A Performance Characterization of Load
Balancing Algorithms for Parallel SAMR
Applications

Henrik Johansson
Department of Information Technology
Uppsala University
Box 337, S-751 05 Uppsala, Sweden
email: henrik.johansson@it.uu.se

Johan Steensland
Advanced Software Research and Development
Sandia National Laboratories

P.O. Box 969, Livermore, CA 94550, USA
email: jsteens@sandia.gov

Abstract

We perform a comprehensive performance characterization of load
balancing algorithms for parallel structured adaptive mesh refinement
(SAMR) applications. Using SAMR, computational resources are dynam-
ically concentrated to areas in need of a high accuracy. Because of the
dynamic resource allocation, the workload must repeatedly be partitioned
and distributed over the processors. For an efficient parallel SAMR, im-
plementation, the partitioning algorithm must be dynamically selected at
run-time with regard to both the application and computer state. We
characterize and compare a common partitioning algorithm and a large
number of alternative partitioning algorithms. The results prove the vi-
ability of dynamic algorithm selection and show the benefits of using a
large number of complementing partitioning algorithms.

1 Introduction

Structured adaptive mesh refinement (SAMR) is used to decrease the run-time
of simulations in areas like computational fluid dynamics [4, 8], numerical rela-
tivity [7, 11], astrophysics [5, 17], and hydrodynamics [16]. Simulations based on
SAMR start with a coarse and uniform grid. The grid is then recursively refined
in areas where the accuracy is too low. This procedure results in a dynamic and
adaptive grid hierarchy that conforms to the maximum acceptable error.
Because grid patches are created, moved and deleted during run-time, the
dynamic grid hierarchy is repeatedly repartitioned and redistributed over the
processors. The partitioning process must not only take the computations and
the CPU performance into account, but also all other factors that contribute to

the run-time: communication volume, synchronization delays, data movement
between partitions and the performance and utilization of the interconnect.
Thus, to minimize the run-time, the current state of the application and the
hardware must both be taken into account. This is non-trivial, since the basic
conditions for how to allocate hardware resources change dramatically during
run-time, due to the dynamics inherent in both the applications and the com-
puter system.

In previous work we proposed the development of a meta-partitioner [12, 24,
28], which should autonomously select, configure, and invoke the best partition-
ing algorithm with regard to the current application and computer state. For
the selection process, the meta-partitioner would have access to a large data
base with thoroughly characterized partitioning algorithms.

In this paper we present such a performance characterization of SAMR load
balancing algorithms. We use four real-world applications and, on a time-step
basis, compare a common partitioning algorithm to a large number of alternative
partitioning algorithms. The alternative algorithms can be altered with respect
to the current state of the SAMR application and computer system.

The results show the benefits of having a collection of diverse partition-
ing algorithms to choose from. Even though the best-performing partitioning
algorithm vary when the application state vary, there exist good-performing
partitioning algorithms for each application and time step. As the combined
range of possible application and computer states in theory is infinite, having
complementing partitioning algorithms is essential. With sufficiently many com-
plementing algorithms, there are good-performing algorithms for most states.

We see two main approaches for the meta-partitioner to select the partition-
ing algorithm. The first approach is to construct heuristic rules. The second
approach is to use historical performance data. Regardless of approach, we will
need a data base with performance data from thoroughly characterized par-
titioning algorithms. The performance data gathered in this work proves the
viability of the metapartitioner and will form a solid basis for such a data base.
Using the data base, good performing partitioning algorithms can consistently
be selected.

2 Structured adaptive mesh refinement

For PDE solvers based on finite differences and structured grids, solution accu-
racy and run-time are higly dependent on grid resolution. A higher resolution
generally results in a higher accuracy® but also in a longer run-time. Often,
features requiring additional resolution, like shocks and discontinuities, only oc-
cupy a small part of the grid: a uniform and high resolution are a waste of
computational resources. By increasing the grid grid resolution in critical areas,
the run-time of these PDE solvers can be decreased

The common Berger-Colella SAMR algorithm [4] starts with a coarse struc-
tured base grid covering the entire computational domain. The resolution of
the base grid conforms to the lowest acceptable accuracy of the solution. At
regular intervals, the local computational error is estimated. Grid points with
errors larger than a given treshold are flagged for refinement. Flagged points are
clustered and overlaid with logically rectangular patches of finer and uniform

1Higher accuracy can also be achieved with higher order methods.

resolution. For small errors, refined patches can be removed. As the execution
progresses, grid patches are created, moved and deleted, resulting in a dynamic
grid hierarchy.

During execution, information is frequently exchanged between grid patches.
Boundary data for a refined grid patch is typically obtained from adjacent
patches or patches on the next lower level, as most patches are contained in
the inner parts of the computational domain. Only a small fraction of the
patches can generally use the physical boundary conditions. After integration,
the results are projected down from finer to coarser levels. As refined patches
use smaller time steps, updating coarser level solutions increases the accuracy.
Thus, data flows both over the borders of neighboring patches and between
patches on different refinement levels.

Figure 1: Example of a grid hierarchy with two levels of refinement. The grids
are skewed to reflect the characterstics of a solution.

3 Partitioning grid hierarchies

Efficient use of parallel SAMR typically requires that the dynamic grid hier-
archy is repeatedly partitioned and distributed over the participating proces-
sors. Several performance issues arise during the partitioning process. As data
flows in the grid hierarchy, processors need to exchange data. Intra-level com-
munication appears as grid patches are split between processors and data are
exchanged along the borders. Inter-level communication can occur for overlaid
patches when the solution is projected down to coarser levels and when a finer

patch lacks boundary data. Both types of communication can severely inhibit
parallel effiency.

A synchronization delay may occur when a processor is busy computing
while holding data needed by other processors. Until the processor has finished
its computations, other processors might be unable to proceed. Both the arith-
metical load imbalance and the order in which the patches are processed can
cause delays. Synchronization delays can be severe [27] and are hard to predict.

To get optimal performance, the partitioner needs to simultaneously mini-
mize data migration, load imbalance, communication volumes, and synchroniza-
tion delays. It is unrealistic to search for the optimal solution [10]. Instead, the
partitioner needs to trade-off the metrics in accordance with the characteristics
of the application and computer. Ultimately, partition quality is determined by
the resulting application execution time.

Algorithms for partitioning SAMR hierarchies can be categorized as domain-
based, patch-based, or hybrid. For patch-based partitioners (PB) [3,14,21], the
distribution decisions are made independently for each patch (or refinement
level). The SAMR framework SAMRAI [32,33] fully supports PB. Domain-
based partitioners (DB) [18, 20, 24, 30] partition the physical domain, rather than
the actual grid patches. The domain is partitioned along with all contained grids
on all refinement levels. Domain-based partitioners can be found in the AM-
ROC [2,8] and GrACE [19] frameworks. Hybrid partitioners (HP) [13,18,30]
combine the patch-based and domain-based approaches. In the hybrid parti-
tioning framework Nature4Fable [23], areas suitable for either domain-based
or patch-based algorithms are separated from each other. By using different
techniques for different grid parts, the partition quality can be improved.

3.1 Distributing grid patches

For the patch-based approach, the most straightforward method is to divide
each patch or level into p blocks, where p is the number of processors, and
distribute one block to each processor. Another approach is to use a bin-packing
algorithm [3,19, 33] to distribute the patches. For bin-packing to be effective,
large patches may have to be divided. Regardless of method, the partitioner
can use either a patch-by-patch or a level-by-level approach.

In theory, patch-based algorithms result in perfect load balance (if patches
are allowed be subdivided). In practice, some load imbalance is expected due to
sub-optimal patch aspect ratios, integer divisions and constraints on the patch
size. Because only patches (or levels) created or altered since the previous
time step need to be considered for re-partitioning, the partitioning can be
performed incrementally. However, patch-based algorithms often results in high
communication volumes and communication bottlenecks. The communication
volume is generally increased when a patch is subdivided into many blocks to
lower the load imbalance. Communication serialization bottlenecks can occur
when overlaid patches are assigned to different processors. A coarser block is
typically assigned to fewer processors than a finer block. A processor owning
coarser blocks will generally need to communicate with many processors having
finer and overlaid blocks, creating communication bottlenecks.

For the domain-based approach, only the base grid is partitioned. Normally,
the workload of the refined patches is projected down onto the base grid, reduc-
ing the problem to the partitioning of a single grid with heterogenous workload.

To achieve less load imbalance, the base-grid can be partitioned into more blocks
than processors. Having more blocks can make it easier to find an even distri-
bution. The minimum block size is determined by the size of the computational
stencil on the base grid. Because the base grid stencil corresponds to many grid
points on highly refined patches, the workload of a minimum sized block can be
large.

Because overlaid grid blocks reside on the same processor for domain-based
algorithms, inter-level communication is eliminated. A complete re-partition
might be necessary when the grid hierarchy is modified. The computational
stencil and base grid resolution impose restrictions on subdivisions of higher
level patches, often resulting in high load imbalances for deep grid hierarchies.
Another problem with domain-based algorithms is ”bad cuts”: many and small
blocks with bad aspect ratios. These blocks are created when patches are cut
in bad places, assigning only a tiny fraction of a patch to one processor while
the majority of it resides on another processor.

Both patch-based and domain-based algorithms perform well under suitable
conditions, especially for simple and shallow grid hierarchies [22,28]. Unfortu-
nately, their shortcomings often make their performance unacceptable for deep
and complex hierarchies [22,23]. As a remedy, a hybrid approach can be used.
By combining strategies from both domain-based and patch-based algorithms,
it is possible to design a partitioner that performs well under a wider range of
conditions.

Key concepts in the hybrid partitioning framework used in this work (Na-
ture+Fable [23]) are separation of refined and unrefined areas of the grid and
clustering of refinement levels. Separation of unrefined and refined areas enables
different partitioning approaches to be applied to structurally different parts of
the grid hierarchy. Refinement levels are clustered into bi-levels. A bi-level
consists of all patches from two adjacent levels — patches from refinement level
k and the next finer level, k + 1. If the coarser level is much larger than the
finer level, the non-overlaid area of the coarser level can be removed from a
bi-level. Each bi-level is partitioned with domain-based methods. Patch-based
techniques are used for all parts of the grid that are not included in bi-levels.

Using the hybrid partitioning algorithms adopted in this work, less load
imbalances than for domain-based algorithms can be achieved because patches
from at most two refinement levels are partitioned together. Because inter-
level communication only exist between bi-levels, communication volumes are
generally smaller for the hybrid algorithms than for patch-based algorithms.

3.2 Towards the meta-partitioner

No single partitioning algorithm is the best choice for all application and com-
puter states [23]. We therefore proposed the meta-partitioner [12, 24, 28], which
autonomously selects, configures, and invokes a good-performing partitioning al-
gorithm. The meta-partitioner has access to a variety of complementing parti-
tioning algorithms from all approaches. At re-partitioning, the meta-partitioner
evaluates the current state of the application and computer system and selects
a suitable partitioning algorithm [25, 26].

We see two approaches to select the partitioning algorithm. The first ap-
proach uses heuristic rules, constructed from partitioning algorithm performance

data. By combining the rules with application and computer states, a suitable
partitioning algorithm can be selected.

The second approach uses historical performance data together with stored
application and computer states. During run-time, the current application state
is matched against historical data to find and extract the most similiar state.
A partitioning algorithm is then selected based on the current computer state
and historical performance data for the extracted state.

Regardless of how the meta-partitioner selects the partitioning algorithm, we
need to thoroughly characterize all candidate algorithms. This work presents
such a characterization. For the rule-based approach, we will need the char-
acterization for the construction of the heuristic rules. For the historical data
approach, we will use the characterizations during run-time.

For the characterization, we use four real-world applications. The appli-
cations represent a wide range of application states and they are partitoned
by a large number of complementing partitioning algorithms. We analyze the
performance of the algorithms and assess their strengths and weaknesses. The
collected data are stored in a data base suitable for future research and for use
in the meta-partitioner.

4 Applications

We use four applications from the Virtual Test Facility (VTF). The VTF, de-
veloped at the California Institute of Technology, is a software environment
for coupling solvers for compressible computational fluid dynamics (CFD) with
solvers for computational solid dynamics (CSD) [8,29]. The purpose of VIF
is to simulate highly coupled fluid-structure interaction problems. The selected
applications are restricted to the CFD domain of VTF, as the CSD solver is
implemented with unstructured grids and the finite element method.

For the CFD problems in VTF, the framework AMROC [2,9] is used. AM-
ROC is an object-oriented SAMR framework that conforms to the algorithm
formulated by Berger and Colella [4]. AMROC is based on DAGH (Distributed
Adaptive Grid Hierarchies), a data storage package for parallel grid hierar-
chies [19]. In AMROC, separate grid levels are allowed to use different degrees
of refinement.

Below we present the applications used. A more comprehensive description
can be found in the AMROC wiki [2]. The term ”refinement factor” describes
the degree of refinement with respect to the next lower refinement level. As an
example, assume a 2D application with two levels of refinement and refinement
factors {2,4}. The resolution on the first refinement level is twice as high as on
the base grid. The second refinement level has a resolution four times higher
than the first refinement level. Thus, for the example above, the maximum
patch resolution is 64 times higher than for the base grid ((2 % 2) x (4 % 4)).
Because we generally also refine in time, several iterations are performed on a
refined patch during one time step on the coarsest level. Using our example
and assuming equal refinement in both space and time, we will perform two
iterations for each patch on the first refinement level and eight iterations for the
patches on the second level. The refinement factors are set by the user before
the application is executed.

The metric workload measures the aggregate number of grid points calcu-

lated on during a time step on the coarsest level. Because of the refinement
in time, a refined grid has a larger workload than the number of grid points.
The workload presented in Table 4 is the aggregate workload for all patches and
time steps.

A scattered refinement pattern have its patches spread over a large part of
the computational domain and the patches are generally unconnected. When
the pattern is unscattered, the patches are connected and located close to each
other. If a pattern is sharp, the size of overlaid refined areas are roughly equal.
In a fuzzy pattern, the overlaid refined area gets much smaller for each level of
refinement.

Application data, Ramp o° Application data, ConvShock o°
500 >§L& 150 ﬁ%
400 18
%] 1]
[} [
5 - 5 1000 10
2] | 2 .
g 300 6 g g g
5 = E
& s B =
IS € s00 5
= =}
b= =4
100 2
0 ‘ : : : : c—0 o ‘ : : —0
0 50 100 ¥50 200 250 300 0 50 00 50 200
Time step Time step
(a) Ramp (b) ConvShock
Application data, ShockTurb o° Application data, Spheres 10°
400 ﬁ_& 2000 >§|»
— Number of patches J/\/\
\
9 4 [\
< = \
S e / \ g
g g 8 | \ 3
‘G 2001] ’WM W TE= ‘5 1000f / \ 2%
g P I™ T | \ S
Qo /N i =) {
: it e N
3) 2
J |
|
0 . - . . . 20 ok : —0
e 50 :Eeo 150 zqo 250 m 350 e 50 I\go 150 290 250 WD 350
Time Step Time step
(¢) ShockTurb (d) Spheres

Figure 2: Workload and the number of grid patches for the four test applications.

Application Initial Levelsof re- Refinement Max Total
grid size finement factors grid size workload
Ramp 480x240 3 {2,2,4} 722,924 1.78 x 10
ShockTurb ~ 240x120 3 {2,2,2} 787,076 1.21 % 10°
ConvShock 200x200 4 {2,2,4,2} 695,244 1.42 % 10°
Spheres 200x160 3 {2,2,2} 689,688 0.60 * 10°

Table 1: Application data. The maximum grid size denotes the number of grid
points at the time step when the grid was at its largest. The total workload
also considers refinement in time.

4.1 Ramp — Mach reflection at a wedge

Ramp simulates the reflection of a planar Mach 10 shock wave striking a 30
degree wedge. A complicated shock reflection occurs when the shock wave hits
the sloping wall. This problem was also used by Berger and Colella [4].

The initial grid size is 480x120 grid points and the application uses three
levels of refinement with refinement factors {2,2,4} (see Table 4). The maximum
number of grid points is 722,924. A density plot for time ¢=0.2 is shown in
Figure 3.

Both the workload and the number of grid patches grow almost linearly
during execution (see Figure 2a), due to the growing reflection pattern behind
the shock wave. Both the incident and the reflected shockwave have a sharp
and unscattered refinement pattern.

Densiy att = 0.2

Figure 3: Density plot for Ramp at time ¢{=0.2. The boxes correspond to grid
patches.

4.2 ShockTurb — Planar Richtmyer-Meshkow instability

ShockTurb treats the interaction of two contacting gases with different densi-
ties. When the gases are subject to a shock wave, the interface between them
becomes unstable and the result is called a Richtmyer-Meshkov instability. The
Richtmyer-Meshkov instability finds applications in stellar evolution and su-
pernova collapse, pressure wave interaction with flame fronts, supersonic and
hypersonic combustion and in intertial confinement fusion.

In the simulation, an incident Mach 10 shock wave causes vortices along a si-
nusoidally perturbed gas interface (five symmetric pertubations). The geometry
is rectangular and closed, except at the left-most end. The gases are air and SFg
(sulfur and fluoride). The simulation is motivated by physical experiments [31].

The initial grid size is 240x120 grid points and and the application uses three
levels of refinement with a constant refinement factor of two (see Table 4). The
maximum number of grid points is 787,076. A density plot for time ¢=0.5 is
shown in Figure 4.

Studying Figure 2c¢, we notice two sharp increases in the number of grid
patches. The first, and smaller one, occurs at time step 15 when the shock
wave hits the gas interface. Many small grid patches are created at this time.
Immediately, a large portion of these smaller patches either grow slightly or are
moved a little, causing them to merge.

The shock wave is reflected when it reaches the far wall. At approximately
time step 70, the shock wave again passes through the interface. The area
between the interface and the wall can at this time be subdivided into two
parts. The part closest to the wall is subject to heavy turbulence. Even though
the area is large and highly refined, only a small number of patches are needed
to cover this domain as it is unscattered, homogenous and rectangular in shape.
The majority of the computional work occurs in this part of the domain. The
area closer to the interface is also turbulent, but not as much. Here, it is
unnecessary to use patches from the highest refinement level. Since the area
is scattered, many patches are created. These patches constitute the second
large increase in the number of patches. Because the grid is not refined to the
highest level, these patches do not significantly increase the workload. Also, the
turbulence in this area quickly fades away, and the number of patches quickly
decreases.

During the later portion of the execution, the number of patches is increasing
as the turbulent area is slowly getting larger. However, the increase is scattered
and not in need of the highest possible resolution. Thus, we again get an increase
in the number of patches while the workload is largely unaffected.

Density att=0.5

0.9
0.8
0.7

0.6

i
|
i
i

i

0.4
0.3

0.2

0.1 qz

Figure 4: Density plot for ShockTurb at time ¢t=0.5, just before the shockwave
reaches the gaseous interface (at x=1) the second time. Only a small number of
patches is used for the refinement of the rightmost region. The boxes correspond
to grid patches.

4.3 ConvShock — Converging/diverging Richtmyer-Meshkov
instability

ConvShock simulates a Richtmyer-Meshkov instability in a spherical setting.
The gaseus interface is spherical and sinusoidal in shape. The interface is dis-
turbed by a Mach 5 spherical and converging shock wave. The shockwave is
reflected at the origin and drives a Richtmyer-Meshkov instability with reshock
from the apex.

The initial grid size is 200x200 grid points and the application uses four levels

of refinement with refinement factors {2,2,4,2} (see Table 4). The maximum
number of grid points is 695,244. A density plot for time ¢=0.5 is shown in
Figure 5.

During the first 50 time steps we see two distinct dips in the number of
patches (see Figure 2). The first one is caused by the incident shockwave —
as it is converging towards origo, its size is decreasing. At approximately time
step 10 the shockwave hits the fluid interface, causing both turbulence and a
higher level of refinement. When the shock wave continues towards origo, the
turbulent area can be covered by fewer and larger blocks. At time step 50, the
shock wave once again passes the interface. Since the shock wave is diverging,
it continues to grow during the remainder of the execution.

The workload of the application correlates to the number of patches, except
during the period from time step 30 to time step 50. During this interval,
many small patches are merged, as described above. The refined area and the
resulting workload is roughly constant, but the refined area is gradually covered
by a lower number of patches. The refinement pattern is sharp and unscattered
during the entire execution of the application.

Density att=0.6

Figure 5: Density plot for ConvShock at time ¢t=0.6 (detail). The rightmost
feature is the fluid interface and slightly closer to origo is the divering shockwave.
Note the heavy turbulence at orgio and the low number of grids covering it.

4.4 Spheres — Cylinders in hypersonic flow

In the Spheres application, a constant Mach 10 flow passes over two spheres
placed inside the computational domain. The flow results in steady bow shocks
over the cylinders. This is a realistic 4flow problem with complex boundaries.

10

The initial grid size is 200x160 grid points and the application uses three
levels of refinement with a constant refinement factor of two (see Table 4). The
maximum number of grid points is 689,688. A density plot for time ¢=3 is
shown in Figure 6.

Both the workload and the number of patches increase sharply during the
first 50 time steps (see Figure 2). They then decrease until time step 125,
where they stabilize and remain constant for the duration of the execution. The
increase in patches occurs when the incident flow starts to hit the two spheres.
Heavy turbulence is present until bow shocks begin to form behind the spheres.
The turbulence is decreased when the bow shocks become stable, attributing to
the decrease in both the workload and the number of patches. When the bow
shocks are fully formed and stable, the workload and the number of patches
are constant. During the first 50 time steps, the refinement pattern is growing,
scattered and fuzzy. When the bow shocks starts to form, the pattern gradually
becomes smaller and less scattered. During the latter part of the execution, the
refinement pattern is sharp and unscattered.

Density att - 3

Figure 6: Density plot for Spheres at time ¢=3. The bow shocks are fully
formed.

5 Methodology

Our ultimate goal is the meta-partitioner, which autonomously selects, con-
figures and invokes a good-performing partitioning algorithm with respect to
the current state of the application and computer. To achieve good perfor-
mance, the meta-partitioner needs access to performance data from thoroughly
characterized partitioning algorithms. In this work, we characterize partition-
ing algorithms from the domain-based and the hybrid approach. We use the
domain-based partitioner from the SAMR framework AMROC and a large num-
ber of hybrid algorithms from the partitioning framework Nature+Fable [23].

11

AMROC uses a domain-based approach for load balancing. When the work-
load has been projected down onto the base grid, the grid is subdivided into
smaller blocks. A Hilbert space-filling curve (SFC) dictates the orientation of
the cuts, effectively creating an ordered, one-dimensional list of blocks. The list
is cut into p segments of roughly equal workload. The segments are linearly
mapped onto processor 1 to p. The same processor ordering is used at each
re-partition. The locality preserving property of the SFC benefits the partition-
ing in two ways. First, adjacent blocks in the hierarchy are likely to be kept
together, decreasing communication costs. Second, as the SFC dictates how the
segments are mapped onto processors, small grid perurbations typically lead to
small data migration costs.

Nature+Fable is a hybrid partitioning framework designed to produce high-
quality partitions during a wide range of conditions. The partitioning process
within Nature+Fable is governed by a large set of parameters. In this work,
each parameter combination is regarded as a separate partitioning algorithm. In
total, almost 900 parameter combinations were used, corresponding to as many
hybrid algorithms. The main features of hybrid partitioners are described in
Section 3.1.

Due to the vast number of hybrid algorithms, it is impossible to perform real-
world executions for each combination of partitioning algorithm and application.
Instead, we use application execution trace files and simulations of the Berger-
Colella SAMR algorithm [4]. A trace file completely describes an un-partitioned
grid hierarchy. The trace files were obtained from real executions on the ALC
parallel computer at Lawrence Livermore National Laboratory [1]. The grid
hierarchies were partitioned for 16 processors, and the partitioning algorithm
was fixed during each simulation.

The partitioned grid hierarchies were used as input to an SAMR simula-
tor [6]. Rather than simulating a parallel computer, the simulator mimics the
execution of the Berger-Colella SAMR algorithm. For each time step, the sim-
ulator calculates metrics like arithmetical load imbalance and communication
volume. The metrics (see Section 6) are independent of computer characteris-
tics.

6 Performance metrics

Below we define the metrics used in this work.

Load imbalance

Arithmetic load imbalance is a common metric for judging the quality of a
partition. We define load imbalance as follows:

Max{processor workload} 100

Load imbalance (%) = 100 Average workload

Since we generally also refine in time, the workload (see Section 4) is not equal
to the total grid size. We use the workload of the most loaded processor, as all
processors must finish their computations before the solution can be advanced
to the next time step.

12

Predicted computational time

This metric shows the predicted impact of load imbalance on the computational
time. For each application, we divide the average real-world computational
time from the ALC parallel computer with the aggregate workload. The result
correponds to the computational time for a single grid point. For each time
step, the derived computational time is multiplied with the workload of the
most loaded processor. The outcome is a prediction of the computational time
for each time step.

The real-world computation time for a grid point is determined by many
factors that are out of our control, e.g. cache misses and other system effects.
However, we do not use the predicted time for (and neither are we deriving
it from) a small number of grid points. We use it to estimate the aggregate
computational time for millions of grid points. Because of the large number
of grid points, variations in computational time for individual grid points are
evened out.

Configurations resulting in a low load imbalance will always perform better
than ones with a higher imbalance, but the differences in computational time
also depend on the characteristics of the application. For huge grid hierarchies
or computationally intensive applications, the impact of the load imbalance will
be large.

Application Computational Workload/ Time/grid
time (s) processor point (us)
(grid points)
Ramp 1381.2 111 # 10° 12.42
ShockTurb 2618.4 7.60 % 107 34.45
ConvShock 1810.7 8.87 % 107 20.42
Spheres 1843.5 3.73 x 107 48.86

Table 2: Computational time per grid point, derived from actual executions
with sixteen processors. The used computational time is the average time per
processor. The workload is the sum of the gridpoints calculated on, taken over
all time steps.

Number of blocks

To achieve low load imbalances, grid patches are often divided into smaller
blocks. Using patches that are split into many parts generally results in larger
faces between the blocks, inducing more communications. Having many blocks
also result in other types of overhead, e.g. larger start-up costs, more ”book-
keeping” and often higher cache miss rates. For the number of blocks metric,
we compute the maximum number of blocks assigned to any processor.

Number of communications

Using network performance data from the same type of network as employed
in the ALC computer [15] data, we found that the time spend in communica-
tion was short. Instead of long communication times, performance was limited
by synchronization delays. The time spent waiting for data was of the same

13

magnitude as the computational time. For our applications, synchronization
reductions are more benefical than decreases in communication volumes.

Using the simulator, it is impossible to measure synchronization delays with-
out complex parallel execution models of the applications. However, each time
processors need to exchange data, a synchronization delay can occur. By re-
ducing the number of communications, the probablity of delays will be reduced.
Given the many delays recorded on the ALC computer, a reduction will have
substantial impact on application run-times.

Application Computational — Synchronization

time (s) time (s)
Ramp 1381.2 808.6
ShockTurb 2618.4 562.1
ConvShock 1810.7 2262.4
Spheres 1843.5 2585.1

Table 3: Comparision between computational and synchronization time. The
numbers are from actual sixteen processor runs.

As a performance metric, we therefore include the total number of commu-
nications during a time step. Communications between two processors, in the
same direction (send or receive) and on the same level or between the same
levels, are assumed to be packed. Summing the packed communications yields a
measurement of the total number of communications. This metric is an approx-
imation of the communication volume, but we believe it captures the general
behavior of the number of communications.

Data migration

Data migrates between processors as a consequence of repartitioning. Data is
migrated from old partitions to new partitions in accordance with the new par-
titioning. The metric data migration is defined as the number of data points
moved from one processor to another. Thus, this metric captures the parti-
tioner’s ability to consider the existing partitioning.

In this paper, we characterize almost 900 partitioning algorithms. Because
data migration requires that we consider the partitionings at two consequtive
time-steps, for each time-step and application it is necessary to analyze the tran-
sitions between about 9002 partitioned grid hierarchies. The resources required
to efficiently store and process this information are beyond the capacity of our
current hardware and software tools. Hence — and despite the relevance —
including data migration is considered future work.

7 Performance results

The trace files from the four applications were partitioned for sixten processors
by the domain-based partitioner in AMROC and by almost 900 hybrid parti-
tioning algorithms from Nature-+Fable. The resulting partitions were used as
input to the SAMR simulator, as described in Section 5.

For each metric and time step, the results for the domain-based partitioner
and the best hybrid partitioning algorithm are presented. We use the best

14

hybrid algorithm as an illustration of the performance that can be achieved
with the meta-partitioner. We also present average values for each metric in
Section 7.5.

7.1 Load imbalance

The domain-based algorithm produced low load imbalances for ShockTurb and,
with one exception, for Spheres. In the early stage of Spheres, a small, scattered
and fuzzy refinement pattern consisting of few patches (see Section 4.4) resulted
in high imbalances. However, these imbalances decreased as a result of the
growing refinement pattern. From time step 40 and on, a larger and sharper
refinement pattern resulted in low imbalances. For ShockTurb, the majority
of the computational work occurs at the rightmost part of the domain, where
the refinement pattern is large, rectangular and unscattered. The domain-based
algorithm is able to use this refinement pattern to produce a low load imbalance.

For Ramp and ConvShock, the domain-based algorithm produced wildly
oscillating imbalances, generally above 50 percent and often significantly higher.
Because both applications have deep grid hierarchies with sharp and relatively
small refinements, these applications amplified the inherent shortcomings of
domain-based algorithms (see Figure 7). However, imbalances were decreasing
as a result of growing refinement patterns and an increasing number of patches.
This relation between the refinement pattern and the load imbalance was similar
to that observed for Spheres. For all these three applications, a decrease in load
imbalances could be connected to a larger refinement pattern. We conclude that
the domain-based algorithm generally produces lower imbalances for large and
unscattered refinement patterns.

The hybrid algorithms generally produced low and stable load imbalances.
The lowest imbalances were achieved for small (e.g. ConvShock) or scattered and
fuzzy (e.g. the beginning of Spheres) refinement patterns. For the later stages
of ShockTurb, where the refinement pattern is large and homogenous, the hy-
brid algorithms produced relatively high and oscillating load imbalances. This
contrasts the low imbalances produced in the early stages, where the refinement
pattern is more scattered (see Section 4.2). We conclude that the hybrid algo-
rithms generally produce low load imbalances for sharp and scattered refinement
patterns but have problems with large and homogenous patterns.

7.2 Predicted computational time

The difference in predicted computational time between the domain-based and
the hybrid algorithms was large for Ramp and ConvShock (see Figure 8). The
low and stable load imbalance for the hybrid algorithms resulted in superior
predicted computational times. For the domain-based algorithm, the high and
oscillating load imbalance caused large and fluctuating predicted computational
times. For both applications, the gradual increase of workload resulted in an
increase in predicted computation time as well.

Only for ShockTurb did the domain-based algorithm achieve shorter pre-
dicted computational times than the hybrid algorithms. The high and oscillat-
ing load imbalance for the hybrid algorithms resulted in longer and fluctating
computational times.

15

Load imbalance, Ramp Load imbalance, ConvShock

3007 350
- — DB
250+ DB 300 ‘
gzoo ‘ ‘ 250
529 |11 || il
sl] gzoo‘
g150, | ;:
£ £ 150‘ H ”
g & 100 l'”f f M 'w |
50 MM ‘HW W M ol
M i
% 50 100 150 200 250 300 % 50 00 150 200
Time step Time step
(a) Ramp (b) ConvShock
o Load imbalance, ShockTurb Load imbalance, Spheres
p— i —— Hybrid
100 -7 g)ébl’ld -7 D)é i
90 150
5 z |
3 3
3 5100
8 3
£ £
k=] =}
E E s

. 0 - . s .
50 100 _iL 250 300 0 100 . 200 300
ime step Time step
(¢) ShockTurb (d) Spheres

Figure 7: Load imbalance.

Even though the domain-based algorithm achieved a lower load imbalance
than the hybrid algorithms for 300 out of 350 time-steps, the total predicted
computational time was slightly shorter for the hybrid algorithms (see Table 4).
The initial combination of high load imbalance and a large workload for the
domain-based algorithm was only marginally compensated during the main part
of the execution, showing the importance of targeting the load imbalance for
large workloads.

7.3 Number of blocks

The hybrid algorithms consistently produced partitions with a small number of
blocks for all applications. The number of blocks closely followed the behavior
of the number of patches (see Figure 2 and 9) but seemed to be unaffected by
any other characteristics of the refinement pattern.

The number of blocks was larger for the domain-based algorithm than for the
hybrid algorithms. The difference between the algorithms was smaller during
the beginning of Spheres and for time steps 60 to 110 for ShockTurb. For both
applications, the refinement patterns are scattered with small and unconnected
patches. For these refinement patterns, the potential difference between the
algorithms are reduced as fewer patches typically need to be subdivided to
balance the load.

16

Computational time, Ramp ~ Computational time, ConvShock

14 40 b
2] | o |
@ | / &30,
= 8 <
5 S20
5 of 5
>
(=R o
£ 4 g |
8 } 8 10
U |
0 y : 0 y X - X
0 50 100 50 200 250 300 0 50 100 150 200
Ime step Time step
(a) Ramp (b) ConvShock
Computational time, ShockTurb Computational time, Spheres
15¢ 20
— DB — DB
by B15) ﬂ
£10r ®
= £
< =
s g10/
g g
2 st g
g £5
@] Q
O
0 : : :] 0 : : :
0 100 . 200 300 400 0 100 gOO 300
Time'step Iteration
(c) ShockTurb (d) Spheres

Figure 8: Computational time.

For ConvShock, a sharp increase in the number of blocks occured when the
shock wave passes through the gas interface the second time (see Section 4.3).
After the increase, the refinement pattern is unscattered and sharp and the
patches are small. Together with the restrictions on where the patches can
be subdivided (see Section 3.1), the refinement pattern and the small patches
forced the domain-based algorithm to create many blocks.

7.4 Number of communications

The hybrid algorithms resulted in small numbers of communication (see Fig-
ure 10). The only exception was Spheres, but the number of communications
cannot be regarded as large. Because the hybrid algorithms created few blocks
(see Figure 9), they were expected to produce less communication than the
domain-based algorithm, but we were surprised to find the numbers this small.
If the meta-partitioner can select the algorithms that result in these small num-
bers of communications, the impact on the execution time will be large.

The number of communications was significantly larger for the domain-based
algorithm than for the hybrid algorithms. For both types of algorithms, there is
a correlation between the amount of communication and the number of blocks
as fewer blocks generally resulted in less communication. The only exception
was ConvShock, where the domain-based algorithm initially produced a large

17

Number of blocks, Ramp Number of blocks, ConvShock

— N+F = Hybrid I
==
il 200y A U AP
P | V o IVW' VM/WW g ‘u\‘ M nata’ 't
St Ml AR e S
s ““‘W’“WU' 5 IV
z | i ’W i ~ |
fw ‘VW i Ero0r ‘|‘ !
z z A [J‘
20 50 W M(Mt
% 50 100 150 200 250 300 % 50 100 150 200
Time step Time step
(a) Ramp (b) ConvShock
Number of blocks, ShockTurb Number of blocks, Spheres
1207 140; i
|
100 120 M
1%] 1%] b .
=} =}
S o0 E
2 2
§ 40r 5
P4 P4
20
% 50 100 150 200 250 300 350 % 00 200 300
Time step Time step
(¢) ShockTurb (d) Spheres

Figure 9: Number of blocks.

number of communications even though the number of blocks was small. In
the beginning of ConvShock, the refinments is concentrated to origo and each
block has many neighbors. This refinement pattern created a large number of
communications. Later, the majority of the computations are performed on the
divering shock wave. Since the width of the shock wave is small, the blocks only
need to communicate with a small number of neighbors. However, the number of
communications remained realtively stable as the smaller communication need
was balanced by an increase in the number of blocks (see Figure 9).

For ShockTurb, the impact of the large number of blocks present during
time steps 60 up to 110 was minimal for both appoaches. This is due to the low
average workload of the patches during the interval (see Section 4.2). For small
workloads, several blocks can often be assigned to a single processor, reducing
the need for communication.

7.5 Average performance results

Above, we presented the performance results on a time step basis. In this section
we discuss the average and aggregate performance of the algorithms, computed
for entire executions. We also include average performance data for all hybrid
algorithms, not just for the best performing algorithm.

For both Ramp and ConvShock, the hybrid algorithms produced a superior

18

Number of communications, Ramp Number of communications, ConvShock
800

25007 or
—— Hybrid —— Hybrid
U, W el
< | c | |
£2000 " \h MW\\N L M Soooo | |
S P fw‘ i} f\A\W\H
s ,r ”i Wy g M\
élsoowh‘ ! ! £ f. - M/ﬂw i f bl
5 &4000| | oL i ‘Mi" o] \A
LT T W
g gZOOO’
£ 500 £
= = MWWNMWW
% 50 100 150 200 250 300 % 50 100 150 200
Time step Time step
(a) Ramp (b) ConvShock

Number of communications, ShockTurb Number of communication, Spheres
2500

2500
— Hybrid | — Hybrid
%) M fM\ M I ,WPM/W!'\J‘WM‘ A 1%} m (‘”m
52000 | Wl iy I’ “ /“ y W ™, 20000 |
2 WS
S Y 2 ‘
;1500 MM[M ;1500 fu ”Mvw“ “M’AW, “’Y“WWWMW \
g | U‘ g
(5] J (5]
41000 41000
z | 5
§ 500 £ 500
P4 P4
% 50 100 150 200 250 300 350 % 100 200 300
Time step Time step
(c) ShockTurb (d) Spheres

Figure 10: Number of communications.

load imbalance. Here, even the average performing hybrid algorithm performed
better than the domain-based algorithm. For ShockTurb, the domain-based al-
gorithm had a significantly lower load imbalance than the best hybrid algorithm.
For Spheres, the performance of best hybrid algorithm and the domain-based
algorithm was roughly equal.

The average results for the predicted computational times are heavily de-
pendent on the load imbalance. For the Spheres, the domain-based algorithm
performed better in 300 out of the 350 time steps. Because of high load imbal-
ances for large workloads, the domain-based algorithm was still outperformed
by the best performing hybrid algorithms. For the other applications, the av-
erage hybrid algorithm performed better for Ramp and ConvShock while the
domain-based algorithm resulted in better performance for ShockTurb.

The differences in the number of blocks were large between the algorithms.
The best hybrid algorithms always constructed partitions with smaller numbers
of blocks, but the domain-based algorithm outperformed the average hybrid
algorithm for three of the four applications.

The average hybrid number of communications were significantly larger than
the best hybrid best results. We found that only relatively few hybrid algorithms
achieved results close to the best ones, while the majority performed much worse.
Still, it is only for Ramp that the domain-based algorithm performed better
than the average hybrid algorithm. We also found that the algorithms with

19

Load imbalance (%) Min. Hybrid Avg. Hybrid DB
Ramp 19.5 39.5 63.7
ShockTurb 18.3 30.4 9.5
ConvShock 14.2 29.6 64.7
Spheres 17.9 37.2 18.4
Comp. time (s) Min. Hybrid Avg. Hybrid DB
Ramp 1557 1825 2135
ShockTurb 3018 3321 2727
ConvShock 1958 2170 2722
Spheres 2152 2505 2162
Blocks (#) Min. Hybrid Avg. Hybrid DB
Ramp 32.9 70.2 57.2
ShockTurb 35.9 65.9 52.8
ConvShock 62.3 122.7 152.8
Spheres 49.8 93.4 73.2
Communications (#) Min. Hybrid Avg. Hybrid DB
Ramp 387 1809 1781
ShockTurb 370 1270 1970
ConvShock 876 2878 3954
Spheres 1153 1499 1579

Table 4: Average performance data for all metrics.

the smallest number of communications generally had a high load imbalance.
The opposite was also true, a low load imbalance generally resulted in a large
number of communications.

8 Summary and conclusions

To maintain good performance for parallel SAMR applications, the dynamic
grid hierarchy is repeatedly partitioned and distributed over the participating
processors. In this paper, we presented a comprenhensive performance charac-
terization of a large number of partitioning algorithms for parallel SAMR, appli-
cations. For the characterization, we used a domain-based algorithm from the
SAMR framework AMROC and many hybrid algorithms from the partitioning
framework Nature+Fable.

We found that the two partitioning methods complemented each other. The
hybrid algorithms generally constructed partitions with low load imbalance, few
blocks and a small number of communications. When the hybrid algorithms did
not perform as well, the domain-based algorithm constructed good partitions.
The domain-based algorithm always resulted in larger numbers of blocks and
more communication. The hybrid algorithms performed better for scattered
and sharp refinement patterns, while the domain-based algorithm was more
successful when the refined areas were large and uniform.

To efficiently partition the grid hierachy, it is important to adapt the choice
of partitioning algorithm to the state of the application and computer. For each
metric and time step, we found a large performance difference between the best
algorithm and a random algorithm. By selecting the best algorithm for each

20

time step, large savings in run-time will be achieved. Even if a sub-optimal algo-
rithm is selected, the resulting partitions will typically have significantly higher
quality than a random partition. Thus, to consistently construct near-optimal
partitions, the partitioning algoritm needs to be dynamic throughout the execu-
tion. We must at each time step have the ability to invoke any of the available
candidate algorithms. With sufficiently many complementing algorithms, there
will be good-performing algorithms for most states.

Unfortunately, there does not exist simple and effective translations between
application and computer states and a suitable partitioner [12]. Instead, ad-
vanced partitioning algorithm selection methods need to be developed. We
propose the meta-partitioner to fullfill this task. The performed experiments
proves the viability of the meta-partitioner. Furthermore, the data obtained
from this work is suitable to be included in the meta-partitioner and will form
a valuable basis for the selection of good-performing partitioning algorithms.

9 Acknowledgements

The authors are grateful to Ralf Deiterding, California Institute of Technology,
for providing the trace files and the performance data for the applications. Jo-
han Falkenstréom and Henrik Lindvall provided the illustration of an AMR grid
hierarchy.

References

[1] ALC linux cluster. http://www.llnl.gov/linux/alc/, Oct. 2006.

[2] AMROC - Blockstructured adaptive mesh refinement in object-oriented
C++. http://amroc.sourceforge.net/index.htm, Oct. 2006.

[3] Dinshaw Balsara and Charles Norton. Highly parallel structured adap-
tive mesh refinement using language-based approaches. Journal of Parallel
Computing, (27):37-70, 2001.

[4] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64-84, May 1989.

[5] Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cos-
mology. Computing in Science and Engineering, pages 46-53, Mar-Apr
1999.

[6] Sumir Chandra, Mausumi Shee, and Manish Parashar. A simulation frame-
work for evaluating the runtime characteristics of structured adaptive mesh
refinement applications. Technical Report TR-275, Center for Advanced
Information Processing, Rutgers University, 2004.

[7] Mattew W. Choptuik. Experiences with an adaptive mesh refinement al-
gorithm in numerical relativity. Frontiers in Numerical Relativity, pages
206-221, 1989.

[8] R. Deiterding, R. Radovitzky, L. Noels S. Mauch, J.C. Cummings, and D.I.
Meiron. A virtual test facility for the efficient simulation of solid material

21

[15]

[16]

[17]

response under strong shock and detonation wave loading. To appear in
Engineering with Computers, 2006.

Ralf Deiterding. Detonation simulation with the AMROC framework. In
Forschung und wissenschaftliches Rechnen: Beitrdge zum Heinz-Billing-
Preis 2003, pages 63-77. Gesellschaft fiir Wiss. Datenverarbeitung, 2004.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete problems. In STOC ’7j: Proceedings of the sixth annual ACM
symposium on Theory of computing, pages 47-63, 1974.

S. Hawley and M. Choptuic M. Boson stars driven to the brink of black
hole formation. Physic Review, D 62:104024, 2000.

Henrik Johansson and Johan Steensland. A characterization of a hybrid
and dynamic partitioner for SAMR applications. In Proceedings of The 16th
IASTED International Conference on Parallel and Distributed Computing
and Systems, 2004.

Zhiling Lan, Valerie E. Taylor, and Greg Bryan. Dynamic load balanc-
ing of samr applications on distributed systems. In Proceedings of 30th
International Conference on Parallel Processing, 2001.

Zhiling Lan, Valerie E. Taylor, and Greg Bryan. A novel dynamic load
balancing scheme for parallel systems. Journal of Parallel and Distributed
Computing, 62:1763-1781, 2002.

Jiuxing Liu et al. Performance comparision of mpi implementations over
infiniband, myrinet and quadrics. In Proceedings of Supercomputing, 2003.

Charles L. Mader and Michael L. Gittings. Modeling the 1958 Lituya Bay
mega-tsunami, II. Science of Tsunami Hazards, 20(5):241-250, 2002.

M. Norman and G. Bryan. Cosmological adaptive mesh refinement. Nu-
merical Astrophysics, 1999.

Manish Parashar and James C. Browne. On partitioning dynamic adaptive
grid hierarchies. In Proceedings of the 29th Annual Hawaii International
Conference on System Sciences, 1996.

Manish Parashar, James C. Browne, Carter Edwards, and Kenneth
Klimkowski. A common data management infrastructure for adaptive al-
gorithms for PDE solutions. In Proceedings of Supercomputing, 1997.

Jarmo Rantakokko. A framework for partitioning structured grids with
inhomogeneous workload. Parallel Algorithms and Applications, 13:135—
151, 1998.

Jarmo Rantakokko. Partitioning strategies for structured multiblock grids.
Parallel Computing, 26(12):1661-1680, 2000.

Mausumi Shee, Samip Bhavsar, and Manish Parashar. Characterizing
the performance of dynamic distribution and load-balancing techniques for
adaptive grid hierarchies. In Proceedings IASTED International conference
of parallel and distributed computing and systems, 1999.

22

[23]

[24]

[25]

Johan Steensland. Efficent Partitioning of Dynamic Structured Grid Hi-
erarchies. PhD thesis, Department of Scientific Computing, Information
Technology, Uppsala University, Oct. 2002.

Johan Steensland, Sumir Chandra, and Manish Parashar. An application-
centric characterization of domain-based SFC partitioners for paral-
lel SAMR. [EEE Transactions on Parallel and Distributed Systems,
13(12):1275-1289, Dec 2002.

Johan Steensland and Jaideep Ray. A partitioner-centric model for samr
partitioning trade-off optimization: Part I. In Proceedings of the 4th An-
nual Symposium of the Los Alamos Computer Science Institute (LACSI04),
2003.

Johan Steensland and Jaideep Ray. A partitioner-centric model for SAMR
partitioning trade-off optimization: Part II. In 2004 International Confer-
ence on Parallel Processing Workshops (ICPPW’04), pages 231-238, 2004.

Johan Steensland, Jaideep Ray, Henrik Johansson, and Ralf Deiterding.
An improved bi-level algorithm for partitioning dynamic grid hierarchies.
Technical report, Sandia National Laboratories, 2006. SAND2006-2487.

Johan Steensland, Michael Thuné, Sumir Chandra, and Manish Parashar.
Characterization of domain-based partitioners for parallel samr applica-
tions. In Proceedings of the IASTED International Conference on Parallel
and Distributed Computing Systems, pages 425-430, 2000.

The Virtual Test Facility. http://www.cacr.caltech.edu/asc/wiki, Oct.
2006.

M. Thuné. Partitioning strategies for composite grids. Parallel Algorithms
and Applications, 11:325-348, 1997.

M. Vetter and R. Stuartevant. Experiments on the Richtmyer-Meshkov
instability on a air/SF6 interface. Shock Waves, 4(5):247-252, 1995.

Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith,
and Noah Elliott. Large scale parallel structured AMR calculations using
the SAMRAI framework. In Proceedings of Supercomputing, 2001.

Andrew M. Wissink, David Hysom, and Richard D. Hornung. Enhancing
scalability of parallel structured AMR calculations. In Proceedings of the
17th ACM International Conference on Supercomputing, pages 336-347,
2003.

23

