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Abstract

This reports is intended as a users manual for a package of MATLAB� scripts and functions,

developed for recursive prediction error identification of  nonlinear state space systems. The core of

the package is an implementation of an output error identification and scaling algorithm. The

algorithm is based on a continuous time, structured black box state space model of a nonlinear system.

The software can only be run off-line, i.e. no true real time operation is possible. The algorithm is

however implemented so that true on-line operation can be obtained by extraction of the main

algorithmic loop. The user must then provide the real time environment. The software package

contains scripts and functions that allow the user to either input live measurements or to generate test

data by simulation. The scripts and functions for the setup and execution of the identification

algorithm are somewhat more general than what is described in the references. There is e.g. support

for automatic re-initiation of the algorithm using the parameters obtained at the end of a previous

identification run. This allows for multiple runs through a set of data, something that is useful for data

sets that are too short to allow convergence of the algorithm.The re-initiation step also allows the user

to modify the degrees of the polynomial model structure and to specify terms that are to be excluded

from the model. This makes it possible to iteratively re-fine the estimated model using multiple runs.

The functionality for display of results include scripts for plotting of data, parameters, prediction

errors, eigenvalues and the condition number of the Hessian. The estimated model obtained at the end

of a run can be simulated and the model output plotted, alone or together with the data used for

identification. Model validation is supported by two methods apart from the display functionality.

First, calculation of the RPEM loss function can be performed, using parameters obtained at the end

of an identification run. Secondly, the accuracy as a function of the output signal amplitude can be

assessed.

Keywords:  Identification, Recursive algorithm, Nonlinear systems, State space model, Software,

Prediction error method, Scaling, MATLAB�.
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Prerequisites

This report only describes the parts of  [ 1 ] , [ 2 ], [ 3 ]  and [ 4 ]   that are required for the description

of the software. Hence the user is assumed to have a working knowledge of the algorithm of these

publications and of MATLAB�, see e.g. [ 5 ]. This, in turn, requires that the user has a working

knowledge of system identification and  in particular of recursive identification methods as described

in e.g. [ 6 ].

Revisions

This report describes revision 1.0 of the accompanying SW. The software has been tested with

MATLAB 5.3,  MATLAB 6.5, and  MATLAB 7.0 running on PCs and  UNIX workstations.

Installation

The file SW.zip is copied to the selected directory and unzipped. MATLAB is opened and a path is

set up to the selected directory using the path browser. The software is then ready for use.

Note: This report is written with respect to the software, as included in the SW.zip file. It may

therefore be advantageous to store the originally supplied software for reference purposes.

Error reports

When errors are found, these may be reported in an e-mail to either of the following addresses:

torbjorn.wigren@it.uu.se.

linda.brus@it.uu.se.
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1.  Introduction

Identification of nonlinear systems is an active field of research today. There are several reasons for

this. First, many practical systems show strong nonlinear effects. This is e.g. true for high angle of

attack flight dynamics, many chemical reactions and electromechanical machinery of many kinds, see

e.g. [ 1 ], [ 2 ], [ 3 ], [ 4 ]  and the references therein for further examples . Another important reason

is perhaps that linear methods for system identification are quite well understood today, hence it is

natural to move the focus to more challenging problems.

     There are already a number of identification methods available for identification of nonlinear

systems. These include grey-box differential equation methods, where numerical integration is

combined with optimization in order to optimize the unknown physical parameters that appear in the

differential equations. An alternative approach is to start with a discrete time black box model, and to

apply existing methodology from the linear field to the solution of the nonlinear identification

problem. This is the approach taken in the NARMAX method and its related algorithms. There a least

squares formulation can often be found, a fact that facilitates the solution. Other methods apply neural

networks for modeling of nonlinear dynamic systems. See [ 1 ], [ 2 ]  and the references therein for a

more detailed survey.

     This report focuses on software that implements a new nonlinear recursive system identification

method. Contrary to the above methods, this black box method estimates continuous time parameters

in a general state space model, with a known and possibly nonlinear measurement equation. The

identification method belongs to the class of  recursive prediction error methods (RPEMs)  and the

method is of output error type. Advantages include the fact that stability of the estimated model is

checked by a projection algorithm in each iteration step. The least squares approaches above cannot

guarantee a resulting stable model - this needs to be checked after the identification has been

completed. A further advantage is that the connection to the physical parameters can be retained to a

greater extent than if a discrete time nonlinear model is used as the starting point. There are also

disadvantages. A major disadvantage with output error methods is that they sometimes converge to a

local sub-optimal minimum point of the criterion function, meaning that careful initialization is

needed.  The effect of local minimum points is reduced  for the method described in [ 1 ] – [ 4 ], by a

method that scales the states, the estimated parameters of the model and, most importantly, the

Hessian of the criterion function. The scaling is implemented by a scaling of the sampling period used

when running the identification algorithm, see [ 1 ] – [ 3 ]  for details. One important aspect of this

scaling method is that corresponding un-scaled parameter values can be calculated in a post-

identification step.



4

       The nonlinear identification algorithm is based on a continuous time black box state space model.

This model is structured in that only one right hand side component of the ordinary differential

equation (ODE) model is parameterized as an unknown function. As shown in [ 1 ]  and [ 2 ]  this

avoids overparameterization. The restriction imposed on the model structure may seem restrictive.

However, it is motivated in [ 1 ]  and [ 2 ]  that the selected structure can always (locally in the states)

model systems with more general right hand sides, a fact that extends the applicability of the method

significantly. The selected parameterization of the right hand side function of the ODE is a linear-in-

the-parameters multi-variate polynomial in the states and input signals. The approach taken allows for

MIMO nonlinear system identification. The covariance matrix of the measurement disturbances is

estimated on-line.

      Recursive system identification is a software dependent technology. Hence, when publishing new

methodology in this field, it is relevant to also provide useful software for application of the presented

algorithms. This facilitates a quick practical exploitation of new ideas. The development of the

present MATLAB� software package is motivated by this fact.

      The present software package is developed and tested using MATLAB 5.3, MATLAB 6.5 and

MATLAB 7.0. The software package does not rely on any MATLAB toolboxes. It consists of a

number of scripts and functions. Briefly, the software package consists of scripts for setup, scripts for

generation or measurement of data, scripts for execution of the RPEM and scripts for generation and

plotting of results. There is presently no GUI, the scripts must be run from the command window.

Furthermore, input parameters need to be configured in one or several of the setup scripts, as well as

when running the scripts. In case of data generation by simulation, the ODE that defines the data

generating system must be specified in standard MATLAB style. The software can only be run off-

line, i.e. there is no support for execution in a real time environment. The major parts of the

algorithmic loop can however easily be extracted for such purposes.

The report is organized according to the flow of tasks a user encounters when applying

the scripts of the package. Before the software is described some basic facts about the model and the

scaling method are reviewed.

2.  Model

The nonlinear MIMO model to be defined here is used for estimation of an unknown parameter vector

θθθθ  from measured inputs ( )u t and outputs ( )ym t , given by

( ) ( ) ( ) ( ) ( ) ( ) ( )( )u t u t u t u t u tn
k k

n T
k= 1 1

1... ... ...

( ) ( ) ( )( )ym m m p

T
t y t y t= , ,...1

( 1 )
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The superscript ( )k denotes differentiation k times. The starting point for the derivation of the model

is the following n :th order state space ODE
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where ( )x = −x x xn n
T

1 1...  is the state vector. The following polynomial parameterization of the

right hand side function of (2 ) is used
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Please see example 5 below for a low order example of the above parameterization. In order to obtain

a discrete time model that is suitable for scaling, the Euler integration method is applied to (2 ). The

main reason for using the Euler method is that the sampling appears explicitly and linearly in the right

hand side of the resulting difference equation model ( 5 ) . This is convenient when the scaling

algorithm is introduced. The result of the discretization is
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It can be remarked that the Euler method may require fast sampling in order not to introduce

significant discretization errors. This is fortunately a less important effect in system identification

applications. The reason is that the minimization algorithm uses the parameters as instruments to fit

the model output to the measured data, as expressed by the criterion function. Even if an additional

bias would be introduced in the estimated parameters, the input-output properties of the identified

model can be expected to describe the data well.

3.  Scaling

During development of the RPEM described in [ 1 ]  -  [ 4 ] , it was noticed that problems with

convergence to false local minimum points of the criterion were often highly related to the selection

of the sampling period. The sampling period of course needs to be short enough during measurement,

in order to capture the essential dynamics of the identified system. Hence the measurement sampling

period cannot be arbitrarily selected. However, since the sampling period appears explicitly in the

model ( 5 ) and in the corresponding gradient difference equation, it is straightforward to apply

identification algorithms based on ( 5 )  with another, scaled value of the sampling period. This idea

affects the updating of the states, the gradient and any projection algorithm that is used to control the

stability of the model. A scale factorα  appears before the multiplication with the sampling period TS

in those three quantities. To explain the details, the scale factor α  and the scaled sampling period

TS
Scaled  are first defined as
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S= α . ( 7 )

The model ( 5 ), ( 6 ) , as applied in the identification algorithm is then transformed into
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where the superscript s denotes scaled quantities. Note that the original sampling period must be

retained in all time arguments, so as to refer to the correct measurement times. The gradient follows

by differentiation of ( 8 ) and ( 9 )
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Note that the above change from θθθθ  to θθθθ s  is not to be treated as a change of variables in the

differentiation leading to ( 10 ) and ( 11 ). The originally derived gradient is applied, but with a scaled

sampling period. The last affected quantity of the algorithm is the projection algorithm that becomes

(cf. [ 1 ]  )
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In ( 12 ), ( )S s sθθθθ  denotes the linearized system matrix of the model, DM denotes the model set,

here defined as the asymptotically stable models with a margin δ  to the stability limit. The last

equation stops the updating of the parameter vector in case the update would result in values outside

the model set. Other details of an RPEM where the scaling algorithm is used can be found in [ 1 ] – [

4 ] .

When a scaled value of the sampling period is applied, the algorithm still attempts to

minimize the criterion, thereby obtaining other minimizing parameter values than when the true

sampling period is used. When testing the scaling algorithm  experimentally, dramatic improvements

was sometimes observed in the algorithmic behavior. Convergence speeds could be improved and

initial values that lead to divergence and instability could be made to work well.

The application of the scaling algorithm results in other estimated parameter values

than what would be obtained without scaling. Fortunately, as shown in [ 2 ], the original parameters

can be calculated from the estimated ones . The transformation is given by a diagonal transformation

matrix that is a function of the applied scale factor. The analysis of the effect of the scaling is

continued in [ 3 ] , where the effect of the conditioning of the Hessian of the criterion function is

analysed in detail. This shows that the effect of the scaling is quite dramatic. Changes of the condition

number by several orders of magnitude was obtained there, for a simple simulated second order

example.

4.  Software package overview

The software package is command driven, i.e. no GUI is available. It consists of a number of

MATLAB scripts and functions. These are described in the next subsection.

 

4.1  Scripts, functions and command flow

Roughly, the scripts and functions can be divided into five groups:

• Live data measurements. The two scripts of this group set up and perform clocked live data

measurements. The scripts are SetupLive.m and MeasurementMain.m.

• Simulated data generation. The four scripts of this group define a dynamic system, that is then

used for generation of simulated data. The scripts and functions are  SetupData.m, f.m, h.m and

GenerateData.m.
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• Recursive identification. The five scripts of this group perform the actual identification tasks,

supporting user interaction. The scripts and functions are SetupRPEM.m, RPEM.m, h_m.m,

dhdx_m.m and ReInitiate.m.

• Supporting functions - not called by the user. The four functions of this group are called by scripts

of the previous group. They are all related to the implementation of the RHS model of the

identified ODE. The scripts are GenerateIndices.m, f_m.m, dfdx_m.m and dfdtheta_m.m.

• Preparation and display of results. There are eleven scripts in this group. They all prepare,

compute and display results of the identification process. The scripts are PlotData.m,

SimulateModelOutput.m, PlotParameters.m, PlotPredictionErrors.m, PlotEigenvalues.m,

PlotCondition.m, ComputeRPEMLossFunction.m, PlotModelOutput.m,

PlotSystemAndModelOutput.m, PlotResidualErrors.m and MeanResidualAnalysis.m.

These groups of scripts and functions need to be operated in a particular order to make

sense. This order of execution between scripts and functions is displayed with arrows in Figure 1. A

single directional arrow indicates that the script/function pointed at may be executed only after the

execution of the pointing script/function. See Figure 1 for details.

There are three major ways to exploit the five groups of scripts and functions.

1. In case the user has input and output signals available, the first step is to define and run the script

SetupLive.m. This sets basic parameters like the sampling period. The user can then proceed

directly to use the groups Recursive Identification and Preparation and display of results. The

data, which can be simulated or live, should be stored in the (row) matrices u and y .

2. In case the user is to perform live measurements, all the steps of the Live data measurement group

should be executed first. The user can then proceed directly to use the groups Recursive

Identification and Preparation and display of results.

3. In case  the user intends to use simulated data, this data can be generated by execution of the

scripts and functions of the group Simulated data generation. The user can then proceed directly

to use the groups Recursive Identification and Preparation and display of results.
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4.2  Restrictions

The main restrictions of the software are

• The software is command line driven - no GUI support is implemented.

• The software does not support true real time operation - there is no real time OS support

implemented.

• The software has been tested and run using  MATLAB 5.3, MATLAB 6.5 and MATLAB 7.0.

 

5.  Data input

The generation of data begins the section where the actual software is described. Since the user has

access to all source files, the descriptions below do not describe code related issues and internal

variables. Only the parts that are required for the use of the software package are covered. When m-

files are reproduced, only the relevant parts are included, the reader should be aware that more

information can be found in the source code. Note that the setup files are to be treated as templates,

the user is hence required to modify right hand sides only - no addition or deletion of code should be

used in the normal use of the package.

5.1  Simulated data

The generation of simulated data requires that the user

1.  Modifies the underlying ODE model, as given by f.m and h.m. The function f.m implements the

RHS of the ODE, using a conventional MATLAB function call. Note that the built in ODE solvers

of MATLAB are not used. Instead an Euler algorithm is implemented. The reason is that this

allows the generation of simulated data that can be exactly described by the applied model, should

this be desired. The function h.m  implements the (possibly nonlinear) measurement equation. The

functions allows for addition of systems noise and measurement noise.

2.  Provides further input data in the script SetupData.m. The parameters that define the data

generation are directly written into this script. These parameters define the sampling period, the

data length, the dimensions of the system, the type and parameters of the input signal, the type and

parameters of the disturbances, as well as the initial value of the ODE.

3.  Executes SetupData.m. This loads the necessary parameters into the MATLAB workspace.

4.  Generates data by execution of GenerateData.m. After the execution of this script, variables with

sampling instances, input signals and output signals are available in the MATLAB workspace.

Example 1: This and the following examples illustrates the use of the software package

for identification of the system
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This system is also used in [ 3 ], to asses effects of scaling. This system can be written in state space

form as
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( ) ( ) ( )y t x t e t= +2 .

( 16 )

Note that the ordering of states is not exactly as defined in the model ( 2 ). This is intentional since

such situations are common in practical situations. It can be seen that the system is oscillatory with an

input amplitude depending resonance frequency and damping.

The relevant parts of the files f.m and h.m become

f.m
function [f]=f(t,x,u,w)

f(1,1)=x(2,1)*(2+u(1,1))-u(1,1);

f(2,1)=-x(1,1)-x(2,1);

end

h.m
function [h]=h(t,x,u,e);

h=x(2,1)+e(1,1);

end

Data is to be generated by simulation using a sampling period of T sS = 010. . 10000

input-output samples are to be generated. The input signal is to be selected with a uniform distribution

in amplitude, with a mean of 0, a range [ ]− 11,  and a clock period 3.0s. The measurement disturbance

is to be white, zero mean with a standard deviation of 0.1.

The setup script SetupData.m that performs this task is SetupData.m

% dimensions...

nu=1; % Input signal dimension

nx_0=2; % State dimension

ny=1; % Output dimension, normally 1
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% Input signal related...Type may be selected among:

%

% InputType=[

% 'PRBS ';

% 'Gaussian ';

% 'UniformPRBS';

% 'SineWave ';

% 'Custom '];

InputType=[

'UniformPRBS'];

uAmplitude=[

1.0];

uMean=[

0];

uFrequency=[

0.1];

ClockPeriod=[

30];% Clock period vector in terms of sampling time

% System disturbance related...Type may be selected among:

%

% DisturbanceTypeSystem=[

% 'WGN ';

% 'SineWave';

% 'Custom '];

DisturbanceTypeSystem=[

'WGN ';

'WGN '];

wSigma=[

0.0;

0.0]; % Gaussian system noise standard deviation (discrete time)

wMean=[

0;

0];

wSineAmplitude=[

0;

0];
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wSineFrequency=[

0;

0];

% Measurement disturbance related... Type may be selected among:

%

% DisturbanceTypeMeasuremet=[

% 'WGN ';

% 'SineWave';

% 'Custom '];

DisturbanceTypeMeasurement=[

'WGN '];

eSigma=0.1; % Gaussian measurement noise standard deviation

eMean=[

0;

0];

eSineAmplitude=[

0];

eSineFrequency=[

0];

% sampling time and data length

Ts=0.1; % Sampling time in seconds

N=10000; % Number of data points

SamplingInstances=(Ts:Ts:N*Ts);

% ODE related...

x0=[0.5 -1.0]'; % Initial values

The final step of the data generation is to execute the files SetupData.m and

GenerateData.m. This is done in the MATLAB command window as follows

» SetupData

» GenerateData

…
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percentReady =

   100

»

5.2  Live data

The generation of simulated data requires that the user

1.  Is connected to the system via MATLAB. The connection must be such that commands to control

DA-converters that generate input signals can be issued from within MATLAB. Similarly,

commands that read AD-converters that sample output signals must be available from within

MATLAB. The script MeasurementMain.m probably needs modification in a few parts in order

to interface correctly to the AD- and DA-converters of the system of the user.

2.  Generates an  input signal, that is stored in the matrix (row vector in the one-dimensional input

signal case) u .

3.  Provides further data in the script SetupLive.m. The parameters that define the data generation are

directly written into this script. These parameters defines the sampling period, the data length and

the dimensions of the system.

4.  Executes SetupLive.m. This loads the necessary parameters into the MATLAB workspace.

5.  Generates data by execution of MeasurementMain.m. After the execution of this file, variables

with input signals and output signals are available in the MATLAB workspace. This script

operates as a loop that continuously polls the MATLAB real time clock, waiting for the next

sampling instance. This means that it may not be possible to use the computer for other tasks

during the data collection session. The reason for this solution is that it avoids the need for a real

time OS connection. Note also that the calls to AD- and DA-converters may be different on other

systems. This script is hence likely to require some modification.

Example 2: The setup script file SetupLive.m becomes (empty since simulated data is

used here)
% dimensions...Note that nx is not really relevant,

% it is however required in the RPEM setup so it is set in this file

nu=[]; % Input signal dimension

nx=[]; % State dimension

ny=[]; % Output dimension, normally 1

% sampling time and data length

Ts=[]; % Sampling time in seconds

N=[]; % Number of data points
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SamplingInstances=(Ts:Ts:N*Ts);

The measurement process is started by typing

» SetupData

» GenerateData

…

in the MATLAB command window. During the measurement session, the script continuously displays

the time, the inputs as well as the measured outputs, as commanded to DA-converters and read by

AD-converters. After termination all data that is needed for identification is available in the

MATLAB workspace.

5.3 Display of data

After execution of either one of the chain of actions of section 5.1 or section 5.2, data can be plotted.

This is done with

1.  The PlotData.m script that is executed in the MATLAB command window.  This script makes use

of the dimensions of the system in order to divide the plot into several sub-windows, and in order

to provide the axis text.

Example 3:  The MATLAB command window command is

» PlotData

»

The following plot is generated
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Figure 2: The result of a PlotData command.

6.  Recursive Identification

At this point everything is in place for a first identification run.

6.1  RPEM setup

The preparation for the identification run requires that the user

1.  Modifies the output equation and the corresponding derivative of underlying ODE model, as given

by h_m.m and dhdx_m.m. The function h_m.m implements the output equation of the model.

Note that this function is allowed to be a nonlinear function of the state and input. The function is

not allowed to be dependent on the estimated parameters, it must be known a priori. Note also that

the derivative of the function, with respect to the estimated state, needs to be supplied in the

function dhdx_m.m.

2.  Provides further input data in the script SetupRPEM.m. The parameters that define the data

generation are directly written into this script. These parameters define the dimension of the

system, the initial value used in the ODE model, the gain sequence ( )µ t t , the size of the initial

value of the R -recursion, the initial value of the measurement covariance matrix ( )ΛΛΛΛ t , the

stability limit applied by the projection algorithm, the scale factor, as well as the down-sampling

period used to avoid too large logs during long runs with high degree models. The reader is

referred to [ 1 ]  - [ 4 ]  for details on these parameters, as well as on their use.
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3.  Executes SetupRPEM.m. This loads the necessary parameters into the MATLAB workspace.

Example 4:  The system is to be identified with a second order model. The projection

algorithm is to use a stability radius of 0.975 and the scale factor is selected equal to 2. The initial

value of the measurement covariance matrix is selected equal to 0.1. The initial value of the R -

recursion ( its inverse affecting the initial algorithmic gain) is selected equal to 100. The selection of

the gain sequence ( )µ t t is a little more complicated, see [ 1 ]  for details.

The functions h_m.m and dhdx_m.m become

h_m.m
function [h_m]=h_m(x_m,u);

h_m=x_m(1,1);

end

dhdx_m.m
function [dhdx_m]=dhdx_m(x,u);

dhdx_m=[1 0];

end

The setup script SetupRPEM.m becomes
nx=2;

x_m_0=[0.5 -1]';

%

% Remaining initial values

%

muFactor=300; % To stabilize Gamma and to reduce the gain

if exist('theta_0_new')

muFactor=1000;

end

mu_0=5;

mu0=0.9995;

y_m_0=0;

initialNoiseVariance=0.1; % Initial value for the prediction error

variance

scaleFactorR=100; % the size of the initial diagonal approximation

of the Hessian

%
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% Parameters

%

stabilityLimit=0.975; % The linearized pole radius used for

stability checking and projection

downSampling=10; % The downsampling factor used when data from the

run is saved

scalingTs=2; % The scaling factor with which the sampling period is

multiplied during identification

Finally the user executes SetupRPEM.m in the MATLAB command window

» setupRPEM

»

6.2  RPEM command window control and estimated parameters

In order to perform an identification run the user is required to execute and provide input to the script

RPEM.m. The execution of this script makes use of four additional functions, implementing the

polynomial model applied for modeling of the RHS of the ODE. These functions are f_m.m,

dfdx_m.m, dfdtheta_m.m and GenerateIndices.m. The latter function generates the exponents of

all factors of all terms of the polynomial expansion. The generation of these indices involves nested

loops. They are therefore calculated in advance and used in repetitive calls in the form of a table.

To identify the system, the user is required to

1.  Execute the script RPEM.m

2.  Provide the degrees of the polynomial model (polynomialOrders) when prompted. The

polynomialOrders variable is a column vector with the first element corresponding to the maximal

degree of x1 , the second element corresponding to the maximal degree of x2  and so on. The last

element corresponds to the maximum degree of the derivative of highest degree of the last input

signal component. In the present example, polynomialOrders = [1 2 3]' would mean that the

highest degree term of the polynomial expansion is θ123 1 2
2 3x x u .

3.  Provide a list of indices that are not to be used (notUsedIndices) by the algorithm. The indices

exclude terms in the polynomial expansions. Providing an empty matrix ([]) indicates that no terms

shall be excluded. The list of not used indices are to be provided as rows in a matrix , where the

number of rows equals the number of terms that are to be excluded from the model. In the present

example notUsedIndices = [0 0 0; 1 1 1] would mean that the terms θ000 and θ111 1 2x x u  are to be

excluded from the model.
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4.  Provide the initial parameter vector (theta_0). Note that this parameter vector needs to correspond

to a linearized system with all poles within the stability radius indicated by the script

SetupRPEM.m. If the initial parameter vector does not meet this criterion the user is prompted for

theta_0 again. Observe that the scale factor of the sampling period needs to be accounted for - it is

a part of the linearized model, cf. [ 1 ].

     Note: A good strategy is to initialize the algorithm with a model that has time constants and a static

     gain that are similar to those of the system.

Example 5: The algorithm is in this example initialized with

( ) ( )� . . . . . . . .θθθθ 0 0 0000 10000 10000 0 0000 0 2500 0 0000 0 0000 0 0000= − − T
. ( 17 )

This corresponds to the model

( ) ( )ϕϕϕϕ x,u u x x u x x u x x x x u T= 1 2 2 1 1 1 2 1 2 . ( 18 )

In this example comments and explanations have been added. To distinguish these

from the actual commands the comments The command sequence applied in the MATLAB command

window is

» RPEM

ans =

Input polynomialOrders and notUsedIndices  - The script asks for the max degrees of states and inputs

K» polynomialOrders=[1 1 1]'

polynomialOrders =

     1

     1

     1

K» notUsedIndices=[]   -  The script asks for terms of the polynomial that are to be excluded

notUsedIndices =

     []

K» return

allIndices =        - The script returns the degrees of all included terms, input degrees to the right

     0     0     0

     0     0     1

     0     1     0

     0     1     1

     1     0     0

     1     0     1

     1     1     0
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     1     1     1

ans =

Input theta_0     -  The script asks for an initial parameter vector

K» theta_0=[0 1 -1 0 -0.25 0 0 0]'

theta_0 =

         0

    1.0000

   -1.0000

         0

   -0.2500

         0

         0

         0

K» return

LinearizedPoleRadii =      -  The script returns the polr-radii of the linearized, initial model

    0.9000

    0.9000

…

percentReady =    -   The script displays the fraction of the processing that is completed.

   100

ans =       -   The script displays the identified parameters – scaled parameters to the left

    0.0003    0.0013

    0.2508    1.0031

   -0.4946   -0.9893

   -0.0018   -0.0035

   -0.4992   -1.9968

   -0.2512   -1.0050

    0.0163    0.0326

   -0.0174   -0.0347

»

The estimated parameters of the left column correspond to the ones obtained directly from the RPEM,

i.e. these are scaled parameters. The right column contain parameters that are recomputed to

correspond  to the original sampling period. Note that the exact result depends on the generated input

signal. This may differ between systems and execution occasions since the seed for the random

number generator may differ. Hence, slight variations of the estimated parameters are normal.
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6.3  Re-initiation, multiple runs and iterative refinement

The script RPEM.m produces a result for a certain choice of degrees of the right hand polynomial of

the ODE (if the stability check is not triggered so that the algorithm gets stuck close to the stability

limit). In case the result is not deemed sufficient, then a higher degree right hand side may be needed.

The opposite may also be true, i.e. the result is sufficient but the number of parameters used may be

unnecessarily high. So there is a need to

• Modify the degrees of the polynomial model of the ODE.

• Remove specific terms of the polynomial model of the ODE.

• Rerun the RPEM from the previous end results, with a redefined right hand side polynomial.

Exactly this is supported by the script reInitiate.m.

Note: Support for stepping also of the model order would be preferred. Such stepping does however

have complicated (nonlinear) stability impacts. For this reason the development of such functionality

is postponed to later versions of the software package.

In order to perform a new RPEM run with modified degrees, then user is required to

1. Run the script reInitiate.m. That script prompts the user for polynomialOrders and

notUsedIndices. The parameter vector at the end of the run, together with the previous and new

degrees, are then used to re-initiate all relevant quantities of the RPEM.

2. Rerun RPEM.m. Note that the RPEM does not need to prompt the user for any further information

this time.

Example 6: In this example the degree of the input signal is increased to 2.

The MATLAB command window commands become

» reInitiate

ans =

Input polynomialOrders and notUsedIndices

K» polynomialOrders=[1 1 2]'

polynomialOrders =

     1

     1

     2

K» return

» RPEM

…

The identification is now finalized and everything is set for display of the results.
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7.  Display of results

The display of results is straightforward. By a study of the source code, users should be able to tailor

available scripts and also write own ones when needed.

 

7.1  Parameters

In order to plot the parameters the user is required to

1.  Execute the script PlotParameters.m. The components of the parameter vector are then plotted as

a function of time. Note that the time scale is assumed to be seconds. In case another time scale is

required, the figure needs to be edited after plotting, or the script needs modification.

Example 7: The command in the MATLAB command window is

» PlotParameters

»

The following plot is then generated
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              Figure 3: The result of a PlotParameters command.

7.2  Prediction errors

In order to plot the parameters the user is required to
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1.  Execute the script PlotPredictionErrors.m. The prediction errors are then plotted as a function of

time. Note that the time scale is assumed to be seconds. In case another time scale is required, the

figure needs to be edited after plotting, or the script needs modification.

Example 8: The MATLAB command window command is

» PlotPredictionErrors

»

The following plot is generated
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            Figure 4: The result of a PlotPredictionErrors command.

7.3  Eigenvalues

In order to plot the convergence of the eigenvalues over time, the user is required to

1.  Execute the script PlotEigenvalues.m. The eigenvalues of the Hessian are then plotted as a

function of time. Note that the time scale is assumed to be seconds. In case another time scale is

required, the figure needs to be edited after plotting, or the script needs modification.

Example 9: The MATLAB command window command is

» PlotEigenvalues

»

The following plot is generated
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            Figure 5: The result of a PlotEigenvalues command.

7.4  Condition number

In order to plot the convergence of the condition number over time, the user is required to

1.  Execute the script PlotCondition.m. The condition number is then plotted as a function of time.

Note that the time scale is assumed to be seconds. In case another time scale is required, the figure

needs to be edited after plotting, or the script needs modification.

Example 10: The MATLAB command window command is

» PlotCondition

»

The following plot is generated
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             Figure 6: The result of a PlotCondition command.

7.5 End of run model simulation

The above plot commands make use of logged signals, covering the transient part of the identification

process. This is not always desired. To compare the identified mode to the measured data it is e.g.

more appropriate to simulate the model, using the parameters obtained at the end of the identification

run.

Hence, to prepare for the remaining plot commands the user is required to

1.   Execute the  script SimulateModelOutput.m.

Example11: The MATLAB command window command is

» SimulateModelOutput

…

percentReady =

   100

»

The remaining plot commands and model validation commands can now be executed.

7.6  Simulated model output

In order to plot the simulated model output signal over time, the user is required to
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1.  Execute the script PlotModelOutput.m. The output signals of the model are then plotted as a

function of time. Note that the time scale is assumed to be seconds. In case another time scale is

required, the figure needs to be edited after plotting, or the script needs modification.

Example 12: The MATLAB command window command is

» PlotModelOutput

»

The following plot is generated
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           Figure 7: The result of a PlotModelOutput command.

7.7  Simulated model output together with data

In order to plot the simulated model output signal over time, together with the corresponding

measured data, the user is required to

1.  Execute the script PlotSystemAndModelOutput.m. The output signals of the model and the

system are then plotted as a function of time, in the same plots. Note that the time scale is assumed

to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or

the script needs modification.

Example 13:The MATLAB command window command is

» PlotSystemAndModelOutput

»

The following plot is generated
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              Figure 8: The result of a PlotSystemAndModelOutput command.

7.8 Residual errors

In order to plot the prediction errors, obtained from the simulated model output signal using

parameters at the end of the identification run, the user is required to

1.  Execute the script PlotResidualErrors.m. The  errors are then plotted as a function of time. Note

that the time scale is assumed to be seconds. In case another time scale is required, the figure needs

to be edited after plotting, or the script needs modification.

Example 14:The MATLAB command window command is

» PlotResidualErrors

»

The following plot is generated



29

0 200 400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time [s]

re
si

du
al

 e
rr

or
 (

1)

               Figure 9: The result of a PlotResidualErrors command.

8.   Model validation

Two scripts are provided for model validation purposes (in addition to the commands of section 7).

The first method studies the value of the loss function that is minimized by the RPEM-algorithm.

Since the measurement covariance matrix is estimated, the loss function contains an additional term

on top of the sample average of the squared prediction errors.

8.1  RPEM loss function

The RPEM loss function that is computed is given by

( )( ) ( )( ) ( )( ) ( )( )V t NT
N

t iT t NT t iT t NT t NTS S S
i

N
T

S S S� , � , � logdet �θθθθ εεεε θθθθ εεεε θθθθ0 0 0
1

0 0 0
1
2

1 1
2

+ = + + + + + +
=
� ΛΛΛΛ ( 19 )

The user is referred to [ 1 ], [ 6 ]    and the references therein for further details. In order to compute

the loss function, using parameters at the end of the identification run, the user is required to

1.  Execute the script ComputRPEMLossFunction.m. The loss function is then computed.

Example 15: The MATLAB command window command is

» ComputeRPEMLossFunction

…

percentReady =

   100
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V =

   -1.7094

»

8.2  Mean residual analysis

Mean residual analysis is a method that evaluates the obtained static characteristics of an identified

model of any kind. It operates by sorting residual errors into bins, the bin being decided by the value

of the measured output signal with the same time index as the residual error. The mean of the

residuals are then computed, in each bin, and plotted against the range of the output signal. The

number of samples of each bin is also plotted. The user is referred to [ 7 ]  for further details. In order

to perform mean residual analysis, the user is required to

1.  Execute the script MeanResidualAnalysis.m.

2.  Provide the intervals used by the method when prompted for intervals.

Example 16: This example performs mean residual analysis using about 40 intervals,

each with an output amplitude width of 0.1. The MATLAB command window command is

» meanResidualAnalysis

ans =

Input intervals for division into bins

K» intervals=(-2:0.1:2);

K» return

»

The following plot results
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           Figure 10: The result of a MeanResidualAnalysis command.

9.  Summary

This report describes a software package for identification of nonlinear systems. Future work in this

field, that result in useful MATLAB routines, will be integrated with the presently available

functionality. Updated versions of this report will then be made available.
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