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Abstract

We consider the finite element discretization of the system of partial differential
equations describing the stress field and the displacements in a (visco)elastic inho-
mogeneous layered media in response to a surface load. The underlying physical
phenomenon, which is modelled, is glacial advance and recession, and the resulting
crustal stress state. We analyse the elastic case in more detail and present discretiza-
tion error estimates. The so-obtained linear system of equations is solved by an
iterative solution method with suitable preconditioning and numerical experiments
are presented.

1 Introduction

We consider the problem to compute the stress field σ and the displacements u in a
(visco)elastic inhomogeneous layered media in response to a surface load.

The underlying physical phenomenon, which is modelled, is glacial advance and reces-
sion, and the resulting crustal stress state. Recently, this problem has attracted much
attention in the Geophysical community. Various models have been tested and results
from numerical simulations have been compared with some analytical approaches in or-
der to check the hypothesis that the stress induced by postglacial readjustment processes
has triggered large earthquakes (of magnitude 8) in some regions in the Northern Hemi-
sphere. This hypothesis is supported by a number of large postglacial faults which have
been formed about 9000 to 13000 years ago.

An ongoing glacioisostatic recovery is registered in Central Scandinavia. The coastal
area of the northern Baltic Sea is rising nearly one centimeter per year. Accumulated
rebound would give up to 10 cm per decade, one meter per century, etc. In order for
isostatic equilibrium to be achieved, Hudson Bay still needs to rebound as much as 150
m (cf. [29]). The amount of residual rebound, coupled with low and declining rates of
recovery, imply that the lithosphere may not completely reach equilibrium within itself
before the next glacial period. All evidence at hand indicate that postglacial rebound has
to be taken into account in the context of other problems, such as for example predicting
safety of nuclear waste repositories.
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The simulations of postglacial rebound are usually performed by first gradually impos-
ing a surface load of certain profile until the maximum height of the icecap is reached and
subsequently diminishing the load, computing at each step the corresponding stress field.
One important characteristic of the above is the very long time period (several tens of
thousands of years) for which the processes have to be simulated. Clearly, this poses high
demands on the efficiency and robustness of the numerical solution techniques, in order
to enable solving large models (with enough spatial resolution) within a feasible overall
simulation time.

Currently, numerical simulations are performed using available commercial finite ele-
ment packages. Several obstacles have been noticed. First, almost all well-tested finite
element packages are engineering-oriented and are designed to solve the stiffness equation

∇σ + f = 0,

which turns out to be overly simplified for geophysical applications and does not include
phenomena like self-gravitation and isostasy1, for instance. Secondly, some of the simula-
tion runs took very long execution time (6-10 days, as reported in [14], for example).

In this paper we discretize the model in its original formulation using standard Fi-
nite element method (FEM) and solve the arising linear algebraic systems of equations
with preconditioned iterative solution methods. The aim is to construct and test vari-
ous preconditioning techniques, and demonstrate their efficiency on large field benchmark
problems.

The paper is organized as follows. Section 2 contains the problem formulation in terms
of partial differential equations and boundary conditions. In Section 3 we describe the cor-
responding weak formulation and a Galerkin a finite element formulation of the problem for
the purely elastic case and the properties of the underlying linear algebraic system of equa-
tions. Numerical experiments to compute the elastic response of a pre-stressed body under
surface load are presented in Section 4 and are compared with the results obtained when
modelling the same phenomenon using a commercial Finite Element package. Conclusions
and some directions for further research are given in Section 5.

2 Description of the problem

2.1 Governing equations

If a large elastic solid is put in a gravitational field, it becomes gravitationally pre-stressed
with pressure p(0). This pressure can be regarded as an initial condition imposed on the
problem and does not cause deformations. When a new stress σ is applied to the body, it

1Isostasy is the concept that the elevation of the Earth’s surface (over tens of millions of years) seeks
a balance between the weight of lithospheric rocks and the buoyancy of asthenospheric ”fluid” (nearly-
molten rock). Gentle regional movement of the lithosphere occurs in response to short-term (thousands to
millions of years) loading and unloading, as by ice, erosion and sediment deposition.
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causes strain ε according to the corresponding constitutive relations and the total stress T
becomes (see the derivations in [27] and [28], for example)

T = σ − p(0) I, (1)

where I denotes the corresponding unit tensor. When motion with velocity u occurs,
advection of pre-stress takes place, namely

T =

{
σ − p(0)

∣∣
t0

I, for a viscous body

σ − p(0)
∣∣
t0

I + u · ∇p(0) I, for an elastic body.
(2)

Taking next into consideration the equation of motion (Newton’s law), namely,

ρ(0)∂
2u

∂t2
= ∇ ·T + F, (3)

where F is the body force and ρ(0) is density, we obtain the equation of motion for pre-
stressed body

ρ(0)∂
2u

∂t2
=

{
∇ · σ −∇p(0) + F, for a viscous body

∇ · σ −∇p(0) +∇(u · ∇p(0)) + F, for an elastic body.
(4)

Since the body force F is due to gravity, we have

F = ρg = −ρ∇φ, (5)

where g is the gravity force (g = [0, 0,−g]T ), g is the acceleration of gravity, φ is the
gravitational potential, which is related to the density ρ via Poisson’s equation ∇2φ =
4πGρ, and G is the universal gravity constant. Here it is assumed that the x3-axis is
vertical and pointing upwards, as indicated in Figure 2.

Neglecting the acceleration terms on the left side of (4), which are negligible for mo-
tion near isostatic equilibrium, we obtain the following equation of motion for isostatic
processes,

0 =

{
∇ · σ −∇p(0) − ρ∇φ, for a viscous body

∇ · σ −∇p(0) +∇(u · ∇p(0))− ρ∇φ, for a elastic body.
(6)

Next we consider the terms ∇p(0) and ρ∇φ. In the initial state of zero motion, Newton’s
law becomes

0 = −∇p(0) + F0 = −∇p(0) − ρ(0)∇φ0, i.e., ∇p(0) = −ρ(0)∇φ0. (7)

Let now ρ(∆), φ(∆) be the deviations from the initial state, i.e.,these can be seen as changes
(perturbations) of ρ(0) and φ(0) and are related to the local incremental fields:

ρ(r, t) = ρ(0)(r) + ρ(∆)(r, t) = ρ(0)(r)−∇ · (ρ(0)u),
φ(r, t) = φ(0)(r) + φ(∆)(r, t).

(8)
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In the derivation of the modelling equations we also include the equation of continuity
(conservation of mass), namely (see, for instance [15]),

ρ(∆) +∇ · (ρ(0)u) = 0. (9)

We substitute (8) and (9) into (6) and obtain

−∇p(0) − ρ∇φ = −∇p(0) − (
ρ(0) −∇ · (ρ(0)u)

) (∇φ0 +∇φ(∆(
)

(10)

= −∇p(0) − ρ(0)∇φ(0) +∇ · (ρ(0)u)φ(0) − ρ(0)∇φ(∆) +∇ · (ρ(0)u)∇φ(∆) (11)

= −∇p(0) +∇p(0) − ρ(0)∇φ(∆) − ρ(∆)∇φ(0) − ρ(∆)∇φ(∆) (12)

= −ρ(0)∇φ(∆) +∇ · (ρ(0)u)(∇φ(0) +∇φ(∆)) (13)

= −ρ(0)∇φ(∆) + ρ(0)∇ · u∇φ (14)

= −ρ(0)∇φ(∆) − ρ(0)g(0)ed∇ · u. (15)

Therefore, relations (6) become

0 =

{
∇ · σ − ρ(0)g(0)ed∇ · u− ρ(0)∇φ∆, for viscous body

∇ · σ +∇(u · ∇p(0))− ρ(0)g0ed∇ · u− ρ(0)∇φ∆, for elastic body.
(16)

From now on we consider only the second equation in (16), namely, for the elastic case
only,

∇ · σ︸ ︷︷ ︸
(A)

+∇(u · ∇p(0))︸ ︷︷ ︸
(B)

− ρ(0)g(0)ed∇ · u︸ ︷︷ ︸
(C)

− ρ(0)∇φ(∆)

︸ ︷︷ ︸
(D)

= 0 in Ω ⊂ Rd, d = 2, 3. (17)

Equation (17) is the material incremental momentum equation for quasi-static infinitesimal
perturbations of a stratified, compressible fluid Earth, initially in hydrostatic equilibrium,
subject to gravitational forces but neglecting internal forces (cf. [12]) and is the governing
balance equation describing the geophysical problem of postglacial rebound.

We recall, that σ is the Cauchy stress tensor, u = [ui]
d
i=1, d = 2, 3 is the displacement

vector in two or three dimensional space, p = −1
3
trace(σ) is pressure, ρ is density and g is

gravitational acceleration.
Consider now equation (17) in more detail. Term (A) describes the force from spatial

gradients in stress. Terms (C) and (D) describe perturbations of the gravitational force and
gravitational acceleration due to changes of density. Term (C) is referred to as the buoyancy
force. Equation (17) is usually simplified by the assumption for non-self-gravitating Earth.
In this case one can neglect the changes in the gravitational field and, thus, neglect term
(D). Further simplification can be obtained by the assumption that the Earth layer is
incompressible, i.e., ρ is constant. The latter would mean that ρ(∆) = 0 and the term
(C) would vanish also. For our considerations, only the first simplification is done and we
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consider further the model, applicable for compressible and incompressible Earth. Thus,
the momentum equation (17) becomes

∇ · σ +∇(u · ∇p(0))− ρ(0)g(0)∇ · u = 0 in Ω ⊂ Rd, d = 2, 3 (18)

in tensor notations, or σij,j + (p0
,juj),i − ρ(0)g(0)(uj),i = 0 elementwise.

Term (B) represents the so-called advection of pre-stress and describes how the hydro-
static background (initial) stress is carried by the moving material. It is observed (see [18]
for instance) that in almost all elastic problems of geodynamic interest the effect of the pre-
stress advection term turns out to be very modest. In the viscoelastic theory of isostacy,
however, the incorporation of this term has proven to be crucial for the successful modelling
of the underlying processes, the reason being that through this term deformation-induced
buoyancy restoring force is introduced, which is central to the physics of the glacial isostatic
adjustment process.

In the consideration below and for the numerical simulations one more simplification is
used, namely, it is assumed that the advection term describes the advection in the direction
of the gravity field only. Therefore, using the relation ∇p(0) = ρ(0)g0ed we finally rewrite
term (B) in the form

ρ(0)g(0)∇(u · ed), (19)

where ed = [0, 0,−1]T is a unit vector in the radial direction. Thus, u · ed is the vertical
component (ud) of the displacement field.

Incorporating the above simplifications with respect to terms (B), (C) and (D), we
obtain the following form of the governing equilibrium equation

∇σ + ρ(0)g(0)
(
∇(u · ed)− ed∇ · u

)
= 0 x ∈ Ω ⊂ Rd, d = 2, 3,

u = 0, x ∈ ΓD,
d∑

j=1

σijnj = γj, x ∈ ΓN = ∂Ω\ΓD.
(20)

Here Ω ⊂ Rd, d = 2, 3 is considered to be an open connected and bounded domain with a
boundary ∂Ω, which is split into ΓD and ΓN in a time-independent manner, and ΓD has a
strictly positive measure.

2.2 Constitutive relations

We assume small deformations, i.e. strain ε and displacements u are related as

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, 1 ≤ i, j ≤ d. (21)

In order to completely formulate the problem in terms of displacements, we use the con-
stitutive relation between strain and stress. Consider the following two cases.

Case 1: Consider a purely elastic Earth model, as illustrated in Figure 1(a).
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Figure 1: Two-dimensional flat Earth models

Case 2: Consider a layered viscoelastic Earth model, as shown in Figure 1(b), where both
elastic and viscoelastic materials are present.

For both cases, the governing equation to be solved is (20), however with different consti-
tutive relations. In Layer 1 the material is elastic and stress and strain are related as for
linear elastic anisotropic materials

σij = cijklεkl, (22)

where ε is the strain tensor and cijkl is the elasticity tensor.
In Case 2 the material is assumed to be elastic on one part of the domain (Layer 1) and

viscoelastic in the rest of Ω (Layers 2 and 3) obeying a constitutive relation of the form
(see, for instance [16])

σij(x, t) = cijlkεkl︸ ︷︷ ︸
(E)

+

t∫

t0

bijkl(t− s)εkl(s) ds

︸ ︷︷ ︸
(V )

. (23)

Relation (23) is referred to as Hooke’s law with memory. It involves two different tensors
representing the stress relaxation function and describes rocks with long memory for which
the state of stress at time t depends on the deformation at time t (term (E)) but also
on the deformations at times prior to t (term (V)). The tensor cijkl measures the elastic
response and the tensor bijkl is the tensor of stress relaxation functions.
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Figure 2: Boundary conditions

In Earth models, the so-called Maxwell-viscoelastic relation is often used (cf. [13]),
where

t∫

t0

bijkl(t− s)εkl(s) ds =

t∫

0

b(t− s)
∂

∂τ

(
∂ui(s)

∂xj

+
∂uj(s)

∂xi

)
ds

with b(t) = µet/τM , where µ is the shear modulus (the first Lamé constant) and τM is the
so-called Maxwell time2.

2.3 Boundary conditions

We assume that the load is plain-symmetric in 3D (axisymmetric in 2D) both in x- and y-
directions, and we will consider only a quarter of the true domain of interest, as illustrated
in Figure 2. The surface load is acting on the surface LMS, (z = 0). The load is imposed
as a Heaviside function with different profiles, for instance of boxcar, elliptic or parabolic
shape (see [13]). Boxcar and elliptic profiles in 2D are illustrated in Figure 1(a) and 1(b).
On the free from load surface PQRS\LMS, the normal stress σ33 and shear stress σ13

are both zero. In terms of displacements, homogeneous Neumann boundary conditions
are imposed there, i.e., ∂ui/∂n = 0, i = 1, 2, 3 and n is the outer unit normal vector
(n = [0, 0, 1] in this particular case).

Faces CDSR, ADSP are symmetry planes. Across solid-solid boundaries, namely all
side surfaces ABQP, BCRQ the boundary conditions are determined from the continuity
of stress and displacements conditions, i.e., ∂ui/∂n = 0, i = 1, 2, 3 and on the edge DS the
displacements in x- and y-directions are imposed to be zero due to the assumed symmetries.

Across the solid-fluid boundary ABCD at z = −H the normal stress is continuous:
σ33|z=−H = ρfg

(0)ud

∣∣
z=−H

, where ρf is the density of the fluid and shear stress σ13 is zero.

2Maxwell time τM is defined as the ratio η/µ, where η is the dynamic viscosity. The general definition
of dynamic viscosity is [shear stress] = η[strain rate]. Thus, for linear elasticity η = 1/2.
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In terms of displacements, the boundary conditions at z = −H are of Robin (mixed) type,
i.e., ∂ud/∂n = ρfg

(0)ud and ∂ui/∂n = 0, i = 1, 2.

3 An elastic model

3.1 Variational formulation

The equilibrium state of an isotropic pre-stressed elastic material body, subject to body
forces f and surface forces γ, described by relations (20), can be rewritten as follows:

−
d∑

j=1

∂σij(u)

∂xj

+ ρg
∂ud

∂xi

− ρg

(
d∑

j=1

∂uj

∂xj

)
e

(i)
d = fi, x ∈ Ω, i = 1, · · · , d (24)

d∑
j=1

σij(u) = γj, ; x ∈ ΓN ,

u = 0, ; x ∈ ΓD.

Here e
(i)
d are the components of the vector ed.

The Hooke’s law for linear elasticity and isotropic material reads as

σij = 2µεij + λ

(
d∑

s=1

εss

)
δij (25)

or, in tensor form,
σ = 2µε + λtrace(ε).

Using (21), it can be easily seen that∇·u = trace(ε) = (1+ν)(1−2ν)
E(1−ν)

trace(σ). The equilibrium
conditions for the displacements can be formulated as a constrained optimization problem,
where the displacements u at equilibrium minimize the following energy functional

Φ(u) =
∫
Ω

[
µ

d∑
i,j=1

(εij(u))2 + λ
2
(trace(ε))2+

ρ g
(
∇(u · ed) · u− (∇ · u)(ed · u)

)
− f · u

]
dΩ− ∫

ΓN

γ · u dΓ

=
∫
Ω

[
µ

d∑
k=1

(∇uk)
2 − µ

2
(∇× u)2 + λ

2
(∇ · u)2+

ρ g
(
∇(u · ed) · u− (∇ · u)(ed · u)

)
− f · u

]
dΩ− ∫

ΓN

γ · u dΓ

(26)

defined for all admissible displacements u in the function space V = {u ∈ H1(Ω)d;u =
0 on ΓD,

∫
Ω
∇× u dΩ = 0}.
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From (26) an analogous form as the Lamé-Navier equations of elasticity is obtained,
namely,

−2µ∆u− λ∇(∇ · u)− µ∇× (∇× u)− ρg
(
∇ (u · ed)− ed∇ · u

)
= f in Ω

λ(∇ · u)v + 2µε · v = γ on ΓN

u = 0 on ΓD

(27)

where µ =
E

2(1 + ν)
and λ = µ

2ν

1− 2ν
are the Lamé coefficients and E and ν are Young’s

modulus and Poisson’s ratio, respectively.
As can be seen, when ν → 1

2
, then λ → ∞ and the functional Φ(u) becomes very

sensitive to small perturbations of the displacement field u. A usual approach to handle
(nearly) incompressible materials is to first regularize the problem by introducing the scaled
(hydrostatic) pressure p as an auxiliary variable,

p =
λ

µ
∇ · u =

ν

µ(1− ν)
trace(σ) (28)

and consider the following coupled differential equation problem
{
−2µ∆u− µ∇× (∇× u)− ρg

(
∇ (u · ed)− ed∇ · u

)
−µ∇p = f

µ∇ · u −µ2

λ
p = 0

(29)

with boundary conditions as given in (27).
In the sequel we consider a slightly more general formulation of the problem (29),

namely, we consider an advection term of the form

−∇(u · b) + c∇ · u, (30)

where b and c are coefficient vectors.

Remark 3.1 As is well known, from the properties of the operator ∇ we have that for
any two differentiable vector functions f and g there holds

∇(f · g) = (f · ∇)g︸ ︷︷ ︸
(a)

+ (g · ∇)f︸ ︷︷ ︸
(b)

+ f × (∇× g)︸ ︷︷ ︸
(c)

+ g × (∇× f)︸ ︷︷ ︸
(d)

.q (31)

From (31) we see that the term ∇(u · b) is of more general form as compared to the first-
order term in the linearized Navier-Stokes equations, for instance, which latter is of the
form (b).

In the case when b(= g) is a constant vector, terms (a) and (c) in (31) vanish.

The target problem reads now as follows.
{ −2µ∆u− µ∇× (∇× u)−∇(u · b) + c∇ · u −µ∇p = f

µ∇ · u −µ2

λ
p = 0

(32)
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3.2 Variational formulation

The corresponding variational formulation is defined in terms of the Sobolev spaces
V = (H1

0 (Ω))
d
, d = 2, 3 equipped with the norm ‖ · ‖V = ‖ · ‖1 and P = {p ∈

L2(Ω);
∫
Ω

µ p dΩ = 0}, equipped with the norm ‖ · ‖P = ‖ · ‖0. It leads to the follow-
ing mixed variable problem:
Seek u ∈ V and p ∈ P such that

{
a(u,v) + b(v, p) = (f ,v), ∀v ∈ V,

b(u, q)− c(p, q) = 0, ∀q ∈ P,
(33)

where

a(u,v) =
∫
Ω

[
2µ

d∑
k=1

(∇uk) · (∇vk)− µ(∇× u) · (∇× v)−∇(u · b) · v + (∇ · u)(c · v)

]
dΩ

b(u, p) =
∫
Ω

µ(∇ · u)p dΩ = − ∫
Ω

µ∇(p) · u
c(p, q) =

∫
Ω

µ2

λ
p q dΩ

(u, f) =
∫
Ω

(u · f)dΩ

〈u, γ〉 =
∫

ΓN

u · γ dΓ

For the above defined bilinear form b(u, p), the following inf-sup (or Ladyzhenskaya-
Babuška-Brezzi) condition holds

sup
u∈V\{0}

b(u, p)

‖u‖V ≥ γ‖p‖P ,∀p ∈ P, µ(x) ≥ µ0 > 0, ν0 ≤ ν(x) ≤ 1, (34)

where ‖p‖P =

(∫
Ω

p q dΩ

)
.

In the derivations to follow we use the boundedness of the bilinear forms b(·, ·) and
c(·, ·),

|b(u, p)| ≤ C(b)‖u‖1‖p‖0, where C(b) = maxΩ µ
0 ≤ c(p, q) ≤ C(c)‖p‖0‖q‖0, where C(c) = maxΩ(µ/λ).

(35)

We note that c(p, q) = 0 for incompressible materials (λ = ∞).
The standard way to ensure existence and uniqueness of the solution of a variational

problem is to show boundedness and coercivity of the bilinear form a(u,v) and then apply
the Lax-Milgram lemma.

Boundedness: There exists C1 such that |a(u,v)| ≤ C1‖u‖V‖v‖V, ∀u,v ∈ V

Coercivity: There exists C2 such that a(u,u) ≥ C2‖u‖2
V , ∀u ∈ V
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We address next the boundedness and coercivity of the bilinear form a(·, ·). We define

the auxiliary bilinear forms â(·, ·), ã(·, ·) and ˜̃a(·, ·) as

â(u,v) =
∫
Ω

2µ
d∑

k=1

(∇uk) · (∇vk)dΩ,

ã(u,v) =
∫
Ω

[
2µ

d∑
k=1

(∇uk) · (∇vk)− µ(∇× u) · (∇× v)

]
dΩ,

˜̃a(u,v) =
∫
Ω

(
−∇(u · b)v + (∇ · u)(c · v)

)
dΩ.

By construction, a(u,v) = ã(u,v) + ˜̃a(u,v). We make now the following assumptions for
the coefficient vectors b(x) ∈ Rd and c(x) ∈ Rd, namely, that there exist constants α1, α2

and β, independent on u and v, such that there holds

|bi(x)| ≤ α1 i = 1, · · · , d (36)

|∇ · b| ≤ α2 (37)

|c| ≤ β (38)

We assume also that the problem (33) possesses a solution and aim to show coercivity (in
some weak form) and to derive quasi-optimal error bounds for the corresponding Galerkin
finite element method.

First we note, that the dominating part ã(u,v) of a(u,v) is bounded and coercive. The
latter can be seen by using Korn’s inequality (cf. for example, [3]). It is known that there
exists a constant K(Ω), which may depend only on the domain Ω and on the boundary
conditions, such that

K(Ω)â(u,u) ≤ ã(u,u) ≤ 2 â(u,u) ∀u ∈ V. (39)

Therefore, there exist constants K1 and K2, which depend only on Ω and on the boundary
conditions, such that

|ã(u,v)| ≤ K1‖u‖1‖v‖1 (40)

ã(u,u) ≥ K2‖u‖2
1. (41)

We consider now the first-order terms in ˜̃a(u,v). The following estimates hold.
∣∣∣∣
∫
Ω

∇(u · b)vdΩ

∣∣∣∣ ≤
d∑

k=1

∫
Ω

∣∣∣∣
∂

∂xk

(uk bk)vk

∣∣∣∣ dΩ

≤
d∑

k=1

∫
Ω

∣∣∣∣
∂uk

∂xk

bk vk

∣∣∣∣ dΩ +
d∑

k=1

∫
Ω

∣∣∣∣uk
∂bk

∂xk

vk

∣∣∣∣ dΩ

≤ α1 d‖u‖1‖v‖0 + α2 d‖u‖0‖v‖0.

(42)

∣∣∣∣
∫
Ω

(∇ · u)(c · v)dΩ

∣∣∣∣ ≤
d∑

k=1

∫
Ω

|(∇ · u)ck vk| dΩ

≤ β d‖u‖1‖v‖0.

(43)
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Therefore, ∣∣∣˜̃a(u,v)
∣∣∣ ≤ d(α1‖u‖1 + α2‖u‖0 + β‖u‖1)‖v‖0

= d(α1 + β)‖u‖1‖v‖0 + dα2‖u‖0‖v‖0

≤ σ‖u‖1‖v‖0,

(44)

where σ = d(α1 + α2 + β). We use now Young’s inequality, (ab ≤ ε
2
|a|2 + 1

2ε
|b|2) as follows

‖u‖1‖v‖0 ≤ ε

2
‖u‖2

1 +
1

2ε
‖v‖2

0, ∀ε > 0. (45)

Combining (44) and (45) we obtain

∣∣∣˜̃a(u,v)
∣∣∣ ≤ σ

ε

2
‖u‖2

1 + σ
1

2ε
‖v‖2

0. (46)

We want to prove a relation of the type (G̊arding inequality) a(u,u) ≥ C(1)‖u‖2
1−C(2)‖u‖2

0,
where C(1) > 0 holds for all u ∈ V. We show below that this is true for a particular choice
of the parameter ε in (46).

a(u,u) = ã(u,u) + ˜̃a(u,u)

≥ K2‖u‖2
1 −

∣∣∣˜̃a(u,u)
∣∣∣

≥ K2‖u‖2
1 − σ ε

2
‖u‖2

1 − σ 1
2ε
‖v‖2

0

=
(
K2 − σ ε

2

) ‖u‖2
1 − σ 1

2ε
‖v‖2

0.

(47)

We choose now ε such that C(1) ≡ K2 − σ ε
2

> 0, i.e.,

0 < ε <
2K2

σ
.

For the latter choice of ε, C(1) > 0 and C(2) ≡ σ 1
2ε

> 0.
Thus, we obtain that for all u ∈ V there holds

a(u,u) ≥ C(1)‖u‖2
1 − C(2)‖u‖2

0, (48)

where C(1) > 0 and C(2) > 0 do not depend on u.
To show boundedness of a(u,v), we denote C(a) = 2K1 + σ and using the relation

‖ · ‖0 ≤ ‖ · ‖1, and we find

|a(u,v)| ≤ 2|â(u,v)|+ σ‖u‖1‖v‖0

≤ 2K1‖u‖1‖v‖1 + σ‖u‖1‖v‖0

≤ C(a)‖u‖1‖v‖1.

(49)

Remark 3.2 For incompressible materials, the term c∇ · u becomes zero. When in ad-
dition b = ed, then ∇ · b = 0 and we see that in this case the bilinear form a(u,v) is
coercive.
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3.3 Finite element discretization and error estimates

Let Vh and P h be finite element subspaces of V and P correspondingly, and uh, vh, ph

and qh be the discrete counterparts of u, v, p and q. The discrete formulation of (33) reads
then as follows:
Seek uh and ph, such that relations (50) hold for all vh ∈ Vh and for all qh ∈ P h.

a(uh,vh) + b(vh, ph) = (fh,vh) ∀vh ∈ Vh,
b(uh, qh)− c(ph, qh) = 0, ∀qh ∈ P h.

(50)

As is well known, in order to obtain a stable discrete formulation, the finite element spaces
Vh and P h cannot be arbitrarily chosen. They have to form a stable pair, i.e., such that
the discrete analog of the inf-sup condition should hold, namely,

sup
uh∈Vh

b(uh, ph)

‖uh‖Vh

≥ γh‖ph‖P h ,≥ γ0‖ph‖P h ,∀ph ∈ P h, (51)

for some positive constant γ0 > 0, which for practical purposes should not be very small.
The interpretation of the discrete LBB condition (51) is that if the LBB constant γ0

is independent on the discretization parameter h, then the rate of convergence of the FE
solution uh to the solution of the continuous variational problem is bounded uniformly
with respect to the problem parameters E and ν.

There exist a variety of stable finite element pairs. A preferred choice is uh ∈ πh
2

(componentwise) and ph ∈ πh
1 , where πh

2 and πh
1 are the spaces of piecewise quadratic and

piecewise linear polynomials. The discretization error for u and p is shown to be

‖u− uh‖V + ‖p− ph‖P ≤ const

(
inf

vh∈Vh
‖u− vh‖V + inf

qh∈P h
‖p− qh‖P

)
,

for any elements vh ∈ Vh and qh ∈ P h.

3.3.1 Error estimates

As shown above, the bilinear form a(u,v) is not coercive in general. Following [1], we
derive quasi-optimal error bounds for the Galerkin method, applied to the problem under
consideration.

Assume the following assumptions hold.

(A1) |a(u,v)| ≤ C‖u‖1‖v‖1

(A2) Let VhN ⊂ V, hN = 1/(Nd), N = 1, 2, · · · , be a sequence of finite dimensional
subspaces of V. (For notational simplicity we omit the subscript N .) Let there exist
a sequence of positive numbers {δh}∞N=1, such that lim

N→∞
δh = 0 and that for every

e ∈ Vh and z ∈ P h, satisfying

a(e,v) + b(v, z) = 0, ∀ v ∈ Vh

b(e, q)− c(z, q) = 0, ∀ q ∈ P h

13



there holds that
‖e‖0 ≤ δN‖e‖1.

Let now u ∈ V and p ∈ P be given. Let Vh and P h be finite-dimensional subspaces of V
and P correspondingly, and assume that there exist u∗h ∈ Vh and p∗h ∈ P h, such that

a(u− u∗h,vh) + b(vh, p− p∗h) = 0, ∀vh ∈ Vh

b(u− u∗h, qh)− c(p− p∗h, qh) = 0, ∀qh ∈ P h.
(52)

Then, choosing vh = u− u∗h = u− uh + uh − u∗h and qh = p− p∗h = p− ph + ph − p∗h, and
subtracting the two equations in (52) we arrive at

a(uh − u∗h,uh − u∗h) + c(ph − p∗h, ph − p∗h) = a(u− uh,uh − u∗h) + b(uh − u∗h, p− ph)
−b(u− uh, ph − p∗h) + c(p− ph, ph − p∗h)

(53)
which holds for any uh ∈ Vh and any ph ∈ P h. We assume now that either

γ‖ph‖0 ≤ sup
uh

b(uh, ph)

‖uh‖1

or α‖ph‖2
0 ≤ c(ph, ph), α > 0,

is satisfied. The former option holds true for LBB-stable discretizations and the latter
option holds true for stabilized discretizations.

We combine the assumption (A2) with e = uh − u∗h and (48):

a(uh − u∗h,uh − u∗h) + c(p− p∗h, p− p∗h) ≥ a(uh − u∗h,uh − u∗h) ≥
C(1)‖uh − u∗h‖2

1 − C(2)‖uh − u∗h‖2
0 ≥ (C(1) − C(2)δ2

h)‖uh − u∗h‖2
1

(54)

Next we assume that a discrete LBB condition holds true (given in (51)) and obtain the
following relations:

‖p− p∗h‖0 ≤ ‖p− ph‖0 + ‖ph − p∗h‖0

≤ ‖p− ph‖0 + 1
γ

sup
vh

b(vh,ph−p∗h)

‖vh‖1

≤ ‖p− ph‖0 + 1
γ

sup
vh

b(vh,ph−p)
‖vh‖1 + 1

γ
sup
vh

b(vh,p−p∗h)

‖vh‖1

≤ ‖p− ph‖0 + C(b)

γ
‖p− ph‖0 + 1

γ
sup
vh

a(u−u∗h,vh)

‖vh‖1

≤
(
1 + C(b)

γ

)
‖p− ph‖0 + C(a)

γ
‖u− u∗h‖1,

(55)

where we have used the first part of (52). From the boundedness estimates, applied to
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(53), and (55) we obtain

a(uh − u∗h,uh − u∗h) + c(ph − p∗h, ph − p∗h)

≤ C(a)‖uh − u∗h‖1‖u− uh‖1 + C(b)‖u− uh‖1‖ph − p∗h‖0

+C(b)‖uh − u∗h‖1‖p− ph‖0 + C(c)‖ph − p∗h‖0‖p− ph‖0

≤ C(a)‖u− uh‖2
1 + C(a)‖u− u∗h‖1‖u− uh‖1

+2C(b)‖u− uh‖1‖p− ph‖0 + C(b)‖u− uh‖1‖p− p∗h‖0

+C(b)‖u− u∗h‖1‖p− ph‖0 + C(c)‖p− ph‖2
0 + C(c)‖p− ph‖0‖p− p∗h‖0

≤
[
α1C

(a) + α2C
(b) + α3

C(a)C(b)

γ
+ α4

C(a)C(c)

γ

]
‖u− u∗h‖2

1

+
[
C(a) + C(a)

4α1
+ C(b) + 1

2
C(b)

(
1 + C(b)

γ

)
+ C(a)C(b)

4α3γ

]
‖u− uh‖2

1

+
[
C(b) + C(c) + C(b)

4α2
+ 1

2
(C(b) + 2C(c))

(
1 + C(b)

γ

)
+ C(a)C(c)

4α4γ

]
‖p− ph‖2

0.

(56)

Combining (54) and (56) we obtain

[
C(1) − C(2)δ2

h − α1C
(a) − α2C

(b) − α3
C(a)C(b)

γ
− α4

C(a)C(c)

γ

]
‖u− u∗h‖2

1

≤
[
C(a) + C(a)

4α1
+ C(b) + 1

2
C(b)

(
1 + C(b)

γ

)
+ C(a)C(b)

4α3γ

]
‖u− uh‖2

1

+
[
C(b) + C(c) + C(b)

4α2
+ 1

2
(C(b) + 2C(c))

(
1 + C(b)

γ

)
+ C(a)C(c)

4α4γ

]
‖p− ph‖2

0.

(57)

Here α1 · · ·α4 are arbitrary positive constants. We see that if we choose α1 =
C(2)δ2

h

4C(a))
,

α2 =
C(2)δ2

h

4C(b))
, α3 =

C(2)δ2
hγ

4C(a)C(b) and α4 =
C(2)δ2

hγ

4C(a)C(c) we obtain

(C(1) − 2C(2)δ2
h)‖u− u∗h‖2

1

≤
[
C(1) + C(a) + C(a)2

C(2)δ2
h

+ C(b)

2

(
3 + C(b)

γ

)
+ C(a)2

C(2)δ2
h

(
1 + C(b)2

γ2

)]
‖u− uh‖2

1

+
[
C(b) + 1

2
(C(b) + 2C(c))

(
1 + C(b)

γ

)
+ 1

C(2)δ2
h
(C(b)2 + C(a)2C(c)2

γ2 )
]
‖p− ph‖2

0.

(58)

We finally obtain the following error estimate, which holds for all uh ∈ Vh, ph ∈ P and
N > N0:

‖u− u∗h‖1 + ‖p− p∗h‖0 ≤ C1‖u− uh‖1 + C2‖p− ph‖0 (59)

and the constants C1, C2 do not depend on the discretization parameter h.
Further (see [1], for instance), it can be shown that the discrete solution u∗h, p∗h exists

and it is unique for some sufficiently large N (small h), N > N0.

Remark 3.3 For small values of γ and δh we see from the latter derivations that the
constants C1 and C2 can become large and the so-obtained error estimates become quite
pessimistic. In practice, for the particular solution the constraints can take more favourable
values when the solution is smooth and/or is not near incompressibility.

15



3.3.2 Equal order discretization for displacements and pressure

Instead of using stable pairs of finite element spaces, one can use equal order finite elements
for displacements and pressure, and some stabilized version of the discrete problem (50).
For example, a stabilized and consistent formulation can be obtained in the following
manner. We take divergence of the first equation in (29), use the fact that divergence of
curl of any vector function is equal to zero, and add the resulting equation to the second
equation in (29), multiplied by a stabilization parameter σh. Formally we have the following
sequence of transformations.

−2µ∇ ·∆u− µ∇ · (∇× (∇× u))− ξ(u,b, c)− µ∇ · ∇p = ∇ · f
−2µ∆(∇ · u)− µ∆p− ξ(u,b, c) = ∇ · f

−µ
(
1 + 2µ

λ

)
∆p = ∇ · f + ξ(u,b, c)

µ∇ · u− σh µ
(
1 + 2µ

λ

)
∆p− µ2

λ
p = σh∇ · f + σhξ(u,b, c),

where ξ(u,b, c) = ∇ · (∇u · b)−∇ · c∇ · u. Then we consider the problem

−2µ∆u− µ∇× (∇× u)−∇u · b + c∇ · u− µ∇p = f

µ∇ · u− σh µ
(
1 + µ

λ

)
∆p− µ2

λ
p = σh∇ · f + σhξ(u,b, c)

(60)

By using a similar technique as in [5] one can show that discrete LBB condition holds
for problem (60) discretized by standard piecewise linear finite elements. The choice of the
stabilization parameter σh = O(h2) can be justified as in [4]. There, a defect-correction
algorithm is described in order to handle the term σhξ(u,b, c).

3.4 Preconditioners for saddle point systems

The finite element discretization of (50) leads to a linear algebraic system

A
[
uh

ph

]
≡

[
M BT

B −C

] [
uh

ph

]
=

[
rh

sh

]
(61)

The system matrix A admits a saddle point form and is unsymmetric indefinite. The
nonsymmetricity is due to the discretized first order terms in the block M .

We consider the following two approaches to precondition A by a matrix B, namely,
block-triangular preconditioner (62), and indefinite preconditioner, (63).

3.4.1 Block-triangular (one-sided) preconditioner

B1 =

[
D1 0
B −D2

]
(62)

Following the derivations in [6], assuming that M , D1 and D2 are nonsingular, we consider
the generalized eigenvalue problem

Ax = λB1x or (A− B1)x = (λ− 1)B1x
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which takes the form
[

D−1
1 (M −D1) D−1

1 BT

D−1
2 BD−1

1 (M −D1) D−1
2 (BD−1

1 BT + C)− I2

]
x = (λ− 1)x.

The latter relation shows how to choose D1 and D2 efficiently, namely D1 has to be a good
preconditioner to M and D2 should be a good preconditioner to the approximated negative
Schur complement of A, S = C + BD−1

1 BT .

3.4.2 Indefinite preconditioner

B2 =

[
D1 BT

B −R

]
(63)

The explicit form of the inverse of B2 is

[
D−1

1 −D−1
1 BT S−1BD−1

1 D−1
1 BT S−1

S−1BD−1
1 −S−1

]

where S = R + BD−1
1 BT . Consider again the generalized eigenvalue problem (A−B2)x =

(λ− 1)B2x. We obtain

B−1
2 (A− B2) =

[
D−1

1 (M −D1)−D−1
1 BT S−1BD−1

1 (M −D1) D−1
1 BT S−1(R− C)

S−1BD−1
1 (M −D1) −S−1(R− C).

]

Thus, by choosing D1 close enough to M and R to C, we can cluster the eigenvalues of
B−1

2 A around (1, 0) in the complex plane.
Let seek S in a factorized form S = N1N2. The indefinite preconditioner can then be

applied in a factorized form

B2 =

[
D1 0
B N1

] [
I1 D−1

1 BT

0 −N2

]
.

The preconditioner B2 is analysed and tested in [5, 6] for symmetric saddle point matrices
and has shown to be slightly outperforming the one-sided preconditioner in the latter case.

4 Numerical experiments for the elastic model

Problem 4.1 Consider a 2D model of flat Earth subject to a Heavyside load (Figure 3)
with mechanical and geometrical properties as shown in Table 1.

The domain is discretized using quasi-regular rectangular mesh and bilinear basis func-
tions.
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Figure 3: Geometry of the model

Geometrical data Mechanical parameters
lAB 10 000 km E 400 GPa
lAD 4 000 km ν 0.5
lEF 1 000 km g 9.82 m s−2

lED 2 km ρice 981 kg m−3

- - ρsolid 3000 kg m−3

Table 1: Mechanical and geometrical data

4.1 Forming the preconditioners

Two different strategies for approximation of the Schur complement of A, denoted Sd and
Sm, are tested. In Sd, the M -block is approximated with its diagonal and the negative
Schur complement is formed as −Sd = C + Bdiag(M)−1BT . In the second approach
−Sm = C + Mp, where Mp is the mass matrix for p (M ij

p =
∫

Ω
vivj dΩ, v ∈ P ). For both

approximations, in contrast to the exact Schur complement which in general is a dense
matrix, the sparsity of C is preserved.

For the block-triangular preconditioner B1, D1 is chosen as an incomplete LU factor-
ization of M and D2 as an incomplete Cholesky factorizations of Si, i = d,m. Although
M is nonsymmetric, the Schur complement approximations are symmetric.For B2, D1 is
chosen in the same way and N1 and N2 in B2 are chosen as incomplete Cholesky factors of
the Schur complement approximation.

4.2 Results

The geometry in Figure 3 is discretized with regular quadrilateral finite elements with
bilinear basis functions. All code is written in MATLAB and the experiments are performed
on a Sun Ultra-Sparc III 900 MHz processor running under Sun Solaris 9.

As iterative scheme the generalized conjugate gradient method minimizing residual
(GCG-MR), preconditioned with either B1 or B2 is employed. The iteration is terminated
when the norm of the residual is decreased six orders of magnitude compared to the initial
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residual.
In Tables 2 and 3, ilu(M ,q) denotes incomplete LU factorization of M with threshold q,

and cholinc(S,t) denotes incomplete Cholesky factorization of S with threshold t. Choosing
thresholds as zero (q = 0, t = 0) corresponds to a complete factorization. When the
problem size grows larger than N = 3267, the complete factorizations requires to much
effort and is not computed.

B2 B1

cholinc(S,t)
t 0 0.001 0.01 0 0.001 0.01

ilu(M ,q) N = 867
q = 0 15 14 13 15 15 14

q = 0.001 16 16 14 16 16 15
q = 0.01 24 23 22 23 23 22
ilu(M ,q) N = 3267
q = 0 17 17 15 18 17 15

q = 0.001 23 22 18 23 22 20
q = 0.01 43 42 40 37 38 40
ilu(M ,q) N = 12675
q = 0 - - - - - -

q = 0.001 38 34 34 39 38 38
q = 0.01 70 69 77 61 73 88
ilu(M ,q) N = 49923
q = 0 - - - - - -

q = 0.001 - 69 65 - 71 69
q = 0.01 - 162 127 - 176 141

Table 2: Iteration counts for S = C + Bdiag(M)−1BT

From Tables 2 and 3 it is evident that neither the choice of Schur complement approx-
imation or its factorization affects the iteration count significantly, since the number of
iterations are nearly constant along the rows in the two columns.

The choice of factorization of M is more crucial. Tables 2 and 3 show a dependence
between the iteration count and the choice of threshold q. From the tables, it is seen that
the iteration count grows nearly proportional to the square root of the problem size.

5 Remarks and intentions for a future research

1. The matrix block M is in general unsymmetric, not positive definite and not an
M-matrix. It can be close to singular and very ill-conditioned. To improve the con-
ditioning in the latter case, the following technique can be applied (see, for example
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B2 B1

cholinc(S,t)
t 0 0.001 0.01 0 0.001 0.01

ilu(M ,q) N = 867
q = 0 14 14 14 15 15 15

q = 0.001 16 16 16 16 16 16
q = 0.01 23 23 23 23 23 23
ilu(M ,q) N = 3267
q = 0 15 15 16 16 16 16

q = 0.001 20 20 20 21 21 21
q = 0.01 41 41 42 40 40 42
ilu(M ,q) N = 12675
q = 0 - - - - - -

q = 0.001 33 33 36 37 37 39
q = 0.01 68 71 80 74 78 89
ilu(M ,q) N = 49923
q = 0 - - - - - -

q = 0.001 - 68 72 - 71 72
q = 0.01 - 162 127 - 176 141

Table 3: Iteration counts for S = C + Mp

[11]. Consider

Ã =

[
M + BT WB BT

B −C

]
,

where W is some nonzero square matrix of order m.

Clearly, the solution of

[
M BT

B −C

] [
x
y

]
=

[
f1
f2

]
coincides with that of

[
M + BT WB BT

B −C

] [
x
y

]
=

[
f1 + BT W f2

f2

]

For the special choice W = 1
ε
I we obtain

[
M + 1

ε
BT B BT

B −C

]

This transformation is particularly useful if M is indefinite since M + 1
ε
BT B can be

made positive definite for small enough value of ε.

The question how to precondition M efficiently is not fully answered. One possible
approach to construct a robust preconditioner for M is to modify the corresponding
element stiffness matrices, as done in [7].
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2. The matrix B is in many cases rank deficient. This invalidates some techniques to
approximate the Schur complement, such as the one suggested in [9]

S−1 = (BBT )−1BMBT (BBT )−1.

Some condition number estimates in [11] are derived assuming full column rank of
BT and therefore are not applicable anymore.

3. To precondition the matrix block M , a suitable version of the AMLI-preconditioner
is a promising approach. The intention is to use some ideas from [7] and construct a
stabilized additive AMLI-preconditioner, based on hierarchical basis functions tech-
nique and modification of the element stiffness matrix.

4. Another preconditioning technique, the so-called Approximate Subspace Projection
(ASP) method, based on the promising work in [17], can be applied to construct a
good preconditioner to M .

5. Current experience has shown that the pressure mass matrix acts as a reasonably
good approximation of the block BMBT in the Schur complement. Further study
is needed to seek alternative choices how to construct and precondition S for the
preconditioners (62) and (63), for instance to build up S by assembling of locally
computed element Schur complement matrices.

6. Regarding the viscoelastic case, two approaches can be utilized:

(a) Apply an operator splitting and use numerical integration schemes to treat the
integral term in (23), (used for instance, in [21]). Doing so, the preconditioners
developed for the purely elastic case are directly applicable.

(b) Use a FE method in time and space (cf. [25], [20], [26], for instance). This
approach permits also more rigorous theoretical analysis with respect to er-
ror estimates and convergence. When combining time and space, multilevel
methods become also applicable for solving time-dependent problems. One
solves then for the whole time window globally, allowing in this way for var-
ious meshsizes in both time and space over the whole domain.
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