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Abstract

Which is the minimum order an autonomous nonlinear ordinary differential equation (ODE) needs to have to be

able to model a  periodic signal? This question is motivated by recent research on periodic signal analysis, where

nonlinear ODEs are used as models. The results presented here show that an order of two of the ODE is sufficient

for a large class of periodic signals. More precisely, conditions on a periodic signal are established that imply the

existence of an ODE that has the periodic signal as a solution.  A criterion that characterizes the above class of

periodic signals by means of the overtone contents of the signals is also presented. The reason why higher order

ODEs are sometimes needed is illustrated with geometric arguments. Extensions of the theoretical analysis to

cases with orders higher than two are developed using this insight.
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I.  INTRODUCTION

Periodic signals arise in many applications. Power network supervision, auto-tuning [ 1 ] of PID regulators,

instability phenomena in nonlinear feedback systems [ 2 ]  and the measurement of linearity of electronic power

amplifiers with sinusoidal input are only a few examples where the analysis of periodic signals is central.

       As a result, a wide variety of methods has been proposed for periodic signal analysis, see e.g. [ 3 ]. The

periodogram combined with the fast Fourier transform (FFT) techniques forms the baseline for performance

comparisons. More advanced methods in use include various parametric approaches [ 4 ], comb filters [ 5 ] as
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well as high resolution methods like MUSIC and ESPRIT from the sensor array processing field. See [ 3 ] for

algorithmic details and a performance analysis.

        The problem discussed in the present paper originates from the idea to use nonlinear ODEs as models for

periodic signal generation. Many such systems have been documented, e.g. nonlinear pendulum systems, tunnel

diode circuits as well as the predator-prey equations [ 2 ]. As described in detail in [ 2 ] an extensive theory

around periodic orbit phenomena can be built up for second order nonlinear ODEs. Well known results include

e.g. the Poincare map and the Bendixon theorem that treat the existence and the stability of periodic orbits. The

reason why the majority of these result are only valid for second order ODEs is that closed orbits in R 2  that do

not intersect themselves divide the state space into one part interior to the orbit and another part exterior to the

orbit (the Jordan curve theorem). Because of this theoretical background, an ODE of order two was used for the

algorithm development in [ 6 ]  and [ 7 ]. The right hand side of the ODE model was parameterized with a bi-

polynomial in the two state variables, with the parameters being the polynomial coefficients. Recursive

algorithms for estimating the parameters were then derived in [ 6 ], based on the Kalman filter and the extended

Kalman filter  (EKF). An off-line least squares algorithm was presented in [ 7 ]. The parameterization allows for

identification of arbitrary right hand side functions of the ODE and the performance of the methods seems to be

good. The question regarding the generality of the restriction to second order ODEs remains though, and is dealt

with here.

     The first contribution of this paper is a characterization of the class of periodic signals that can be generated

by a nonlinear second order ODE that fulfills normal regularity conditions. The analysis is performed in the

phase plane. This allows the discussion to be supported by straightforward and intuitive geometric

interpretations, thereby making the result available to a wide audience. The geometric interpretations has the

additional benefit of making it clear precisely when an order of two is not sufficient, this being the second

contribution of the paper. This observation is used to extend the theoretical results for second order ODEs to

arbitrary order. The construction of a criterion that implies that a second order ODE is sufficient constitutes the

third contribution. This criterion is  shown to be related to the overtone contents of the periodic signal. It is

proved that the criterion is unaffected by linear coordinate transformations.

     The paper is organized as follows. Main results are presented in section II. The frequency domain sufficiency

criterion is discussed in section III. Numerical examples appear in section IV, and the conclusions are

summarized in section V. Conditions required in the discussion are denoted C1), C2),…, and they are introduced

when needed in the development that follows.
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II.  MAIN RESULTS

Some assumptions of general validity are first introduced to set the framework for the discussion. The measured

signal is denoted by ( )x t  where t denotes continuous time. The signal is periodic, i.e. it fulfills

C1) ( ) ( )x t T x t+ = , ∀ ∈t R , 0 < < ∞T , where T  denotes the period.

Throughout the paper it is assumed that no noise affects the signals. This is in line with the purpose of the

analysis since a periodic signal with noise added is no longer periodic. This  assumption is expressed as

C2) The signal ( )x t is not corrupted by any disturbances.

A.  When Order Two Is Enough

A brief outline of the development of the result is as follows. First ( )x t and ( )x t
.

are used to introduce a

(tentative) state space of second order. This allows the  periodic signal to be represented by a closed curve in the

state space. A condition can then be formulated that allows the curve to be uniquely described without reference

to  any quantities other than points in the state space. By the introduction of smoothness assumptions on the

closed curve a formal treatment is used to construct a second order ODE that has the closed curve, and hence the

periodic signal ( )x t , as a solution. Finally, the uniqueness of the solution of this ODE is assessed.

       When referring to signals the notation ( )x t and ( )x t
.

 is used, while the corresponding states of the ODE are

referred to as ( )x t1 and ( )x t2 . For the 2-dimensional state space the most suitable of the notations is used.

     To proceed the following assumption is introduced

C3) The signal ( )x t  is twice continuously differentiable.

The state space spanned by x = �

�
�

�

�
�x x

T.
is then well defined. Since ( ) ( )x t T x t

. .
+ = , ∀ ∈t R  by C3) it follows

that  the periodic signal ( )x t can be represented as the first coordinate of the closed curve

( ) ( ) ( )x t x t x t R= �

�
�

�

�
� ∈

.
2 .
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       The objective is now to construct an ODE whose solution generates ( )x t . In order for this to be possible the

state vector ( )x x T
1 2 of the ODE (if it exists) must  contain all information of the signal. No use of any

additional parameters (like t ) is allowed. The following example illustrates this fact further.

       Example 1: Fig. 1 is useful to gain insight into what can happen. The signal of Fig. 1a is generated as

( ) ( ) ( )x t y t y t= +1 21 2 , where ( ) ( )y t t1 = cos  and ( ) ( )y t t2 2= cos are solutions of y y1 1 0
..
+ =  and y y2 24 0

..
+ = ,

respectively. Note that it is straightforward to write the signal ( )x t  as a solution to the following fourth order

linear ODE, obtained by a combination of the two ODEs above
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Figure 1: A periodic signal generated by a fourth order linear ODE and the corresponding model phase plane

               plot.

Fig. 1b shows the curve ( ) ( ) ( )x t x t x t
T

= �

�
�

�

�
�

.
, i.e. the attempted model corresponds to a tentative second order

ODE.  Since the curve ( )x t makes an additional loop, encircling points on the negative horizontal axis, it follows

that ( )x t intersects itself at least once. This means that there is a point x I  in the "model state space" and on the

curve  ( )x t where the further evolution of ( )x t depends on the evolution of ( )x t  before  reaching x I . The
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consequence is that the further evolution of ( )x t cannot be determined only from one point in the model of the

state space, i.e. the state of a  second order ODE cannot contain all information needed to generate ( )x t .  

     A condition that excludes situations where ( )x t intersects itself hence needs to be imposed. That condition

must also exclude other degenerate cases that can be thought of as limiting cases of example 1. Cusps, corners

and stops are examples of  such limiting cases. The condition needed can be heuristically formulated as "the

curve  ( ) ( ) ( )x t x t x t
T

= �

�
�

�

�
�

.
is smooth and does not intersect itself." The smoothness assumption  excludes the

degenerate cases discussed above. In order to formulate the heuristic condition mathematically,  the set S  of all

points in the model of the state space that fall on ( )x t is introduced

( )
( )

S
x
x

R
x
x

x t

x t
t R=

�

�
�

�

�
� ∈

�

�
�

�

�
� =

�

�

�
�

�

�

�
�

∈
�
�
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( 2 )

The mathematical formulation of the condition that is needed then becomes

C4) ∀
�

�
�

�

�
� ∈ ⊂

x
x

S R. 2   :

1)  
( )
( )

( )
( )

x t

x t

x t

x t
t t kT k Z

1

1

2

2
1 2. . , .

�

�

�
�

�

�

�
�
=
�

�

�
�

�

�

�
�
� = + ∈

 2)  ∃δ , ,L L1 2 ,  δ > 0 , 0 1 2< ≤ < ∞L L    |   t t1 2− < δ  �  
( )
( )

( )
( )

L t t
x t

x t

x t

x t
L t t1 1 2

1

1

2

2 2

2 1 2− ≤
�

�

�
�

�

�

�
�
−
�

�

�
�

�

�

�
�

≤ −. . .

Z  denotes the set of all integers. Part 2) of C4) is a statement of smoothness. The following lemma can now be

proved

         Lemma 1: Let  ( )x m x
.
=  denote the multi-valued mapping that results when x

.
is considered as a function

of x for x x S
T.�

�
�

�

�
� ∈ . If C3) and C4) holds, then ( )x m x

.
=  is continuously differentiable in the interior of  each

separate single-valued branch. Further, the speed ( ) ( )x x
. .T

t t of the curve ( )x t  is  strictly positive for all t .  
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          Remark 1: ( )x m x
.
=  cannot be single valued since ( )x t is closed.  

          Proof:  C4) implies that

( ) ( )
0 1

1 2

1 2 2
2< ≤

−
−

≤ < ∞L
t t
t t

L
x x

. ( 3 )

Using C3) to evaluate  ( 3 ) in the limit where t t1 2→  then gives the following bound for the speed

( ) ( )x x
. .T

t t of the curve ( )x t

( ) ( )0 1 2< ≤ ≤ < ∞L t t L
T

x x
. .

. ( 4 )

Since the curve ( )x t  is continuously differentiable in t by C3), and since the speed of the curve is always strictly

greater than zero, it follows that the nonzero velocity vector ( )x
.

t  (tangent to ( )x t ) varies smoothly along ( )x t .

The result of Lemma 1 follows.   

      The next step of the construction of the second order ODE is to select a tentative second order  state space

model as

( )
( )

x
x

x t

x t
1

2

�

�
�

�

�
� =

�

�

�
�

�

�

�
�. .

( 5 )

The main objective of the development of this section is now to prove that this choice represents a state. This fact

will be proved by explicit construction of right hand side functions of an ODE that has the right hand side of ( 5 )

as a solution. A differentiation of  ( 5 ) first gives

( )
x

x

x

x t
1

2

2
.

. ..

�

�

�
�

�

�

�
�
=
�

�
�
�

�

�
�
� .

( 6 )

Equation ( 6 ) will be the key to the construction of an ODE with the sought properties. The construction of the

ODE requires that the right hand side of the second state equation of ( 6 ) is expressed in terms of the states x1
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and x2 , instead of in terms of ( )x t
..

. This can be accomplished by a solution of ( 5 ) with respect to t , so that t

is expressed in terms of the states. In order to address this problem, the following lemma is needed.

         Lemma 2 [The implicit function theorem, [ 2 ] ] : Assume that f R R Rn m n: × → is continuously

differentiable at each point ( )x y,  of an open set P R Rn m⊂ × . Let ( )x y0 0,  be a point in P for which

( )f x y0 0 0, =  and for which the Jacobian matrix [ ]( )∂ ∂f x x y0 0,  is nonsingular. Then there exist neighbourhoods

U Rn⊂ of  x0  and V Rm⊂   of  y0  such that for each y V∈  the equation ( )f x y, = 0  has a unique solution

x U∈ .  Moreover, this solution can be given as ( )x g y= , where g  is continuously differentiable at y y= 0 .   

       Then consider the solution of the state equations of  ( 5 ) with respect to t . Towards this end, consider Fig.

2 which is generated in the same way as Fig. 1b, but with  ( ) ( ) ( )x t t t= +cos . cos0 1 5 . A point x0 on the curve

( )x t  is given and the intention is to solve for t . The point x0 is marked with an 'x' in Fig. 2.
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Figure 2: Solving for the time in a phase plane plot. The 'x' corresponds to the point of interest while

               the 'o' corresponds to alternative solution points. The horizontal line illustrates solution in

               terms of the second state variable while the vertical line illustrates solution in terms of the

               first state variable.

        Generalizing the situation of Fig. 2, the state equations of ( 5 ) are written as
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( )
( )

( )
( )

f x t
f x t

x x t

x x t
1 1

2 2

1

2

0
0

,
,

.
�

�
�

�

�
� =

−

−

�

�

�
�

�

�

�
�
=
�

�
�
�

�
� .

( 7 )

When the first equation of ( 7 ) is solved in the point ( )x x1 0 2 0, ,  the times t i1, , i I= 1,...,  results. Referring to

Fig. 2, there is one time for the point x0 (marked with  'x' in Fig. 2) and one time for each of the other

intersections with the vertical line through x0 (marked with 'o' in Fig. 2). Now, because of C3) and Lemma 1, the

regularity conditions of Lemma 2 are fulfilled. Further, in all points t i1, where

( ) ( )∂
∂

f x t
t

x ti
i

1 1 0 1
1 0, , .

,
,

= ≠ ( 8 )

the remaining conditions of Lemma 2 are fulfilled for ( )f x t i1 1 0 1, ,, . Therefore it can be concluded that for all t i1,

fulfilling ( 8 ) there exist continuously differentiable functions h i1, , i I= 1,..., , and corresponding

neighbourhoods U i1,  of t i1, and   V i1,   of  x1 0, , such that

( )t h xi= 1 1, ,  t U i∈ 1, , x V i1 1∈ , , i I= 1,..., . ( 9 )

Analogously, when the second equation of  ( 7 ) is solved the times t j2, , j J= 1,..., result. These times

correspond to the 'x' and the 'o' along the horizontal line through x0  of Fig. 2.  Following the approach leading to

( 9 ), it is clear that in all points t j2,  where

( ) ( )∂
∂

f x t
t

x tj
j

2 2 0 2
2 0, , ..

,
,

= ≠ ( 10 )

there exist continuously differentiable functions h j2, , j J= 1,..., , and corresponding neighbourhoods U j2,  of

t j2, and   V j2,   of  x2 0, , such  that

( )t h xj= 2 2, , t U j∈ 2, , x V j1 2∈ , , j J= 1,..., . ( 11 )
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     The I J+  times t i1, , i I= 1,..., , t j2, , j J= 1,..., , are all candidates to the joint  solution of both state

equations of  ( 7 ) (or ( 5 ) ). By construction there is at least one i1  and one j1  such that t ti j1 21 1, ,=  (

( )x x T
1 0 2 0, , is a point (in the model state space) on the curve ( )x t , see  ( 5 ) and Fig. 2). Furthermore, there

cannot be any t t t ti j i j1 2 1 22 2 1 1, , , ,= ≠ =  within the same period, since t ti j1 22 2, ,=  must then, by C4), correspond to

a different point of the state space. Hence, there is exactly one time t t ti j0 1 21 1
= =, , corresponding to

( )x x T
1 0 2 0, , . The time t in a neighborhood around t0 can be expressed in terms of the state variables, either by (

9 ) or ( 11 ). In cases where  ( 8 ) but not ( 10 ) holds, ( 9 ) is used to solve in terms of x1 . In cases where ( 10 )

but not ( 8 ) holds, ( 11 ) is used to solve in terms of x2 . In cases where both ( 8 ) and ( 10 ) hold, any one of ( 9 )

or ( 11 ) can be used. Note that by Lemma 1

( ) ( ) ( ) ( )x x
. . . ..T

t t x t x t L= + ≥ >
2 2

1 0 . ( 12 )

Hence at least one of ( 8 ) or ( 10 ) always holds.

       The idea is now to select a number of points ( ){ }x xk k
T

k

K

1 2
1

, ,
=

in the model state space, ordered clockwise

or counterclockwise around the curve ( )x t . The times tk corresponding to the points ( ){ }x xk k
T

k

K

1 2
1

, ,
=

are then

computed. The points ( ){ }x xk k
T

k

K

1 2
1

, ,
=

 should   be selected  in such a way so that the neighborhoods (in which

the sought functions exist) that result around each solution point tk , covers one complete period T , cf. condition

C6) just below this paragraph.  The resulting neighborhoods are denoted ( ){ }U k k k

K

δ , =1
 and ( ){ }V k k k

K

δ , =1
, where

( )δ k = 1 2, indicates if ( 9 )  ( ( )δ k = 1) or if    ( 11 ) ( ( )δ k = 2 ) is used. It should be noted that the domains of

definition ( ){ }V k k k

K

δ , =1
 are consistent with the corresponding range spaces ( ){ }U k k k

K

δ , =1
. This  is clear from the

formulation and use of Lemma 2.

         In order to conclude the construction it needs to be assumed that the (open) intervals ( ){ }U k k k

K

δ , =1
overlap

and cover one complete period. These assumptions are formulated as
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C5)  ( ) ( )U Uk k k kδ δ, ,∩ ≠ ∅+ +1 1 , k K= −1 1,..., and ( ) ( )U UK Kδ δ, ,∩ ≠ ∅1 1 .

C6)   ( ) [ ]U t t Tk k
k

K

δ , ,
=

⊃ +
1
�  for an appropriately selected t .

         Remark 2:  Note that the ordering of points is crucial in the formulation of C5) and C6). The use of t  is

introduced to allow an arbitrary position in time of the obtained intervals. One general situation where C5) and

C6) can be expected to hold is when the signal is analytic. In such a case the  techniques of analytic continuation

[ 8 ]  could be used to prove that C5) and C6) hold. It is expected that there are  several different possible

conditions that imply C5) and C6), which is one reason why these conditions are formulated in an explicit form.

     Using C5), C6), ( 9 ), ( 10 ) and the treatment above it can be concluded  that there exist closed intervals

( ) ( )U Uk k k kδ δ, ,⊂  and corresponding minimal domains of definition ( ) ( )V Vk k k kδ δ, ,⊆ such that

( ) ( )U Uk k k kδ δ, ,∩ = ∅+ +1 1 , k K= −1 1,..., , ( ) ( )U UK Kδ δ, ,∩ = ∅1 1

( ) [ ]U t t Tk
k

K

δ
=

= +
1
� ,

( ) ( )( ) ( )
( )( ) ( )

t h x x
h x t U x V k

h x t U x V kPeriod
i k

k
k k

j k
k

k k
≡ =

∈ ∈ =

∈ ∈ =

�
�
�

��
1 2

1 1 1 1 1

2 2 2 2 2

1

1

1

2
,

, , ,

, , ,
, , ,

, , ,

δ

δ
,   k K= 1, . .. , .

( 13 )

Inserting the expression for t of ( 13 ) in ( 6 ), the following second order ODE results

( )( )
x

x

x

x h x xPeriod

1

2

2

1 2

.

.
..

,

�

�

�
�

�

�

�
�
=
�

�

�
�

�

�

�
�

.
( 14 )

To prove that ( )x t  is indeed a solution, the components of the curve ( )x t  are inserted in ( 14 ). This results in

( )( )
( )
( ) ( )

( )
( )

LHS
x

x h x x

x t

x h x t x t

x t

x t

x

x
RHS

Period Period

=
�

�

�
�

�

�

�
�
= �

�
�

�

�
�

�

�
�

�

�
�

�

�

�
�
�
�

�

�

�
�
�
�

=
�

�

�
�
�

�

�

�
�
�
=
�

�

�
�

�

�

�
�
=

2

1 2

1

2

..

.

.. .

.

..

.

., ,
.

( 15 )
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The following theorem has now been proved.

         Theorem 1 [ Loop criterion ]:  Consider the periodic signal ( )x t . Assume that C1), C2), C3), C4), C5) and

C6) hold. Then there exists a function ( )h x xPeriod 1 2, and a second order ordinary differential equation

( )( )
x

x

x

x h x xPeriod

1

2

2

1 2

.

.
..

,

�

�

�
�

�

�

�
�
=
�

�

�
�

�

�

�
�

that has a solution given by ( ) ( ) ( )x x x t x tT
T

1 2 = �

�
�

�

�
�

.
.   

         Remark 3:  The interpretation of Theorem 1 is that it gives conditions on the signal that are sufficient to

ensure the existence of right hand side functions of a second order ODE. Obviously, this is only a prerequisite for

identification. The further steps of parameterization of these functions as well as the development of

identification algorithms are described in [ 6 ]  and [ 7 ] . Note also that there is  no need for more than one

nontrivial right hand side function. This function enters in the second state equation of ( 14 ).  The result is

denoted the "loop criterion" to reflect the geometrical intuition behind condition C4).  

         Remark 4:  It should be noted that the above theorem does not state anything about the stability of the

solution. The orbit may or may not be stable. In order to secure a stable orbit further constraints may have to be

imposed, see e.g. [ 2 ]  for available results for stability checks applicable to periodic orbit  solutions. The topic

of construction of an ODE with periodic orbit solutions that are guaranteed to be  stable is outside the scope of

the present paper and is left for future research.  

       The solution to the second order ODE of Theorem 1 may not be unique. Uniqueness also requires that

( )h x xPeriod 1 2, is Lipschitz. Noting that the derived ODE is autonomous, the following two corollaries that

guarantee also uniqueness to Theorem 1 then follows  from [ 2 ], Theorem 2.3 and [ 2 ], Theorem 2.4,

respectively:

         Corollary 1: Assume that the conditions of Theorem 1 hold. Assume in addition that there are constants

L3 and L4 such that

( )( ) ( )( )x h x x x h y y L
x
x

y
yPeriod Period

.. ..
, ,1 2 1 2 3

1

2

1

2
− ≤ �

�
�

�

�
� −

�

�
�

�

�
�
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( )( )x h x x LPeriod

..
,1

0
2
0

4≤

∀ ( ) ( )x x y y RT T
1 2 1 2

2, ∈ , ∀ [ ]t t t∈ 0 1, . Then there is a second order ODE

( )( )
x

x

x

x h x xPeriod

1

2

2

1 2

.

.
..

,

�

�

�
�

�

�

�
�
=
�

�

�
�

�

�

�
�

, 
( )
( )

x t
x t

x
x

S1 0

2 0

1
0

2
0

�

�
�

�

�
� =

�

�
�

�

�
� ∈

that has the unique solution  ( ) ( ) ( )x x x t x tT
T

1 2 = �

�
�

�

�
�

.
,  [ ]t t t∈ 0 1, .   

                 Corollary 2: Assume that the conditions of Theorem 1 hold. Assume in addition that there is a

constant L5 such that

( )( ) ( )( )x h x x x h y y L
x
x

y
yPeriod Period

.. ..
, ,1 2 1 2 5

1

2

1

2
− ≤ �

�
�

�

�
� −

�

�
�

�

�
�

∀ ( ) ( )x x y y D RT T
1 2 1 2

2, ∈ ⊂ , ∀ t t≥ 0 . Let W  be a compact subset of the domain D , ( )x x W1
0

2
0 ∈ , and

suppose that it is known that every solution of

( )( )
x

x

x

x h x xPeriod

1

2

2

1 2

.

.
..

,

�

�

�
�

�

�

�
�
=
�

�

�
�

�

�

�
�

, 
( )
( )

x t
x t

x
x

S1 0

2 0

1
0

2
0

�

�
�

�

�
� =

�

�
�

�

�
� ∈

(which exists) lies entirely in W . Then this second order ODE has the unique solution

( ) ( ) ( )x x x t x tT
T

1 2 = �

�
�

�

�
�

.
,  [ ]t t t∈ 0 1,  .   

The above construction of a second order ODE with ( )x t  as a solution is somewhat technical. In order to put

further light on the details the following example goes through the details for the signal ( ) ( )x t t= cos  and it is

shown that the result is the well known linear ODE describing the harmonic oscillator. A special emphasis is

given to the selection of intervals when solving for  t by the implicit function theorem (Lemma 2). The example
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also illustrates that the coverage of a complete period with intervals, as assumed by C6), is most often not a

problem in applications.

       Example 2 [Construction of the harmonic oscillator]: In this example the above construction procedure is

illustrated. The signal ( ) ( )x t t= cos  is given. It is straightforward to see that C1)-C4) are valid. Differentiation

first gives the following equations corresponding to ( 7 ) in a point ( )x x T
1 0 2 0, , on the unit circle

( )
( )

x t
x t

1 0

2 0

0
0

,

,

cos
sin

.
−
−

�

�
�

�

�
� =

�

�
�
�

�
�

( 16 )

Solving the component equations of ( 16 ) in a point where ( 8 ) and ( 10 ) holds results in ( )t x1 1
1

1 1, ,cos= − ,

( )t x1 2
1

1 0, ,cos= − − , ( )t x2 1
1

2 0, ,sin= − − , ( )t x2 2
1

2 0, ,sin= + −π . Select one point ( )x x T
1 1 2 1, , on the unit circle in

the interior of the first quadrant and one point ( )x x
T

1 2 2 2, , on the unit circle in the interior of the third quadrant.

Then, the existence of the following one to one functions and neighborhoods that correspond to ( 9 ) and ( 11 )

follow.

( )t x= −cos 1
1 ,     ( )t ∈ 0,π ,     ( )x1 11∈ − , , x2 0>

( )t x= − −cos 1
1 ,     ( )t ∈ −π ,0 ,     ( )x1 11∈ − ,   , x2 0<

( )t x= − −sin 1
2 ,      ( )t ∈ −π π2 2, ,      ( )x2 11∈ − , ,   x1 0>

( )t x= + −π sin 1
2 ,     ( )t ∈ π π2 3 2, ,     ( )x2 11∈ − , ,   x1 0> .

( 17 )

It follows from ( 17 ) that also C5) and C6) hold. To proceed, select ε > 0  sufficiently small and select the

intervals [ ]U1 1, ,= −ε π ε , [ ]U2 2, ,= − +π ε π ε , [ ]U1 3, ,= − + −π ε ε , [ ]U2 4, ,= − ε ε and the corresponding

domains of definition according to ( 17 ). Then it follows that

( )
( )
( )
( )
( )

h x x

x t U
x t U

x t U
x t U

Period 1 2

1
1 1 1

1
2 2 2

1
1 1 3

1
2 2 4

,

cos ,
sin

cos
sin

,

,

,

,

=

∈
+ ∈
− ∈
− ∈

�

�

�
�

�

�
�

−

−

−

−

π
.

( 18 )
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Finally, ( )( )cos cos− =1
1 1x x , t U∈ 1 1, , ( )( ) ( )( )cos sin cos cosπ + = =− −1

2
1

1 1x x x� , t U∈ 2 2, ,

( )( )cos cos− =−1
1 1x x , t U∈ 1 3, , ( )( ) ( )( )cos sin cos cos− = ± =−1

2 1 1x x x . Note that when changing the dependence

of the argument of the cosine function from x2 to x1 ,  the fact that the coordinates determines a point on the unit

circle is exploited. Further, note that the domains of definition of x1  in ( 17 ) needs to be invoked to divide the

intervals U2 2, and U2 4, in two cases. The midpoints of these two intervals follow trivially.

       It now follows that the ODE of Theorem 1 becomes

( )( ) ( )( )
x

x

x

x h x x

x
h x x

x
xPeriod Period

1

2

2

1 2

2

1 2

2

1

.

.
..

, cos , .
�

�

�
�

�

�

�
�
=
�

�

�
�

�

�

�
�
= −
�

�
�

�

�
� =

−
�

�
�

�

�
�

( 19 )

This is the linear ODE for the harmonic oscillator. Note that ( 19 ) has many solutions, a fact that is perfectly

consistent with Theorem 1, since that theorem does not specify initial conditions. This is, however, done in

Corollary 1 and Corollary 2.   

B.  When Order Two Is Not Enough

Example 1 of the last subsection indicates what the problem is when the order of the ODE used for modeling is

not high enough. Referring to Example 1, order 4 is obviously enough for modeling of the signal in question.

When trying to model the signal with a reduced order ODE, order two in this case, the signal is projected onto a

subspace of lower dimension than the dimension of the signal. Then e.g. a spiraling movement along one

particular  dimension may  be projected onto a lower dimensional hyper-plane in a way which can result in

intersections in  this lower dimensional space used for modeling.

       A procedure can then be devised, when there are intersections in a specific low order space (like a 2-

dimensional one). Simply increase the order of the ODE in steps of one by addition of another state variable.

This state is selected as the next higher derivative of the signal. In case of extension from a second order ODE,

the state variable ( )x x t3 =
..

is added. If there are still intersections in R3 ,  ( )x x t4 =
...

 is added and so on.

       The proof of Theorem 1 is given for the second order case. However, a closer look at the argumentation

suggests that this does not have to be the case. Hence it could be conjectured that counterparts to Theorem 1 can

be proved for higher order ODEs using the ideas of the present proof. As it turns out this is in fact the case.
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     In order to develop the counterpart to Theorem 1, the necessary modifications of the discussion leading to

Theorem 1 are highlighted. In fact, the entire treatment of the general case parallels the development of the

second order result of Theorem 1. However, the major modifications are discussed in order to enhance the clarity

of the paper.

     The starting point is the selection of the following n + 1:th order tentative state vector

( )

( )( )

x

x

x t

x tn
n

1

1

� �

+

�

�

�
�
�

�

�

�
�
�
=
�

�

�
�
�

�

�

�
�
�

.
( 20 )

The curve ( )x t  in the n+1dimensional space  is now to be interpreted as ( ) ( ) ( ) ( )( )x t x t x tn T
= ... .

      As in the development of the second order result, the task is to prove that ( 20 ) represents a state. In order to

do so, the conditions C1) and C2) remain unaffected. The condition C3) is  replaced by

C3') The signal is n + 1times continuously differentiable.

The definition ( 2 ) of the set S is then changed to

( )

( )( )
S

x

x
R

x

x

x t

x t
t Rn

n

n

n
n

+

+

+

+

=
�

�

�
�
�

�

�

�
�
�
∈

�

�

�
�
�

�

�

�
�
�
=
�

�

�
�
�

�

�

�
�
�

∈
�

�
	



	

�

�
	



	

1
1

1

1
1

1

� � �| ,
( 21 )

from which the following modification of C4) follows

C4') 
( )

( )∀
�

�

�
�
�

�

�

�
�
�
∈ ⊂+ +

x

x
S R

n

n n
�

1 1  :

1)  
( )

( )( )

( )

( )( )

x t

x t

x t

x t
t t kT k Z

n n

1

1

2

2

1 2� �

�

�

�
�
�

�

�

�
�
�
=
�

�

�
�
�

�

�

�
�
�
� = + ∈, .

     2) ∃δ , ,L L1 2 ,   δ > 0 , 0 1 2< ≤ < ∞L L   |  t t1 2− < δ  �
( )

( )( )

( )

( )( )
L t t

x t

x t

x t

x t
L t t

n n
1 1 2

1

1

2

2

2 1 2− ≤
�

�

�
�
�

�

�

�
�
�
−
�

�

�
�
�

�

�

�
�
�
≤ −� � .

With this modification the following counterpart to Lemma 1 holds.
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         Lemma 1’ : Let  ( ) ( )( )x m x xn n= −, ..., 1  denote the multi-valued mapping that results when ( )x n is considered

as a function of ( )x x n, ..., −1 for ( )( )x x Sn T n... ∈ +1 . If C3') and C4') holds, then ( ) ( )( )x m x xn n= −, ..., 1  is

continuously differentiable in the interior of  each separate single-valued branch. Further, the speed

( ) ( )x x
. .T

t t of the curve ( )x t  is  strictly positive for all t .     

The proof parallels that of Lemma 1.

      Following section II.A, the tentative state vector of ( 20 ) is differentiated with respect to t to give

( )( )

x

x

x

x

x
x

x
x t

n

n

n
n

1

2

1

2

3

1

.

.

.

.

�
�

+

+

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

.
( 22 )

Again, the task is to express the last equation of ( 22 ) in terms of the tentative state variables. This is

accomplished by solving each equation of ( 20 ) with respect to t using Lemma 2. This gives, using C3'), the n+1

set of relations (cf. ( 7 ) – ( 9) )

( )t h xm i m= , ,  t Um i∈ , ,  x Vm m i∈ , ,  i I m= 1, ..., , m n= +1 1, ... , ( 23 )

for all solution points (cf. the explanation of Fig. 2) tm i,  and xm,0 such that

( )( ) ( )( )
∂

∂

x x t

t
x t

m
m

x t

m
m i

m m i

−�
�
� �

�
�

= ≠

−1

0

0

, ,,

, .
( 24 )

Extending the reasoning following ( 11 ) from 2 to n+1 dimensional space, it can be concluded that there is again

exactly one time t0 corresponding to a given  vector ( )x xn

T

1 0 1 0, ,... + . Furthermore, by Lemma 1' at least one

of the conditions of ( 24 ) are always fulfilled (since ( ) ( )x x
. .T

t t  is strictly greater than zero).  The

corresponding relation of ( 23 ) is then used to solve for t in the relevant neighbourhoods of ( )x xn

T

1 0 1 0, ,... + .
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       A set of points around the curve ( )x t  are then selected, so that the neighbourhoods in time covers one

complete period of ( )x t  in the tentative state space. Denote the set of points by ( ){ }x xk n k

T

k

K

1 1
1

, ,... +
=

and

define the generalized index ( )δ k which takes values in the set { }1 2 1, , ...,n + , and where the value indicates

which state equation that is selected to be solved for t for the point ( )x xk n k

T

1 1, ,... + . With this redefinition of

( )δ k , the conditions C5) and C6) do not need any modification from the treatment of the second order case. The

treatment of the higher than second order case now be concluded as in the second order case. It follows from

C5), C6), ( 23 ), ( 24 ) and Lemma 1'  that there exist closed  intervals ( ) ( )U Uk k k kδ δ, ,⊂  and corresponding

minimal domains of definition ( ) ( )V Vk k k kδ δ, ,⊆ such that

( ) ( )U Uk k k kδ δ, ,∩ = ∅+ +1 1 ,  k K= −1 1,... , ,  ( ) ( )U UK Kδ δ, ,∩ = ∅1 1

( ) [ ]U t t Tk
k

K

δ
=

= +
1
� ,

( ) ( ) ( ) ( )t h x x h x t U x V k mPeriod n m i k
k

m m k m m km
≡ = ∈ ∈ =+1 1 1

, ... , , , ,, , , δ ,  k K= 1, . .. , .

   ( 25 )

Inserting the expression for t of ( 25 ) in ( 22 ) results in the following ODE of order n+1

( ) ( )( )

x

x

x

x

x
x

x
x h x x

n

n

n
n

Period n

1

2

1

2

3

1

1 1

.

.

.

. , ,

�
�

�
+

+

+

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

.
( 26 )

An insertion of the curve ( )x t  in ( 26 ) shows that ( )x t  indeed solves the ODE, a fact that proves the following

generalization of Theorem 1.

         Theorem 2 [High order loop criterion]:  Consider the periodic signal ( )x t . Assume that C1), C2), C3'),

C4'), C5) and C6) hold. Then there exists a function ( )h x xPeriod n1 1, ..., + and an  n+1:th order ordinary

differential equation
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( ) ( )( )

x

x

x

x

x
x

x
x h x x

n

n

n
n

Period n

1

2

1

2

3

1

1 1

.

.

.

. , ,

�
�

�
+

+

+

�

�

�
�
�
�
�
�
��

�

�

�
�
�
�
�
�
��

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

that has a solution given by  ( ) ( ) ( ) ( )( )x x x t x tn
T n

1 1... ...+ = .     

         Remark 5:  The generalizations of Corollary 1 and Corollary 2 follow immediately. They are not

reproduced here.  

         Remark 6:  The possibility to use Theorem 2 in an order recursive mode to select the required order to

model the periodic signal with an ODE is stressed.  

III.  A FREQUENCY DOMAIN CHECK FOR ORDER TWO SUFFICIENCY

How can a situation where C4) holds be characterized by simple means? One possibility, that is the basis for the

development of this subsection, is to study the rotation (with time) of the point ( )x t . It is then clear that if the

vector ( )x t either  rotates clockwise  for all [ ]t t t T∈ +, or rotates counterclockwise for all [ ]t t t T∈ +, , then

loops cannot occur. This is further illustrated in Example 3.

       Example 3: Phase plane plots were generated with a similar methodology as in Example 1. Here sums of

solutions to x x
..
+ = 0 and x x

..
+ =4 0 were used. In Fig 3a the solution ( ) ( )cos . cost t+ 01 2 and (b) is shown, while

Fig. 3b displays ( ) ( )cos . cost t+ 05 2 .  In Fig 3a, the overtone contents is small and it is obvious that the indicated

vector, pointing to ( ) ( ) ( )x t x t x t
T

= �

�
�

�

�
�

.
, always rotates in the same direction when the time increases. In Fig 3b

the overtone contents is higher and the indicated vector ( ) ( ) ( )x t x t x t
T

= �

�
�

�

�
�

.
follows the additional loop of the

curve. The vector does not always rotate in the same direction when time increases.  
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1
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(b )

Figure 3: Phase plane plot generated as the sum of solutions to x x
..
+ = 0 and x x

..
+ =4 0 . (a) corresponds

               to ( ) ( )cos . cost t+ 01 2 and (b) corresponds to ( ) ( )cos . cost t+ 05 2 .

         Example 3 indicates two things. First it is clear that a curve, where the vector pointing to

( ) ( ) ( )x t x t x t
T

= �

�
�

�

�
�

.
rotates with an angular velocity with  constant sign, do fulfill C4). Secondly, the overtone

contents is of central importance. Both these observations are addressed by the following proposition.

                Proposition 1:  Assume that  there is a point x
−

 in the interior of the domain bounded by the closed

curve ( ) ( ) ( )x t x t x t
T

= �

�
�

�

�
�

.
, such that the angular velocity ( )θ

.
t  of the vector ( )x xt −

−
 is continuous and has a

constant and strictly nonzero sign. Then, if C1), C2), C3), C5) and C6) hold, Theorem 1 holds.   

          The result is geometrically obvious and it is therefore not proved formally.

          The next step is to proceed with the frequency domain analysis, using Proposition 1. To do so it is assumed

that

C7) x 0
−
= is interior to the domain bounded by the closed curve  ( ) ( ) ( )x t x t x t

T

= �

�
�

�

�
�

.
.

Proceeding from C7), the angle ( )θ t of Proposition 1 can be written as

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

θ

π

π

π

t

x t x t x t

x t x t

x t x t

x t x t x t

=

�

�
�

�

�
� >

= >

− = <

+ �

�
�

�

�
� <

�

�

	
	
	
	




	
	
	
	

−

−

tan ,

, ,

, ,

tan ,

.

.

.

.

1

1

0

2
0 0

2
0 0

0

.

( 27 )
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Differentiation of the two right hand sides of ( 27 ) results in identical results. The angular velocity can be

expressed compactly as

( )
( ) ( ) ( )

( ) ( )( )
θ
.

.. .

.
t

x t x t x t

x t x t
=

− �
�
�

�

�
�

�

�
�

�

�
� +

2

2
2

( 28 )

The angular velocity of ( 28 ) has been defined as the value of the left and right hand limits when ( )x t = 0 . In

order for Proposition 1 to hold,  ( 28 ) must now have constant sign.

        By C1), C2) and C3) it follows that ( )x t can be expanded in the following Fourier series

( ) ( ) ( ) ( ) ( )x t x t t A A t A k tF k k
k

= + ≡ + + + +
=

∞

�ε ω φ ω φ0 1 1
2

cos cos . ( 29 )

where the term including the fundamental frequency is ( ) ( )x t A tF = +1 1cos ω φ . Then  note that in case ( )ε t = 0 ,

it follows easily that

( ) ( ) ( ) ( ) ( ) ( )x t x t x t x t x t x t AF F F

.. . .. .
− �
�
�

�

�
� = − �

�
�

�

�
� = −

2 2

1
2 2ω ( 30 )

and hence ( )θ
.

t  has a constant sign in this case. The next step is to investigate how large ( )ε t  can be allowed to

be without causing ( )θ
.

t to change sign. Towards that end, note that the denominator of  ( 28 ) can be written as

(the numerator is always greater than zero by C7) )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )x t x t x t x t x t x t R t x tF F F F

.. . .. .
,− �

�
�

�

�
� = − �

�
�

�

�
� +

2 2

ε

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R t x t x t t x t t t e t x t t tF F F Fε ε ε ε ε ε,
.. .. .. . . .

= + + − − �
�
�

�

�
�2

2

.
( 31 )

Straightforward calculations, using the definitions of  ( 29 ) then give
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( ) ( ) ( ) ( ) ( )x t t x t t A A A A kF F k
k

.. ..
ε ε ω ω+ ≤ + +

=

∞

�0 1
2

1
2

2

21

( ) ( )ε ε ω ωt t A k A A A kk
k

k
kk

k

..
≤ +

=

∞

=

∞

=

∞

� ��0
2 2 2

2 22
2
2

1

21

2

( ) ( )2 2 1
2

2

x t t A A kF k
k

. .
ε ω≤

=

∞

�

( )ε ω
.

t A A k kk
kk

k
�

�
�

�

�
� ≤

=

∞

=

∞

��
2

2

22
1 21

21

2

( 32 )

Using ( 30 ) and ( 31 ), the denominator of ( 28 ) becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )x t x t x t x t x t x t R t x t A R t x tF F F F F

.. . .. .
, ,− �

�
�

�

�
� = − �

�
�

�

�
� + = − +

2 2

1
2 2ε ω ε . ( 33 )

Equation ( 33 ) shows that the denominator of ( 28 ) and hence ( )θ
.

t of proposition 1, will have constant sign

whenever  ( ) ( )( )R t x t AFε ω, < 1
2 2 . Using the results of ( 32 ) and rearranging then gives

         Proposition 2: Assume that C1), C2), C3), C5), C6) and C7) hold. Then, if the fundamental frequency

signal ( )A t1 1cos ω φ+ , the bias A0 and the overtone signal ( )A k tk
k

k
=

∞

� +
2

cos ω φ fulfill

( ) ( )A
A

k A
A

k A
A

k k k A A

A
k

k

k

k

k k

kk

0

1

2

12

2

12

2 1 2

1
2

22

1
1

11 2

21

+
�

�
�
�

�

�
�
� +

+
+

+
<

=

∞

=

∞

=

∞

=

∞

� � �� ,

Theorem 1 holds.   

         Remark 7:  The inequality of Proposition 2 has interesting implications. First, k Ak
2

� needs to be

convergent. This means that Ak   needs to decay at least as fast as Ck − −3 δ , δ > 0  for large k . Secondly,

A1 needs to be sufficiently large as compared to the bias and  overtone part of the signal. Put differently it may

be stated that the high frequency roll-off of the spectrum needs to be larger than 60 dB / decade and that the

overtone power needs to be sufficiently small as compared to the power of the fundamental frequency. It can also
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be noted that the result is independent of the frequency scale of the signal. Note also that Proposition 2 only gives

sufficient conditions for Theorem 1 to hold. Finally, note that Theorem 1 does not necessarily imply the validity

of  Propositions 1 or 2.  

     Example 4: The fact that Proposition 2 gives sufficient conditions is illustrated in this example. The signal

( ) ( ) ( )x t t A t= +cos cos 2 ( 34 )

is studied and conditions on A that imply that

( ) ( ) ( )x t x t x t
.. .

− �
�
�

�

�
� <

2

0  ,  ∀t ( 35 )

are sought. Towards that end, straightforward calculations transform ( 35 ) to

( ) ( )( )− − + − <1 4 2 5 02 2A A t tcos sin , ∀t . ( 36 )

Denoting the time variable part of ( 36 ) by

( ) ( ) ( )( )f t t t= −cos sin2 52
( 37 )

and differentiating results in the following condition for a maximum/minimum of ( )f t

( ) ( ) ( )( )df t
dt

t t= − =sin sin9 6 02 . ( 38 )

Hence it must hold that ( )sin t = 0 , a fact that transforms ( 36 ) to

− − + <1 4 5 02A A . ( 39 )

This leads to

( )( )1 1 4 0− − + <A A ( 40 )

and it can be concluded that
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A < 0 25. ( 41 )

is required for Proposition 1 to hold. Note that the extreme value of ( )f t is attained so ( 41 ) is a necessary

condition for ( 35 ) to hold.

     This result can be compared to Fig. 3 and Proposition 2 (that is only sufficient). First, it follows immediately

that ( 41) is consistent with Fig. 3 and Proposition 1. Secondly, an evaluation of the criterion of Proposition 2

results in the condition that

A <
−

≈
113 9

16
01019. . ( 42 )

Also ( 42 ) is consistent with Fig. 3 and hence Proposition 2 is effective with respect to the example of Fig. 3.

However, ( 42 ) is more conservative than ( 41 ) since Proposition 2 only gives sufficient conditions for Theorem

1 to hold.  

     One remaining issue is the effect of the choice of coordinates of the state space, on the results of section II and

III. Here, the effect of a linear transformation on Proposition 1 will be treated.

     To discuss the effect of a linear transformation on the sign of the angular velocity, the new coordinates

( ) ( ) ( )( )z t z t z t
T

= 1 2 are introduced. The linear transformation from ( )x t  to ( )z t  is assumed to be

( )
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�

�
�

�

�
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( 43 )

The effect of ( )b b T
1 2  is to perform a pure translation, which moves the reference point x

−
. This obviously

constitutes a dramatic change of the properties of the sign of the angular velocity. At the same time it is easy to

study the effect of a pure translation by graphical means, e.g. with the purpose of selection of a beneficial

reference point x
−

. The effect of the matrix multiplication is however not obvious. For these reasons the further

study is constrained to the case where

 C8)  ( ) ( )b b T T
1 2 0 0= .

     With the assumption C8) it follows that (cf. ( 28 ) )
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( ) ( ) ( ) ( ) ( )
( )( ) ( )( )

θ
.

. .

z t
z t z t z t z t

z t z t
=

−

+
1 2 1 2

1
2

2
2

( 44 )

     To proceed, assume that

C9) The transformation matrix 
a a
a a

11 12

21 22

�

�
�

�

�
�  is nonsingular.

The assumptions C8), C9) and ( 43 ) implies that ( )z z x xT
T

1 2 0 0= ⇔ �

�
�

�

�
� =

.
. Hence, exactly as in the

analysis following Proposition 1 it is sufficient to study the sign of the numerator. Using ( 43 ), ( 44 ), C8), C9),

and the definition

( )sign θ
θ
θ
θ

=
− <

=
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�
�

�
�

1 0
0 0
1 0

,
,

( 45 )

 it follows that
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. . .�
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This proves

         Proposition 3: Assume that C1), C2), C3),  C5), C6), C7), C8) and C9) hold. Then the sign of the angular

velocity of the solution in the phase plane plot remains constant after the linear state transformation

z
z

a a
a a

x
x

1

2

11 12

21 22

�

�
�

�

�
� =

�

�
�

�

�
�
�

�
�

�

�
�.

provided that the sign of the angular velocity was constant before the state transformation. 
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       The conclusion is hence  that the results of Propositions 1 and 2 are invariant with respect to linear state

transformations without a translation term.

IV.  NUMERICAL EXAMPLE

The purpose with  the present section is to illustrate the previous results numerically. A particular intention is to

illustrate the possibility to approximate a higher than second order linear ODE by a nonlinear ODE of second

order. This observation opens up e.g. for model reduction applications, by pinpointing the possibility to trade

order of ODEs on one hand  against degrees of the nonlinearity on the other hand. Which of these two choices

that is most efficient is obviously dependent on the specific signal and application, see [ 6 ]  and [ 7 ]  for some

further examples.

     Example 5: In this example modeling of the signal ( ) ( ) ( )cos cost t+ 1 10 3  is studied. Following Example 1, it

is clear that the signal can be described by a fourth order linear ODE, which is a minimal (linear) realization of

the signal. The phase plane plot  of the signal appears in Fig. 5a, and it can be seen that there are no intersections.

Hence Theorem 1 holds and it can be concluded that there exists a second order ODE that has  a solution equal to

the signal. Note also that in this specific example the RHS of the inequality of Proposition 2 equals 1.78>1 and so

the frequency domain result of section III does not apply in this case. Note, however, that Proposition 2 does only

give sufficient conditions for the validity of Theorem 1.

     In order to model the signal the extended Kalman filter (EKF) algorithm of [ 6 ]  was applied. To describe that

method briefly, it is first noted that it is based on the following second order continuous time ODE model

( )

( )

x

x

x
x x

x
x
x

1

2

2

1 2

1

2
1 0

.

. ,

�

�

�
�

�

�

�
�
=
�

�
�

�

�
�

=
�

�
�

�

�
�

ϕϕϕϕ θθθθT

( 47 )

where

( )ϕϕϕϕ x x1 2, = ( )1 2 1 1 2 1 1 2... ... ... ...x x x x x x xM M N N M T

θθθθ = ( )θ θ θ θ θ θ00 0 10 1 0... ... ... ...M M N NM
T

.
( 48 )
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Here ( )x t is the measured signal and θθθθ denotes the unknown parameter vector. The model is hence a polynomial

one. The EKF algorithm is derived as follows. The model ( 47 ), ( 48 ) is first discretized by an Euler numerical

integration scheme. Discrete time Gaussian measurement and system noise are then modeled by the conventional

covariance matrices, allowing e.g. for tuning of the estimator bandwidth. The result is a discrete time nonlinear

state space model that immediately lends itself to application of the extended Kalman filter, see e.g. [ 9 ] and [ 10

]  for details on the use of the EKF to solve recursive identification problems.

     In the numerical experiment 10000 samples of the noise-free signal were generated, using a sampling period

of 0.025 s. The initial value of the state covariance matrix was selected as ( )P I0 10=  . The bandwidth of the

EKF was tuned by selection of the noise covariance matrices according to R I1
510= − and R2 1= . The initial

state vector  was selected as ( ) ( )x 0 0 5 0 5= − . . T  and the initial parameter vector was selected as ( )θθθθ 0 = 0 .

     Two runs were then performed, one with M N= = 2  and one with M N= = 3 . Results appear in Fig. 4, Fig.

5 and in Table 1.
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Figure 4: The signal and the parameter estimates obtained by the EKF using a degree of 2 in x1

               and a degree of 2 in x2 .
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Figure 5: Phase plane plots of the signal (a), of the model obtained with the EKF using a degree

               of 2 in x1 and a degree of 2 in x2  (b), and of the model  obtained with the EKF using a

               degree of 3 in x1  and a degree of 3 in x2  ( c).
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Parameter Degree 2,2 Degree 3,3
θ00 0.6361 0.0814
θ01 0.0491 0.1844
θ02 -0.9143 -0.1219
θ03 -0.2579
θ10 -2.1289 0.7197
θ11 0.0324 0.1947
θ12 2.9355 0.5784
θ13 -0.1038
θ20 -0.5068 -0.0622
θ21 -0.3473 -0.2511
θ22 0.6407 0.0729
θ23 0.1463
θ30 -2.0826
θ31 -0.0532
θ32 -0.8220
θ33 -0.2946

Table 1: Parameter estimates at the end of the runs.

It can be seen in Fig. 5 b and 5 c that when the degree of the polynomial expansion increases, then the second

order nonlinear ODE is quite successful in modeling the signal. The fit is not perfect, a fact that is natural

considering the fact that a series expansion is used for modeling, and hence modeling errors affect the estimator.

The phase plane plots of Fig. 5 have been obtained by off-line simulation of the estimated ODE, using the

parameters obtained at the end of the runs. The conclusion of this experiment is that a second order nonlinear

ODE has been estimated and that this ODE has a stable orbit that closely approximates the estimated signal (the

signal needs a fourth order linear ODE for its realization). This supports the theoretical results presented

previously in this paper.   

V.  CONCLUSIONS

An analysis of the required order of an ODE, used for periodic signal modeling, has been presented. The analysis

relates to nonlinear differential equations, identifiability analysis and the realization of signals from nonlinear
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ODEs. Since the results above indicate when a specific order is sufficient, they may also be used for indication of

model reduction possibilities.

      It was shown that a second order ODE is sufficient for modeling a certain class of periodic signals. These

signals are characterized by phase plane plots that lack intersections. Building on the geometric approach of the

paper, a method for selection of the order of an ODE used for periodic signal analysis can be formulated: Simply

differentiate the signal repeatedly and add dimensions to the state space until the corresponding state space

trajectory of the signal does not intersect itself at any point. Using this observation the theoretical results were

extended from order two to an arbitrary order of the ODE. A criterion for assessment of the possibility to use a

second order ODE for periodic signal analysis was defined. The criterion relates to properties of  the overtone

contents of the signal. It was shown that the criterion is insensitive to linear state space transformations. The fact

that second order ODEs are sufficient in many cases is practically important. The reason is that the algorithms of

[ 6 ]  and [ 7 ], that are sometimes used for initialization of more advanced schemes, require the n − 1:th

derivative of the signal in case an n :th order ODE model is used. Such numerical differentiation requirements

would have limited applicability for n > 2 . In order to illustrate the results, the harmonic oscillator was

constructed analytically from the signal ( )cos t . The model order reduction property was also illustrated

numerically by approximation of a two-frequency signal requiring a fourth order linear ODE for its description.

This signal was successfully approximated by a second order nonlinear ODE by application of a previously

published EKF algorithm.

     There are several topics for further research that could be attempted. The results obtained for arbitrary order

of the ODE could be further developed into methods that allow a systematic choice of the order of the ODE that

is used for periodic signal modeling. Estimation algorithms handling such cases could also be developed and

analyzed. Tools that can be used to determine the stability of orbits  estimated with such algorithms are of special

interest. The reason is the experimental observation that simulated orbits are often only "weakly" stable. In such

situations it may not be clear if the stability or instability is caused by the discretization of the numerical

integration scheme, i.e. it may be difficult to reach firm conclusions based on simulation only. Related to this is

the remaining problem of construction of an ODE that has an asymptotically stable orbit that equals a given

signal.  Further work is also  needed on the effects of the choice of coordinate system. Such work, which was

only pursued for linear transformations in the present paper, needs to take at least two directions. First, the result

of Theorem 1 needs to be analyzed. Secondly, transformations more general than a linear one should be

analyzed. One interesting special case that should be studied is the class of conformal mappings, see e.g. [ 8 ] .



30

ACKNOWLEDGEMENT

This work was supported by the Swedish Research Council for Engineering Sciences under contract 98-564.

REFERENCES

[ 1 ] K. J. Åström and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1989.

[ 2 ]  H. K. Khalil, Nonlinear Systems - second edition. Upper Saddle River, NJ: Prentice Hall, 1996.

[ 3 ]  P. Stoica and R. Moses, Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice Hall, 1997.

[ 4 ]  R. Kumaresan and D. W. Tufts, "Estimating the parameters of exponentially damped sinusoids and pole-

zero modeling in noise", IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-30, pp. 8333-840, 1976.

[ 5 ] A. Nehorai and B. Porat, "Adaptive comb filtering for harmonic signal enhancement", IEEE Trans. Acoust.

Speech, Signal Processing, vol. ASSP-34, pp. 1124-1138, 1986.

[ 6 ]  T. Wigren, E. Abd-Elrady and T. Söderström, "Harmonic signal analysis with Kalman filters using periodic

orbits of ODEs", Proc. ICAASP 2003, Hongkong, China, 2003.

[ 7 ]  T. Wigren, E. Abd-Elrady and T. Söderström, "Least squares harmonic signal analysis using periodic orbits

of ODEs", to appear at  SYSID 2003, Rotterdam, the Netherlands, August  27-29, 2003.

[ 8 ]  R. V. Churchill, J. W. Brown and R. F. Verhey, Complex Variables and Applications - third edition.

Auckland, New Zealand: Mc Graw Hill International, 1974.

[ 9 ] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY: Academic Press, 1970.

[ 10 ] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification. Cambridge, MA: MIT Press,

1983.


