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Abstract

The master equation satisfied by a probability density function is solved
on a grid with a cell size h > 1: A modified master equation is derived for
the time development of the average of the density in the larger cells.
The accuracy of the approximation is studied and the total probability is
conserved. Based on an estimate of the discretization error, the cell size
is dynamically adapted to the solution. The method is suitable for a few
space dimensions and is tested on a model for the migration of people.
Substantial savings in memory requirements and CPU times are reported
in numerical experiments.
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1 Introduction

The time evolution of many systems in molecular biology, population dynamics,
epidemiology, and migration of animals and people are well modeled by macro-
scopic, deterministic systems of ordinary differential equations for the mean val-
ues. Quite often when the numbers of particles or animals involved are small, the
randomness in the dynamic process cannot be ignored. A deterministic model
based on the macroscopic differential equations is then inaccurate. A possibility
is to add stochastic terms to the equations to account for the fluctuations but the
properties of these terms are usually unknown. A better alternative is offered by
the master equation (ME), where the modeling of the noise is inherent in the equa-
tion [6, 11]. Examples of stochastic, mesoscopic modeling of systems in biology,
epidemiology, and sociology using the ME are found in [2, 3, 15, 16, 17, 20, 22, 23].�Financial support has been obtained from the Swedish Foundation for Strategic Research.
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The ME for a system in e.g. biology, chemistry, or physics, is a scalar
differential-difference equation for the dynamics of its probability density func-
tion (PDF) p(x; t). The PDF measures the probability of the system at time t to
be in the discrete state x with a component xi 2 Z+ representing e.g. the number
of molecules or animals of species i. The non-negative integer numbers are here
denoted by Z+. With N number of species in the system, x has N components
and the ME has to be solved in N dimensions and time. If xmax is the maximum
copy number for each one of the species, then the solution domain will grow likexNmax making direct computational solution of the ME possible only when N = 2
or 3 for large xmax.

Gillespie’s Stochastic Simulation Algortihm (SSA) [7] is a Monte Carlo method
for simulation of one time trajectory of the system. The memory requirements
for SSA grow linearly with N . By collecting the statistics from M trajectories
or realizations, where M is large, the mean values, the higher moments, and the
PDF can be determined. A disadvantage with SSA is the slow convergence in M .

For problems with low dimension, direct solution of the ME or a Fokker-
Planck approximation is an alternative. The Fokker-Planck approximation is a
partial differential equation and can be solved by standard methods. Solving the
Fokker-Planck equation is about 2000 times faster than SSA in an example withN = 2 in [19] but SSA is often more efficient when N = 4. By splitting the
variables into one set treated as stochastic variables and one set as deterministic
variables in a hybrid scheme, the dimension of the stochastic part is reduced
and the major part of the variables is treated macroscopically [10, 12]. The
computational work in an example in [10] with N = 22 is an order of magnitude
lower with the hybrid method compared to SSA.

An adaptive method to directly solve the ME for a few species is developed
in this paper motivated by the efficiency of direct solution of the equation in
low dimensions, the possibility of coupling it to the macroscopic model in a
hybrid method, and that many models e.g. in [2, 16, 20, 23] are low-dimensional.
The states are aggregated in cells containing more than one state so that the
number of unknowns in the computational domain is much smaller than xNmax.
The cell average of probability is updated at every time step with the inflow
and the outflow of probability through the cell faces. Other methods for the
low-dimensional ME are found in [4, 14].

The computational domain is partitioned into a number of blocks. All cells in
the same block has the same number of discrete states. The cell size is allowed to
change by a factor two at a block boundary. The cell size in a block is adapted to
the time-dependent solution so that the estimated error due to the large cells in
the ME is sufficiently small. A similar technique for space adaptivity is available
for partial differential equations [5, 13] but then x 2 RN , where R denotes a real
number. A static aggregation of the states is introduced in [9] combined with a
sparse grid approximation [1] for higher dimensions. We merge the states into
cells and split the cells dynamically based on the error in the ME. The algorithm
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in [14] adapts the size of the representation of the solution of low-dimensional
problems automatically by a Krylov method. Our method also reduces the size
of the original problem but in a different manner.

The paper is organized as follows. The ME is stated and its properties are
given in Section 2. Then the discretization of the equation over the cells in a
block is presented in the next section. The partitioning of the computational
domain and the interpolation at the block boundaries are discussed in Section 4.
The error in the equation is estimated in Section 5 and the adaptive procedure
is described. In Section 6, the algorithm is applied to a two-dimensional problem
modeling the migration of people [23, 24]. Four different scenarios are obtained
by changing the parameters in the model. Conclusions are drawn in the final
section.

The i:th component of a vextor x is denoted by xi. If x � 0 or x < xmax

then all components of the vector satisfy the inequality relations. The maximum
norm of x is written jxj1 and the `2-norm kxk2.

2 The master equation

Assume that we have N species Xi; i = 1; : : : ; N , in a system. The copy number
of the i:th species is denoted by xi. A transition from one state xr to another
state x takes place with probability wr(xr; t) per time unit. The change in xr by
a transition is written as a chemical reaction

xr wr(xr;t)����! x; nr = xr � x: (1)

Only a few states are changed as a result of a transition r. Birth and death
processes can be modeled in this way. When a new copy of species i is born thennri = �1 and the other entries of n are zero. When a copy of i dies then nri = 1.
The number of possible transitions is denoted by R.

The probability density function (PDF) p(x; t) for the system with the tran-
sitions (1) to be in the state x at time t satisfies the ME [6, 11]. Introduce a
splitting of nr into two parts so that

nr = n+r + n�r ; n+ri = max(nri; 0); n�ri = min(nri; 0);
and letqr(x; t) = wr(x; t)p(x; t): (2)

Then the ME at (x; t) is�p�t =

RXr = 1

x + n
�r � 0

qr(x + nr; t)� RXr = 1

x � n
+r � 0

qr(x; t): (3)
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The first sum on the right hand side is the inflow of probability from other states
that can reach x by a transition (1) and the last sum is the outflow of probability
to other states that can be reached from x. The inequality conditions are such
that no inflow by a transition is possible from a state xr with one component i
such that xri < 0 and no outflow is possible to a state x0r with x0ri = xi � nri < 0
for some i.

The total probability Ptot =
P

x2ZN+ p(x; t) is preserved in time with these

conditions at the boundaries with xi = 0 for at least one i [5]. If the initial valuep(x; 0) is non-negative, p(x; t) will remain non-negative for t > 0.

3 Discretization

The discretization of the master equation in space and time is described in this
section. For notational convenience, we restrict ourselves to two space dimensions
and one transition r. How to extend our algorithm to more dimensions is rela-
tively straightforward. The equation for R transitions is obtained by summation
over all r as in (3).

3.1 The master equation for large cells
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Fig. 1: The state space is partitioned into cells with h = 4. (a) A shifted cell corre-
sponding to nr = (1; 1)T is bounded by dashed lines. (b) The shaded subcells contribute
with the indicated sign to the residual in cell A.

The state space fxj x � 0g is covered in 2D by square computational cells ChIJ
with edges of length h. The length is assumed to be a positive integer to fit the
block partitioning and the adaptivity but with a slightly different notation the
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derivations in this section are valid for any h � 1: In our examples in Section 6,h = 1; 2; 4; or 8. If h = 1 then xij 2 Z+ is the midpoint of the cellCij = (i� 0:5; i+ 0:5)� (j � 0:5; j + 0:5); i = 0; 1; 2; : : : ; N; j = 0; 1; 2; : : : ; N:
An outer artificial boundary xmax > 0 is introduced in every dimension to
limit the computational domain. If h > 1 then ChIJ ; I = 0; 1; 2; : : : ;Mh; J =
0; 1; 2; : : : ;Mh, with Mh = (N + 1)=h� 1 consists of the unit cells Cij such thathI � i < h(I + 1); hJ � j < h(J + 1). The area of a cell is jChIJ j = h2. This is
illustrated in Figure 1, where the parameters are h = 4; N = 11;M4 = 2.

The mean value of p(x; t) in cell ChIJ is phIJ(t). In Cij with h = 1, pij = p(xij; t)
is equal to the mean value. Outflow of probability at the upper boundary due to
a reaction is possible only if xij +n+r < xmax and inflow in a reaction must satisfy
xij � n�r < xmax. By summation over the midpoints in the cells with h = 1 and
including the constraints by the bounded domain, phIJ(t) satisfies the following
ME for one reaction rphIJ = jChIJ j�1

Xxij2ChIJ pij;�phIJ(t)�t =
1jChIJ j Xxij2ChIJ �pij(t)�t =

1jChIJ j0BBBB� Xfxij 2 ChIJg\fxij + n
�r � 0g\fxij + n

+r < xmaxg qr(xij + nr; t)� Xfxij 2 ChIJg\fxij � n
+r � 0g\fxij � n

�r < xmaxg qr(xij; t)1CCCCA: (4)

Let ChIJ(nr) denote the cell ChIJ shifted in the nr-direction, see Figure 1.a, so
that xij 2 ChIJ = ChIJ(0) and xij + nr 2 ChIJ(nr). Then after a change of variables
in the first sum in (4) we have�phIJ(t)�t =

1jChIJ j0� Xfxij 2 ChIJ (nr)g \ Bij qr(xij; t)� Xfxij 2 ChIJ (0)g \ Bij qr(xij; t)1A:
(5)

The upper and lower boundaries restrict xij to the setBij = fxij � n+r � 0g \ fxij � n�r < xmaxg
in (5). Part of the cells ChIJ(nr) and ChIJ(0) may overlap. Introduce the differences
between them by

∆Ch+IJ (nr) = ChIJ(nr) n (ChIJ(nr) \ ChIJ(0));
∆Ch�IJ (nr) = ChIJ(0) n (ChIJ(nr) \ ChIJ(0)): (6)
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When h = 1 or h � 2 and nri � h for some i, then ChIJ(nr) \ ChIJ(0) = ; and
∆Ch+IJ (nr) = ChIJ(nr) and ∆Ch�IJ (nr) = ChIJ(0). With this notation, (5) can be
written�phIJ(t)�t =

1jChIJ j0� Xfxij 2 ∆Ch+IJ (nr)g \ Bij qr(xij; t)� Xfxij 2 ∆Ch�IJ (nr)g \ Bij qr(xij; t)1A:
(7)

The summation of the flux for each reaction r is over the difference between the
cell and the shifted cell as illustrated in Figure 1.b for nr = (1; 1)T . The averages
of the PDF are known as averages in the surrounding cells A;B; and C and
interpolation is necessary to compute p in the subcells ∆Ch+IJ (nr) (shaded with
+-signs in Figure 1.b) and ∆Ch�IJ (nr) (shaded with �-signs in Figure 1.b). The
right hand side or residual in (7) is denoted by Φ such that the equation is�phIJ(t)�t = ΦhIJ(ph): (8)

Let
PI;J jChIJ jphIJ be the total probability Ptot in the domain. Summation

over I; J in (7) yields�Ptot�t =
��t MhXI;J=1

h2phIJ =MhXI;J=1

0� Xfxij 2 ∆Ch+IJ (nr)g \ Bij qr(xij; t)� Xfxij 2 ∆Ch�IJ (nr)g \ Bij qr(xij; t)1A =0� Xfxij 2 [MhI;J=1
∆Ch+IJ (nr)g \ Bij qr(xij; t)� Xfxij 2 [MhI;J=1

∆Ch�IJ (nr)g \ Bij qr(xij; t)1A: (9)

Every xij in [MhI;J=1∆Ch+IJ (nr)g\Bij is also in [MhI;J=1∆Ch�IJ (nr)g\Bij and conversely.
Hence, the two sets are identical and�Ptot�t = 0 (10)

in (9). The total probability is conserved.

3.2 Fluxes in subcells

According to (7) and Figure 1, the flux qr shall be computed in the subcells
∆Ch+IJ (nr) and ∆Ch�IJ (nr) for the time evolution of phIJ . The procedure is derived
here for a reaction with nr = (1; 0)T to simplify the notation. Let wij be the
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propensity of this reaction computed at xij and t. Let wi+h and wi be evaluated
at the midpoints of each subcell in ∆Ch+IJ (nr) and ∆Ch�IJ (nr) andpi = h�1

Phj=1 pij; pi+h = h�1
Phj=1 pi+h;j; ∆pij = pij � pi; ∆wij = wij � wi;

see Figure 2.

i I i+h x1

Fig. 2: The subcells i and i + h and the cell I on the x1-axis.

Then the right hand side of (7) is in the interior of fx � 0g
1h2

hXj=1

wi+h;jpi+h;j � wijpij =

1h2

hXj=1

wi+hpi+h � wipi + pi+h∆wi+h;j + wi+h∆pi+h;j�pi∆wij � wi∆pij + ∆wi+h;j∆pi+h;j �∆wij∆pij: (11)

Two terms in the second sum in (11) vanish by the definition of piPhj=1 wi∆pij = wiPhj=1(pij � pi) = 0;Phj=1 wi+h∆pi+h;j = wi+hPhj=1(pi+h;j � pi+h) = 0:
Two other terms also vanish if w(x; t) is constant or varies linearly in x2Phj=1 pi∆wij = piPhj=1(wij � wi) = 0;Phj=1 pi+h∆wi+h;j = pi+hPhj=1(wi+h;j � wi+h) = 0:

Ignoring the two products of the deviations ∆w and ∆p in the x2-direction in
(11), the approximation of the ME (7) is when nr = (1; 0)T�phIJ(t)�t =

1h(wi+hpi+h � wipi): (12)

An analysis of a more general reaction is possible along the same lines as
above with a more complicated notation but with the same final approximation:
in each subcell evaluate the averages of the densities and the propensities at the
midpoint. The error in w vanishes as h! 1.
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3.3 Interpolation of p
In order to compute the flux qr in a subcell, we need wr and p in the same subcell.
An alternative to the approximation in (12) is to interpolate qr and use (7) but
this interpolation will be different for every reaction. By interpolating p once,
the same approximation is available for all reactions.

The p-averages in the subcells are recovered from the values in the neighboring
cells in one sweep in the x1-direction and one sweep in the x2-direction. Then p
is known in ∆Ch+IJ (nr) and ∆Ch�IJ (nr) as required by the ME in (7) and (12) for
updating pIJ . The interpolation formulas are derived for reactions with jnrij � 1
but can be extended in the same manner to reactions with jnrij � 2. Firstly, the
approximations of p are determined in Figure 3 between the grid lines 0 and 1, 1
and 3, 3 and 4, and so on in the x1-direction for all cells when h = 4. Secondly,
using these values the same procedure is repeated in the x2-direction.
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Fig. 3: The interpolation of p to the subcells in two steps from (a) to (b). The values
in the shaded cells are also involved in the interpolation formulas.

Let Pi and pk be the probabilities per unit square in the cells Bi and subcellsbk, respectively, in Figure 4.
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Fig. 4: The cells Bi are involved in the interpolation when a cell is split into the partsb0; b1; b2 between the grid lines 4 and 5, 5 and 7, and 7 and 8.

The one-dimensional interpolation formula is chosen such that it is exact for

8



Pi and pk being the averagexjjC =
1jCj ZC xj dx; j = 0; 1; 2;

in the corresponding cell or subcell C. Then the formulas arep0 = P1 +
h� 1

4h �h� 2

3h (P2 � 2P1 + P0)� (P2 � P0)

�;p1 = P1 +
h� 1

6h2
(P2 � 2P1 + P0);p2 = P1 +

h� 1

4h �h� 2

3h (P2 � 2P1 + P0) + (P2 � P0)

� : (13)

The interpolation is conservative in the sense that

1 � p0 + (h� 2)p1 + 1 � p2 = hP1:
The subcell b1 in the middle does not exist when h = 1 or h = 2, but the
interpolation formula is still valid for p0 and p2. For example, with h = 1 we havep0 = p1 = p2 = P1 which are the true values. The approximations of p and w
(see Section 3.2) are exact when h = 1. Thus, the discretization error in the fluxq is zero for unit cells. When h is large, the formula (13) for p0 can be regarded
as an interpolation of p0 on the edge between B0 and B1 and p1 = P1 +O(h�1).

Assume that p = �(x1) in the neighborhood of the cell b0. The interpolation
of �(x1) in the x1-direction in that cell is denoted by I1

0 such thatp0 = I1
0 (�(x1)) = �(x1)jb0 + �1

0(�(x1)): (14)

The interpolation (13) is exact and the error term �1
0 is zero for �(x1) = xj1; j =

0; 1; 2, and linear combinations of these powers of x1. When j = 3; 4 and x10 is
the coordinate of the left edge of B1 and b0, the error is�1

0(x3
1) = �(h� 1)(2h� 1)(h + 1)=4;�1

0(x4
1) = �(h� 1)(2h� 1)(h + 1)(5x10 + 2h + 1)=5: (15)

The interpolation error is zero when h = 1.
In the x2-direction, the interpolation I2

0 is exact for xj2; j = 0; 1; 2; and for
those powers of x2 its error function �2

0 is zero. The value p00 of p in the lower left
corner b00 of a cell (e.g. in cell A or C in Figure 1.b) is obtained by applying I1

0

and subsequently I2
0 . Since I1

0 is linear, I1
0 (��) = �I1

0 (�), the two dimensional
interpolation of xj1xk2 to obtain its average p00 isp00 = I2

0 (I1
0 (xj1xk2)) = I2

0 (xk2I1
0 (xj1)) = I2

0 (xk2)I1
0 (xj1)

= (xj1jb00 + �1
0(xj1))(xk2jb00 + �2

0(xk2))

= xj1xk2jb00 + xk2jb00�1
0(xj1) + xj1jb00�2

0(xk2) + �1
0(xj1)�2

0(xk2): (16)
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For 0 � j; k � 2 the formula is exact.
The simplest way of assigning density values to b0; b1; and b2 in Figure 4 would

be to let p0 = p1 = p2 = P1 also for h > 1 but the accuracy in (13) is much better.
The interpolation error for the simple choice is zero only for �(x1) = const:

The residual ΦhIJ in (8) is linear in ph with the approximations in this section.
Then the probability densities phIJ in ph satisfy�ph�t = A(x; t)ph; (17)

with a matrix A 2 RMh�Mh.

3.4 The one-dimensional case

The approximation of the ME in one dimension in cell B1 in Figure 4 for one
reaction with propensity w and nr = 1 is according to (12) and (13)�P1�t =

1h(w02p02 � w01p01); (18)

where the indices 0j denote the left subcells in cells Bj. The propensity is eval-
uated in the center of the subcells and is exact.

The right hand side in (18) is rewritten as

1h �w02 + w01

2
(p02 � p01) +

w02 � w01

2h h(p02 + p01)

�:
The discretization error � due to the interpolation of p is then by (14)

1h �w02 + w01

2
(�1

02(�(x1))� �1
01(�(x1))) +

w02 � w01

2h h(�1
02(�(x1)) + �1

01(�(x1)))

�:
(19)

For �(x1) = x3
1 we derive from (19) and (15) that�3 = �(h� 1)(2h� 1)(h + 1)

w02 � w01

4h ; (20)

and for �(x1) = x4
1 we have�4 = �(h� 1)(2h� 1)(h + 1)

�w02 + w01

2
+

10x10 + 9h + 2

5

w02 � w01

2h �: (21)

Suppose that p has a Maclaurin expansion in the vicinity of x10p(x1) = 
0 + 
1x1 + 
2x2
1 + 
3x3

1 + 
4x4
1 + : : :
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Then the discretization error in (18) is� = 
3�3 + 
4�4 + : : :
and it depends on the variation of w in the third order term (20) and on both
the mean and the variation of w in the fourth order term (21). Both �3 and �4

vanish when h = 1.
If w is constant then the expression for the time derivative of P1 is derived

from (13)�P1�t =
wh (p02 � p01)

=
wh ((
 � Æ)P3 + (1� 3
 + Æ)P2 � (1� 3
 � Æ)P1 � (
 + Æ)P0); (22)

with Æ = (h � 1)=4h and 
 = Æ(h � 2)=3h. In a Fourier analysis of the space
operator in (22), the symbol G of it for the mode exp(i!h) isG(!) = 2wh�1s2(�1 + 4Æ � 4(Æ � 
)s2) + 2i
s(1 + 4s2(Æ � 
)); (23)

where s = sin(!h=2); 
 = cos(!h=2): Since 4Æ = (h � 1)=h < 1 and Æ � 
 =Æ(1� (h� 2)=3h) � 0 for all h � 1, the real part <G of G is non-positive for all
values of !h in [0; �]. Thus, the differential equation is stable and a sufficiently
stable time discretization will produce a bounded numerical solution.

With the simplest choice of p02 and p01 in (22), p02 = P2 and p01 = P1 corre-
sponding to 
 = Æ = 0, we have a scheme identical to an upwind discretization
of �P�t = w �P�x1

of first order.
The equation (8) is advanced in time with constant, global time steps ∆t

bounded by the minimal spatial step hmin such that ∆t � 
hmin and the implicit
midpoint rule of second order accuracy [8, p. 204]. The discrete version of (17)
is at time tn+1 = (n + 1)∆t

pn+1h = pnh +
∆t
2
A(x; 1

2
(tn+1 + tn))(pn+1h + pnh): (24)

Suppose that p0h is represented by its Fourier expansion at t = 0 with the coeffi-
cients p̂0h!. Then at tn with the midpoint rulep̂nh! =

�
1 + 0:5∆tG(!)

1� 0:5∆tG(!)

�n p̂0h!:
11



Since <G � 0 in (23), j1 + 0:5∆tG(!)j=j1 � 0:5∆tG(!)j � 1 and by Parseval’s
relation we havekpnhk2 = kp̂nhk2 � kp̂0hk2 = kp0hk2

and the time integration of (22) is stable. A system of linear equations has to be
solved in each time step for pn+1 in (24). This system is solved iteratively by the
restarted GMRES method [18].

The method with 
 = Æ = 0 is too inaccurate but together with the implicit
midpoint rule it preserves the non-negativity of the solution. This cannot be
guaranteed with the interpolation of higher accuracy in (22).

4 Block partitioning

The computational domain is partitioned into square blocks. Each block consists
of a number of cells ChIJ with the same h but h may be different in different
blocks. The cell size can jump by a factor two at a block boundary. In this way,
a better resolution of the solution can be obtained in parts of the domain where
it is necessary for the accuracy and a coarser grid is often sufficient in other parts.
Since the smallest h is 1, the grid size will be h = 2j; j = 0; 1; : : : in the blocks.
Savings in computing time and computer memory without loss of accuracy are
demonstrated in Section 6 when h is allowed to vary. Implementation on a parallel
computer is facilitated by a block partitioning.

Each block is surrounded by ghost subcells, see Figure 5. The fluxes in these
ghost cells are needed for the evaluation of the right hand side Φ in the ME (8)
in the cells at the boundaries of a block. At the boundary of the domain, the
fluxes are zero in the ghost subcells. This corresponds to a subcell ∆Ch+IJ (nr) and
a reaction with nr1 or nr2 negative. If nr1 or nr2 is positive, then the outflow flux
in some subcells is not included in Φ at the boundary cells. The subcells at a
block interface are updated by data from the adjacent block.
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Fig. 5: Fluxes are zero in ghost subcells at the outer boundary (shaded) and sometimes
in subcells adjacent to outer boundaries (crossed).
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The values of p at the inner block interfaces, see Figure 3, are updated from
the coinciding cell in the adjacent block. Then p is interpolated as in Section 3.3
to the subcells in the block. Finally, the accumulated flux from all reactions is
computed and sent to the receiving cell on the other side of the block interface.

Since the same fluxes are used on both sides of the interface, the total prob-
ability Ptot is conserved also across the block interfaces. Let a be a vector of cell
areas ordered in the same way as ph. Then Ptot = aTph. Since Ptot is conserved
in time�Ptot�t = aT �p�t = aTAph = 0

for every ph, a is a left eigenvector of A with eigenvalue zero. If A is independent
of t, then the corresponding right eigenvector p1h is the steady state solution
fulfilling Ap1h = 0 (cf. [5]). The discretization (24) has the same steady state
solution.
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Fig. 6: The fluxes in the shaded areas are used in A1 for reactions with nr = (0; 1)T
(a) and nr = (1; 1)T (b).

Two examples with equal cell size in two neighboring blocks are found in
Figure 6. The cells Bj belong to the upper block and the cells Aj are part of the
lower block in the figure. When nr = (0; 1)T in Figure 6.a, the q-values in b1; b2;
and b3 are determined and added to the residual in cell A1. The same quantity
is subtracted in the residual in cell B1. In Figure 6.b, nr = (1; 1)T and the sum
of the fluxes in b2; b3; and b4 is sent to cell A1. If A1 is in the upper right corner
of the block, then q in b4 is computed in the block located along the diagonal
with only a corner in common with A1. The communication between diagonal
neighbors only involves the flux in a unit cell.
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Fig. 7: Cells at block interfaces with jumps in cell size. The shaded areas illustrate
cases where a subcell must be divided at the center (nr = (0; 1)T ) (a) or at one unit
length from the center (nr = (1; 1)T ) (b).

Additional interpolation in the subcells is necessary when the cell size is dou-
bled across a block interface. Consider the two cases in Figure 7. In the first case,
Figure 7.a, hl = h=2 = 2 in the lower block with cells A1 and A2 and hu = h = 4
in the upper block with the cell B1. The flux q23 in the subcell b23 = b2 [ b3 is
known using the procedure from Section 3.3 but when h � 4 and nr has a zero
component, we need qj in the cells bj; j = 2; 3. This is accomplished by the
interpolationqj =

q23

2
+ (�1)j+1 (h� 2)2

8(h� 1)
(q4 � q1); j = 2; 3: (25)

The total flux in b23 is conserved since q2 + q3 = q23. The interpolation is exact
for the averages of second degree polynomials. If nr = (0; 1)T as in Figure 7.a,
then q1 and q2 are the inflow fluxes to A1 and q3 and q4 are the corresponding
fluxes to A2.

In the second case, Figure 7.b, b23 is split at x4 + 1 where x4 is the coordi-
nate of the midpoint. Such a division is required for reactions with two nonzero
components of nr and h � 8. An interpolation formula isq2 =

h + 2

2(h� 1)
q23 +

h� 4

8(h� 1)
((h� 2)q1 � (h + 2)q4); q3 = q23 � q2: (26)

It is exact for second degree polynomials and preserves the subcell flux in b23. If
nr = (1; 1)T then q2 is part of the inflow flux to A1 and q3 and q4 contribute to
the change of p in A2.

5 Adaptation

The cell size in a block is adapted dynamically to control an estimate of the
discretization error in the block. If the estimate in one of the cells in a block
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with h > 1 is larger than a predefined error tolerance ", then h is halved in all
cells in the block. If the estimate is smaller than a fraction �; 0 < � < 1; of the
tolerance in all cells in a block, then h is doubled in all cells. This strategy has
been successful in solving partial differential equations [5, 13].

The error estimates are computed after every time step and the cell size in
the block is altered if necessary. The new values of p in the smaller cells after
refinement are computed by the interpolation formulas (13). When going from a
fine to a coarser grid, p in the new grid is given byp2hIJ = (phij + ph;i+1;j + ph;i;j+1 + ph;i+1;j+1)=4; C2hIJ =

1[k;l=0

Chi+k;j+l: (27)

In this way, both refinement and coarsening preserve Ptot.
The discretization error in the master operator Φh on the right hand side of

(8) due to a cell size h > 1 is estimated by comparing the sum of the space
discretizations or residuals in the cells Chi+k;j+l defined in (27) with the residual

in C2hIJ . The quantity #IJ in cell C2hIJ is defined by#IJ =
1

4

1Xk;l=0

Φhi+k;j+l(ph)� Φ2hIJ(p2h); (28)

with ph and p2h as in (27).
The discretization error �h is the difference between the exact value of the

residual F in a cell ChIJ computed with an analytical p and the approximation Φh
given the cell averages ph of p (cf. [13])�hIJ = FIJ(p)� ΦhIJ(ph):
By the definition of # in (28) and since fluxes in the interior of a cell cancel each
other in F#IJ =

1

4

1Xk;l=0

Fi+k;j+l(p)� FIJ(p)� 1

4

1Xk;l=0

�hi+k;j+l + � 2hIJ
= � 2hIJ � 1

4

1Xk;l=0

�hi+k;j+l: (29)

If the dominant term in � is 
�Q� where Q� is a polynomial in h, then by (29)#IJ � Q� (2h)�Q� (h) and� 2hIJ � Q� (2h)Q� (2h)�Q� (h)
#IJ ; �hij � Q� (h)Q� (2h)�Q� (h)

#IJ : (30)

In one dimension, Q� (h) is proportional to (h � 1)(2h � 1)(h + 1) in (20) and
(21). If h = 1 then Q� (h) = 0 and � 2hIJ � #IJ and �hij � 0 in (30). If h = 2 then� 2hIJ � #IJ and �hij � #IJ=12.
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The true error in Φ is computed in 1D for a reaction with nr = 1 and a constant
and a linear propensity w. The dependence of this error on h is compared in Table
1 to the behavior of Q for increasing h for p(x) = p0 exp(�x2=50) scaled such
that Ptot is one. The maximum norm of � h in the interval [�1028; 1028] and
the quotients Qh = Q(h)=Q(h=2) and Th = j� hj1=j� h=2j1 are computed. The
agreement between Qh and Th is very good.w = 1 w = xh Q(h) Qh j� hj1 Th j� hj1 Th

1 0 - 0 - 0 -
2 9 - 2.30e-7 - 8.11e-9 -
4 105 11.7 2.70e-6 10.3 9.40e-8 11.6
8 945 9.0 2.41e-5 8.9 8.08e-7 8.6
16 7905 8.4 1.91e-4 7.9 5.93e-6 7.4

Table 1: Comparison of the true discretization errors with the theoretical estimate in
one dimension.

In the experiments in the next section, # is estimated in j � j1. If j#j1 > ",
then the maximum error in the fine grid with cell size h is about 0:1j#j1 and the
grid is refined. If j#j1 < �", then the error is the fine grid is approximately less
than 0:1�" and it can be coarsened.

6 Numerical results

The algorithm for solving the low dimensional ME is applied to a model in so-
ciology by Weidlich [23, ch. 4] for the migration of people. The time dependent
solution, the number of cells, and the decay of the residual as the solution ap-
proaches the steady state are displayed in four different cases.

Assume that there are two regions R1 andR2 and two different populations P1

and P2. The populations interact with each other and move between the regions.
The system is characterized at each time instant by four states Sji ; i; j = 1; 2;
and sji is the number of people from Pi in region Rj in state Sji . Since the total
number of people Ωi in Pi is constant, the system has two degrees of freedom.
Let x1 = (s1

1 � s2
1)=2; �Ω1 � x1 � Ω1; x2 = (s1

2 � s2
2)=2; �Ω2 � x2 � Ω2:

Then the system is represented by the difference xi between the number of people
of Pi in regions R1 and R2.

The inclination of an individual in Pi to move from R1 to R2 (and vice versa)
depends on the number of P1 and P2 in R1. The changes of the state of the

16



system can be written as follows for Ω = Ω1 = Ω2:S1
1

w1�! S2
1 ; w1 = 
(Ω� x1) exp(Ω�1(�x1 � �x2)); nT

1 = (�1; 0);S2
1

w2�! S1
1 ; w2 = 
(Ω + x1) exp(�Ω�1(�x1 � �x2)); nT

2 = (1; 0);S1
2

w3�! S2
2 ; w3 = 
(Ω� x2) exp(Ω�1(���x1 + �x2)); nT

3 = (0;�1);S2
2

w4�! S1
2 ; w4 = 
(Ω + x2) exp(�Ω�1(���x1 + �x2)); nT

4 = (0; 1);
(31)

according to [23, p. 87]. An interpretation of the model is found in the same
reference and in [24]. The parameters � and � are real and positive and � = 1 in
a symmetrical case and � = �1 in an antisymmetrical case. By changing these
parameters, four different scenarios are simulated in the numerical examples.

The expected values of the stochastic variables X1 and X2 with the PDF given
by the master equation (3) approximately satisfy a system of ordinary differential
equations (ODEs) in the macroscopic model [6]. This system can be analyzed as
a dynamical system [21]. Three of our examples have stable fixed points which
are reached when time increases. The solution enters a stable limit cycle in the
final example.

The x-domain is [�Ω;Ω]� [�Ω;Ω] instead of [0; xmax]� [0; xmax] as in Section
3 but the boundary conditions are the same. The initial Gaussian density p(x; 0)
is on the diagonal between (�Ω;�Ω) and (Ω;Ω) of the (x1; x2)-domain in the four
main scenarios. The solution is integrated from t = 0 on a grid with 5�5 blocks.
Isolines of the solution are plotted in the figures. Every second grid line is shown.
Three grid levels are used with h = 1 at the finest level and " = 1:1 � 10�3 and� = 0:1 in Scenarios 1, 2, and 3. With h = 1 everywhere as in a direct solution
of the ME, the number of cells would be 14400.

6.1 Scenario 1
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Fig. 8: The steady state solution of Scenario 1 (a). The time evolution of the number
of cells (b).

17



With the parameters � = 0:2; � = 0:5; and � = 1 the origin is a stable stationary
point of the macroscopic problem [23, p. 89]. There is a homogeneous mixture
of both populations in both regions in the steady state with a peak in the PDF
at s1

1 = s1
2 = s2

1 = s2
2 and x1 = x2 = 0.

The computing time for pa(x; 17) on the adapted grid is 59 percent of the
time to determine p1(x; 17) when h = 1 everywhere. The number of time steps
to reach t = 17 is almost the same in both cases. For comparison, the solution
with h = 1 is transfered to the adapted grid p1 ! p̃1 by a restriction as in (27).
The relative difference between the solutions defined asÆp = jpa � p̃1j1=jp1j1 (32)

is here Æp = 0:0044. The final grid for pa consists of 2304 cells. The memory
requirements are reduced by more than 80 percent compared to the case withh = 1. The steady state solution is displayed in Figure 8.a. The residual Φ
measured in j � j1 is there about 10�10. The total probability Ptot is almost
perfectly conserved: the difference between the largest and the smallest Ptot is
1:5 � 10�12 in the time interval.

The variation of the number of cells in the beginning of the simulation is
found in Figure 8.b. After about t = 1:3 the number is constant.

6.2 Scenario 2

In this scenario, the parameters are � = 0:5; � = 1; � = 1: The majority of the
populations P1 and P2 prefers a region Rj where there are only a few members of
the other population, i.e. it is likely that s1

1 > s2
1; s2

2 > s1
2 or s1

2 > s1
1; s1

2 > s2
2. Two

different cases are considered: One case with the initial density symmetrically
located on the diagonal in Figure 9 and one case with an asymmetrically placed
density at t = 0 in Figure 10.
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Fig. 9: Time evolution of the PDF in scenario 2 with a symmetric p on the diagonal
at t = 0.
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Fig. 10: Time evolution of the PDF in scenario 2 with a p above the diagonal at t = 0.
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The symmetric case in Figure 9 is integrated to t = 10. Then Æp in (32) is
0.000055, the savings in the number of cells at the steady state is more than 80
percent compared to a uniform grid with h = 1, the number of time steps is
reduced from 1201 to 1065, and the CPU time decreases by 45 percent. Fewer
time steps are needed in the adapted solution since hmin = 2 in parts of the time
interval. The asymmetry in the initial density is also present after long simulation
times, see Figure 10. The maximum difference in Ptot is here 4 � 10�15 in both
cases.
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Fig. 11: The time series of the number of cells (a) and the residual Φ (b) for the two
initializations of the PDF.

6.3 Scenario 3

There is an asymmetrical interaction between the populations in Scenario 3 with� = 0:5; � = 1; and � = �1. The population P1 tries to live apart from P2, butP2 wants to live together with P1. The difference from Scenario 1 is that the
expected values follow spirals toward the origin which is a stable fixed point in
the macroscopic model. The behavior of the algorithm in this example is very
similar to the behavior in Scenario 1.
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Fig. 12: Scenario 3: The final solution (a). The time series of the number of cells (b).

20



6.4 Scenario 4

The expected values of X1 and X2 approach a limit cycle in the final migration
example. The solution rotates in the counterclockwise direction about the origin
which is an unstable fixed point of the dynamical system. With the parameters� = 1:2; � = 1; and � = �1, the P2 population follows P1 which tries to avoid
living together with P2. If both populations are in the upper right quadrant ini-
tially in region R1, then population P1 moves to R2 and the upper left quadrant.
Population P2 follows to R2 and the density moves into the lower left quadrant,
but then P1 returns to R1 in the lower right quadrant. When P2 is back in R1

and x1 > 0; x2 > 0; one period of the solution is complete.
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Fig. 13: Solutions of Scenario 4.

The adaptation parameters are " = 2:2 � 10�4 and � = 0:05. Snapshots of
the solution are displayed in Figure 13. The initial PDF in the lower left corner
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rotates and is elongated as time increases. After long time, the residual Φ and
the time derivatives vanish (Figure 14.b) and the center of the PDF solution is
close to the limit cycle of the approximate dynamical system of the expected
values. The total probability is conserved almost perfectly with a variation of
about 10�12 and the memory requirements are reduced by more than 85 percent
at the steady state compared to a direct solution of the ME, see Figure 14.a. The
difference Æp at t = 500 in (32) is 0.021 and the CPU time with adaptation is only
about 1/3 of the time for h = 1. Another advantage of the adaptive algorithm
is that the time steps are longer when the solution approaches the steady state,
see Figure 13, since the cell size of the smallest cells hmin is larger. The number
of time steps is reduced from 30000 to 15371.
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Fig. 14: The number of cells (a) and the residual Φ (b) in Scenario 4.

7 Conclusions

A method has been developed for integration of the master equation (ME) suit-
able for low dimensional problems. The original equation is formulated for cells
in space with the length of the edge h = 1. The ME is rewritten for cells withh > 1 and the average of the PDF is determined in these cells in a way similar
to a finite volume discretization of a conservation law. The possibility to use
large cells saves memory in particular in problems with large state spaces of the
order 103�104 in each dimension. The computational domain is partitioned into
blocks and h is constant in each block. Interpolation is necessary for evaluation of
the inflow and outflow of probability in a cell. The accuracy and stability of the
interpolation are investigated. The grid is dynamically adapted to the solution
and the adaptation is controled by an estimate of the error in the solution due to
the large cells. The algorithm is applied to four different examples from the mod-
eling of the migration of people. The relative improvements in computing time,
memory requirements, and time steps in three different cases are summarized in
Table 2. In Scenario 4, the CPU time is reduced by 65 percent, the storage by
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85 percent, and the number of time steps by 49 percent.

Scenario CPU time Memory Time steps
1 0.59 0.16 0.99
2 0.55 0.18 0.89
4 0.35 0.15 0.51

Table 2: Quotients for different quantities between the adaptive method with h � 1
and the direct method with h = 1.
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[19] P. Sjöberg, P. Lötstedt, J. Elf, Fokker-Planck approximation of the
master equation in molecular biology, doi:10.1007/s00791-006-0045-6, to ap-
pear in Comput. Visual. Sci..

[20] N. Stollenwerk, V. A. A. Jensen, Meningitis, pathogenicity near crit-
icality: the epidemiology of meningococcal disease as a model for accidental
pathogens, J. Theor. Biol., 222 (2003), p. 347–359.

[21] S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books, Cam-
bridge, MA, 1994.

[22] M. Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory
networks, Proc. Nat. Acad. Sci. USA, 98 (2001), p. 8614–8619.

[23] W. Weidlich, Sociodynamics. A Systematic Approach to Mathematical

Modelling in the Social Sciences, Taylor and Francis, London, 2002.

24



[24] W. Weidlich, Thirty years of sociodynamics. An integrated strategy of
modelling in the social sciences: applications to migration and urban evolu-
tion, Chaos, Solit. Fract., 24 (2005), p. 45–56.

25


