
Ways of Thinking and Practising in

Introductory Programming

Anna Eckerdal

Division of Scienti�c Computing,

Department of Information Technology,

Uppsala University, Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Abstract

In computer programming education it is generally acknowledged that
students learn practical skills and concepts largely by practising. In ad-
dition it is widely reported that many students face great di�culties in
their learning, despite great e�orts during many decades to improve pro-
gramming education.

The paper investigates and discusses the relation between novice com-
puter programming students' conceptual and practical learning. To this
end the present research uses Ways of Thinking and Practising, WTP as
a theoretical framework. In the present research Thinking is discussed in
terms of students' learning of concepts, while Practising is discussed as
common novice students' programming activities.

Based on two empirical studies it is argued that there exists a mu-
tual and complex dependency between conceptual learning and practise
in students' learning process. It is hard to learn one without the other,
and either of them can become an obstacle that hinders further learn-
ing. Empirical �ndings point to the need to research the relationship
between conceptual understanding and practise to better understand stu-
dents' learning process.

The paper demonstrates a way to research how students' learning of
practise and concepts are related. Results from a phenomenographic anal-
ysis on novice programming students' understanding of some central con-
cepts are combined with an analysis based on elements from variation
theory of the students' programming activities. It is shown that di�er-
ent levels of pro�ciency in programming activities as well as qualitatively
di�erent levels of conceptual understandings are related to dimensions of
variation. The dimensions of variation serve as interfaces between the ac-
tivities and conceptual understandings. If a dimension is discerned, this
can facilitate coming to richer conceptual understandings and learning
additional activities.

1



1 Introduction

As a teacher, both at upper secondary school and at university level, I have
noticed how students learn through their thinking and re�ection paired with
practical work in the lab. In my teaching practise, it occurred to me that
neither �learning by doing� nor �learning by thinking� seemed solely to fully
cover the complex process of learning to program.

In this paper I investigate how learning of concepts1 and learning of practise
are related in novice programming students' learning. Practise is discussed in
this paper with a focus on learning to do practise, while learning through prac-
tise is discussed merely as a background. The investigation is based on data
from two empirical studies. Inspired by some salient �ndings in the data, the
research question posed is:

How are conceptual learning and practise related in programming students'
learning process?

As a theoretical framework I use Ways of Thinking and Practising, WTP,
as introduced in the ETL project2 (Entwistle, 2003) and further developed by
McCune and Hounsell (2005). WTP highlights the fact that competence in
a subject area involves the ability to master certain subject-speci�c ways of
Thinking and Practising. WTP draws the attention to necessary understanding
and skills in the area. These two aspects are very apparent in the subject area
of computer programming, where good conceptual understanding and practical
skillfulness are interwoven parts of the learning goals.

I have used a phenomenographic approach (Marton and Booth, 1997) to
study students' understanding of fundamental concepts in introductory pro-
gramming (see Section 5.1 for details). The phenomenographic analysis reveals
qualitatively di�erent categories of ways in which the students understand those
concepts.

In a subsequent analysis of the practise I have used elements from variation
theory (Marton and Tsui, 2004) to study students' learning of common lab
activities (see Section 5.2 for details).

The two analyses made it possible to relate qualitatively di�erent concep-
tual understanding to typical practical activities involved in novice computer
programming. My analysis shows that activities at di�erent levels of pro�-
ciency relate to di�erent categories of understanding of the concepts through
dimensions of variation, which serve like interfaces between di�erent concep-
tual understandings and practises in students' learning.

An analytical model is proposed, where the concept dimensions of variation
is used not only in relation to qualitatively di�erent conceptual understandings,
but also in relation to di�erent levels of practical pro�ciencies. In this way the

1I will refer to learning of concepts as conceptual learning and understanding of concepts
as conceptual understanding in the rest of the paper.

2Information about the ETL project, Enhancing Teaching-Learning Environments in Un-
dergraduate Courses, is found at http://www.etl.tla.ed.ac.uk/ (Retrieved 2008-12-27)

2



traditional use of phenomenography and variation theory is extended to include
not only conceptual understandings, but also the practise, and speci�cally, how
these relate in the learning process. The present empirically based research con-
tributes to a better understanding of the complex relation between conceptual
understandings and activities in introductory programming students' learning.

The outline of the paper is as follows: the background of the research is
presented in Section 2. This includes a discussion on what WTP means in the
programming discipline, a description of the empirical studies, and related work.
Section 3 presents the research approaches used in the present research, while
the empirical data underpinning the research are discussed in Section 4. Section
5 proposes an analytical model that sheds light on the complex relation between
learning of practise and learning of concepts. Section 6 presents conclusions and
future work.

2 Background

The goal of the present study is to explore the roles of and relation between
Thinking and Practising in novice programming students' learning process. To
this end some salient �ndings from two empirical studies are highlighted by
means of the conceptual framework WTP. This section �rst discusses WTP as
it may apply to the programming discipline, then the empirical studies that the
research builds upon, and �nally research related to the present work.

2.1 Ways of Thinking and Practising in the programming

discipline

What does WTP mean and involve when applied to the programming discipline?
WTP is a very wide framework. It has been described by McCune and Hounsell
in the following way:

the richness, depth and breadth of what students might learn through
engagement with a given subject area in a speci�c context. This might
include, for example, coming to terms with particular understandings,
forms of discourse, values or ways of acting which are regarded as central
to graduate-level mastery of a discipline or subject area. [...] WTP can
potentially encompass anything that students learn which helps them to
develop a sense of what it might mean to be part of a particular disci-
plinary community (McCune and Hounsell, 2005, p. 257)

McCune and Hounsell's discussion implies that the WTP framework involves
a whole subject-speci�c culture. The present research does not aim to fully
cover WTP in all programming communities. Some aspects will be discussed,
and these aspects will later be related to some aspects of WTP found in the
empirical data.

3



The role of Thinking in the programming discipline

McCune and Hounsell (2005) discuss Thinking in the WTP framework in terms
of students' learning experiences �through engagement with a given subject area
in a speci�c context� which might include for example �coming to terms with
particular understandings, forms of discourse, values� (McCune and Hounsell,
2005, p. 257). Conceptual understanding is one aspect of �coming to terms
with particular understandings� and will be the focus of the present discussion
of Thinking in computer programming.

Some of the central concepts within the programming discipline are com-
monly introduced early in programming education and many novice students
�nd them di�cult to learn (Eckerdal, 2006).

Thinking, as it is discussed above, appears in all phases of software de-
velopment for example problem analysis, software design, implementation and
testing. This presupposes good understanding of underlying concepts. In object-
oriented programming, analysis and design involve for example identifying ob-
jects in the problem domain, while implementation means coding the design in
a programming language to express the underlying concepts, and testing among
other things involves checking the software with reference to these concepts.
Thinking in this context thus means the way to think of and understand con-
cepts that enables analysis, design, implementation and tests.

The role of Practising in the programming discipline

The practical side of programming becomes apparent when software develop-
ment is discussed. Software development is a kind of problem solving process,
traditionally divided into several phases: problem analysis, software design, im-
plementation and testing. Programmers often work iteratively among these
phases, going back and forth as the work advances. All phases have both prac-
tical and theoretical aspects, and some of the practical aspects will be discussed
here.

The problem analysis and design phases depend on the character of the
problem, and the context where the program will be used. The practise in-
volved in analysis and design requires skills in such diverse areas as program-
ming paradigms and languages, systematic approaches to analysis and design,
knowledge of design languages like UML3 with speci�c software to produce such
design, and hardware knowledge etc.

The implementation and testing phases of software development require for
example practical experience in use of several programming languages with ap-
propriate IDEs4. The ability to read, write and test code, and knowledge about
e�ective problem solving strategies, are other fundamental aspects of practise
important for a programmer to master.

3UML, Uni�ed Modeling Language �is a standardized speci�cation language for object
modeling. UML is a general-purpose modeling language that includes a graphical notation
used to create an abstract model of a system, referred to as a UML model.� Retrieved 2007-
10-08 from http://en.wikipedia.org.

4IDE, Integrated Development Environment, are software tools used for programming de-
velopment, often integrating for example editor, compiler, and debugger.

4



In this paper I will focus on certain aspects of Practising relevant for novice
students.

Thinking and Practising as ways to abstract a problem

What is then the core of WTP from a computer science perspective? Or more
precisely, how does a computer scientist approach a programming problem?
A computer scientist thinks in terms of abstractions (Kramer, 2007). These
abstractions are often of two kinds. Data structures are abstract models of
something, maybe in reality, or concrete in the sense that they concern basic,
e�cient ways to store data in computer memory. Abstraction is also required in
algorithms expressed for example through control structures. When a computer
scientist approaches a problem, he or she must distinguish between on the one
hand data and data structures, and on the other hand how these can be used in
algorithms with the help of control structures. In this way problem solving is to
formulate algorithm-resembling systematic procedures, where a problem is ab-
stracted into a computer-oriented solution. Abstraction is carried out through
Thinking, as described above, and the results of the process of abstraction are
concretised through Practise. Without Practise, software development will re-
main castle in the air, and without basic conceptual understanding, e�cient
programming solutions are hardly possible to accomplish. Practise and Think-
ing are thus interrelated and inevitably interwoven in the process of abstracting
and implementing a solution to a programming problem.

2.2 The studies

In order to study the role of Practise and Thinking in novice computer program-
ming learning, two empirical studies have been carried out. In the following,
they will be referred to as Study 1 and Study 2, respectively.

The majority of the students who take an introductory programming course
at Uppsala University are not computer science majors. Thus, in Study 1 four-
teen �rst year students from a study program in Aquatic and Environmental
Engineering were interviewed. The main focus of Study 1 was on students' un-
derstanding of central concepts. The interviews were transcribed verbatim and
translated to English where necessary. The interviews were analysed mainly
with a phenomenographic research approach (Marton and Booth, 1997). Re-
sults of analyses performed on data from this study are reported by Eckerdal
and Thuné (2005), Eckerdal and Berglund (2005), Eckerdal (2006), and Thuné
and Eckerdal (2009).

Study 2 was multi-national and multi-institutional. It aimed to investi-
gate threshold concepts (Meyer and Land, 2005) in computer science. Seven
researchers from universities in Sweden, the UK and the USA performed semi-
structured interviews with a total of 16 graduating computer science students.
The interviews were transcribed verbatim, and were translated to English where
necessary. These interviews have been analysed from three di�erent angles. The
�rst analysis aimed to identify threshold concepts in the discipline. The second
looked at the parts of the interviews where the students discussed strategies to

5



get unstuck. The last analysis took a theoretical standpoint. The investiga-
tion aimed to analyse what liminal space (Meyer and Land, 2005) means and
involves in computer science, and thus searched for evidence of several char-
acteristic aspects of such learning experience. Results from these analyses are
reported in Boustedt et al. (2007), McCartney (2007), and Eckerdal (2007).

Although both Study 1 and Study 2 where constructed to focus on students'
learning and understanding of concepts, the students in both studies talked
much about the role of practise in their learning. This is re�ected in the pub-
lications where McCartney et al. (2007) discuss practise in terms of students'
strategies to get unstuck, and where Eckerdal et al. (2007) discuss di�erent
theoretical and practical parts of students' learning process.

2.3 Related work

In the computer science community it is generally acknowledged that learning
to program requires learning concepts as well as practise. In order to better
understand the complex relationship between the two, related work from several
related areas has been investigated.

The relation between and nature of Thinking (concepts) and Practising in
learning has long been debated and researched by philosophers and others, es-
pecially educationalists, interested in learning and learning goals. See Molan-
der (1996, and references therein) for an overview from the area of philosophy.
Since my research interest is in computer science education, this section will look
at related work from educational research concerning conceptual and practical
learning. Section 2.3.1 thus focuses on research on conceptual learning, Section
2.3.2 discusses research on the role of practise in learning, while Section 2.3.3
reports research that relates students' learning of concepts and practise.

2.3.1 Learning the concepts

Higher education and educational research have long had an emphasis on con-
cepts and conceptual learning, and consequently there exists a huge body of
research in this area. In the following I will discuss research on conceptual learn-
ing with a focus on phenomenography, which is my main research approach, and
some research from the conceptual change research tradition.

Phenomenography

There are a number of phenomenographic studies reported in computer science
where the focus is on students' understanding of concepts. In 1992 Shirley
Booth published her in�uential thesis �Learning to Program. A phenomeno-
graphic perspective� where the main research question was �What does it mean
and what does it take to learn to program?�. Examples of other phenomeno-
graphic work related to programming education are Berglund (2005), where the
author discusses senior computer science students' learning of computer systems
in a distributed project course. Eckerdal (2006) studied novice programming
students' understanding of some central object-oriented concepts, and their use

6



of resources, while Boustedt (2007) studied senior computer science students
working with a large software system, and how the students in this situation
understand some advanced object-oriented concepts. Examples of studies that
take the computer science teachers' perspective are Carbone et al. (2007), where
teachers' understanding of successful and unsuccessful teaching is investigated,
and Pears et al. (2007) where the focus is on teachers' experiences of students
in trouble and the course content that troubles them.

Conceptual change

Molander et al. (2001) discuss that �a central problem has been to account for
the conditions underlying the process of conceptual change� (p. 115). According
to the authors, this change has �been regarded as an almost unquestioned goal
for instruction.� (p. 115) Molander et al. refer to Posner et al. (1982) , which
they call an �in�uential article�. Posner et al. discuss a theory of conceptual
change:

Learning is concerned with ideas, their structure and the evidence for
them. [...] We believe it follows that learning, like inquiry, is best viewed
as a process of conceptual change. The basic question concerns how stu-
dents' conceptions change under the impact of new ideas and new evi-
dence. (Posner et al., 1982, p. 212).

Davies and Mangan (2007) discuss conceptual change in economic education
in relation to threshold concepts (Meyer and Land, 2005) and WTP: �[threshold
concepts] might best be seen as a web of concepts which link thinking and
practise in a discipline.�

A recent discussion on conceptual change as it applies to learning and in-
struction is found in Vosniadou (2007), wherein Entwistle (2007) presents a
broad review of research that relates to and has contributed to the conceptual
change movement.

2.3.2 Learning the practise

Practise is generally accepted as the most important means to reach the learning
goals in computer science education, and good practical skills are seen as the
most important learning goal beside good conceptual knowledge.

Examples from computer science education research on the role of practise
are studies of students' use of technology based resources like the computer, com-
pilers, editors, and di�erent kinds of software tools. There exists a considerable
body of research on such resources in programming education (Valentine, 2004).
This research includes discussions on choice of programming paradigm and lan-
guage, the development of software tools, how students understand them, for
example how students understand compiler messages and debugging, and how
students use them. For an overview of this line of research, see Eckerdal (2006).

Gross and Powers (2005) discuss novice programmers' learning di�culties
saying that teachers �have developed a myriad of tools to help novices learn to
program. Unfortunately, too little is known about the educational impact of
these environments.�

7



Students' ability to write, read and trace code is researched in some multi-
national, multi-institutional studies: McCracken et al. (2001), Lister et al.
(2004), and Lister et al. (2006). Students' ability to design is reported in a
multi-national, multi-institutional study by Eckerdal et al. (2006). These pa-
pers all point to large de�ciencies in students' practical skills.

2.3.3 Relating Thinking and Practising

There is little research on the relation between conceptual learning and prac-
tise within the subject area of computer science. In the area that Robins et
al. (2003) call �psychological/educational study of programming�, the complex
relationship between conceptual learning and practise has however been recog-
nized by du Boulay (1988) who discusses domains that programming students
must learn to master. These include the syntax and semantics of a programming
language and di�erent programming skills. du Boulay writes:

None of theses issues are entirely separable from each others, and much
of the 'shock' [...] of the �rst few encounters between the learner and the
system are compounded by the student's attempt to deal with all these
di�erent kinds of di�culty at once. (du Bolay, 1988, p. 284).

Rogalski and Samurçay (1990) write:

Acquiring and developing knowledge about programming is a highly com-
plex process. [...] Even at the level of computer literacy, it requires
construction of conceptual knowledge, and the structuring of basic opera-
tions (such as loops, conditional statements, etc.) into schemas and plans.
(Rogalski and Samurçay, 1990, p. 170)

In addition to the above mentioned research from computer science, I have
looked at educational research in science, mathematics, and technology where
practical exercises and lab work play signi�cant roles in the education, and
where the role of practise, and the relation between practise and concepts, have
been researched and debated. I will speci�cally discuss research from the con-
ceptual/procedural knowledge research tradition and research on students' prac-
tical and conceptual learning in science lab since they seem close to what I study.

Conceptual versus procedural knowledge

In mathematics education research that has been inspired by cognitive psychol-
ogy, there exists a considerable body of research where knowledge is largely
divided into two types, conceptual and procedural, which have similarities with
the distinction between Thinking and Practising made in the present research.
This duality goes back to work by Hiebert and Lefevre (1986), but has been
expanded over the years.

Baroody, Fail and Johnson (2007) give a brief overview of the work. They
describe, with reference to Star (2005), the two knowledge types, where �each
type of knowledge - procedural and conceptual - can either have a super�cial or
deep quality.� (p. 115)

8



he proposed de�ning conceptual knowledge as �knowledge of concepts or
principles� � as knowledge that involves relations or connections (but not
necessarily rich ones). He de�ned procedural knowledge as �knowledge of
procedures� and deep procedural knowledge as involving �comprehension,
�exibility, and critical judgment and [as] distinct from (but possibly re-
lated to) knowledge of concepts� (ibid., p 116)

Baroody et al. (2007) further write with reference to Baroody (2003):

although (relatively) super�cial procedural and conceptual knowledge may
exist (relatively) independently, (relatively) deep procedural knowledge
cannot exist without (relatively) deep conceptual knowledge or vice verse
(p. 123)

With reference to the same tradition, Hazzan (2003) discusses how the theory
of process-object duality can be used to analyse students' understanding of
computer science concepts.

Examples of research in technology education inspired by the same tradition
is McCormick (1997). He writes: �technology education, in being concerned
with both the practical and the intellectual, o�ers challenges to learning re-
searchers.� (p. 142) He claims that there is a need for researchers to �turn their
attentions to the development of strategies for teaching problem solving and
design� but �[m]ore complex still, they must show how conceptual knowledge
relates to these procedures.� (p. 155)

Practising and Thinking in the lab

Hofstein and Lunetta (2003) give a "critical review of the research on the school
science laboratory�, which follows up a similar study, (Hofstein and Lunetta,
1982). The authors discuss �the e�ectiveness and the role of laboratory work�,
that is not �as self-evident as it seemed� (p. 28). In their report from 1982
they write: �The research has failed to show simplistic relationships between
experiences in the laboratory and student learning.� (Hofstein and Lunetta,
1982, p. 212)

Séré (2002) reports on a project that intended �to address the problem of
the e�ectiveness of lab work� in biology, physics, chemistry and mathematics.
Research groups from seven European countries participated, and a number of
case-studies were carried out at the upper secondary and undergraduate levels.

Hofstein and Lunetta, as well as Séré, discuss the importance of students'
learning concepts and procedures through laboratory work, and both studies
point to reported problems with laboratory activities: students do not necessar-
ily learn concepts to the extent teachers expect and hope, and the procedures
and technical details cause problems. Both studies also point to a lack of re-
search in science education concerning the role of practise in laboratory work.
Séré claims that this is less researched than conceptual learning in lab. Séré's
report has its focus on the complex interaction between concepts and practise
in laboratory work, and emphasizes the important role of procedures. She com-
ments that this complexity �explains to a certain extent why conceptual learning

9



is not an automatic outcome of lab work.� (p. 630) Hofstein and Lunetta have
slightly di�erent focus in their work than Séré. Their focus is on the impor-
tance of conceptual learning, that might be hidden when the main emphasis is
on procedures and objects manipulated.

Séré's conclusion is that �To do� and �to learn to do� is as important as
�to understand� and �to learn� (p. 638). Hofstein and Lunetta emphasize that
teachers �need to be able to enable students to interact intellectually as well
as physically, involving hands-on investigation and minds-on re�ection� (p. 49,
italics in original).

3 Research approaches

In order to better understand the complex relation between Thinking and Prac-
tising in programming education, I have re-analysed the empirical data from
Study 1 and Study 2, using WTP as an overarching framework. In this section
I will present my research approaches to explore Thinking and Practising.

3.1 Researching students' learning of Thinking

To research the role of Thinking in programming education I have focused on
one particular aspect of Thinking, namely students' understanding of two cen-
tral concepts, object and class. To this end, I have used phenomenography
(Marton and Booth, 1997) and variation theory (Marton and Tsui, 2004). Phe-
nomenography is a qualitative research approach which focuses on analysing and
describing the variation in how people experience phenomena in the world5. A
fundamental assumption in phenomenography is that for a given phenomenon
there is a limited number of qualitatively di�erent ways in which that phe-
nomenon can be experienced in a certain situation.

Marton and Booth (1997) write about variation in peoples' capabilities for
experiencing the world:

These capabilities can, as a rule, be hierarchically ordered. Some capa-
bilities can, from a point of view adopted in each case, be seen as more
advanced, more complex, or more powerful than other capabilities. Dif-
ferences between them are educationally critical di�erences, and changes
between them we consider to be the most important kind of learning.
(Marton and Booth, 1997, p. 111)

The result of a phenomenographic analysis is an outcome space, with a lim-
ited number of categories of description which show a �hierarchical structure
of increasing complexity, inclusivity, or speci�city� (ibid. p. 126). The cate-
gories describe the qualitatively di�erent ways of experiencing the phenomenon

5A phenomenographic analysis can only reveal the researchers' interpretation of students'
expressed experiences of a phenomenon. In the following text I will use understanding as
interchangeable with experience since the present research discusses students' understandings
of concepts.

10



that the researcher has identi�ed in the data. Di�erent categories re�ect di�er-
ent combinations of features of the phenomenon which are present in the focal
awareness at a particular point in time (ibid. p. 126). Learning is understood
as to develop richer ways to see the phenomenon, as represented in the more
advanced categories of the phenomenographic outcome space.

Variation and discernment are the key words in this process. According to
variation theory, which originates from phenomenography, a necessary but not
su�cient condition for discerning a speci�c feature of a phenomenon is that
the student gets the opportunity to experience variation in a dimension corre-
sponding to that feature. In Thuné and Eckerdal (2009) we explain dimensions
of variation in the following way:

For example, if 'size' and 'colour' are the features of a phenomenon 'picture
component', then there is a 'size' dimension and a 'colour' dimension of the
corresponding feature space. A particular instance of 'picture component'
can be represented by its values in those dimensions, i.e. by its particular
size and colour.

There is a possible dimension of variation for each feature of a phenomenon
that can take di�erent values. These values thus constitute a dimension, corre-
sponding to the feature. In a learning context, some of these features and their
relations are more critical to discern than others. A phenomenographic analysis
can identify educationally critical features of the phenomenon studied.

According to variation theory, learning means developing richer ways of see-
ing a phenomenon, by becoming aware of additional features of it and of rela-
tions between the features. This, in turn, requires discerning the dimensions of
variation corresponding to these additional features.

3.2 Researching elements of Practise in introductory

programming courses

Practise is a wide term that can be used with many di�erent meanings depend-
ing on the context. The focus of the present research is learning to do practise
rather than learning through practise.

The students in Study 2 made a clear distinction between practical and
non-practical learning goals, see Section 4.2. They discussed learning of pro-
gramming concepts in terms of achieving abstract (or theoretical) understanding,
concrete understandings (the ability to practise programming without necessar-
ily understanding the underlying theories and concepts), the ability to go from
an understanding of the abstract concept to software design or concrete imple-
mentation, an understanding of the rationale for learning and using the concept,
and an understanding of how to apply the concept to new problems. I discuss
practise in terms of the concrete understanding, the ability to go from an under-
standing of the abstract concept to software design or concrete implementation,
and to be able to apply concepts to new problems.

I will further distinguish between exercises, skills, and activities. Exercises
are here discussed in terms of practises where the students follow more or less

11



detailed instructions prepared by the teacher. Exercises are less discussed than
the other two, since they represent learning through practise.

Skills are practical knowledge students are supposed to acquire during their
education. Typical programming skills novice students are expected to learn
are to read, to write, and to debug simple computer program code. Each skill
is manifested in many di�erent activities that the students are supposed to
learn, and these activities demand di�erent levels of pro�ciency to be prop-
erly performed. Skillfulness in programming requires long experience and good
theoretical understanding.

For the investigation of Practising in the present study, I have analysed three
skills that are often introduced early in the education: to read, to write, and to
test and debug code. These skills constitute cornerstones in the implementing
and testing phase of software development, see Section 2.1.

The analysis of the practise aims at producing detailed lists of activities that
re�ect the three skills with the focus on novice students. At the same time this
analysis reveals the wide distribution of levels of pro�ciency inherent in each
skill.

The list of activities have been identi�ed in the data, but complemented
with activities typically found in text books, explicitly expressed or tacitly pre-
supposed. The reason to look for typical novice activities outside the data is
twofold. First, neither of the two studies had an emphasis on learning activi-
ties, which limit the discussion on activities found in the data. Second, many
activities in programming are tacit and implicit, a kind of taken-for-granted
knowledge that is seldom explicitly expressed. The activities can however be
identi�ed by for example close examination of examples and �gures in text books
presenting object-oriented programming for novices.

4 Empirical �ndings

Before I present the results of the phenomenographic analysis and the analy-
sis on novice programming activities, respectively, some empirical �ndings are
presented to the reader. The following quotes from interviews with students
are organised around two identi�ed themes that were salient in the data. Each
theme is discussed from a few di�erent aspects that emerged from the data and
illuminate the themes.

The �rst theme, salient in both studies but primarily in Study 1, is that prac-
tise plays an important but problematic role in programming students' learning.
The data gives evidence that learning of the practise is as important to research
as learning of the concepts. This is discussed in Section 4.1.

The second theme is the complex relation between practise and conceptual
learning in the students' learning process, which was speci�cally apparent in
Study 2. This is discussed in Section 4.2.

In this way this section provides empirical evidence that students' learning of
concepts and practise need to be researched simultaneously. Consequently the
subsequent Section 5 demonstrates a way to research this relation by combining

12



the phenomenographic results and the results of the analysis of common novice
students' activities.

The students from Study 1 will in the following section be referred to as
Student A, Student B, Student C (A, B, C) etc, with no reference to their real
names, while the students in Study 2 will be referred to as Student 1, Student 2,
Student 3 (S1, S2, S3) etc.

4.1 The important but problematic role of Practise in pro-

gramming education

Three aspects of this theme will be discussed. First we establish that practise
is not merely a tool to reach the conceptual learning goals, but is part of the
learning goals. Second, practise, in terms of exercises, is the generally accepted,
and often presupposed, main road to learning programming in computer science
education. Third, data from Study 1 and Study 2 indicate that students do not
learn through the exercises to the extent they are expected to. This applies
both to the conceptual and the practical learning.

First aspect: Practise as part of the learning goals

There is agreement in industry and among educators that profound practical
knowledge is a central goal in programming education, and that this often re-
quires many years of hands-on training. The novice students in Study 1 and the
senior students in Study 2 are well aware of the important role of the practise.

The students in Study 1 were asked about what learning to program means.
All students expressed that learning to program is experienced as learning to
understand some programming language, and using it for writing code. This
emphasises the practical use of a programming language. In addition, Student
D emphasises the ability to read, trace and debug code:

D:[...] to see a program and see that, okay, this will happen and this is
what the computer will do, this will be performed. And then also to see
what's wrong in the language, to discover errors when you program and
to see that this will not work because this can't be written like that.

Second aspect: Practise as means to reach the learning goals

Practise as a way to learn is emphasised by students in both studies. Student 7
in Study 2 emphasises the importance of learning step-by-step procedures, or
�templates� for doing things. This �de-mysti�es� the concept and helps the
student to reach a better understanding. The student discusses pointers which
is generally regarded as a hard concept to learn, even a threshold concept:

S7: [...] when I got the idea of this format, this template for creating
nodes and node datas and how they can go together and kind of a step
by step then it de-mysti�es it actually. I can see if I missed a step. �Oh,
dummy, you forgot to hook these two together,� and maybe that's what
in a lot of programming with practise you mentally get these steps in your
mind.

13



Third aspect: Problems with the practise hinder further learning

The third aspect, salient in the data from both Study 1 and Study 2, highlights
the problematic role of practise in students' learning. If the students have
problems with learning through practise, conceptual learning as well as learning
to do practise might be hindered. A few examples of this are shown below.

Student D in Study 1 answers the question what has been di�cult in the
course. In the quote below he or she expresses problems in learning concepts
as well as in mastering the practise, �to understand [...] how one should use
di�erent things in a program� and �how to study, when you implement the
programs�. The student seems to look for the meaning of the practise, which
seems to be a major road block in the learning process:

D: Yes, I think it has been di�cult with concepts and stu�, as to un-
derstand how to use di�erent, how one should use di�erent things in a
program. And I actually think that most of it has been di�cult [...] But
I still think the course, it's di�cult for a novice to sort of get a grip of
how to study, when you implement the programs and like that.

Student D further discusses the contrast between learning mathematics and
learning computer programming:

D: I've taken many math courses but math is kind of logical and you
understand it but this is... no I don't know. [...] Here you feel as if you
only learn a lot of examples. You know, we've gotten so many examples
of everything, in some way it feels as if you don't understand the basis
from the beginning [...]

The examples student D talks about are provided by the teacher and intend
to show some of the basic practises that are needed in programming: how to
structure a program, how some data structures are implemented and used in
algorithms through control structures etc. Still the student has not discerned
the practise su�ciently to know �how to study�, as he or she puts it in the quote
above.

There was evidence also in Study 2 that the practise can be a major obstacle
in learning to program. Student 7 in Study 2 emphasises that it is the practise
that is the problem in the learning:

S7: There's just some aspects to it that just seem to remain kind of
mysterious to me at the programming level. Not the concept level, not
the theory level, not the technology level but at the kind of code nuts and
bolts level.

Practise is, according to many students, the main road or doorway into
further learning in programming. But learning through programming exercises,
implies an enormous theoretical, practical and technological challenge for many
novice students. In fact, the �rst threshold novice students often encounter
involves a variety of di�erent sorts of practise, and without knowledge of how
to master the practise, there might be no way into further learning, neither

14



conceptual nor practical. Practise is not merely the unproblematic road to the
more advanced conceptual understanding.

4.2 The complex relation between Thinking and Practis-

ing in programming students' learning

Practise plays an important and often inevitable role in conceptual learning.
This section discusses the second theme found in the data which deals with the
complex relation between practise and conceptual learning in students' learning
to program. Three aspects of the theme are discussed. The �rst aspect points
to the close relation between concepts and practise in the learning which makes
the novices discuss learning to program as learning a new way of thinking. The
second aspect highlights the senior students' descriptions where distinct �parts�
of the learning process have been identi�ed. The third aspect shows that there
is not one linear route through the learning process. There are rather individual
routes, where di�erent students get stuck at di�erent places.

First aspect: The magic �Programming Thinking�

In both studies there was evidence that novice students found learning to pro-
gram hard. Some students even experienced programming as �magic�, or even
frightening, in the beginning of their learning.

Strikingly many novice students in Study 1 discussed learning to program in
terms of learning a special way of thinking. Inspired by the data, we introduced
the term programming thinking to describe this phenomenon, di�erent from,
and for many novice students with troubling little coherence with, thinking in
other subjects with which they had previous experience (Eckerdal and Berglund,
2005).

A quote from Student D in Study 1, which was cited in Section 4.1, is
relevant also in this context. The student talks about his or her problem to
learn to program:

D: Yes, I think it has been di�cult with concepts and stu�, as to un-
derstand how to use di�erent, how one should use di�erent things in a
program. And I actually think that most of it has been di�cult, but this
very thought behind, it feels as some people just understand programming

Student A expresses this when answering the question what is most impor-
tant in the course:

A: It's more the thinking itself, the logical thinking. Everything you need
to know you must think of when it comes to programming. [...] you've
kind of got a small insight into what it's like to program and how the
computer works like that, or the software.

Student D connects the problems associated with this way of thinking with
conceptual learning as well as the practise �how one should use di�erent things
in a program�. Student A moreover points to the problem of understanding the
hardware, the computer itself, �how the computer works�.

15



The novice students' descriptions of �programming thinking� illustrate how
learning to program involves both conceptual learning and practise. Further-
more they show how closely related, and how dependent on each other the two
aspects are. The rest of this section will focus on the senior students in Study 2.

Second aspect: Parts of the conceptual and practical learning space

As the novices, the senior students discussed the complex relation between con-
cepts and practise when learning to program, but unlike the novices the senior
students could articulate such experiences in detail. For many novice students,
the learning experience was �magic� and fragmented, while many senior students
explicitly described crucial �parts� of the learning process.

Eckerdal et al. (2007) analysed the data from Study 2 in order to identify
speci�c characteristics for computer science students who are in the midst of
learning a threshold concept (Meyer and Land, 2005). The analysis was inspired
by Meyer and Land's description of the liminal space which is a space in which
someone is transformed, acquires new knowledge, and acquires a new status and
identity within a community. We found that the students discussed the learning
process of threshold concepts in terms of acquiring di�erent distinct parts of a
full understanding. The di�erent partial understandings found are:

� abstract (or theoretical) understanding

� concrete understanding (the ability to practise programming without nec-
essarily understanding the underlying concepts)

� the ability to go from an understanding of the abstract concept to software
design or concrete implementation

� an understanding of the rationale for learning and using the concept

� and an understanding of how to apply the concept to new problems.

The senior students clearly pointed to theoretical as well as practical learning
goals.

A few quotes from the students will illustrate some of the understandings
expressed above.

Student 8 expresses the third understanding, the need of both an abstract
understanding of a concept and the ability to relate it to implementation, which
requires practise:

S8: [...]the abstract understanding is something you learn by education,
by reading, you can learn that in class, but the understanding of actually
applying it to programs you can't, you must, you must learn it by, by, by
using it

The last understanding in the list above, �an understanding of how to apply
the concept to new problems�, mirrors that students distinguish relating ab-
stract concepts to implementation of routine problems, and applying concepts
to new problems. The latter is experienced as speci�cally problematic for some
students. This is expressed by Student 2:

16



S2: You understand how a theory works but how do you take that theory
and how it works and apply it to a practical sense? I think that is one of
the hardest leaps to make.

Third aspect: Individual routes in a practical and theoretical learning

space

In the analysis of students in the liminal space (Eckerdal et al., 2007) we found
that the di�erent �parts� of the learning process were discussed by the students
as inseparable facets of one and the same learning experience. Di�erent students
struggled with di�erent parts, depending on, for example, background knowl-
edge. Some students expressed that they �rst learned the theory behind the
concepts, and then how to use them, while other students expressed the oppo-
site. Some discussed that the major problem was to understand the rationale
behind some concepts, while other students did not mention that aspect at all.
The observed di�erences in the students' learning processes need however to be
further researched before we can draw any deeper inferences from them.

The data clearly indicated that there is no common route for the students
through the learning space. Rather a complex pattern of individual learning
routes appeared. Still, both concepts and practise seem important, and both
can cause problem in the learning process.

This section has discussed some salient themes in the empirical data: practise
and concepts are both parts of the learning goals and dependent of each other
in the learning process. They mutually support each other in the learning, but
at the same time either of them can become an obstacle for further learning.
They are complexly interwoven in the learning process, and play di�erent roles
depending on the individual. For some novice students this was experienced as
an alien and magic �programming thinking� which was di�cult to grasp. The
senior students could articulate a complex learning space where both concepts
and practise played important roles. In the following section, the data is re-
analysed to get a better understanding of how Thinking and Practising relate
in students' learning of computer programming.

5 Ways of Thinking and Practising - an analytic

model

I will now continue with an in-depth analysis of WTPs from the novice pro-
gramming students' perspective using data mainly from Study 1. The aim is
to analyse how Thinking, here discussed as students' understanding of con-
cepts, and Practising, here discussed as common novice students' programming
activities, are related. First however, Thinking and Practising are discussed
separately. Based on these two discussions, I will then demonstrate how varia-
tion theory can be used to analyse and display the relation between Thinking
and Practising in programming students' learning process.

17



5.1 Thinking manifested in students' understanding of

concepts

To investigate Thinking in the form of conceptual understanding, we made
a phenomenographic analysis of novice students' understanding of the central
concepts object and class, based on data from Study 1. The two concepts object
and class are closely related, and the analysis resulted in one phenomenographic
outcome space, see Table 1. The categories in the outcome space are descriptions
of the qualitatively di�erent ways in which the concepts object and class are seen
by the group of interviewees on a collective level. These categories are inclusive
which means that the understandings described in the latter categories include
the understandings described in the former. The latter categories thus re�ect
richer ways to understand the concepts.

Having formulated the phenomenographic outcome space summarised in Ta-
ble 1, we made a subsequent analysis to identify dimensions of variation related
to the two concepts considered here. As discussed in Section 3.1, possible val-
ues of a certain feature of a phenomenon constitute a dimension of variation for
this phenomenon. In order to identify dimensions of variation we consequently
re-examined the categories of description in Table 1, to �nd what features of the
two concepts that are in focus in the di�erent understandings expressed. For a
more comprehensive presentation of the phenomenographic analysis where the
dimensions of variation are identi�ed, see Eckerdal and Thuné (2005).

Below I discuss and label the di�erent dimensions of variation identi�ed.

Object is experienced as a piece of program text, and class as an entity of
the program that structures the code and describes the object.

Object and class are experienced as expressed in the previous category. In
addition, class is experienced as a description of properties and behavior of
objects, and object as something that is active when the program is executed.

Object and class are experienced as expressed in the previous category. In
addition, class is experienced as a description of properties and behavior of
objects, where the object is a model of some real world phenomenon.

Table 1: A phenomenographic outcome space on novice students' understanding of
the concepts object and class. For details, see Eckerdal and Thuné (2005) and Eckerdal
(2006).

In the �rst category of description in Table 1, the feature in focus is the tex-
tual representation of the concepts. I will refer to the corresponding dimension
of variation as TEXT.

18



In the second category, the new feature added is the active behaviour when
the program is executed. I will refer to the corresponding dimension of variation
as ACTION.

The new feature described in the third category is the modeling aspects of the
concepts, and I will refer to corresponding dimension of variation as MODEL.

5.2 Practising manifested in common students' activities

This section aims at analysing the role of practise in novice programming stu-
dents' learning. The analysis of the practise is not a traditional phenomeno-
graphic analysis, but an analysis based on elements from variation theory on
common and important novice students' programming activities.

In Study 1 and Study 2 we found students discussing di�erent skills that
are important when learning to program. Examples of such skills, typical for
novice programming are to write code, read code, test code, debug code, design
software, and use advanced technical resources, for example di�erent IDEs.

In this section I will focus on a few of these skills namely to read, to write,
and to test and debug code. To test and debug code will be treated as one skill
since they are closely connected. The skills focused on in the present discussion
are often seen as the most fundamental skills in programming and essential for
novice programming students to learn.

The skills are manifested in several more or less advanced activities. Aiming
at relating the activities and students' understanding of concepts, I will �rst
list such activities that are important and frequently occurring in novice pro-
gramming courses, see Table 2. In addition to the activities mentioned by the
students in the data from Study 1 and Study 2, activities commonly found in
text books are added.

Although some activities do not cause problems for most students, they are
still included to demonstrate the breadth of new activities and tools novice
students meet and are expected to learn and use at an early stage of their
education. The detailed list is in line with suggestions from science education
research, where Séré writes: �A �rst step in research should now be to describe
what happens during lab work as exhaustively as possible.� (Séré, 2002, p. 628).
A detailed list concretises what practise means in novice students' programming.
The list above covers common novice programming activities reasonably well for
the present discussion.

Why do some students have such big problems in performing some activities?
Activities carry meaning and it is important that students discern this mean-
ing. Runesson (2006), with reference to Svensson (1984), discusses meaning in
relation to learning:

[meaning] is constituted as a relation between the object to which I direct
my awareness and me, the subject. The meaning emerges as I direct my
awareness to the object. (Runesson, 2006, p. 400)

Runesson (2006) furthermore explains the relation between meaning and
dimensions of variation:

19



Read code: to discern main parts of short programs; to read code and recognize
key words; to read code and understand what will happen when the instructions
are executed; to read and relate code to the application and the problem domain.

Write code: to use an editor to emphasis the structure of a program by means
of indents, empty lines etc.; to write common programming building blocks in a
syntactically correct way; to design a short algorithm; to express a short algorithm
in pseudo code; to implement pseudo code in a programming language; to design a
solution to a whole problem and transfer the design to pseudo code, using common
programming building blocks; to implement the solution to a problem according to
basic software quality requirements.

Test and debug code: to use a compiler to �nd and correct minor syntax errors;
to use the computer to execute code to verify expected output; to use a compiler
to get executable code; to read and understand error messages about simple syntax
errors, such as missing semicolon; to correct simple syntax errors, for example
missing semicolon; to hand execute a program on paper before coding; to diagnose
semantic errors in the code; to test code in relation to the problem domain and
usability.

Table 2: Common novice programming skills with associated activities.

the meaning we assign something is constituted as a pattern of simulta-
neously discerned dimensions of variation. (Runesson, 2006, p. 403)

In my interpretation of practise, an activity is the object towards which the
awareness is directed. To discern the meaning of a certain activity the student
thus has to simultaneously be focally aware of certain dimensions of variation
related to this activity.

To elaborate on this argument I will discuss the activities that are related
to the skill read, and leave to the reader to extrapolate the discussion to the
activities related to the other skills. The activities �to discern main parts in
short programs�, and �to read code and recognize key words� relate to the text-
representation of the code. To discern the meaning of these activities, the
students need to become aware of the TEXT dimension of variation discussed
in the previous section. On the other hand, in order to master the activity �to
read code and understand what will happen when the instructions are executed�
the students need to become aware of the ACTION dimension of variation in
addition to the TEXT dimension. Finally, the activity �to read and relate code
to the application and the problem domain� requires that the students discern
not only the TEXT and the ACTION dimensions of variation, but also the
MODEL dimension. It is necessary in this discussion to say that there might
be other dimensions of variation related to the activities mentioned that have

20



not come to the foreground in this analysis, but I claim that the students need
to discern at least these dimensions.

Activities related to the TEXT dimension of variation

discern main parts of short programs; read code and recognize key words; use an
editor to emphasize the structured of a program by means of indents, empty lines
etc.; use the computer to execute code to verify expected output; write common
programming building blocks in a syntactically correct way; use a compiler to �nd
and correct minor syntax errors; use a compiler to get executable code

Activities related to the TEXT and ACTION dimensions of variation

read code and understand what will happen when the instructions are executed;
design a short algorithm; express a short algorithm in pseudo code; implement
pseudo code in a programming language; hand execute a program on paper before
coding; diagnose semantic errors in the code

Activities related to the TEXT, ACTION, and MODEL dimensions of variation

read and relate code to the application and the problem domain; test code in rela-
tion to the problem domain and usability; design a solution to a whole problem and
transfer the design to pseudo code, using common programming building blocks;
implement code according to basic software quality requirements

Table 3: Common novice programming activities at di�erent levels of pro�ciency. The
activities can be experienced as meaningful when related dimensions of variation are
discerned.

This discussion can contribute to explain students' problems with reading
code as reported by Lister et al. (2006). They conclude that students need
to be able to for example manually trace code, which requires that the TEXT
and the ACTION dimensions have been discerned, according to the above rea-
soning. This is however not su�cient �if they are to develop as programmers.�
(ibid. p. 122). The students furthermore need to be able to �read several lines
of code and integrate them into a coherent structure - to see the forest, not just
the trees.� (ibid. p. 122). The activity described in this quote probably requires
that the MODEL dimension, as well as the ACTION and TEXT dimensions
have been discerned, and many novice students have problems reaching this
level of pro�ciency. Similar discussions can be made for all activities in Table 2.

In Table 3 the activities are re-grouped according to di�erent combinations
of dimensions of variation. Students can become aware of the meaning em-
bedded in an activity if the dimensions of variation related to the activity are
discerned. By studying Table 3 it becomes visible that activities that relate to
more dimensions of variation correspond to a higher level of pro�ciency than
the activities that relate to fewer dimensions.

21



5.3 Developing an analytical model for relating Thinking

and Practising

The discussions in Section 5.1 and Section 5.2 show that both conceptual un-
derstandings and activities are related to dimensions of variation. There are
qualitatively more advanced ways to understand the concepts that relate to
more dimensions of variation. In similar ways there are activities at higher level
of pro�ciency which relate to more dimensions of variation. Table 4 merges
Table 1 and Table 3 and illustrates that the dimensions of variation are in the
center of the analysis, relating conceptual understandings and activities to each
other.

The structure of Table 1 and Table 3 is re�ected in Table 4. The left column
includes the categories of the phenomenographic outcome space from Table 1.
The activities listed in Table 3 are found in the right column. In the middle
column are the dimensions of variation, related to the qualitatively di�erent
conceptual understandings as well as to the activities at di�erent levels of pro-
�ciency.

The relations described in Table 4 between the activities at di�erent levels
of pro�ciency and the di�erent understandings of the concepts object and class
are examples of how Practise and Thinking are related, and a di�erent example
could have been chosen to make my point. The signi�cant implication is that
both to discern a certain feature of a concept and to make an activity meaningful
require that certain dimensions of variation in the learning space is opened for
the student. It is the dimensions of variation that are at the center of this
discussion.

The empirical �ndings indicate that when students have reached a certain
level of practical pro�ciency, this can help them in their learning of new con-
cepts, and that understanding of concepts can help them to master new practise,
see Section 4.2. These empirical �ndings are in line with Table 4 where the di-
mensions of variation are at the center. The learning of concepts and activities
presupposes that related dimensions are discerned. Once a dimension of vari-
ation is discerned, this can help the students to understand related concepts
(Marton and Tsui, 2004) and to learn related activities.

Table 4 illustrates my analytical model where the dimensions of variation are
at the center of the discussion on students' learning. Figure 1 is a more abstract
and general illustration of the model. It shows that several activities as well as
several concepts can be related to a certain dimension of variation. This �nding
is explicitly shown in Table 4. Moreover, Figure 1 shows that activities as well
as concepts can be related to more than one dimension of variation.

An example of this is that we found both the TEXT and the ACTION di-
mensions in the phenomenographic analysis of the students' experiences of what
computer programming means (Thuné and Eckerdal, 2009). These dimensions
are also found in the present analysis of the same students' understanding of the
concepts object and class, and the dimensions are further related to program-
ming activities at certain level of pro�ciency. An inference of this �nding is that
the student can discern for example the ACTION dimension either through a re-

22



Understanding
class and ob-
ject as

Dimen-
sions of
variation

Typically novice students' activities that are exam-
ples of the skills read, write, and test and debug code

Object: piece TEXT - discern main parts of short programs
of program - read code and recognize key words
text. Class: - use an editor to emphasize the structure of a
entity of the program by means of indents, empty lines etc.
program that - execute code to verify expected output
structures - write common programming building blocks
code and in a syntactically correct way
describes - use a compiler: �nd and correct minor syntax errors
the object. - use a compiler to get executable code
In addition, TEXT - read code and understand what will happen
object: active and when the instructions are executed
during execu- ACTION - design a short algorithm
tion. Class: - express a short algorithm in pseudo code
describe pro- - implement pseudo code in programming language
perties and - hand execute program on paper before coding
behaviour. - diagnose semantic errors in the code
In addition, TEXT, - read and relate code to the application and the
object: ACTION problem domain
model real and - test code in relation to the problem domain and
world phe- MODEL usability
nomenon. - design a solution to a whole problem and
Class: des- transfer the design to pseudo code, using common
cribes pro- programming building blocks
perties and - implement code according to basic software
behaviour quality requirements

Table 4: Categories describing students' understanding of the concepts object and
class (left column), and novice students' activities at di�erent levels of pro�ciency
(right column) are related to dimensions of variation (middle column).

lated activity (for example one of those mentioned in Table 4), or when studying
the concepts object and class, or when learning what computer programming
means, or through learning other concepts or activities. Furthermore, once the
student has discerned the dimension, the discernment can help the student to
learn the other concepts and activities that are related to this dimension.

The present work has identi�ed that practise as well as concepts have re-
lated dimensions of variation. Fazey and Marton (2002) discuss dimensions of
variation related to practise. The authors summarise a number of studies on
systematic variation of practising motor skills saying:

What comes out of these examples for us is not simply that varying prac-
tise conditions can have positive, longer term e�ects for learners, but also
that there are several dimensions along which practise conditions might

23



Concept

Concept

Concept

Activity

Activity

Dimension

D

i

m

e

n

s

i

o

n

Figure 1: The �gure illustrates two dimensions of variation of a learning space. Em-
pirical �ndings indicate that the dimensions can act as interfaces between di�erent
conceptual understandings and activities. When a dimension is discerned, this can
open for learning concepts and practises in new ways.

vary. Some of these are embedded [...] in the way learners are exposed to
variations in practise. (ibid. p. 244).

The new signi�cant �nding in the present research is however that prac-
tise and conceptual understandings are related through common dimensions of
variation.

Table 4 indicates that depending on the dimensions of variation discerned by
the student, it is likely that the student can learn activities (practises) related to
only those dimensions, since it is then possible for the student to see the meaning
of the activities. In a similar way, some ways to understand the concepts are
possible for the student to discern. The higher level of practical pro�ciency and
the more advanced level of conceptual understanding, the more features, or the
more dimensions of variation and their relations, the student needs to discern.

In conclusion Figure 1 demonstrates the complex relation between Thinking
and Practising in the learning process, where individual students take di�erent
routes. Students can discern a dimension of variation when studying concepts
or working with the activities. When a dimension is discerned, this opens
the possibility for a wider conceptual understanding and for learning related
activities. This is in line with the �nding that some students express that they
have discerned the activities �rst, and then the concepts, while other students
express the opposite learning experience.

6 Conclusions and future work

The research presented in this paper demonstrates the complex relationships
and mutual dependence between novice programming students' conceptual and
practical learning. I have used Ways of Thinking and Practising, WTP, as a the-
oretical framework in the investigation of this relationship. In the present work

24



Thinking refers students' conceptual understandings, while Practising refers to
common novice students' programming activities. In this context the relation
between Thinking and Practising means how conceptual learning and learning
of programming activities depend on each other and mutually carry meaning to
each other and make learning possible or hindered.

Empirically the research builds on two interview studies with computer sci-
ence students. For the analysis of the data I have primarily used phenomeno-
graphy and variation theory.

The main �ndings are the following:

� The practise is experienced by many students as equally, or even more
troublesome to learn than the concepts. Furthermore it is shown that
students experience programming activities and conceptual understanding
as equally important. If they face problems with one of them, they are
likely to face problems with the other.

� An analytical model of students' learning is proposed that demonstrates
that activities as well as conceptual understandings relate to dimensions
of variation.

� Higher level of practical pro�ciency relate to more dimensions of variation
in a similar way as more advanced ways to understanding concepts relate
to more dimensions of variation.

� The most signi�cant �nding in the present research is that I have demon-
strated that practise and conceptual understandings have dimensions of
variation in common. This has been possible since I have showed a way
to identify dimensions of variation related to practises.

� Consequently, when a dimension of variation is opened for a student, this
creates an opportunity for the student to learn concepts and activities in
new ways.

These results can explain how students' learning sometimes seems to go from
concepts to practise, and sometimes from practise to concepts. In addition this
explains that when a certain concept or activity is learned, it can open up for
learning new concepts and activities, related to those already learned, via the
dimensions of variation.

Moreover, the results of the present research can to some extent explain why
activities, performed for example in the lab, do not necessarily lead to deepened
conceptual understanding, and why studying of concepts do not necessarily lead
to a higher level of skillfulness in programming education. If the student in the
learning situation does not discern the related dimensions of variation, there
might be no corresponding conceptual and practical learning.

Phenomenography and variation theory (Marton and Booth, 1997; Marton and
Tsui, 2004) traditionally discuss ways to identify critical features of concepts,

25



and ways to open a space of learning for students by means of patterns of
variation in the teaching. The present work contributes to the body of knowledge
of students' learning by proposing an analytical model of how dimensions of
variation relate to conceptual and practical learning. To use the model as a basis
for further empirical studies about the relation between practise and concepts
in a learning context would be an interesting line of future research.

Acknowledgment

I want to thank my supervisor Professor Michael Thuné for his support during
the research process; in rewarding discussions and for constructive ideas, and
for his patience and help during the process of writing the paper.

References

Baroody, A. (2003). The development of adaptive expertise and �exibility: The
integration of conceptual and procedural knowledge. In Baroody, A. and
Dowker, A., editors, The development of arithmetic concepts and skills:
Constructing adaptive expertise, pages 1�34. Erlbaum, Mahwah, NJ.

Baroody, A., Feil, Y., and Johnson, A. (2007). An alternative reconceptual-
ization of procedural and conceptual knowledge. Journal for Research in
Mathematics Education, 38(2):115�131.

Berglund, A. (2005). Learning computer systems in a distributed project course.
The what, why, how and where. Number 62 in Uppsala Dissertations from
the Faculty of Science and Technology. Acta Universitatis Upsaliensis,
Uppsala, Sweden.

Booth, S. A. (1992). Learning to Program. A phenomenographic perspective.
Number 89 in Göteborg Studies in Educational Science. Acta Universitatis
Gothoburgensis, Göteborg, Sweden.

Boustedt, J. (2007). Students Working with a Large Software System: Experi-
ences and Understandings. Licentiate thesis, Uppsala University, Uppsala,
Sweden.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcli�e, M.,
Sanders, K., and Zander, C. (2007). Threshold concepts in computer sci-
ence: do they exist and are they useful? SIGCSE Bulletin, 39(1):504�508.

Carbone, A., Mannila, L., and Fitzgerald, S. (2007). Computer science and
it teachers' conceptions of successful and unsuccessful teaching: A phe-
nomenographic study. Computer Science Education, 17(4):275�299.

Davies, P. and Mangan, J. (2007). Threshold concepts and the integration of
understanding in economics. Studies in Higher Education, 32(6):711�726.

26



du Bolay, B. (1988). Some di�culties of learning to program. In Soloway, E.
and Spohrer, J., editors, Studying the Novice programmer, pages 283�299.
Lawrence Erlbaum Associaties Inc.

Eckerdal, A. (2006). Novice Students' Learning of Object-Orientd Programming.
Licentiate thesis, Uppsala University, Uppsala, Sweden.

Eckerdal, A. and Berglund, A. (2005). What Does It Take to Learn 'Pro-
gramming Thinking'? In Proceedings of the 1st International Computing
Education Research Workshop, ICER, pages 135�143, Seattle, Washington,
USA.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcli�, M., and Zander, C.
(2006). Categorizing student software designs: Methods, results, and im-
plications. Computer Science Education, 16(3).

Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., Thomas, L., and
Zander, C. (2007). From Limen to Lumen: Computing students in liminal
spaces. In Proceedings of the 3rd International Workshop on Computing
Education Research, pages 123�132. ACM.

Eckerdal, A. and Thuné, M. (2005). Novice java programmers' conceptions of
"object" and "class", and variation theory. SIGCSE Bulletin, 37(3):89�93.

Entwistle, N. (2003). Concepts and conceptual frameworks underpinning the
ETL project. Occasional Report 3 of the Enhancing Teaching-Learning
Environments in Undergraduate Courses Project, School of Education, Uni-
versity of Edinburgh, March 2003.

Entwistle, N. (2007). Conceptions of learning and the experience of under-
standing: Thresholds, contextual in�uences, and knowledge objects. In
Vosniadou, S., Baltas, A., and Vamvakoussi, X., editors, Re-framing the
Conceptual Change Approach in Learning and Instruction, pages 123�143.
ELSEVIER.

Fazey, J. and Marton, F. (2002). Understanding the space of experiential vari-
ation. Active Learning in Higher Education, 3(3):234�250.

Gross, P. and Powers, K. (2005). Evaluating assessments of novice programming
environments. In Proceedings of the 1st International Computing Education
Research Workshop, ICER, Seattle, Washington, USA, pages 99�110.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning
of computer science. Computer Science Education, 13(2):95�122.

Hiebert, J. and Lefevre, P. (1986). Conceptual and procedural knowledge in
mathematics: An introductory analysis. In Hiebert, J., editor, Conceptual
and procedural knowledge: The case of mathematics, pages 1�27. Erlbaum,
Hillsdale, NJ.

27



Hofstein, A. and Lunetta, V. (1982). The role of the laboratory in science
teaching: Neglected aspects of research. Review of Educational Research,
52(2):201�217.

Hofstein, A. and Lunetta, V. (2003). The laboratory in science education: Foun-
dations for the twenty-�rst centry. Science Education, 88(1):28�54.

Kramer, J. (2007). Is abstraction the key to computing? Communications of
the ACM, 50(4):36�42.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J., Sanders, K., Seppälä, O., Simon, B., and
Thomas, L. (2004). A multi-national study of reading and tracing skills in
novice programmers. ACM SIGCSE Bulletin, 36(4):119�150.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B.,
Hitchner, L., Luxton-Reilly, A., Sanders, K., Schulte, C., and Whalley,
J. L. (2006). Research perspectives on the objects-early debate. In ITiCSE-
WGR '06: Working group reports on ITiCSE on Innovation and technology
in computer science education, pages 146�165, New York, NY, USA. ACM.

Marton, F. and Booth, S. (1997). Learning and Awareness. Lawrence Erlbaum
Ass., Mahwah, NJ.

Marton, F. and Tsui, A. (2004). Classroom Discourse and the Space of Learning.
Lawrence Erlbaum Ass., Mahwah, NJ.

McCartney, R., Eckerdal, A., Mostrom, J. E., Sanders, K., and Zander, C.
(2007). Successful students' strategies for getting unstuck. SIGCSE Bul-
letin, 39(3):156�160.

McCormick, R. (1997). Conceptual and procedural knowledge. International
Journal of Technology and Design Education, 7(1�2):141�159.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant,
Y.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-
national, multi-institutional study of assessment of programming skills of
�rst-year cs students. SIGCSE Bulletin, 33(4):125�180.

McCune, V. and Hounsell, D. (2005). The development of students' ways of
thinking and practising in three �nal-year biology courses. Higher Educa-
tion, 49:255�289.

Meyer, J. H. and Land, R. (2005). Threshold concepts and troublesome knowl-
edge (2): Epistemological considerations and a conceptual framework for
teaching and learning. Higher Education, 49(3):373�388.

Molander, B. (1996). Kunskap i handling. DAIDALOS.

28



Molander, B., Halldén, O., and Pedersen, S. (2001). Understanding a Phe-
nomenon in Two Domains as a Result of Contextualization. Scandinavian
Journal of Educational Research, 45(2):115�123.

Pears, A., Berglund, A., Eckerdal, A., East, P., Kinnunen, P., Malmi, L., Mc-
Cartney, R., Moström, J., Murphy, L., Ratcli�e, M., Schulte, C., Simon,
B., Stamouli, I., and Thomas, L. (2008). What's the problem? teach-
ers' experience of student learning successes and failures. Proc. 7th Baltic
Sea Conference on Computing Education Research: Koli Calling, CRPIT,
Australian Computer Society, 88.

Posner, G., Strike, K., Hewson, P., and Gertzog, W. (1982). Accommodation
of a scienti�c conception: toward a theory of conceptual change. Science
Education, 66(2):211�227.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education,
13(2):137�172.

Rogalski, J. and Samurçay, R. (1990). Acquisition of programming knowledge
and skills. In Hoc, J., Green, T., Samurçay, R., and Gillmore, D., editors,
Psychology of programming, pages 157�174. Academic Press.

Runesson, U. (2006). What is it Possible to Learn? On Variation as a Necessary
Condition for Learning. Scandinavian Journal of Educational Research,
50(4):397�410.

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Re-
search in Mathematics Education, 36:401�411.

Svensson, L. (1984). Människobilden i INOM-gruppens forskning: Den lärande
människan. [The image of man in research in the INOM-group; in Swedish].
Technical report, Göteborgs universitet, Institutionen för pedagogik, Swe-
den.

Séré, M. (2002). Towards renewed research questions from the outcomes of
the european project Labwork in Science Education. Science Education,
86(5):624�644.

Thuné, M. and Eckerdal, A. (2009). Variation Theory Applied to Students'
Conceptions of Computer Programming. European Journal of Engineering
Education, Accepted for publication.

Valentine, D. (2004). CS educational research: a meta-analysis of SIGCSE
technical symposium proceedings. SIGCSE Bulletin, 36(1):255�259.

Vosniadou, S., Baltas, A., and Vamvakoussi, X. (2007). Reframing the Concep-
tual Change Approach in Learning and Instruction (Advances in Learning
and Instruction). Elsevier.

29


