimated parameters are defined by

b̂BIC
1 = b̂

(nBIC)
1 , b̂BIC

2 = b̂
(nBIC)
2 .

Note that the BIC requires the sample size to be much larger than the num-
ber of parameters, which generally does not hold in the present application.
However, the results with the method have proven satisfactory in numerical
experiments, as demonstrated in Section 4.

3.2 Basal level

The estimation of the basal level y0 suffers from the same problem as the
estimation of the elimination rates, in the sense that the fit will always in-
crease when the basal level is lowered and, as a result, more nonzero impulses
are estimated. To resolve this, we again propose a one-step estimation al-
gorithm. So, if b1 is assumed to be known, minimizing Nf and taking the
Newton step for a range of different basal levels produces a curve γ in the
b2-y0 plane, from which a point estimate can be obtained according to the
strategy presented above. The problem is that b1 is not known. Further-
more, the experiments with the Markov-chain Monte-Carlo estimates in [15]
show that multiple parameter values can give a similar fit to data even when
the basal level is fixed, so adding one more parameter may just add another
dimension to the space of plausible solutions.
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However, if one elimination rate is significantly faster than the other, i.e.
b1 ≫ b2, the situation becomes more promising. In such cases, b1 will have
a smaller effect on the output (other than a pure re-scaling) and therefore
be hard to estimate. On the other hand, this also implies that estimates of
b2 and y0 should be insensitive to the value b1. In this situation, performing
the estimation for a number of fixed values of b1 as outlined above will
therefore give similar estimates of the basal level. To choose between these,
an information criterion can again be employed. This choice would also
correspond to an estimate of b1, however the uncertainty here is expected
to be significant.

Fortunately, in many hormone axes, the elimination rate of the releas-
ing hormone is significantly faster than the elimination rate of the other
hormones of the axis, so the proposed method has practical relevance. For
example, the elimination rate of GnRH is an order of magnitude faster than
the elimination rate of LH (see [7]).

3.3 Robustness against outlying measurements

Measurement errors are often large in clinical endocrine data and the pres-
ence of outlying measurements is particularly problematic. This situation
can be described statistically as a fraction of the measurement errors being
drawn from a corrupting distribution, as opposed to Gaussian i.i.d. errors.
It is well known that the performance of least squares estimates such as (2)
can be severely degraded under such circumstances.

In biomedical applications, robust estimation techniques are the recom-
mended way to counteract this sensitivity, as opposed to simpler strategies
based on, e.g., residual analysis [4]. AutoDecon does use the latter method
for robustness, but the scheme is more involved as it includes repeated estim-
ation steps [5]. The linear least squares formulation in our estimator enables
the simple strategy of replacing (2) with a robust least squares solution, if
outliers in the data set are suspected. We use the robust risk minimiza-
tion algorithm presented in [13] for this purpose. The algorithm produces
a robust solution by reducing the effective sample size, which results in a
down-weighting of the outliers and only requires the user to specify an up-
per bound ϵ on the fraction of corrupted data points. The method thus also
offers an automatic and non-subjective method for detecting measurement
errors in hormone data, as opposed to more ad hoc methods such as, e.g.,
the methods compared in [19].

The introduction of the robust least squares solution requires two small
modifications of the one-step algorithm. First, to have consistent finite-
difference approximations of derivatives, the weighting of the data points in
the robust least squares solutions must be consistent. The function values
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f(b1, b2−h) and f(b1, b2+h), which are used for (13) and (14), are therefore
calculated with the weights of the robust least squares solution for f(b1, b2).
Second, for (15) to be consistent, the weights from f(b1, b̄2(b1)) are used in
the calculation of f̂n(b1, b̂2(b1)).

3.4 Outlying hormone profiles

Hormone profiles that are inconsistent with the chosen model structure are
sometimes encountered. In the case of LH measurements, there are several
congenital or acquired conditions that can affect the functioning of the male
reproductive axis (see, e.g., [2]), and thus disrupt the expected pulsatile be-
haviour. As previously mentioned, due to the ill-posedness of the estimation
problem, it is in principle possible to find a good fit to the data even in such
a case. But, that is typically not a relevant solution, since many other such
solutions also exist and there is no way to choose one over another. Our
estimation method instead indicates such cases by b̄2 in (13) coinciding with
the lower boundary of Ib2 , so that the estimated elimination rate becomes
very slow. An intuitive explanation of this behavior is that the variations in
the measurements are interpreted by the algorithm as high-variance noise,
rather than the responses to distinct impulses, and the slow elimination
rate corresponds to the moving average of the signal being approximately
constant.

3.5 Optimization solution

The estimation of γ according to (13) is again based on gridding. The
derivative is calculated using finite differences over the grid points in the non-
robust case, while the robust implementation requires additional function
evaluations for the derivative. To decrease the computation time, gridding
over the full range of b1 is only performed for a sparse subset of the b2-values,
with local optimization performed in between. For further details, we refer
to the code provided online.

4 Experiments

The performance of the one-step estimation method is demonstrated on
synthetic and clinical data. For the former, Matlab code is available at
https://github.com/HRunvik/Robust-One-Step-Estimation-of-Imp

ulsive-Time-Series (clinical data experiments cannot be shared as the
authors do not own the data).

https://github.com/HRunvik/Robust-One-Step-Estimation-of-Impulsive-Time-Series
https://github.com/HRunvik/Robust-One-Step-Estimation-of-Impulsive-Time-Series
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Figure 2: Histograms over b − ω̄ (initial estimation errors) and b − ω̂ (one-
step estimation error) from 400 Monte Carlo runs with synthetic data with
first-order dynamics.

4.1 Synthetic data experiments

Synthetic data experiments with first-order linear dynamics, defined by (5),
and second-order dynamics, defined by (12), are performed. The data gener-
ation is similar for both cases and is described in Appendix B. The estimation
is performed according to the descriptions above, with the parameter ε set
equal to the noise variance in the experiments with second-order dynamics,
while a value of four times the noise variance is used in the first-order case.

4.1.1 First-order dynamics

Estimation according to (4) and (11) is performed in 400 Monte-Carlo runs.
The resulting distributions of ω̄ and ω̂ are displayed in Fig. 2; the improve-
ment of the Newton step upon the preliminary estimate is clearly visible. In
Fig. 3, the estimation errors of the one-step estimation method are plotted
against the estimation error obtained when minimizing f †(ω) directly, i.e.,
when the impulse times are assumed to be known. The correlation coeffi-
cient is 0.68, which indicates a strong correlation between the errors, and
the increase in root-mean-square error when the impulse times are unknown
is relatively small: 0.0278 versus 0.0247. This shows that the variance of
the one-step estimate mainly comes from the the uncertainty of estimating
the elimination rate with a known impulse time, and that (11) is useful in
determining the initial estimate.
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Figure 3: Time constant estimation errors for synthetic data with first-
order dynamics. Errors when estimating with known impulse times are
plotted against errors when time constant and elimination rate are estimated
simultaneously with the one-step method.

4.1.2 Second-order dynamics: point estimates

Estimation of a second-order system with a fixed basal level is considered in

this section. The estimates (b̂
(n)
1 , b̂

(n)
2 ) and (b̂BIC

1 , b̂BIC
2 ), calculated according

to Section 3.1 are compared against estimates (b̂∗1, b̂
∗
2) obtained by minimiz-

ing Nf over both b1 and b2, as suggested in [16]. The evaluation is performed
through a sequence of Monte-Carlo runs where the synthetic data are sub-
ject to noise with increasing variance. A typical data set is illustrated by
the data subject to Gaussian i.i.d. noise in Fig. 6.

Table 1: Estimation errors expressed as the mean Euclidean distance
between the estimates and the true parameter values, and mean number
of estimated impulses, for synthetic data subject to noise with standard de-

viation σ. Columns (b
(n)
1 , b

(n)
2 ) and γ correspond to the estimates closest to

the true parameters in the sets {(b(n)1 , b
(n)
2 ) | n ∈ N} and n0 is the average

number of estimated impulses.

σ (b̂BIC
1 , b̂BIC

2 ) (b̂
(n)
1 , b̂

(n)
2 ) (b̂∗1, b̂

∗
2) γ n0

0.002 0.090 0.030 0.060 0.0039 4.01
0.004 0.130 0.062 0.129 0.0081 3.84
0.006 0.162 0.083 0.190 0.0121 3.76
0.008 0.185 0.108 0.269 0.0159 3.71
0.010 0.218 0.132 0.349 0.0202 3.61
0.012 0.245 0.157 0.423 0.0250 3.55
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The estimation errors are summarized in Table 1. Regardless of the

noise variance, the best of the Pareto-efficient estimates (b̂
(n)
1 , b̂

(n)
2 ) tends to

be closer to the true parameter values than (b̂∗1, b̂
∗
2). As the noise variance

is increased, (b̂BIC
1 , b̂BIC

2 ) also starts to outperform (b̂∗1, b̂
∗
2). Note also that

γ is much closer to the true parameters than any point estimate, i.e. the
estimation errors are mostly caused by choosing a wrong point along γ.

Generally, the number of estimated impulses exceeds the true number
of impulses, but curiously, the estimate improves when the noise level in-
creases. The use of the BIC with many parameters compared to the amount
of data is a potential cause. However, it should be noted that our method
makes no assumptions about the weight of the impulses as the regulariza-
tion is done implicitly. For synthetic data sets, incorporating information
regarding the impulse weights in the estimation could potentially improve
the performance, but for clinical data, making similar assumptions about
the magnitude of secretion events may be unwarranted.

4.1.3 Second-order dynamics: basal level

Synthetic data where one elimination rate (b2) is significantly slower than
the other is used to evaluate the estimation of the basal level y0, and the
parameters b1, b2, according to the description in Section 3.2. Histograms
of the basal level estimation error and the minimal value (compared to the
basal level) of the sampled data from 200 Monte-Carlo runs are displayed
in Fig. 4. It can be seen that estimating the basal level outperforms the
simplistic approach of choosing the minimal value as the basal level, and
they display biases in opposite directions. The bias of the latter method
is expected since the impulse response of the system only approaches the
basal level as time tends to infinity, while the bias of former is discussed
further below. In Table 2, the performance of the estimation of basal level
and elimination rates are given. As expected, the estimation performance
for the slower elimination rate is significantly better than for the faster.

Table 2: Elimination rate and basal level estimation performance from syn-
thetic data experiment.

Estimate Bias Variance

b1 0.327 1.62
b2 0.00462 0.00456

y0, one-step est. −0.00949 6.73× 10−4

y0, min yk 0.0739 0.00425

Fig. 4 indicates that a few data sets give rise to a significant negative
basal level estimation error. The synthetic and estimated parameters of the
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Figure 4: Histograms over one-step estimation error of basal level, and min-
imum value of output from 200 Markov runs with synthetic data.

most extreme case are summarized in Table 3 and the corresponding output
is illustrated in Figure 5. There are clear discrepancies for all parameters,
however the residual sum is lower with the estimated parameters, so the
estimator apparently finds alternative solutions where additional impulses
yield a better fit than for the noisy original data. Similar results can be
seen for other data sets where the estimation errors are large. Imposing
stricter restrictions on the number of impulse estimates would prevent these
problems, but we chose to retain them in order to keep the estimation as-
sumptions at a minimum, and to illustrate the challenging nature of this
estimation problem.

Table 3: True and estimated parameter values from synthetic data with
large basal level estimation error.

b1 b2 y0 n0 Residual error

Data 4.76 0.460 0 3 1.88× 10−3

Estimate 7.14 0.371 −0.148 5 6.43× 10−4

4.1.4 Second-order dynamics: robustness against outliers

To evaluate the impact of outlying measurements on the estimation, syn-
thetic data subject to two different types of noise are used. In the base case,
Gaussian i.i.d. noise is applied to all data points. In an alternative setup,
the aforementioned noise is applied to all but two data points, which instead
are subject to uniformly distributed noise with significantly higher variance.
In Fig. 6 one data set subject to the two noise types is illustrated.
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Figure 5: Top: Synthetic data and simulated output from estimated model
with large basal level estimation error. Bottom: Corresponding synthetic
and estimated impulses.

The estimation method is evaluated in 50 Monte-Carlo runs, where the
standard one-step estimation is performed for both the i.i.d. and mixed noise
cases, while robust estimation is only performed for the mixed noise case.
The threshold of ϵ = 0.1 is used, which corresponds to reducing the effective
sample size by approximately two (depending on the size of the individual
data sets). Estimated γ-curves for these cases, based on the data in Fig. 6,
are displayed in Fig. 7. The distance between the curves and the true para-
meter values indicate that the outliers clearly deteriorate the performance
of the non-robust estimation, however, when the robust algorithm is used,
the performance is recovered almost fully. The discontinuities that can be
observed for all three curves are caused by different local minima corres-
ponding to to the global minimum. Local minima are typically associated
with different sets of nonzero impulse estimates, which is briefly discussed
in Appendix A.

In Table 4, an evaluation of both the estimated curves and point estim-
ates are provided for the Monte-Carlo runs. The small difference between
the results for the base case and the robust estimation, and the large devi-
ation when the standard method is used on mixed noise, show the usefulness
of the robust method. Also note that, in the latter case, the minimizer of
Nf at times coincides with the minimal value of Ib1 , so if a larger parameter
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Figure 6: Example of a synthetic data set, subject to Gaussian i.i.d noise,
and a mixture of Gaussian noise and uniformly distributed noise with higher
variance.

range was used in the estimation, the performance could deteriorate even
further.

Table 4: Mean Euclidean distance between estimated γ-curve and point
estimates (b̂BIC

1 , b̂BIC
2 ) from synthetic data experiments. Point estimates for

the mixed noise case with standard estimator are not included as the large
error in γ renders the estimates useless.

Setup (b̂BIC
1 , b̂BIC

2 ) γ

Gaussian i.i.d. noise, standard estimation 0.173 0.0134
Mixed noise, standard estimation - 0.0739

Mixed noise, robust estimation, mixed noise 0.191 0.0160

4.2 LH data experiments

The one-step estimation method is now used on clinical data. We use a
data set with LH blood concentrations collected from healthy males, which
was collected in experiments described in [10]. A more rigorous analysis of
this data, including the effect of a selective gonadotropin releasing hormone
receptor antagonist, is included in [15]. The focus here is instead on the
features of the algorithm introduced in this work, which are exemplified on
individual data sets. For these experiments, we note that the elimination
rates for LH and GnRH are expected to satisfy

0.23 min−1 ≤ b1 < 0.69 min−1, 0.0087 min−1 < b2 ≤ 0.014 min−1, (16)

according to [7].
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Figure 7: Non-robustly and robustly estimated γ-curve from the synthetic
data sets in Fig. 6.

4.2.1 Robust basal level estimation

Estimation of the basal level, the elimination rates, and the secretion events
is performed on hormone data of a 32-year old healthy male. The data set
consists of 108 measurements of LH sampled every ten minutes. Since large
measurement errors are suspected for several data points, robust estimation
is needed. The methods described in Section 3.2 and Section 3.3 are therefore
combined, with the range of b1 values given by (16), and the parameter ϵ
set to 5/108, i.e. an effective sample size of 103 is assumed. The estimated
values of b2 and y0, and the BIC, are plotted against b1 in Fig. 8. As
expected, the sensitivity of the estimates to b1 is relatively low, but curiously
the lowest BIC score appear at both edges of the parameter range. Also note
that the estimated values of b2 are biologically viable and satisfy (16). The
simulated response of the estimated model corresponding to the lowest BIC
score is illustrated in Fig. 9. There, the weights of the data points obtained
from the robust estimator are also displayed and the most down-weighted
points are highlighted.

4.2.2 Outlying hormone profile

The hormone profile of a 68-year old healthy male that appears inconsistent
with the assumed model is now analyzed. For simplicity, the basal level is as-
sumed to coincide with the lowest measured LH concentration and b1 = 0.5 is
fixed; very similar results are obtained with other parameter values. Stand-
ard and robust estimations of b2, with different values of ϵ, are performed.
The corresponding functions Nf are displayed in Fig. 10. Three observations
can be made from this plot. First, the effect of the robust estimation is to
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Figure 8: Estimated basal level (top), LH elimination rate (middle) and BIC
(bottom) depending on GnRH elimination rate for LH data shown in Fig. 9.

Figure 9: Top: LH measurements from a 32-year old male, and simulated
output from estimated system. Bottom: weighting of data points from
robust least squares solver. Points weighted below 0.5 are highlighted in red
in both plots.
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Figure 10: Nf -curves for standard (ϵ = 0) and robust estimation (ϵ > 0) for
LH data shown in Fig. 11.

decrease Nf for larger values of b2. This behavior is generally seen for data
sets with outliers, and is the same mechanism by which robust estimation
moves the γ-curve closer to the true parameters in the presence of outliers
in Fig. 7. Second, depending on which interval Ib2 and value of ϵ that are
chosen, local minima of Nf could be identified as solutions to (13). The
simulated output for such an estimate of the system with Ib2 = [0.003, 0.01]
and ϵ = 0.01 is shown together with the weights of the robust estimator in
Fig. 11. Third, the global minimizer of Nf is in fact b2 = 0 for all ϵ, which
indicates that the data are inconsistent with the assumed model according
to the discussion in Section 3.4. The reliability of estimates such as the
one illustrated in Fig. 11 is therefore questionable, something that is also
indicated by the large number of outliers. It is known that GnRH pulses
appear at higher frequency in older males, so increasing the sampling rate of
the measurements is probably a better strategy to recognize the impulsive
events for this individual.

5 Discussion and conclusions

There are many possible approaches to analyzing hormone concentration
time-series data. The aim of the present work has been to develop a method
involving minimal assumptions or manual tuning, which also is well-motivated
mathematically. However, achieving these goals simultaneously is challen-
ging, particularly when the algorithm is adapted for clinical data. We have
here only attempted a theoretical analysis of the first-order case, but as the
model and data depart from this situation, the algorithm becomes more
involved and less tractable.
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Figure 11: Top: LH measurements from a 68-year old healthy male, and
simulated output from estimated model. Bottom: weighting of data points
from robust least squares solver. Points weighted below 0.5 are highlighted
in red in both plots.

An advantage of the presented method is that estimates with different
resolutions can be obtained. Keeping the uncertainties in model and meas-
urements and the inherent ill-posedness of the estimation problem in mind,
the reliability of any point estimate from clinical data is probably low. All
estimates produced along a section of the curve γ might therefore be a bet-
ter representation of the range of possible parameters and secretion events
of a given data set. Such lower resolution estimates have the additional
advantage of a more transparent mathematical derivation.

Possible future research directions include the application of the one-step
estimation method under other modeling assumption. Generalization of the
method has already been presented in this work, in the form of applying
it to estimate the basal level and incorporating a robust estimator. This
indicates that other generalizations may also be possible.

A Sensitivity of estimation of a first-order system

We wish to analyze the estimation performance from the response of system
(5) to a series of impulses. But, as the response of each impulse can be
viewed as a separate least squares problem, the analysis is restricted to
consider a single impulse with amplitude d at t = 0. By summing over all
impulses, corresponding formulas for the general case are obtained.
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A.1 Residual sum for impulse response

Consider first the noise-free impulse response. If the impulse time is known,
the residual sum of squares is given by

f †0(ω) =

K∑
k=1

(α0(ω) e
−ωtk −d e−btk)2,

where the impulse weight α0(ω) which minimizes the squared error is given
by

α0(ω) = d

K∑
k=1

e−(ω+b)tk

K∑
k=1

e−2ωtk

.

If the measurements are corrupted by additive zero-mean i.i.d. noise with
(finite) variance σ2, i.e. y(tk) = x(tk) + ϵk, the corresponding residual sum
becomes

f †(ω) = f †0(ω) +
K∑
k=1

(2ηα0(ω) + η2) e−2btk

+

K∑
k=1

(2d ebtk ϵk + ϵ2k − 2(α0(ω) e
−ωtk ϵk + η e−ωtk(d e−ω∗tk +ϵk))),

where

α(ω) = α0(ω) + η(ω), η(ω) =

K∑
k=1

e−btk ϵk

K∑
k=1

e−2btk

.

The expected value of f †(ω) is given by

Ef †(ω) = f †0(ω) + c0,

where c0 = (K − 1)σ2. In the following, we suppress the argument of α0, α,
η and their derivatives.

The estimation is based on approximating f †(ω) as a quadratic function.
In the noise-free case, the derivatives are

∂f †0
∂ω

= 2

K∑
k=1

(α0 e
−ωtk −d e−btk)

(
∂α0

∂ω
− tkα0

)
e−btk ,
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∂2f †0
∂ω2

= 2
K∑
k=1

((
∂α0

∂ω
− tkα0

)2

e−2btk

+ (α0 e
−ωtk −d e−btk)

(
∂2α0

∂ω2
− 2tk

∂α0

∂ω
+ t2kα0

))
e−btk .

When evaluated at the minimum ω = b, α0 = d, which leads to

∂f †0
∂ω

∣∣∣∣
ω=b

= 0,
∂2f †0
∂ω2

∣∣∣∣
ω=b

= 2c2,

where

c2 =
K∑
k=1

(
∂α0

∂ω

∣∣∣
ω=b

− tkd

)2

e−2btk ,

so
f †0(ω) = c2(ω − b)2 +O((ω − b)3).

By dominated convergence and boundedness of moments of the noise, ex-
pectations and derivatives can be interchanged, so

Ef †(ω) = c0 + c2(ω − b)2 +O((ω − b)3).

In this construction, c2σ
−2 can be identified as the Fisher information for

the parameter b.

A.2 Multiple impulse estimates

The formula in (7), which approximates the transition between one and
multiple impulses being estimated from a noisy impulse response, is derived
here. Due to the challenging combinatorial nature of the problem, a number
of approximations are made.

As an auxiliary step, note that the sum that defines c2 also can be
interpreted using a discrete random variable X, given by

P (X = tk) =
e−2btk∑K
k=1 e

−2btk
, k = 1, . . .K.

The mean and variance of X then satisfy

d EX =
∂α0

∂ω

∣∣∣
ω=b

,

d2 VarX

=
K∑
k=1

(
∂α0

∂ω

∣∣∣
ω=b

− tkd

)2

e−2btk

( K∑
k=1

e−2btk

)−1

= c2

( K∑
k=1

e−2btk

)−1

.
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Now consider the transition between one (located at time t1) and two
(at t1 and tm+1) nonzero impulse estimates. The setup with two nonzero
impulses can be viewed as two separate least squares estimation problems
so the total residual sum of squares is the sum of the residuals from the
two. That implies that c0 decreases from (K − 1)σ2 to (K − 2)σ2 when
transitioning from one to two impulses. Now consider the interpretation of
c2 as

c2 = d2
K∑
k=1

e−2btk VarX,

in the single impulse case. With two impulses, the corresponding parameter
c2,2 is given by

c2,2 = d2
m∑
k=1

e−2btk VarX1 + d2
K∑

k=m+1

e−2btk VarX2,

where X1 and X2 are defined analogously to X above. It is not hard to see
that c2,2 ≤ c2, however the degree reduction depends on m. The extreme
case m = 2 leads to VarX1 = 0 and VarX2 ≈ VarX, under the assumption
that X is well-approximated by a geometric distribution. That leads to

c2,2
c2

≈

K∑
k=2

e−2btk

K∑
k=1

e−2btk

≤ K − 1

K
.

On the other hand, if m = K, the effect on either the sums or the variances
is negligible, so in particular we have

c2,2
c2

≥ K − 2

K − 1
.

We can now conclude that minωNf (ω), which is approximated by
√
c0/c2,

may either increase or decrease when two impulses are estimated rather than
one and that the effect will depend on the location of the second impulse.
More general transitions of this kind are changes between different sets of
nonzero impulse estimates, which can result in different local minima for
Nf .

To estimate ω̃, we consider only the case m = 1 and estimate the prob-
ability of d2 being nonzero. Assume t1 = 0, ω ≤ b and that the estimated
state of the system satisfies

x̂(tk) = α0 e
−btk (17)
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for k ≥ 2, i.e. α(b) is approximated by its expected value α0(b), when only
the indices k = 2, 3, . . .K are considered. This results in two cases depending
on the first noise term ϵ1:

� If ϵ1 ≥ α0(ω)− d, d2 is estimated to be zero to minimize the residual
error at t1;

� If ϵ1 < α0(ω) − d, d1 can be chosen to give zero error at t1, while a
positive d2 can be chosen to keep (17) satisfied.

We are therefore interested in the probability

P (ϵk) ≥ α0(ω)− d,

i.e. the probability of one impulse being used rather than two, and for which
b this probability is significantly larger than zero. Assuming Gaussian noise,
the probability distribution is linearized around ϵk = 0, i.e. ω = b, and the
value ω̄ where zero is crossed is derived. That gives

b− ω̄ =
σ

∂α0/∂ω

√
π/2

Now assume equidistant sampling, so tk+1−tk = T , and approximate X as a
geometric distribution, scaled to take values kT, k = 0, 1, . . . . The expected
value and variance of X then satisfy the relation

VarX ≈ (EX)2 e2bT ,

which implies
∂α0

∂ω
≈ e−bT

√
c2(1− e−2bT ),

which in turn leads to (7).

A.3 Deviations from quadratic approximation

We consider the residual sum fc3 on the form (9) and investigate the sens-
itivity with respect to c3 of the estimation method. The analysis is done
through linearization and includes the terms ω̄ and Nfc3

(ω̄). The first is
characterized by the derivative being zero, which implies(

∂f

∂ω

∣∣∣
ω=ω̄

)2

=
(
f(ω)

∂2f

∂ω2

)∣∣∣
ω=ω̄

,

which yields

2c0c2 + 6c0c3z − 2c22z
2 − 4c2c3z

3 − 3c23z
4 = 0,
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where z = ω̄ − b. Differentiating with respect to c3 and solving for the
derivative results in the sensitivity

∂z

∂c3

∣∣∣
c3=0

=
c0
2c22

.

The sensitivity of the second term is calculated similarly and yields

dNfc3
(ω̄)

dc3

∣∣∣
c3=0

=
c0
c22
,

which leads to error term (10).

B Synthetic data generation

Let U[a,b] denote the uniform distribution in the interval [a, b]. In all ex-
periments, the data set is generated as the uniformly sampled (period 0.5)
response to 4 impulses. The time separation between the impulses, and the
time from the last impulse to the end of the time horizon, have distribution
U[2,5]. To obtain nonzero initial conditions, the impulse train is shifted so
that time zero is situated at the midpoint between the first two impulses,
and only the last 3 impulses are included in the time series. The remaining
parameters have distributions according to Table 5.

Table 5: Distributions for impulse weights dk and elimination rates b, b1, b2
and standard deviations σ of Gaussian additive noise. σo is standard devi-
ation of uniform noise representing outlying data points. Experiments are
numbered according to the section they appear in.

Experiment dk b2 or b b1 − b2 σ σo
4.1.1 U[0.1,1] U[0.4,1.4] 0.01

4.1.2 U[0.4,4] U[0.4,1.4] U[0.3,1.3] See Table 1

4.1.3 U[2,7] U[0.4,1] U[4,5] 0.008

4.1.4 U[0.4,4] U[0.4,1.4] U[0.3,1.3] 0.006 0.289
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