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Abstract

In analogy to the subject of Gaussian integration formulas we
present an overview of some Gaussian summation formulas. The
derivation involve polynomials that are orthogonal under discrete in-
ner products and the resulting formulas are useful as a numerical de-
vice for summing fairly general series. Several illuminating examples
are provided in order to present various aspects of this not very well-
known technique.
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1 Introduction

Gaussian quadratures and the classical orthogonal polynomials have been
around for a long time and have been subject to intense studies. The inner
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products associated with most orthogonal polynomials can be written as an
integral with respect to some measure over a certain domain. That is,

(f.9) = / f(@)g(x)dw(z), (11)

where w(z) is the (positive) weight-function. The corresponding mechanical
quadrature is then of the form

| r@itn@) =3 s+ R (1:2)

for some weights w; and abscissas ;. In general, the form of the remainder
R,, makes the formula exact when f is a polynomial up to a certain degree.

Some less classical polynomials [3, 1] are generated by a discrete measure
instead, implying that the resulting inner product is to be understood as a
weighted sum,

(f9) =) fl@)g(@)w(x), (1.3)

€

over some discrete set of points 2. Interestingly, in complete analogy with
the theory for mechanical integration formulas, we will show that this gives
rise to Gaussian summation formulas;

n

Z f(x)w(z) = Z f(xi)w; + R,. (1.4)

e i=1

It came as a great surprise to the author when several searches in the liter-
ature indicated that this technique seems not to have been discussed thor-
oughly.

We now review some of the relevant references that we did find. In [§]
the authors undertake a theoretical study of the convergence of quadratures
for series of the form

p—1 1 a
g2y (q—) pllal > L (1.5)
v>0

Serveral questions of theoretical nature are considered but the concluding
numerical section does not relate directly to the traditional orthogonal poly-
nomials with respect to discrete measures.



In [11] several authors describe an algorithm for computing the heat ca-
pacity of molecular systems. The resulting formula is a quadrature for series
on the special form

Cy, = ZH(Wi)/”a (1.6)

where

(hwe/kpT)? e hwe/ksT
(1 _ e—hwc/kBT)2

Again, the classical orthogonal polynomials of discrete measures are not ex-
plicitly mentioned.

The present author came across the subject in a computational problem
where the unknown is a discrete probability distributions in many dimen-
sions. The master equation of chemical reactions [10] can be written as a
time-dependent difference equation in the unknown discrete probability den-
sity. A natural solution strategy in the continuous case would be a spectral
method since the geometry of the problem is simple. The corresponding
method in the discrete case then leads to the construction of quadratures
with respect to discrete measures.

The rest of the paper deals with these quadrature formulas. We start by
reviewing the classical theory of mechanical quadratures aiming specifically
at discrete inner products. We comment on some practical aspects on using
the resulting formulas and give several illuminating and interesting examples.
It will be shown that the formulas work well as a purely numerical tool for
summing quite general series and open up interesting possibilities. We finally
conclude the paper by a short discussion of the found properties.

2 Excerpts of the classical theory

In this section we will briefly review the link between orthogonal polynomials
and Gaussian quadrature formulas. In order to be complete and since the
elementary proofs are rather short we generally prefer to give them here.
Most of the material presented here is found in the classical literature — see
the reference [9] in particular. We have commented those few places were the
discrete measure poses a difference to the more common parts of the theory.

To this end, we will use the inner product defined by (1.3) where €2 is a real
but possibly unbounded set of points. We assume that there is a (possibly
finite) corresponding system {p,},>o of orthogonal polynomials associated
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with the product. In practise, this rules out some exotic inner products
since they must at least be well-defined for polynomial inputs f and g. It
is furthermore reasonable to assume w(x) to be strictly positive since points
for which w(z) = 0 could just be exclude from 2.

As usual, we define the norm by || f||> = (f, f) and we also define \,
and X, as the coefficients of 2" and z"! in p,(x), respectively. We start by
giving the three-term recurrence for the polynomials p,.

Proposition 2.1 Define the numbers

An - )\;\+1a Bn - An (A;Z—’—l - )\_;1) )

n )\nJrl An
Anpall®
C, = . . 2.1
Anfl Hpn71H2 ( )
Then forn > 0,
Pnt+1 = (Anz + Bn)pn - Onpn—b (22)

provided that p_1 = 0 is understood.

Proof. A proof is easily constructed by taking inner products, using orthog-
onality and checking the leading terms of both sides of (2.2). Refer to [9] for
this and some further details. [

The well-known Christoffel-Darbouz[9] formula follows directly from the
recurrence relation.

Proposition 2.2

~pi(@)piy) 1 para(@pa(y) — pu(@)pasa(y)
) PR T vy @8
or, for y — =,
—~pi(2)? P (@)pa(z) = i, (2)paa (2) (2.4)

— [[pi]|2 B Apllpnll?
=0

Proof. Inserting the recurrence relation (2.2) we find after some simplifica-
tions that

U ponn(@)pa(y) = p(@)pna(y) _ pal®)pa(y)
Apl|pnl? T =y 1P 1?
1 Pr(2)Pn-1(y) = Pu—1(x)Pn(y)
An-1llpn-1l? T —y

+

+




Now, (2.3) follows from repeating this formula and (2.4) results by taking
limits and using I’Hopital’s rule. [J

We now proceed towards finding the abscissas x; of the summation for-
mula (1.4). The following result is a simple adaption of the well-known result
that zeros of orthogonal polynomials are simple and lie in the domain over
which the inner product is defined. For this purpose, define R(2) as the
smallest real and connected set containing all of €.

Proposition 2.3 If Q2 is a real domain with || > n and if w(z) > 0 for
x € Q, then all the n zeros of p, are simple and lies in R(£2).

Proof. Suppose that p,, changes sign m < n times in R(€2). Then we can find
a polynomial g, of degree < m such that p,(x)g,(z) > 0 in R(Q2) except for
possibly at the zeros of p,. This implies that (p,,¢»,) > 0 and contradicts
the orthogonality property. [

Remark. There are two cases when we cannot allow the number of abscissas
n to be too large, namely (i) when the domain €2 is finite and (i) when the
inner product does not exists for polynomials beyond a certain order. As
an example of the former case, consider 2 = {0,1,..., N — 1} with w(x) =
1 (this is Chebyshev’s polynomials, a special case of Hahn’s polynomials,
cf. Section 3.3). When n = N we must have that the zeros are x; = i—1 and,
in fact, the weights in the quadrature are just w; = 1. Trivially, this makes
the summation formula exact for any function f and formulas with n > N
will not be considered. As an example of the other case, see Section 3.3. [

We now let {x;}1<i<, be n distinct points in R(Q2). Define the usual
interpolating polynomials as follows;

() = H(x — ), (2.5)

li(x) = ) ) (2.6)

so that
Liz) = f(z:)li(x) (2.7)

is the Lagrangian interpolant. We now consider approximating the sum

1= fuw() (2.8)

€



by summing its interpolant,

n

J =Y L{z)w(x) = Z Fla) Y li(@yw(a) = fla)w; (2.9)

z€Q e i=1

Regardless of the nature of the abscissas x; we always have that [ = J
whenever f is a polynomial of degree < n — 1 since then the Lagrangian
interpolant must be exact. If in addition the abscissas are chosen as the
roots of p, we get the usual Gaussian property that the quadrature is exact
for all polynomials of degree < 2n — 1. For in this case, L(z) — f(x) is a
polynomial of degree < 2n — 1 vanishing at all the zeros of p,, so that it can
be written in the form p,(x)g,—1(x) for some ¢,_; of degree < n — 1. And
hence

J—1=) (L(z) = f(x)) w(x) = (Pn, Gu-1) = 0. (2.10)
e

With the aid of the Christoffel-Darboux formula it is possible to find a
closed formula for the weights w;. By the definition (2.9),

wi:Zli(:ﬂ)w(:ﬂ):( ! W”(x)@). (2.11)

e x —x;mh(x;)

Now, 7, is just p,(z)/\, and from Proposition 2.2 we have, since p,(z;) =0
and after some manipulations,

Aullpal® = pi@pies) 1 pale)
— , = s (2.12)
Prr(@i)py, () = lpill x — i pp,(2:)
Combining (2.11) and (2.12) we arrive at
ATL n 2
= Ip U . (2.13)
pn+1($i)pn($i)

We finally turn our attention to the error term in the summation formula
when f is not a polynomial but rather a sufficiently differentiable function.
By the basic properties of interpolating polynomials we expect the error term
to have the general appearance of

AR

B (2n)!

K, (2.14)



where £ € R(2) and where K is a some constant. From the special choice
f(x) = m(x)? = pu(x)? /A2 we see that, in fact,

K=Y m(2)w(z) = HPALQHQ, (2.15)

which is identical to the standard estimate for Gaussian quadratures.
Summarizing our results so far we have just finished the proof of the
following theorem.

Theorem 2.4 Define the abscissas {z;}1<i<n € R(2) as the roots of p,(x)
and let the weights be defined by (2.13). Assume that f is 2n times continu-
ously differentiable. Then we have the Gaussian summation formula

> f@w(@) =3 flaswi + R, (2.16)

zeN
with error
FEIE)  pall®
(2n)! A2

where £ € R(Q2). In particular, R, = 0 whenever f is a polynomial of degree
<2n—1.

R, =

(2.17)

Of course, Theorem 2.4 is nothing else but the usual quadrature theorem for
the case when the measure is built up by Dirac delta functions,

dw(z) = Zw(x)éx. (2.18)

It is interesting then that the resulting quadrature formulas seem not to have
been investigated before.

2.1 Practical aspects

Turn now to some practical aspects of using Gaussian summation formulas.
Firstly, the task of finding the abscissas and weights should in general not
be performed by a root-finding algorithm. Instead, the usual observation [5]
is that the recurrence relation (2.2) can be written in matrix form as

_ N -
Po 5? g(1) Al Po 0
D1 ' ' D1 0
x . - . + Yn—1 )
ﬁn—? Qp—92 Yn—2
Pt | Bno1 Qno1 | Pn-1 Pn
(2.19)



in terms of which

_bn _ = 2.20

™= (2.20)
If p,(z) = 0 this is just an eigenvalue problem for a tridiagonal matrix 7'
which can be symmetrized through a diagonal similar transform,

(7)) (51

01 o1 Oy

J=DTD ' = P : (2.21)

(Sn,Q [79)) 57171
51171 Q1

where

Mt pal
A ool

5, = (2.22)

i.e. the associated Jacobian matrix. Moreover, if ¥ is the eigenvector corre-
sponding to the abscissa x;, normalized so that yTy = 1, then the weights can
be found according to 5" = w; /e where j1g = ||1||? is the Oth moment of the
measure. This follows as a fairly straightforward application of the second
Christoffel-Darboux formula in Proposition 2.2. Finding the eigenvalues and
-vectors of a symmetric tridiagonal matrix is a relatively well-conditioned
problem for which fast algorithms exist[4].

Building programs with orthogonal polynomials with respect to discrete
measures is quite similar to using the classical orthogonal polynomials. —It
is straightforward to use the recurrence formula (2.2) to evaluate the poly-
nomials at arbitrary points = and also to use Clenshaw summation[2] to
evaluate sums of the polynomials times some coefficients.

However, there is one minor difference in the stability of such recursion
formulas. For orthogonal polynomials in general, the roots of p,i(z) are
located in between those of p,(x)[9]. For discrete measures, however, as n
grows large we must have that the roots converge towards the points in (2.
This means that eventually, the roots of p, will be quite close to those of
Pnt1. At points z € Q, p,(z) may well end up as an almost cancelling linear
combination of numbers of decreasing magnitude. For high order n, a direct
evaluation of the recurrence at points close to points in €2 should therefore be
avoided. In such cases, a preferable technique could be to use the backward
recursion instead (Miller’s algorithm [1]).



3 Examples and experiments

In this section we will explicitly give three Gaussian summation formulas.
We have not been able to find any of them in the literature despite several
searches. The associated polynomials are given in Table 3.1 together with
the various coefficients needed to derive each new formula. In subsequent
sections we investigate the performance of each case by performing numerical
experiments on different sums and comment on various aspects of the usage
of the technique.

| Name | Parameter(s) | —A,, —C./4, [ (=1D)"\, [[pa]* |

Charlier Cy,(x; a) a>0 L/a Cin |
n a~"n!
0<ex<1 1—c ()"
Meixner M, (z; 3, c e(n+p) ™ (B)n
S IE: i =) i

a, b, C ((w721)1()(w7)2(n71)) (w+1—2n),
Hahn g,(z;a,b,c) w:=c—a—>=b n(lfujrzf‘fj)'guf;'fn) (@)n (b)n

w > 2n (w—2n)(w—2n+1) See (315)

Table 3.1: Orthogonal polynomials with respect to discrete measures. For
brevity, we suppress B, = 1+ C,,. With the exception of the Hahn polyno-
mials, we use the notation and normalization in [6] but we have changed the
measure so that pgg = [|[1]] = 1 in all cases. In the numerical computations
we also always normalize the polynomials to unity. The inner products are
given explicitly in the following sections.

3.1 Charlier’s polynomials

Charlier’s polynomials [6] are orthogonal with respect to the inner product

a® _,
(f,g9) = Zf(x)g(x)ae : a > 0. (3.1)
x>0
The Jacobian matrix is generated by
a, = n-+a
0, = —y/na } (3.2)

and the summation formula is then of the form

i (:v)i—:;e“ = Z fai)wi + Ry, (3.3)

x>0



where

(3.4)

As a fairly general numerical example of the Gauss-Charlier summation for-
mula (3.3) we consider the hypergeometric function[1],

sFy(a, b, 2) = Z 5@ (3.5)

=t (b);

where as usual
(. =TTt (3.6)

(bars are used in order to avoid confusions with the various parameters of
the polynomials themselves). In Table 3.2 and 3.3 some typical results with
varying argument a = z and order n of the quadrature are displayed. Over
all, the numerical behavior of the technique is quite satisfactory.

la\n | 6 E | 10 | 14 | 18 |
05 [[1.92-107% [1.00-10°® [3.09-10°*2[9.36-10"16 [ 2.22-10716
1.0 [[227-107° [4.88-1077 [6.11-1077 [297-10"3]2.02-10°16
40 [[2.10-107° [1.08-107° [2.74-1076 [ 4.04-1078 | 1.64-1071°
16.0 | 3.35-107% [3.00-107° [4.15-10°1]2.23-10" [ 3.09-10"1
64.0 || 1.05-107" [ 5.81-10" [ 1.83-10" | 3.82-10"* | 5.85- 10~ ™

Table 3.2: The Gauss-Charlier summation formula where, somewhat arbi-
trary, a = [1/3,3/4,7/5] and b = [1/2,3/5,1/7] were chosen. The table
shows the relative errors for different arguments a using different orders n.

3.2 Meixner’s polynomials

Meixner’s polynomials [6] are associated with the inner product

(f.9)=>_ f@)g(x)c" (6)1(1 —o)®, 0<e<l1, B>0. (3.7)

z!
x>0

The domain for the coefficients as given above actually formally excludes
the special case § = —N and ¢ = —p/q which are called Krawtchouk’s
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la\n | 6 E | 10 | 14 | 18

05 [[1.26-1072 [9.71-106 [4.04-107% [1.90-10"3 [ 8.55-10"16
1.0 [[127-1072 [4.23-107* [7.33-10°°% [573-10°10|1.24.-10°™
40 [[1.71-107" [1.85-1072 [4.18-102 |1.10-10~* | 7.07-107"
16.0 || 4.42-1077 | 1.44-10°7 [3.90-10°% |527-107% [1.80-107"
64.0 || 4.46-107" | 3.01-1071 [ 1.44-107™ [ 3.46-107" | 7.76 - 1014

Table 3.3: Asin Table 3.2 but now a = [—1/3,3/4,7/5] instead. This induces
a single pole in the summand at z = 1/3 which means that the truncation
error in the form (3.4) could formally be unbounded. This is also seen in the
table where the errors in some parts are now considerably larger. For the
argument a = 16 the relative error drops below 1072 at about n = 42.

polynomials. They generate summation formulas for sums on the special
form

It is obvious that this special case in fact corresponds to a well-defined and
positive weight-function.
The Jacobian matrix for Meixner’s polynomials is given by

o _ c(n+8)+n
n 1—c 3 9)
5 = Vi) } (3.

- 1—c

and the summation formula readily follows as

Z f(z)c” (f}x(l —¢)f = Z f(z)w; + Ry, (3.10)

with the truncation error

¢ (e

e e T T

(3.11)

Again we shall consider the hypergeometric function as a good example rep-
resenting a wide class of functions. From the presence of (/3), in the inner
product it follows that 3Fy(a, b, z) is the natural target in the following ex-
periments.
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In Table 3.4 relative errors for varying ¢ are displayed. From the formula
for the error (3.11) it seems natural to let § be the smallest positive element
in a since this minimizes the term (/3),,. It is seen that the summation formula
performs well when ¢ is small but that the errors become quite large when
c approaches 1. This is of course reflected in the error formula and comes
as no surprise as the general behavior of this type of power series near the
boundary of its convergence domain can be very complicated.

BYIE E | 10 | 14 | 18

0.2 [[3.47-1077]1.02-10%[3.23-1071°[3.59-1073 [ 1.84-10716
04 [[210-107°[2.49-10°|3.14-1077 [5.62-107° [1.10-1071
06 [[217-107*]5.78-10° | 1.65-10° [ 1.50-107% [ 1.49-1077
0.8 [ 1.01-1073 | 4.76-107* | 2.41-10* [6.93-10° |2.19-107°
09 [[1.69-1072[9.95-107%[6.32-107* [2.90-10~* | 1.46-10~*

Table 3.4: Relative errors for the Gauss-Meixner summation formula. Here
a = [1/3,3/4,7/5] and b = [1/2,3/5] were chosen and the summation for-
mula uses 3 = 1/3 (see text). Evidently, the order n must increase when
c approaches 1. For example, when ¢ = 0.9, n = 174 is needed in order to
bring the relative error below 1072

The strength of the Gauss-Meixner summation formula lies instead in its
behavior when (8 grows while ¢ is kept fixed. In Table 3.5 we display some
typical relative errors for this case and it is seen that the summation formula
performs better as 3 increases.

A~n 6 8 10 14 18

4 [[377-107% [2.73-10° [1.92-10% |7.93-10 % |2.55-10°
8 | 1.93-10°%F [1.39-10~% |1.08-10~% |6.87-10° | 4.12-10°
16 |[1.93-10° | 6.47-107 |3.12-10~" |1.33-10~" |8.24-10°°
32 [ 248-10° [231-107° [3.31-107 | 1.66-10"F | 1.04- 10 22
64 | 3.60-1070[932-10"2 [4.09-10 | 2.08-10 | 1.62- 10 14

Table 3.5: Convergence behavior when [ increases. The parameters are
a=1[1/3,3/4,3],b=[1/2,3/5] and ¢ = 0.6.
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3.3 Hahn’s polynomials

The inner product now contains three parameters [6, 3],

_ Dalz (@)z(b)s I'(c —a)l'(c —b)
(f.9) = ;f( )g(x) (el T(OTle—a=b)

c—a—b>2n, (3.12)

where the general domain of convergence has been indicated as a limitation on
n, the order of the corresponding system of orthogonal polynomials. There
are, however, some more restrictions on the parameters; — the measure
must be positive which in fact allows an even number of the parameters to
be negative. Also, in the case of a finite series (when either a or b is a
non-positive integer), then n must not be greater than the resulting number
of terms. Finally, unless the series terminates soon enough, ¢ can not be a
non-positive integer.

One special case of these polynomials is Chebyshev’s polynomials which
correspond to a = c=1— N and b = 1 for some integer N > 1. This case
produces summation formulas for sums of the simple form

~ D f). (3.13)

=0

8

We mention also that the definition of the Hahn polynomials as given
above differ from the polynomials Q(x; «, 5, N) defined in [6]. The relation
is simply

q(z;a,b,¢) = Q(x,a— 1,b— ¢, —b), (3.14)

but several formulas need to be rearranged with our definition in order
to avoid the various singular cases. We prefer the current angle of view
since (3.12) more clearly shows the relation to the hypergeometric function
2F1([a, b, ¢, 1). We note also in passing that our definition agrees with that
given in the early reference [3].

The formula for ||g,||? that did not fit in Table 3.1 is

lanll? = sin e - sin Tw (a+w—n),(b+w—n), nl(w)_,
= G m(a+w) -sinw(b+ w) (a)n(D)n w—2n"
(3.15)

where again w = ¢ — a — b. The Jacobian is generated according to

o _ (1—a—b—c)n?—(1—a—b—c)wn+(14+w)ab
n (w—2n—1)(w—2n+1)

5 _ _\/n(erlfn)(a+n71)(b+n71)(a+w7n)(b+w7n) ’
n (w—2n)(w—2n+1)2(w—2n+2)

(3.16)
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and the summation formula comes as no surprise,

Z (@) (a);(b)gg ['(c—a)l(c— b§ _ Z Faus 4 R

" (Qaz! T()l(c—a—b (3.17)

The truncation error can be derived from (2.15) with (3.15) and the formula
for the leading coefficient A, given in Table 3.1.

The usefulness of the Gauss-Hahn formula is very dependent on the pa-
rameters. For the terminating case when the sum in the inner product (3.12)
is finite we are essentially summing polynomials times a combinatorial weight.
When the order of the quadrature is sufficiently high the exact answer is
obtained but useful approximations often emerge before this point (see Ta-
ble 3.7 for a simple example). It is more challenging to use the formula for
the non-terminating case since polynomials of a degree higher than a certain
order produces a divergent sum. In Table 3.6 we list some result for the
case 4I3(a, b, 1) where now the order n of the quadrature must be bounded.
It is seen that the technique performs quite poorly except for possible the
case when ¢ can be chosen fairly large (i.e. when b contains a large number).
Of course, the problems come from the fact that approximating a smooth
function by polynomials of very limited order can be problematic.

| n\b" || 6 E | 10 | 12 | 14 |
1 1.60-107211.10-1072]8.39-10% | 6.78-1073 | 5.68 - 103
2 293-107%[1.21-1072 | 6.51-107% | 4.07-107% | 2.78 - 10~*
3 - 423-107%]1.51-107* [ 6.99-107° | 3.78-107°
4 - - 7.01-107°]2.29-107° | 9.53-1076
5 - - - 1.25-107° ] 3.85-10°6
6 - - - - 2.33-10°6
Table 3.6: Hypergeometric summation for 4F3(a, b, 1) with parameters a =

[1/2,1/3,1/5,1/7] and b = [1/4,1/6,b*], where b* is varied. The parameters
(a,b,c) of the summation formula is chosen so as to maximize the available
order n of the quadrature.

As a final example we consider the terminating case in the form of the
Gauss-Chebyshev formula (3.13) for the two sums

1
HN_Za;H’ (3.18)
z=0
N-1 1
—1/2
Hy :Zx_m, (3.19)
=0



where the last summand contains a singularity at * = 1/2. In Table 3.7
we display some relative errors for the case N = 1000 when the order n
of the quadrature is increased. Compared to the Gauss-Charlier case, it
is now seen that the impact of the singularity in the summand is slightly
more problematic. Nevertheless, the convergence for both cases is reasonably
monotonic anyway.

‘ n H Hio0o Higon

50 [ 3.11-1073 | 7.77-10°!
60 || 7.63-10% [3.37-107!
70 [ 1.58-107% [ 1.59-107!
80 || 2.76-107° [ 6.59-1072
90 || 4.03-107% |2.17-1072
100 || 4.89-1077 | 5.43-1073
110 | 4.94-107% [ 1.03-1073
120 || 4.12-1072 [ 1.50-1071
130 [ 2.84-10719 [ 1.72-107°
140 [ 1.62-107" [ 1.55- 107
150 || 7.73-10718 | 1.11- 1077

Table 3.7: Results from the Gauss-Chebyshev formula (3.13) applied to har-
monic sums. The table displays relative errors when the order n of the
quadrature increases.

4 Conclusions

We have constructed three quite general classes of Gaussian quadratures with
respect to discrete measures. The explicit construction follows more or less
exactly the same path as for the classical continuous case. Each class of
formulas has its own behavior and can be expected to work well in different
situations.

We have also seen some difficulties arising in some of the examples; —
most notably with the Gauss-Meixner formula when the parameter ¢ ap-
proaches 1 and in the Gauss-Hahn formula when the corresponding system
of polynomials must be finite due to the slowly decreasing measure. The
technique works at its best when the measure, when viewed as a discrete
probability distribution, has a well-defined and sharp peak. In this respect,
the technique relates loosely to the steepest-descent method[7] in the theory
of asymptotics of integrals.

15



We would finally like to mention that this technique opens up for some
quite interesting applications. We immediately think of discrete spectral
methods for difference equations of various types and also of new representa-
tions and algorithms for discrete data sets in general. In the corresponding
continuous cases, the existence of mechanical quadratures resides as one of
the most important practical tools.
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