
Efficient Longest Executable Path Search for Programs with Complex
Flows and Pipeline Effects ¦

Friedhelm Stappert∗

C-LAB

Fürstenallee 11, 33102 Paderborn

Germany

friedhelm.stappert@c-lab.de

Andreas Ermedahl†

DoCS, Uppsala University

Box 325, SE-751 05 Uppsala

Sweden

andreas.ermedahl@docs.uu.se

Jakob Engblom†‡

IAR Systems AB

Box 23051, SE-750 23 Uppsala

Sweden

jakob.engblom@iar.se

Abstract

Current development tools for embedded systems do
not efficiently support the timing aspect of embedded
real-time systems. The most important timing param-
eter for scheduling and system analysis is the Worst-
Case Execution Time (WCET) of a program.

This paper presents a fast and effective WCET cal-
culation method that takes account of low-level machine
aspects like pipelining and caches, and high-level pro-
gram flow like loops and infeasible paths. The method
is more efficient than previous path-based approaches,
and can easily handle complex programs. By separating
the pipeline analysis from the calculation, the method
is easy to retarget.

Experiments confirm that speed does not sacrifice
precision, and that programs with extreme numbers of
potential execution paths can be analyzed quickly.

Keywords: WCET, hard real-time, embedded sys-
tems, path search, program flow, pipeline timing

¦ Uppsala University, Department of Information Technol-
ogy Technical Report 2001-012, second release, August 2001
(http://www.it.uu.se/research/reports/). ISSN 1404-3203.
∗ Friedhelm is a PhD student at C-LAB (www.c-lab.de), which

is a cooperation of Paderborn University and Siemens.
† This work is performed within the Advanced Software Tech-

nology (ASTEC, http://www.docs.uu.se/astec) competence
center, supported by the Swedish National Board for Industrial
and Technical Development (NUTEK, http://www.nutek.se).
‡ Jakob is an industrial PhD student at IAR Systems

(http://www.iar.com) and Uppsala university, sharing his time
between research and development work.

1. Introduction

The purpose of Worst-Case Execution Time
(WCET) analysis is to provide a priori information
about the worst possible execution time of a program
before using the program in a system. Reliable WCET
estimates are necessary when designing and verifying
embedded real-time systems, especially when real-time
systems are used to control safety-critical systems like
vehicles and industrial plants.

WCET estimates can be used to perform schedul-
ing and schedulability analysis, to determine whether
performance goals are met for periodic tasks, to check
that interrupts have sufficiently short reaction times,
to find performance bottlenecks, and many other pur-
poses [1, 9, 12].

To be valid for use in safety-critical systems, WCET
estimates must be safe, i.e. guaranteed not to under-
estimate the execution time. To be useful for all kinds
of systems, they must be tight, i.e. provide acceptable
overestimations. The safeness of an estimate is criti-
cal when the estimate is used in the construction of a
safety-critical system.

WCET estimates can be generated by measurement,
by hand, or by static analysis. Measuring the execution
time requires access to the target hardware and mea-
suring tools, and is a time-consuming process. Also,
the timing estimates obtained by measurement are not
guaranteed to be safe, since it is in general very hard to
find the input that causes the longest execution time
for a certain program.

It is possible to count execution cycles by hand,
given a CPU manual and an assembly listing, but
for anything but the simplest 8-bit architectures, this
is a daunting task due to the more complex execu-
tion mechanisms associated with pipelines, caches, and
other features found on today’s high-end embedded
chips.

1

Static analysis promises to generate safe and tight
estimates by analyzing the source code and object code
of the program off-line (without executing it).

When performing static WCET analysis, it is as-
sumed that there are no interfering background activ-
ities, such as direct memory access (DMA) or refresh
of DRAM, and that the program execution is uninter-
rupted (no task switches or interrupts). Extra execu-
tion time caused by cache interference between tasks,
interrupts, etc. are deferred to some subsequent anal-
ysis or system design phase.

To make WCET analysis a mainstream tool for em-
bedded real-time systems development, the analysis
should be a part of the usual work-flow of edit-compile-
test-debug. Just like a program is checked for bugs,
it should be checked for timeliness. For this to be
achieved, WCET analysis should be performed inside
the compilation system, which demands a very efficient
method for calculating the WCET.

Also, the hardware model used in the WCET tool
should be a separate module that is easy to change
when changing target processor. Due to the frag-
mented character of the embedded processor market
[13], it is not possible to get away with a WCET tool
supporting only a single architecture.

In this paper, we present a very fast method for cal-
culating WCET estimates, given information about the
program flow and a program timing model (which is
given in the same format regardless of the target archi-
tecture). The method is path-based in that it explicitly
finds the longest path in the program, but more effi-
cient than previous path-based approaches (especially
in the presence of many potential execution paths).
This makes it feasible to use the method inside a com-
piler, for example.

The program timing model is obtained by using a
trace-driven simulator for the target architecture. The
approach only runs each basic block in the program
through the machine model a few times, and does not
require a special-purpose CPU model.

A big advantage of generating the timing model for
the program in a separate step is that the hardware
model can be replaced independently of the rest of the
tool, making a tool much easier to retarget, and that
several different calculation methods can be used with
the same program timing model, making it possible to
trade speed and precision.

The concrete contributions of this work are:
• We adapt an acyclic longest-path search algorithm

to perform longest executable path search in a pro-
gram, which gives us a very efficient path-based
WCET calculation algorithm.

• We extend the basic algorithm to handle flow in-

formation such as dependent conditional statements
and implication, expressed using the flow language
presented in [8].

• We extend the algorithm further to handle arbitrary
pipeline effects, going beyond pipeline effects be-
tween adjacent basic blocks.

• We have implemented the new calculation algorithm
within an existing WCET prototype tool, replacing
a different calculation module while using the exist-
ing hardware model.
The rest of this paper is organized as follows: Sec-

tion 2 describes previous work in the field of WCET
analysis. Section 3 presents our WCET tool frame-
work. Section 4 shows the basic path-based calcula-
tion method, while Section 5 shows how to add flow
information and Section 6 arbitrary pipeline effects to
the calculation. Section 7 contains experimental eval-
uations, and Section 8 gives conclusions and discusses
future work.

2. Previous Work and WCET Analysis
Overview

To generate a WCET estimate, we consider a pro-
gram to be processed through the phases of program
flow analysis, low level analysis and calculation. Most
WCET research groups make a similar division nota-
tionally, but integrate two or more of the phases into a
single algorithm, making parts harder to reuse.

The program flow analysis phase determines pos-
sible program flows, without regard to the time for
each “atomic” unit of flow. The result of the flow
analysis should provide information about which func-
tions get called, how many times loops iterate, if there
are dependencies between if-statements, etc. The in-
formation can be obtained using manual annotations
(integrated in the programming language [24], or pro-
vided separately [11, 17, 27]), or automatic flow anal-
ysis [3, 10, 14, 20, 29].

The purpose of low-level analysis is to determine
the execution time for each atomic unit of flow (e.g. an
instruction or a basic block) given the architecture and
features of the target system. Low-level analysis can be
further divided into global low-level analysis, for effects
that require a global view of the complete program, and
local low-level analysis, for effects that can be handled
locally for an instruction and its neighbors.

In global low-level analysis, instruction caches [11,
14, 18, 29], cache hierarchies [22], data caches [16, 29,
31], and branch predictors [4] have been analyzed. Lo-
cal low-level analysis has built software models to deal
with scalar pipelines [7, 14, 18] and superscalar CPUs
[19, 28, 29]. For some complex architectures attempts
have been made to use the hardware itself [25].

2

Local
Low-Level
Analysis

CalculationGlobal Low-Level
Analysis

Compiler

Flow
Analysis

WCET

Program
Source

Input
Data

Timing Effect
Expansion

Scope Graph
Traversal

One Scope

Path Search
Preprocessing

Simple Fact
Removal

Local
WCET

Expanded
TG

Longest Path
Search

Cache
Analysis

Scope
Graph

Scope
Graph

Simulator
Timing Graph
for VScope

Virtual Scope
Expansion

Virtual
Scope

Timing
Graph

Global
Timing Graph

Object
Code

Pipeline
Analysis

Figure 1. WCET Analysis using Path-Based Calculation

The purpose of the calculation phase is to calculate
the WCET estimate for a program, combining the in-
formation derived in the program flow and global and
local low-level analysis phases. There are three main
categories of calculation methods proposed in litera-
ture: path-based, tree-based, and IPET (Implicit Path
Enumeration Technique).

In a tree-based approach the final WCET is gen-
erated by a bottom-up traversal of a tree, generally
corresponding to a parse tree of the program, using
rules defined for each type of compound program state-
ment to determine the execution time of the statement
[2, 4, 18, 26]. The method is conceptually simple and
computationally quite cheap, but has problems han-
dling flow information, since the computations are lo-
cal within a single program statement and thus cannot
consider dependencies across statements.

In IPET, program flow and low-level execution time
are modeled using arithmetic constraints [8, 11, 17, 23,
27]. Each basic block and program flow edge in the
program is given a time variable (tentity) and a count
variable (xentity), and the goal is to maximize the sum∑

i∈entities xi ∗ ti, subject to constraints reflecting the
structure of the program and possible flows. The result
is a worst-case count for each node and edge. Very
complex flows can be expressed using constraints, but
the computational complexity of solving the resulting
problem is potentially very high (there have been no
conclusive results in the literature regarding the actual
complexity for real programs).

In a path-based approach, the possible execution
paths of a program or piece of a program are explored
explicitly to find the longest path [14, 15, 29]. In con-
trast to IPET, the path-based approach explicitly com-
putes the longest executable path in the program. This
may be valuable information for the programmer, e.g.
for tuning and debugging purposes.

3. Tool Overview

The work presented in this paper is implemented
within the framework of our existing WCET tool. In
addition to the previous IPET-based calculation mod-
ule [8], we have implemented a path-based calculation
module. The pipeline analysis and other components
of the system remain unchanged, demonstrating the
modular structure of the tool, and in particular the
independence of the pipeline analysis and calculation
modules.

Figure 1 gives an overview of the WCET analysis
system, when using a path-based search as described in
this paper. The calculation module is shown in detail.

The target chip for the present implementation is
the NEC V850E, a typical 32-bit RISC embedded mi-
crocontroller architecture [6]. The compiler is a mod-
ified IAR V850/V850E C/Embedded C++ compiler
[30] which emits the object code of the program in an
accessible format.

Flow analysis is currently performed manually, re-
sulting in a description of the possible program flow
in the scope graph data structure. The scope graph
reflects the structure of the program and the flow, as
described in Section 3.1 below.

The timing graph data structure represents an ex-
plicit low-level view of the program and is generated by
the local low-level pipeline analysis. The data struc-
ture and the analysis is presented in more detail in
Section 3.2.

We have implemented an instruction cache analysis
similar to the one described by Ferdinand et al. [11],
but we do not use the analysis in the current experi-
ments, since our target hardware does not have a cache.
Figure 1 still shows that such an analysis would fit in,
by modifying the scope graph to include cache infor-
mation as described in [7, 9]. Cache- and other global
low-level analysis results are used in the pipeline anal-
ysis as described in Section 3.2 below.

3

loop bound: 10
outer:<1..5>:xI=1

loop bound: 20
inner:<>:xC

+

xF

£

1

inner:<6..10>:xC=0
inner:<1..8>:xC

£

xG

D

E

C

B

sc
op

e
�in

ne
r�

sc
op

e
�o

ut
er

�

xA

xDxC

xBDxBC

xDExCE
xHB

xB

xI

xHJ

xAI

xIJ

GF xGxF

xEGxEF

xGHxFH
H

A

xAB

J

I

do
 {
 if(...) A
 do
 {
 if(..) B
 ... C
 else
 ... D
 if(...) E
 ... F
 else
 ... G
 }
 while(..)H
 else
 ... I
 }
while(...) J

(a) Program code (b) Scope graph with attached flow facts

xJA

Figure 2. Scopes with Attached Flow Facts

3.1. Scope Graph and Flow Facts

The scope graph is a hierarchical representation of
the structure of a program. Each scope corresponds to
a certain repeating or differentiating execution context
in the program, e.g. loops and function calls, and de-
scribes the execution of the object code of the program
within that context.

Each scope is assumed to iterate, and has a header
node. A maximal number of iterations must be given
for each scope, and a new iteration is defined to start
each time the header node is passed. Scopes are allowed
to iterate only once, i.e. not loop.

Each scope can carry a set of flow facts. The flow
facts language defined by our group is a powerful lan-
guage that allows complex program flows to be rep-
resented in a compact and readable manner. In this
paper we address a subset of the flow facts presented
in [8].

Each flow fact consists of three parts: the name of
the scope where the fact is defined, a context specifier,
and a constraint expression.

The fact is valid for each entry to the scope where it
is attached. If the same scope is entered several times,
each entry starts a new iteration count from zero.

The context specifier describes the iterations for
which the constraint expression is valid. Facts valid for
certain iterations are expressed as <min..max>, where
min and max are integers and min ≤ max, while facts
valid for all iterations of a scope are denoted by <>.

These flow facts have a natural relation to path-
based calculations, since they talk about what happens
on a single iteration of a scope. The facts are used to
remove certain paths from the set of possible paths for
a scope.

The constraints are specified as a relation between
two arithmetic expressions involving execution count
variables and constants. An execution count variable,
xentity, corresponds to an entity in the scope graph

Timing graph with execution information

tS=17tR=15

tQ=11

tT=5

tU=19

dQR=-4 dQS=-2

dST=-1dRT=-3

dTU=-1

R S

U

T

Q

 After pipeline analysis

R S

U

T

Q

Execution
information

Basic block
exec

execexec

exec

exec

1020: add r1,r2
1022: ld �x�,r3

1026: cmp r1,r3
1028: bge �s�1020: icache miss

1022: icache hit,
 dmem SRAM
1026: icache hit
1028: icache hit

Figure 3. Timing Graph with Execution Facts

(node or edge) and represents the number of times the
entity is executed in the context given in the fact. A
fact is only allowed to refer to variables located in the
scope to where the fact is attached.

Figure 2 shows an example of two nested scopes with
some attached flow facts. Note that each scope has an
upper loop bound attached to it, used for guaranteeing
that the analyzed program terminates.

The fact inner : <> : xC + xF ≤ 1 gives that the
nodes C and F can never execute on the same itera-
tion of the scope (an infeasible path), while the fact
inner : <6..10> : xC = 0 gives that for each entry of
the inner loop, node C can not be executed during it-
eration 6 to 10.

The fact inner : <1..8> : xC ≤ xG gives that, for
each entry of inner, during the first eight iterations,
an execution of C implies that G must also be executed.

The fact outer : <1..5> : xI = 1 gives that for each
entry of outer, during the first five iterations of outer,
the execution is forced to take the path passing the
I node, (and can therefore not enter the inner scope
during those iterations).

Note that flow facts represent program flows implic-
itly by constraining the set of possible program flows,
in contrast to [15] where feasible paths are represented
explicitly. This makes the flow facts usable with calcu-
lation techniques which are not path-based [8].

3.2. Timing Graph and Pipeline Analysis
The timing graph is a flat program flow graph, where

the nodes correspond to basic blocks in the code. Each
node or edge in the timing graph can be decorated
with information about the execution of that piece of
code, (e.g. cache behavior or memory accesses), ex-
tracted by some preceding analysis module. The timing
graph is generated for the whole program at once, and
the pipeline analysis is carried out once for the whole
graph. Pieces of the timing graph are then used in the
calculation of the WCET.

Figure 3 shows an example of a timing graph: the ex-
ecution information indicates whether instructions hit
or miss the instruction cache (icache hit and icache
miss) and the memory type accessed by a load instruc-
tion (dmem SRAM). Many other types of facts could be

4

Fragment of
timing graph

11

Simulation runs

15

22

Timing graph
with times

tQ=11

dQR= �4

Simulator

Simulator

Simulator

Q

R

Q

Q

R

R

Q

R tR=15

exec

exec

exec

exec

exec exec

Figure 4. Timing Effect Calculation

imagined depending on the properties of the target ar-
chitecture.

The pipeline analysis generates times for the nodes
and edges in the timing graph. Times for nodes corre-
spond to the execution times of nodes in isolation, (e.g.
tQ in Figure 4), and times for edges, (e.g. δQR in Fig-
ure 4), to the pipeline effect when the two successive
nodes are executed in sequence (usually an overlap) [7].

Timing effects for sequences of nodes are calculated
by first running the individual nodes (plus execution
information), in the simulator, then the sequence, and
then comparing the execution times. The process is
illustrated in Figure 4. The timing effect, δQR, for the
edge QR is 22−15−11 = −4; the time is negative since
the execution of the nodes Q and R overlap in the CPU
pipeline.

There is a potential for timing effects along longer
sequences of nodes than just two, usually caused by a
node using some CPU resource that is used by a later
node in the sequence, but not by the nodes in between.
Such timing effects should only be included in the final
WCET estimate if all the nodes in the sequence are
executed in sequence. For example, in Figure 18(a) on
page 9, we have a timing effect for the sequence CDE.
This means that if and only if nodes C, D, and E are
executed in sequence, 3 clock cycles should be added
to the execution time (note that timing effects can be
negative as well as positive).

The advantage of this approach to pipeline analy-
sis is that we only run each basic block through the
machine model a few times, that we do not require
a special-purpose CPU model, and that the pipeline
model and calculation step are kept separate and inde-
pendent.

4. Efficient Path Search

The classic approach to longest executable path
search in path-based calculation is to generate all pos-
sible paths for a certain program segment (function,
loop body, or other unit), run all the paths through
some kind of hardware model, and select the path with
the longest execution time. The unit of analysis is the
complete path, and the number of paths to explore is
up to 2n, where n is the number of decisions in the

Dijkstra′s(TG):
/** Initialization **/
for each node v in TG do

predecessor[v] := nil
time sum[v] := 0

end for

/** Breadth-first-search **/
for each node u in TG in breadth-first order do

for each outgoing edge e = (u, v) in TG do

d := time sum[u] + tu + δe

/** Is u on the longest path to v **/
if time sum[v] < d then

predecessor[v] := u
time sum[v] := d

end for

end for

return TG

Figure 5. Longest Path Search Algorithm

program segment being analyzed. The need to handle
many complete paths arises from the use of pipelining
in modern processors: to get a tight timing estimate,
one must account for the overlap between basic blocks,
and this can only be done by analyzing all the basic
blocks in a path in a continuous sequence.1

However, since our pipeline analysis allows the tim-
ing of a path to be composed from smaller components,
it is possible to reformulate the longest path search
problem as finding the longest path in a directed acyclic
graph, eliminating the need for an explicit enumeration
of all paths to handle pipeline effects.

We base our efficient path search on Dijkstra’s algo-
rithm (shown in Figure 5) [5]. The algorithm computes
the longest path in O(m+n) time where m is the num-
ber of edges and n is the number of nodes, i.e. it is linear
in the size of the graph. In order to be able to apply
the algorithm on the timing graph TG for a scope S,
we must first remove all cycles from the graph, since
in general the longest path in a graph is undefined if
there are cycles in the graph. Therefore, within each
scope, we replace all backedges (i.e. edges back to the
header node of the scope) with edges to a special con-
tinuation node ⊥c. Furthermore, all edges leading to
nodes outside the scope are redirected to a special exit
node ⊥x (see Figure 6(b)). This is the “Path Search
Preprocessing” stage in Figure 1.

Considering pipeline effects across scope boundaries,
all timing effects of length two are accounted for at the
scope where the edges begin. This solution is exact for
programs without long timing effects, since all timing
effects will be accounted for.

After this preprocessing, the algorithm works by
breadth-first search. For each node, it computes the

1To keep complexity under control while losing some preci-
sion, it is possible cut a program segment into smaller pieces
with a lower number of decisions in each [14].

5

Initial timing
graph with times

Prepared for path search
algorithm. Exit and contin-

uation nodes added.

Predecessors, time
sums, and longest path

to loop continuation

t=17t=15

t=11

t=5

t=20t=19

t=15

d=-2 d=-2

d=-1d=-3

d=-3d=-1

d=-3 d=-1

d=-2

A

B C

G

FE

D

t=17t=15

t=11

t=5

t=20t=19

t=15

d=-2 d=-2

d=-1d=-3

d=-3d=-1

d=-3 d=-1

A

B C

G

FE

D

d=
-2

p=Ä
s=0 A

B C

G

FE

D

p=A
s=9

p=C
s=25

p=D
s=27

p=D
s=29

p=F
s=46

p=G
s=59

(b)(a) (c)

p=A
s=9

p=G
s=60

^c

^x

^c

^x
d=-1

d=-1

Figure 6. Longest Path Search

predecessor with the greatest total time on the longest
path from the start node of the graph (called time sum
in the algorithm). If a node is not reachable from
the header node, due to the removal of certain paths
(Section 5), the corresponding time sum is zero. Fig-
ure 6(c) illustrates the result of the algorithm, showing
the predecessor and time sum for each node. This is
the “Longest Path Search” stage in Figure 1.

After each run, for each node v, predecessor[v] de-
fines the predecessor of node v on the longest path from
the start node to v. Thus, a path can easily be con-
structed backwards by following the predecessor chain.

When computing the local WCET for a looping
scope S, we have to treat the last iteration specially,
since when exiting a scope, a different path is usually
taken, which may be longer or shorter than the re-
peating path. Therefore, we calculate two longest ex-
ecutable paths in each scope: one to the special node
⊥c and one to the special node ⊥x. If there is no exe-
cutable path to ⊥c, S does not iterate at all, in which
case the WCET for the scope is the longest executable
path to ⊥x.

If there is a path going to ⊥c the final WCET for
scope S becomes:
time sum(⊥c) ∗ (loopbound(S)− 1) + time sum(⊥x).

5. Path Search With Facts

In this section, we show how flow facts can be used to
remove infeasible paths in the path-based calculation,
and thus obtain more precise WCET estimates.

5.1. Ranges and Virtual Scopes
In order to account for flow facts with ranges, we

expand the scope graph to a number of virtual scopes.
A virtual scope corresponds to a certain range of iter-
ations of a scope, and the virtual scope expansion will,
for each virtual scope, create a copy of the original
scope.

loop bound: 20
s:<1..5>:xC=1 (f1)
s:<3..10>:xB+xE=1 (f2)A

B C

D E

F
s:1..2

(f1)

sc
op

e
s

s:6..10
(f2)

s:3..5
(f1,f2)

s:11..20
(-)

Virtual scopes and associated factsOriginal scope

Figure 7. Virtual Scope Expansion

V irtualScopeCreation(S) :
VS := ∅, begin := 1
Fcurrent := facts covering iteration begin in S
/** Loop over all iterations in the scope **/
for each iteration iter between 2 and loopbound(S) do

Fiter := facts covering iteration iter in S
/** Has set of covering facts changed **/
if Fcurrent 6= Fiter then

end := iter - 1
VS := add virtual scope s : begin..end to VS
begin := iter, Fcurrent := Fiter

end for

return V S

Figure 8. Virtual Scopes Generation

The purpose of the virtual scope expansion is to
make sure that each fact attached to a virtual scope has
a range covering the entire iteration range of a virtual
scope, as illustrated in Figure 7. Here, the two facts
s : <1..5> :XC = 1 and s : <3..10> :XB +XE = 1 are
specified for the scope s. Both facts hold for the itera-
tions 3..5. Only fact f1 holds in iterations 1..2, and f2

in iterations 6..10. In iterations 11..20, none of the facts
hold. Thus, the scope is split into the virtual scopes
s : 1..2, s : 3..5, s : 6..10, and s : 11..20. After the
expansion, we note which facts are valid for each vir-
tual scope.

This split of the iteration space of a scope is the in-
verse of the approach used by Whalley and Healy in
[15]. They form the union of all iteration spaces that
have any information in common, giving lower preci-
sion for facts that partially overlap each other.

The algorithm for finding the virtual scopes corre-
sponding to a scope is given in Figure 8.

5.2. Simple Fact Removal

To make the path search with facts more efficient,
certain facts can be handled in a preprocessing stage
(the “Simple Fact Removal” stage in Figure 1).

A fact with a constraint expression of the form
xnode = 0, stating that node must not be taken in the

6

SimpleFactRemoval(TG):

/** Handle ’forbidden’ nodes, (xnode = 0): **/

for each forbidden node v in TG do

delete v from TG

remove resulting dead paths

end for

/** Handle ’must-have’ nodes, (xnode = 1): **/

for each must-have node v in TG

mark all transitive predecessors of v

mark all transitive successors of v

for each node u in TG

if u not marked

delete node u from TG

end for

end for

return TG

Figure 9. Simple Facts Removal

covered iterations, can be handled by simply removing
node from the corresponding virtual scope.

A fact with a constraint expression of the form
xnode = 1, stating that node must be taken on each
iteration, can be handled by removing all paths from
the graph that do not include node. The paths can be
found in time linear to the size of the graph by first
marking all transitive predecessors and successors of
node, and then removing all nodes that are not marked.
Any such node would not be on a path from start to
end involving node, and is thus dead.

The algorithm for this step is shown in Figure 9.

5.3. Path Search with Infeasible Path Removal

After applying the modifications to the graph as de-
scribed above, we start searching for the longest ex-
ecutable path allowed by the remaining facts. We
have the fragment of the timing graph corresponding
to a virtual scope, with backedges removed and special
nodes added, and a set of remaining facts.

Figure 10 shows the top-level algorithm, used for
each scope. It performs WCET analysis recursively for
the subscopes, divides the scope into virtual scopes,
retrieves a piece of the timing graph, and removes the
paths corresponding to the simple facts.

The longest path in the graph is found as described
in Section 4 above. The longest path is then checked
for feasibility against the flow facts not removed in the
preprocessing. The checking is done by counting the
number of times each node occurs in the path, and
comparing this to the constraints specified in the facts.
For example, for a fact like “inner : <> : xC + xF ≤ 1”,
we will check that the path does not contain both node
F and node C. Note that for a path-based analysis, each
variable can only be zero or one, since the paths do not
loop.

WCETCalculation(S) :
/** Check if WCET for S already has been calculated **/
if WCET for S exists in T imeCache then

return WCET for S from T imeCache
/** If not, we have to calculate WCET **/
WCET := 0
/** Replace call to subscopes with node with time **/
for each subscope sub reachable in S do

tsub := WCETCalculation(sub)
replace sub with node taking tsub time

end for

/** Divide scope S into virtual scopes **/
VS := V irtualScopeCreation(S)
/** Calculate times for virtual scopes **/
for each virtual vs in VS in increasing order do

/** Get and convert timing graph **/
TG := T imingGraphFragment(S, vs)
TG := PathSearchPreprocessing(TG)
TG := SimpleFactRemoval(TG)
TG := LongT imingEffectExpansion(TG)
/** Extract longest feasible paths **/
{tvs, stop} := V irtualScopeT ime(TG, vs, S)
/** Add time for virtual scope to WCET of S **/
WCET := WCET + tvs

/** Check if we have an early exit **/
if stop == true then break

end for

add calculated WCET of S to T imeCache
return WCET

Figure 10. WCET Algorithm for a Scope

If the path is not feasible, it is removed from the
graph and the search begins again, now finding the
second-longest path. The path is removed using an al-
gorithm by Martins and Santos [21], and the effect is
illustrated in Figure 11. The idea is to create a devia-
tion around the path to be removed. This is achieved
by adding some new nodes and edges to the graph as
shown in Figure 11, and removing the end of the orig-
inal path. Note that the modified graph still contains
all paths of the original graph, except precisely the re-
moved one. All new nodes and edges have the same
timing as their originals in the timing graph. During
the path removal, the algorithm also computes the next
longest path in the graph by updating the path infor-
mation time sum[v] and predecessor[v] (see Section 4
above) for all affected nodes v (avoiding another pass
of Dijkstra’s algorithm).

The process of longest path search and infeasible
path detection and removal is repeated until a feasi-
ble path is found. The first feasible path found is the
longest executable path in the virtual scope. The algo-
rithm for longest feasible path search is given in Fig-
ure 12.

The removal of a path and finding the next longest
one runs in O(m) time, where m is the number of edges
in the graph. This comes from the fact that for each
new node the time sum and predecessor are computed

7

Original longest path.
Made infeasible by fact.

Removing the path �ACDFG-continue�
by graph rewriting, new longest path.

p=Ä
s=0 A

B C

G

FE

D

p=A
s=9

p=C
s=25

p=D
s=27

p=D
s=29

p=F
s=46

p=G
s=59

p=A
s=9

p=G
s=60

^c

^x

(a)

p=Ä
s=0 A

B C

G

FE

D

p=A
s=9

p=C
s=25

p=D
s=27

p=D
s=29

p=F
s=46

p=G�
s=58

p=A
s=9

p=G
s=60^x

(b)

D�

F�

^c

G�

p=D�
s=23

p=B
s=21

p=E
s=45

s:<>:xC+xF£1

Figure 11. Infeasible Path Removal

LongestFeasiblePathSearch(TG, F, endnode) :
/** Extract longest path p in TG **/
TG = Dijkstra′s(TG)
begin loop

tp := time sum(endnode)
p := longest path from startnode(TG) to endnode
/** Is p feasible against flow facts or
was there no path to endnode? **/
if IsFeasible(p, F) == true or tp == 0 then

return execution time tp
else

/** Remove p from TG
and extract the next longest path **/
TG := DeletePathFromGraph(TG, p)

end loop

Figure 12. Longest Feasible Path Search

by traversing all incoming edges of the corresponding
original node (see [21] for details). However, this com-
plexity is obtained only if the next longest path is found
after scanning the entire set of edges, which is the case
only when a path passes all nodes. For a typical flow
graph, this is not realistic. Thus the actual complexity
can be assumed to be much lower.

After one initial run of Dijkstra’s Algorithm, the
path search algorithm runs in O(K ∗ m) time, where
m is the number of edges in the graph and K is the
number of paths removed. As the number of paths in
a flow graph grows exponentially with the number of
decisions (see Section 4 above), the whole path search
might take exponential time, since in the worst case
all paths have to be examined (if the shortest path is
the only feasible path). However, for typical programs
this is very unlikely and may only happen when we
have many complex flow facts covering the same virtual
scope. It was not a noticeable problem for any of our
benchmark programs (see Section 7). Thus, in general,
the number of paths examined should be low compared

V irtualScopeT ime(TG, vs, S) :
F := facts covered by vs
/** Get time for longest continuation and exit paths **/
tcont := LongestFeasiblePathSearch(TG, F,⊥c)
texit := LongestFeasiblePathSearch(TG, F,⊥x)
/** Does there exist a feasible continuation path **/
if tcont > 0 then

/** Is vs not the last virtual scope covering S **/
if lastiter(vs) 6= loopbound(S) then

return {tcont * sizeof(vs),false}
/** We must take the exit path **/
else if texit > 0 then

return {tcont * (sizeof(vs)-1) + texit,true}
/** We must take the exit path **/
else if texit > 0 then

return {texit,true}

Figure 13. WCET Calculation for Virtual Scope

LongT imingEffectExpansion(TG):
/** Breadth-first-search **/
for each node v in TG in breadth-first order do

if in degree[v] > 1 and v in long timing effect then

for each incoming edge (u, v) inside a sequence do

/** Copy v and add and redirect edges **/
add node v′ to TG
add edge (u, v′) to TG
remove edge (u, v) from TG
for each outgoing edge e = (v, w) in TG do

add edge (v′, w) to TG
/** Add long timing effect to edge **/
if e is last in a timing sequence s then

add δs to weight of e
end for

end for

end for

Figure 14. Long Timing Effects Expansion

to the total number of possible paths. Also note that
since the calculation successively improves the WCET
estimate in each step, it can be interrupted at any time,
still yielding a safe, but probably pessimistic result.

The algorithm given in Figure 13 returns the WCET
for a virtual scope. It also returns whether the execu-
tion was forced to take an exit path, either due to flow
facts or because the virtual scope contained the last
iteration of the original scope.

The times extracted for each virtual scope are com-
bined together to generate a WCET for the entire
scope, as given by the algorithm in Figure 10.

5.4. Optimizations

We can use the set of facts covering each virtual
scope to reduce the number of calls to the path-removal
algorithm. If the set of facts covering a virtual scope
vsi is a subset or equal to the set of facts covering a
virtual scope vsj then all paths removed from vsi can

8

Graph expanded to
account for timing effect

Timing effect across
B-C-D

Edge accounts for
timing effect

A B

F

ED

C

(a)

A B

F

D

(b)

C C�

E

A B

F

D

C

E

(c)

C�

d C
�D

 =
 d

B
C

D
+d

C
D

dBCD

Figure 15. Simple Timing Effect

Graph expansion to
separate the effects

Effects added to unique
graph edges

Three timing effects
cross at node D

A B

E F

D

C

(b)

dADE dBDF

dBDE

dADE dBDF dBDE

A B

D

C

D� D��

E F

(a) (c)

+d
AD

E

+d
BD

F+d
BD

E

A B

D

C

D� D��

E F

Figure 16. Crossing Timing Effects
be safely removed also from vsj . This means that when
doing a longest path search over vsj we can instead
start with the resulting graph after the longest-path
search over vsi.

6. Handling Long Pipeline Effects

If there are pipeline effects across sequences of nodes
longer than two, they must be considered during the
path search since they affect the longest path. An ex-
ample is shown in Figure 18, where the timing effect
on the sequence CDE increases the execution time of
that path by 3 cycles, making the longest path different
from the one shown in Figure 6. Path-based methods
have previously required complete paths to be executed
to capture such effects [14], while here we show how to
capture the effects locally by graph rewriting. We have
previously demonstrated how to handle such effects in
IPET [7].

To account for such effects, we need to know when
we have taken a path containing the sequence of nodes
corresponding to the timing effect. Since the longest
path search only looks at the predecessors for a node,
a preprocessing algorithm, given in Figure 14 and cor-
responding to the box “Timing Effect Expansion” in
Figure 1, must be used.

The idea is to make each path that contains a long
timing effect separate in the graph, and to add the time
of the timing effect to the last edge in the sequence.

This is obtained by traversing the graph in topo-

Initial situation, two
timing effects

Split at C, CDE
effect duplicated Split at D Effects added to

edges in the graph

A B

D

(b)

d B
C

D
E

+dC
D

E

(a) (c)

C

E

A B

C

E

C�

D

A B

C

E

C�

D D�

A B

C

E

C�

D D�
+dBCDE+dCDE

(d)

Figure 17. Overlapping Timing Effects

Timing effect over
several nodes

Graph expanded to
account for timing effect.

Longest path to contin-
uation, with timing effect.

p=A
s=9

t=17t=15

t=11

t=5

t=20t=19

t=15

d=-2 d=-2

d=-1d=-3

d=-3d=-1

d=-3 d=-1

A

B C

G

FE

D

d=+3

(a)

t=17t=15

t=11

t=5

t=20
t=19

t=15

d=-2 d=-2

d=-1d=-3

d=-3d=-1

d=-3 d=-1

A

B C

G

E

d=-1+3
 =+2

(b)

D D�

F

t=5

d=
-3

A

B C

G

E

(c)

D

F

D�

p=Ä
s=0

p=A
s=9

p=B
s=21

p=C
s=25

p=D�
s=27

p=D�
s=32

p=E
s=48

p=G
s=61

d=
-2

d=
-2

^c

^x

^c

^x

^c

^x

d=-1 d=-1

Figure 18. Path Search with Timing Effects

logical order, and for each node visited, if it is inside
a timing effect sequence (i.e. not the first or last of a
sequence), and has more than one incoming edge, it
is copied together with its outgoing edges and the in-
coming edge that is part of the sequence. The original
incoming edge is removed. The copied nodes and edges
have the same timing effects as the original nodes and
edges.

Figure 15 shows the basic idea, and how the timing
effect is constructed for the final edge in the sequence.

Figure 16 shows what happens when several time
effects cross each other. A number of new nodes get
added, and three edges rewritten. However, the result
is still logical, and the algorithm handles this complex
case without a hitch.

Figure 17 shows the case where two timing effects
overlap. The graph must be expanded in such a way
that we count both effects only if the sequence BCDE is
taken, and only the effect over CDE if only that path is
taken. The end result is a graph where the effect δCDE
is added to two edges.

The process is illustrated in Figure 18. The node
D is copied to D’ due to the timing effect CDE, and

9

Timing effect on the
sequence G-A-B.

History node before node
A. Timing effect moved.

Longest path to continuation,
with long timing effects.

t=17t=15

t=11

t=5

t=20t=19

t=15

d=-2 d=-2

d=-1d=-3

d=-3d=-1

d=-3 d=-1

d=-2

A

B C

G

FE

D

t=17t=15

t=11

t=5

t=20t=19

t=15

d=-2 d=-2

d=-1d=-3

d=-3d=-1

d=-3 d=-1

B C

G

FE

D

d=
-2

p=A
s=9

p=B
s=26

p=D
s=28

p=G
s=61

(b)(a)

^c
^x

d=+5

A

(G) d=0

d=0

d=+5

G

FE

D

^c
^x

A

(G)

A�

C

p=Ä
s=0

p=(G)
s=0

p=Ä
s=0

p=A�
s=14 B

d=-2+5=+3

p=F
s=47

p=D
s=30

p=G
s=60d=-1

d=-1

(c)

Figure 19. Timing Effect Across Back-Edge

the longest path changes compared to the base version
shown in Figure 6.

6.1. Long Timing Effects over Analysis Boundaries

One problem with a bottom-up WCET calculation
such as the one presented in this paper is that there
might be long timing effects across the boundaries be-
tween successive paths or scopes, which have to be han-
dled in order to ensure a safe WCET estimate.

We can have a wrap-around timing effect across
the loop back-edge as illustrated in Figure 19(a), or
pipeline timing effects between nodes in a parent scope
and nodes in a subscope when entering or exiting the
subscope (border crossing timing effects).

Our solution is to add special history nodes to the
timing graph. The history nodes represent the poten-
tial paths taken before the beginning of a path search
and therefore have no weight associated with them.
Long timing effects begin at the history node and end
at the usual end node (as shown for the timing effect
from “(G)” to B in Figure 19(b)).

For each node v in the graph that is the target of
a back-edge or an entry to the scope, we collect all
timing effects with a length greater than two (those of
length two are already handled as regular edge times).
For each such timing effect we create a history node
labelled with the sequence of nodes up to v, and insert
it between the start node and the node v.

For example, the sequence GAB in Figure 19, makes
us insert the history node “(G)”. This changes the
longest path from ACDFG as shown in Figure 6 to ABDFG
as shown in Figure 18(c).

The insertion of history nodes gives a safe but pos-
sibly pessimistic estimate of the execution times, since
we will always use the worst incoming timing effect,
while in reality the nodes corresponding to the history

node might not have to be executed each time node
v is executed. This remaining pessimism is the price
we have to pay for the convenience and efficiency of
extracting WCET times for scopes in isolation.

7. Evaluation

In order to demonstrate the effectiveness of our flow
specification language and path-based WCET extrac-
tion method, we performed a number of experiments,
using the programs listed in Figure 20.

The results of the execution time analysis are shown
in Figure 21. The column Basic gives the WCET esti-
mate using only loop-bounds as flow limiting informa-
tion and ignoring pipeline overlap between nodes (but
including the pipeline overlap within nodes2). Columns
including Flow hold WCET estimates resulting from
adding flow facts to the programs. Columns including
Pipeline hold WCET estimates where pipeline effects
both within and between nodes have been accounted
for. Actual gives the actual WCET of the program,
as given by a simulation of the target platform. The
numbers in the +% columns give the pessimism of each
WCET estimate in percent.

The worse results for the columns without Pipeline
show that the modeling of pipelines is very important
for tight WCET analysis. In most cases, the effect of
the pipeline is much larger than that of the control
flow.

For two programs (fibcall, matmult), no spe-
cial flow information is needed in order to capture
the WCET (i.e. the structural WCET is the actual
WCET), and the precise estimates we get show that
the basic pipeline modeling introduces no pessimism.

For jfdctint, the facts we could express reduced
the pessimism somewhat, while compress, expint and
lcdnum show dramatic improvements when facts are
added (due to the structure of the programs).

The remaining overestimate in fir and insertsort
is due to triangular loops that cannot be expressed
within the path-based calculation system. In crc, there
are some complex if-statements that are hard to model
exactly.

Figure 22 shows some information about the com-
plexity of the analysis. The Scopes column lists the
number of scopes required to model the program, and
V.S. the number of virtual scopes after virtual scope
expansion to account for facts with ranges. Paths
shows the number of possible execution paths (summed
over all virtual scopes, before applying facts to the
graph), and Expl. the number of paths that our search

2Completely ignoring pipeline effects within a block would
create a WCET about five times higher (since our chip has a
five-stage pipeline).

10

Program Description Properties

compress Compression using lzw. Nested loops, goto-loop, function calls.
crc Cyclic redundancy check computation on 40 bytes of

data.
Complex loops, lots of decisions, loop bounds depend
on function arguments, function that executes differ-
ently the first time it is called.

expint Series expansion for computing an exponential integral
function

Inner loop that only runs once, structural WCET es-
timate gives heavy overestimate.

fibcall Simple iterative Fibonacci calculation, used to calcu-
late fib(30).

Parameter-dependent function, single-nested loop.

fir Finite impulse response filter (signal processing algo-
rithms) over a 700 items long sample.

Inner loop with varying number of iterations, loop-
iteration dependent decisions.

insertsort Insertion sort on a reversed array of size 10. Input-data dependent nested loop with worst-case of
n2/2 iterations.

jfdctint Discrete-cosine transformation on a 8x8 pixel block. Long calculation sequences (i.e. long basic blocks),
single-nested loops.

lcdnum Read ten values, output half to LCD Loop with iteration-dependent flow.
matmult Matrix multiplication of two 20x20 matrices. Multiple calls to the same function, nested function

calls, triple-nested loops.
ns Search in a multi-dimensional array Return from the middle of a loop nest, deep loop nest-

ing.
nsichneu Simulate an extended Petri Net Automatically generated code containing massive

amounts of if-statements (À 250)

Figure 20. Benchmark Programs

Basic With Flow With Pipeline Flow & Pipeline Actual
Program Cycles +% Cycles +% Cycles +% Cycles +% Cycles

compress 126242 +1357 10388 +20 92482 +967 8672 +0.12 8662
crc 61624 +104 61624 +104 30389 +0.39 30389 +0.39 30271

expint 68077 +693 10062 +17.2 41359 +382 8588 0 8588
fibcall 559 +78.6 559 +78.6 313 0 313 0 313

fir 487970 +40.2 487808 +40.1 352162 +1.2 352073 +1.1 348095
insertsort 2328 +117 2328 +117 1794 +67.0 1794 +67.0 1249

jfdctint 5388 +9.4 5388 +9.4 4942 +0.35 4942 +0.35 4925
lcdnum 501 +153 341 +72.2 283 +42.9 198 0 198
matmult 278859 +24.4 278859 +24.4 221824 0 221824 0 221824

ns 22903 +64.6 20653 +48.5 15434 +10.9 13934 +0.2 13911
nsichneu 150841 +195 87193 +70.6 97662 +91 51133 +0.03 51116

Figure 21. Execution Time Estimates

Program Scopes V.S. Paths Expl. +/−
compress 23 27 244 39 -84%

crc 8 8 33 12 -64%
expint 6 8 25 13 -48%
fibcall 3 3 6 4 -33%

fir 4 8 34 15 -56%
insertsort 3 3 6 5 -17%

jfdctint 5 5 10 8 -20%
lcdnum 3 5 30 7 -77%
matmult 15 15 25 22 -12%

ns 6 7 16 11 -31%
nsichneu 2 2 3.73E97 3 ≈ -100%

Figure 22. Complexity Measures

actually explored. The last column shows how Expl.
relates to Paths. In every case, our tool explores only
a subset of the paths, and the more complex the pro-
grams get (many paths compared to the number of
virtual scopes), the proportion of paths explored goes
down.

The computation time needed for the analysis was
negligible for all our benchmark programs, except for
nsichneu, where the analysis took a few seconds on a
Sparc Ultra 5 (due to the size of the program).

In conclusion, our experiments clearly demonstrate
the efficiency, precision, and safety of our WCET anal-
ysis method.

8. Conclusions and Future Work

In this paper, we have presented an efficient local
longest-path search algorithm for worst-case execution
time analysis. We have extended the algorithm to han-

11

dle complex flow facts and arbitrary pipeline effects.
Using this approach, we are able to quickly and effi-
ciently calculate the WCET of programs. The calcu-
lation method avoids exploring all the paths of a pro-
gram, giving it a computational complexity close to
linear in the size of the program.

We have implemented the new calculation method
within our generic WCET tool framework, demonstrat-
ing the reusability of previously developed modules.
Also, by putting the pipeline timing analysis and the
calculation into separate modules, the WCET tool is
easier to retarget.

Our experiments show that the new calculation
method generates tight and safe WCET estimates for
many programs, and that flow information can be used
effectively to improve the quality of the estimates.

The WCET analysis also generates the precise path
that gives rise to the WCET for a program, making it
easier for programmers to fix performance problems.

For future work, we plan to compare the calcula-
tion method with an IPET-based calculation within
the same framework [8]. This comparison will be very
fair, since all other components of the tool (test pro-
grams, pipeline analysis, compiler, etc.) will be exactly
the same. Previously, it has not been possible to make
reasonable comparisons between calculation methods,
since no two tools have used the same target system
and input.

We are also considering whether it is possible to
create a hybrid approach between the path-based and
IPET-based calculations, combining the efficiency of
path-based approaches with the expressive power of
IPET (in particular, extending the sets of flow facts
that can be handled exactly).

Finally, we would like to consider a novel use for
the flow facts: using flow facts to guide cache- and
branch-prediction analysis should provide us with the
opportunity to obtain more precise results and thus less
pessimism.

References

[1] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg.
Volcano – a revolution in on-board communications. Volvo
Technology Report, 1:9–19, 1998.

[2] R. Chapman. Program timing analysis. Dependable Com-
puting System Centre, University of York, England, May
1994.

[3] R. Chapman, A. Burns, and A. Wellings. Integrated pro-
gram proof and worst-case timing analysis of SPARK Ada.
In Proc. ACM SIGPLAN Workshop on Languages, Compil-
ers and Tools for Real-Time Systems (LCT-RTS’94), 1994.

[4] A. Colin and I. Puaut. Worst case execution time analysis
for a processor with branch prediction. Journal of Real-
Time Systems, May 2000.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[6] NEC Corporation. V850E/MS1 32/16-bit Single Chip Mi-
crocontroller: Architecture, 3rd edition, January 1999. Doc-
ument no. U12197EJ3V0UM00.

[7] J. Engblom and A. Ermedahl. Pipeline timing analysis us-
ing a trace-driven simulator. In Proc. 6th International
Conference on Real-Time Computing Systems and Appli-
cations (RTCSA’99). IEEE Computer Society Press, De-
cember 1999.

[8] J. Engblom and A. Ermedahl. Modeling Complex Flows
for Worst-Case Execution Time Analysis. In Proc. 21th

IEEE Real-Time Systems Symposium (RTSS’00), Novem-
ber 2000.

[9] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and
H. Hansson. Worst-case execution-time analysis for em-
beded real-time systems. Software Tools for Technology
Transfer, 2001. Accepted for publication.

[10] A. Ermedahl and J. Gustafsson. Deriving annotations for
tight calculation of execution time. In Proc. Euro-Par’97
Parallel Processing, LNCS 1300, pages 1298–1307. Springer
Verlag, August 1997.

[11] C. Ferdinand, F. Martin, and R. Wilhelm. Applying com-
piler techniques to cache behavior prediction. In Proc. ACM
SIGPLAN Workshop on Languages, Compilers and Tools
for Real-Time Systems (LCT-RTS’97), 1997.

[12] J. Ganssle. Really Real-Time Systems. In Proceedings of
the Embedded Systems Conference San Fransisco (ESC SF)
2001, April 2001.

[13] T. R. Halfhill. Embedded Market Breaks New Ground. Mi-
croprocessor Report, January 17, 2000.

[14] C. Healy, R. Arnold, F. Müller, D. Whalley, and M. Har-
mon. Bounding pipeline and instruction cache performance.
IEEE Transactions on Computers, 48(1), January 1999.

[15] C. Healy and D. Whalley. Tighter Timing Predictions by
Automatic Detection and Exploitation of Value-Dependent
Constraints. In Proc. 5th IEEE Real-Time Technology and
Applications Symposium (RTAS’99), pages 79–88, June
1999.

[16] S.-K. Kim, S. L. Min, and R. Ha. Efficient worst case timing
analysis of data caching. In Proc. of RTAS’96, pages 230–
240. IEEE, 1996.

[17] Y-T. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. In Proc. of the
32:nd Design Automation Conference, pages 456–461, 1995.

[18] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Ki. An accurate
worst-case timing analysis for risc processors. IEEE Trans-
actions on Software Engineering, 21(7):593–604, July 1995.

[19] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A
worst case timing analysis technique for multiple-issue ma-
chines. In Proc. 19th IEEE Real-Time Systems Symposium
(RTSS’98), December 1998.

[20] T. Lundqvist and P. Stenström. Integrating Path and Tim-
ing Analysis using Instruction-Level Simulation Techniques.
In Proc. SIGPLAN Workshop on Languages, Compilers
and Tools for Embedded Systems (LCTES’98), June 1998.

[21] E. Martins and J. Santos. A New Shortest Paths Ranking
Algorithm. Investigacao Operational, 20(1):47–62, 2000.

12

[22] F. Müller. Timing predictions for multi-level caches. In
Proc. ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Real-Time Systems (LCT-RTS’97), pages 29–
36, Jun 1997.

[23] G. Ottosson and M. Sjödin. Worst-Case Execution Time
Analysis for Modern Hardware Architectures. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97), June 1997.

[24] Chang Yun Park. Predicting program execution times by
analyzing static and dynamic program paths. Real-Time
Systems, 5(1):31–62, March 1993.

[25] S. Petters and G. Färber. Making worst-case execution time
analysis for hard real-time tasks on state of the art proces-
sors feasible. In Proc. 6th International Conference on Real-
Time Computing Systems and Applications (RTCSA’99),
December 1999.

[26] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs. The Journal of Real-Time
Systems, 1(1):159–176, 1989.

[27] P. Puschner and A. Schedl. Computing maximum task exe-
cution times with linear programming techniques. Technical
report, Technische Universität, Institut für Technische In-
formatik, Wien, April 1995.

[28] J. Schneider and C. Ferdinand. Pipeline behaviour predic-
tion for superscalar processors by abstract interpretation. In
Proc. SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems (LCTES’99). ACM Press, May
1999.

[29] F. Stappert and P. Altenbernd. Complete worst-case execu-
tion time analysis of straight-line hard real-time programs.
Journal of Systems Architecture, 46(4):339–355, 2000.

[30] IAR Systems. V850 C/EC++ Compiler Programming
Guide, 1st edition, January 1999.

[31] R. White, F. Müller, C. Healy, D. Whalley, and M. Harmon.
Timing analysis for data caches and set-associative caches.
In Proc. 3rd IEEE Real-Time Technology and Applications
Symposium (RTAS’97), pages 192–202, June 1997.

13

