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Abstract

We consider verification of safety properties for pa-
rameterized systems with linear topologies. A process
in the system is an extended automaton, where the
transitions are guarded by both local and global con-
ditions. The global conditions are non-atomic, i.e., a
process allows arbitrary interleavings with other tran-
sitions while checking the states of all (or some) of the
other processes. We translate the problem into model
checking of infinite transition systems where each con-
figuration is a labeled finite graph. We derive an over-
approximation of the induced transition system, which
leads to a symbolic scheme for analyzing safety proper-
ties. We have implemented a prototype and run it on
several nontrivial case studies, namely non-atomic ver-
sions of Burn’s protocol, Dijkstra’s protocol, the Bakery
algorithm, Lamport’s distributed mutual exclusion pro-
tocol, and a two-phase commit protocol used for han-
dling transactions in distributed systems. As far as we
know, these protocols have not previously been verified
in a fully automated framework.

1 Introduction

We consider verification of safety properties for pa-
rameterized systems. Typically, a parameterized sys-
tem consists of an arbitrary number of processes orga-
nized in a linear array. The task is to verify correctness
regardless of the number of processes. This amounts
to the verification of an infinite family; namely one for
each size of the system. An important feature in the
behaviour of a parameterized system is the existence
of global conditions. A global condition is either uni-
versally or existentially quantified. An example of a
universal condition is that all processes to the left of

a given process i should satisfy a property �. Pro-
cess i can perform the transition only if all processes
with indices j < i satisfy �. In an existential condi-
tion we require that some (rather than all) processes
satisfy �. Together with global conditions, we allow
features such as shared variables, broadcast commu-
nication, and processes operating on unbounded vari-
ables.

All existing approaches to automatic verification of
parameterized systems (e.g., [12, 4, 6, 8]) make the
unrealistic assumption that a global condition is per-
formed atomically, i.e., the process which is about to
make the transition checks the states of all the other
processes and changes its own state, all in one step.
However, almost all protocols (modeled as parameter-
ized systems with global conditions) are implemented
in a distributed manner, and therefore it is not feasible
to test global conditions atomically.

In this paper, we propose a method for automatic
verification of parameterized systems where the global
conditions are not assumed to be atomic. The main
idea is to translate the verification problem into model
checking of systems where each configuration is a la-
beled finite graph. The labels of the nodes encode the
local states of the processes, while the labels of the
edges carry information about the data flow between
the processes. Our verification method consists of three
ingredients each of which is implemented by a fully au-
tomatic procedure: (i) a preprocessing phase in which
a refinement protocol is used to translate the behaviour
of a parameterized system with global conditions into a
system with graph configurations; (ii) a model checking
phase based on symbolic backward reachability analysis
of systems with graph configurations; and (iii) an over-
approximation scheme inspired by the ones proposed
for systems with atomic global conditions in [3] and [2].
The over-approximation scheme is extended here in a
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non-trivial manner in order to cope with configurations
which have graph structures. The over-approximation
enables us to work with efficient symbolic represen-
tations (upward closed sets of configurations) in the
backward reachability procedure. Below, we describe
the three ingredients in detail.

In order to simplify the presentation, we first start
with a basic model, and then introduce additional fea-
tures one by one. In the basic model, a process is a
finite-state automaton which operates on a set of local
variables ranging over the Booleans. The transitions
of the automaton are conditioned by the local state of
the process, values of the local variables, and by global
conditions. Transitions involving global conditions are
not assumed to be atomic. Instead, they are imple-
mented using an underlying protocol, here referred to
as the refinement protocol. Several different versions of
the protocol are possible. The one in the basic model
works as follows. Let us consider a process, called the
initiator, which is about to perform a transition with
a global condition. Suppose that the global condition
requires that all processes to the left of the initiator
satisfy �. Then, the initiator sends a request asking
the other processes whether they satisfy � or not. A
process sends an acknowledgment back to the initiator
only if it satisfies �. The initiator performs the tran-
sition when it has received acknowledgments from all
processes to its left. The acknowledgments are sent by
the different processes independently. This means that
the initiator may receive the acknowledgments in any
arbitrary order, and that a given process may have time
to change its local state and its local variables before
the initiator has received its acknowledgment.

The refinement protocol induces a system with an
infinite set of configurations each of which is a finite
graph. The nodes of the graph contain information
about the local states and the values of the local vari-
ables of the processes, while the edges represent the
flow of request and acknowledgment messages used to
implement the refinement protocol. We observe that
the graph representation defines a natural ordering on
configurations, where a configuration is smaller than
another configuration, if the graph of the former is
contained in the graph of the latter (i.e., if there is
a label-respecting injection from the smaller to the
larger graph). To check safety properties, we perform
backward reachability analysis on sets of configurations
which are upward closed under the above mentioned or-
dering. Two attractive features of upward closed sets
are (i) checking safety properties can almost always be
reduced to the reachability of an upward closed set; and
(ii) they are fully characterized by their minimal ele-
ments (which are finite graphs), and hence these graphs

can be used as efficient symbolic representations of infi-
nite sets of configurations. One problem is that upward
closedness is not preserved in general when computing
sets of predecessors. To solve the problem, we consider
a transition relation which is an over-approximation of
the one induced by the parameterized system. To do
that, we modify the refinement protocols by eliminat-
ing the processes which have failed to acknowledge a
universal global condition (either because they do not
satisfy the condition or because they have not yet sent
an acknowledgement). For instance in the above exam-
ple, it is always the case that process i will eventually
perform the transition. However, when performing the
transition, we eliminate each process j (to the left of i)
which has failed to acknowledge the request of i. The
approximate transition system obtained in this manner
is monotonic w. r. t. the ordering on configurations,
in the sense that larger configurations can simulate
smaller ones. The fact that the approximate transition
relation is monotonic, means that upward closedness is
maintained when computing predecessors. Therefore,
all the sets which are generated during the backward
reachability analysis procedure are upward closed, and
can hence be represented by their minimal elements.
Observe that if the approximate transition system sat-
isfies a safety property then we can conclude that the
original system satisfies the property too. The whole
verification process is fully automatic since both the
approximation and the reachability analysis are carried
out without user intervention. Termination of the ap-
proximated backward reachability analysis is not guar-
anteed in general. However, the procedure terminates
on all the examples we report in this paper.

In this paper, we will also describe shortly how the
method can be generalized to deal with a number of fea-
tures which are added to enrich the basic model (while
still keeping the non-atomicity assumption). First, we
consider parameterized systems where the processes
are infinite-state. More precisely, the processes may
operate on variables which range over the natural num-
bers, and the transitions may be conditioned by gap-
order constraints. Gap-order constraints [17] are a logi-
cal formalism in which one can express simple relations
on variables such as lower and upper bounds on the
values of individual variables; and equality, and gaps
(minimal differences) between values of pairs of vari-
ables. We will also describe different variants of the
refinement protocol than the one described earlier. Fi-
nally, we explain how to handle other features such as
shared variables, broadcast communication, and other
variants of the refinement protocol.

Another aspect of our method is that systems with
graph configurations are interesting in their own right.
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The reason is that many protocols have inherently dis-
tributed designs, rather than having explicit references
to global conditions. For instance, configurations in the
Lamport distributed mutual exclusion protocol [15] or
in the two-phase commit protocol of [11] are naturally
modelled as graphs where the nodes represent the local
states of the processes, and the edges describe the data
travelling between the processes. In such a manner,
we get a model identical to the one extracted through
the refinement protocol, and hence it can be analyzed
using our method.

We have implemented a prototype and used it for
verifying a number of challenging case studies such as
parameterized non-atomic versions of Burn’s protocol,
Dijkstra’s protocol, the Bakery algorithm, Lamport’s
distributed mutual exclusion protocol [15] , and the
two-phase commit protocol used for handling transac-
tions in [11]. As far as we know, none of these exam-
ples has previously been verified in a fully automated
framework.

Related Work We believe that this is the first work
which can handle automatic verification of parameter-
ized systems where global conditions are tested non-
atomically. All existing automatic verification meth-
ods (e.g., [12, 4, 6, 8, 9, 3, 2]) are defined for param-
eterized systems where universal and existential con-
ditions are evaluated atomically. Non-atomic versions
of parameterized mutual exclusion protocols such as
the Bakery algorithm and two-phase commit protocol
have been studied with heuristics to discover invari-
ants, ad-hoc abstractions, or semi-automated methods
in [5, 13, 16, 7]. In contrast to these methods, our ver-
ification procedure is fully automated and is based on
a generic approximation scheme for quantified condi-
tions.

The method presented in this paper is related to
those in [3, 2] in the sense that they also rely on combin-
ing over-approximation with symbolic backward reach-
ability analysis. However, the papers [3, 2] assume
atomic global conditions. As described above, the pas-
sage from the atomic to the non-atomic semantics is
not trivial. In particular, the translation induces mod-
els whose configurations are graphs, and are therefore
well beyond the capabilities of the methods described
in [3, 2] which operate on configurations with linear
structures. Furthermore, the underlying graph model
can be used in its own to analyze a large class of dis-
tributed protocols. This means that we can handle
examples such as the ones mentioned earlier, none of
which can be analyzed within the framework of [3, 2].

Outline In the next section, we give some prelimi-
naries and define the basic model. In Section 3, we
describe the induced transition system and the non-
atomic semantics of global transitions (the refinement
protocol). Section 4 introduces the coverability (safety)
problem. In Section 5, we define the over-approximated
transition system on which we run our algorithm. In
Section 6, we present a generic scheme for deciding cov-
erability and show how to instantiate it on our model.
In Section 7, we consider a generalization of the model
defined in Section 2 by considering processes which op-
erate on variables with unbounded domains. Section 8
explains how to extend the model with additional fea-
tures such as shared variables, broadcast transitions,
and variants of the refinement protocol. In Section 9,
we report results of our analysis on several mutual ex-
clusion protocols. Section 10 concludes the paper and
gives directions for future work. The appendix includes
detailed descriptions of the case studies.

2 Preliminaries

In this section, we define a basic model of parameter-
ized systems. This model will be enriched by additional
features in Sections 7 and 8.

For a natural number n, let n denote the setf1; : : : ; ng. We use B to denote the set ftrue; falseg of
Boolean values. For a finite set A, we let B (A) denote
the set of formulas which have members of A as atomic
formulas, and which are closed under the Boolean con-
nectives :;^;_. A quantifier is either universal or ex-
istential. A universal quantifier is of one of the forms8L, 8R, 8LR. An existential quantifier is of one of the
forms 9L, 9R, or 9LR. The subscripts L, R, and LR
stand for Left, Right, and Left-Right respectively. A
global condition over A is of the form 2� where 2 is a
quantifier and � 2 B (A). A global condition is said to
be universal (resp. existential) if its quantifier is uni-
versal (resp. existential). We use G (A) to denote the
set of global conditions over A.

Parameterized Systems A parameterized system
consists of an arbitrary (but finite) number of identi-
cal processes, arranged in a linear array. Sometimes,
we refer to processes by their indices, and say e.g., the
process with index i (or simply process i) to refer to the
process with position i in the array. Each process is a
finite-state automaton which operates on a finite num-
ber of Boolean local variables. The transitions of the
automaton are conditioned by the values of the local
variables and by global conditions in which the process
checks, for instance, the local states and variables of
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all processes to its left or to its right. The global tran-
sitions are not assumed to be atomic operations. A
transition may change the value of any local variable
inside the process. A parameterized system induces an
infinite family of finite-state systems, namely one for
each size of the array. The aim is to verify correctness
of the systems for the whole family (regardless of the
number of processes inside the system). A parameter-
ized system P is a triple (Q;X; T ), where Q is a set of
local states, X is a set of local Boolean variables, andT is a set of transition rules. A transition rule t is of
the form t : [q j grd � stmt j q0 ] (1)

where q; q0 2 Q and grd! stmt is a guarded command.
Below we give the definition of a guarded command.
Let Y denote the set X[Q. A guard is a formula grd 2B (X)[G (Y ). In other words, the guard grd constraints
either the values of local variables inside the process
(if grd 2 B (X)); or the local states and the values
of local variables of other processes (if grd 2 G (Y )).
A statement is a set of assignments of the form x1 =e1; : : : ;xn = en, where xi 2 X , ei 2 B, and xi 6= xj ifi 6= j. A guarded command is of the form grd! stmt,
where grd is a guard and stmt is a statement.

3 Transition System

In this section, we describe the induced transition
system.

A transition system T is a pair (D;=)), where D
is an (infinite) set of configurations and =) is a bi-
nary relation on D. We use �=) to denote the reflexive
transitive closure of =). For sets of configurationsD1; D2 � D we use D1 =) D2 to denote that there
are 1 2 D1 and 2 2 D2 with 1 =) 2. We will
consider several transition systems in this paper.

First, a parameterized system P = (Q;X; T ) in-
duces a transition system T (P) = (C;�!) as follows.
In order to reflect non-atomicity of global conditions,
we use a protocol, called the refinement protocol, to re-
fine (implement) these conditions. The refinement pro-
tocol uses a sequence of request and acknowledgment
messages between processes. Therefore, a configura-
tion is defined by (i) the local states and the values
of the local variables of the different processes; and by
(ii) the flow of requests and acknowledgments which
are used to implement the refinement protocol. Below,
we describe these two components, and then use them
to define the set of configurations and the transition
relation.

Process States A local variable state v is a map-
ping from X to B. For a local variable state v, and a

formula � 2 B (X), we evaluate v j= � using the stan-
dard interpretation of the Boolean connectives. Given
a statement stmt and a variable state v, we denote bystmt(v) the variable state obtained from v by map-
ping x to e if (x = e) 2 stmt, v(x) otherwise. We
will also work with temporary states which we use to
implement the refinement protocol. A temporary state
is of the form qt where q 2 Q and t 2 T . The stateqt indicates that the process is waiting for acknowl-
edgments from other processes while trying to perform
transition t (which contains a global condition). We
use QT to denote the set of temporary states, and de-
fine Q� = Q [ QT . A process state u is a pair (q; v)
where q 2 Q� and v is a local variable state. We say
that u is temporary if q 2 QT , i.e., if the local state is
temporary. For a temporary process state u = (qt; v),
we write u� to denote the process state (q; v), i.e., we
replace qt by the corresponding state q. If u is not
temporary then we define u� = u.

Sometimes, abusing notation, we view a process
state (q; v) as a mapping u : X [ Q� 7! B, whereu(x) = v(x) for each x 2 X , u(q) = true, andu(q0) = false for each q0 2 Q��fqg. The process state
thus agrees with v on the values of local variables, and
maps all elements of Q�, except q, to false. For a for-
mula � 2 B (X [Q�) and a process state u, the relationu j= � is then well-defined. This is true in particular if� 2 B (X).

The Refinement Protocol The refinement proto-
col is triggered by an initiator which is a process try-
ing to perform a transition involving a global condi-
tion. The protocol consists of three phases described
below. In the first phase, the initiator enters a tempo-
rary state and sends a request to the other processes
asking whether they satisfy the global condition. In
the second phase, the other processes are allowed to
respond to the initiator. When a process receives the
request, it sends an acknowledgment only if it satisfies
the condition. The initiator remains in the temporary
state until it receives acknowledgments from all rel-
evant processes (e.g., all processes to its right if the
quantifier is 8R, or some process to its left if the quan-
tifier is 9L, etc). Then, the initiator performs the third
phase which consists of leaving the temporary state,
and changing its local state and variables according to
the transition. The request of the initiator is received
independently by the different processes. Also, the pro-
cesses send their acknowledgments independently. In
particular this means that the initiator may receive the
acknowledgments in any arbitrary order (see Figure 1).
To model the status of the request and acknowledg-
ments, we use edges. A request edge is of the form
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i req�!t j where i and j are process indices and t 2 T is
a transition. Such an edge indicates that process i is in
a temporary state trying to perform transition t (which
contains a global condition); and that it has issued a
request which is yet to be acknowledged by process j.
An acknowledgment edge is of the form i ack �t j with a
similar interpretation, except that it indicates that the
request of process i has been acknowledged by processj. Observe that if a process is in a temporary state,
then it must be an initiator.

Configurations A configuration  2 C is a pair
(U;E) where U = u1 � � �un is a sequence of process
states, and E is a set of edges. We use jj to denote the
number of processes inside , i.e., jj = n. Intuitively,
the above configuration corresponds to an instance of
the system with n processes. Each pair ui = (qi; vi)
gives the local state and the values of local variables
of process i. We use U [i] to denote ui. The set E
encodes the current status of requests and acknowl-
edgments among the processes. A configuration must
also satisfy the following two invariants:

1. If ui is a temporary process state (for some tran-
sition t) then, for each j : 1 � j 6= i � n, the setE contains either an edge of the form i req�!t j or

an edge of the form i ack �t j (but not both). This
is done to keep track of the processes which have
acknowledged request of i.

2. If ui is not a temporary process state then the
set E does not contain any edge of the formi req�!t j or i ack �t j, for any t 2 T and for anyj : 1 � j 6= i � n. That is, if process i is not in a
temporary states, then it is not currently waiting
for acknowledgments, and hence no edges of the
above form need to be stored.

Transition Relation Consider two configurations = (U;E) and 0 = (U 0; E0) with jj = j0j = n. We
describe how  can perform a transition to obtain 0.
Such a transition is performed by some process with

index i for some i : 1 � i � n. We write  i�! 0 to
denote that (i) U [j] = U 0[j] for each j : 1 � j 6= i � n
(i.e., only process i changes state during the transi-
tion); and (ii) that there is a t 2 T of the form (1) such
that one the following four conditions is satisfied (each
condition corresponds to one type of transitions):� Local Transitions: grd 2 B (X), U [i] = (q; v),U 0[i] = (q0; v0), v j= grd, v0 = stmt(v) , andE0 = E. By grd 2 B (X), we mean that t is a

local transition. The values of the local variables

of the process should satisfy the guard grd, and
they are modified according to stmt. The local
states and variables of other processes are not rel-
evant during the transition. Since the transition
does not involve global conditions, the edges re-
mains unchanged.� Refinement Protocol – First Phase: grd = 2� 2G (Y ), U [i] = (q; v), U 0[i] = (qt; v), and E0 = E [fi req�!t jj 1 � j 6= i � ng. Since grd 2 G (Y ),
the transition t contains a global condition. The
initiator, which is process i, triggers the first phase
of the refinement protocol. To do this, it moves to
the temporary state qt. It also sends a request
to all other processes, which means that the new
set of edges E0 should be modified accordingly.
The local variables of the initiator are not changed
during this step.� Refinement Protocol – Second Phase: grd = 2� 2G (Y ), U [i] is a temporary process state, U 0[i] =U [i], and there is a j : 1 � j 6= i � n such thatU [j]� j= � and E0 = E�fi req�!t jg[fi ack �t jg. A
process (with index j) which satisfies the condition� sends an acknowledgment to the initiator (pro-
cess i). To reflect this, the relevant request edge
is replaced by the corresponding acknowledgment
edge. No local states or variables of any processes
are changed. Notice that we use U [j]� in the inter-
pretation of the guard. This means that a process
which is in the middle of checking a global con-
dition, is assumed to be in its original local state
until all the phases of the refinement protocol have
successfully been carried out.� Refinement Protocol – Third Phase: grd = 2� 2G (Y ), U [i] = (qt; v), U 0[i] = (q0; v0), v0 = stmt(v),E0 = E�fi ack �t jj 1 � j 6= i � ng�fi req�!t jj 1 �j 6= i � ng, and one of the following conditions
holds:

– 2 = 8L and (i ack �t j) 2 E for each j : 1 �j < i.
– 2 = 8R and (i ack �t j) 2 E for each j : i <j � n.

– 2 = 8LR and (i ack �t j) 2 E for each j : 1 �j 6= i � n.

– 2 = 9L and (i ack �t j) 2 E for some j : 1 �j < i.
– 2 = 9R and (i ack �t j) 2 E for some j : i <j � n.

– 2 = 9LR and (i ack �t j) 2 E for some j : 1 �j 6= i � n.
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The initiator has received acknowledgments from
the relevant processes. The set of relevant pro-
cesses depends on the type of the quantifier. For
instance, in case the quantifier is 8L then the initia-
tor waits for acknowledgments from all processes
to its left (with indices smaller than i). Similarly,
if the quantifier is 9R then the initiator waits for
an acknowledgment from some process to its right
(with index larger than i), and so on. The initiator
leaves its temporary state and moves to a new lo-
cal state (the state q0) as required by the transition
rule t. Also, the values of the local variables of the
initiator are updated according to stmt. Since,
process i is not in a temporary state any more,
all the corresponding edges are removed from the
configuration.

We use  �! 0 to denote that  i�! 0 for some i.
��
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Figure 1. Refinement Protocol. The colored
process initiates the first phase of the refine-
ment protocol for t (first row) by moving to the
temporary state qt2 and sending request edges
on t to all other processes (forward arrows). In
the second phase of the protocol (second row),
the white processes acknowledge the requests
since they all satisfy the condition :q3. Once
all edges are acknowledged, the initiator (col-
ored process) performs the third phase of the
protocol by removing all edges and changing
state to q3 as illustrated in the last configura-
tion.

Remark 1 In the first phase of the protocol (described
above), the initiator sends its request to all processes
inside the system (including the ones whose replies are
not relevant). However (in the third phase), it only
takes into consideration acknowledgments from the rel-
evant processes. For instance, if the quantifier is 8L
then the initiator waits only for acknowledgments from
processes to its left. One could also have a variant of
the protocol where the initiator only sends to the rele-

vant processes. The two models have identical reacha-
bility properties, and our method can be extended in a
straightforward manner to this alternative interpreta-
tion of global conditions.
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q3

q3

q3

q3

t : [q2 j 8LR:q3 � fg j q3 ]

Figure 2. Atomic versus Non-Atomic. The
higher side of the figure shows a possible non-
atomic execution of the system: First, the two
colored processes initiate the refinement pro-
tocol for transition t. In the second phase,
the two colored processes mutually acknowl-
edge the request edges on t since they both
satisfy the condition :q3. Once each of the
colored processes receives all needed acknowl-
edgments, it moves to q3. Therefore, we end
up by 2 states in q3. This is opposed to the
lower side execution were we assume that t
is atomic. In this case, only one of the col-
ored process can fire it and move to q3. Once
one of the processes executes t, the remaining
process cannot fire it since the guard is not
satisfied.

Remark 2 In [3], we have considered the same type of
parameterized systems, nevertheless, we assumed that
global transitions are executed in an atomic manner.
Observe here that under our current assumption, the
resulting transition system induces more behaviors as
depicted in Figure 2.
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4 Safety Properties

In order to analyze safety properties, we study the
coverability problem defined below. Given a parame-
terized system P = (Q;X; T ), we assume that, prior to
starting the execution of the system, each process is in
an (identical) initial process state uinit = (qinit ; vinit ).
In the induced transition system T (P) = (C;�!), we
use Init to denote the set of initial configurations,
i.e., configurations of the form (Uinit ; Einit ), whereUinit = uinit � � �uinit and Einit = ;. In other words,
all processes are in their initial states, and there are
no edges between the processes. Notice that the set of
initial configurations is infinite.

We define an ordering on configurations as follows.
Given two configurations,  = (U;E) with jj = m, and0 = (U 0; E0) with j0j = n, we write  � 0 to denote
that there is a strictly monotonic1 injection h from the
set m to the set n such that the following conditions
are satisfied for each t 2 T and i; j : 1 � i 6= j � m:� ui = u0h(i).� If (i req�!t j) 2 E then (h(i) req�!t h(j)) 2 E0.� If (i ack �t j) 2 E then (h(i) ack �t h(j)) 2 E0.
In other words, for each process in  there is a corre-
sponding process in 0 with the same local state and
with the same values of local variables. Furthermore,
each request edge in  is matched by a request edge
between the corresponding processes in 0, while each
acknowledgment edge in  is matched by an acknowl-
edgment edge between the corresponding processes in0.

A set of configurationsD � C is upward closed (with
respect to �) if  2 D and  � 0 implies 0 2 D.
The coverability problem for parameterized systems is
defined as follows:

PAR-COV

Instance A parameterized system P = (Q;X; T )
and an upward closed set CF of configurations.
Question Init ��! CF ?

It can be shown, using standard techniques (see e.g.
[18, 10]), that checking safety properties (expressed as
regular languages) can be translated into instances of
the coverability problem. Therefore, checking safety
properties amounts to solving PAR-COV (i.e., to
the reachability of upward closed sets). Intuitively,
we use CF to denote a set of bad states which we do
not want to occur during the execution of the system.

1h : m ! n strictly monotonic means: i < j ) h(i) < h(j)
for all i; j : 1 � i; j � m.

For instance, in a mutual exclusion protocol, if the
local state qcrit corresponds to the process being in
the critical section, then CF can be defined to be the
set of all configurations where at least two processes
are in qcrit . In such a case, CF is the set of bad
configurations (those violating the mutual exclusion
property). Notice that once a configuration has two
processes in qcrit then it will belong to CF regardless
of the values of the local variables, the states of the
rest of processes, and the edges between the processes.
This implies that CF is upward closed.

5 Approximation

In this section, we introduce an over-approximation
of the transition relation of a parameterized system.
The aim of the over-approximations is to derive a new
transition system which is monotonic with respect to
the ordering � defined on configurations in Section 4.
Formally, a transition system is monotonic with respect
to the ordering �, if for any configurations 1; 2; 3

such that 1 ! 2 and 1 � 3; there exists a config-
uration 4 such that 3 ! 4 and 2 � 4. The only
transitions which violate monotonicity are those corre-
sponding to the third phase of the refinement protocol
when the quantifier is universal. Therefore, the ap-
proximate transition system modifies the behavior of
the third phase in such a manner that monotonicity is
maintained. More precisely, in the new semantics, we
remove all processes in the configuration which have
failed to acknowledge the request of the initiator (the
corresponding edge is a request rather than an acknowl-
edgment). Below we describe formally how this is done.

In Section 3, we mentioned that each parameter-
ized system P = (Q;X; T ) induces a transition sys-
tem T (P) = (C;�!). A parameterized system P
also induces an approximate transition system A(P) =
(C;; ); the set C of configurations is identical to the
one in T (P). We define ;= (�! [;1), where �!
is defined in Section 3, and ;1 (which reflects the ap-
proximation of universal quantifiers in third phase of
the refinement protocol) is defined as follows.

Consider two configurations  = (U;E) and 0 =
(U 0; E0) with jj = n and j0j = m. Suppose thatU [i] = (qt; v) for some i : 1 � i � n and some transi-
tion of the form of (1) where grd = 2� 2 G (Y ) with2 2 f8L;8R;8LRg. In other words, in , process i is
in a temporary state, performing the second phase of
refinement protocol with respect to a universal quanti-

fier. We write  i;1 0 to denote that there is a strictly
monotonic injection h : m 7! n such that the following
conditions are satisfied (the image of h represents the
indices of the processes we keep in the configuration):
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� j is in the image of h iff one of the following con-
ditions is satisfied:

– j = i.
– 2 = 8L and either j > i or (i ack �t j) 2 E.

– 2 = 8R and either j < i or (i ack �t j) 2 E.

– 2 = 8LR and (i ack �t j) 2 E.

That is we keep the initiator (process i) together
with all the relevant processes who have acknowl-
edged its request.� U 0[h�1(i)] = (q0; stmt(v)) and U 0[j] = U [h(j)] forh(j) 6= i, i.e., the local variables of process i are
updated according to stmt while the states and
local variables of other processes are not changed.� E0 is obtained from E as follows. For all j; k 2 m
and t0 2 T ,

– (j ack �t0 k) 2 E0 iff (h(j) ack �t0 h(k)) 2 E,
and

– (j req�!t0 k) 2 E0 iff (h(j) req�!t0 h(k)) 2 E.

In other words, we remove all edges connected to
processes which are removed from the configura-
tion  (see Figure 3).

We use ;1 0 to denote that  i;1 0 for some i.
Lemma 5.1 The approximate transition system
(C;; ) is monotonic w.r.t. �.

We define the coverability problem for the approximate
system as follows.

APRX-PAR-COV

Instance A parameterized system P = (Q;X; T )
and an upward closed set CF of configurations.
Question Init �; CF ?

Since �!�;, a negative answer to APRX-PAR-

COV implies a negative answer to PAR-COV.

6 Backward Reachability Analysis

In this section, we present a scheme based on back-
ward reachability analysis and we show how to in-
stantiate it for solving APRX-PAR-COV. For the
rest of this section, we assume a parameterized systemP = (Q;X; T ) and the induced approximate transition
system A(P) = (C;; ).

�
�
�
�

�
�
�
�

�
�
�
�

ack

ack

ack
req

ack

req

req

req
req

req

req

req

req

reqq1q1

q1 qt2qt2 q3 q4q4

q4 q4

q3

t : [q2 j 8LR:q3 � fg j q3 ]

Figure 3. Approximation. In the top configu-
ration, the marked process (the gray one) is
in the second phase of the refinement protocol
of the transition t. The second configuration
is obtained by removing all processes that did
not acknowledge the requests (the black pro-
cesses). The third configuration is obtained
by updating the state and the variables of the
initiator with respect to t.

Constraints The scheme operates on constraints
which we use as a symbolic representation for sets
of configurations. A constraint � denotes an upward
closed set [[�]] � C of configurations. The constraint �
represents minimal conditions on configurations. More
precisely, � specifies a minimum number of processes
which should be in the configuration, and then imposes
certain conditions on these processes. The conditions
are formulated as specifications of the states and local
variables of the processes, and as restrictions on the
set of edges. A configuration  which satisfies � should
have at least the number of processes specified by �.
The local states and the values of the local variables
should satisfy the conditions imposed by �. Further-
more,  should contain at least the set of edges required
by �. In such a case,  may have any number of ad-
ditional edges and processes (whose local states and
local variables are then irrelevant for the satisfiability
of � by ). This definition implies that the interpre-
tation [[�]] of a constraint � is upward closed (a fact
proved in Lemma 6.1). Below, we define the notion of
a constraint formally.

A constraint is a pair (Θ; E) where Θ = �1 � � � �m is
a sequence with �i 2 B (X [Q�), and E is a set of edges
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of the form i req�!t j or i ack �t j with t 2 T and 1 �i; j � m. We use Θ(i) to denote �i and j�j to denote m.
Intuitively, a configuration satisfying � should contain
at least m processes, where the local state and variables
of the ith process satisfy �i. Furthermore the set E
defines the minimal set of edges which should exist in
the configuration. More precisely, for a constraint � =
(Θ; E1) with j�j = m, and a configuration  = (U;E2)
with jj = n, we write  j= � to denote that there is
a strictly monotonic injection h from the set m to the
set n such that the following conditions are satisfied for
each t 2 T and i; j : 1 � i; j � m:� uh(i) j= �i.� If (i req�!t j) 2 E1 then (h(i) req�!t h(j)) 2 E2.� If (i ack �t j) 2 E1 then (h(i) ack �t h(j)) 2 E2.

Given a constraint �, we let [[�]] = f 2 Cj  j= �g.
Notice that if some �i is unsatisfiable then [[�]] is empty.
Such a constraint can therefore be safely discarded if it
arises in the algorithm. For a (finite) set of constraints
Φ, we define [[Φ]] =

S�2Φ [[�]]. The following lemma
follows from the definitions.

Lemma 6.1 For each constraint �, the set [[�]] is up-
ward closed.

In all the examples we consider, the set CF in the
definition of APRX-PAR-COV can be represented
by a finite set ΦF of constraints. The coverability
question can then be answered by checking whether
Init �; [[ΦF ]].

Entailment and Predecessors To define our
scheme we will use two operations on constraints;
namely entailment, and computing predecessors, de-
fined below. We define an entailment relation v on
constraints, where �1 v �2 iff [[�2]] � [[�1]]. For sets
Φ1;Φ2 of constraints, abusing notation, we let Φ1 v Φ2

denote that for each �2 2 Φ2 there is a �1 2 Φ1

with �1 v �2. Observe that Φ1 v Φ2 implies that
[[Φ2]] � [[Φ1]]. The lemma below, which follows from
the definitions, gives a syntactic characterization which
allows computing of the entailment relation.

Lemma 6.2 For constraints � = (Θ; E) and �0 =
(Θ0; E0) of size m and n respectively , we have � v �0
iff there exists a strictly monotonic injection h : m! n
such that:

1. Θ0(h(i))) Θ(i) for each i 2 m, and

2. 8i; j : 1 � i; j � m and 8t 2 T , the following
conditions holds:

� If i req�!t j 2 E then h(i) req�!t h(j) 2 E0.� If i ack �t j 2 E then h(i) ack �t h(j) 2 E0.
For a constraint �, we let Pre(�) be a set of constraints,
such that [[Pre(�)]] = fj 90 2 [[�]] :  ; 0g. In other
words Pre(�) characterizes the set of configurations
from which we can reach a configuration in � through
the application of a single rule in the approximate tran-
sition relation. In the definition of Pre we rely on the
fact that, in any monotonic transition system, upward-
closedness is preserved under the computation of the
set of predecessors (see e.g. [1]). From Lemma 6.1 we
know that [[�]] is upward closed; by Lemma 5.1, (C;; )
is monotonic, we therefore know that [[Pre(�)]] is up-
ward closed.

Lemma 6.3 For any constraint �, Pre(�) is com-
putable.

(The construction of Pre(:) can be found in Ap-
pendix A.)

For a set Φ of constraints, we let Pre(Φ) =S�2Φ Pre(�).

Scheme Given a finite set ΦF of constraints, the
scheme checks whether Init �=) [[ΦF ]]. We perform a
backward reachability analysis, generating a sequence
Φ0 w Φ1 w Φ2 w � � � of finite sets of constraints such
that Φ0 = ΦF , and Φj+1 = Φj [ Pre(Φj ). Since
[[Φ0]] � [[Φ1]] � [[Φ2]] � � � � , the procedure termi-
nates when we reach a point j where Φj v Φj+1.
Notice that the termination condition implies that
[[Φj ]] = (

S
0�i�j [[Φi]]). Consequently, Φj character-

izes the set of all predecessors of [[�F ]]. This means
that Init �; [[ΦF ]] iff (Init

T
[[Φj ]]) 6= ;. In order to

check emptiness of (Init
T

[[Φj ]]), we rely on the result
below which follows from the definitions. For a con-
straint � = (Θ; E), we have (Init

T
[[�]]) = ; iff eitherE 6= ;, or uinit 2 Θ(i) for some i 2 n. Observe that,

in order to implement the scheme we need to be able
to (i) compute Pre (Lemma 6.3); (ii) check for entail-
ment between constraints (Lemma 6.2); and (iii) check
for emptiness of (Init

T
[[�]]) for a constraint � (as de-

scribed above).

7 Unbounded Variables

In this section, we extend the basic model of Sec-
tion 2 in two ways. First, we consider processes which
operate on variables with unbounded domains. More
precisely, we allow local variables to range over the inte-
gers, and use a simple set of formulas, called gap-order
formulas, to constrain the numerical variables in the
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guards. Furthermore, we allow nondeterministic as-
signment, where a variable may be assigned any value
satisfying a guard. The new value of a variable may
also depend on the values of variables of the other pro-
cesses. Due to shortage of space we will only give an
overview of the main ideas.

Consider a set A, partitioned into a set AB of
Boolean variables, and a set AN of numerical vari-
ables. The set of gap-order formulas over AN, denotedG F (AN), is the set of formulas which are either of the
form x = y, x � y or x <k y, where k 2 N. Herex <k y stands for x + k < y and specifies a gap ofk units between y and x. We use F(A) to denote the
set of formulas which have members of B (AB ) and ofG F (AN) as atomic formulas, and which is closed un-
der the Boolean connectives ^;_. For a set A, we useAnext = fxnext j x 2 Ag to refer to the next-value ver-
sions of the variables in A.

Transitions. In our extended model, the set of lo-
cal variables X is the union of a set XB of Boolean
variables and a set XN of numerical variables. As men-
tioned above, variables may be assigned values which
are derived from those of the other processes. To model
this, we use the set p�Y = fp�xjx 2 Y g to refer to the lo-
cal state and variables of process p. Below, we show an
examples of a global transition rule in the new model,

[ q j 8p : � j q0 ]
where � 2 F (X [ p �Y [Xnext). In other words,
the formula checks the local variables of the initiator
(through X), and the local states and variables of the
other processes (through p �Y ). It also specifies how
the local variables of the process in transition are up-
dated (through Xnext). Notice that the new values are
defined in terms of the current values of variables and
local states of all the other processes. Other types of
transitions can be extended in an analogous manner.
Values of next-variables not mentioned in � remain un-
changed.

Example 1 As an example, let the guard in the above
transition rule be of the form 8p : p �num < numnext

where num is a numerical variable. Then, this means
that the process assigns to its variable num, a new
value which is strictly greater than the values of num
in all other processes. Such a rule is used for instance
in the Bakery algorithm to generate new tickets.

The Refinement Protocol. The first phase of the
refinement protocol remains the same as in the basic
model, i.e., the initiator sends requests to all other
processes. The second phase is modified, so that an

acknowledgment edge carries information about the
responding process, i.e., the acknowledgment sent by
process p has the form akp(up) where up is the cur-
rent local state of p. In the third phase, the initiator
checks the global condition by looking at the values at-
tached to the acknowledgments, and updates its own
local variables accordingly. For instance, in the above
example, the initiator receives the values of the vari-
ables num of all the other processes on the acknowl-
edgment edges. Then, it chooses a new value which is
larger than all received values.

Constraints. The constraint system is modified so
that we add gap-order constraints on the local vari-
ables of the processes and also on the values carried
by the acknowledgment edges. Performing operations
such as checking entailment and computing predeces-
sors on constraints with gap-orders can be carried out
in a similar manner to [2].

8 Extensions

In this section, we describe briefly a number of fea-
tures which can be added to the model of Section 2,
and to which we can extend the verification method
described in the previous sections.

Shared Variables. We extend the model with a fi-
nite set of Boolean shared variables. These variables
are accessible to all processes. We modify the tran-
sitions by allowing conditions on the shared variables
values in the guard, and assignments to these variables
in the statement. We extend the definition of a con-
figuration with a shared variable state; i.e., a mapping
from the shared variables to the Boolean values. The
relation � can be generalized by taking equality on the
shared variable states. The definition of a constraint
is now extended with a condition on the values of the
shared variables. The entailment relation as well as
the computation of Pre can be extended in the obvi-
ous manner.

Broadcast Transition. A broadcast transition/rule
is a transition where an arbitrary number of processes
simultaneously change states. A broadcast rule is a
sequence of local transitions of the formt : [q0 j grd0 � stmt0 j q00 ] [q1 j grd1 � stmt1 j q01 ]

� � � �
[qm j grdm � stmtm j q0m ]

�
.

We use ti to refer to the ith rule of t for 1 � i � m. The
broadcast transition is deterministic, i.e., for any rules

10



ti; tj where 1 � i 6= j � m, qi 6= qj or grdi ^ grdj =
false. The semantics of a broadcast transition of the
above form is the following. A process, the sender,
in state q0 and satisfying the condition grd0, changes
its state to q00 and changes its variables according tostmt0. Any other process, a receiver, in some process
state u = (q; v) proceeds as follows: (i) either it fires ti
if q = qi^u j= grdi for some i : 1 � i � m in which case
the receiver is called active; or, (ii) it remains passive
otherwise.

The refinement protocol for broadcast transitions is
similar to the one described for global conditions. The
only difference lies in the second phase of the proto-
col. More precisely, an active receiver changes its lo-
cal state and variables according to the rule, and sends
back an acknowledgment. A passive receiver only sends
back an acknowledgment. We extend our approxima-
tion to broadcast rules, by removing all processes that
have not acknowledged the request of the initiator. The
computation of Pre can be extended in a straightfor-
ward manner.

Variants of Refinement Protocols. Our method
can be modified to deal with several different variants
of the refinement protocol described in Section 3. Ob-
serve that in the original version of the protocol, a pro-
cess may either acknowledge a request or remain pas-
sive. One can consider a variant where we allow pro-
cesses to explicitly refuse acknowledging of requests, by
sending back a negative acknowledgment (a nack). We
can also define different variants depending on the way
a failure of a global condition is treated (in the third
phase of the protocol). For instance, the initiator may
be allowed to reset the protocol, by re-sending requests
to all the processes (or only to the processes which have
sent a negative acknowledgment).

9 Experimental Results

We have implemented our method in a prototype
that we have run on several parameterized systems,
including non-atomic refinements of Burn’s protocol,
Dijkstra’s protocol and the Bakery’s algorithm, as well
as on the Lamport distributed Mutual exclusion pro-
tocol and the two-phase commit protocol. The Bakery
and Lamport protocols have numerical local variables,
while the rest have bounded local variables. The refine-
ment R1 used for the first two algorithms corresponds
to the refinement protocol introduced in Section 3. The
refinements R2 and R3 are those introduced in Sec-
tion 8. More precisely, in R2, the initiator re-sends a
request to all the processes whose values violate the

Table 1. Experimental results on several mu-
tual exclusion algorithms.

ref it time final
constr.

memory

Burns R1 26 < 1 s 44 1MB
Dijkstra R1 93 < 1 s 41 1MB

Bakery R2 4 < 1 s 12 1MB
Bakery R3 4 < 1 s 12 1MB

2-phase
Commit

- 6 < 1 s 9 1MB

Lamport - 29 30 m 4676 222MB

global condition being tested. In R3, the initiator re-
sends requests to all other processes.

The results, using a 2 GHZ computer with 1 GB
of memory, are summarized in Table 1. We give for
each case study, the number of iterations, the time, the
number of constraints in the result, and an estimate of
memory usage.

A detailed description of the case studies can be
found in Appendix B.

10 Conclusions and Future Work

We have presented a method for automatic verifica-
tion of parameterized systems. The main feature of the
method is that it can handle global conditions which
are not assumed to be atomic operations. We have
built a prototype which we have successfully applied
on a number of non-trivial mutual exclusion protocols.
There are several interesting directions for future work.
First, our algorithm operates essentially on infinite sets
of graphs. Therefore, it seems feasible to extend the
method to other classes of systems whose configura-
tions can be modeled by graphs such as cache coher-
ence protocols and dynamically allocated data struc-
tures. Furthermore, although the method works suc-
cessfully on several examples, there is at least one pro-
tocol (namely the non-atomic version of Szymanski’s
protocol) where the method gives a false positive. We
believe that this problem can be solved by introduc-
ing a scheme which allows refining the abstraction (the
over-approximation). Therefore, we plan to define a
CEGAR (Counter-Example Guided Abstraction Re-
finement) scheme on more exact representations of sets
of configurations.
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A Appendix – Construction of Pre

Auxiliary Definitions The following definitions are
needed in the sequel. For a transition rule t of the
form (1), we define the function [t] on X[Q� as follows:
for each x 2 X , [t](x) = stmt(x) if x occurs in stmt and
[t](x) = x otherwise. For each q00 2 Q�, [t](q00) = true
if q00 = q0, and false otherwise. For � 2 B (X [ Q),
we use �[t] to denote the formula obtained from � by
substituting all occurrences of elements in � by their
corresponding [t]-images.

For a constraint �0, we define Pre(�0) =S
t2T Pret (�0), i.e., we compute the set of predecessor

constraints with respect to each transition rule t 2 T .
First, we define a simple operator. For natural num-
bers j; k � 1, we define k� j to be k if k < j and k+ 1
if k � j. For instance 2� 4 = 2 and 7� 4 = 8.

Computing Predecessors In the following, assumet to be a transition rule of the form (1). Consider
a constraint �0 = (Θ0; E0) with j�j = n. We define
Pret (�0) to be the set of all constraints � = (Θ; E)
such that there is an i : 1 � i � n and one of the
following conditions are satisfied:

1. grd 2 B (X) (i.e. grd is a local condition), j�j = n,8j : 1 � j 6= i � n : Θ(j) = Θ0(j), Θ(i) =
Θ0(i)[t] ^ grd ^ q, and E = E0. This case cor-
responds to running a transition with a local con-
dition backwards. The transition is performed by
process i. The local state and variables of processi are changed according to the transition t. This
is reflected in the definition of Θ(i) which is es-
sentially the weakest precondition of Θ0(i) with
respect to t. The local states and variables of
the other processes are not changed and hence
Θ(j) = Θ0(j) for j 6= i. The edges are not changed
either, and hence E = E0 (Figure 4).
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��
��
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ack
reqreq

ack q1q1 q0 q3q3 qt : [q j true � fg j q0 ]

Pret

Figure 4. Computing Pre for local transi-

tions.

2. grd = 2�, 2 2 f8L;8R;8LRg, j�j = n, Θ(i) =
Θ0(i)[t]^qt, 8j : 1 � j 6= i � n : Θ(j) = Θ0(j), and
depending on 2, one of the following conditions
holds:

(a) 2 = 8L and E = E0 [ fi ack �t jj 1 � j < ig.
(b) 2 = 8R and E = E0 [ fi ack �t jj i < j � ng.
(c) 2 = 8LR and E = E0 [ fi ack �t jj 1 � i 6= j �ng.

This case corresponds to running the third phase
of the refinement protocol backwards when the
global condition is universally quantified. The lo-
cal state of process i is changed back to the tem-
porary state qt, and the assignment in t is per-
formed backwards. The local states and variables
of the other processes are not changed. All the
relevant processes should have an acknowledgment
edge to process i (since all relevant processes not
having such an edge are eliminated according to
the approximate transition relation). Notice that
the resulting constraint does not put constraints
on the edges of irrelevant processes (e.g. processes
with j > i for 8L), i.e., its denotation contains all
possible choices for these edges. For instance if
the quantifier is 8L then we add acknowledgment
edges from all processes to the left of process i.
The cases of 8R and 8LR are analogous (Figure 5).
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Figure 5. Computing Pre for the third phase

of the refinement protocol in the case of a

universally quantified global transition.

3. grd = 2�, 2 2 f9L; 9R; 9LRg, j�j = n, Θ(i) =
Θ0(i)[t]^qt, 8j : 1 � j 6= i � n : Θ(j) = Θ0(j), and
depending on 2, one of the following conditions
holds:

(a) 2 = 9L and E = E0 [ fi ack �t jg for somej : 1 � j < i.
(b) 2 = 9R and E = E0 [ fi ack �t jg for somej : i < j � n.

(c) 2 = 9LR and E = E0 [ fi ack �t jg for somej : 1 � i 6= j � n.

This is one of the two cases which correspond to
running the third phase of the refinement protocol
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backwards when the global condition is existen-
tially quantified. The case is similar to that of
universal quantifiers, except that we require only
one relevant process (rather than all) to have an
acknowledgment edge (Figure 6, the bottom-left
configuration).

4. grd = 2�, 2 2 f9L; 9R; 9LRg, j�j = n + 1, there is
a j : 1 � j � n + 1 such that:

(a) Θ(i� j) = Θ0(i)[t] ^ qt.
(b) Θ(j) = true.

(c) Θ(k � j) = Θ0(k) for each k : 1 � k 6= i � n.

(d) e is the smallest set of edges containing the
following elements:

i. (k1�j) ack �t (k2�j) if
�k1

ack �t k2

� 2 E0
for all k1; k2 : 1 � k1 6= k2 � n.

ii. (k1 � j) req�!t0 (k2 � j) if
�k1

req�!t0 k2

� 2E0 for all k1; k2 : 1 � k1 6= k2 � n andt0 2 T .

iii. (i� j) ack �t j.
(e) Depending on 2, one of the following condi-

tions holds:

i. 2 = 9L and j � i,
ii. 2 = 9R and j > i,
iii. 2 = 9R.

This is the second case which corresponds to run-
ning the third phase of the refinement proto-
col backwards when the global condition is exis-
tentially quantified. The difference compared to
case 3 is that the process which sends an acknowl-
edgment is not part of the representation of �0.
Therefore, we add a new process with index j to�. The state of the initiator is changed according
to case 4a (in a similar manner to cases 2 and 4).
The only required condition on the new process is
that it has sent an acknowledgment to the initia-
tor. The local state and variables of that process
are constrained (case 4b). The states and local
variables of the other processes are not changed
(case 4c). Existing edges are maintained when go-
ing backwards (cases 4(d)i and 4(d)ii), while the
new acknowledgment edge is added from the new
process to the initiator (case 4(d)iii) (Figure 6, the
top-left configuration).

5. grd = 2�, j�j = n, �j : 1 � j 6= i � n : i ack �tj 2 E0, 8j : 1 � j 6= i � n : Θ(j) = Θ0(j),
Θ(i) = Θ0(i)[tq ] ^ q, where tq is the transition�q j true � fg j qt �
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Figure 6. Computing Pre for the third phase
of the refinement protocol in the case of an
existentially quantified global transition.

that represents the update of the local state, andE = E0 � fi req�!t jj i 6= jg (Figure 7).
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Figure 7. Computing Pre for the first phase of
the refinement protocol.

6. grd = 2�, j�j = n, 9i; j : 1 � j 6= i � n : i ack �tj 2 E0, 8k : 1 � k 6= j � n : Θ(k) = Θ0(k), Θ(j) =

Θ0(j) ^ �, and E = E0 � fi ack �t jg [ fi req�!t jg
(Figure 8).
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Figure 8. Computing Pre for the second phase
of the refinement protocol.

Observe that in case (4), the length of constraint � is
larger than that of �0. This means that the sizes of the
constraints which arise during the analysis are not a
priory bounded.
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B Appendix – Case Studies

In the following section, we give detailed descrip-
tions of the case studies. For each example, we give
the original model followed by the corresponding re-
finement protocol. In the description of the original
model, we use the atomic syntax, while the refinement
protocol describes how the corresponding global tran-
sitions are implemented.

Let P = (Q;X; T ) be a parameterized system and
let t 2 T be a transition of the form:t : [q j grd � stmt j q0 ] (2)

where grd = 2� is a global condition. We use the fol-
lowing notations for the three phases of the refinement
protocol of a transition t of the form (2).

First phase: sendreqt q means that a process in con-
trol state q initiates the first phase of refinement
protocol for t by broadcasting request edges to all
other processes and changing its state to qt.

Second phase: sendackt if � denotes that a process
satisfying the formula � acknowledges a request
edge on t where he is the target.

Third phase: testt 2 ack goto q0 with stmt denotes
that if all edges (or at least one depending on the
quantifier 2) in the range of 2 have been acknowl-
edged, then the initiator moves to q0, changes its
variables according to the the statement stmt, and
removes all edges on the transition t. We omitstmt when it is not relevant.

We use respectively tt and ff to denote the Boolean
values true and false.
B.1 Burn’s Algorithm

In order to model Burn’s mutual exclusion algo-
rithm, we consider a parameterized system where each
process has a local Boolean variable f (for flag). The
local state ranges over fq1; : : : ; q7g where q6 represents
the critical section. The transitions are described be-
low.

Burn’s Algorithm
InstanceQ: q1; : : : ; q7X : f 2 BT :t1 : [q1 j tt � f = ff j q2 ] t2 : [q2 j 9Lf � fg j q1 ]t3 : [q2 j 8L:f � fg j q3 ] t4 : [q3 j tt � f = tt j q4 ]t5 : [q4 j 9Lf � fg j q1 ] t6 : [q4 j 8L:f � fg j q5 ]t7 : [q5 j 8R:f � fg j q6 ] t8 : [q6 j tt � f = ff j q7 ]t9 : [q7 j tt � fg j q1 ]

Initial Process State uinit : q1; f 7! ff

Final Constraints ΦF : (q6q6; ;)
The refinement protocol for the global transitions is

as follows.

Burn’s Refinementt2 :

2

4

sendreqt2
q2

sendackt2
if f

testt2
9L ack goto q1

3

5t3 :

2

4

sendreqt3
q2

sendackt3
if :f

testt3
8L ack goto q3

3

5t5 :

2

4

sendreqt5
q4

sendackt5
if f

testt5
9L ack goto q1

3

5t6 :

2

4

sendreqt6
q4

sendackt6
if :f

testt6
8L ack goto q5

3

5t7 :

2

4

sendreqt7
q5

sendackt7
if :f

testt7
8R ack goto q6

3

5

Any process in state q2 initiates non-
deterministically the refinement protocol for one
of the transitions t2 or t3. In both cases, the initiator
broadcast request edges on the transition he has
chosen and moves to the corresponding waiting state.
In case of transition t2, the process moves to q1 if
at least one edge with a process to its left has been
acknowledged; while in case of transition t3, the
process moves to q3 if all edges with all processes to
its left have been acknowledged. In state q4, a similar
situation occurs meaning that a process at q4 chooses
non-deterministically between initiating t5 or t6. The
refinement protocol of transition t7 implies that a
process in state q5 can move to the critical section (q6)
only if the second phase succeeds with all processes to
its right; i.e., only if all the processes to its right have
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acknowledged the corresponding requests.

B.2 Dijkstra’s Algorithm

In Dijkstra’s model, a process has seven statesq1; : : : ; q7 where q6 represents the critical section. The
local variables are the Boolean p for pointer and the
number f 2 f0; 1; 2g for flag.

Dijkstra’s Algorithm
InstanceQ: q1; : : : ; q7X : p 2 B; f 2 [0::2]T :t1 : [q1 j tt � f = 1 j q2 ]t2 : [q2 j 8LR(f = 0 _ :p) � fg j q3 ]t3 : [q3 j tt � p = tt j q4 ] [q1 j tt � p = ff j q1 ]�: : : [q7 j tt � p = ff j q7 ]�t4 : [q4 j tt � f = 2 j q5 ] t5 : [q5 j 8LRf 6= 2 � fg j q6 ]t6 : [q5 j 9LRf = 2 � fg j q1 ] t7 : [q6 j tt � f = 0 j q7 ]t8 : [q7 j tt � fg j q1 ]

Initial Process State uinit : q1; f 7! 0; p 7! ff

Final Constraints ΦF : (q6q6; ;)
Below, we give the refinement protocol of the global

and the broadcast transitions.

Dijkstra’s Refinementt2 :

2

4

sendreqt2
q2

sendackt2
if f = 0 _ :p

testt2
8LR ack goto q3

3

5t3 :

2

4

sendreqt3
q3

sendackt3
if tt and p := ff

testt3
8LR ack goto q4 with p = tt

3

5t5 :

2

4

sendreqt5
q5

sendackt5
if f 6= 2

testt5
8LR ack goto q6

3

5t6 :

2

4

sendreqt6
q5

sendackt6
if f = 2

testt6
9LR ack goto q1

3

5

In the original algorithm, a pointer, i.e., a variable
ranging over process indices is used. We model this by
the local Boolean variable p. A process has the variablep equal to tt iff it is being pointed to by the pointer
variable. In order to simulate the pointer changes, we
use the broadcast transition t3. By firing t3, a pro-
cess changes state from q3 to q4, changes its local vari-
able p to tt and simultaneously changes p to ff in all

other processes. Observe that in the refinement proto-
col of broadcast transitions, any other process changes
its state (or variables depending on the transition) in
the second phase; i.e., whenever the process acknowl-
edges the corresponding request edge.

A process in state q3 fires t3 by executing the three
phases of the refinement protocol as described below.
First, the the process (the initiator) sends request edges
on t3 to all other processes and moves to the temporary
state qt3

3 . Any process that receives such a request
changes it is local variable p to ff and acknowledges
the request. Once all edges on t3 are acknowledged,
the initiator moves to q4 and changes its variable p to
tt. The refinement protocol of the remaining global
transitions is as described in the main text.

B.3 Lamport’s Bakery Algorithm

Lamport’s Bakery Algorithm is a well-known solu-
tion to the critical section problem for an arbitrary,
finite number of processes [14].

var� choosing: shared array [0..n-1] of boolean;� number: shared array [0..n-1] of integer;

1. Process P[i] :=
2. loop forever

3. choosing[i] := true;
4. number[i] := max(number[0],number[1],...,number[n-1]) + 1;
5. choosing[i] := false;
6. for j := 0 to n-1 do begin

7. while choosing[j] do nothing;
8. while number[j] 6= 0 and
9. (number[j], j) � (number[i],i) do

10. nothing;
11. end;
12. critical section

13. number[i] := 0;
14. remainder section

Figure 9. Lamport’s bakery algorithm: (a; b) �
(; d) iff a <  or (a =  and b < d).

The rationale behind the algorithm is as follows.
Each process has a local variable num in which it stores
a ticket. Initially num is set to zero. When a process is
interested in entering the critical section, it sets num
to a value strictly greater than the tickets (i.e., value ofnum) of all other processes in the system. A possible
way to implement this step is by taking the maximum
value of num in all processes and then incrementing it
by one. More in general, we just need to generate a
fresh ticket. After the choosing step, the process waits
until its ticket is less than the tickets of all other pro-
cesses and then enters the critical section. When it
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releases the critical section, it resets its ticket to zero.
The pseudo code of the algorithm is shown in Figure 9.

The original Lamport’s Bakery algorithm does not
take any atomicity assumption on the computation of
the fresh tickets. Since two processes may take the
same number, in the entry condition we have to com-
pare tickets and identifiers: if two processes have the
same ticket, the one with smaller identifier has higher
priority. We assume that all identifiers are different.
Furthermore, to protect the test in the entry section
from race conditions in the choosing phase, the al-
gorithm uses one Boolean flag per process (an array
choosing) to mark the assignment to the local variablenum. The flag is set to true before starting the as-
signment and to false after its completion. A process
willing to enter the critical section is forced to wait un-
til all processes have concluded their choosing phase
before comparing its ticket with the other ones.

The bakery algorithm can be specified using
the parameterized system with global conditions
shown below. Individual processes have two lo-
cal variables id (identifier) and num (ticket) that
range over natural numbers and four possible statesidle; hoose; wait; use. In the model description we let�(p) denote the following formula.�

p �num = 0 _ num < p �num __ (num = p �num ^ id < p �id)

�
Local variables: X = fid; num 2 Ng
States: Q = fidle; hoose; wait; useg
Transitions:t1 : [ idle j tt j hoose ]t2 :

ˆ hoose j 8p : (numnext > p �num) jwait ˜t3 : [wait j 8p : (:p �hoose ^ �(p)) juse ]t4 :
ˆuse jnumnext = 0 j idle ˜

Initially, the state is idle and the value of num iszero for each process. In t1 a process moves from idle
to hoose to start the choosing phase. In t2 a process
moves from hoose to wait and assigns to num a new
ticket, i.e., a value strictly greater than the value ofnum in all other process (p�num). In t3 a process moves
from wait to use only if the entry condition holds for
each other process. In rule t4 a process jumps back toidle and resets num to zero.

We are interested in verifying mutual exclusion for
this protocol. Unsafe states here are configurations in
which at least two processes are inside the critical sec-
tion (in state use).

In the rest of the section we discuss the analysis of
this protocol with different variant of refinement pro-

tocols for the transitions t2 and t3. All refinement pro-
tocols make use of a local universal global condition in-
volving process states attached to acknowledgements.
In order to distinguish them from non-atomic condi-
tions, we write them as 8loalp: akp(u) ^ �. This con-
dition is used by the initiator to check if all acknowledg-
ments have been received. We use the approximation
scheme described in the paper to deal with this kind of
conditions.

B.3.1 Refinement Protocol R2

As a first formal model of the bakery algorithm with
non-atomic conditions, we consider one of the refine-
ment protocols of Section 8. Here, the initiator i sends
again a request to receptor j in case the global condi-
tion is violated by the values returned by j. In this case
study, the refinement protocol works as follows. Let us
first consider transition t2. The initiator is a process
in state hoose.� The initiator sends a request for reading the local

states of the other processes and then moves to the
temporary state hooset2 . We recall that Boolean
conditions are evaluated on state hooset2 as for
state hoose.� A responder p sends the current local state
along with an acknowledgment, i.e., a messageak1p(sp; idp; nump) where sp is the current state,idp and nump the value of the local variables of
the responder.� The initiator checks that all acknowledgments
have been received, applies the global condition on
the values attached to messages, and then moves
to state wait. Specifically, the initiator with local
variable num checks the local condition8loalp: (ak1p(sp; idp; nump) ^ numnext > nump)

Observe that the processes acknowledge the request in
any order, and that the initiator tests the condition on
the set of messages sent by other processes (i.e. other
operations may occur between the time a responder
sends an ak and the time the initiator checks the con-
dition).

Let us now consider transition t3. The initiator is
now a process in state wait.� The initiator sends requests for reading the local

states of the other processes and then moves to
the temporary state waitt3 .� A responder p sends the current local state
along with an acknowledgment, i.e., a messageak2p(sp; idp; nump).
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� The initiator checks that all acknowledgments
have been received. Then, it applies the entry con-
dition on the values attached to messages. Specif-
ically, the initiator, with local variables num andid, tests the following condition.8localp�0� ak2p(sp; idp; nump) ^ sp 6= hoose ^

(nump = 0 _ num < nump_
(num = nump ^ id < idp)) 1A

– If the condition succeeds, the initiator moves
to state use.

– If the condition fails for a process p, the ini-
tiator sends a new request to process p, i.e.,
the acknowledgment edge from p is replaced
by a new request edge.

Notice that the initiator does not change state
until the entry condition is satisfied. Thus, this
protocol models a busy wait for acknowledgments
with good values.

B.3.2 Refinement Protocol R3

The second refinement protocol we consider is a slight
variation of the previous one. Specifically, in the refine-
ment of transition t3, when the entry condition fails for
some process p, the initiator resets all edges and jumps
back to state wait. This operation restarts the refine-
ment protocol for the same transition t3.

B.4 Lamport’s Distributed Mutual Exclusion Al-
gorithm

Unlike the algorithms discussed so far, Lamport’s
distributed mutual exclusion algorithm [15] was origi-
nally defined for processes communicating by message
passing. This means that non-atomicity is inherent in
this model.

A process in this model has three states: idle; wait
and use (for critical section). Each process i has a log-
ical clock loki that ranges over the natural numbers,
and a local queue Qi in which i stores the timestamped
requests. Mutual exclusion is guaranteed by letting
only the process with the “earliest” request access the
critical section.

In order to determine which request is the earliest,
the algorithm makes use of the well known Lamport’s
happened-before partial ordering. A total order is then
derived by combining the natural order on id’s (process
indices) with the happened-before order. Now in each
queue, requests are ordered by their associated times-
tamps, and, in case the timestamps are equal, by theid’s of the senders.

Depending on its current state, a process i may per-
form one of the following transitions. Observe that
when performing these transitions the process increases
its clock.

Idle: Process i broadcasts the request reqi(loki),
stores a copy of [i; loki] in its own queue Qi and
moves to state wait.

Wait: Process i moves to state use, i.e. accesses the
critical section, when replies are collected from all
other processes, and i’s own request is the smallest
in the local queue Qi.

Use: Process i exits from use to idle by removing all
copies [i; lok] (where lok is an arbitrary value)
from its local queue, and broadcasting a release
message reli(loki).

Each time a process j receives a message with times-
tamp ts, it updates its local clock to a value strictly
larger than max(lok; ts), and, depending on the type
of the message, does the following.

Request: When the process j receives a requestreqi(ts) from a process i, it adds (i; ts) to its own
local queue Qj , and sends back a reply messageakj(lokj).

Acknowledgment: In case process j receives the re-
ply aki(ts) from process i, it updates its local
clock.

Release: When the process j receives a release mes-
sage reli(ts), it removes all pairs [i; lok] (for any
value clock) from its local queue Qj .

Our model of the distributed Lamport algorithm
consists of 8 rules. We used unbounded variables car-
ried by the graph edges to keep track of the content of
local queues. During the analysis, our prototype gen-
erated 4676 constraints after 29 iterations.

B.5 Distributed Two-phase Commit Protocol

Protocols for controlling transactions in distributed
database systems can naturally be viewed as refinement
protocols for atomic transitions. To illustrate this, let
us consider the following simple parameterized systemt1 : [idle j 8LR idle � fg juse ]t2 : [use j tt � fg j idle ]

where use indicates that a process is in the critical
section. In a distributed environment in which global
conditions cannot be tested atomically, the access to
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the critical section can be viewed as a special type of
“all-or-nothing” transaction, i.e., either it can be exe-
cuted atomically or the state of the system rolls back
to a safe one. Protocols like the two-phase commit al-
gorithm [11] can thus be applied to safely implement
our protocol. We consider here a distributed version
of the two-phase commit protocol scheme in which the
initiator is selected dynamically. The refinement pro-
tocol based on the two-phase commit algorithm for our
simple mutex is defined then as follows.

Two-phase Commit Protocolt1 :

2

6

6

6

6

4

sendreqt1
idle

sendackt1
if idle goto rwait

sendnackt1
if :idle

testt1

» 8LR ack goto use9LR nack goto rbak –

3

7

7

7

7

5t2a :

2

4

sendreqt2a use
sendackt2a if tt
testt2a 8LR ack goto idle 3

5t2b :

2

4

sendreqt2b rbak
sendackt2b if tt goto idle
testt2b 8LR ack goto idle 3

5

The intuition here is as follows. Initially all
agents are in state idle. Any idle agent can non-
deterministically initiate the protocol. The initiator
and the other processes (cohorts) then execute the fol-
lowing steps.

Phase 1 The initiator sends a request to enter the
critical section to all other processes (cohorts) and
then waits for a message from each cohort. A co-
hort replies with an agreement message if his/her
state is idle or with an abort message if his/her
state is different from idle.

Phase 2: Success If the initiator receives agreement
messages from all cohorts, he/she sends a commit
message to all the cohorts and enters the critical
section. When the initiator releases the critical
section, he/she sends a notification to all cohorts.
A cohort sends an agreement and moves to stateidle. When the initiator receives all agreements,
he/she moves to state idle.

Phase 2: Failure If any cohort sends an abort mes-
sage during Phase 1, the initiator sends a rollback
message to all cohorts. A cohort sends an agree-
ment and moves to state idle. When the initiator
receives all agreements, he/she moves to state idle.

The protocol must ensure mutual exclusion, i.e., in ev-
ery reachable state there cannot be two agents in their

critical section at the same time. This protocol can
naturally be encoded in our specification language by
adding nack edges to the request graphs.
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