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Abstract

We prove that in many cases, a first-price sealed-bid combinatorial auction gives higher
expected revenue than a sealed-bid simultaneous auction. This is the first theoretical
evidence that combinatorial auctions indeed generate higher revenue, which has been a
common belief for decades.

We use a model with many bidders and items, where bidders are of two types: (i)
single-bidders interested in only one item and (ii) synergy-bidders, each interested in one
random combination of items. We provide an upper bound on the expected revenue for
simultaneous auctions and a lower bound on combinatorial auctions. Our bounds are
parameterized on the number of bidders and items, combination size, and synergy.

We derive an asymptotic result, proving that as the number of bidders approach
infinity, expected revenue of the combinatorial auction will be higher than that of the
simultaneous auction. We also provide concrete examples where the combinatorial auction
is revenue-superior.

1 Introduction

It is a common belief that combinatorial auctions provide good solutions to resource-allocation
in multi-commodity markets. The idea is that if a bidder has some synergy from winning
a specific combination of items, he should be able to express this with one all-or-nothing
bid (commonly combinatorial bid) for the entire combination. Allowing combinatorial bids
and using a suitable method for winner determination, it seems reasonable that the resulting
allocation should be more efficient and result in higher revenue for the auctioneer than if
such bids were not allowed. Although these properties are fundamental, no real theoretical
evidence with regards to revenue has so far been provided in the literature. In fact, the
only known theoretical analysis (by Krishna and Rosenthal [7], and Albano, Germano and
Lovo [6]) has been done for the case of two items for sale and indicates the opposite; the
combinatorial auction gives a lower revenue.
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However, the case of two items is very far from most real cases. In real-world combinatorial
auctions we have: (i) many items and bidders, (ii) synergies on independent and unknown
combinations of items, (iii) incomplete information amongst bidders, and (iv) a complicated
winner determination problem where more than one combination can win and some items
may be allocated to single bids.

The model we study in this work, albeit simplified, in essence preserves the important
properties of real world combinatorial auctions as mentioned above. Analyzing such com-
plicated situations requires approaches that differ from the common methods of analysis in
auction theory. In this work we take a fist step towards understanding these situations.

Completely understanding the optimal behavior in large-scale combinatorial auctions is
of course a very hard problem, one which we do not claim to solve. However, our analysis
gives valuable insights into key properties of combinatorial and simultaneous auctions. In
particular, we provide conditions for which we can show that combinatorial auctions indeed
generate higher expected revenue.

A simple example of the type of settings studied here is illustrated in Table 1. In this
example, bidders A through C each have an interest in a specific combination of items, and
if they win all items in their combination they realize an added value, a synergy. Bidders E,
F and G are interested only in a single item each.

Table 1: Bidding scenario

Bidders: A B C E F G
item 1 • • •

item 2 • •

item 3 • • •

item 4 •

item 5 • •

item 6 •

Value per item: 0.8 0.5 0.6 0.7 0.8 0.6
Synergy per item: 1.0 1.0 1.0

Total Combination Value: 5.4 4.5 4.8

Bidding scenario where bidders A-C have synergies on specific
combinations. Bidders E-G are interested in a single item.

In our analysis we focus on two commonly employed protocols: the sealed-bid simultaneous
auction1 and the first-price sealed-bid combinatorial auction.

First we provide an upper bound on expected revenue in the simultaneous auction (Theo-
rem 4.1). Secondly we show that as the number of bidders goes to infinity, expected revenue
in the combinatorial auction is greater than that of the simultaneous auction (Corollary 5.1).
Then, we derive a parameterized lower bound on expected revenue in the combinatorial auc-
tion. Finally, we provide for several settings, an upper bound on the number of bidders
required to achieve expected revenue dominance for the combinatorial auction.

Krishna and Rosenthal [7] analyze a second-price simultaneous auction and although
Krishna’s results are not directly transferable, it is worth pointing out that a comparison
is made between the (second-price) simultaneous auction and a variant of the generalized

1We only specify sealed-bid, since our results are general and not sensitive to which payment rule, first-price,
second-price etc, is implemented.
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Vickrey-Clarke-Groves (VCG) mechanism, with regards to expected revenue. This is done
only for the case of two items, with one synergy-bidder and two single-bidders. Krishna shows
that allowing combinatorial bids results in significantly lower expected revenue than that of a
second-price simultaneous auction (with only single-bids). However, no comparison was made
for larger instances.

A comparison of the first-price sealed-bid combinatorial auction to the sealed-bid simul-
taneous auction appears to be missing in the literature. Focus has been on characterizing
equilibrium strategies for various simultaneous auctions, and sequential auctions (see Krishna
and Rosenthal [7], Albano, Germano and Lovo [6], and Branco [4]). Some work has also been
done in deriving optimal auctions given two items (Levin [9] and Armstrong [1]), and with
multiple items (Ledyard [8]). At the time of writing, we have not been able to find any work
in the literature that compare the two auctions for more realistically sized problems, that is,
many items and combinations of greater size. Most models in the literature seem to concern
the 2-items case, and when generalizations are proposed these usually take the form of bid-
ders interested in all available items (Krishna and Rosenthal [7] and Levin [9]). Krishna and
Rosenthal [7] also describes a pairwise overlapping generalization for more than two items,
but where each combination contains two items. A similar model using common values is
proposed by Rosenthal and Wang [15]. These generalizations unfortunately are of limited
interest from a combinatorial viewpoint since the combination size is still only two items;
also the all-items generalization in essence reduces the combinatorial auction to a single-item
auction since only one combination can win. Ledyard [8] derives an optimal combinatorial
auction with single-minded bidders interested in specific combinations given that the auction-
eer knows which combinations the bidders are interested in. Ledyard’s model is the closest
to the one studied here, and also the only of the mentioned models that remain interesting
from a combinatorial perspective.

The techniques used in our proofs differ from standard auction theory techniques, sim-
ply because the core of the combinatorial auction problem is fundamentally complex. In a
combinatorial auction even determining who wins is a hard maximization problem.

We would like to emphasize that the main point of this work is not to exactly derive
equilibrium strategies nor the expected revenue. Solving those problems is simply too hard.
The main point is, however, to show that it is possible to find theoretical support for the
common belief that combinatorial first-price auctions indeed can give higher expected revenue
than the simultaneous single-item auctions.

2 Auctions Considered

Fundamentally and on a high level, there are two main types of auctions, single-item auctions
and combinatorial auctions, amongst these there are many different variants but our focus will
be on two specific auctions, the sealed-bid simultaneous auction and the first-price sealed-bid
combinatorial auction. We will refer to these auctions as simply the simultaneous auction and
combinatorial auction when no misunderstanding is possible. The following sections discuss
the two auction types in more detail.

2.1 Simultaneous Auction

The simultaneous auction, specifically the sealed-bid simultaneous auction, is actually several
simultaneously executed single-item auctions. The winner of each of these auctions is deter-
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mined by the highest bidder in that particular auction2. The winners pay either the amount
bid (first-price) or the second highest bid (second-price), but there are other conceivable pay-
ment rules as well. Our results regarding the simultaneous auction apply to any reasonable
payment-rule, since the upper bound is based on the expected realized synergy, not actual
payments by bidders.

The issue of bidding when faced with synergies is not trivial and the bidding strategy nat-
urally depends on the disposition of these synergies and the bidders’ view of the competition.
A dilemma that a bidder is faced with in this auction is the uncertainty of how many items
he will win. This implies an uncertainty regarding whether or not to bid above the single
item value, utilizing the potential gain of the synergy in the gamble that all items are won.
If he bids above the single item value and not all items are won, he looses money. This is
commonly known as the exposure problem. Although some work has been done in the area
of simultaneous auctions , unfortunately no work has been found that cover the simultaneous
auction for our specific model nor a comparable model.

2.2 Combinatorial Auction

The (first-price sealed-bid) combinatorial auction, is one of many possible combinatorial auc-
tions, perhaps the most straightforward. Bidders submit bids for combinations of items, and
if they win, pay the amount bid. Winners are determined by solving the (generally) NP-hard
maximization problem known as the winner determination problem, where winners normally
consist of the non-colliding bids that maximize the auctioneer’s revenue. This combinatorial
puzzle is one of the factors that fundamentally separates the combinatorial auction from single
item auctions.

Another distinguishing factor is that in a combinatorial auction, a bidder does not have to
speculate on how many items he will win, since a bid on a combination of items either wins in
its entirety or not at all. This allows bidders to express complex preferences on combinations
of items without the risk present in the simultaneous auction. While the exposure problem
arises in the simultaneous auction, the combinatorial auction gives rise to a threshold problem
(free-riding), the fact that a bidder could potentially under-bid and still be a part of the
optimal allocation. As a consequence, bidders may be inclined to bid strategically, but despite
this, as will be shown later, we manage to construct a useful lower bound on the expected
revenue.

The question of optimal bidding strategy, which in the case of one item for sale is well
studied, is still an open problem in the first-price sealed-bid combinatorial auction, although
some work towards approximating strategies has been done by Wilenius and Andersson [17],
and Vorobeychik, Wellman and Singh [16]. Bernheim and Whinston [3] provide an analysis of
a first-price menu-auction in a complete information setting. It is not uncommon that work
on combinatorial auctions focus on incentive-compatibility, thereby removing the strategy-
problem since the optimal strategy is to bid ones true valuation. One of the most commonly
addressed incentive-compatible mechanisms are the Vickrey-Clarke-Groves (VCG) family of
mechanisms. The VCG has the desirable property that it gives optimally efficient allocations
(under certain conditions), however it can be somewhat lacking in revenue, although methods
for boosting revenue in the VCG have been investigated by Likhodedov and Sandholm [10].
One significant drawback of the VCG is the computational burden of calculating payments,

2In the event of ties, the winner is decided by a lottery.
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the winner determination problem must be solved once for each winner. Another problem is
the significant burden of communicating exponentially many bids. For more background on
combinatorial auctions and the VCG, see for example Cramton, Shoham and Steinberg [5],
Pekec and Rothkopf [13], and Milgrom [11].

3 Model – Bidders and Valuations

We focus on a standard model where bidders have independent private valuations, drawn from
a uniform distribution3. Definition 3.1 specifies these properties and more, and will serve as
the basis for comparison of the two auction formats.

We use two types of bidders, synergy-bidders and single-bidders4. A synergy-bidder has
a synergy on a specific set of randomly chosen items. A single-bidder is interested in one
particular item only.

Definition 3.1. The common model:

(a) Bidders are rational, risk neutral, and symmetric. Only pure symmetric equilibrium is
considered.

(b) Valuations are private and independently drawn from a continuous uniform distribution
on the interval [0,1].

(c) There are M items for sale.

(d) A single-bidder is interested in one item.

(e) A synergy-bidder is weakly single-minded, that is, interested in one uniformly chosen
random combination of size k. He has the same valuation on all k items, and receives
a synergy of α per item if all k items are won5.

(f) There are a total of N synergy-bidders, and for each item there are N single-bidders.

4 Simultaneous Auction

In this section we will illustrate, by providing an upper bound on expected revenue, that the
exposure problem is indeed an actual problem that forces synergy-bidders to bid carefully.
Simply put, the larger the combination, the smaller the probability of winning all the single-
bids on the entire combination will be. Increasing the number of bidders will also decrease
the probability of winning all items in the combination (Krishna and Rosenthal [7] similarly
concludes that in the second-price simultaneous auction, with increasing number of bidders,
bidding becomes less aggressive). We need the following definition.

Definition 4.1. Bidder A is strictly higher than bidder B, if and only if A’s lowest bid is
greater than B’s highest bid. Similarly a set of bidders is strictly ordered if for any pair of
bidders, one is strictly higher than the other.

3We choose the uniform distribution as this is a very commonly occurring distribution in examples through-
out the literature. Generalizing to other continuous distributions is also likely to be possible but we refrain
from doing that at this point since that will not greatly contribute to our main argument.

4The terms global and local bidders are used by Krishna et al. [7] and Albano et al. [6]. However, we prefer
a more descriptive name since a global bidder could be mistaken for a bidder that bids on all items, which is
not the case here.

5Krishna et al. [7] and Albano et al. [6] similarly use a public synergy α.
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The order in Definition 4.1 orders bidders regardless if they bid on the same items or not.

Lemma 4.1. The expected sum of all bidders’ realized synergies in the simultaneous auction
is maximized when bidders are strictly ordered.

Proof. Assume there is an adversary that wants to maximize the expected sum of realized
synergies, he knows the number of bidders and items, but not who bids on what. The
adversary is allowed to set the values of all bids. Assume w.l.o.g. that he always assigns
unique values to all bids6.

Consider one set of bids as assigned by the adversary. In this set there is now one bidder,
A, that has the highest of all bids. Consider this bidder, there are two outcomes: (i) bidder
A wins all his k items, or (ii) bidder A does not win all his items.

If outcome (i) is better for the adversary (i.e generates higher expected realized synergy),
then clearly the adversary might as well raise A’s bids so that A is strictly higher than all
other bidders.

Consider the second case, assuming outcome (ii) is better, then the adversary will do
better by lowering A’s highest bid, so that A is not the highest on that particular item. To
see why this is, consider what happens if A is left as the highest bidder on that one item.
Since A does not win all his k items, but does win at least one item, the outcome is limited
by the sum expected realized synergy given M − 1 items, which is less than that of M items.

Lowering A’s highest bid however, results in the same situation as we started with, there
is one bidder that is highest on some item. Therefore it can not be better that A does not
win all his k items.

Given that A wins all his items, disregard bidder A for now. Out of the remaining bidders
there is a highest bidder B. Since it is unknown which items each bidder bids on, the best
the adversary can achieve is to let B be strictly higher than all the remaining bidders, the
reasoning is the same as with bidder A. There is a probability that B will not win all his
items, since he may collide with A, but this is equally true for all remaining bidders.

We now have that A is the strictly highest bidder (on all his items), B is the second
strictly highest bidder. Applying the same arguments to the remaining bidders gives us a
strictly ordered set of bidders.

Theorem 4.1. Consider a sealed-bid simultaneous auction with an arbitrary number of single-
bidders each with per-item valuation at most 1, and an arbitrary number of synergy-bidders
each bidding on k items chosen at random (uniformly) and realizing a synergy of αk when
all k items are won. Given some number of items M ≥ 2k the sum of all bidders’ expected
realized valuations is less than

M +
αk

1 −
∏k−1

i=0
M−k−i

M−i

.

Proof. First, we observe that the total value that can be achieved by allocating the M items
is at most M plus the total synergy realized by the synergy-bidders.

6If the adversary were to choose bids of identical value then chance would determine which bidder wins.
If one outcome is better than the other then he can choose this outcome beforehand, if both outcomes are
equally good he can arbitrarily choose one beforehand. We can therefore assume w.l.o.g. that the adversary
when behaving optimally assigns unique bids.
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Given two synergy-bidders, the probability that their combinations do not collide is

k−1
∏

i=0

M − k − i

M − i
.

Lemma 4.1 states that the expected sum of bidders’ realized synergies is greatest when
bidders are strictly ordered. Let bidders be strictly ordered and consider the jth highest
synergy-bidder. The probability that he will win all his k items, and realize his synergy, is
the same as the probability that none of his bids will collide with any of the j−1 higher bids,
which is

(

k−1
∏

i=0

M − k − i

M − i

)j−1

.

Summing over all j’s, the expected total synergy becomes a geometric series, which is less
than

αk

1 −
∏k−1

i=0
M−k−i

M−i

and adding 1 per item completes the proof.

Note that when M < 2k only one bidder realizes his synergy and therefore the expected
sum of all bidders’ realized valuations is less than or equal to αk + M .

Corollary 4.1. Consider a sealed-bid simultaneous auction with an arbitrary number of
single-bidders each with per-item valuation at most 1, and an arbitrary number of synergy-
bidders each bidding on k items chosen at random (uniformly) and realizing a synergy of αk
when all k items are won. Given some number of items M ≥ 2k the expected revenue is less
than

M +
αk

1 −
∏k−1

i=0
M−k−i

M−i

.

Proof. A rational (payoff maximizing) bidder will never follow a strategy that gives a negative
expected payoff, that is, he can not bid higher than his expected realized valuation. Therefore
the sum of the expected winning bids is bounded by the sum of the expected realized valuations
which is bounded by Theorem 4.1.

Further, since the expected efficiency can never exceed the sum of the bidders’ expected
realized valuations, Theorem 4.1 is implicitly also an upper bound on the expected efficiency.

5 Combinatorial Auction

In this section we determine bounds on the lowest bid in the combinatorial auction, as well
as the expected revenue when the number of bidders approach infinity.

Note that, in the combinatorial auction, as a simplification, we do not allow the synergy-
bidder to place single-bids as in the simultaneous auction. Each synergy-bidder is thus limited
to submitting one bid only, a combinatorial bid.
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5.1 Strategies

Ideally we would derive the optimal strategies in equilibrium, however, how to do this is still
an unresolved problem. Fortunately, as we show below, it is still possible to determine some
basic properties of the bidders’ strategies. These properties will in turn allow us to construct
a lower bound on expected revenue.

Miltersen and Santillan [12] prove the existence of pure symmetric equilibrium in the first-
price combinatorial auction in the same model as we study here, their proof is an extension
of the work by Reny [14] and Athey [2].

Lemma 5.1 and Lemma 5.2 state that in pure symmetric equilibrium, the synergy-bidder’s
strategy is strictly increasing and Lemma 5.3 does the same for the participating single-
bidders. We provide these proofs given that a symmetric pure equilibrium does exist. In the
literature, it is often (implicitly or explicitly) assumed that strategies are monotone in order
to prove symmetric equilibrium. In a combinatorial auction, monotonicity is less obvious and
since it is an essential part of our analysis we therefore choose to prove this property, given
the existence of pure symmetric equilibrium.

Lemma 5.1. Consider the combinatorial auction and the model of Definition 3.1. In pure
symmetric equilibrium, the following holds for a synergy-bidder’s strategy β : R → R and
valuations v1 and v2: v1 < v2 ⇒ β(v1) ≤ β(v2).

Proof. Consider a valuation v and the corresponding optimal pure symmetric equilibrium bid
b = β(v), and some small constant ε > 0. The expected payoff Π(v, b) is described by

Π(v, b) = P (b)(kv + kα − b) (1)

where P (b) is the strictly increasing probability of winning with a bid b. In equilibrium, no
profitable deviation from b exists, this implies the following inequality

Π(v, b) ≥ Π(v, b + ε) . (2)

We wish to show that for a lower valuation (v− δ), the bid will not be higher than b. In other
words, we wish to show that, for δ > 0, ε > 0,

Π(v − δ, b) > Π(v − δ, b + ε) .

We have

Π(v − δ, b) = P (b)(k(v − δ + α) − b)

= P (b)(kv + kα − b) − P (b)kδ

≥
(eq.2)

P (b + ε)(kv + kα − (b + ε)) − P (b)kδ

> P (b + ε)(kv + kα − (b + ε)) − P (b + ε)kδ

= Π(v − δ, b + ε)

where the last inequality follows from the fact that P (b) is strictly increasing.

Lemma 5.2. Given the model in Definition 3.1, the pure symmetric equilibrium strategy for
a synergy-bidder in the combinatorial auction is a strictly increasing function β : R → R.
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Proof. Pick two arbitrary valuations v1 and v2 such that v1 < v2. Let the pure symmetric
equilibrium bid given v1 be b = β(v1). Assume the pure symmetric equilibrium bid given v2

is also b. Lemma 5.1 states that all bidders with valuations in the interval [v1, v2] will bid b,
thus a plateau exists in the strategy. The probability that a bid b on some combination of
items wins is P (b). When bidding the plateau bid b,

P (b) = Pw(b) · (1 − δ)

where Pw(b) is the probability that any bid on the same items with value b wins, and 0 < δ < 1
is some constant representing the probability of winning the lottery amongst all the b-bids
on the same items. That is, on the plateau the probability P (b) of winning is the probability
of winning the lottery as well as being a part of the winning allocation. The expected payoff
given value v2 and bid b is thus

Π(v2, b) = Pw(b) · (1 − δ) · (kv2 + kα − b).

The probability of winning with a bid (b + ε), that is not on the plateau is P (b + ε) > Pw(b),
and the expected payoff given b + ε is

Π(v2, b + ε) > Pw(b) · (kv2 + kα − b − ε).

If there exists an ε > 0 such that Π(v2, b + ε) > Π(v2, b) a contradiction is reached. Such an
ε exists since

Pw(b) · (kv2 + kα − b − ε) > Pw(b) · (1 − δ) · (kv2 + kα − b)

⇔

kv2 + kα − b − (1 − δ) · (kv2 + kα − b) > ε

⇔

δ · (kv2 + kα − b) > ε

that is, ε > 0, because b ≤ (kv1 + kα) < (kv2 + kα) since b is the pure symmetric equilibrium
bid given v1.

To conclude, there exists a small ε > 0 such that bidding b+ε increases the expected payoff
by avoiding the lottery. Therefore b+ε is a better bid than b which contradicts the assumption
that b is the pure symmetric equilibrium bid given valuation v2. Therefore β(v1) 6= β(v2),
and Lemma 5.1 gives β(v2) > β(v1).

Lemma 5.3. The pure symmetric equilibrium strategy for a single-bidder in the combinatorial
auction is strictly increasing, given the model in Definition 3.1.

Proof. The lemma follows from applying the same proofs as for Lemma 5.1, and Lemma 5.2
with α = 0 and k = 1.
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5.2 Asymptotic Expected Revenue

In this section we show that as the number of bidders approach infinity, the expected revenue
approaches the theoretical maximum.

Lemma 5.4. In the first-price combinatorial auction as the number of synergy-bidders ap-
proach infinity, the lowest winning bid approaches the maximum combination value k · (1+α).

Proof. Given the number of items and some combination size, there is a fixed number C of
possible combinations. Consider an arbitrary constant δ > 0 and a synergy-bidder B with
valuation vmax − δ

2 , where vmax is the maximum possible valuation for a combination. His
expected payoff approaches zero as the number of synergy-bidders approach infinity, since
bids are strictly increasing in the valuation (Lemma 5.2).

Assume that with probability p > 0 there exists a winning lowest bid b < vmax − δ for
some constant δ > 0. Now consider bidder B; with probability p · 1

C
the lowest winning bid

is on the same combination as B, and thus B’s expected payoff from bidding vmax − δ is

pδ

2C
.

Given any p > 0 and δ > 0, the number of synergy-bidders can be chosen such that pδ
2C

is
greater than the expected payoff, which is a contradiction. Thus, the probability that the
lowest winning bid is less than vmax − δ, for any δ > 0, approaches zero as the number of
synergy-bidders approach infinity. In our specific model, vmax = k · (1 + α).

Theorem 5.1. In the first-price combinatorial auction as the number of bidders approaches
infinity, the expected revenue approaches:

k · (1 + α) ·

⌊

M

k

⌋

+ (M mod k)

where M is the number of items, k is the combination size and α is the synergy per item.

Proof. When the number of synergy-bidders approaches infinity, the expected number of bids
in the optimal allocation approaches the maximum coverage

⌊

M
k

⌋

. Lemma 5.4 states that the
lowest winning combinatorial bid will approach the maximum value, k · (1 + α).

As the number of single-bidders approaches infinity, we have that a winning single-bid
approaches 1. This follows directly from simple modification of the proof of Lemma 5.4 with
k = 1, α = 0. The expected number of items that will be sold to single-bidders will approach
(M mod k) as the number of bidders approach infinity.

Corollary 5.1. As the number of bidders approach infinity, the expected revenue of the first-
price combinatorial auction is greater than that of the simultaneous auction, given M ≥ 2k
and k ≥ 2.

Proof. From Theorem 4.1 and Theorem 5.1 we have the bounds on the respective auctions.
Substituting with M = ck+b where 0 ≤ b < k and c > 1 and b, c ∈ N, the following inequality
must hold for the combinatorial auction revenue to exceed the that of the simultaneous auction

k(1 + α)

⌊

ck + b

k

⌋

+
(

(ck + b) mod k
)

> ck + b +
αk

1 −
∏k−1

i=0
ck+b−k−i

ck+b−i
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⇔

k(1 + α)c +
(

(ck + b) mod k
)

> ck + b +
αk

1 −
∏k−1

i=0
ck+b−k−i

ck+b−i

⇔

k(1 + α)c + b > ck + b +
αk

1 −
∏k−1

i=0
(c−1)k+b−i

ck+b−i

⇔

c − 1

c
>

k−1
∏

i=0

(c − 1)k + b − i

ck + b − i
.

Unfolding the product we get, in the general case,

k−1
∏

i=0

(c − 1)k + b − i

ck + b − i

=

(c − 1)k + b

ck + b
· · ·

(c − 1)k + b − b

ck + b − b
· · ·

(c − 1)k + b − k + 1

ck + b − k + 1
=

C ·
c − 1

c
where 0 < C < 1. Therefore

c − 1

c
>

k−1
∏

i=0

(c − 1)k + b − i

ck + b − i

which concludes the proof.

5.3 Parameterized Lower Bound on Expected Revenue

We have shown that the revenue of the combinatorial auction approaches the theoretical
maximum as the number of bidders approaches infinity. However we would also like to have
more specific information about when the expected revenue of the combinatorial auction
exceeds that of the simultaneous auction.

In this section we provide a lower bound on the expected revenue for the combinatorial
auction and show for some instances what the requirements are, in terms of the number of
bidders, to achieve a higher expected revenue over the simultaneous auction.

In our analysis we assume that at most two combinatorial bids win, this covers all cases
when 2k ≤ M < 3k and it can also be used to derive some interesting bounds in other cases.

We show, for example, that in settings with M > 3k items (see Tables 2, 3 and 4),
an auctioneer that implements a combinatorial auction, even with the additional rule that at
most two synergy-bidders may win, can expect higher revenue than in a simultaneous auction.

We proceed with a few lemmas that are needed for the proof of Theorem 5.2. First
Lemma 5.5 establishes a lower bound on the winning single-bids. Then Lemma 5.6 deals
with the probability of the existence of non-colliding bids. Next, Lemma 5.7 deals with the
probability of winning, which is used to bound the payoff of a bidder in Lemma 5.8. Finally
we have Lemma 5.9 which establishes a lower bound on the lowest winning combinatorial bid
in the optimal solution.
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Lemma 5.5. Given the number of single-bidders N and an arbitrarily small constant ∆ > 0,
then with probability q, a winning single-bid in the combinatorial auction is greater than or
equal to:

(

1 − q

N

)
1

N−1
−

(

1−q
N

)
N

N−1

1 − q
− ∆ .

Proof. Given a single-bidder with valuation u. Since bids are strictly increasing (Lemma 5.3),
the probability that he bids higher than all the other single-bidders on the same item is uN−1

and the probability that he wins is strictly smaller. Therefore this bidder’s expected payoff
is less than u · uN−1 = uN .

Assume that a winning single-bid is less than u− γ with probability 1− q. A bidder with
valuation u bidding u− γ would then have an expected revenue of (1− q)γ. If (1− q)γ > uN ,
or equivalently, if

γ >
uN

1 − q
(3)

a contradiction is reached and the winning single-bid is greater or equal to u − γ with prob-
ability q.

We pick a γ satisfying Equation 3 by setting γ = uN/(1 − q) + ∆, where ∆ > 0 is an
arbitrarily small constant. Now, with probability q we have that the winning single-bid is at
least u − γ which is the same as

u −
uN

1 − q
− ∆ . (4)

Maximizing Equation (4) as a function of u gives us the first-order condition 1 − N/(1 − q) ·
uN−1 = 0. Note that the second derivative is always negative, so if we find a local optima it
is guaranteed to be a local maximum. Solving the first-order condition for u we get:

u = e
ln
(

1−q
N

)

N−1 =

(

1 − q

N

)
1

N−1
.

Therefore, given an arbitrarily small ∆ > 0, a winning single-bid is greater or equal to u − γ
with probability q where

u − γ =

(

1 − q

N

)
1

N−1
−

(

1−q
N

)
N

N−1

1 − q
− ∆ .

Lemma 5.6. Consider the combinatorial auction and Definition 3.1. Given an arbitrary
synergy-bidder B, and the remaining N − 1 synergy-bidders. A synergy-bidder that does not
collide with B, and has a per-item valuation greater than v exists with probability:

1 −

(

1 − (1 − v) ·
k−1
∏

i=0

M − k − i

M − i

)N−1

.
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Proof. Choose a random bidder C. Given B’s valuation v, the probability that C’s valuation
is higher, is 1 − v. The probability that C does not collide with B is:

∏k−1
i=0

M−k−i
M−i

. Thus,
the probability that C has a higher valuation and that he does not collide with B is

(1 − v) ·

k−1
∏

i=0

M − k − i

M − i
.

The complement, that C either collides or has a lower valuation is:

1 − (1 − v) ·
k−1
∏

i=0

M − k − i

M − i

and the probability that this is the case for all of the remaining N − 1 bidders is

(

1 − (1 − v) ·

k−1
∏

i=0

M − k − i

M − i

)N−1

. (5)

Finally, the probability that at least one bidder has a higher valuation and does not collide
with B is the complement of Equation 5.

Lemma 5.7. Given Definition 3.1 and the combinatorial auction, the probability that a bidder
with per-item valuation less than or equal to v wins is less than or equal to:

(

1 − (1 − v) ·

k−1
∏

i=0

M − k − i

M − i

)N−1

.

Proof. If there exists a feasible solution containing the highest combinatorial bid and the bid
of a non-colliding bidder with valuation greater than v then no bidder with valuation ≤ v can
win. This follows from the monotonicity property proven in Lemma 5.2.

According to Lemma 5.6, such a feasible solution exists with probability

1 −

(

1 − (1 − v) ·

k−1
∏

i=0

M − k − i

M − i

)N−1

.

Therefore, a bidder with valuation ≤ v can only win in some of the remaining cases.

Lemma 5.8. Given Definition 3.1, in the combinatorial auction the expected payoff of a
synergy-bidder with per-item value v is less than or equal to:

k · (v + α) ·

(

1 − (1 − v) ·

k−1
∏

i=0

M − k − i

M − i

)N−1

.

Proof. Lemma 5.7 states that a synergy-bidder with valuation v wins with probability at most
(

1− (1− v) ·
∏k−1

i=0
M−k−i

M−i

)N−1
. The maximum possible payoff is k · (v + α) given a valuation

of v and synergy α.
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Lemma 5.9. In the combinatorial auction given Definition 3.1 the lowest combinatorial bid
in the optimal solution, in pure symmetric equilibrium, is greater than k(v − δ + α) with
probability p given δ such that

δ >
k · (v + α) ·

(

1 − (1 − v) ·
∏k−1

i=0
M−k−i

M−i

)N−1

(1 − p) ·
∏k−1

i=0
M−k−i

M−i

.

Proof. Clearly we are only interested in δ < v+α since a negative or zero-valued lower bound
is not useful. Assume the lowest winning bid is less than k · (v − δ + α) with a probability of
(1−p). Given that this is true, then a bidder with valuation v, (total valuation k ·(v+α)), can
place a bid of k ·(v−δ+α) and win with probability (1−p) ·

∏k−1
i=0

M−k−i
M−i

, where
∏k−1

i=0
M−k−i

M−i

is the probability that he does not collide with highest winning bid, and thus the bidder’s
expected payoff is:

δ · (1 − p) ·
k−1
∏

i=0

M − k − i

M − i
.

If this is greater than the upper bound established in Lemma 5.8, we have a contradiction.
That is, if

δ >
k · (v + α) ·

(

1 − (1 − v) ·
∏k−1

i=0
M−k−i

M−i

)N−1

(1 − p) ·
∏k−1

i=0
M−k−i

M−i

then we have a contradiction and the lowest winning bid is greater than k(v − δ + α) with
probability p.

Theorem 5.2. In a pure symmetric equilibrium of the first-price sealed-bid combinatorial
auction given N single-bidders and N synergy-bidders, the expected revenue given the model
in Definition 3.1 when at most two synergy-bids can win is at least

p · q ·
(

2k · (v − δ + α) + (m − 2k) · sb
)

where

sb =

(

1 − q

N

)
1

N−1
−

(

1−q
N

)
N

N−1

1 − q
− ∆

and

δ =
k · (v + α) ·

(

1 − (1 − v) ·
∏k−1

i=0
M−k−i

M−i

)N−1

(1 − p) ·
∏k−1

i=0
M−k−i

M−i

+ ∆ .

where p is the probability that the lowest combinatorial bid is at least k · (v − δ + α); q is the
probability that a winning single-bid is at least sb given an arbitrarily small ∆ > 0.

Proof. Lemma 5.5 provides us with a lower bound, sb, on the winning single-bid, with prob-
ability q. Lemma 5.9 gives us the lowest combinatorial bid in the optimal solution with
probability p given a δ that satisfies:

δ >
k · (v + α) ·

(

1 − (1 − v) ·
∏k−1

i=0
M−k−i

M−i

)N−1

(1 − p) ·
∏k−1

i=0
M−k−i

M−i

.
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Setting δ equal to the right hand expression and adding an arbitrarily small constant ∆ gives
us a δ which satisfies the constraint. Therefore with probability p · q, we have a solution with
two synergy-bids each of value at least k · (v − δ + α) and the remaining items are covered by
single-bids of value at least sb. There is of course a possibility that only one combinatorial
bid wins, this happens with probability (1− p), and in this case we count the contribution to
the expected revenue as zero.

Since the expected revenue is a lower bound on the expected efficiency, Theorem 5.2
implicitly provides a lower bound on efficiency, and since Theorem 4.1 is an upper bound on
efficiency, we can conclude that our results obtained regarding revenue also apply to efficiency.

6 Comparison – Simultaneous and Combinatorial Auction

In Tables 2, 3 and 4 we compare the bounds of Theorem 4.1 and Theorem 5.1. Each row in
the table constitutes an example where the combinatorial auction yields a higher expected
revenue than the simultaneous auction.

We would like to point out the following:

• In Table 3, when the number of items M is greater than 14, it is actually possible that
more than two combinatorial bids win, however our analysis is based on the assumption
that at most two bids can win.

• Our theoretical bounds are far from tight, therefore examples of when the expected
revenue of the combinatorial auction is higher than that of the simultaneous auction
are likely to be found for considerably smaller values of the number of bidders N .

Table 2: Example of the application of Theorem 5.2 – varying the problem size.

Items Combi- No. Syn- Combinatorial Simultaneous Verification parameters

nation Biddersa ergy Auction Auction q = 0.999
M Size k N α Lower Boundb Upper Boundc p v sb
8 3 197 1 11.658 11.653 0.987 0.686 0.934
11 4 303 1 15.476 15.475 0.985 0.637 0.955
14 5 502 1 19.341 19.336 0.985 0.607 0.972
17 6 857 1 23.240 23.233 0.985 0.589 0.983
20 7 1483 1 27.160 27.159 0.985 0.577 0.989
23 8 2584 1 31.108 31.107 0.986 0.568 0.993
26 9 4511 1 35.072 35.071 0.986 0.563 0.996
29 10 7889 1 39.047 39.047 0.987 0.558 0.997

a This is purely an existence proof, the number of bidders n is therefore an upper bound. b The
combinatorial auction lower bound is rounded down. c The simultaneous auction upper bound
is rounded up.

7 Conclusions

In this work, we have studied some fundamental properties of auctions in a complex valuation
setting, with many items and bidders, synergies for random sets of items, and incomplete
knowledge among bidders.
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Table 3: Example of the application of Theorem 5.2, contd. – varying the number of items.

Items Combi- No. Syn- Combinatorial Simultaneous Verification parameters

nation Biddersa ergy Auction Auction q = 0.999
M Size k N α Lower Boundb Upper Boundc p v sb
10 5 8667 1.0 15.020 15.020 0.982 0.56 0.998
11 5 2479 1.0 16.066 16.066 0.982 0.569 0.993
12 5 1180 1.0 17.137 17.137 0.983 0.579 0.987
13 5 716 1.0 18.228 18.228 0.984 0.592 0.979
14 5 502 1.0 19.341 19.336 0.985 0.607 0.972
17 5 279 1.0 22.737 22.734 0.989 0.661 0.952
20 5 228 1.0 26.208 26.202 0.992 0.724 0.942
23 5 227 1.0 29.713 29.709 0.995 0.781 0.942
26 5 257 1.0 33.240 33.240 0.996 0.836 0.948
29 5 321 1.0 36.789 36.788 0.998 0.878 0.958
32 5 450 1.0 40.347 40.346 0.999 0.916 0.969
35 5 759 1.0 43.936 43.913 0.999 0.953 0.981
36 5 963 1.0 45.103 45.103 0.999 0.963 0.984
37 5 1294 1.0 46.294 46.294 0.999 0.973 0.988
38 5 1928 1.0 47.486 47.485 0.999 0.982 0.992
39 5 4048 1.0 48.691 48.677 0.999 0.991 0.996

a This is purely an existence proof, the number of bidders n is therefore an upper bound. b The
combinatorial auction lower bound is rounded down. c The simultaneous auction upper bound
is rounded up.

Table 4: Example of the application of Theorem 5.2, contd. – varying the synergy α.

Items Combi- No. Syn- Combinatorial Simultaneous Verification parameters

nation Biddersa ergy Auction Auction q = 0.999
M Size k N α Lower Boundb Upper Boundc p v sb
11 4 681 0.50 13.241 13.238 0.992 0.817 0.979
11 4 425 0.75 14.359 14.356 0.988 0.727 0.967
11 4 303 1.00 15.476 15.475 0.985 0.637 0.955
11 4 233 1.25 16.603 16.594 0.982 0.549 0.944
11 4 190 1.50 17.722 17.712 0.972 0.500 0.932
11 4 132 2.00 19.963 19.950 0.976 0.282 0.907
11 4 80 3.00 24.444 24.424 0.960 0.001 0.855
11 4 65 4.00 29.027 28.899 0.918 0.001 0.828
11 4 58 5.00 33.610 33.373 0.890 0.001 0.810
11 4 54 6.00 38.479 37.848 0.874 0.001 0.799
11 4 50 7.00 42.492 42.323 0.854 0.001 0.785
11 4 48 8.00 47.491 46.797 0.847 0.001 0.778

a This is purely an existence proof, the number of bidders n is therefore an upper bound. b The
combinatorial auction lower bound is rounded down. c The simultaneous auction upper bound
is rounded up.

Our analysis clearly indicates that the exposure problem is a real problem in the simul-
taneous auction, while the threshold problem for the combinatorial auction does not affect
bidder’s strategies as much. Furthermore, we derive the first theoretical support for the com-
mon belief, that combinatorial auctions yield higher expected revenues than simultaneous
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auctions.
Our analysis is in itself interesting as a contribution to auction theory. It should also serve

as a theoretical motivation for employing combinatorial auctions in real life more frequently.
We leave as an open problem to further tighten the upper and lower bounds presented here,
and to provide even more detailed understanding of the fundamental relation between the
expected revenues of simultaneous and combinatorial auctions.
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