
Koli Calling 2009
8th International Conference on
Computing Education Research

Arnold Pears and Lauri Malmi

Department of Information Technology
Uppsala University
Box 337, SE-751 05 Uppsala, Sweden

Technical report 2009-004
February 2009

ISSN 1404-3203

From the Conference Chairs

This volume collects together the papers presented and discussed at the 2008
Koli Calling International Conference on Computing Education Research.

This volume is the culmination of more than a year of planning and effort on
the part of both the local organising committee and the conference chairs. How-
ever, we were not working alone. Without an active community of researchers
doing quality research and writing papers, a conference like Koli has no func-
tion or purpose. Consequently, a large part of the success of Koli Calling lies
in its vibrant research community. It is your submissions that have made it
possible for us to select this year’s crop of interesting and thought provoking
contributions.

During the preparations for the 2008 conference we embarked on a process of
clarification and innovation. The major outcomes of that process are a more well
defined submissions and review process based around the use of EasyChair. We
have also crafted new guidelines for the evaluation of the conference submission
categories; which we hope are useful to both authors and reviewers alike. We
also introduced the Tools Workshop submission category and the Tool Award
in the 2008 call for contributions. We wish to extend our sincere thanks to Ari
Korhonen who was Tools Workshop Chair for the 2008 conference. A new role,
and one that he managed with panache.

So now, without further ado, we leave you to the further perusal of the
contents of the volume, in the hope that you will find its content both elucidatory
and inspirational.

Lauri Malmi and Arnold Pears
Koli 2008 Conference Chairs

Table of Contents

From the Conference Chairs.

Conference Keynote.

Educational Research and Design of the Virtual Learning Environment
(invited talk) . 1

Erik deGraaff

Research Papers.

The Same But Different – Students’s Understandings of Primitive and
Object Variables . 5

Juha Sorva

Diagnosing Learners’s Problem Solving Strategies Using Learning
Environments with Algorithmic Problems in Secondary Education 16

Ulrich Kiesmüller

Understanding TDD in Academic Environment: Experiences from Two
Experiments . 25

Sami Kollanus, Ville Isomöttönen

Why Using Robots to Teach Computer Science can be Successful
Theoretical Reflection to Andragogy and Minimalism 32

Marja-Ilona Koski, Jaakko Kurhila, Tomi A. Pasanen

A Tablet PC Capture Platform for Explanograms . 41
Tony Clear, Jacqueline Whalley, Jonathan Hill, Yong Liu, Arnold Pears,
Beryl Plimmer

Implementing a Contextualized IT Curriculum: Ambitions and Ambiguities 51
Matti Tedre, Erkki Sutinen, Fredrick Ngumbuke, Nicholas Bangu

A Typology of CS Students’s Preconditions for Learning 62
Maria Knobelsdorf

Discussion Papers.

Understanding Computing Stereotypes with Self-Categorization Theory . . 72
Michael Hewner, Maria Knobelsdorf

Helping Students Debug Concurrent Programs . 76
Jan Lönnberg, Lauri Malmi, Anders Berglund

Minority Report - Computer Science Skills Perceived by Students in
Different Disciplines . 80

Tuukka Ahoniemi

Student-Generated Podcasts for Learning and Assessment 84
Colin Johnson

Algorithm Recognition by Static Analysis and Its Application in
Students’ Submissions Assessment . 88

Ahmad Taherkhani, Lauri Malmi, Ari Korhonen

Students’ Individual Differences in Using Program Visualizations 92
Essi Lahtinen

Tools Session.

PatternCoder: A Programming Support Tool for Learning Binary Class
Associations and Design Patterns . 96

James Paterson, John Haddow, Ka Fai Cheng

Automatic Assessment of Program Visualization Exercises 101
Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, Tapio Salakoski

JLS/JLSCircuitTester: A Comprehensive Logic Design and Simulation
Tool . 105

David Poplawski, Zachary Kurmas

PeerWise . 109
Paul Denny, John Hamer, Andrew Luxton-Reilly, Helen Purchase

Poster Presentations.

Towards Students’ Motivation and Interest - Teaching Tips for
Applying Creativity . 113

Ralf Romeike

Presentation of Automatic Conflictive Animations . 115
Andrés Moreno, Niko Myller

Is Automatic Evaluation Useful for the Maturity Programming Exam? . . . 117
Bronius Skupas, Valentina Dagiene

How a Contextualized Curriculum work in Practice 119
Joseph Longino, Mikko Vesisenaho

Educational Research and Design of the Virtual Learning
Environment

Erik de Graaff
Delft University of Technology

Netherlands

E.deGraaff@tudelft.nl

ABSTRACT
The aim of higher education is to enable students to acquire
knowledge and to exercise cognitive skills in order support them
in their preparation for a professional career. Rather than
transferring knowledge in face-to-face contact the modern teacher
has to design a stimulating learning environment. The success of
educational models, like Problem-Based-Learning and Active
Learning is often explained by the motivating effect of discussing
real-life problems in small groups of students. The technology of
virtual reality provides new possibilities to involve students in
learning activities. No longer do groups of students (and their
teacher) have to meet at a fixed time and place. Simulations and
gaming can motivate students to engage in activities that make
them learn. The biggest challenge for the teacher is to imagine
what is motivating for a present day student.

Categories and Subject Descriptors
 K.3.2 Computer and Information Science Education

General Terms
Management, Documentation, Human Factors.

Keywords
Student, Learning, Environment, Engineering Education
Research.

1.INTRODUCTION
Teaching is a profession with a long and respected history. If you
aim to prepare your children for a lifetime career, you want them
to train with the best. The traditional conception of teaching is
almost identical to the transfer of knowledge in face-to-face
contact. The teacher provides information on topics, which are
novel to the learner and explains how to apply this knowledge.
Consistent with the image of content expertise, a traditional
teacher supervises assignments to practice the relevant skills and
judges the student’s achievements.
Teaching and learning are often taken to be complementary: the
students learn what the teacher teaches. In many instances,
however, this is obviously not the case. A major complaint of

teachers all over the world is that the students are unable to
reproduce what they have been told. Learning is an activity in its
origin. The etymological roots of the word ´learning´ go back to
the activity of finding a track [10]). Similarly, the meaning of the
word “teaching” is derived from roots referring to the act of
pointing at something or pointing something out as is still clearly
evident in many European languages:
Dutch: onderwijzen
German unterwissen
Scandinavian languages unterwisen
French: ensigner
The English word teaching goes back to a Saxon root ´tecam´,
with a similar connotation. Hence, since ancient times, a teacher is
someone who transfers certain knowledge or skills to a learner by
pointing it out. The teacher explains and demonstrates, enabling
the learner to follow in his footsteps. Transfer of knowledge is
part of the job of a teacher, but it is by no means the most
essential aspect. The intensive personal contacts between teacher
and student allow for the expansion of the task of the teacher to
include the teaching of moral values and the formation of
personality. In a traditional context student’s motivation is not
much of an issue. Students are expected to attend classes for their
own good, and if they are not yet capable of appreciating their
good fortune, they are simply obliged to go. The authority, or the
capability of the teacher to maintain order in the classroom is one
of the most important traditional didactic skills.
The emergence of the knowledge society entails fundamental
changes in the processes of teaching and learning. On the one
hand there is the ever-increasing number of students that need to
be served, turning teaching into some sort of mass production. A
negative image of the future of higher education is that of
immense learning factories, where teachers act as drill masters,
each instructing the students within the limits of a narrow
specialty. In Holland, like in other West European countries, this
development takes shape as a wave of mergers between institutes
of Higher Education. On the other hand there are the opportunities
for enhancement of learning provided by technological
innovations. Knowledge is just a click away and interactive
software for practicing is easily available. The creative challenge
facing the modern teacher is to collaborate in the design a learning
environment that stimulates student’s self-directed learning
processes.

2.MOTIVATION FOR LEARNING
A stimulating learning environment is one that captures and
retains the attention of the students. The competition is stiff.
Young people today are swamped with incentives competing for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Koli Calling '08, November 13-16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11.$5.00.

1

their attention. In order to be effective teachers will have to
understand the basic mechanisms of human motivation.
Attraction and motivation are key areas of psychological research,
focussing on the forces that drive our behaviour. A well-known
example is the fact that people’s pupils get bigger when they look
at something they like. Consequently, when someone with dilated
pupils is looking at you that is pleasing, because it gives you the
impression this person finds you attractive. Even in antiquity
women were aware of this fact and they applied the drug
belladonna to create this impression. In modern times
advertisement designers use this information as part of a selling
strategy.
The concept of motivation brakes down in two components: the
intensity and the direction of behaviour (what you want to achieve
and how badly you want it). A fundamental distinction is the one
between intrinsic motivation, coming from inside the person and
extrinsic motivation, when the person is driven by external stimuli
like rewards or punishment. Psychological research has
demonstrated repeatedly that intrinsic motivators are in particular
strong in determining the direction and the short time intensity of
behaviour (doing something that is attractive to the person, or that
the person perceives as immediately useful). However, in many
instances this does not result in enduring behaviour. After a while
the attraction fades, or other more attractive alternatives come up.
Consequently, the person governed by intrinsic motivation
changes direction easily [1].
In the design of a learning environment the limitations of intrinsic
motivation need to be countered. Take for instance the successful
educational concept Problem Based-Learning.
One of the key features of this method is the appeal on intrinsic
motivation by real life problem situations [7]. Therefore, PBL
tutors must be trained to ensure that the students keep on the right
track. Collaborative learning, another key feature of PBL, is also
an important aspect in explaining student’s efforts [11].

Educational research shows that learning is more efficient when
students are actively involved [3,8]. One-way transfer of
knowledge in lectures results in poor learning. Van der Vleuten
[13] quotes the USA researcher Bales who depicts the relationship
between active involvement of the students and retention of
relevant knowledge in the form of a pyramid (See Figure 1.)
Evidently, an effective learning environment should stimulate
students to find information for themselves, rather than to have
them receive passively pre-processed pieces of information. Of
course, it depends on the particular situation how best to engage
the students. Nevertheless, educational concepts like ‘discovery
learning’, ‘learning-by-doing’. ‘experiential learning’ and ‘student
centred learning’ suggest exploiting human traits like curiosity,
challenge and self-determination [9].

3.LEARNING IN VIRTUAL REALITY
Without a doubt Computer and TV screens are great at capturing
attention. The term addiction is even used regularly. Both in the
passive sense of watching TV, as well as in interactive online
games a lot of time is spent behind the screen. Naturally,
educational designers would like to emulate this effect. However,
we should no forget there are some major differences between
school and the world of fantasy. For one thing, the production of
successful movies and games rests on the efforts of many people
sustained by budgets bigger than educational designers can dream
of. But also, the difference in purpose can be difficult to
surmount.
Games and movies are made for amusement. They appeal to a
largely unconscious human wish to escape reality. The
relationship between fantasy and reality is a complicated one. In
order to explain the relationships Fred Alan Wolf [14] elaborates
the concepts of knowledge and observation used by the ancient
philosopher Plato. In his well-known allegory of the cave Plato
suggests man cannot observe reality directly. The only thing we

Figure 1: The `Pyramid of Bales` (after: Van der Vleuten 1997)

2

see is shadows cast on a wall and that is what we take to be real.
Plato uses a line divided into segments to depict the different
aspects of human knowledge about the world. The entire line
A+B+C+D represents everything we can observe or think about
the world. Horizontally, the line divides the objects of our
knowledge in things that can be observed in the outside world
above the line and below the line the world of thoughts, pure
thought, not contaminated by observations, and reason on the left
and on the right beliefs and illusions. In the reality below the line
“Knowledge” is more important than “Opinion”, as expressed by
the length of the line segments. According to Plato there is a fixed
ratio between the line segments. A is longer than B and C is
longer than D. In this constellation the ratio’s (A+B) / (B+C+D);
A/(A+B); C/(C+D) are constant (See Figure 2.).

Wolf uses the graph of Plato’s line of knowledge to demonstrate
the changes in perception of reality in our times (See Figure 3.).
Today, opinions take precedence over factual knowledge. The
image has become more important than the object it represents.
On the inverted line, the world of illusions has become the most
important part. Shadows are more important than physical things
and reason is more important than pure thought. This image neatly
explains a number of phenomena characteristic of the present era,
for instance how actors can reach to a high position in politics. Or,
why ex-politicians are warmly welcomed by large companies:
“because they have experience in playing a role of command”, as
it was explained in a newspaper.

The philosophy behind Plato’s line of knowledge fits in nicely
with modern Constructivist educational theories. According to
these theories our image of the world is not based on a fixed
template, but rather re-constructed by the individual observer [10].
The consequences of the process of cultural change embodied by
the inverted line of Plato merits serious considerations and could
inspire much research.

4.CONCLUSIONS
Learning is a complex, many faceted, activity. The task of the
teacher is to engage the students in learning activities. To capture
the attention of the learners teachers have many different methods
and techniques at their disposal. For instance, many teachers have
been known to practice methods from the theater in their
lecturing. Modern technology offers a plethora of opportunities to
create stimulating learning environments based on computer

simulations and gaming. Virtual reality offers endless
opportunities to practice.
However, not all gaming is useful. Most of the time that people
spent on games and simulations is aimed at distraction, or
escaping reality. Trying to make the game contribute to learning
could just take away the attractiveness. An emerging problem is
that reality and fiction are getting completely mixed up. Emotions
run higher with fictional stories than with true events and when a
real disaster occurs, we use examples from fiction to underscore
the extent of our horror. Take for example the 9-11-2001
destruction of the WTC in New York as compared to images from
the Hollywood movie Armageddon. Today’s consumers buy
things, because it authenticates the image they like to project on
the world. You become what you can imagine. As a consequence,
learning how to shape your own image and how to get other
people to accept that image becomes an important learning goal
for today’s schools.
Presently, game designers just follow their hunches. For instance,
a lot of effort is spent trying to create games as real-like as
possible. However, that may not always be true. Experiments with
a driving simulator at the department of mechanical Engineering
of TU Delft show that not all additional features aimed at
increasing the authenticity of the driving experience, actually
result in improved learning. More research is necessary to
determine the changed relationship between fiction and reality
more precisely. Some pressing research questions are:
o What are the factors that motivate people to engage in online

games like Second Life?
o How do people build their avatar and how does the avatar

relate to the person?
o If the avatar has achieved something, how does that affect the

person in real life?
o What is it that people get in return for the time they spent in

online communities?
o What is the transfer of learning experiences in virtual reality

to the real world?

Figure 2: Plato's line of knowledge

3

5.REFERENCES
[1] Aizen, I. & Fishbein, M. (1980) Understanding attitude and

predicting behaviour. Englewood Cliffs: Prentice-Hall Inc
[2] Bales, R. F. (1992). National Training Laboratories, Bethel,

Maine, USA
[3] Biggs, John B. (1999) Teaching for Quality Learning at

University. Buckingham: Society for Research into Higher
Education & Open University Press.

[4] Boud, D. & Feletti, G. 1991 The Challenge of Problem-based
Learning. London: Kogan Page.

[5] Boud, D. & Miller, N (1996) Working with Experience;
animated learning. London, New York: Routledge.

[6] Entwistle, N. (1993) Influences of the Learning Environment
on the Quality of Learning. In: Th. Joosten, G. Heijnen & A.
J. Heevel (red.) Do-ability of Curricula. Lisse: Swets &
Zeitlinger, pp. 69-87.

[7] Graaff, Erik de, Fruchter, R.& Kolmos, Anette (2003)
Problem Based Learning in Engineering Education (eds.)
Vol.19. Theme issue of the International Journal of
Engineering Education.

[8] Graaff, Erik de, Gillian N. Saunders-Smits & Michael R.
Nieweg (2005) Research and Practice of Active Learning in
Engineering Education. Amsterdam: Pallas Publications.

[9] Graaff, Erik de & Anette Kolmos (2007) Management of
Change; Implementation of Problem-Based and Project-
Based Learning in Engineering. Rotterdam / Taipei: Sense
Publishers.

[10] Gijbels, D. , G. van de Watering, F. Dochy & P. van den
Bossche ((2006) New Learning Environments and
Constructivism: The Students’ Perspective. Instructional
Science. Vol. 34. No. 3. P. 213-226

[11] Jones, Ann & Kim Issroffb (2005) Learning technologies:
Affective and social issues in computer-supported
collaborative learning. Computers & Education. Vol. 44,
Issue 4, P. 395-408.

[12] Skeat, W.W. (1993) The Concise Dictionary of English
Etymology. Hertfordshire: Wordsworth editions Ltd.

[13] Van der Vleuten, C. P.M. (1997) De intuïtie voorbij [Byond
Intuition] Tijdschrift voor Hoger Onderwijs, 15.1. p. 34-46.

[14] Wolf, Fred Alan (1996) The spiritual Universe. New York:
Simon & Schuster.

Figure 3: Plato’s inverted line of knowledge

4

The Same But Different

Students’ Understandings of Primitive and Object Variables

Juha Sorva
Department of Computer Science and Engineering

Helsinki University of Technology
Espoo, Finland
jsorva@cs.hut.fi

ABSTRACT
From qualitative analysis of student interviews emerged three sets
of categories, or outcome spaces, describing introductory students’
understandings of variables. One outcome space describes differ-
ent ways of understanding primitive variables. Another describes
different understandings of object variables. The third outcome
space describes the relationship between the primitive and object
variables, again from the point of view of the student cohort. The
results show that learners create various kinds of mental models of
programming concepts, and that the concept of variable, which is
fundamental to most types of programming, is understood in vari-
ous non-viable ways. With the help of the outcome spaces, teaching
materials and tools can be developed to explicitly address potential
pitfalls and highlight educationally critical aspects of variables to
students. A software tool, which would engage students to interact
with and manipulate a visualization of a notional machine, suggests
itself as an intriguing avenue for future work.

Keywords: variables, references, students’ understandings, miscon-
ceptions, phenomenography, CS1

1. INTRODUCTION

1.1 Research Question
The research presented in this paper is part of a project that ex-

plores introductory programming students’ understandings of pro-
gram execution and the notional machine. The research question
relevant to this paper is:

In what different ways do introductory programming
students understand the concept of variable?

Both correct and incorrect understandings are of interest. I take a
qualitative point of view, and aim to discover and enumerate differ-
ent understandings that students have. While the question focuses
on variables, I do include aspects of other concepts – such as type,
value, object and assignment – within the scope of the research
inasmuch as they define students’ understandings of variables. The
scope of this research is limited to object-oriented programming in
Java.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

1.2 Background
Poor results in introductory programming education have been

widely reported, and students struggle to master even the most
rudimentary programming skills (see e.g. [17]). Prior work sug-
gests that many factors contribute to the problem, including the
lack and slow development of problem-solving skills (see e.g. [27])
and poor understanding of basic programming concepts. This pa-
per focuses on the latter. Du Boulay [6] notes that some students’
difficulties are associated with their limited understanding of “the
general properties of the machine [they] are learning to control, the
notional machine”. A notional machine for object-oriented pro-
gramming is significantly more complex than one for procedural
programming [22]. In object-oriented programming even a rela-
tively simple concept, such as variable, may be more difficult to
learn and understand as it has more complicated relationships with
many other concepts and requires a more complex notional ma-
chine that can explain objects and references.

According to constructivist theory, beginning programmers con-
struct different mental models of the underlying layers of abstrac-
tion [3]. Some student-constructed mental models will be viable,
others will not. Many non-viable mental models arise out of stu-
dents’ incorrect assumptions or guesses about the notional machine
that their programs are supposed to instruct. Programming teach-
ers have the task of helping students construct viable models of
the notional machine, and steering them clear of incorrect ones. It
is useful to be aware of the educationally critical aspects of the no-
tional machine and to know what pitfalls to look out for. This paper
explores how introductory students understand a particular aspect
of the notional machine: variables.

The paper is structured as follows. The next section introduces
some related work on the phenomenographic research approach
and on understandings of basic programming concepts. In Sec-
tion 3, I describe the research setting and the methods I used. Sec-
tion 4 presents the results and Section 5 discusses their implica-
tions. In Section 6, I look at future work possibilities, and Section 7
provides some concluding remarks.

2. RELATED WORK

2.1 Phenomenography and Variation Theory
Phenomenography [15] is an approach to research that investi-

gates phenomena and people’s relationships to those phenomena.
Phenomenography posits that there are a number of qualitatively
different ways in which a phenomenon is experienced by people
and that these different ways are linked to each other. Within the
community of CS education research, phenomenography has been
applied, among other things, to studying beginners’ understandings
of programming in general (see e.g. [5, 7]) and students’ under-

5

standings of specific computing concepts (see e.g. [8, 4, 24]).
To a phenomenographer, learning is characterized by the learner

discerning new dimensions of variation [16]. Each critical aspect
of a phenomenon, that is, an aspect that contributes to make the
phenomenon what it is, is associated with a dimension of variation.
Noticing different values along a dimension of variation leads to
discerning the existence of the dimension, which in turn leads to a
more sophisticated understanding of the phenomenon. Discerning
relationships between values in a dimension, and between dimen-
sions, leads to still deeper understanding. To take an example from
computer science, Eckeral and Thuné [8] concluded that students’
failure to reach sophisticated understandings of objects and classes
is caused by failure to discern variation in critical aspects of the
concepts. A student that sees objects only as pieces of code, and
fails to see them as actors during program execution, would need
to be shown different examples of relationships between a class de-
scription, object actions and resulting events in program execution.

Phenomenography does not prescribe a particular method for
gathering or analyzing data. Nevertheless, traditions within the
phenomenographic community contribute towards something that
could be called a ‘typical phenomenographic research methodol-
ogy’. In a research project of this kind, interviews are used as a data
collection method. Data collection is followed by or intertwines
with qualitative data analysis. During analysis, the researcher, in
dialogue with the data, delimits the phenomenon of interest. Dif-
ferent ways of understanding or experiencing the phenomenon are
enumerated as an outcome space consisting of a (smallish) number
of categories of description. Outcome spaces often take the form
of a hierarchy or tree of categories related to each other.

The intention in phenomenographic research is not to point out
which specific kinds of understanding each individual has, but to
identify different ways in which a phenomenon can be understood,
or experienced, on a collective level. Each category of description
represents a partial way of understanding the phenomenon, and an
individual person may understand the phenomenon in a number
of the different ways represented by the categories of description.
While the categories are logically connected to each other on a
collective level, as defined by the researcher’s interpretation of the
data, an individual’s understanding may not follow the same logic.

In the hard sciences such as computer science, there are con-
cepts that are well defined. We can say that some understandings
of these concepts are correct and others incorrect. According to
Sorva [25], there are three approaches to dealing with correctness
and incorrectness in phenomenographic studies that investigate stu-
dents’ understandings. The equal approach includes in the out-
come space all undestandings that seem relevant, irrespective of
correctness. Correctness plays no explicit part in delimiting phe-
nomena and analyzing the data, and a discussion of the correct-
ness is left for later, possibly to third parties reading the results.
An example is Adawi and Linder’s [1] work on understandings of
heat in physics. Using the equal approach one can investigate both
correct and incorrect understandings as long as one takes care in
delimiting the phenomenon, and does not combine understandings
of multiple separate (perhaps imaginary) phenomena into one out-
come space. The clean cut approach focuses only on those aspects
of understandings which the researcher deems correct as defined by
the scientific paradigm or technical specification that provides the
intended learning outcome. Incorrect aspects of understandings are
excluded from the outcome space. Eckerdal and Thuné’s [8] work,
mentioned above, is an example of this approach. The clean cut
approach makes delimiting the phenomenon less problematic, the
downside being that it can not be used to investigate incorrect un-
derstandings. The anchored approach attempts a compromise be-

tween the other two approaches. In this approach, both correct un-
derstandings (as deemed by the researcher) and partially incorrect
understandings are included in the outcome space. Partially incor-
rect understandings are understandings that extend correct under-
standings in incorrect ways. An example of the anchored approach
is my own earlier work [24] on students’ understandings of storing
objects.

2.2 Understandings of Variables
Several prior studies have qualitatively explored understandings

of variables and related concepts such as assignment.
Bayman and Mayer [2] studied beginners’ interpretations of vari-

ous statements in the BASIC language by asking introductory-level
students to write plain English explanations of programs. They an-
alyzed the resulting short descriptions of the semantics of BASIC
statements, and list a number of related misconceptions. Examples:
the statement INPUT A is taken to mean that the computer waits for
the user to input a specific number or letter; the statement LET D =
0 is interpreted to mean that the equation D = 0 gets stored in the
computer’s memory.

Holland et al. [11] noted several misconceptions beginners have
about objects. For example, students may conflate the concepts of
object and class, or they may confuse an instance variable called
name with object identity or with a variable referencing the object.
Holland et al. [11] discuss the possible sources for these miscon-
ceptions and suggest potential pedagogical solutions. Their work
is based on anecdotal but intuitively appealing evidence gathered
while developing distance education courses.

Ragonis and Ben-Ari [21] report the results of a wide-scope,
long-term, action-research study of high school students learning
object-oriented programming. The study, which is based on a qual-
itative, constructivist approach, uncovers an impressive array of
difficulties students have with object-oriented concepts (e.g. “con-
structors can only be used to initialize instance variables”). The au-
thors categorize the misconceptions and other learning difficulties,
and offer pedagogical advice. Their work centers around objects,
methods and constructors, and coverage of variables is limited to
objects’ instance variables.

Sajaniemi and Navarro Prieto [23] investigated qualitatively dif-
ferent ways in which variables can be used in programs, according
to expert programmers. They found that experts’ knowledge about
variable usage patterns can be described using roles of variables,
which can be taught to novices to enhance learning. However, their
work is concerned with algorithmic roles, a relatively high level of
abstraction compared to the notional machine level that this paper
is concerned with.

Ma et al. [13] studied introductory programming students’ men-
tal models of assignment. They gave a large number of volunteer
CS1 students a test with open-ended and multiple-choice questions,
and analyzed the answers qualitatively and quantitatively. A major-
ity of students were found to have non-viable mental models of ba-
sic programming concepts; many did not even have a viable model
of assigning primitive values to a variable. Ma et al. list a number
of non-viable mental models of assignment, illustrating that there
are problems both with understanding programming language syn-
tax or semantics (e.g. assignment works from left to right) and
with the underlying programming concepts (e.g. assignment stores
an object inside a variable). Ma et al. [14], drawing on construc-
tivism, suggest that cognitive conflict be used as a pedagogical tool
against non-viable mental models.

3. RESEARCH SETTING AND METHODS
The results I present in this paper are part of a wider project that

6

investigates students’ understandings of program execution and re-
lated concepts. Earlier results from the same project, focusing on
how students understand storing objects in memory, can be found
in a previously published paper [24].

I chose phenomenography as research approach because phe-
nomenographically obtained results can complement prior findings
in two significant ways. First, phenomenography is well suited to
the exploring of understandings on a collective level and discov-
ering logical relationships between types of understanding. This
can help us see the big picture and justify pedagogical solutions
to learning problems. Second, phenomenographic analysis works
well together with data collected from semi-structured interviews.
Questionnaire and exam answers, which are analyzed in various
studies, are often limited to searching for meaning in the specific
words respondents use in an isolated sentence. Unexpected an-
swers may be difficult to decipher, as noted by Ma [13] and others.
If a student states in a questionnaire that a = new Person("Jack")
mean “Jack is stored in position a”, what does that really mean? In
semi-structured interviews, it is possible to ask for clarifications
and probe with follow-up questions, producing richer data about
understandings on a conceptual level.

3.1 The Students
This study makes use of data from 17 interviews. Ten of these

were done in Spring 2007 and have a relatively broad focus, cov-
ering many topics related to program code and execution. [24]. In
Spring 2008, I added to the data pool seven further interviews that
focus more closely on variables, as described below.

The additional interviewees were from a semester-long univer-
sity course in introductory programming given in Spring 2008. The
course teaches programming in Java in an objects-early way, yet
without going deep into object-oriented design or complex object
interactions. Apart from a few drawings at lectures, no tools visu-
alizing the notional machine or computer memory are used in the
course, and these topics are given rather little attention during the
course. The course is taken by engineering students who are not
computer science majors. The author of this paper (that is, the in-
terviewer), while a teacher at the same department that gives the
course, did not participate in running this course.

One third through the course, all students were required to com-
plete an online questionnaire about their programming background
and about their attitudes, experiences and workload during the course.
Of the several hundreds of respondents, I selected a small subset
and invited them for interviews based on this background ques-
tionnaire. In order to capture a wide range of qualitatively dif-
ferent understandings, I tried to maximize variation [20, p. 234]
through an informal method: I hand-picked the invitees so that
there were interviewees with different kinds of programming back-
ground (though most had no prior experience), different kinds of
attitudes to programming and different experiences with the course.

I sent out fifteen invitations via email. I promised each student
two movie tickets as a reward for an interview, and stressed that the
interviews were not a part of the course and would not affect grad-
ing in any way. Seven of the invited students agreed to take part.
The number of positive responses from invitees was surprisingly
low but tentatively acceptable as I already had many interviews
from the previous year and since there was a great deal of varia-
tion in the questionnaire answers of the seven new interviewees.

3.2 The Interviews
The interviews from 2008 are described below. The 2007 inter-

views were similar, differing mainly in that they covered a wider
range of topics and did not focus specifically on variables. They

are described in more detail in the earlier paper [24].
I interviewed the students roughly half-way through the intro-

ductory programming course they were taking. The interviews
were done in Finnish; all interview quotes in this paper have been
translated from the Finnish originals. Each interview began with a
short generic discussion of what came to the student’s mind when
the word ’variable’ was mentioned. After that, the bulk of the in-
terviews revolved around the code of two simple Java classes that
I showed to the student on paper. First, I showed them a class
that only contained a main method that made use of a for loop and
four integer variables to read in some values and print out computa-
tion results. The second class represented players of an imaginary
game, with names and scores as instance variables. It contained a
main method which created some player objects, manipulated their
scores, and assigned player objects to variables in various ways.
I asked the students to describe what they saw and how the pro-
grams worked. Follow-up questions concentrated on the variables
and assignment encountered in the code (though those terms were
not necessarily used by the student or myself). After each inter-
view, I did some early analysis on what had been said and wrote it
down. All interviews were recorded in audio.

Combining the data with the previous year’s resulted in a pool of
seventeen interviews. The early analysis suggested that an accept-
able degree of saturation had been reached, so I did not recruit any
more interviewees.

3.3 Data Analysis
I transcribed the relevant parts of each interview verbatim and

added them to a pool of data. which I analyzed with the aim of
discovering collective-level understandings. I started transcribing
and analyzing data right after the first interview, so that the analysis
could provide feedback and ideas for the rest of the interviews. In
Section 2 above, three approaches to dealing with incorrectness of
understandings in a phenomenographic study were identified. Of
these, I used the anchored approach, meaning that in addition to
correct understandings, I explored such incorrect understandings
that extend correct understandings.

4. RESULTS
At the outset of the study, I expected to form a single outcome

space describing qualitatively different understandings of the pro-
gramming concept that the canonical term ’variable’ refers to. How-
ever, it quickly emerged that where I had perhaps naïvely expected
to find a single categorization of understandings, two separate cate-
gorizations would be needed. Numerous students experienced con-
structs such as int number and Player p as instances of two
quite separate concepts. To produce more legible and usable re-
sults, I chose to delimit the phenomenon differently than initially
planned and to break down the original research question into three
subquestions.

1. In what different ways do CS1 students understand
what a primitive variable is?
2. In what different ways do CS1 students understand
what an object variable is?
3. In what different ways do CS1 students understand
the relationship between primitive and object variables?

Three outcome spaces emerged from the analysis to answer these
three subquestions. They are described in the subsections below.

4.1 Understandings of Primitive Variables

7

Table 1: Categories Describing Understandings of Primitive Variables
Category Focus Description
NAMEDVALUE names in code A variable is some kind of pairing of a name to a changeable value.

It is characterized by a type, which restricts what the value can be.
PLACEFORVALUE storing values As NAMEDVALUE, plus: A variable is a typed place or slot located in the computer.

It can be assigned a value, which it stores, and which can be accessed using the
variable’s name.

PLACEFORREF references As PLACEFORVALUE, plus: The value assigned to a variable is a reference to another
location in the computer that stores some data value.

MATHVARIABLE equivalence As NAMEDVALUE, plus: A variable is a typed symbol which is equal to a value.
It can be used in equations which declare relations between variables.

An outcome space with four categories describes understandings
of primitive variables. Table 1 gives an overview of the categories,
described in more detail and illustrated with quotes below.

Category: NAMEDVALUE

This category describes a general understanding that variables like
int number are something that have to do with manipulating val-
ues in a program. Variable names correspond to values, which can
change during program execution. Larry1 is asked to identify vari-
ables from code, he lists identifiers of variables he sees:

Larry: Well, there’s number and number2. . .

Prompted to describe how he sees what a variable is, he explains:

Larry: Well, you can give it different values and they
change as the program is processed.

Larry notes that some variables are “variables in the traditional
sense” as their values actually change, whereas others remain con-
stant. However, he is at a loss to elaborate on what a variable is.
His understanding is very vague and abstract.

Larry: I don’t know how to describe it any better. It’s
just. . . It’s given some value.

The focus of awareness in this type of understanding is on names
(or identifiers) in program code. Variables are seen as a way of
naming and accessing values. They differ from each other in having
different names and different values. Further variation is discerned
in variables’ values over time during a program execution. How-
ever, the relationship between the two key dimensions of variation
– names and values – is very fuzzy. What it means that a variable
“has” or “is given” a value is barely understood, but the practical
consequence is that names can be used to manipulate values. No
relationship between variables and memory locations is discerned.

Even on this very basic level of understanding, variation is dis-
cerned in variable types. Larry gives a fairly typical CS1 student’s
response when asked if he’s seen variables in the course.

Larry: Yeah, there are integer variables, and decimal
variables, and then there’s variables of the class char
and of the type String.

Larry understands that type is a critical aspect of a variable (in
Java), and later makes use of this knowledge when describing that
variables are used to store values of a specific type in the given
program. All the other, more complex understandings of primitive
variables represented by the other categories of description extend
this rudimentary type of understanding.
1Interviewee names changed.

Category: PLACEFORVALUE

This category of understanding extends the basic understanding of
primitive variables described above. The focus in this category is
on variables’ use as storage. The relationship between a variable
and its value, only vaguely hinted at in NamedValue, is understood
as that of a storage and its contents. Paula explains:

Paula: I understand a variable to be a compartment,
whose contents change. Kinda like, you play around
with the contents in different kinds of formulas, and
then it gets the value that comes out.

Paula notes that the programmer can place data in variables,
which help keep track of the data.

Paula: I create a memory slot in which I place some
thing, so that I can see it the whole time.

While the concept of computer memory may not be understood
very well, it is understood that the computer is capable of storing
data in various distinct locations. Location within the computer is
discerned as a critical aspect of variables. Assignment to variables
is understood as placing values in these locations, to be stored in
variables. Chris, like Paula above, notes that there are places within
the computer where values can be stored. He explains how a couple
of assignment statements work:

Chris: I have the vague notion that there are these lo-
cations in the memory of the computer. . . It puts [the
values to the right of the assignment operator] in some
location in memory.

Category: PLACEFORREF

This category of understanding extends PLACEFORVALUE and NAMED-
VALUE. In this type of understanding, the concept of a reference is
made focal and related to the concept of a (primitive) variable. As
in PLACEFORVALUE, a variable is understood as storing data, but
indirectly, through a reference. Each variable is characterized not
only by a name, a type, and a ’storage slot’ within the computer,
but also by a stored reference which points to the actual value. It
is perceived that each value is stored in memory in some location
separate from the storage space corresponding to the variable itself.
Noel captures this type of understanding in a nutshell as he explains
the statement number2 = number;.

Noel: In practice, that means they have the same value,
but apparently it goes so that number2 isn’t given the
value of number, but rather number2 refers to the inte-
ger value. I’m not sure, but I think that when number
changes, then number2 will change at the same time.

8

Category: MATHVARIABLE

This category of understanding extends NAMEDVALUE. As in that
category, variables are seen as having types, names and values. No
additional dimensions of variation are discerned. Instead, this un-
derstanding involves a particular interpretation of the relationships
between two critical aspects of variables: names and values. For
Otto, a variable is the value:

Otto: A variable is a single number or a sequence of
characters.

A variable’s name is understood to be a symbol for an unspeci-
fied value, much like a variable in mathematics.

Otto: [A variable is] any letter, which we decide is
something else.

Occurrences of the variable’s name are considered logically equiv-
alent to the variable’s value. Variables receive their values logically
through equations established by statements in a program. Con-
sider this code.

number2 = number;
number = keyboard.nextInt();
result = number2 + number;

At the start of the interview, Quentin noted that a variable in
programming “is like a variable in an equation”. Let us see what
he makes of the code above.

Quentin: You first input number. Then it calculates
number plus number. I mean, you give a number and
it basically multiplies it by two.

Quentin is unable to explain why he came to this conclusion.
Otto, however, concludes the same from reading the code, and ex-
plains his reasoning as follows.

Otto: I think they [number and number2] are always
equal since it says number2 = number.

That this type of understanding of variables as mathematical sym-
bols may be related to a number of non-viable understandings of
related Java programming concepts such as assignment and the
program execution sequence. The order of the lines is irrelevant
to Quentin and Otto, since they read them as a mathematical sys-
tem of equations rather than an execution sequence, and expect the
computer to do likewise. Quentin is explicit about this later, after I
point out his earlier error to him.2

Quentin: I didn’t pay attention to the order. I just read
it as if the program had the brains to see [number2 =
number] above. That it would have the brains to go
read the bit from above.
Interviewer: Some others have seemed to think that it
goes like in math, so that “x equals y” is like a decla-
ration that x is the same thing as y. . .
Quentin: Exactly! That’s how I thought!

2I tried to fix some incorrect understandings afterwards.

Figure 1: Relationships between categories of understandings
of primitive variables. Each line indicates that the category
below extends the category above.

Relationships between Categories
Relationships between the categories listed above are illustrated
in Figure 1. NAMEDVALUE is a simple, partial understanding of
primitive variables. It is extended by PLACEFORVALUE, which is
richer in that it separates the concepts of variable and stored value.
PLACEFORREF and MATHVARIABLE are partially incorrect un-
derstandings, or overextensions, in the sense that they are charac-
terized by a focus on aspects (namely, equations and references)
that are not part of the orthodox definition of variable. The par-
tial incorrectness is depicted in the diagram by the way these two
categories ‘branch out’ to the right.

4.2 Understandings of Object Variables
Another outcome space with four categories of description emerged

to describe understandings of object variables. Table 2 gives an
overview of the categories, which are described in more detail and
illustrated with quotes below. The reader may note that some of
the labels given to categories of description in this outcome space
are similar or identical to the labels in the first one. This is neither
coincidental nor accidental. It is meant to underline the similarities
between the two outcome spaces.

Category: NAMEFORTHING

This category describes a rudimentary understanding of object vari-
ables. A variable name is, as Larry puts it, a name within the pro-
gram code for an object. Apart from name and type, very little is
understood about what a variable is. Variation is discerned in that
variables are associated with different “things” or objects, but the
relationship between the two is unclear apart from the fact that a
name is used to work with objects. Variable declarations and iden-
tifiers are simply necessary in practice to get programs working.
Larry explains what the declaration Player fourth means:

Larry: Here we create a new object. [Stops to think.]
Or I dunno, at least we provide the opportunity to do
it, but don’t really create it. [. . .] You have to put
this there first in order to be able to. . . If this didn’t
exist then at least you wouldn’t achieve what you were
supposed to achieve. So you have to have this.

All the other categories in this outcome space extend this very
simple category of understanding.

Category: PLACEFORVALUES

This category extends the basic understanding of object variables
described above. The focus is on variables’ use as storage. The

9

Table 2: Categories Describing Understandings of Object Variables
Category Focus Description
NAMEFORTHING names A variable is a name which can be used to manipulate an object or ’thing’ in a

program.
PLACEFORVALUES storing values As in NAMEFORTHING, plus: A variable is a typed place or slot located in the

computer. A set of object properties can be assigned to be stored in it.
PLACEFORREF references As in PLACEFORVALUES, plus: The value assigned to a variable is a reference to

another location in the computer that stores an object.
PROPERTY object As in NAMEFORTHING, plus: A variable is not a separate entity, but an aspect of

an object. Its name is one of the object’s properties, akin to the object’s instance
variables.

relationship between a variable and an object, barely discerned in
NameForThing, is understood as that of a storage and its contents.

Mike notes that the command Player third defines a variable
and and that third = new Player("Cecilia") creates a new
player object with the given name and a score of zero. Here he
explains the notion of variables that store objects:

Mike: These [variables of type Player] can receive
as their values both a variable of type String and the
score. I mean, two values of different types. Whereas
[these primitive ones over here] receive only numeri-
cal values.
Interviewer: Right. They differ in that they have dif-
ferent types?
Mike: Yeah, and in that the players contain multiple
kinds of information.

The computer is understood to contain places for storing objects’
properties (e.g. player objects’ names and scores) as composite
chunks of data. Variables correspond to these storage slots, and
assigning values to variables means storing object data in a new
place. Otto explains the statements fourth = second; third =
second;

Otto: The second player’s data is copied into the fourth
player. Likewise into the third. So the fourth, third and
second player will be equal.

Category: PLACEFORREF

This category is an extension of PLACEFORVALUES. It builds upon
the idea of storing data in variables, incorporating the focal con-
cept of object reference. A variable is understood as storing data
indirectly through a reference. Each variable is characterized not
only by a name, a type, and a ’storage slot’ within the computer,
but also by a stored reference which points to the data of an ob-
ject. It is perceived that each object is stored in memory in some
location separate from the storage space corresponding to the vari-
able itself. Brad (who later demonstrates a practical understanding
of what happens in reference assignment) comments on a state-
ment which creates an elevator and assigns it to a variable named
testElevator.

Brad: I think this testElevator itself only stores,
like, the memory location. . . which refers to the object,
to where it is in memory.

In this type of understanding, assignment to a variable is also
perceived in terms of references. It is understood that assignment
only copies references and that a single object can be referenced by
multiple variables.

Category: PROPERTY

This type of understanding is an extension of NAMEFORTHING.
No additional dimensions of variation are discerned. Rather, this
category differs from NAMEFORTHING in how the relationship be-
tween variable declarations and objects is understood. Variables
are not understood as a separate construct in their own right at all.
Rather, they are seen as an aspect of a larger “object concept”. Ma-
nipulating objects requires a name of some kind, and all objects
have one. This explains the need for certain definitions in the code
(e.g. Player p), which, as in NAMEFORTHING above, are seen as
necessary in order to make use of objects. Below, Ian explains his
idea of what constitutes the data for an elevator object. (The class
Elevator has two instance variables, floor and topFloor).

Ian: [The data for one object is] the this.floor of
the elevator and the top floor... and then the name, I
guess... Yeah.

Throughout the interview, Ian is consistent in that he treats vari-
able names as an object property. Greg has a similar view. He ex-
plains object assignment as follows (an elevator object is assigned
to a variable named test1).

Greg: Since it had been assigned the name newElevator,
it changes it to test1. [. . .] And I suppose its floor
also changes[.]

For Greg, assignment means changing an object’s attributes, in-
cluding both the instance variables and the “object’s name”, i.e., a
property that defines what the object has been assigned to.

Relationships between Categories
Relationships between the categories in the second outcome space
are illustrated in Figure 2. NAMEFORTHING is a basic, partial un-
derstanding of object variables. It is extended by PLACEFORVAL-
UES, which is richer in that there is a clearer picture of a variable
as data storage. In this partial understanding, the important role
of references is not understood; however, references are focal in
the further extension PLACEFORREF. NAMEFORTHING is also
extended by the partially incorrect category PROPERTY, in which
objects are meshed into the concept of variable.

4.3 Understandings of the Relationship between
Primitive and Object Variables

A third outcome space describes qualitatively different under-
standings of primitive and object variables as a whole. The cate-
gories represent different ways of seeing the connection between
primitive and object variables. The outcome space describes the
relationship between the two first outcome spaces from the collec-
tive point of view of the students. Table 3 gives an overview of the
categories, which are described in more detail below.

10

Table 3: Understandings of the Relationship between Primitive and Object Variables
Category Focus Description
DIFFERENT code There is a mechanism for storing and assigning primitive values, and

another for objects. These mechanisms have superficial similarities, but
are fundamentally different from each other.

SAME variable concept As in DIFFERENT, except that: There is a connection between the two
kinds of variables. They are both examples of a single mechanism for
storing data, which works exactly the same way for both primitive val-
ues and objects.

SAMEBUTDIFFERENT memory As in SAME, except that: The relationship between variable value and
data is different for primitive as opposed to object variables.

Figure 2: Relationships between categories of understandings
of object variables. Each line indicates that the category below
extends the category above.

Category: DIFFERENT

In this category, a dimension of variation is discerned concerning
the data manipulated by Java programs. Some of it is primitive,
some of it is objects. However, a relationship between the ways in
which these two kinds of data are used is discerned only barely or
not at all. What awareness there may be of a connection between
primitive and object variables focuses on superficial aspects of pro-
gram code such as the use of the assignment operator in both cases.
The mechanisms used for storing and assigning primitive values, on
one hand, and objects on the other, are seen as two fundamentally
different things.

This category is characterized by different understandings of prim-
itive variables than of object variables. For instance, Keith thinks
of primitive variables as storage space for values (PLACEFORVAL-
UES, Subsection 4.2) but his understanding of object variables is
fuzzier (much like in NAMEFORTHING, Subsection 4.2). When I
prompted him directly for any connection between the two kinds of
similar-looking constructs in the code, Keith still could not think of
anything apart from the fact that an object can contain variables. I
then wrote down this improvised partial class definition for him to
comment on:

class Match {
private Player champion;
private Player challenger;

Despite pointing out that he has seen something similar in the
course, Keith was puzzled by the code and unable to figure out
what it could possibly mean.

Keith: Why does it say Player in there? In the other
class [Player], we had variables. Like private int or
private String3.

3Keith, like many Java programming novices, groups Java strings

While there are surely many factors contributing to Keith’s un-
derstanding, it is consistent with the sharp distinction that he makes
between primitive variables – which are the only thing he calls
‘variables’ – and object variables. For Keith, it is natural that there
are places in the code where you need ‘variables’, and he cannot
begin to understand the use of objects instead.

Category: SAME

This category extends DIFFERENT with a clearer relationship be-
tween primitive and object variables. The focus here is on a single,
unifying concept of variable, which both are examples of. Quentin
comments on what Player first and Player second are.

Quentin: A variable, that’s what it is. Those are vari-
ables, too, in principle.

Syntactical similarity in how primitive and object variables are
used in code is not perceived as coincidental. Rather, the same
operations are applicable to both kinds of variables. They differ
from each other only in terms of the type of data that they store, as
illustrated by the quotes from Mike’s in Subsection 4.2.

This type of understanding is characterized by a similarity of un-
derstandings of primitive variables compared to object variables.
The same rules are understood to apply to both. Mike, for in-
stance, thinks that all kinds of variables are storage slots for the
actual primitive or object data. Conversely, Noel, quoted in Sub-
section 4.1, thinks that all Java variables are meant for storing ref-
erences to the actual data.

Category: SAMEBUTDIFFERENT

This category further extends SAME. Again, it is understood that
there is a more generic concept of variable. Some variation is dis-
cerned in how object and primitive variables work, however. Paula
does a good job at explaining how she sees the relationship between
these two kinds of variables.

Paula: In a way they are the same thing, since we’re
talking about a quantity of memory inside the com-
puter’s memory, from the physical point of view. But
– if I’ve got it right – when we have these [primitive]
variables here, what we store in that memory slot, or
that span of memory, is that very data. But when we
have these objects, then the memory slot only stores
an address of the object, which is somewhere else. But
physically, it’s the same thing. . . a location in the mem-
ory of the computer.

with primitive types rather than with objects.

11

Figure 3: Relationships between understandings of the rela-
tionship between different kinds of variables.

Relationships between Categories
Relationships between the three categories are illustrated in Fig-
ure 3. The category DIFFERENT is the least sophisticated under-
standing in which barely any relationship between primitive and
object variables is discerned. It is extended by the richer cate-
gory SAME, where a strong connection between the two is made.
That understanding is further enhanced in SAMEBUTDIFFERENT,
where variation between the two kinds of variables is discerned de-
spite the fact that they are both seen as examples of the same con-
cept. This last category represents the richest type of understanding
of variables that I found in this study.

5. DISCUSSION

5.1 Variables Misunderstood
The outcome spaces presented in the previous section provide

insight into the understandings that fledgling Java programmers
have of variables. Particular non-viable understandings from these
outcome spaces have surfaced in literature before (see [6, 13, 2]).
However, this paper brings together – and relates with each other
through phenomenography and variation theory – understandings
of both object and primitive variables in order to provide an overall
picture of understandings of variables in an object-oriented context.

My results confirm once again the constructivistic observation
that people create various kinds of mental models of programming
concepts and of how the computer makes programs work. Even
the concept of variable, which is fundamental to most types of pro-
gramming and crucial for building Java programs, is understood
partially or incorrectly in many different ways. Of the various dif-
ferent understandings discovered in this study, only a few are viable
and complete enough for writing object-oriented programs of any
significant complexity. It is not surprising that CS1 students have
difficulties with the complexities of object-oriented programming
if their understanding of basic constructs is shaky or incorrect. The
division of data types in primitive and object types, as well as the
interplay between the concepts of variable, object and reference,
contribute to make Java variables a challenging concept to master.

The third outcome space, from Subsection 4.3 above, brings to
the fore the fact that students do not always delimit concepts in
the ways teachers might like them to, and demonstrates that the re-
lationship between primitive and object variables is a problematic
issue in teaching Java programming. The outcome space highlights
some key challenges in learning about variables. As illustrated by
the category DIFFERENT, these two kinds of variables are seen by
some learners as being two completely distinct constructs, despite
superficial similarities in syntax. Failing to discern a generic con-
cept of variable makes it hard to comprehend programming litera-
ture and teaching. In terms of variation theory, the category DIF-

FERENT can be explained by a failure to perceive that two kinds of
variables are values along the same dimension of variation. Such
an unsophisticated understanding may derive from a poor under-
standing of the concept of data type. It is also partially explained
by students’ tendency to construct excessively narrow ‘rules’ for
programming, which constrain the ways in which a programming
construct can be used [9]. An example of a rule could be “Variables
are meant for storing numbers and such (whereas composite objects
are dealt with quite differently).” Learners with this type of under-
standing are likely to be at greater risk of constructing additional
narrow rules. For instance, the misconception “Objects can’t be
the values of attributes” (reported by Ragonis & Ben-Ari [21] and
echoed by Keith in Subsection 4.3 above) is more appealing intu-
itively if primitive and object variables are seen as two completely
distinct constructs.

The category SAME alerts us to another type of overgeneraliza-
tion: all variables work exactly the same way and have the same
kind of relationship to the data they are associated with. Such an
understanding is in practice often accompanied by either the in-
correct assumption that primitive variables store references (see
PLACEFORREF, Subsection 4.1) or that object variables store ac-
tual object data (see PLACEFORVALUES, Subsection 4.2). Either
way, such an incomplete understanding is non-viable as soon as the
student needs to write programs that manipulate, say, both primitive
and object parameters.

Some issues are linked to primitive or object variables specifi-
cally. The category MATHVARIABLE is explained by students’ ex-
posure to mathemathical variables and equations, by Java’s math-
like syntax and by constructivist theory. It matches anecdotal ev-
idence on learning difficulties related to the assignment statement
and is reminiscent of the misconception reported by Bayman and
Mayer [2], where the the statement LET D = 0 is interpreted as
storing an equation in memory. A student with such an under-
standing of primitive variables will struggle until they come to un-
derstand the storage aspect of variables in programming. On the
objects side, the category PROPERTY shows a conceptual confla-
tion of objects and the variables referencing them. This category,
which meshes together two concepts, the outcome space of under-
standings of variables ’touches’ the outcome space from my pre-
vious project [24], where a similar category emerged to describe
understandings of objects in memory. Clearly, understandings like
PROPERTY and the vague NAMEFORTHING can lead to a variety of
practical problems for learners of programming. If no clear distinc-
tion is drawn between variable and object, the concept of reference
remains fuzzy at best, and object assignment becomes difficult or
impossible to grasp.

5.2 Pedagogical Implications
Learning about Java variables is problematic. Teachers must take

care to structure courses so that enough time is reserved to make
sure that basic concepts are properly understood. This is partic-
ularly important on introductory programming courses that teach
object-oriented programming and its more complex notional ma-
chine. Otherwise, students are cognitively overloaded as they have
to learn more advanced topics while still struggling to master the
basics. Relevant parts of the notional machine should be taught
along with each code construct to decrease the chance of students
constructing non-viable models of the runtime system. (E.g., refer-
ences should be discussed as soon as object variables are.)

The three outcome spaces highlight educationally critical aspects
of variables, which teachers should emphasize to students on CS1
courses. Further, teachers can be helped by an awareness of the
kinds of partial and incorrect understandings that students have, as

12

prior understandings affect the ways in which students process ad-
ditional information. Sorva, drawing on variation theory, writes:
“As programming instructors, we need to draw students’ attention
to the important aspects and variation in [the correct critical] as-
pects, and underline their importance where possible. [. . .] On the
other hand, students may also mistakenly focus on irrelevant vari-
ation and mistake it for critical variation. Here, our task is to draw
the students’ awareness away from the irrelevant focus.” [24]

The first outcome space (Subsection 4.1) provides hints to an
teacher facilitating the development of students’ understandings of
variables. Instruction should be designed to aid the development of
an understanding of variables as storage over the simplistic under-
standing described by the category NAMEDVALUE and the incor-
rect understanding represented by MATHVARIABLE. An emphasis
is needed on the variation in variables’ memory locations, and the
separateness of variable and value. Instruction should be explicit
about the similarities and differences between math variables and
programming variables, and equations and assignment statements,
respectively. Assignments requiring students to reflect on the pro-
gram’s execution sequence may help.4 Engaging visualizations of
a part of the notional machine – variables and values in memory –
could be helpful and should be designed so that they can draw at-
tention to the critical aspects. Visualizations and metaphors could
likewise play a role in avoiding or dispelling the incorrect under-
standing PLACEFORREF: students can be shown that assignment
makes multiple copies of the same value in the computer’s memory,
and that references play no part in this. It is also easy to come up
with examples that demonstrate how changing primitive variables’
values does not affect other variables.

Object variables stretch learners further. A vague understand-
ing of the NAMEFORTHING variety is barely if at all sufficient for
object-oriented programming. Steps must be taken to prevent learn-
ers from coming up with incorrect interpretations like PROPERTY.
Various pedagogical methods, examples and tools can be used. Ir-
respective of which method is used, it is important to make sure
that students are able to draw a line between the concepts variable
and object. These concepts should be introduced one by one. At
least initially, declaring a variable and assigning an initial value to it
should be done separately, not with a single statement. Once again,
engaging visualizations and metaphors could help, provided they
are designed to highlight the educationally critical variation. Ex-
amples should be carefully chosen to illustrate the critical aspects
of variables and objects, and the ways in which the two are distinct:
variables have memory locations, objects have their own locations,
variables’ have names that are not properties of any object, vari-
ables can be used to access – but are not the same as – objects.

Introducing variation along a particular dimension while keeping
another aspect constant can be a very efficient educational tool [16];
students should be shown examples that demonstrate how multi-
ple variable names can reference the same object and how a single
variable name can reference multiple objects in succession. To de-
velop an understanding richer than PLACEFORVALUES, students
also need the concept of reference. Example programs that demon-
strate the non-viability of PLACEFORVALUES are not hard to come
up with; the main challenge is to engage the student in thinking
about what underlying mechanisms (i.e., what kind of notional ma-
chine) make a particular piece of code work as it does.

4In one case, having noted that one student interpreted assignments
as equations and variables as math symbols, I then asked the student
to think about how the program’s behavior would change if the lines
were reordered. This simple question gave pause to the student,
who then had a ‘eureka moment’ and later explained how he felt
this had helped him greatly with the whole course.

The third outcome space presents teachers with a twofold chal-
lenge. On the one hand, there is a need to emphasize the rela-
tionship between primitive and object variables. Students’ atten-
tion should be drawn to the facts that both kinds of constructs are
called variables, that they both represent fixed-size memory loca-
tions meant for storing values, and that the same Java syntax is
used to assign to and read from both. The concept of data type and
the subconcepts of primitive and object type must be stressed. We
need to clarify to students how all variables fundamentally store the
same thing, i.e., bit sequences that are interpreted as values that are
in turn interpreted in some way by the runtime system. If visual-
ization tools are used, they should visualize primitive and object
variables in the same way. On the other hand, the variation in how
the two kinds of variables relate to data needs to be stressed. Stu-
dents need to be shown that the only difference between primitive
and object-typed variables is a result of their data types: how the
notional machine makes use of primitive values differs from how it
uses reference values. Only through a viable model of these mech-
anisms can students understand how primitive variables and object
variables are “the same but different”.

The CS1 course whose students were interviewed in this study
teaches little about either the physical computer nor a more abstract
notional machine. Instruction focuses largely on code-level ab-
stractions. This is likely to be at the root of some of the student dif-
ficulties discovered, and might be helped by making the computer
more explicit in exercises and classroom instruction. Ma et al., re-
porting students’ poor performance in describing assignment state-
ments, asked:

“Is the knowledge on the memory mechanism of a com-
puter necessary for early programming learning, and
should programming instructors teach the knowledge
explicitly at an early stage of programming education?” [13]

Not all students fail to cope. Learners come up with mental mod-
els even in the absence of a taught conceptual model, and some such
models are adequate for the purposes of a CS1 course. Let us listen
to Jenny explain how she thinks about memory.

Interviewer: So, there are ‘places’ in memory?
Jenny: Yeah, like slots, like street addresses, and some-
thing lives at each address. [. . .] Like, let’s imagine
that the object lives in a house, and then in that house
there are rooms, which contain some other stuff like
these [object attributes]. [. . .] A reference is like the
address of a house.

Jenny also understands how primitive and object variables work
(the only difference being that the latter stores an ‘address’). Prompted
for the source of this extensive metaphor, Jenny explains that some-
one had told her that the computer’s memory is “a set of addresses”
and she “sort of took it further from there”. She has done well (and
been a bit lucky?) to come up with a viable way of thinking about
memory, despite receiving little instruction on the topic. However,
as evidenced by examples above, many other students struggle. The
development of an understanding of code is undermined by non-
viable models of the underlying machine. In light of results such
as those reported here and elsewhere (see [13]), teaching about the
memory mechanism in CS1 courses is certainly worth a try, espe-
cially if object-oriented programming is also taught. I will return
to this topic under Future Work, below.

Finally, this study highlights the importance of terminology in
teaching programming concepts. Many students experience great
conceptual confusion when learning programming, and their defi-
nitions of terms that they use are often unorthodox (as I noted once

13

again firsthand when trying to find out what the students thought a
variable is rather than what they meant by the word ’variable’). Not
only do students use terms that are patently incorrect, but they also
delimit concepts in different ways than the teacher. For a given stu-
dent, the word ’variable’ might mean a primitive variable, a local
variable, a math-style symbol, or something yet different. Unless
the teacher knows how his students understand the basic program-
ming terms, it is likely that much of what the teacher says or writes
will be understood quite differently than he hoped. Teachers must
take great care to try and find out how their students understand
terms and concepts. This is a tricky task, as CS1 students often
are not very good at defining terms. Teachers themselves must be
careful to use terms consistently. (Referring to object variables as
‘objects’ is common but misleading!) A shared terminology should
be established early on in a course and students’ interpretations of
terms should be examined early.

6. FUTURE WORK
While the nitty-gritty of a computer or a virtual machine are (ar-

guably) not an appropriate topic for a CS1 course, the capabili-
ties of an abstract notional machine or runtime system (arguably)
are. Gries [10] advocates the use of a consistent higly abstracted
visual metaphor for variables, objects and references. He warns
that “introducing computing concepts in terms of the computer can
create unnecessary and confusing detail”. It is easy to agree that
using high-level abstractions in teaching programming is very use-
ful. Nevertheless, the use of easy-to-understand representations of
the computer’s role as executor of programs is likewise worth ex-
ploration, as understanding program execution on a slightly lower
level of abstraction could surely solidify learners’ understandings.
The challenge is to find a suitable level of abstraction that clari-
fies the semantics of program code without getting bogged down in
technical minutiae, and a pedagogically sound way to teach on this
level of abstraction.

Program visualization [26] has been claimed to aid learning by
making underlying abstractions explicit. Various program visual-
ization tools exist. For instance, Jeliot 3 [18] visualizes many as-
pects of Java program execution including variables and memory
allocation.

Where Jeliot 3 perhaps comes short is engaging students. A vi-
sualization tool should engage learners in interactions [19]. Ac-
tively applying themselves to interact with a visualization could
help students discern new variation in concepts such as variable. It
can also induce cognitive conflict between a student’s existing non-
viable models and the conceptual model in the visualization. Ma
et al. [14] experimented with a tool that requires learners to pre-
dict the values of variables before showing actual variable values
in a way that promotes cognitive conflict. The TRAKLA2 system
features interactive algorithm tracing exercises, which engage stu-
dents by requiring them to indicate in detail how a given algorithm
affects a given data structure visualization [12]. Drawing on all
these ideas, we can envision a new tool that would not only visu-
alize the notional machine, but engage students to predict how the
notional machine works on a given piece of code. Students would
have to predict and indicate how variables are created and given
values, where references point, and so forth. Drawing on data such
as that reported in this study, the tool and example programs could
be designed so that they aid the discernment of critical variation
and dispel specific incorrect understandings. Apart from variables,
a number of other notional machine features could also be visual-
ized. Students could be required to use the tool to predict allocation
and deallocation of stack frames, expression evaluation sequences,
etc. Creating such a tool presents an intriguing and promising fu-

ture work challenge.

7. CONCLUSIONS
In this paper, I have described introductory students’ understand-

ings of Java variables as hierarchical sets of categories. My results
suggest that even this basic programming concept is challenging
to many students, especially in the context of object-oriented pro-
gramming that makes use of object references. These findings com-
plement and relate to each other earlier findings of problems with
the concept of references and assignment. In particular, my results
highlight several difficulties students have in discerning both the
differences and the similarities between concepts (programming
variable vs. math variable, object vs. object-valued variable; prim-
itive vs. object-valued variable). It is crucial that teachers take into
account that students have very different understandings of con-
cepts. Drawing on the outcome spaces, teaching materials and tools
can be developed to explicitly address potential pitfalls and high-
light educationally critical variation to students. A software tool,
which would engage students to interact with and manipulate a vi-
sualization of a notional machine, suggests itself as an intriguing
avenue for future work.

Acknowledgements
Thanks to Lauri Malmi and Anders Berglund for their many com-
ments on this work.

8. REFERENCES
[1] T. Adawi and C. Linder. What’s hot and what’s not: A

phenomenographic study of lay adults’ conceptions of heat
and temperature. In The 11th EARLI conference, 2005.

[2] P. Bayman and R. E. Mayer. A diagnosis of beginning
programmers’ misconceptions of basic programming
statements. Commun. ACM, 26(9):677–679, 1983.

[3] M. Ben-Ari. Constructivism in computer science education.
Journal of Computers in Mathematics and Science Teaching,
20(1):45–73, 2001.

[4] A. Berglund. Learning Computer Systems in a Distributed
Project Course. The what, why, how and where. Uppsala
dissertations from the faculty of science and technology 62,
Uppsala University, Sweden, 2005.

[5] S. Booth. Learning to program: A phenomenographic
perspective. Acta Universitatis Gothoburgensis, doctoral
dissertation, University of Gothenburg, Sweden, 1992.

[6] B. Du Boulay. Some difficulties of learning to program.
Journal of Educational Computing Research, 2(1):57–73,
1986.

[7] A. Eckerdal and A. Berglund. What does it take to learn
’programming thinking’? In Proceedings of The First
International Computing Education Research Workshop,
pages 135–143, 2005.

[8] A. Eckerdal and M. Thuné. Novice Java programmers’
conceptions of “object” and “class”, and variation theory.
SIGCSE Bulletin, 37(3):89–93, 2005.

[9] A. E. Fleury. Programming in Java: student-constructed
rules. SIGCSE Bulletin, 32(1):197–201, 2000.

[10] D. Gries. A principled approach to teaching OO first.
SIGCSE Bulletin, 40(1):31–35, 2008.

[11] S. Holland, R. Griffiths, and M. Woodman. Avoiding object
misconceptions. SIGCSE Bulletin, 29(1):131–134, 1997.

[12] A. Korhonen, L. Malmi, and P. Silvasti. TRAKLA2: a
framework for automatically assessed visual algorithm

14

simulation exercises. In Proceedings of Kolin Kolistelut /
Koli Calling – Third Annual Baltic Conference on Computer
Science Education, pages 48–56, Joensuu, Finland, 2003.

[13] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating
novice programmers’ mental models. http://www.cis.
strath.ac.uk/~linxiao/TechReport2006.doc, 2006.

[14] L. Ma, J. D. Ferguson, M. Roper, I. Ross, and M. Wood.
Using cognitive conflict and visualisation to improve mental
models held by novice programmers. SIGCSE Bulletin,
40(1):342–346, 2008.

[15] F. Marton and S. Booth. Learning and Awareness. Lawrence
Erlbaum Associates, 1997.

[16] F. Marton and A. Tsui. Classroom Discourse and the Space
of Learning. Lawrence Erlbaum Associates, 2004.

[17] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant", C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS
students. SIGCSE Bulletin, 33(4):125–180, 2001.

[18] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing programs with Jeliot 3. In Proceedings of the
International Working Conference on Advanced Visual
Interfaces, pages 373 – 376, Gallipoli (Lecce), Italy, May
2004.

[19] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer,
C. Hundhausen, A. Korhonen, L. Malmi, M. McNally,
S. Rodgers, and J. Ángel Velázquez-Iturbide. Exploring the
role of visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, June 2003.

[20] M. Q. Patton. Qualitative Research and Evaluation Methods.
Sage Publications, 3rd edition, 2002.

[21] N. Ragonis and M. Ben-Ari. A long-term investigation of the
comprehension of OOP concepts by novices. Computer
Science Education, 15(3):203 – 221, 2005.

[22] J. Sajaniemi and M. Kuittinen. From procedures to objects:
What have we (not) done? In J. Sajaniemi, M. Tukiainen,
R. Bednarik, and S. Nevalainen, editors, Proceedings of the
19th Annual Workshop of the Psychology of Programming
Interest Group, pages 86–100, University of Joensuu,
Department of Computer Science and Statistics, 2007.

[23] J. Sajaniemi and R. Navarro Prieto. Roles of variables in
experts’ programming knowledge. In Proceedings of the
17th Annual Workshop of the Psychology of Programming
Interest Group (PPIG), pages 145–159, 2005.

[24] J. Sorva. Students’ understandings of storing objects. In
R. Lister and Simon, editors, Seventh Baltic Sea Conference
on Computing Education Research (Koli Calling 2007),
volume 88 of CRPIT, pages 127–135, Koli National Park,
Finland, 2007. ACS.

[25] J. Sorva. Investigating incorrect understandings of a CS
concept. In Second Nordic Workshop on Phenomenography
in Computing Education Research. Uppsala University,
2008.

[26] J. T. Stasko, J. B. Domingue, M. H. Brown, and B. A. Price.
Software Visualization: Programming as a Multimedia
Experience. MIT Press, Cambridge, MA, 1998.

[27] L. E. Winslow. Programming pedagogy – a psychological
overview. SIGCSE Bulletin, 28(3):17–22, 1996.

15

Diagnosing Learners’ Problem Solving Strategies Using
Learning Environments with Algorithmic Problems in

Secondary Education

Ulrich Kiesmüller
Didactics of Informatics

University of Erlangen-Nuremberg
Martensstr. 3

91058 Erlangen, Germany
+49 9131 8527936

Ulrich.Kiesmueller@cs.fau.de

ABSTRACT

At schools special learning and programming environments are
often used in the field of algorithm. Particularly with regard to
informatics lessons in secondary education they should help nov-
ices to learn the basics of programming. In several parts of Ger-
many (e. g. Bavaria) these fundamentals are even taught in the 7th
grade, when pupils are 12 to 13 years old. Age-based designed
learning and programming environments such as Karel, the robot
and Kara, the programmable ladybug, are employed there, how-
ever learners still underachieve. One possible approach to im-
prove both teaching and learning process is specifying the knowl-
edge concerning the learners’ individual problem solving strate-
gies, when they create their solutions in consideration of the solu-
tion attempt’s quality.

A goal of the research project described here is being able to iden-
tify and categorise several problem solving strategies automati-
cally. Due to this knowledge learning and programming environ-
ments can be improved which will optimise the informatics les-
sons, in which they are applied. Therefore the environments must
be enhanced with special analytic and diagnostic modules, whose
results can be given to the learner in the form of individualized
system feedback messages in the future.

In this text preliminary considerations are demonstrated. The re-
search methodology as well as the design and the implementation
of the research instruments are explained. We describe first stud-
ies, whose results are presented and discussed.

Categories and Subject Descriptors

K.3.2 [Computer And Education]: Computer and Information
Science Education – computer science education, curriculum,

self-assessment.

General Terms

Algorithms, Measurement, Performance, Human Factors, Lan-
guages.

Keywords

Secondary Computer Science Education, Didactics of Informatics,
Problem Solving Process, Algorithms, Kara, Tool-Based Analy-
sis.

1. MOTIVATION
Teaching programming and basic ideas of algorithm often causes
problems for the learners. This is indicated by the high number of
college drop outs in CS1 courses and bad marks in Informatics at
school. In order to minimize these problems programming is
taught without writing code. Visual programming environments
such as Alice [3] and Scratch [9] are employed in secondary and
higher education in many countries.

Teaching the basic principles of algorithms is fundamental in the
field of secondary Informatics education [14]. In this case learners
are also given special didactically reduced, text-based or visual
programming languages to make their first steps in programming.
In some federal states of Germany (e. g. Bavaria), the basics of
algorithms are already taught in the 7th grade (age 12 to 13 years).
Here age-based learning and programming environments, such as
Karel, the robot [11] and Kara, the programmable ladybug [12]
are used.

Learners are motivated by the design of these learning environ-
ments and enabled to solve even complex tasks after only a few
lessons because of the simple learnability and usability. Testing
their solution attempts by program running often produces system
error messages of the environments. The pure technical messages
cause new questions during the problem solving process, conse-
quently these learners need their teacher’s help. If he/she only
gives technical support and corrects the last step to reach the cor-
rect solution as fast as possible there is no difference to the system
error messages.

What is also not an aim of Didactics of Informatics is to force the
learner to copy exactly the sample solution at this point. All these
variations lead to dependence, to further need of help and finally
to aimless changing of the problem solving strategy and frustra-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling ’08, November 13–16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11…$5.00.

16

tion. To avoid this, the help for the learner should be focused on
his individual way of proceeding.

The pupils should be met where they are, which means the teacher
will not only examine the actual solution attempt, but will ask the
learners which method they applied to find a solution. Thus
he/she does not only give technical support and correct the last
step but tips the learner off how to reach the solution as cleverly
as possible. Therefore it is necessary to get more knowledge about
the learners’ individual way of proceeding when constructing a
solution. If the learning environment identifies the problem solv-
ing strategy automatically, it will be possible to give individual-
ized feedback to the learner (with special consideration of the
respective solution quality).

This encourages independence from teachers during learning and
also increases the learners’ motivation. In addition to that it
enlarges their learning competence as a positive side effect. Thus
it contributes to “life long learning” because the pupils have to
deal with arising problems on their own and stick to an individual
problem solving strategy for the whole problem solution. This will
improve learning and programming environments and enhance the
quality of the learning processes of informatics.

To reach this goal special research and diagnostic modules, which
identify the problem solving strategy and create individualized
system messages, have to be added to the learning and program-
ming environments applied.

2. THE KARA ENVIRONMENT
Kara [5] is an educational software system, which enables a
learner to control a virtual ladybug based on finite state machines.
Especially developed for programming novices it makes them
learn the basic control structures such as command, sequence,
conditional branch and iteration. At this the automata terminology
need not appear to solve the tasks that have been set. Kara is
placed in a chessboard-like world (see Figure 1) with fixed obsta-
cles (i.e. trees) and movable objects (i.e. cloverleaves). It can turn
left or right, move a single step ahead, lay down leaves and collect
them again or push mushrooms (subsequently called commands).
All commands can be combined in sequences. Furthermore Kara
possesses sensors to test, e. g. if there is a cloverleaf on or a tree
in front of the current position. With the help of these sensors
branching of the program flow can be achieved. With the infor-
mation, which state will be the next in the program flow (given by
the transitions), iterations are realized.

One of Kara’s typical tasks is navigating through a “forest” of
trees and collecting leaves. In contrast to their possibilities in
Karel, the robot, learners can program the system in a pure
graphical manner. To cause the ladybug to fulfill a certain task, a
learner has to identify the states needed and to specify the transi-
tions with the help of sensors and commands. A survey among
students has shown that “[…] Kara had allowed them to focus on
problem solving, on the logic and the correctness of their pro-
grams, without being distracted by the environment or by the
textual syntax of a ‘real-world’ programming language” [5].

3. PRELIMINARY CONSIDERATIONS

3.1 Learner-System-Interactions
In preliminary studies several subjects solving typical tasks of the
Kara stuff were observed by a human researcher. The following
interactions result from the recorded learner-system-interactions
and some theoretical preliminary considerations. They are rele-
vant to the problem solving process and therefore have to be re-
corded in subsequent studies (in the diagrams of section 6.1 used
phrases are emphasized):

• editing and changing the final state machine – equivalent to the
problem solving structuring

• creating and editing the conditions and branches in considera-
tion of the results of Kara’s sensors – equivalent to a fine struc-
turing in several sub-problems

• editing transitions – each created branch automatically causes a
transition, so the first appearance of a certain transition ranks
among the fine structuring in several sub-problems – in all
other cases: loops, branches, sequences of commands’ se-
quences are modeled here

• editing of commands’ sequences – equivalent to the solving of
sub-problems

• points in time of learner’s program executions (play) in order to
test the (partial) correctness of his solution attempt

• system error messages

• chronological evaluation of the numbers of “actions” and “ob-
jects” mentioned above

What need not be recorded are interactions like “artistic” redes-
igning of the appearance of Kara’s world, saving solution attempts
etc.

Figure 1. Screenshots of the Kara environment

top: programming window – bottom: Kara world

17

3.2 Problem Solving Process
Each problem has an (unrequested) initial state and a (requested)
goal state. The intermediate problem states build the problem
space [10]. Consequently, problem solving means searching a
correct path through the problem space from the initial state to the
goal state. In the field of psychology the problem solving process
is divided up into two phases, i.e.:

• building the problem space and

• searching the path through the problem space
Real problem solving does not require a complete problem space
to be built before searching the correct path.

3.3 Problem Solving Strategies
If you start by building the complete problem space, you will find
two different alternatives to continue:

hill climbing

It is a forward thinking strategy where the learner always tries to
find an optimal solution for the respective next step. After control-
ling their success the learners continue to search for the next step.
In case of unsatisfactory situations for Kara, they will have to do
another (additional) modification to find the optimal solution for
the step. Therefore their solution attempt is improved stepwise.

trial and error

The learner tries to find the correct way through the problem
space (sometimes aimlessly) trying different possibilities one by
one. This strategy is preferred for solving problems which seem
complex or difficult from learners’ point of view [4]. It is not
possible to decide automatically whether the learner’s errors are
“good” or “silly” according to Edelmann.

If the problem space is divided into smaller sub-problems there
are another two possible ways to continue:

top down

Using this strategy means to search all intermediate states before
starting the solution, i.e. before finding the correct way through
the problem space. This process employs the “divide and con-
quer”-idea of Informatics well known in software engineering.

bottom up

The learners solve every single sub-problem as soon as they iden-
tify it, even before they search for other sub-goals. The solution of
the problem is completed after solving the “last” sub-problem.
Exactly in this way this strategy is only applicable if the sub-goals
are neither crossed nor nested.

3.4 Support for the Learners
Furthermore studies of several teachers in school as well as re-
ports and discussions at faculty conferences and on-the-job train-
ings are regarded additionally to the examinations mentioned
above. Based on this, individualized support was designed in
preliminary considerations (see Table 1).

In the cases of good or very good quality of the learner’s solution
attempt the technical error message complemented with a special
comment depending on the chosen problem solving strategy is
used. We assume that these learners will understand the technical
message. Due to different learners focuses the messages for bad or
worst quality were designed. Although the trial and error strategy
is not bad per se, it should however be changed to structured pro-
gram solving if the solution’s quality is medium or worse. There-

fore the limit in the row for trial and error is at another point than
the remaining.

These ideas for support have been designed in a way that can be
realized for automated feedback by the learning environment, be it
that the learner’s problem solving strategy is identified.

Table 1. Individualized feedback after identifying the problem

solving strategy

3.5 Strategies’ Choice Influencing Factors
An interesting question is, whether and why learners prefer a cer-
tain problem solving strategy to others. Possible causes for the
learners’ decisions – easily observable with the described research
instruments – are:

• the time spent on problem solving

• the success in solving a task

• the task’s difficulty

Additionally have to be considered the factors individual and
lessons in school.

If a correlation between the used problem solving strategy and one
of the first mentioned other factors is found, we will not have to

Quality of the solution attempt problem

solving

strategy very bad bad medium good
very

good

hill climb-

ing

hint for structuring the
problem first

technical error message
help for the actual se-

quence

trial and

error

instruction for structured problem
solving

technical error
message

help for the
incorrect se-

quence

correct number of branches:
hint to the incorrect branch

top down
wrong number of branches:

claim the missing branch

technical error message
motivating comment
concerning the well

structured problem solu-
tion

correct number of branches:
hint to the incorrect branch

bottom up
wrong number of branches:

claim the missing branch

technical error message
help for the incorrect

sequence

Figure 2. Correlations of influencing factors of the

learners’ choice of problem solving strategy

task’s diffi-

culty

quality of the

solution attempt

time spent on

problem solving

problem solv-

ing strategy

18

identify and categorize the way of proceeding with new methods,
but rather use the easier measurable items time or quality.

Possible relevant correlations are shown in Figure 2. The data
collected in the first studies (see Section 6.1) suggest the conclu-
sion, that the quality of the solution attempt and the time spent on
problem solving has only a little correlation. Between this time
and the task’s difficulty a positive correlation can be assumed.
This assumption must be improved in further studies as well as
the assumed negative correlation between the task’s difficulty and
the quality of the solution attempts.

Furthermore a medium correlation between problem solving strat-
egy and quality of the solution attempt on the one hand and the
time spent on problem solving on the other is noticeable. This
correlation should be verified in further studies.

To be able to analyze the correlation between the (in the learner’s
opinion) difficulty of the task and the chosen problem solving
strategy in further studies the test subjects have to fill in question-
naires additionally (see Section 5.3).

In the following field studies we want to see, whether there are
correlations between chosen problem solving strategy and the
remaining factors school lessons and individual. If the results in
every participating class show the same distribution, we assume
that there is no higher correlation between used strategy and
school lessons. If additionally a certain test person shows the
same strategy independent of the set task, can be assumed a high
correlation between the chosen strategy and the individual factor.

4. PROCESS OBSERVATION METHODS
Previous systematic studies concerning programming novices’
problem solving strategies were carried out predominantly at col-
leges and universities. In the work described here we tried to
avoid the well known process observation difficulties described
below. We have the well-founded hope, to generalize the results
of the studies described here for learners in CS1 courses using
different learning and programming environments than the one
mentioned here.

Hundhausen describes in [7], how to analyze the programming
process of students dependent on time using a given programming
environment with the help of screen-video recording. At first se-
mantic subunits of the given problem have to be determined based
upon theoretical considerations. Afterwards the steps which
should be identified in the subsequent recording process have to
be coded manually – which takes a huge amount of time –, related
to these categories and finally plotted against time. The problems
detected by Hundhausen during his research as well as the diffi-
culties described by Chi [2] during his analysis of “verbal” data
made us design and develop specialized research software, which
collects data automatically and presents it graphically. A similar
method was chosen by Schulte [13]. In his case the test persons
were pupils (11th graders, 16 to 17 years old), the topic was ob-
ject-oriented modeling.

In order to achieve automatic categorization of the learners’ ways
of proceeding by a diagnostic software (see Section 5.2) another
software tool will have to be developed the task of which is to
identify patterns in the collected data of the tracking software (see
Section 5.2) with the help of pattern-recognition methods.

Apart from the analysis of the problem solving process an analysis
of the artifacts produced by the learners during this process is
advisable. To evaluate the quality of the learners’ solution at-
tempts, these are tested with the help of test cases specially de-
signed for this purpose. The test cases are selected so that an es-
sential solution part is tested by each of them. In this way a more
differentiated evaluation of the solution which does not only pro-
vide results like “completely correct” and “incorrect”, is achieved.

5. RESEARCH METHODOLOGY

5.1 Research Objectives
Solving algorithmic problems often causes problems for pro-
gramming novices. So one of the goals of the work described here
is gaining more knowledge about the learners’ individual strategy
to construct a solution, which will finally improve the learning
process.

Getting more knowledge about the learners’ individual proceed-
ings when constructing a solution with a view to enhance the
learning process is another goal of the work described here.
Therefore special research and diagnostic modules are added to
the learning and programming environments used in the lessons.

In order to improve the learning environments the learners’ differ-
ent strategies must be identified and categorized automatically.
Subsequently we want to associate these findings to the problem
solving process.

With the system feedback messages improved, learners should be
better able to solve arising problems alone by themselves, which
should also augment their achievement motivation [8].

5.2 Research Instruments
In order to avoid the well known difficulties in process observa-
tion, specialized research instruments have been developed:

tracking software (TrackingKara)

• records the task setting

• records all steps relevant to solution

• categorizes the collected data
o working with states
o creating and editing branches
o inserting and handling commands

• records the types of sensors and commands, the system error
messages and the learners’ reactions to these messages

• additionally records number and type of sensors, commands,
system error messages, …

• takes snapshots of the learners’ solution attempts to evaluate the
quality of the solution process afterwards [6]

diagnostic software (EvalKara)

• allows the analysis of the collected data in shorter time also for
larger groups of subjects

• supports the analysis of the development of all data over time

• supports graphical visualization of all data for further analyses
by human researchers

• provides two kinds of cumulative analyses
o time distribution
o error distribution

• provides two different types of process diagrams
o activity-time diagram

19

o element-time diagram

• supports the evaluation of the quality of learners’ solution at-
tempts with the help of test cases specially designed for this
purpose

5.3 Research Process
Software requirements for these software-based research instru-
ments were derived from theoretical preliminary considerations
and from several test scenarios accomplished with four test per-
sons (different background in computer science: two novices, a
student of computer science and a former programmer) in the
spring of 2007. Each test subject was given one or more typical
Kara tasks (see Section 2). During the problem solving process
they were observed and interviewed afterwards. The research
instruments were designed and developed according to the re-
quirements described above.

In a first case study 10 test persons with different pre-knowledge
levels in informatics (scaling from beginners up to students of
informatics) were asked to solve the following three Kara tasks:

• A: (Kara and the leaves) Kara has to invert a pattern of clover-
leaves straight in front of it while moving towards a tree trunk,
in front of which it has to stop (see Figure 1).

• B: (searching the tunnel I) Kara has to find the entry of a “tun-
nel” formed by tree trunks straight in front of it and to stop
there.

• C: (searching the tunnel II) Kara has to find the entry of a “tun-
nel” formed by tree trunks straight in front of it and to stop at
the end of the “tunnel“.

Their solution steps were recorded automatically using the track-
ing software. Additionally the test subjects were asked to com-
ment their method of proceeding by the so called “thinking aloud”
method, which should ensure the correct interpretation of the
collected data. Their statements were recorded by a researcher and
led to first rules necessary for the interpretation of the data col-
lected by the tracking software. On this basis, further requirements
for the diagnostic software were derived and finally integrated.

After the first revision of the software-based research instruments
first studies with larger groups of test subjects were carried out.
About 100 pupils (7th grade, 12 to 13 years old) of two Bavarian
grammar schools took part in these studies (approved by the Ba-
varian State Ministry of Education and Religious Affairs). In Ba-
varia Informatics is compulsory for all learners in the 6th and the
7th grade (1 lesson per week). In the 7th grade the curriculum re-
quires the description of sequences with algorithms. Before the
learners are able to analyze and construct such presentations on
their own, they have to learn about the basic control structures
such as sequence, choice and loop (using the learning and pro-
gramming environment Kara in this case) in about 8 lessons. Be-

cause of the given limitations it could be assumed that the learn-
ers’ level of pre-knowledge were similar so far. During the studies
the learners were asked to solve the three tasks mentioned above
individually (one pupil per computer) within a period of 45 min-
utes. The subjects, however, were allowed to communicate.

What should be found in further field studies assisted by ques-
tionnaires is a fine categorization of different problem solving
strategies, which could be detected by the new diagnostic soft-
ware. Furthermore we wanted to know to what extend the system
error messages are helpful to the learners.

6. FIRST RESULTS

6.1 General Statistical Results
With the help of the collected data and the snapshots of the learn-
ers problem solving taken by TrackingKara a retrospective exami-
nation of the problem solving process the following results were
realized. Figure 3 to Figure 5 show boxplots for task A and task
B. Each boxplot represents the five-number summary (minimum –
smallest observation, lower or first quartile – which cuts off the
lowest 25% of the data, median – middle value, the upper or third
quartile – which cuts off the highest 25% of the data, maximum –
largest observation) of a data set in descriptive statistics. The ver-
tical line shows in each case the maximum and the minimum
value. The box displays the lower quartile and the upper quartile.
The horizontal bar indicates the median. The mean value is not
shown explicitly in the diagrams.

According to the results mentioned above the average amount of
time spent on solving is 255 seconds, which is due to a very high
average amount of time for task C (more than 400s) and two
lower values for task A and B, which show similar results (see
Figure 3 – left). One reason for this may be the fact that the com-
plexity of task A is similar to that of task B.

The average number of system error messages during the solving
of one task is 1.6 no matter if you regard task C or not. What is
striking here is a different average in the number of system error
messages between task A and task B (see Figure 3 – right) despite
to their similar level of difficulty. The average number of system
error messages decreases from 2.2 to 0.8. The difference might be
explained by practice effects, an assumption which should be
verified in further studies supported by questionnaires.

The average time elapsed till the first system error message comes
up is approximately two minutes – thus about one third of the
complete solving time (see Figure 4). Therefore it seems to make
sense, to create the individualized feedback messages for the
learners, which can be helpful to their further steps.

Figure 3. Time spent on problem solving in s (left) –

number of system error messages per solution (right)

Figure 4. Time until first system error message occurred

in percent of the complete solving time

20

The quality of the learners’ solution attempt was evaluated by two
Informatics teachers. In the German grading system (from 1 to 6 –
with 1 being the best and 6 the worst achievement) the average
mark for task A is 3.0, the one for task B 2.27 (see Figure 5). This
also may be a sign for practice effects, which must be verified in
further studies, too. In addition to that consistency of the teachers’
assessment and the results of the test cases of EvalKara (see Sec-
tion 6.3) must be achieved as far as possible.

Another point of interest is the correlation between problem solv-
ing strategy, quality of the solution and the time spent on solving
(see Figure 2 in Section 3.5). The first results show medium corre-
lation between the problem solving strategy and the solving qual-
ity on the one hand and the spent time on the other, whereas there
is only very little correlation between the quality of the solution
and the time consumed by solving. This fact is already well
known in the homework research in mathematics and other school
subjects.

6.2 Analyses of Individuals
Based on the classification in categories of the collected data de-
scribed in section 3.1 and their chronology during the problem
solving process the strategies listed in 3.2 should be identified
automatically. EvalKara’s so called activity-time diagrams (see
Figure 7 to Figure 10) provide assistance for the analysis. They
show the distribution of a test subject’s categorized activities in
comparison to time. Certain combinations of reported learner-
system-interactions lead to a classification of the data into four
groups of “strategy-patterns” (see Figure 6).

If the learner creates only one branch (mark at transition/branch)
at first and then edits the conditions before completing this branch
with a sequence of commands, the “bottom up”-pattern is attrib-
uted. Repeating the same order does not change this classification,
additionally any other single interactions (e. g. program execu-
tion) during the sequence of actions are ignored. However, multi-
ple subsequent interactions cause a change of the pattern attribu-
tion or at least the transition to the initial setting “no identifiable
pattern”.

If creating further branches follows the creation of the first branch
directly and subsequently all related conditions are built before at
least all commandos are inserted, the “top down”-pattern is attrib-
uted. In this case the attribution of system-learner-interactions’
chronology and strategy-pattern has a tolerance of one, within the
number of branches can differ from the correct value.

Similar rules for attribution were defined for all the other strate-
gies. Based on the graphical presentation of the collected data in
process diagrams provided from EvalKara the learners’ individual
problem solving strategies were analyzed by human researchers.
In the studies (200 reported sessions) described here the attribu-
tion of strategies and patterns was accomplished by two observers.
They agreed about the attribution of the four different strategies
(see Section 3.3) to the according patterns.

The diagrams in Figure 7 show examples of a problem solving
process, where at first the test subject creates all necessary states,
afterwards all branches (and transitions) and at last he/she fills in
the respective commands in every branch (see mark in Figure 7).
He/She divides up the problem space in smaller sub-problems
which are not solved until the building of the problem space is
completed. This is in accord to the top down problem solving
strategy described in Section 3.3.

Figure 7. Activity-time-diagrams – presentation of the

top down problem solving strategy

hill climbing trial and error

top down bottom up

ra
re

 e
rr

o
r

m
es

sa
g

es

freq
u

en
t erro

r

m
essag

es

rare program executions

frequent program executions

iterated
 p

ack
ag

es

o
f b

ran
ch

es an
d

co
m

m
an

d
s al

l
b

ra
n

ch
es

b
ef

o
re

co
m

m
an

d
s

Figure 6. Identification of four different patterns

Figure 5. Quality of the solution attempts

(German marking system)

21

Before finishing the solution eventually the test person accom-
plishes several improvements.

The diagrams of Figure 8 again show a problem solving strategy,
where the complete problem space has at first been divided up
into smaller sub-problems. Here, however, the commands are
filled in a branch just before the next branch has been created and
edited (see mark in Figure 8). The final solving of the complete
problem results from the solving of the sub-problems as soon as
the editing of the last branch is completed. This way of proceed-
ing accords to the bottom up method described in Section 3.3.

The repetition of the marked pattern in Figure 8 displays the con-
secutive finishing of the several sub-problem’s solving. The
learner-system-interactions between the patterns help to improve
the solution of the respective branch.

Some learners use a pure trial and error method: each step of the
solution is tested by immediate program execution (see marked
selection in Figure 9). Furthermore it can be assumed, that the

occurring system error messages affect the learners’ next steps. If
you want to analyze this in detail, you must consider the types of
error-messages. The graphical representation of this problem solv-
ing strategy clearly differs from the ones in Figure 7 and 8.

In addition to this you cannot only identify the hill-climbing strat-
egy (see Figure 10) described in Section 3.3, where there are no
system error messages in between the program execution, but
where the learner himself assesses Kara’s situation as disappoint-
ing and improves his solution attempt step by step.

Besides, compositions of these four classes of problem solving
strategies can be found in terms of different patterns in the activ-
ity-time-diagrams.

Another result is, that learners, who have started the problem
solving by a certain strategy for a new start often still employ the
same problem solving strategy after the occurrence of difficulties.
An exception are test subjects, who change their problem solving
strategy from a structured one to the trial and error method, be-
cause system error messages came up repeatedly and thus they
failed in finding a correct solution.

6.3 Analyses of the Results of the Test Cases

EvalKara provides a tool based on test cases for the quality as-
sessment of the solution attempts. Each of these test cases was
especially developed to check up one essential concept of the
concerning solution, for example when task A is tested, the sys-
tem checks if Kara runs, stops at a tree, inverts the pattern of
leaves and if it executes a special case (see Figure 11) success-
fully.

The results of the test cases achieved by EvalKara are “success”,
“endless loop” or the according system error message. The com-
bination of these results gives a first notion of the quality of the
learner’s solution attempt. Table 2 is an overview which shows

Figure 11. Example for the results of test cases (task A)

Figure 8. Activity-time-diagrams – presentation of the

bottom up problem solving strategy

Figure 10. Activity-time-diagram – presentation of the

hill climbing problem solving strategy

Figure 9. Activity-time-diagram – presentation of the

trial and error problem solving strategy

22

how to “transform” the combinations of the test case results into
marks (German school marking system – mentioned above in
Section 6.1).

Table 2: attribution of combinations of test case results (inac-

cessible ones ignored) and marks

A learner, whose solution attempt produces the test case result
“success” only for the test cases “endcondition” and “Kara runs”,
gets mark 4. The automatic marking of EvalKara was compared
with the marks two Informatics teachers gave for the same solu-
tion attempts (see Section 6.1). At the moment remaining differ-
ences between these assessments are used to improve the compo-
sition of the test cases and the attribution of combinations of test
case results and marks (see Table 2).

7. CONCLUSION AND RESULTS
The results of the case studies presented here show that it is
possible to identify different problem solving strategies by means
of these newly developed research instruments. Therefore the data
collected has to be scanned thoroughly. Methods of descriptive
statistics are useful when the tasks difficulty (in the learners’
opinion), the amount of time consumed, the quality of the solution
and the respective solution process are tested concerning their
correlation.

In further studies the next step (additionally supported by
questionnaires) will be an in-depth analysis of the data collected
(approx. 200 sessions) to approve the categories of problem
solving strategies and the attribution of learners’ strategies and
patterns in the data. The questionnaires will be draft based on the
ideas of Ajzen’s Theory of Reasoned Action [1]. Afterwards,
considering the results of the new studies, the categories will be
refined.

The basic ideas of TrackingKara and EvalKara should be
transferred to other common learning environments used in
schools like e. g. Karel, the robot, to develop similar software
instruments. It must be clarified in the context of didactically
reduced imperative programming languages what the relevant
learner-system-interactions are – which have to be recorded. What
is also important is to test the effectivity of the currently existing
system error messages with the help of additional questions in the
questionnaires mentioned above, which could be realized in
further studies.

8. REFERENCES
[1] Fishbein, M., Ajzen, I. 1975. Belief, attitude, intention, and

behavior: An introduction to theory and research. Reading,
MA: Addison-Wesley.
URL: http://people.umass.edu/aizen/f&a1975.html

[2] Chi, M. T. H. 1997. Quantifying Qualitative Analyses of
Verbal Data: A Practical Guide. The Journal of the Learning
Sciences, 6, 3 (1997): 271-315.

[3] Conway, M. J. 1997: Alice: Easy-to-Learn 3D Scripting for
Novices. Doctoral Thesis. University of Virginia, School of
Engineering and Applied Science.

[4] Edelmann, W. 1979. Einführung in die Lernpsychologie.
Kösel, München, Germany.

[5] Hartmann, W., Nievergelt, J., Reichert, R. 2001. Kara, finite
state machines, and the case for programming as part of gen-
eral education. In Proceedings of the IEEE 2001 Symposium
on Human Centric Computing Languages and Environments
(Stresa, Italy, September 05-07, 2001). HCC'01. ACM Press,
New York, NY, 135-141. DOI=
http://doi.ieeecomputersociety.org/10.1109/HCC.2001.9952
51.

[6] Higgins, C., Symeonidis, P., Tsintsifas, A. 2002. The mark-
ing system for CourseMaster. In Proceedings of the 7th An-
nual Conference on Innovation and Technology in Computer
Science Education. ITiCSE '02. ACM Press, New York, NY,
46-50. DOI= http://doi.acm.org/10.1145/544414.544431

[7] Hundhausen, C. D. 2006. A Methodology for Analyzing the
Temporal Evolution of Novice Programs Based on Semantic
Components. In Proceedings of the 2006 International
Workshop on Computing Education Research. (University of
Kent, Canterbury, UK, September 9-10, 2006) ICER '06.
ACM Press, New York, NY, 59-71.

[8] Kiesmüller, U.; Brinda, T. 2008. How Do 7th Graders Solve
Algorithmic Problems? – A Tool-Based Analysis. In Pro-
ceedings of the 13th Annual Conference on Innovation and
Technology in Computer Science Education (Madrid, Spain,
June 30-July 2, 2008). ITICSE 2008. ACM Press, New
York, NY, 353.

[9] Maloney J., Burd, L., Kafai, Y., Rusk, N., Silverman B.,
Resnick, M. 2004. Scratch: A Sneak Preview. In Second In-
ternational Conference on Creating, Connecting and Col-
laborating through Computing. (Keihanna-Plaza, Kyoto, Ja-
pan ,January 29-30, 2004) C5'04. IEEE Computer Society,
Los Alamitos, CA, 104-109. DOI=
http://doi.ieeecomputersociety.org/10.1109/C5.2004.131437
6.

test case success mark

endcondition yes

Kara runs yes

inverting yes

special case yes

1

endcondition yes

Kara runs yes

inverting yes

special case no

2

endcondition no yes

Kara runs yes no

inverting yes yes

special case yes yes

3

endcondition yes no yes

Kara runs yes yes no

inverting no yes yes

special case no no no

4

endcondition no yes no no

Kara runs no no yes no

inverting yes no no yes

special case yes no no no

5

endcondition no

Kara runs no

inverting no

special case no

6

23

[10] Mayer, R. E. 1992. Thinking, problem solving, cognition
(2nd edition). W. H. Freeman and Company, New York, NY.

[11] Pattis, R. E. 1994. Karel The Robot: A Gentle Introduction
to the Art of Programming, 2nd Edition. John Wiley & Sons,
Inc., New York, NY.

[12] Reichert, R. 2003. Theory of Computation as a Vehicle for
Teaching Fundamental Concepts of Computer Science. Doc-
toral Thesis. No. 15035. ETH Zurich. URL: http://e-
collection.ethbib.ethz.ch/show?type=diss&nr=15035

[13] Schulte, C. 2004. Empirical Studies as a tool to improve
teaching concepts. In Informatics and student assessment.

Concepts of Empirical Research and Standardisation of
Measurement in the Area of Didactics of Informatics. Ma-
genheim, J., Schubert, S. (eds.). Köllen, Bonn, Germany.
135-144.

[14] Schwill, A. 1997. Computer science education based on
fundamental ideas. In Information Technology – Supporting
change through teacher education. Passey D., Samways B.,
(eds.). Chapman Hall, London. 285-291.

24

Understanding TDD in Academic Environment:
Experiences from Two Experiments

Sami Kollanus
∗

Department of Computer Science and
Information Systems, University of Jyväskylä

Finland
sami.kollanus@jyu.fi

Ville Isomöttönen
†

Department of Mathematical Information
Technology, University of Jyväskylä

Finland
vilisom@jyu.fi

ABSTRACT
Several studies have reported positive experiences with Test-
Driven Development (TDD) but the results still diverge. In
this study we aim to improve understanding on TDD in ed-
ucational context. We conducted two experiments on TDD
in a master’s level university course. The research setting
was slightly changed in the second experiment and this pa-
per focuses on comparing the differences between the two
rounds. We analyzed the students’ perceptions and the dif-
ficulties they faced with TDD. The given assignment clearly
affected the students’ reflections so that the more difficult
assignment evoked a richer discussion among the students.
Additionally, some insights into teaching TDD are discussed.

Categories and Subject Descriptors
K.3.2. [Computers and Education]: Computer and In-
formation Science Education—Computer science education

General Terms
Experimentation

Keywords
TDD, Education

1. INTRODUCTION
Beck published his first edition on Extreme Programming

(XP) [1] almost a decade ago. TDD has become one of the
best known and possibly the most widely used practice of
XP. The basic idea of the practice is simply to write tests
before the production code. This is done iteratively in very
short, even minutes long cycles.

∗Arranged the experiment, conducted the analysis, and pro-
vided the conclusions.
†Conducted the analysis, and provided the conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

In several studies, TDD has been suggested to improve
code quality [3] [14] or productivity [4] [6]. Also some other
benefits, like improved reuse [11], have been reported. How-
ever, the evidence on these benefits is not that clear. The ex-
isting results are contradictory and more research is needed
to better understand the essence of TDD and its benefits for
the software engineering field [5].

Many educators have followed and applied XP’s testing/-
design practice, TDD, in varying stages of CS/SE curricula.
Several positive experiences have been reported [2] [9] [13],
but is there actually any agreement among the academics on
what it is, what it achieves, what it achieves in the CS/SE
education, and then, how it should be embedded in the cur-
ricula. Some educators have proposed that it should be em-
bedded in the very beginning of the curricula [2] [9]. How-
ever, it may not be so straightforward to have it at CS1
level. For example, Keefe et al. [7] reported that TDD was
the most difficult of all the XP practices for their students.
Also we concluded in our previous study that learning TDD
caused high cognitive load even for the advanced students
[8]. The major question is what is regarded as learning ob-
jectives at varying levels of the curricula.

The general long-term aim of our work is to gain better un-
derstanding on the role of TDD in CS/SE education. With
this objective, the first and very difficult task is to illumi-
nate what TDD actually is and achieves. We consider that
previous research has not been able to sufficiently explicate
this basic question.

Our current work aims to study the phenomenon from the
students’ point of view. We started this in our recent study
which focuses on the students’ perceptions on TDD [8]. We
conducted an experiment in the master’s level course on test-
ing and quality assurance at the University of Jyväskylä. In
order to better trust the conclusions derived from the stu-
dents’ experiences we replicated the original study with mi-
nor changes. In this paper we report results from these two
experiments including a comparison between them.

We start with the description of research setting and pro-
cess in Section 2. In Section 3, we present the background
and the results of the first experiment. This is followed by
the corresponding presentation on the second experiment in
Section 4, in which we also analyze the differences between
the experiments. We discuss the results and summarize the
main conclusions in Sections 5 and 6.

25

2. RESEARCH SETTING AND PROCESS
The context in our study was a university course on soft-

ware testing and quality assurance. We conducted two ex-
periments, in autumn 2006 and in spring 2008. The par-
ticipants in the course were master students, mostly ma-
jored in software engineering. The course is planned to be
a fourth year course, but actually the students had varying
background because of flexibility in our education system.
Some of the participants were pretty young third year stu-
dents, but many of the students had already several years
of working experience. The minimum prerequisites for the
course were two basic programming courses and two other
courses related to software engineering methods and pro-
cesses. However, most of the students had much better pro-
gramming skills than the basic courses require. TDD was
relatively new approach to the students. Some of them had
tried it before, typically on another course. Only few of
them had used it in work.

The research process aims to increase understanding of
what TDD in CS/SE education actually means. We have
started this work by analyzing the students’ experiences
without particularly focusing on any tight research question.
We are interested in how the students perceive the method,
what it actual means, how it should be taught, and where
in the curriculum it should be taught?

The data originates from a questionnaire applied in the
both experiments. Based on this relatively small data we
are mainly interested in what perspectives emerge in the
students’ experiences, without an objective to claim rela-
tions between the emerged concepts. Thus, the data allows
an initial coding under the theme ”TDD in CS/SE educa-
tion”, and the aim is to analyze what hypotheses rise for a
further conceptualization.

An important point to disclose about the research process
is that the hypothesis raised by the first experiment guided
the selection of programming assignment in the latter; We
noticed that the difficult programming assignment in the
first experiment hindered a bit the students’ concentration
purely on TDD. In the second experiment round, we tried to
make the concentration easier with a simpler programming
assignment.

2.1 Structure of experiments
The both experiments included the following steps:

• introduction lecture

• little ”warm up” assignment

• actual programming assignment

• questionnaire

First, TDD was briefed only in one introduction lecture
(90 min.). Simple ”by the book” introduction was presented
with very small examples and without academic debate.
In addition, the students were advised to individually go
through the bowling game kata example [10]. TDD was
very little discussed during the rest of the course. So, the
students formed their conceptions pretty much individually
based on their experience with the coursework.

The programming assignment included two tasks. The
first part was very easy warming up with TDD and the tools,
which were Eclipse with JUnit. The primary programming
assignment was different in each experiment round. In each

case the assignment aimed to be challenging enough without
requiring too much time. Support sessions (3*2 h) were
available for the students who needed it.

Finally, the students had to reflect and report their expe-
riences on TDD. We collected the experiences with a ques-
tionnaire, which is presented in appendix A.

This assignment including the questionnaire was compul-
sory for the students to pass the course. Therefore the par-
ticipants represent a wide spectrum of students, not only the
most motivated ones. Some arrangements were different in
each experiment round. These differences are explained in
the following sections.

2.2 Data analysis
We followed the coding guidelines of Grounded Theory

[16] as a rigorous approach to our data analysis. We first
applied open coding to discover relevant points in the data,
which was followed by identifying causalities. With the small
data the causalities are still relatively weak but provide basis
for the future work. The contribution of the paper is not a
theory generation, but it could be a start for conceptualizing
the area of TDD in education.

The data was managed according to the following steps.
First, the raw data was transfered into a table. The an-
swers were relatively short, so we were able to visually man-
age each answer in a single row. Second, we picked up
the relevant issues in each answer, and wrote them down
to the second column of the table. Third, through con-
stant comparison, the issues were conceptualized into cate-
gories. Additionally, some notes were written down during
the whole coding process. The notes mostly consisted of pos-
sible causes for the key findings. Finally, we aimed to find
causalities by analyzing the found categories against the raw
data and the written notes.

Both authors conducted the analysis individually, after
which the results were compared and discussed for an agree-
ment. The data from the both experiment rounds was first
handled separately, which was followed by a comparison be-
tween the experiments. This final comparison was made as
pair work.

3. FIRST EXPERIMENT ROUND
The first experiment was conducted during the autumn

2006. The students had to do the TDD assignment as a part
of their coursework, which formed 25 % of the course grade.
They were strongly recommended but not forced to work
as pairs. As a result we received 27 completed assignments
and responses to the questionnaire from 25 pairs and two
individuals. So, the total number of the participants was
52.

The primary task in the assignment was to implement a
simple HTTP server. This task aimed at setting enough
challenge for the participants to try TDD with realistic cog-
nitive load in programming work. The compulsory courses
in our curricula don’t include all the knowledge needed in the
assignment, but support was available for those who needed
it.

3.1 Students’ Background
TDD was relatively new approach to the students. Only

in one pair both of the students had tried TDD before the
course. One of a pair had tried it in 10 pairs and the rest
16 (14 pairs and two individuals) didn’t have any earlier ex-

26

perience. So, 11 of the 27 participants (pairs or individuals)
had some earlier experience with TDD. Their experience was
mostly pretty lightweight and related to a brief introduction
on another university course. Only a couple of the students
had experience with TDD in real programming work.

Three of the pairs reported they had followed TDD very
strictly and also three of them had slipped often. Most of
the respondents (21) reported they had slipped from the test
first principle few times or occasionally. We concluded that
the students were motivated and seriously tried to follow
TDD despite of the difficulties.

Most of the pairs (15) did at least part of the assignment
together using the same computer (answers 1 or 3, see ap-
pendix). The rest of the students worked mostly individu-
ally.

3.2 Experiences

3.2.1 How hard was it to use TDD (scale 1-5, see
appendix)?

The experiences were quite equally divided to easy and
hard side of the scale. The most typical answers were 2 (9
answers) and 4 (10). The average of the answers was 3.0 and
also median was 3. We also analyzed how earlier experience
with TDD or work organization affected this answer. The
result related to students’ earlier experience on TDD was
pretty obvious. The students without earlier experience had
more difficulties with TDD. However, the difference between
the groups was not huge. This is possibly because of very
limited earlier experience even among the students who had
tried TDD before.

Work organization made more clear difference between the
answers and this was not so obvious for us. The students,
who worked together, had more difficulties with TDD. Could
pair working lead to some difficulties in this kind of assign-
ment? We don’t know the answer, but we considered that
likely the more skilled students preferred individual work.

3.2.2 Would you like to use TDD after this experi-
ence?

This was an open-ended question, which aimed to get in-
formation about the students’ attitude towards TDD after
the assignment. We analyzed the textual answers which di-
vided into three categories. The attitude of the students
was more positive than we expected. 20 of the 27 pairs were
more or less willing to use TDD in the future. Three of them
answered neutrally and only four pairs would not like to use
TDD in the future.

The most interesting finding for us was to see, how many
of the students believe the expected benefits of TDD regard-
less of their difficulties with the assignment. Many of the
students wrote that TDD improves their code quality and
they can trust better on their own code. They saw TDD as
an extra cost in their work, but they still believed more in
expected benefits. However, several pairs claimed that TDD
is not applicable in all projects and they would need much
more training to be able to use it effectively. So, the students
simply appeared to believe in the claimed benefits, even if
they didn’t really experience them in this assignment.

3.2.3 What was most difficult in the assignment?
The answers to the question divided into the following

categories:

• implementation

• writing of appropriate tests

• abstraction level

• discipline/attitude

• other

Implementation. The implementation of the server turned
out difficult for the students. The majority of the partici-
pants quite clearly reported implementation difficulties as
they were typically stuck in a small-scale technical issue.
Many of the implementation issues were actually related to
the test code, not the server itself. Writing the test for web
server in JUnit environment set unexpected technical chal-
lenge for the students. Several of them became frustrated
because the issues with the test code took most of their time.
The students also reported problems due to poor program-
ming skills, new programming language, or new tools. This
category does not directly relate to TDD but is a reason for
the other perceived difficulties.

Writing of appropriate tests. The category means that the
students did not know what kind of tests should be written.
The students’ considerations include the extent of a test, i.e.
the number of tests in single test. We consider that the ex-
tent of a test becomes easily interpreted ”not by-the-book”,
so that every possible aspect and future extension should be
included in a test. In fact, this has been called exhaustive
testing [15]. Another interesting detail is the difficulty to im-
plement a test with JUnit’s assertequals expression, which
means the difficulty to approach TDD with the chosen tools.
It seems that the novelty of the test-first paradigm requires
explicitness in teaching in order to show how a test looks
like, what it is, what it strives for, and how it is written
(tools). The introductory lecture, provided in the course,
underlined the issues but did not provide a thorough hands-
on demonstration.

Abstraction level and TDD. The answers indicated that it
was hard to test the server. We placed the answers into the
category of abstraction level for the following reason: the
task dealt with integration (server-client) level, which in-
troduced difficulties in approaching TDD. For example, the
students couldn’t proceed in small steps. Rather, they per-
ceived the client side as a test and forgot that also the actual
implementation of the server could have been implemented
with TDD. Interestingly, the students seem to wonder how
the method scales up, and also question why the trivial func-
tionalities should be tested. We conclude that despite the
programming difficulties in general, the chosen assignment
revealed serious questions here.

Discipline. In the answers of six pairs the discipline was
brought up. One of the answers relates to the discipline
for writing a pretty code. The others are more relevant,
bringing up the difficulty of following of the strict method.
Some explain this by emphasizing the novelty of the test-
first model, and some couldn’t get rid of their old habits
when learning the model. One pair explicitly notes that it
probably wouldn’t be so difficult if the model was taught as
the first programming model.

Other. An issue that was occasionally reported as a rea-
son for the other categories was the novelty of the test-first
paradigm. We suppose that the issue is a general expression
for the writing of appropriate tests. Also, it seems to relate

27

to the disadvantage of old habits. The data revealed also
other aspects without clear reoccurrences. One of them was
the straggling of the code, which we interpret to be due the
lack of any initial design, resulting in the code that was per-
ceived as uncontrolled. Obviously, the bottom-up approach
(TDD) cannot omit a sufficient initial understanding of the
problem domain as a whole. Yet, one pair comments on the
initial step of TDD, i.e., the guideline to see the negative
test result at the start, when there’s not any of the actual
production code available. The students couldn’t figure out
the purpose of the action and perceived it as an unnecessary
hype.

4. SECOND EXPERIMENT ROUND
The second experiment was conducted in spring 2008. We

did some changes to the research setting after the first round.
The most important change was the programming task. The
students had many technical difficulties with the task and
tools during the first round. Therefore we gave the students
an easier task to enable them be better focused on TDD.
The students had to do a small software component, which
can be used to store, retrieve and parse certain kind of text.

We had 27 participants in the experiment. The assign-
ment was again compulsory part of the course, but this time
it didn’t have effect on the course grades. Possibly because
of the course arrangements, the students didn’t appear to
be so eager to pair work. We received 20 completed assign-
ments from 7 pairs and 13 individuals. We considered the
interpretation of the answers of the pairs little problematic
in the first round, and this is why we asked all the students
to individually fill the questionnaire in the second round.

4.1 Students’ background
We asked the students about their working experience on

ICT field. Most of the students worked at the same time
with the course. Only 8 of the 27 students didn’t have any
working experience. The experience of rest 19 (70 %) stu-
dents varied from 6 months to 12 years (md = 26 months).
In the first round we didn’t ask this, but these results con-
firm our estimation about the students’ background. They
are really experienced compared to most of the student ex-
periments in software engineering research.

TDD was again quite new approach to the students. Al-
most half of them (13) had tried TDD before, but most of
them had done it only on another university course. Only
one had used it systematically in work.

Most of the students clearly tried to follow TDD rigor-
ously. Only one reported that he wrote test systematically
after code and three of them had slipped very often from
the test first principle. Majority of the students had slipped
occasionally or only few times. So, they appeared to be mo-
tivated to try TDD seriously. On the other hand, only three
students reported that they didn’t slip at all from the test
first principle. This obviously relates to the difficulties in
maintaining discipline.

4.2 Experiences

4.2.1 How hard was it to use TDD
The easier programming task affected the students’ ex-

periences on TDD. Average of the answers was 2.6 (first
round 3.0), which means that TDD was experienced as eas-
ier than in the first experiment. This was quite expected

result, because an easy programming task leaves more cog-
nitive capacity for learning TDD.

The earlier experience on TDD had only a small effect
on the results, just like in the first experiment. TDD was
slightly easier for the students with earlier experience. In
the first experiment, we found that the students working
in pairs had more difficulties with TDD. The second round
produced opposite results. The students without a pair ex-
perienced TDD as more difficult, but this time the result
was not so clear. We don’t have a good explanation for dif-
ference between the experiment rounds. For some reason,
most of the skilled students seemed to prefer working indi-
vidually in the first experiment and working in pairs in the
second round.

In the second round we were also able to analyze how
working experience affected the students’ answers. TDD
was slightly easier for the students with working experience,
but the difference was relatively small. Amount of working
experience didn’t have a remarkable effect on the results.

4.2.2 Would you like to use TDD after this experi-
ence?

Also after the second round, the students’ attitudes were
more positive than we expected. Only 4 of 27 students
wouldn’t like to use TDD in the future. In addition, five
students were neutral in their opinions. This confirmed our
findings from the first experiment. In this kind on small
assignment the students don’t have an opportunity to per-
sonally experience the claimed benefits of TDD. Many of
them also found it difficult to follow TDD principles. How-
ever, they seem to be eager to believe in the benefits and
would like use TDD in the future.

The most common reason for the positive attitudes was
better trust in the code. TDD was seen as a safety net for
the programmer. Some students also liked the approach,
because it drives to small steps in the programming work.
In this round, very few students considered test code qual-
ity or possible difficulties with refactoring. The negative
comments focused on extra work needed in TDD practice
or changing the routines they were used to. Some students
just didn’t like TDD, because they felt it disturbed their
thinking process in the programming work.

4.2.3 What was most difficult in the assignment?
When asked what was most difficult in using TDD, the

students raised a lot of same issues than in the first experi-
ment. Three common categories of difficulties came clearly
up. First, for many of the students, it was simply difficult to
adapt to the test first approach. Second, several students re-
ported it was hard to design proper tests, especially in very
short cycles required in TDD. Third, many of the students
suffered from technical difficulties. Some of them had not
done programming in several years and for few of them this
was the first experience with Java. Also some difficulties
with JUnit environment were encountered.

The second experiment also disclosed new interesting di-
mensions. These include the following:

• TDD was perceived as a design method

• TDD was perceived as motivating

• there was a contradiction between the disciplined method
and creativity

28

• the students experienced TDD applicable for pair work

Some students experienced that the program was designed
along the usage of TDD. There was a difference compared
to the first experiment with the more difficult programming
assignment, in which some students felt their code uncon-
trolled, and we concluded that the this indicated lack of
initial design.

With the easier programming assignment, motivation was
also found. In fact, we expected this issue to come up al-
ready in the first experiment. The conclusion is that the
short intervals of the method probably decrease the cogni-
tive load (complexity) giving motivating feedback for the
developer. In the first experiment, they had more difficul-
ties to work in baby steps as they perceived that the client
is the test in the http-server assignment.

Maybe the most interesting are the last two perspectives.
The disciplined method was perceived as offensive because
it disturbs a creative flow. This indicates that the relation
between creativity and the disciplined method is unclear,
and should be further studied. TDD was also perceived as
applicable for pair work. TDD as pair work was suggested
to make the test writing easier.

Overall, we noticed that the easier assignment in the sec-
ond experiment did not raise a rich discussion among the
students compared to the first experiment. The second ex-
periment gave rise to well known reasoning of TDD, and in
this sense, the answers seem to be closer to the by-the-book
briefing lecture. In the second round, some respondents ex-
plicitly comment that TDD cannot be internalized with the
easy assignment.

5. DISCUSSION
We noticed that realism played a significant role in how

TDD was perceived. The more difficult assignment in the
first experiment represented more realistic cognitive load in
programming work. This raised rich discussion. In the sec-
ond experiment, the students noted that it was difficult to
internalize TDD, because the assignment was so simple. The
both assignments disclosed that the students would have
needed more examples on how to apply the method in prac-
tice. So, TDD should be first taught by showing how to do
it. After being able to follow the method in practice, realistic
assignments would increase critical thinking and recognition
of yet unclear meanings (cf. self-direction).

The teaching approach on TDD should be considered based
on the learning objectives. In our master’s level course, the
goal was to create overall understanding on TDD as a soft-
ware engineering practice and to evoke individual thinking.
With this goal the first experiment was more successful. The
approach should be different if the objective was to give
a practical hands-on training on TDD. This would require
much more time, concrete examples, and step-by-step train-
ing.

These experiments already raise a discussion on what TDD
actually is and achieves. It has been claimed to be a design
method. With the easier assignment, some students experi-
enced that TDD was a means to design, but with this simple
assignment the design was easy to keep in mind. Interest-
ingly, the more difficult assignment did not give rise to the
design property of the method. Some students reported they
felt uncontrolled with their code. We concluded that with
increasing complexity the students’ would have needed some

up-front design, because the structure was difficult to keep
in mind.

An important question is whether the test is written be-
fore the production code. Is the test writing prior to the
production code only a way to document the design? This as
a disciplined rule may be questionable in the unit level. For
example, some students felt the contradiction with creative
flow and the disciplined method. Based on the viewpoints
discussed above, the meaning of TDD as design method
should be further studied. Is the regression testing finally
the only major benefit of the method. These are somewhat
difficult questions which will direct our future work.

Müller and Höfer [12] reported that student experiments
with TDD may not be widely generalizable. The strength of
our study is that the students in our experiments were really
experienced related to the most of the student experiments
on the research field. Many of them were already profession-
als with several years of working experience. However, there
are some restrictions in our study. First, the assignments
were relatively small and they do not totally correspond to
the reality of software engineering work. Second, even the
most experienced students were novices with TDD. In or-
der to understand TDD better we should direct the future
research to overcome these challenges.

6. CONCLUSIONS
In this paper we have discussed experiences with TDD

in educational context and reported the results from two
experiments in university courses. The main conclusions are
related to the difficulties the students had with TDD. These
difficulties gave rise to three main categories:

• TDD approach

• Designing of tests

• Technical difficulties

Table 1 includes explanations for these categories. Addi-
tionally, some exemplars of the students’ comments related
to each category are provided.

The comparison between the experiments yielded three
other interesting viewpoints. First, the experiences varied
depending on the programming assignment. The more diffi-
cult assignment in the first round evoked a richer discussion,
but the students with weak technical skills couldn’t concen-
trate on learning TDD. The easier assignment in the second
round obviously helped those with weak technical skills, but
was perceived as less beneficial by the experienced students.
So, the context and learning objectives must be carefully
taken into account in teaching TDD.

Second, the students experiences raised up the question
about the TDD as a design method. The design aspect came
up in the easier assignment. In the more difficult assignment
the students would have clearly needed design before start-
ing TDD.

Finally, the second experiment confirmed our observation
that the students are sensitive to new information. They
seemed to believe in the claimed benefits of TDD despite the
difficulties they perceived. We should pay attention to what
and how we teach because the students may really believe
it. This should also be taken into account when drawing
conclusion from the student experiments.

29

Table 1: Experienced difficulties with TDD

Main categories Explanation Example quotes

TDD approach adapting to the test first approach
discipline in short cycles

”The most difficult was to rigorously write tests be-
fore the functionality.”
”I couldn’t naturally divide the work into small
pieces. Often I wrote one major test or several tests
at once and then used an hour in coding the func-
tionality.”
It is so easy to slip from TDD.”

Designing of tests designing appropriate tests generally
designing test in small steps

”Often I didn’t find any reasonable test to continue
with.”
”It was not always easy to come up with good and
consistent test cases, particularly without any speci-
fication of the problem”
”To come up with a proper test was almost always
more difficult than writing the corresponding pro-
duction code”

Technical difficul-

ties

general programming skills
Java experience
JUnit or Eclipse

”Everything was difficult. I had never used Java be-
fore and my last programming experience was 10
years ago.”
”The first problem was learning JUnit environment.”

7. REFERENCES
[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley Professional, 1st edition,
October 1999.

[2] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In OOPSLA
’03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 148–155, New York,
NY, USA, 2003. ACM.

[3] S. H. Edwards. Using test-driven development in the
classroom: Providing students with automatic,
concrete feedback on performance. In Proc. Int”l Conf.
Education and Information Systems: Technologies and
Applications (EISTA 03), 2003.

[4] H. Erdogmus, M. Morisio, and M. Torchiano. On the
effectiveness of the test-first approach to
programming. Software Engineering, IEEE
Transactions on, 31(3):226–237, March 2005.

[5] D. Janzen and H. Saiedian. Test-driven development
concepts, taxonomy, and future direction. Computer,
38(9):43–50, Sept. 2005.

[6] R. Kaufmann and D. Janzen. Implications of
test-driven development: a pilot study. In OOPSLA
’03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 298–299, New York,
NY, USA, 2003. ACM.

[7] K. Keefe, J. Sheard, and M. Dick. Adopting XP
practices for teaching object oriented programming. In
ACE ’06: Proceedings of the 8th Austalian conference
on Computing education, pages 91–100, Darlinghurst,
Australia, 2006. Australian Computer Society, Inc.

[8] S. Kollanus and V. Isomöttönen. Test-driven
development in education: experiences with critical
viewpoints. In Proceedings of the 13th annual
conference on Innovation and technology in computer
science education, pages 124–127, New York, NY,
USA, 2008. ACM.

[9] W. Marrero and A. Settle. Testing first: emphasizing
testing in early programming courses. In ITiCSE ’05:
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science
education, pages 4–8, New York, NY, USA, 2005.
ACM.

[10] R. Martin. Bowling game kata, 2005.

[11] M. Muller and O. Hagner. Experiment about test-first
programming. Software, IEE Proceedings -,
149(5):131–136, Oct 2002.

[12] M. M. Müller and A. Höfer. The effect of experience
on the test-driven development process. Empirical
Softw. Engg., 12(6):593–615, 2007.

[13] M. M. Müller and W. F. Tichy. Case study: Extreme
programming in a university environment. In 23rd
International Conference on Software Engineering,
pages 537–544. IEEE Computer Society, 2001.

[14] N. Nagappan, E. M. Maximilien, T. Bhat, and
L. Williams. Realizing quality improvement through
test driven development: results and experiences of
four industrial teams. Empirical Softw. Engg.,
13(3):289–302, 2008.

[15] D. H. Steinberg and D. W. Palmer. Extreme Software
Engineering A Hands-On Approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2003.

[16] A. Strauss and J. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques. Sage Publications, Newbury Park,
California, 1990.

APPENDIX

A. QUESTIONNAIRE
The questionnaire, which we used to collect the experi-

ences, included the following questions.

1. How much working experience do you have on ICT field?
(This was not asked in the first experiment round.)

years and months

30

2. Had you tried TDD before the course?
1 yes
2 no

If yes, where have you used it?
1 in my work
2 in another course
3 other, describe ...

3. How strictly did you follow TDD in the assignment?
1 very strictly
2 I/we slipped few times
3 I/we slipped occasionally
4 I/we slipped often
5 I/we did the code first and the tests after it

4. How did you organize your work (if you worked with
a pair)?

1 we worked together using the same computer
2 we shared the work and finally put the parts together
3 partially both 1. and 2.
4 only one of us did the work

5. How hard was it to use TDD with scale from 1 to 5
(1 = not at all, 5 = very hard)?

6. Would you like to use TDD after this experience? Reason
your answers.

7. What was most difficult in the assignment?

31

Why Using Robots to Teach Computer Science can be Successful
Theoretical Reflection to Andragogy and Minimalism

Marja-Ilona Koski
Department of Computer Science

University of Helsinki
Finland

Jaakko Kurhila
Department of Computer Science

University of Helsinki
Finland

Tomi A. Pasanen
Gamics Laboratory

Department of Computer Science
University of Helsinki

Finland

ABSTRACT
To help students understand subjects such as theoretical aspects
of computation, algorithmic reasoning and intelligence of
machines, a number of publications report experiments to teach
these topics with the help of Lego Mindstorms robots. In the
publications, the researchers report how they have created
various ways to approach the issues either in Computer Science
or in Artificial Intelligence. The reported results of the
experiments are based on the learning outcomes, the feedback
from the students, and the perceived informal observations (i.e.
“feelings”) of the instructors.

But can anyone else benefit from the reportedly positive
outcomes of the experiments? To give an answer to that question,
this paper analyses the reported results through two support
theories. The two theories chosen for this, andragogy and
minimalism, are concerned with adult learning and how teaching
adults should be approached. When reflecting the results of the
four teaching experiments to the suggestions drawn from the
theories, a more comprehensive answer to why the experiments
have been successful can be given.

The four teaching experiments analysed here were in many
ways similar to each other. A connection to the chosen support
theories was straightforward to make. Besides describing the
artefacts of teaching with the robots, a deeper discussion on this
teaching approach is provided. For an instructor, all these
observations offer more concrete evidence about beneficial
factors of teaching with robots.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education – collaborative learning;
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, self-assessment

Keywords
Robots, teaching experiment, adult learning theories, adult
education, evaluation.

1. INTRODUCTION
It has been noted that hands-on experience is largely missing
from the Computer Science classes while such sessions are
common in laboratory sciences (Stein 1998). Some university
instructors have chosen a different method to teach basic
concepts from their field of specialization. They have decided to
give Computer Science or Artificial Intelligence (AI) courses
with the help of robots. These researchers have stated that this
method helps to make the learning more captivating and
interesting (Kumar and Meeden 1998, Imberman 2004 and
Kumar 2004). However, none of these teaching experiments
reflect their results on anything else than the experience itself
and the responses given by the students. When reading these
publications, an instructor willing to use such a method in his/her
classroom might confront questions whether it is possible to
produce the same positive learning outcomes again and does it
really engage students to the task in the same way as described in
the publications.

The aim of this paper is to clarify why the methods used in
the teaching experiments can turn out to be effective by
reflecting the earlier experiments to theoretical frameworks in
two well-known learning theories. The researchers of the chosen
teaching experiments described positive and/or negative
outcomes, but they did not adequately treat the question whether
there is a transfer of success if someone else decides to use the
Lego Mindstorms robots in a similar fashion.

Four well-reported teaching experiments with Lego
Mindstorms robots were chosen for our reflection (descriptions
of teaching experiments in Subsections 3.1-3.4). In addition to
the chosen experiments, there are of course several other
publications that report the development in the field of the
teaching with robots by designing new exercises for the class or
innovative ways to use Mindstorms robots (Flowers and Gossett
2002; Imberman and Klibaner 2005; Imberman 2005; Jipping et
al. 2007; Klassner and Continanza 2007). There are also other
evaluation reports on the use of robots, but the focus of these is
more on the robots themselves than on the learning process
(Challinger 2005; Gross and Power 2005).

2. SUPPORT THEORIES
The theoretical frameworks used in our paper are andragogy and
minimalism. The theories are well-suited for university-level
education, as the learners are adult and the efficiency of
education tends to be of high priority in formal educational
settings. In the following two subsections these theories are
explained and described on such a level that further evaluations
of the chosen teaching experiments can be understood.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a
fee.
Koli Calling '08, November 13–16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11…$5.00.

32

2.1 Andragogy
The theory of andragogy is based on a set of assumptions that
describe how adults learn. This idea originates from the fact that
adults learn differently than children, and the pedagogical
methods used to teach children will not work among adults. The
first of assumptions of the theory is self-concept of the learner. It
describes how it is the job of an adult educator to move the self-
concept of the learner from being a dependent personality
towards the self-directed learner (Knowles 1980). The theory of
andragogy directs the instructor to recognize the duty to
encourage the adult learner to move away from his/her old
learning habits, and to become a self-directed, independent
learner who takes responsibility of his/her own learning
activities.

The second assumption is prior experience of the learner.
Here, the learner’s experience of life is taken into account when
new concepts are taught. Adults have a reservoir of experience
which is a rich resource in the learning process to themselves and
for others (Knowles 1980). Knowles (1980) states that people
attach more meaning to the studied matter if they gain it from the
experience than if they acquire it passively. Thus, an ideal
situation for an adult to learn is with the laboratory experiments,
discussions, problem-solving cases, simulation exercises and
field experiences (Knowles 1980).

Thirdly comes readiness to learn. The idea of the third
assumption is to evoke the learner’s need to know the matter
being taught. People become ready to learn something when they
realize that they need to know it in order to perform better with
real-life tasks (Knowles 1980).

The fourth assumption is orientation to learning. In adult
teaching, it is important to acknowledge the fact that adults want
to apply the knowledge and skills they learned today into living
more effectively tomorrow (Knowles 1980). Adults need to find
out what kind of effect the newly learned skill will have in their
everyday life. Because of this, adults tend to learn in a problem-
centered or performance-centered way of thinking (Knowles
1980).

Learner’s need to know is the fifth assumption. Adults want
to know the reason why something is important to learn, and how
they can benefit from it (Knowles, Holton, and Swanson 1998).
The adult learner needs to value the lessons, and his/her
expectations should be filled in the class room by including an
explanation of the importance of the matter.

The sixth assumption, and the last one, is motivation to
learn. It is important for an adult educator to realize that
potential motivators of the adult learning process are internal,
and they come from the learner’s own experience of him/herself
(Knowles, Holton, and Swanson 1998). This does not exclude
the fact that adults also respond to external motivators. Such
factors as self-esteem and quality of life are important in giving
adults a reason to learn (Knowles, Holton, and Swanson 1998).
Expressing the learner’s own opinion of the prioritization of the
topics covered in class can give a learner the needed boost of
motivation to learn.

2.2 Minimalism
The theory of minimalism assumes that when people are engaged
in a task they will start to reason creatively and improvise
(Carroll 1998). To support this, only the metadata of the matter

should be provided to the learner, so that the learner can make
the assumptions and reason on his/her own. The second thought
derives from the idea of creative reasoning and improvising.
When people are creating something or going with their instincts,
errors tend to occur. This kind of action path is supported by the
theory of minimalism. If and when errors occur, they are
recognized and diagnosed with the help of the instructor and the
use of a text book or a manual (Carroll 1998).

The first of the principles advises to choose an action-
oriented approach. Opposite to the typical manuals where the
first task is assigned on say page, 15, a manual designed as
minimalism suggests introduces the first task on page one or two
(Dubinsky 1999).

The second principle is anchoring the tool in the task
domain. If the documents are done according to the suggestions
given by minimalism, the text is presented in a short and simple
way, and it must be easy to understand (Dubinsky 1999). The
chapters are designed for an average user without long
introductions and technical descriptions.

Support of error recognition and recovery is third on the
list of principles. The idea behind this principle is the
assumption that beginners make mistakes. The intention is to
make features into the documentation that help the learner to
identify and recover from his/her mistakes (Dubinsky 1999).
This way, learning is a process where the learner is directing
his/her own learning. The whole process should be seen as
discovery learning where the learner is active and highly
motivated by the tasks (Carroll and van der Meij 1996).

Support reading to do, study and locate is the last of the
principles. The goal in this is to keep every section of the text
self-contained (Dubinsky 1999). With the independent parts, the
learner is not confused by the cross-references to earlier or later
chapters. The main idea, when designing manuals, should be to
give a learner the possibility of sequential processing, but also to
enable random access approaches as well (Carroll and van der
Meij 1996).

3. EARLIER TEACHING EXPERIMENTS
The goal of the following four subsections is to give the reader an
idea about the evaluated experiments. Before looking in more
detail into the teaching experiments, a short description
concerning the tools used is needed. All of the chosen teaching
experiments used the same Lego Mindstorms robots (Lego 2007)
to teach the desired notions of the Computer Science.

The Lego Mindstorms kit includes Lego bricks to build the
robots, and one programmable Lego brick called RCX. The first
three experiments used the RCX brick to control the robot.
Contrary to the others, the fourth teaching experiment used the
Handy Board (Handy Board 2003) as a central unit of the robot.
The Handy Board is a microcontroller system for building small,
mobile robots mainly for educational or hobbyist purposes.

In the case of RCX, all programs are downloaded to it from
a computer through an infrared transmitter which is connected to
the computer’s USB port. The RCX brick has three outputs A, B
and C for the motors and for the lamps, and three inputs 1, 2 and
3 for the sensors. This Lego Mindstorms kit includes a Windows-
based visual programming environment, but in all of the
experiments it was stated to be too limited in its expressive
power for the tasks that needed to be accomplished. The Handy

33

Board works almost in the same way; it only has a few
improvements compared to the Lego product.

3.1 Teaching a Computer Science course in
the US Air Force Academy
The teaching experiment described in this section is based on the
following three publications (Fagin 2000, Fagin 2003, and Fagin,
Merkle, and Eggers 2001).

The goal of the Computer Science course is to provide the
learners with a strong core competence for future Air Force
officers. One of the desired skills is programming. The authors
argue that the use of the Ada/Mindstorms and the robots offer a
new and interesting way to teach basic computing and controlling
concepts.

The course was about introducing basic computing ideas,
such as sequential control flow, selection, iteration, input/output,
arrays, graphics, procedures and file processing. Six of these
concepts are introduced in the publications.

Sequential control flow was taught with an exercise where
the students were given a robot with two wheels connected to
outputs A and C and the task was to write a program that makes
the robot go forward for two seconds, then play a song, and after
that go forward for one second, and stop.

To teach the use of variables, the method used was to show
how the robot changes its behaviour according to the quantity in
question. To demonstrate the meaning of the term in action, an
exercise was made where the amount of time that the robot
travels is changed by a numeric calculation written in a program
code,

The benefit of the use of constants was demonstrated to the
students by a problem in which the robot needs to turn right 90
degrees. An accurate amount of time required for an accurate 90-
degree turn is represented as a constant.

All the programs consist of procedures. When writing a
program for the robot, it can be seen that the smaller tasks, such
as the one presented previously, should be written as a
procedure. One problem can be reduced into smaller problems
and this way reaching the goal step-by-step is easier than solving
the problem at once.

To approach selection and Boolean expressions, authors
have chosen a task where the Mindstorms robots react to their
environment. Robots can receive inputs though previously stated
input ports 1, 2 and 3 and this way the behaviour of the robot can
be controlled and influenced.

In a case of teaching arrays the students were asked to
capture a sequence of numbers which were given as input
through the presses of touch sensor and bumper. Once this
sequence was captured, it was the robot’s job to “play it back”.
In other words, it means that the robot needs to examine each
number and execute the part of the program where there is a
predefined action to that number.

3.2 Use of robots in an Artificial Intelligence
course at Ramapo College
The teaching experiment described in this section is based on the
following two publications (Kumar 2001 and 2004).

The course was a traditional AI course in the sense that the
students were taught representation and reasoning, focus on
search, logic and expert systems. The first time the course was

held this way was in the fall semester 2000. The results about
teaching the course and the learning experiences have been
monitored for three years. During that time the basic concepts
and ideas of the course have stayed the same, only the minor
adjustments stated before were done.

The first task in the AI course was a project on blind
searches; depth-first and breadth-first search of a tree. At the
beginning of the programming task the students could assume
that the tree is a binary tree with tree levels. However, in the
later stage they had to generalize their implementation to deeper
trees with an arbitrary branching factor.

The second task was about heuristic searches; hill-climbing
and best-first search. In the project, the robots were expected to
find their way out of a maze. In addition, while searching for the
route out, they were expected to build a search tree of the maze.
The robots interacted with their environment through touch and
light sensors.

In the third task, the robot had to be able to determine the
characters printed on a grid. To be able to complete this project,
the students had to use the idea of forward and backward
chaining in a rule-based expert system. The robot had to be able
to go through a grid of pixels and use both the forward (data-
driven) and the backward (goal-driven) chaining to determine the
character in question.

3.3 An elective AI course in Villanova
University’s Computer Science program
The teaching experiment described in this section is based on the
following publication (Klassner 2002).

It should be noted that Cognitive Science minors and
Computer Engineer students also participate in the course. These
students have no programming experience or at the most, a one-
semester course of introduction to Java. However, the Computer
Science majors, who participate in this course, take it in their
fourth year, and by then they have taken a course “Programming
Languages”.

The first project of the course was a one-week project where
the students experienced that with the simple stimulus-response
rules and a limited model of the environment, the robot could
achieve effective behaviours. The first task was to program the
robot to move randomly ignoring any stimulus coming from
outside. When this behaviour was accomplished, the robots were
timed on a short obstacle course with narrow passages.

The second task was that the robots needed to monitor their
environment. The feedback from the outside world to the robot
came through an infrared, a light or a touch sensor. The infrared
or light sensors were used to determine whether the robot was
too close to the wall. The light or touch sensors were in use to
detect if the robot has wedged into a corner. After either of these
changes, the robots were timed on the same course as in the first
part of the project. The result from the first task was now
compared to the results of the second task and this way the
students could observe the improvements.

In the second project, the goal was to show students how
sensitive each of the sensors were to various stimulus. The goal
was also to demonstrate how some sensors can interfere or
simulate other sensors’ capabilities. The first part of this project
required a team of students to work with all types of sensors
(touch, light, infrared and rotation) to generate different kinds of

34

inputs and this way to study the various responses that the
sensors could generate. The second part of the project was to
design in teams a simple robot that used only a touch, an infrared
and/or a light sensor to duplicate the accuracy and sensitivity of
the rotation sensors. With this, the purpose was to demonstrate
the concept of the functional emulation.

The third project was a project of two weeks where the
students acquainted themselves with an important issue in the
navigation process. The goal was to help the students understand
factors that could cause error in the robot’s internal
representation of where it thought it would be located in the
world.

Projects four and five were about building a ball-playing
robot to compete against the robots built by the other teams. In
these projects the students combined the previously learned
skills, but also encountered new problems and possible solutions.
In the project four teams built only one robot that played the
game against the other robots, but in project five, three robots per
team entered the ball field.

The sixth and the last of the projects was a two-week
project with the goal of showing the students that the knowledge
representations that speed up the search-based problem solvers
can produce such a solution presentation that cannot be easily
translated into the control programs of the hardware. In the first
part, the students had to solve an 8-Puzzle by developing a
knowledge representation and a Lisp search program. The teams
developed a set of four operations to conceptually move the
robot. These four movements reduced the search compared to 32
operations that would be needed to move each of the numbered
tiles. In this way the students could experience the reduced
branch factor of the search tree, leading to a faster execution time
for the game solver. In the second part, the students were asked
to write a program that invoked functions in an ad hoc library,
developed by the instructor, to send remote-control messages to
the robot’s arm mechanism and this way move pieces on the 8-
Puzzle.

3.4 An elective AI course in College of Staten
Island
The teaching experiment described in this section is based on the
following two publications (Imberman 2003 and 2004).

The chosen method to control the robots on the course was
the MIT Handy Board. The controller of the Handy Board
contains 32K of battery-protected RAM, and it has four DC
motor outputs, nine digital and eight analogue inputs. These
inputs support diverse sets of sensors. Several compilers are
available for the Handy Board, including the Interactive C. Using
the Handy Board for the Lego-based robots enables creation of
sophisticated behaviours. Because of this, the Interactive C was
chosen as a programming language to the project.

The overall objective of the project was to design and build
a robot that will use a neural network to successfully navigate a
circular path. The project started with the instructions on how to
build a gear box for the robot to work properly. Instructions were
also provided to build the robot so that it would be suitable for
the path-finding task. Even though building the robot is an
important part of the whole project, the goal here as well as in
the other teaching experiments was not to spend too much time
on concrete construction of the robot.

The third part was to write a program with the Interactive C
where the robot moves forward for half a minute, then turns
right, and then again goes forward for half a minute and turns,
this time to the left. The goal was to find a minimum motor
power to make the robot move. For the training examples of the
neural network, the turning power needed should be written
down.

In the fourth task, the students first wrote a program that
would display the readings from both the robot’s photo sensors.
Again the readings should be written down because they would
be used later in the project. To continue the project, the students
had to estimate the parameters needed for the left and right
motor functions to control the real wheels.

After these four tasks, the students used the earlier modified
Generation 5 code to program their robot with a neural network.
Once the training was done, the generated neural network was
tested on another robot with the same type of sensors. When the
students had the weight values for the neural network equations,
they incorporated them into the Interactive C neural network and
tested their robot. It was important at this phase to make the
robot move slowly enough that it would have enough time to take
the readings from the road and act upon them.

4. ANALYSIS
4.1 From mistake to understanding
In the results from the chosen teaching experiments, researchers
report a better learning outcome in certain topics which are
usually considered to be difficult to the students. During the AI
course, if the students were asked to make a conceptual
difference between training a neural net and a finished product, a
trained neural network, they usually had problems in answering
the question (Imberman 2003). Due to the architecture of the
robot, there was not enough memory to train a neural net on the
robot. Students soon realized this, and they started to do the first
part on a computer and then transfered the finished product to
the robot (Imberman 2003).

Similar results were observed when the students were
learning the concept of procedures. Students added a new
procedure to the code, but forgot to call it in the later stage of the
code (Fagin, Merkle, and Eggers 2001). As a result, the robot did
not present its newly added behaviour. Because the robot
visualizes the commands in the code the students could observe
the incompleteness of the code immediately and that helped them
locate the problem.

Learning, as it is described in these experiments, can look
like learning by trial-and-error. However, it can also be seen as a
learning process where the learner is directing his/her own
learning. It was stated that students thought they used the
procedure call correctly, and only after testing found out what
was missing (Fagin, Merkle, and Eggers 2001). Researchers also
stated that when the students looked through the sequential
control flow of their program code, they immediately saw that
they did not program the robot to do its new behaviour (Fagin,
Merkle, and Eggers 2001). So when the robot’s actions were not
the wanted ones, students needed to reconsider the solution.
According to the theory of minimalism, beginners make
mistakes, and the use material should support error recognition
and recovery from mistakes (Carroll and van der Meij 1996).
When the action path is as it is described in the experiment, the

35

robot supported the recognition of the error by showing the
missing part in the program code with its behaviour.

4.2 Designing a course
Traditional courses create a more comfortable learning
environment because the instructor has years of experience in
what to teach and how to teach it. How well the instructor
handles the studied topic and the study material is reflected by
the students’ experience of the course (Fagin and Merkle 2002).
However, the little amount of experience can also be turned into
the strength of the course, and as a possibility for the learner to
take charge of his/her own learning activities.

Students often feel that education is something done to them
instead of experiencing it as something that they are actively
doing for themselves (Beer, Chiel, and Drushel 1999). With the
change in the attitudes of the students, the encountered situation
of uncertainty could be seen as an instructor’s way of supporting
the students to become independent and self-directed learners.
The theory of andragogy states that the problem with the adult
learner is a learning model from previous schooling (Knowles
1980). A more familiar approach to students is to get the answer
of what to do than to figure it out by themselves. Also, based on
the same theory, the adult learner has a need for autonomy
(Knowles 1980). Therefore, by providing guidance to the learner,
the instructor can be more beneficial in the learning process than
by being a person telling students exactly what to do.

The theory of minimalism also suggests that the manuals
used for studying would not be totally complete (Carroll and van
der Meij 1996). This does not mean that the students are left
without any guidance or help, but to encourage them to use their
abilities and knowledge to “fill in the gaps”. The material
designed to help the students solve their problems should give
enough support but also leave space for their own interpretations
and ideas (Carroll and van der Meij 1996).

4.3 Workload of the course
With the Mindstorms robots the workload of the course is bigger
than course credits may predict (Klassner 2002). Because many
universities are not willing to raise the number of credits gained
from the course, instructors had to make a decision that the
course will have an open lab work (Kumar 2004) or allow the
students to take material out of the lab to work on it at home
(Imberman 2004). Contrary to the author's beliefs, the students
did not consider this a drawback of the course. The students
reported that they spent a vast amount of time on constructing the
robot and testing their code, but by the end of the course, it all
appeared to them as a good investment (Kumar 2001).

The reason why students considered the workload of the
course rewarding could be that the students were ready to learn
the subject that was taught. The theory of andragogy describes
how to evoke the learner’s readiness to learn (Knowles 1980). To
make the learner realize the importance of a certain knowledge
or skill, an instructor can design experiences of the situations,
where the learner needs that knowledge or skill.

The same theory states that adults become ready to learn
something when they realize that they need the knowledge to
cope better in real life (Knowles 1980). Working with robots can
be also seen as an answer to why he/she needs to learn it. It is
important for an adult learner to have a reason why he/she needs
to know the subject (Knowles 1980). With the robots the studied

matter made more sense because the abstract theory or algorithm
was presented in a way that students could relate to.

With robots it is easier to create an image of a situation in
real life than with a program that is only showing something on a
computer screen. Working with robots, students face the non-
idealistic situations where the real-world problems occur (Beer,
Chiel, and Drushel 1999). However, this happens in a safe
environment. Furthermore, the use of robots associates
computers to toys and this way reduces any possible fear of
trying out and exploring (Lawhead et al. 2002). This way the
learning situations with the robots are seen as an opportunity,
and the effort put into them is worth it.

4.4 Teamwork
More complicated assignments invited the students to start
working in groups. This was due to the large workload of the
projects from the beginning. Forming groups showed that they
became more competent in estimating how much time
completing a project actually takes. This happened in a sense
that students started to set more realistic goals for themselves
compared to the beginning of the course (Kumar 2001).

Moreover, the theory of andragogy talks about using the
experience of the learner as part of the teaching (Knowles 1980).
The experience should be seen as a starting point to the learning
process (Knowles 1980). When the students worked in teams or
discussed their solutions, they used someone’s experience of
something. In that sense, the previously mentioned adaptation
can also be seen as a result of using the expertise knowledge of
what different fields of studies or different specialization
directions provide. It can lead to a better adaptation to the
subjects in later courses or, as students in one publication have
reported, the course problems had a positive influence on their
learning (Imberman 2004).

In addition, there is an interesting possibility for the
students to learn to express their ideas, but also to give and
receive criticism. Students learn a valuable lesson if they see that
the variety in perspectives can be helpful for solving a hard
problem (Beer, Chiel, and Drushel 1999). In one of the
publications, the students reported that in the beginning they had
doubts about the usefulness of the course, but by the end they
admitted that the course offered useful skills for the future
(Imberman 2004). This course offered an opportunity to naturally
work in groups, making it possible to practice both Computer
Science and social skills for future needs.

4.5 Building the robots from the model
One of the problems in using the robots to teach Computer
Science concepts is finding the balance between how much time
can be consumed on building the robot and how much on
programming. Building the robot can be fascinating and
inspiring, but it can also be time consuming and frustrating.
Some of the authors have resolved this problem by giving
instructions on how to build the robot, and simply minor
moderations are left to the students (Imberman 2004, Klassner
2002, and Kumar 2004).

But can the robot still serve the same purpose as a factor of
inspiration in the learning process if the model to build the robot
is given to students? It is stated that it was difficult to make the
robot behave reliably (Kumar 2004), projects were more difficult
than expected because the sensors did not work reliably enough

36

(Klassner 2002), and adjustments needed to be done in the
testing phase to both, the robot and the testing surface
(Imberman 2003). So reflecting this to the problem of whether
giving the instructions to build the robot or not is justified.

Experience states that students still became enthusiastic
about building the robots even if it was just the customizing and
fine tuning (Imberman 2003). The reaction of the Computer
Science students also supports this when they have written on the
feedback form that instructors should spend more time on
planning how to build the robots, so that the time spent on
designing could be reduced (Klassner 2002).

4.6 Learning more than what was taught
When analysing the exit surveys of the courses, the researcher
noticed that the students learned concepts outside the curriculum.
Klassner (2002) reports that the students were more confident
about their skills to do multithreading tasks after taking the
course with the robots than before when the course was taught in
a more traditional way. Besides learning the desired notions, the
students were able to obtain a skill to evaluate that their
knowledge is sufficient.

According to the theory of andragogy, motivation for
learning comes from the learner’s own experience of him/herself
(Knowles, Holton, and Swanson 1998). Because of this, it is
relevant for an instructor to acknowledge the learner’s need to
have trust in his/her own abilities. With adult learners especially,
these internal motivators are the most important (Knowles,
Holton, and Swanson 1998). In this case, studying with
multitasking programs for the robots became an accelerator for
moving on to more complex domains. Because of the nature of
the robot problems and solutions, the need to try something more
challenging comes naturally.

4.7 Orientation to learning
The students evaluated that working with the robots helped them
in understanding the complexity issues of the algorithms (Kumar
2004). With the experience of testing and seeing what the result
is, the students could be able to see right away what the
behaviour would look like. The robots create a performance-
centered atmosphere for the learning, which is an ideal
environment for adults to learn according to the theory of
andragogy (Knowles 1980).

The robot can be seen as something interesting to apply the
newly learned skill to. The robot offers an incentive to learning
because students want to see their invention succeed (Kumar and
Meeden 1998). When developing the right solution, students
experience many different variations of a possible solution.
Because students have a need to find the best possible solution to
a problem they have encountered, the explanation for the search
comes from their own need. This motivates students to learn
about the less glamorous theoretical aspects of Computer Science
(Kumar and Meeden 1998). With this method students are
introduced to new aspects of theories behind the solutions, and
they encounter aspects that may not be visible in the normal
search of a solution. A researcher writes in his publication that
the students stated that after the course, they have learned how to
apply an algorithm to a certain problem (Kumar 2004). The
process where the understanding of a problem becomes clearer
little by little could be seen as a reason why the students were
able to choose the right algorithm to a problem.

5. DISCUSSION
Working with the robots offers a chance to implement the code
as a real-world construct. It offers a unique possibility to test the
design in action right away with a minimal effort. The
programmers with ten years of experience have complained that
young programmers depend too much on the technology in order
to complete the tasks given to them (Wolz 2001). When error is
seen in action, it introduces a possibility to the students to test
every modification of the code on the robot. In one of the
teaching experiments, it was stated that students thought their
solution was correct before testing it on the robot (Fagin, Merkle,
and Eggers 2001), but can it be proven that it did not happen in
all the other cases? Because if it does, it proves that designing
before doing is still a skill that was learned in the old days when
a batch submitted to be compiled required two days of waiting
(Wolz 2001).

As much as teaching with robots has been praised, it has
also been criticized. Learning to program through trial-and-error
can easily be compared to learning with robots. However, it has
been shown that the students tend to consider the decisions they
made when writing the code, and after that they transfer fully
ready solutions to the robot (Imberman 2003). Also Kumar
(2004) reported that the students have shown better
understanding of the complexity issues of the algorithms, and the
results of the tests have revealed better knowledge of how to
apply an algorithm to a problem. So if the students have the
ability to decide and design the correct solution to a problem and
according to that start executing their answer into a program
code, it gives enough proof that code designing and management
can be taught as well in the 21st century.

As much as the programming languages have developed, the
platforms and programs have improved. Being able to perceive
the outcome of the code is an important skill to master, but
testing a program is still different from mindless re-testing.
Nowadays, there are different techniques to do the coding and
testing, and because of the nature of the robots, the test results
give reasonable feedback and with this they direct correction in
the right direction. Re-testing and negative outcomes can provide
important lessons (Wolz 2001). Therefore, the whole concept of
teaching and learning with robots should be seen differently. The
traditional approach to programming gives students few
opportunities to observe the behaviour of their code in any other
context than in the debugging phase (Stein 1998). In this sense
robots should not be used only to give hands-on experience, but
to create an atmosphere that resembles something from real life.
For future needs, it is important for the students to see how the
environment around the robot affects the design. So maybe re-
testing should not be compared to the designing of the code, but
it should be seen as testing what effect the outside world has on
the design.

With robots, the designing and implementing invites
students to think of more options for how to plan the code to
solve the problem, and with that students experience more
aspects of the concept. When teaching is done this way, it invites
students to consider not only how to build the program, but to
think about what the behaviour will be and modify that
behaviour (Stein 1998). Not only is programming as a skill hard
to achieve, but the science of programming also includes a lot of
details which are not easy to explain, nor is it easy to give a

37

reason to the students why they need to learn them (Lawhead et
al. 2002).

When teaching with robots, the programming is not a
separate phase of the project, but it is attached to many parts of
the project, such as designing and testing. The validation of the
programming comes naturally with robots because the students
are eager to see the robots work in action (Lawhead et al. 2002).
The importance of connecting all these parts and making them
work together is acutely present with robots. The construction of
a physical entity joined with the code designed by the students
themselves gives a unique opportunity to directly confront the
central issues of Computer Science (Kumar and Meeden 1998).
After students have designed a working robot, they have
experienced some of the convergence of Computer Science, and
thus can better perceive the interplay between various concepts.
This is crucial because understanding the interactions between
the program and its behaviour is critical in modern applications
(Stein 1998).

Because of the small amount of research done on the use of
Mindstorms robots to teach bigger concepts in the field of
Computer Science, it was significant that one out of four reported
a negative outcome. Some insight about this unsuccessful
experiment by the US Air Force Academy has already been given
in the analysis part of this paper. However, there are other
observations as well that might explain the reasons behind the
failure in the experiment.

For the limited amount of money to be spent on the robots,
the researchers had to make a decision to use the robots only
inside the classroom (Fagin and Merkle 2002). Even with the
effort of giving as many lab sessions as possible, the simulation
and testing phase was too short to make the use of the robots
worth while. Researchers admit that in their experiment they
were not able to give enough resources to one of the most
important parts of the development of the robots (Fagin and
Merkle 2002). The students also saw the unlimited time reserved
for the projects as a big disadvantage. In a more traditional class,
the way subjects are presented is a result of many years of
teaching and examining student feedback. The reason why
students in the class with robots showed worse results than those
in the class without them (Fagin and Merkle 2002), could lie in
this limited amount of resources.

Instructors of the Air Force Academy Computer Science
course report that their students are not representative of the
whole population of students, and hope that other researchers in
different environments attempt a similar experiment (Fagin and
Merkle 2002 and Fagin and Merkle 2004). Unlike the students in
the other experiments, the students of the Computer Science
course in the Air Force Academy had to design their code and
built the robot within lab hours (Fagin and Merkle 2002 and
Fagin and Merkle 2003); other researchers favoured and
recommended to their students to use time more flexibly in their
experiments. Even though the students in the other teaching
experiments reported large time consumption on working on the
robots at home, in the end it was considered to be rewarding, and
a positive factor in their learning from both the students’ and the
instructors’ point of views (Imberman 2003 and 2004, Klassner
2002, and Kumar 2001 and 2004). The researchers who received
the negative result, acknowledge the fact that their choice to limit
the time used on testing and debugging the robots is partly the

cause why results were not what they expected (Fagin and
Merkle 2002).

To defeat the ongoing competition inside of the university of
which course gets enough students to enrol, robots can be one
solution. Robots fascinate the typical student, and this interest
should be used to invite students into the Computer Science
curriculum (Kumar and Meeden 1998). Imberman (2004)
reports that after starting to use robots in the AI course, the
enrolment rate is better than before. Also Kumar (2001) reports
that in the end survey when students were asked if they would
recommend the course to their friends, over 90% answered yes.
Besides this, those instructors who use robots in their class argue
that they bring a fun factor to the class (Imberman 2004 and
Kumar 2001). Even if university studies are not meant to be fun
and entertaining, the experience of enjoying the class and having
done exercises without feeling frustrated, should have a positive
influence on the students’ attitude towards studying.

The nature of the learning process is different when
studying with robots than in more traditional ways. It could be
considered as one option to create some variation in the
Computer Science curriculum. We can still rethink the
fundamental notions of computation in a way to bring teaching
much closer to today's practice (Stein 1998).

This paper does not give an answer to the question what the
best way to teach or approach an adult learner is. It only focuses
on giving an explanation to why diverse methods could be taken
into consideration when designing a course within the Computer
Science curriculum.

6. CONCLUSION
These notions from the teaching experiments reflected on the
support theories and diverse remarks give instructors a reason
why to consider using robots in university-level education. The
support theories give context-free responses to the observations
reported in the publications. The positive or negative outcome
can now be mirrored to the known behaviour or preference of an
adult learner. With this an instructor can be confident that the
outcome can be reproduced in his/her classroom. As a final aid
for instructors we have collected and organized support theories
and case studies in table form, see Table 1, for giving a summary
of our research results.

7. REFERENCES
Beer Randall, Chiel Hillel and Drushel Richard (1999): Using

Autonomous Robotics to Teach Science and Engineering,
Communications of the ACM 42(6):85-92.

Carroll John (1998): Minimalism Beyond the Nurnberg Funnel.
1-18. John M. Carroll. MIT Press.

Carroll John and van der Meij Hans (1996): Ten Misconceptions
about Minimalism, IEEE Transactions on Professional
Communication 39(2):72-86.

Challinger Judith (2005): Efficient Use of Robots in the
Undergraduate Curriculum, SIGCSE, Special Interest Group
on Computer Science Education, Proc. of the 36th SIGCSE
Technical Symposium on Computer Science Education, St.
Louis, Missouri, USA, 436-440.

Dubinsky James (1999): Fifteen Ways of Looking at
Minimalism, Journal of Computer Documentation 23(2):34-

38

47.

Fagin Barry (2003): Ada/Mindstorms 3.0: A Computational
Environment for Introductory Robotics and Programming,
IEEE Robotics & Automation Magazine 10(2):19-24.

Fagin Barry (2000): Using Ada-Based Robotics to Teach
Computer Science, SIGCSE, Special Interest Group on
Computer Science Education, Proc. of the 5th annual
SIGCSE/SIGCUE ITiCSE Conference on Innovation and
Technology in Computer Science Education, Helsinki,
Finland, 32:148-151.

Fagin Barry and Merkle Laurence (2003): Measuring the
Effectiveness of Robots in Teaching Computer Science,
SIGCSE, Special Interest Group on Computer Science
Education, Proc. of the 34th SIGCSE Technical Symposium on
Computer Science Education, Reno, Nevada, USA, 307-311.

Fagin Barry and Merkle Laurence (2002): Quantitative Analysis
of the Effects of Robots on Introductory Computer Science
Education, JERIC, ACM Journal of Educational Resources in
Computing 2(4):1-18.

Fagin Barry, Merkle Laurence and Eggers Thomas (2001):
Teaching Computer Science with Robotics Using
Ada/Mindstorms 2.0, ACM SIGAda Ada Letters 21(4):73-78.

Flowers Thomas and Gossett Karl (2002): Teaching problem
solving, computing, and information technology with robots,
Journal of Computing Sciences in Colleges 17(6):45-55.

Gross Paul and Power Kris (2005): Evaluating Assessments of
Novice Programming Environment, ICER, The First
International Computing Education Research Workshop, Proc.
of the 2005 International Workshop on Computing Education
Research, Seattle, WA, USA, 99-110.

Handy Board (2003): The Handy Board microcontroller system,
http://www.handyboard.com Accessed 13 Aug 2008.

Imberman Susan (2005): Three Fun Assignments for an Artificial
Intelligence Class, Journal of Computing Sciences in Colleges
21(2):113-118.

Imberman Susan (2004): An Intelligent Agent Approach for
Teaching Neural Networks Using LEGO Handy Board Robots,
JERIC, ACM Journal of Educational Resources in Computing
4(3):1-12.

Imberman Susan (2003): Teaching Neural Networks Using
LEGO Handy Board Robots in an Artificial Intelligence
Course, SIGCSE, Special Interest Group on Computer Science
Education, ACM SIGCSE Bulletin 35(1):312-316.

Imberman Susan and Klibaner Roberta (2005): A Robotics Lab
for CS1, Journal of Computing Sciences in Colleges
21(2):131-137.

Jipping Michael, Calka Cameron, O’Neill Brian and Padilla
Christopher (2007): Teaching Students Java Bytecode Using
Lego Mindstorms Robots, , SIGCSE, Special Interest Group
on Computer Science Education, Proc. of the 38th SIGCSE
Technical Symposium on Computer Science Education,
Covington, Kentucky, USA, 170-174.

Klassner Frank (2002): A case study of LEGO Mindstorms'™
suitability for Artificial Intelligence and robotics courses at the
college level, SIGCSE, Special Interest Group on Computer

Science Education, Proc. of the 33rd SIGCSE Technical
Symposium on Computer Science Education, Covington,
Kentucky, USA, 8-12.

Klassner Frank and Continanza Christopher (2007): Mindstorms
without Robotics: An Alternative to Simulations in Systems
Courses, SIGCSE, Special Interest Group on Computer
Science Education, Proc. of the 38th SIGCSE Technical
Symposium on Computer Science Education, Covington,
Kentucky, USA, 175-179.

Knowles Malcolm (1980): The Modern Practice of Adult
Education, from Pedagogy to Andragogy. 40-59. Englewood
Cliffs, Prentice Hall, Cambridge.

Knowles Malcolm, Holton Elwood and Swanson Richard (1998):
The Adult Learner: The Definitive Classics in Adult Education
and Human Resource Development. 2-5. Gulf Publishing,
Houston, Texas.

Kumar Amruth (2004): Three Years of Using Robots in the
Artificial Intelligence Course - Lessons Learned, JERIC, ACM
Journal of Educational Resources in Computing 4(3):1-15.

Kumar Amruth (2001): Using Robots in an Undergraduate
Artificial Intelligence Course: An Experience report, 31st
Annual ASEE/IEEE Frontiers in Education Conference, Reno,
Nevada, USA, 2:10-14.

Kumar Deepak and Meeden Lisa (1998): A Robot Laboratory for
Teaching Artificial Intelligence, SIGCSE, Special Interest
Group on Computer Science Education, Proc. of the 29th
SIGCSE technical symposium on Computer Science
Education, Atlanta, Georgia, USA, 341-344.

Lawhead Pamela, Bland Constance, Barnes David, Duncan
Michaele, Goldweber Michael, Hollingsworth Ralph, Schep
Madeleine (2002): A Road Map for Teaching Introductory
Programming Using LEGO Mindstorms Robots. The Annual
Joint Conference Integrating Technology into Computer
Science Education, Working group report from ITiCSE,
Innovation and Technology in Computer Science Education,
Aarhus, Denmark, 191-201.

Lego (2008): Lego Education – Mindstorms, the Lego Group,
http://www.lego.com/eng/education/mindstorms/default.asp
Accessed 13 Aug 2008.

Stein Lynn (1998): What We Swept Under the Rug: Radically
Rethinking CS1, Journal of Computer Science Education
8(2):118-129.

Wolz Ursula (2001): Teaching Design and Project Management
with Lego RCX Robots, SIGCSE, Special Interest Group on
Computer Science Education, Proc. of the 32nd SIGCSE
Technical Symposium on Computer Science Education,
Charlotte, North Carolina, USA, 95-99.

39

Table 1. Summary of analysis of case studies

 Case studies
Support
theory

Assumption/Principle US Air Force Academy Ramapo College Villanova University Staten Island College

Self-concept of the
learner

In the class with robots, students were
not encouraged enough to move away
from their old learning methods.
Students felt that their learning is
related to the instructor’s level of
knowledge about the matter taught. The
course failed to help the students obtain
a more independent and self-directed
way of learning.

Not mentioned in research
reports.

The variation in the learning
process helped students obtain
more than what was expected
from them in the course
curriculum.

Instructors were able to
encourage students so that
they learned more than what
was expected in the course
curriculum.

Prior experience of the
learner

Not mentioned in research reports. Learning more and realizing how
much resources projects need
students started to set more
realistic goals for themselves
than in the beginning of the
course.

Course problems have positive
influence on students’ learning.

Course problems have a
positive influence on their
learning.

Readiness to learn Even though the robot projects were
hard and time consuming, students
pointed out that an advantage in
working with them is that they make
one want to learn and that they give an
opportunity to learn something totally
new.

According to the end survey:
students spent more time on
robot projects than on the
traditional projects, but they also
enjoyed them more.

Not mentioned in research
reports.

Students felt that the course
with robots offered useful
skills for the future.

Orientation to learning Robot projects were described as
mentally challenging. They are a great
application to real life computing and
students learned logical problem-
solving skills.

Students evaluated that working
with robots helped them
understand complexity issues of
algorithms.
Students learned how to apply an
algorithm to a problem.

Not mentioned in research
reports.

Machine learning is a hard
concept for the students to
understand. With the
traditional way of teaching,
students may lose their focus
on what is the real problem.
With robots it was easier to
demonstrate and this way
point out the significance.

Learner’s need to know Projects have been described as fun and
magical, but it was unclear for the
students why they needed to learn the
matters. Students felt that projects were
irrelevant for Computer Science majors
and not practical unless one is going
into that career.

According to the end survey:
Learning and working with
robots appeared to students as a
good investment.

Students valued the matter taught
and therefore the course had a
positive influence on students’
appreciation of the issues behind
the design of agents.

The fun factor has introduced
the course to students who
normal would not take AI.
Students have returned
afterwards and express that
the topics covered were
relevant to their work
experience.

A
nd

ra
go

gy

Motivation to learn The projects failed to connect into the
students’ inner motivators. Students
experienced that either one understands
what the problem is or then one does
not, but there is no in between. Even
with instructors’ efforts to provide as
much help as possible, students felt
isolated.

With the robot projects,
instructors were able to get the
students to use their imagination
and therefore the learning
method became more effective.

Because building actual robots
and programming them as a
constructive activity can be
viewed as inherently motivating,
especially because of the rapid
feedback of success and failure,
students became more confident
about their skills and learned to
evaluate their knowledge.

Working with robots offers
practice that is better related
to real-world problems.
Therefore students reflected
their learned skills as
something that is useful in
future studies and working
life.

Choose an action-
oriented approach

Exercises on the course were designed
in a way that students used robots built
from a model, to be able to start
working faster on asked problems.

Exercises in the course were
designed in such a way that
students used robots built from a
model, to be able to start working
faster on required problems.

Exercises in the course were
designed in such a way that
students used robots built from a
model, to be able to start working
faster on required problems.

Exercises in the course were
designed in such a way that
students used robots built
from a model, to be able to
start working faster on
required problems.

Anchoring the tool in the
task domain

Students were expecting more answers
from the instructor and not supported
enough to solve the problems by
themselves or find answers of their
own.

Robots were used to connect the
matter better into something that
presents the concepts in a way
that students can relate to.

Robots were used to connect the
matter better into something that
presents the concepts in a way
that students can relate to.

Robots were used to connect
the matter better into
something that presents the
concepts in a way that
students can relate to.

Support of error
recognition and recovery

Students looked through the program
code, and they immediately saw that
they did not program the robot to do its
new behaviour.
The robot visualizes the commands, so
that the students could observe the
incompleteness of their code
immediately and locate the problem.

Robots visualize the previously
hidden process of code
execution. Due to the robots’
instant feedback, error
recognition is more
straightforward and therefore
recovery is improved.

Robots visualize the previously
hidden process of code
execution. Due to the robots’
instant feedback, error
recognition is more
straightforward and therefore
recovery is improved.

The architecture of the robots
made the conceptual
difference between different
notions more visual than the
traditional method used
before.

M
in

im
al

is
m

Support reading to do,
study and locate

Dave Baum’s book was used to help the
students solve problems that occurred
during the learning process.

Dave Baum’s book was used to
help the students solve problems
that occurred during the learning
process.

One part of the book of Russell
and Norvig ̧was used to clarify
the topics.

One part of the book of
Russell and Norvig ̧was used
to clarify the topics.

40

A Global Software Project: Developing a Tablet PC
Capture Platform for Explanograms

Tony Clear

Jacqueline Whalley
Jonathan Hill

Yong Liu
Auckland University of Technology

Private Bag 92006
Auckland 1020
New Zealand

+64 9 921 9999

Tony.clear@aut.ac.nz
jacqueline.whalley@aut.ac.nz

fnx1465@aut.ac.nz
xzp1481@aut.ac.nz

Arnold Pears
Uppsala University

Box 325
75105 Uppsala

Sweden
+46 18 471 0000

Arnold.pears@it.uu.se

Beryl Plimmer
University of Auckland

P.O. Box 123
Auckland 1020
New Zealand

+64 2 9514 2000
Beryl@cs.auckland.ac.nz

ABSTRACT
Explanograms provide “a sketch or diagram that students can
play” [10]. They are a directly recorded multi-media resource
that can be viewed dynamically. Often they are used in teaching
situations to provide animated explanations of concepts or
processes. Explanograms were initially based upon proprietary
paper and digital pen technology. The project outlined here
augments that design by using a tablet PC as a mobile, general
purpose capture platform which will interoperate with the existing
server based system developed in Sweden. The design of this
platform is intended to achieve both learning and research
outcomes, in a research linked learning model for global software
development. The project has completed an initial development
phase during which a prototype has been built, and a
consolidation, extension and evaluation phase is now underway.
The origins and goals of the research, the methodology adopted,
the design of the application and the challenges that the New
Zealand based team have faced are presented.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer science education

General Terms
Human Factors

Keywords
CS Ed Research, Tablet PC, Digital Ink, Explanograms

1. INTRODUCTION
This paper presents progress to date on a global software

development project which has been developing a general purpose
platform for generating explanograms “a sketch or diagram that
students can play” [10]. The paper addresses both product and
process dimensions of the project. Although explanograms were
originally conceived as “an animated presentation generated by
writing on a sheet of paper” [11], this project aims to augment the
present proprietary paper and digital pen technology available for
explanograms, by incorporating a tablet PC as a mobile and
general purpose capture platform. The purpose of an
explanogram has been explained as follows:

“Explanograms originated as an approach to capturing
multi-media versions of impromptu explanation; thus
making them available to a wider audience. The
underlying assumption is that difficult areas of the
curriculum are often those that prompt students to
present themselves during staff “office hours” and ask a
question” [11].

While the original goal for explanograms was to enable these
‘snippets of wisdom’ to be made available to wider student
audiences for learning purposes, the project described here is also
motivated by research interests. It is concerned with the potential
value of explanograms in Computer Science education research in
capturing student work in progress within natural settings, with a
specific interest in supporting the work of the BRACElet project
[18]. The adoption of the Tablet PC technology is seen as both a
mechanism to support mobile learning and a further means of
making the explanograms available to a wider audience of
educators and researchers.
The project occurs in the context of a global research and
development collaboration. The explanogram concept was
developed at Uppsala University in Sweden, and this extension
project has originated from Auckland University of Technology
(AUT) in New Zealand. Supported by a grant from Microsoft

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling ’08, November 13-16, 2008, Koli, Finland.

Copyright 2008 ACM 978-1-60558-385-3/08/11…$5.00. 41

Research Asia, after an introductory Microsoft hosted workshop
in Singapore, the initial proof of concept and experimental
prototype development took place over summer 2007 with the
assistance of a research assistant who developed an application to
run explanograms on the Tablet PC. The present stage of the
project is being carried out as a capstone Research &
Development project within the Bachelor of Computer and
Information Sciences at AUT. Thus the project provides an
example of a collaborative and “research linked teaching and
learning model” [4]. In this stage the team are refactoring the
code, adding functionality, improving the user interface and the
host connectivity. These initial phases could be likened to the
“Research prototypes” stage of the technology maturity life-cycle
proposed in [1] and portrayed below.

In a subsequent phase in addition to supporting the BRACELet
research by capturing individual student contributions, the
technology would be applied to recording pair programming
sessions for subsequent analysis. The usability and connectivity
issues for such joint use would be the subject of study, in addition
to analysis of the resulting data capturing the pair programming
process.

Fig. 1. Phases and chasms in the technology maturity life-cycle
model [ex. 1, p.12]

The above model of technology maturity “builds on the standard
model of the diffusion of innovations [Rogers 1962, 1995] but
includes phases that are often not considered” [1]. The early
R&D based phases are included in the above model, which
expands upon the ‘research phase’ as opposed to the traditional
focus on the later commercialisation and adoption phases. The
model also identifies a major chasm between conceiving and
developing research prototypes, and their adoption by “by one or
more innovative companies in search of a competitive edge” [1].

The relevance of this model of technology diffusion for the
project reviewed here further relates to the learning involved for
one of the authors who is studying a capstone project for his
conjoint degree with both Software Development and E-Business
majors. The E-Business aspect of the project involves researching
a combination of Open Source Software [14] and “Software as a
Service” [9] business models for traversing the first chasm above,
and making the results of the research usable by a wider
community of educators.

2. PROJECT GOALS

This section draws heavily upon the submission for funding made
in response to the Microsoft Research Asia - 2007 Mobile
Computing in Education Theme, and presents the broader scope
of the planned research within which this project is one element.
The research programme as proposed aimed to use Tablet-PC and
Microsoft digital ink technologies to leverage three current

Computer Science Education Research strands, across several
institutions. The first of these, the BRACElet project [18] is a
multi-institutional, multinational project investigating novice
programmers; the second arising from the work of Arnold Pears at
Uppsala University in Sweden involves the notion of an
explanogram “a sketch or diagram that students can play” [10];
and the third involves international collaborative studies with
Global Virtual Teams [4].
The proposal was not aimed at developing a discrete one-off
application for the Tablet PC with potential for educational use.
Scoped as a broader research programme, the aim was to use the
tablet as a general purpose platform, to improve computing
education and research. With a diverse group of computer
science education researchers the work was firmly embedded
within an existing research context, and a pedagogical framework
ranging from support for the work of individuals through pairs to
groups, both local and widely distributed. The notion of
explanograms with such a ready at hand capture mechanism also
had potential beyond the computing domain to support study in a
broad range of disciplines.
The first phase of use was intended to apply the tablets as a means
for capturing novice programmers’ work in-situ and as it evolved.
The history of the activity engaged in for specific assigned tasks
was to be stored for each participating student, including an
assigned question, any accompanying “doodles” [19], and a think-
aloud recording of the student thought process.

Once fully distributed functionality for explanogram recording
had been established, the next phase of the research would
investigate distributed collaborative learning through peer
programming or collaborative design tasks. The existing
collaboration between AUT University and Uppsala University
[4], would be augmented by a collaboration involving
postgraduate students from the AUT University collaborative
computing course.
As noted in [15] “student work within teams is a reality for
managers, educators, and organizations. It is also an important
value for our society. For these reasons, it is important that we
determine how to teach students how to work in a global
environment”. Likewise the learning value of “Open Ended
Group Projects” and team based learning is asserted in [8]. The
teaching and learning goals of the project therefore included
developing capabilities in global software development by giving
students exposure to the complexities of a global software
development project.
The level of funding secured to date has meant a rescoping of the
project, with the initial goal being to produce a working proof- of-
concept, namely a prototype working tablet platform with bare-
bones connectivity to the explanogram streaming server. The
subsequent phase of the project extended these goals to the
production of a more robust application with greater functionality,
and a limited evaluation of its use. Accompanying the application
release was to be a distribution kit, installation and release

42

package and instructions available via a project website. It was
also planned to provide results from individual student use
contributing to the existing corpus of data within the BRACELet
study. This publication itself constitutes a proposed project
deliverable with the goal of disseminating the work.

3. PROGRESS TO DATE
The initial development phase of the project was conducted over
the summer break (December/February in New Zealand) of
2007/2008. During this period the team became familiar with the
Microsoft tablet technologies, the digital ink APIs and Visual
Studio and C# programming environment. A sample application
provided by Beryl Plimmer was very helpful in understanding the
operation of the pen based technologies and digital ink. Arnold
Pears, the researcher who had conceived the original concept of
the explanograms [10] and led the development effort in Sweden
to produce the server version of the explanogram software
(http://explanogram.it.uu.se/) visited AUT University during this
period. Over the week of his visit he shared information about the
server software and helped set up a working version for test
purposes on an AUT server. At the end of the break an
experimental prototype had been developed, which successfully
demonstrated the ability to capture and replay an explanogram
using the Tablet PC.
The original ANOTO pen based explanograms [11], supported
both silent and sound replay versions from the explanogram
streaming server, as well as the ability to upload a graphical
background over which the explanogram could be replayed. The
initial Tablet platform proof of concept delivered the following
functionality at both Tablet (client) and server levels:
For the silent version

 Capture strokes from the pen
 Save stroke data to local file (XML file)
 Save to database (explanogram server)
 Reload the stroke from local file (XML file)
 Playback the stroke

For the sound version
 Record sound into wav format
 Convert wav to ogg format
 (still to be delivered)

• Add time stamp to ogg file

• Upload to server

• Playback sound
Other controls

 Load picture to background
 (still to be delivered)

• Load webpage

• Resizable control
Building upon this work completed over the summer break, a
team of two students undertook a capstone project to further
develop the system. That work was into its second semester at the
time of writing this paper. The original development plan had
been conceived as figure 2 indicates, with a plan to refactor and

tidy the core of the application, and produce a more tidy, robust
and usable application. The ability to store background images
across both Tablet and server platforms and the ability to
incorporate sound were key features to be delivered. The
handling of documents (e.g. explanograms layered upon
interactive applications such as web browsers or IDE’s) was a
desired feature but highly complex (cf. [3] for a discussion of the
issues related to annotating “dynamic digital documents”) and
considered most likely to be delivered by a subsequent team.

Figure 2: Development Plan for Tablet PC Based System
At the time of writing, the team had produced releases one and
two of the core application from figure 2. A concrete plan for
usability testing of the application had been developed, but had
been put on hold while the architecture for release 3 was being
revisited. The releases and the image functionality had now
reached a relatively stable state, but the architecture was being
refactored based upon the model view controller design pattern
[7] to improve its extensibility.
Features for these two releases were:

• Revamped user interface making use of a document
metaphor and which provided more feedback and status
information than the original.

• New file format (based on the ZIP specification) which
allows for images and associated media to be packaged
into a single file.

• Improved loading and saving functionality.

• Draw and playback in the same window.

• An installer and uninstaller.

• Login to the server without editing configuration files.

• View previously uploaded drawings from the client
software.

• Upload images to the server without needing to know
the unique database ID.

Development of the sound module was also in progress. The plan
was to have a fully functioning and tested application available
for broader release and wider field testing by further researchers

43

http://explanogram.it.uu.se/

and educators at the conclusion of the capstone project
(November 2008). At the time of writing this plan was
considered quite viable.

4. DESIGN OF SYSTEM
In the design of the system the team has encountered several
challenges.

4.1. Heterogeneous Technology Set
Among these challenges were simply familiarising themselves
with the wide range of proprietary and open source technologies
involved:
Proprietary:

• The ANOTO pen technology

• The Tablet PC technology

• Microsoft Visual Studio

• The .Net Framework

• The Tablet PC Digital Ink APIs

• Google Sites for the project repository

• VMware virtual server technology
Open Source:

• JAVA servlet programming (differing versions)

• Apache and Tomcat server technologies

• MySQL database

• PHP scripting language

• Subversion for source control

• XML data formats

• SSH tunnelling techniques for secure access
With such a diverse range of technologies, meeting the design
goals of interoperability and non interference with the existing
legacy application presented significant challenges for the team.
Therefore the next section will briefly review the prior design and
the evolution of the existing design to indicate the nature and
scope of the challenges in maintaining compatibility between the
differing technologies and applications involved.

4.2 Compatibility Issues
The team encountered a number of compatibility issues when
endeavouring to develop the tablet PC application.
One issue was in evaluating the technology available on the
Tablet PC, and ensuring the data it captures can be transferred
successfully to the existing server.
The Microsoft Ink API provides extensive functionality which
can be used for anything ranging from handwriting recognition to
actions based on the direction of pen strokes. However, the API
did not provide time based stamping which is essential for the
recording of an explanogram. For this extended properties may
be attached to a Microsoft stroke object using a timer and stored
timestamps in a stroke.
When this stroke data is sent to the server, it is packaged into a
series of XML documents that describe the explanogram. These
XML documents, along with background images or associated

media, are packaged into a ZIP file. This file is then sent directly
to the server where it is interpreted and stored into the MySQL
database.
Given the extensive functionality available within the Microsoft
Ink API, it has been tempting for the team to implement extra
features especially those which are easy to implement or would
improve usability. An example is deleting strokes after they have
been drawn - the Microsoft Ink API easily allows for this.
Because time data is associated with every stroke, it would be
possible to have an explanogram which had a drawing which was
visible for part of it, and was then deleted later. This is inherently
different from a pen and paper based system. When using pen
and paper, it is not possible to delete strokes because it is
physically not possible to remove ink from the paper. The
challenge therefore, is to provide the user with a good experience
on the Tablet PC and allow them to be able to do things they
expect from a typical application, while still maintaining
compatibility with the pen system.
For now, the team has made the decision to include some of the
functionality that has been easy on the tablet, such as being able
to delete a stroke, while making do with the limited set of
functionality on the server such that, for example, pen strokes
which have been deleted on the tablet are visible throughout the
entire drawing when displayed on the server. From a usability
standpoint, it will be necessary at some point to ensure that the
server representation of the drawing and the tablet representation
of it are consistent. At this prototype stage, the team felt it was
important to ensure usability of the tablet application matched
what a user would expect from a typical Windows application.
With two separate input devices sending two completely different
sets of data to the server, two separate modules for receiving data
are presently demanded. At the beginning of this year, the team
had a decision to make concerning how best to develop these two
modules. There are problems in attempting to use the existing
pen data receiver on the server and adapting it for the data which
the Tablet PC can send. While it can receive pen strokes and time
- which is what the pen provides - it cannot receive additional
data which the server nevertheless supports on playback. One
example is a background image.

Figure 3: Web Based Explanogram with Background Image

44

As depicted in figure 3 above, (where a programming
examination question as a background graphic has been
annotated) it is possible on the server side to store a background
image which will be displayed in the background of an
explanogram while it is being played. However the user process
for doing this with the pen is extremely difficult – as the server
application is still somewhat experimental the user must discover
what the database’s unique ID for the explanogram is, and then
manually upload the background image they require to a specific
directory on the server.
From the team’s point of view this was not ideal given that the
user would be able to insert a background image easily from the
Tablet PC application. Unfortunately the existing server code did
not have any ability to receive images and store these on to the
server. One option could have been to substantially rework the
architecture of the existing code in order that it could receive
extra information like background images. However it was vital
that the new development did not affect the functioning of the pen
based server code. Therefore, it was decided that additional code
would be developed independently to sit alongside the existing
code. At a suitable time the shared pen and tablet code could then
be consolidated into modules.
The existing pen functionality is written in Java within Tomcat,
while the new Tablet code is written in PHP. Both translate the
incoming information and store it into a common database, such
that one Java player on the server is able to play back both sets of
drawings, which may then be displayed in a single location.
A further challenge was posed by the incorporation of sound into
the Tablet based explanograms. The original system’s support for
sound used the OGG file format with an offset from the start of
file being used to support time synchronisation when sound was
replayed with the text content of the explanogram. The Tablet PC
provides native support for Microsoft .Wav file formats, which
would enable an easy implementation of the desired functionality
on the Tablet but poor compatibility with the server features.
Thus the development has been inherently constrained by the
need to remain compatible with a functioning legacy application
on the server, while tempted by the ability of the Tablet PC to
offer a superset of the existing functionality. Figure 4 depicts the
existing explanogram system Architecture.

Figure 4: Previous Explanogram System Architecture

The Tablet PC based application now augments the prior
architecture with the elements shown in figure 5 below.

Figure 5: Adapted Tablet PC Based Explanogram System
Architecture
The internal architecture of the application is still evolving, with
the team engaged in a progressive refactoring process in order to
produce an extensible and robust internal design. A sample
explanogram is portrayed in figure 6 below indicating the user
interface developed for the tablet PC. As can be seen a drawing
palette enables pen colours to be selected, and the explanogram
can be saved and replayed locally or uploaded to the server

Figure 6: User interface for Tablet PC Based Explanogram
Client

4.3 Intellectual Property Issues
Another constraining dimension of the design has been the
question of ownership of the elements of the work. For the
existing explanogram application, ownership rested with Arnold
Pears. The terms of the Microsoft grant were that the Tablet PC
component would be made available freely for others to use,
including Microsoft. This placed parameters around the design of

45

the different components and required that the team ensure a
cleanly separated interface at the Tablet level.

5. DESIGN PROCESS
The methodology selected for the capstone project combined
practices and processes from three methodologies – the Design
Science Research Process, the Star model and Extreme
Programming. The Design Science model was created to model
the design process one follows when identifying a problem and
then translating this problem into a potential solution followed by
eventual academic publication. The Design Science model
specifically focuses on ensuring a consistent way for researchers
to carry out the process and therefore a way to recognise this
research as having followed a thorough process [12].
The Star model is a user centred design model that was developed
by Hartson and Hix [13] and is based on modelling HCI design

practices. The key to this model is evaluation after every step and
the ability to enter the cycle at any stage. The evaluation comes in
the form of review by experts and surveys conducted with users.
The idea is to create a more ‘bottom-up’ approach encompassing
practices such as prototyping rather than the traditional ‘top-
down’ waterfall style methodologies.
Extreme Programming is an agile methodology which encourages
client-user-developer collaboration and the idea that change is to
be expected and embraced. It was created specifically for small
teams of people and provides processes which aim to reduce the
cost of changes coming from vague requirements [2]. Given the
small team and vague requirements that were elements of this
project the team felt that XP was a perfect fit. Combining these
three methodologies to produce a strategy appropriate for this
project generates the following graphical representation.

Figure 7: Research Methodology and Evaluation Process

This approach takes the Design Science model and uses it as a
framework for the entire methodology. The problem identification
and motivation stage allows for longer term project goals to be
defined. The objectives of a solution stage allows for a release to
be planned by thinking about why this release is required and an
overview of what is expected. The design and development stage
allows for actual development and artefact production to take
place. The release/demonstration stage involves the development
work being packaged for release to users or demonstration to the
client [2]. At this point it is entirely possibly to move back to
development based on results of user or client feedback. Finally,
the model allows for communication of the results of development
and evaluation by way of paper publication or other means. After
this point, the model allows for the cycle to be repeated to create
more release objectives.

The Star model is integrated mainly into the design and
development stage of the overall model. The Star model allows
for entry into any point of the star, each of which should be
followed by evaluation. The requirements specification stage
allows for requirements to be gathered from the client or based on
analysis arising from the already completed objectives stage. The
conceptual design stage allows for the overall design to be
modelled and considered. The prototyping stage allows for
prototypes to be developed based on expert analysis or already
completed evaluation. Finally, the implementation stage allows
generated ideas to be put into actual code or other artefacts [13].
Extreme programming processes are used within the context of
other parts of the defined process. The planning game, for
example, is used at various points to help describe requirements.
This makes use of such techniques as user stories to complete the

46

process. Other practices are used at the implementation stage such
as pair programming, which has two developers working at one
computer; shared ownership, giving any developer the right to
change any code and configuration management, which ensures
that the same version of the code is being worked on at any given
moment [2].

5.1 Reflections on Actual Design Process
In carrying out the development process, as student developers we
found that the planned process provided a good basis for
development and largely was followed – even when working in
an organic manner we found that the process was relatively
natural and fitted in well with our work processes. On the
occasions where we deviated from the planned process we often
found we had problems which we would not have had if we had
understood and followed the process better.
The design and development stage of the process tended to form
the bulk of activities, and here we found that our ad hoc and
organic processes actually conformed closely to those planned.
For example, our process of gathering requirements and analysing
required functionality fitted well into the Requirements
specification and Task analysis / functional analysis stages. Our
natural tendency to produce prototypes of our software as we
worked fitted well into the Prototype stage. We did end up
effectively ‘throwing away’ some of these prototypes, but this
was not a problem and allowed us to evaluate our progress and
make improvement. The process allows for all of these.
We conducted a number of formal releases, accompanying each
with release notes and a relatively stable copy of the application
code, thereby fulfilling the Release / Demonstration stage. We
are, of course, communicating the results of our efforts within this
paper, fulfilling the Communication stage.
As an example of what occurred when the process was not
adhered to, the team initially failed to fully observe the separation
of the Problem identification and motivation (“problem stage”)
and Objectives of a solution stages (“objectives stage”). After the
first client meeting we began preparing for what we expected
would be the final software features. The problem encountered
was that there was a lack of understanding of the bigger picture
about why the project was being perused – we were immediately
concerning ourselves with what and how. This was probably a
problem of not fully understanding our own planned process – we
needed to appreciate that the problem stage really does not
concern what the project will produce, rather it concerns the
ultimate high level goals of the project, in this case the goal of
aiding novice software developers.
On reflection, it is almost a surprise that the process was such a
success. This is because our past experience has been that after a
process is devised, it is almost natural to have a desire to work in
an ad hoc manner not prescribed by the process, probably caused

by an eagerness to produce results and a perceived overhead of
the prescribed process. On this occasion, we had a well planned
process which we actually expected to model reality. This meant
that even without specifically meaning to, we were able to
naturally follow it. On the occasions when we did not properly
follow our own process, we achieved better results by stepping
back and ensuring we properly understood and followed the
prescribed steps.

5.2 Research Linked Teaching & Learning
A research linked model of teaching and learning imposes
additional methodological requirements. The methodology of
figure 7 incorporates the development, the usability evaluation
and the research components of the project, but omits the aspects
related to research ethics approval. AUT University mandates
such approval in order to publish this form of work as “research”,
rather than simply conducting it as a ‘secret’ teaching and
learning activity. The participation of students as co-authors of
this paper is an inherent aspect of the learning desired for their
capstone project, which consistent with [4] we consider an
excellent model for fostering undergraduate research. Therefore
ethics approval has been gained for two aspects of the project 1)
developing the software and usability evaluation with other
students as research subjects, 2) evaluation of the research process
itself and its historical development by the participants.

6. GLOBAL DIMENSIONS
On reflection, the chosen design process had omitted to fully
consider the global and distributed nature of the project.

6.1 Diversity of Participant Roles
One aspect of the global context required that both the Principals
in this research, and the capstone project supervisors assume a
number of coordination and facilitation roles on behalf of the
team. In hindsight it may have been better to more explicitly
define these roles. For instance the roles identified by the
capstone project team members were the following:

• Client communication coordinator
• Software Developer
• Project Manager
• Usability Expert
• UI Designer

Yet in practice the full research team have also had to perform or
to interact with several additional roles. For instance a review of
the number and variety of roles involved in one “episode” (phase)
of a global virtual collaboration [6] presents the rich list of actors
below:
Space precludes full discussion of this topic, but the innate
challenges of global virtual collaboration have been noted in [5].

47

Figure 8: Roles in a Global Virtual Collaboration [ex. 6 p. 211]

6.2 Rolling Cast of Actors – Team
Turnover
For differing reasons, (e.g. cessation of funding for research
assistants over the initial development period, brief onsite visits of
remote team members, school restructuring etc.) the people who
have been involved in the project at any given time have varied.
As people have left the project, they have often taken with them
knowledge of various aspects – both technical and procedural. As
new people have been brought in, their skill sets have helped to
shape the focus of the project. There have been successive
handovers and information loss, and familiarisation issues with
which the team members have had to contend, not unlike a true
commercial development context [16].
For example, the supervisor for the student developers towards
the beginning of the year was a human computer interaction
expert. As such, effort was put into ensuring that the application
was as usable as possible and progress was able to be reviewed
successfully by the supervisor. As she has now left the
university, a new supervisor has been appointed for the team
whose expertise lies in software development and system
architecture. This has shifted the focus more from usability to
ensuring that the class structure of the application is appropriate
to ensure extensibility and compatibility.
At times, the loss of people not even directly related to the project
has caused delays. As is explored within section 6.4, the team
desired to use Subversion (SVN) to track the configuration
management and ended up setting up their own SVN server. In
part, this was because the administrator for the School’s CVS
server had promised to install SVN as well, but left the university
shortly after this.

6.3 Communication Processes
Communication in a global software development project can be
challenging [5, 6, 15, 17]. At the project initiation we arranged a
videoconference session over the Karen access grid network [5]
from AUT University to Arnold Pears at Uppsala. While
eventually successful this was a highly fraught one-off exercise,
similar to those noted in [5]. Arnold visited the team for a week in
December of 2007 so that they could work together face to face –
a crucial visit which enabled us to share information to familiarise

with the still somewhat experimental system and set up a test
server on AUT premises. Subsequent communications have seen
a combination of Skype sessions and email in use, with the local
team, supervisor and on-site sponsors at AUT also regularly
meeting face to face.
In a university setting – or indeed in any large organisation –
there are often difficulties getting certain systems in place to
support development and testing. The team has encountered these
issues.
Toward the beginning of the project, the student developers chose
to make use of Google Sites, a wiki-like service provided by
Google which allows the creation of interlinked pages while
keeping the full revision history of all documents and files. The
students signed up to the service using their AUT email addresses.
Afterwards it was noticed that the use of these email addresses
meant that AUT administrators would be able to take control of
the Google Site, and potentially delete it or modify access.
Communication with the administrators was not straightforward
for the student team, as the team had to work by proxy through
the technology resource coordinator for the school. In addition,
there was difficulty in explaining the exact nature of the risk and
what the university administrators could do about it.
The eventual solution was that the AUT Technology Services
took control of the Site, and guaranteed access by the relevant
stakeholders by putting the administrator password into a ‘digital
safe’ with a note that the Site should not be deleted under any
circumstances.
Security concerns were another issue that arose on various
occasions. The team has a number of hardware devices which it
uses – a number of Tablet PCs and a physical workstation. The
university network allows only computer systems whose MAC
addresses are known onto the network. It was therefore necessary
to communicate the Tablet PCs MAC addresses to the university
Technology Services, as well as the MAC addresses for virtual
machines the team was using.

6.4 Software Config. & Test Environments
The original server software developed by students at Uppsala
University was functional, but difficult to install and run. The
team at AUT having not been fully involved in the development

48

of this software were not aware of the exact procedure for setting
up this software, nor the versions which were available. As such,
when the current student developers took control of the project
they simply copied the existing server code which was already on
one of the Tablet PCs – this code did not necessarily represent the
cleanest or most up to date version of the server.
The decision was made to package this server code into a working
standalone server rather than running it concurrently on
development computers as had been done. The development
computers ran Windows but the server itself originally ran on
Linux. Linux was chosen as the platform for the standalone server
as this would allow for distribution of the entire server within a
virtual machine without licensing issues. The process for
packaging the server was more difficult than expected, with the
Tomcat components of the server having difficulty
communicating with the MySQL database. On a whim, the team
tried running the Tomcat components upon the Windows version
of Tomcat on Linux using the WINE Windows compatibility
layer. Surprisingly this worked and has been stable since.
The server has since been packaged into a virtual machine for
ease of deployment onto demonstration machines. It runs within
the free VMware player and allows one to demonstrate the server-
client connectivity without network access. The free VMware
Server is used to run an instance of the server which operates full
time and is accessible from within AUT. The use of VMware
Server allows for snapshots to be made of the server for easy
rollback if something goes wrong, and for the server to run
concurrently with an SVN server and a workstation on the Team’s
single physical computer.
Configuration management for the software is made difficult by
the various technologies which must co-exist and the different
environments used in the past. The original server components
were developed in Java, and made use of CVS as a source control
repository. The Tablet PC application, however, is developed in
C# with Visual Studio. While it would have been possible to use
CVS for this, it is not possible to integrate CVS particularly well
with Visual Studio. There does however, exist a very good plug-
in for SVN which works well with Visual Studio. For this reason
SVN is used when developing the Tablet PC application.
There was some difficulty in setting up the SVN server, due to the
service not being offered on a server accessible from outside the
university – the server available offers only CVS support. The
team was able to work around this by creating their own SVN
server (again running within VMware Server and allowing access
to it by creating an SSH tunnel into the university.
SSH tunnels are used to allow access to a number of different
services within the university and allow the team to access these
services without having to go through the fraught process of
seeking and obtaining permission from the university Technology
Services department to make these servers accessible from
outside.
The process for establishing the SSH tunnel typically involves the
generation of a public-private key pair, the private component of
which is placed onto the university’s SSH server while the public
key is made available to those desiring access. The SSH server is
configured to allow those with the relevant public key only to
tunnel into the relevant server; no other SSH access is granted.
The user desiring access then uses a Windows Plink.exe
command to connect to the server with the public key. They

access the relevant services at the ‘localhost’ address and can
disconnect afterwards, all while still respecting the university
firewall.

7. FUTURE WORK
It is planned to make the software freely available to collaborating
parties with shared interests and Tablet PC rich environments.
The team are working on setting up a repository from which the
application can be downloaded for more general use, once it
reaches a stable release point by the end of the semester, and a
more general solution for hosting the server is established.
As has been noted, there are currently issues with attempting to
access the server from outside AUT university. The solution is to
make this available without having to create a tunnel. Securing
permission from the university Technology Services and
conducting a security review of the server is currently in progress.
It is anticipated that much of the server code which was created
could be consolidated – having a server which uses either Tomcat
or PHP, but not both, is likely to ease deployment and
maintainability. One future solution could be to rework the
Tomcat modules such that common functionality is extracted.
The decision to use PHP at this early stage, is because PHP is a
scripting language allowing for easier prototyping and bypassing
of the legacy code.
In the future it may be necessary to replace a great number of the
components of the existing server if the extended functionality of
the Tablet PC is desired to be included. The Java applet player on
the server, for example, may need to have significant new
functionality added in order to understand such concepts as
deleting strokes after their insertion. The database too, will need
to have more information able to be added if this extended
functionality is to be recorded. In some cases this could be as
simple as adding new columns to database tables. Of course the
team is interested in ensuring that the pen continues to work so
modifications will have to be made with care.
The decisions on exactly how to modify the server to be more
compatible with the tablet have not yet been made. However, as
the project moves forward, it is expected that future student
developers working on the project will be able to take some of the
decisions made by the current developers and use these to form a
sound strategy on the best way to proceed.

8. CONCLUSION
This report on the phases of a distributed software development
project developing explanograms for Tablet PC’s has reviewed
both product and process elements within a research-linked model
of teaching and learning. The design of the system has been
outlined together with the key challenges and design constraints
which the current student development team has recently
encountered and the research and development methodology
employed. Some of the technical challenges have been expressed
at quite a micro-level, but they do realistically reflect the student
experience. A legacy pen based application for providing
replayable snippets of explanation (explanograms) has been
augmented to interoperate with a Tablet PC application providing
a superset of the previous pen based system’s functionality. The
multiple challenges of a global software development project and
how the team has addressed them have been reviewed in the
context of this project. Blending technologies and dealing with

49

conflicting intellectual property are messy, much like many
business applications. This messiness, in itself has been a
valuable part of the learning experience for the students. The
design and evolving functionality of the Tablet PC based
explanogram application has been described. A progressive
usability process and plans for evaluating the software have been
presented. Plans have been outlined for extending the work and
for making a trial version of the Tablet based software
communicating effectively with an open server freely available
for a wider group of educators and researchers by the end of 2008.
It is hoped that others will adopt and use the software to help
develop the functionality, validate its usability and demonstrate
the value of explanograms in supporting teaching and learning
processes. While computing educators are seen as the likely first
users of the application, it has the potential to serve educators and
students in many other disciplines.

9. ACKNOWLEDGMENTS
This work has been enabled by the provision of a project grant
from the Microsoft Research Asia - 2007 Mobile Computing in
Education Theme, and by the donation of a tablet PC from
Cyclone Computers. The contributions of the student developers
(Tang Dang Bao Trung, Jonathan Hill, Yong Liu) and their
supervisors at AUT University (Doug MacKenzie, Diana
Kassabova, Anne Philpott) have been key to the progress of this
work. We acknowledge the initial provision of sample tablet PC
code by Beryl Plimmer of the University of Auckland, which
greatly assisted the early design work.

10. REFERENCES
[1] Arnold, D. Editorial for Inaugural Issue of JOCCH: Pasteur’s

Quadrant: Cultural Heritage as Inspiration for Basic
Research in Computer Science. ACM Journal on Computing
and Cultural Heritage (JOCCH) 1(1). 1:1 - 1:13.

[2] Beck, K. Extreme programming explained. Addison Wesley
Longman, Reading, 2000.

[3] Chen, X. and Plimmer, B., Code Annotator: Digital Ink
Annotation Within Eclipse. in OZCHI 2007 Proceedings,
(Adelaide, Australia, 2007), CHISIG.

[4] Clear, T. and Kassabova, D. A Course in Collaborative
Computing: Collaborative Learning and Research with a
Global Perspective. in Guzdial, M. and Fitzgerald, S. eds.
Proceedings of the 39th ACM Technical Symposium on
Computer Science Education, ACM, Portland, Oregon, 2008,
63-67.

[5] Clear, T. Global Collaboration in Course Delivery: Are We
There Yet? SIGCSE Bulletin, 40 (2). 11-12.

[6] Clear, T. Supporting the Work of Global Virtual Teams: The
Role of Technology-Use Mediation Computing and
Mathematical Sciences Auckland University of Technology,
Auckland, (submitted for examination), 1-778.

[7] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns. Addison-Wesley, Reading, Massachusetts, 1995.

[8] Hauer, A. and Daniels, M. A learning theory perspective on
running open ended group projects (OEGPs). in Simon and
Hamilton, M. eds. Conferences in Research and Practice in
Information Technology, ACS, Wollongong, NSW,
Australia, 2008, 85-92.

[9] Manford, C. The impact of the SaaS model of software
delivery. in Mann, S. and Lopez, M. eds. Proceedings of the
21st Annual NACCQ Conference, NACCQ, Auckland, New
Zealand, 2008, 283-286.

[10] Pears, A. Enriching Online Learning Resources with
Explanograms International Symposium on Information and
Communication Technologies (ISICT'03), Dublin, Ireland,
2003

[11] Pears, A. Explanograms: Low Overhead Multi-media
Learning Resources. in Korhonen, A. and Malmi, L. eds.
Proceedings of the Fourth Finnish/Baltic Sea Conference on
Computer Science Education, Helsinki University of
Technology, Department of Computer Science and
Engineering, Laboratory of Information Processing Science,
2004, 67-74

[12] Peffers, K., Tuunanen, T., Gengler, C., Rossi, M., Hui, W.,
Virtanen, V. and Bragge, J., The Design Science Research
Process: A Model For Producing And Presenting Information
Systems Research. in First International Conference on
Design Science Research in Information Systems and
Technology (DESRIST 2006), (Claremont, CA. Retrieved
17/05/2006 from
http://ncl.cgu.edu/designconference/DESRIST%202006%20
Proceedings/4A_2.pdf, 2006).

[13] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S.
and Carey, T. Human-Computer Interaction: Concepts And
Design. Addison & Wesley, Reading., 1994.

[14] Raymond, E. The Cathedral and the Bazaar. First Monday, 3
(3). Retrieved 16 Apr 2006 from
http://www.firstmonday.org/issues/issue2003_2003/raymond
/

[15] Richardson, I., Milewski, A., Keil, P. and Mullick, N.,
Distributed Development - An Education Perspective on the
Global Studio Project. in 28th International Conference on
Software Engineering (ICSE'06), (Shanghai, China, 2006),
ACM, 679-684.

[16] Sim, S. and Holt, R., The Ramp-up Problem in Software
Projects: A Case Study of How Software Immigrants
Naturalize. in Proceedings of the 1998 (20th) International
Conference on Software Engineering, (Kyoto, Japan, 1998),
IEEE.

[17] Swigger, K., Brazile, R., Harrington, B., Peng, X. and
Apaslan, F. Teaching Students How to Work in Global
Software Development Environments International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2006 (CollaborateCom
2006), IEEE, Atlanta, Georgia, USA, 2006.

[18] Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P.,
Kumar, P. and Prasad, C. An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, using the
Bloom and SOLO Taxonomies. Conferences in Research and
Practice in Information Technology, 52. 243-252

[19] Whalley, J., Prasad, C. and Kumar, P. Decoding Doodles:
Novice Programmers and Their Annotations. Conferences in
Research and Practice in Information Technology, 66. 171-
178.

50

Implementing a Contextualized IT Curriculum:
Ambitions and Ambiguities

Matti Tedre
Tumaini University

Iringa University College
B.Sc Program in IT

Iringa, Tanzania
firstname.lastname@acm.org

Fredrick D. Ngumbuke
Helsinki Metropolia University

of Applied Sciences
Helsinki, Finland

Nicholas Bangu
Tumaini University

Iringa University College
Iringa, Tanzania

Erkki Sutinen
University of Joensuu

Dept. of Computer Science
and Statistics

Joensuu, Finland

ABSTRACT
In this article we report the combined findings from an
ethnographic field study and action research on implemen-
tation of a newly founded IT program in rural Tanzania.
We have found that the competences and skills of IT pro-
fessionals in developing countries differ from the compe-
tences and skills of IT professionals in industrialized coun-
tries. Also workable pedagogical approaches, students’ edu-
cational backgrounds, teachers’ level of education, attitudes
towards university education, aims of education, organiza-
tional and administrative frameworks, and people’s moti-
vations differ between industrialized and developing coun-
tries. We report some ways in which developers of func-
tioning, sustainable, relevant, and motivating IT programs
in developing countries face different challenges than their
industrialized-world counterparts. We finish this paper with
a number of lessons learned that we hope to be useful for
other people undertaking similar projects in the developing
world.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education,
curriculum

1. INTRODUCTION
In 1965 the Ministry of Finance in Tanzania began the

first information technology (IT) program in Tanzania [27].
By 1974 there were seven computers in the country. The
introduction of these computers as well as the whole idea

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

of computerization faced some problems, such as the lack of
qualified Tanzanian IT personnel, uncoordinated IT project
planning, and failed government interventions [27]. The Uni-
versity of Dar-es-Salaam was the first to start information
technology teaching initiatives—yet principally, their whole
range of courses was not aimed at training people to become
specialists on a wide range of computer skills, but rather at
providing them with computer appreciation or with skills
on how to solve problems in a specialized area [27]. In 1974
the University of Dar-es-Salaam took a major step to start
a M.Sc program, which, however, did not work well, be-
cause there was no other institution that could offer a one-
or two-year diploma or certificate in the field [27]. That ini-
tiative of the University of Dar-es-Salaam faced great prob-
lems and was finished in 1984. As a result of those problems
with the M.Sc program, the University of Dar-es-Salaam
started a diploma program instead [27]. Most of the pro-
grams launched in Tanzania have been copied directly from
the Western curricula.

In Tanzania the imported, theoretically oriented comput-
ing curricula have not met the expectations. That same
problem seems endemic to the country’s educational sys-
tem: several universities offer theoretical education in fields
such as agriculture and civil engineering, yet no major im-
provements of agriculture have been made since the 1960s,
and most engineering project bids today are won by Asian
or European firms. This has led us to believe that in addi-
tion to theoretical knowledge, Tanzanian higher education
should focus on developing students’ skills. Students should
not only know what to do but also how to do it.

The demands of IT education in Tanzania differ quite a
lot from the demands of IT education in industrialized coun-
tries. Many of those differences derive from different needs
of the society and different aims of education, whereas many
others derive from differences in educational background of
students and staff, and, most importantly, differences in en-
vironment (including cultural, social, political, natural, eco-
nomic, and all other kinds of environment.) Most remark-
ably from the viewpoint of IT education, in Tanzania experts
are not needed as much as all-round IT bricoleurs are.

Tumaini University launched a B.Sc program in IT in Sep-

51

tember 2007. A significant amount of work was done in order
to refine the curriculum to contextualize it to fit the Tan-
zanian context [8, 19, 26, 33, 40, 41, 42]. Tumaini’s B.Sc
program in IT is based on continuous, research-based, for-
mative program development. In this paper we present and
analyze the challenges we faced during the first year of im-
plementation of Tumaini’s B.Sc program in IT (hereafter
BIT program). Our primary aim is to elucidate on our in-
creased understanding of the principles of a contextualized
IT program. Our secondary aim is to convey knowledge
about pitfalls, which may seem obvious from the perspec-
tives of other disciplines and which we were aware of from
the very beginning, but which we still had to learn the hard
way.

2. RESEARCH METHOD
This paper reports an investigation of the educational, so-

cial, and cultural environment of a new educational program.
As a combination of ethnographic research and participatory
action research [6], this research focuses on exploring chal-
lenges and prospects that the Tanzanian context brings into
the development of an IT program. Nuances of sociocultural
interactions as well as many ethnographic observations are
largely excluded due to the limited length of the paper. Typ-
ical of ethnographic research [5], we aim at exploring local
particulars, emphasize adaptability in the course of study,
develop new concepts over the course of the study, and rep-
resent data mostly in natural language.

Reports of interpretive research are easily biased by per-
sonal opinions and positions [16]. Therefore, it is impor-
tant to elucidate our positions in the organization we study.
This paper was written from the viewpoint of four people
associated with the program: we write this paper qua as-
sociate professor (head of the program), ICT director, ad-
junct professor of the program, and provost (CEO) of the
university. The head of BIT program was hired from out-
side the organization to run the program and to launch a
continuous improvement process within the program. The
ICT director—who is a Tanzanian citizen but has received
his B.Tech degree in Europe—has worked with the univer-
sity since 2004, focusing on IT support and infrastructure
development, and he played a role in the design and imple-
mentation of the BIT program. The adjunct professor, who
is a professor and head of computer science department in
a European educational institution, has collaborated with
Tumaini University in terms of IT education development
for approximately ten years, and now has an advisory role
in the program. The fourth author, who is the provost of
Tumaini, initiated the BIT program and chaired the design
and implementation process of the program.

Our views about the program’s development are necessar-
ily biased by our positions and history with the program. In
this paper we present the challenges and prospects as we see
them, and our views surely differ from those of other stake-
holders. To complement our lived experiences we use data
collected from various sources: emails, student feedback, in-
ternal memos, seminar presentations, notes on discussions,
and field notes of a researcher who is conducting an ethno-
graphic study on the development of the program. Those
data sources are indicated in footnotes where appropriate.
The data analysis was basic qualitative data analysis where
emerging themes, patterns, and signals were analyzed for
resonance with research literature [31].

Organization and Staff
Other educational programs at Tumaini fit well under Tu-
maini’s four faculties: Faculty of Theology, Faculty of Law,
Faculty of Arts and Social Sciences, and Faculty of Business
and Economics. Information technology program did not fit
well under any of the existing faculties, so an ICT direc-
torate (an independent unit of a smaller size than faculty)
was founded to accommodate the program. The current or-
ganizational situation of the program is illustrated in Figure
1. The ICT Directorate is divided to two: IT support and
B.Sc Program in IT. ICT director is in charge of IT support,
and, together with the head of the B.Sc Program, of the BIT
program. Technicians can be used to assist the BIT pro-
gram. During the academic year 2007–2008, teaching staff
consisted of three tutorial assistants, ICT director, and one
associate professor. The associate professor held a doctoral
degree in computer science, whereas the other teaching staff
members held B.Sc or B.Tech degrees in computing.

Figure 1: IT Program’s Place in Tumaini’s Organi-
zation

3. AMBITIONS AND AMBIGUITIES
Tumaini’s original IT curriculum was based on six ambi-

tious principles [8], which were designed to promote teaching
that was 1) oriented strongly towards practice and activities,
2) based on problem-solving projects (problem orientation),
3) sensitive to context, 4) interdisciplinary in design and
implementation (computer science, information technology,
and computer engineering being the incorporated fields of
study), 5) of a standard that would be internationally rec-
ognized, and 6) based on research. The six principles seemed
obvious in the design phase of the program [8], yet the con-
tent and implications of those principles were not analyzed
further. In this section we describe the ambiguities that
arose in the implementation phase of the program, and we
analyze the program principles further.

52

3.1 Principles
Tumaini’s IT program was founded on six principles [8]:

• Practicality

• Problem-based orientation

• Context-sensitivity

• Interdisciplinarity

• International recognition

• Basis on research

The first founding principle of Tumaini’s IT curriculum,
context-sensitivity, refers to the idea that each society, cli-
mate, environment, economy, language, and culture pose
some unique challenges for IT professionals and educators;
and to the idea that local IT curricula and pedagogy should
respond to those challenges. The second principle, problem-
based orientation, refers to the typical constructivist ap-
proach of problem-based and project-based learning—that
is, students work on projects that concern authentic prob-
lems and reflect on the experiences they gain while working
on those projects [20, 21].

The third principle, practicality, refers to the idea that
in Tanzania, IT professionals face all kinds of practical and
theoretical challenges, and without practical training BIT
program graduates may not be able to work with the var-
ious hands-on tasks that they are expected to. The fourth
principle, interdisciplinarity, refers to the need to incorpo-
rate subject areas such as development studies and business
in the IT degree curriculum, as well as to the combination
of information technology (IT) curricula, computer science
(CS) curricula, and computer engineering (CE) curricula.
In addition, IT professionals must have the ability to work
with people from various fields.

The fifth principle, international recognition, refers to the
fact that in order for students to work in countries other than
Tanzania, and in order for students to continue their studies
in international master’s level programs, the BIT program
must be aligned with the international standards of IEEE
and ACM [3, 4]. The sixth principle, basis on research, refers
to the need to continuously develop the curriculum further,
and to base any revisions of the curriculum on rigorous re-
search.

In the design phase of the BIT program, 2006–2007, we
set the principles above in a clear manner, yet the actual
content of those principles and the role of those principles
in implementation of the program were never clearly stated.
That is, the program syllabus and curriculum guidelines ex-
plicitly referred to the six principles above, but we had to
learn how to actually implement and follow them in the pro-
gram. This turned out to be a much bigger challenge than
we thought it would be.

Most importantly, we did not consider the fact that not
everyone shares the same ideas about concepts that are very
abstract (e.g., context sensitivity, problem-based learning,
and practicality). That is, it was implicitly assumed that
tutorial assistants, Tanzanian students, program designers,
program management, university administration, and all oth-
er stakeholders would all share the same idea about the
essence, importance, and implications of, say, ‘practical ori-
entation.’ That implicit assumption indeed ran against the

very idea of contextual understanding. In fact, students
had their idea of what ‘practical’ means, tutorial assistants
(graduates of a theoretical program in the University of Dar
es Salaam) had their idea of what ‘practical’ means, and
surely program designers, university management, and other
stakeholders all had their own views on what ‘practical’ ac-
tually means.

We are currently on our way to clear some of the ambi-
guities of the abstract principles underlying the BIT pro-
gram. Certainly, there will always be ambiguity concerning
concepts (e.g. [43, pgs. §64–§67]), but some common under-
standing and agreement is necessary in order to implement,
discuss, analyze, and evaluate the program. In the following
sections we analyze the rationales, implications, and pitfalls
of the six program principles.

3.2 Practicality
Not only is the concept of practicality ambiguous, but the

tension between the principles of international recognition
and practicality posed some special challenges to curricu-
lum design. Yet the problem is not only Tumaini’s: the ten-
sion between theory and practice has driven and haunted
computing disciplines ever since the birth of modern com-
puting [34, pp.283–286]. Theory is indeed the bedrock of
academic computing—any academic curriculum in IT must
have a sound theoretical base [14]. But there again, without
design and implementation of technological tools, computing
would be just idle speculation [18]. Although all IT profes-
sionals must know some theory of computing, they should
not forget about the users and their real problems [12].

During the whole first academic year, we heard students
demanding for more practical tasks and hands-on learning;
and we heard teachers emphasizing the importance of ab-
stract concepts and lecture-based teaching. For instance, in
a number of 3-hour per week courses that were originally
meant to be 2/3 hands-on and 1/3 lecture-based, it turned
out that the teachers wanted to spend the whole three hours
a week on lectures and give students some homework as
“practicals [sic]”.1 Students’ and program management’s de-
mands of practical sessions were not implemented. In staff
meetings it turned out that all the tutorial assistants had, in
their studies, been taught through an instructivist pedagogy,
which is the prominent pedagogy in Tanzanian educational
system. We finally ended up solving this issue by divid-
ing all classes in timetable so that 1 hour per week takes
place in a lecture hall and 2 hours take place in a computer
laboratory where lecturing would be very impractical. This
organization, we hope, brings orientation to teachers and
gives some leverage to students’ pleas for practical sessions.
Teaching arrangements and the very environment of teach-
ing now steers classes to a clear division to practical and
theoretical sessions.

Donald Knuth [23] noted that “Theory and practice are
not just two sides of the same coin. They deserve to be mixed
and blended, but sometimes they also need to be pure.” Some
of the BIT courses are chiefly theoretical, some are chiefly
practical, and some blend theory and practice. In the BIT
curriculum, theoretically oriented and practically oriented
courses alternate. Theoretically oriented courses prepare
students by giving them conceptual and theoretical under-
standing of computing, and in practically oriented courses
students can take that understanding into functional use.

1Notes on staff meeting, Tuesday, June 24, 2008, 14:00–16:30

53

In practical courses students are required to reflect on the
relationship between what they have learned in their classes
and on their practical work. Practical courses are not, how-
ever, intended to be the end of cycle, but they are intended
to provide students with motivation and orientation for the
next courses.

3.3 Problem-Based Orientation
One of the biggest open questions with problem-based

learning is the choice of problems. When one thinks about
problems for classroom, one needs to distinguish a problem
from a trivial question to which the answer is known without
any need for reflection [10] (“What color are the pants I’m
wearing?”). Similar, a problem must be distinguished from
a task : although some tasks can indeed be problematic, not
all tasks are problems and not all problems are tasks. An-
other common misuse of the term is using it in a situation
where problem is associated simply with not knowing [10].
For instance, not knowing how many provinces there are in
Tanzania is not really a problem for most people most of the
time.

It has been suggested that one valid use of the term prob-
lem is as follows: “If an obstacle occurs in the course of
someone’s own existence, and he/she does not know how to
overcome the obstacle, then he/she has a problem.” [10] A
problem has two sides—the subjective side that is the feeling
of necessity, and the objective side that is the situation that
puzzles the consciousness [10]. In other words, in each au-
thentic problem there is an obstacle (objective aspect) that
a person wants to overcome (subjective aspect). In the BIT
program’s problem-based pedagogy the subjective aspect—
the personal need to overcome the obstacle—is emphasized.

In addition, it must be understood that in the field of
information technology problem solving (in the sense of in-
structions or general rules on how to overcome a problem)
depicts only one aspect of the more general concept—problem
management [32]. A solution—whether it is a definite un-
equivocal answer to a problem or, e.g., a resolution rising
from a debate—is only one stage in that process [32]. Prob-
lem management may also involve identifying, comprehend-
ing, specifying, expressing, formulating, solving, and evalu-
ating the problem in question [32].

We wished to refrain from using pseudo-problems (man-
ufactured problems, imposed problems) in the classroom;
instead, we wanted students to get acquainted with typical
problems in an authentic setting. That approach, we be-
lieved, would avoid learning the problem management prin-
ciple of what-you-know -is-what-you-get rather than what-
you-need-is-what-you-get. The former principle builds on a
specific set of features, and it responds to closed and well-
constrained problems [32]. The latter principle states a“cus-
tomer’s problem”(sometimes in an obscure way), but it gives
more room for innovativeness. When problems of the first
kind are introduced at the school, a teacher often expects
the student to come up with not any solution but with a so-
lution that the teacher is familiar with [1, p.9]. Contrary to
that, in the BIT program students are exposed from early on
to the kinds of problems they will be working with in their
work life. That, however, turned out to be much harder
than it was first thought to be.

First of all, it is hard to create links between local busi-
nesses and an academic program. Companies have been very
reluctant to host Tumaini’s students for either long-term in-

ternships or short visits. Some of the students had to find
internship places very far from Iringa, and despite numer-
ous attempts, some were unable to find an internship place
altogether 2.

Second, teachers in both hardware-focused and software-
focused courses in the curriculum found problem-based ori-
entation to be challenging. On the hardware side, organiza-
tional and administrative matters hindered the possibilities
of working on real-life problems. Firstly, due to the high
risk of information leakage we cannot allow students to en-
ter staff members’ offices or to work with staff members’
computers. In Tanzania, leaking out exams or student in-
formation is a constant trouble and the administration does
not want to risk any leaks. Secondly, the university has
grown rapidly in terms of number of students, and facili-
ties are scarce. Therefore, it has been difficult to allocate a
suitable workshop space. Currently we have a 20-foot con-
tainer for hardware workshop, which is not very well suited
for the purpose. Thirdly, problem-based learning requires
much more time from teachers than more traditional ped-
agogical approaches do. Currently, staff members have a
heavy teaching load (e.g., teaching the basics of IT for stu-
dents in all faculties), they have a large number of techni-
cal duties (e.g., IT support, installation, and maintenance),
and they have a number of other duties (e.g., departmental
duties, administrative tasks, research, and continuing edu-
cation)3.

After starting to work with an NGO (non-governmental
organization) Global Outreach, which focuses on providing
Internet libraries to Iringa region4, the problem-based learn-
ing approach turned on a new gear. In May 26, BIT stu-
dents assisted in setting up one 12-computer Internet cen-
ter, and there is an agreement on employing Tumaini’s IT
students for maintenance and support work in the NGO’s
nine Internet centers in the region. Each month students
complete a maintenance checklist in one Internet center (18
tasks ranging from maintaining peripherals to virus checks
and updates), they will verify the computer inventory, they
will review the findings with each school’s headmaster, and
report all activities to the NGO5.

3.4 Context-Sensitivity
The very concept of context is multidimensional and ex-

cessively ambiguous. Even when one agrees with the impor-
tance of contextual understanding, taking context into ac-
count in pedagogy and curriculum design is neither easy nor
straightforward. For example, we discovered, the hard way,
in the BIT curriculum a clash between i) the aim of provid-
ing hands-on learning experiences, ii) the original curricu-
lum design, and iii) students’ background. Java program-
ming classes were planned to begin in the first semester,
and programming was planned to be taught in a hands-on
manner6. The original idea was that programming should be
taught using Jeliot 3, which is a program animation tool that

2Internship Reports, 2008
3End of Semester Report, Monday, September 1, 2008
4Memo: Collaboration Between Global Outreach and Tu-
maini’s B.IT Program, Tuesday, May 13, 2008
5Appendix 1: List of Tasks at Global Outreach Sites, Tues-
day, May 13, 2008
6Bachelor of Science in Information Technology Degree:
Syllabus, Version 17, pp.6–7

54

is aimed at helping students to understand object-oriented
programming [29].

The idea for the hands-on programming course was that
students would surf the course material using a standard web
browser, would copy-paste or type some code examples to an
editor window, would compile and execute the source code
to experiment on the program, and would save their files for
later use. However, 89% of Tumaini’s IT students had never
used a computer of any kind before coming to the university.
When the programming course began, students did not know
about surfing, browsers, copying, pasting, typing, code, ed-
itors, windows, compiling, executing, saving, programs, or
files (or about any other computing concepts for that mat-
ter.) As the programming courses plowed through, it be-
came crystal clear that either programming courses should
be postponed later in the curriculum or the idea of hands-
on, practical learning of programming should be abandoned.
We chose the former option and restructured the curriculum
so that programming courses begin in the second semester
of studies.

No-one ever clarified to BIT program’s staff members what
contextualization implies for their own teaching. Also stu-
dents were puzzled by the idea of contextualized curriculum.
One student wrote, “I have been hearing every now and then
that IT course here at Tumaini differs from other Univer-
sities curriculum adopted. That is “Contextualized.” The
fun thing is that, I have not noticed exactly the meaning of
the term “Contextualized teaching and curriculum”. Are we
really being taught under that concept?”7 Indeed, contextu-
alization is a multifaceted idea and can appear at several
levels [37]. From our point of view, firstly, contextualization
entails the idea that an IT educational program must take
into account students’ previous knowledge. Secondly, it en-
tails the idea that a curriculum must consist of topics that
are relevant to the geographical, technological, and socioeco-
nomic environment where the graduates are going to work.
Thirdly, it entails the idea that culture and society cannot
be considered to be external to an educational program.

In the BIT program, the first idea above is gradually being
better understood, and curriculum is being reshaped to bet-
ter accommodate to students’ level of technological literacy
and educational background8. The first idea must, however,
be better addressed through pedagogy, and we are currently
conducting design research on the topic. The second idea
is somewhat addressed in the curriculum, and research is
currently being conducted to explore the social, economic,
industrial, cultural, and all other kinds of aspects of rele-
vance regarding the curriculum. The third idea is addressed
especially in classroom teaching and problem-setting.

Currently Tumaini’s BIT program is somewhat different
to other university-level computing programs in terms of
local and contextual concerns, but we are not certain if the
program is locally relevant enough to call it ‘contextualized.’
But there again, there is no agreement about how much of
the curriculum should be ‘universal’ and how much should
be ‘local.’ Excessive contextualization may undermine an-
other principle of the program: international recognition.
That is, after their graduation students must be able to work
effectively in local industry and be able to explore, identify,
appreciate, and solve local problems—but they also must be

7Personal email, Wednesday, July 2, 2008 (verbatim)
8Curriculum Review, June 28, 2008

able to continue their education to master’s level in other in-
stitutions. The program must be balanced; it should have
some local and some global elements.

3.5 Interdisciplinarity
The paradox of specialization in Tanzania is that there is

such a lack of specialists in many crucial branches of tech-
nology, that Tanzanian IT professionals cannot afford spe-
cialization. That is, one cannot assume that there is readily
a specialist for all the auxiliary problems that an IT profes-
sional faces. Usually one cannot hoist to others some parts
of the problem knot, or the job will not get done. If an IT
installation has a problem with electricity, it may take a long
time to get a qualified electrician to fix the problem; if there
is a problem with poor standards of building and wiring,
it may be hard to find a building contractor or electrical
engineer to analyze and overcome the problem. The neces-
sary technical skills for Tanzanian computing professionals
include aspects of, for instance, electrical engineering, mate-
rial science, architectural design, and carpentry. Tanzanian
IT professionals must be able to work with a wider range of
issues than their Western counterparts.

A combination of computing fields (computer science, in-
formation technology, information systems, and computer
engineering) has in general had a more positive effect on the
BIT program than a negative one. In the academic year
2008–2009 the program staff includes people from computer
science (B.Sc, M.Sc, PhD), computer engineering (M.Eng),
and information technology (B.Tech / polytechnic). This
variety provides students insight that a narrowly focused,
specialized program could not provide. Technically oriented
courses, theoretically oriented courses, and engineering-or-
iented courses can, in the BIT program, all be taught by
people who specialize in those branches.

Students, however, have not been fully satisfied with the
wide variety of IT skills in the curriculum. The first year
students have been puzzled by the variety of IT fields and
have wondered their difference. In a sense, their puzzlement
is warranted: the aims of B.Sc, B.Eng, and B.Tech degrees
are indeed different from each other. It has been a source
of constant debate whether the BIT program should focus
on teaching the latest tools and techniques, the processes
of building those tools, or some deeper and more timeless
principles behind those tools. Students also hold the idea
that when they graduate and are hired to a company, they
should be ready to start productive work from day one. But
the IT job market in Tanzania is almost as wide as the job
market in industrialized countries, and a general university
education cannot prepare one to be expert in all IT fields.
Therefore, we have planned a series of classes in career de-
velopment: searching for work, applying to a job, writing a
CV, preparing for a job interview, learning continuous edu-
cation, and accommodating to changes of career.

3.6 International Recognition
In the BIT curriculum plan and program description in-

ternational recognition was mentioned as a principle, but
how to achieve that recognition was left open. We chose a
two-fold approach to achieving recognition: firstly, we aim
to show clearly how the program connects with the interna-
tional CS, CE, and IT curricula [2, 3, 4], and secondly, we
aim to demonstrate the contributions of deep local under-
standing to computing knowledge in general. We approach

55

the former aim by requiring teachers to connect the topics
taught in each class with core knowledge topics found in
ACM/IEEE curricula. The latter aim is a research topic
currently undertaken by several researchers from Tumaini’s
staff and collaborating institutions.

3.7 Basis on Research
A significant amount of research was done for developing

this program. One doctoral thesis dealt solely on the devel-
opment of contextualized IT education at Tumaini [40]. Sev-
eral journal articles and conference papers were published
on the development steps involved in the process [8, 19, 26,
33, 41, 42]. The foundations of culturally meaningful un-
derstanding of computing were elucidated in several articles
[36, 37, 38].

Ongoing research-based development of the program is
well underway: A thick description, analysis, and under-
standing of the issues connected with contextualized IT ed-
ucation is being woven from interconnected research strands.
After starting the program, a number of visiting researchers
have undertaken research on the program and in the pro-
gram. A Spanish researcher working in Finland conducted
research for his doctoral thesis on a program animation tool
in the BIT program’s first programming course [28]. Two
Danish students did their M.Sc thesis research on social em-
powerment through the BIT program [24]. A Tanzanian stu-
dent evaluated, in his M.Eng thesis, the contextual aspects
of the BIT program [25]. A Kenyan student compared, in
her M.Sc thesis, the standards of contextual sensitivity in
five African IT programs, including Tumaini [13]. In addi-
tion, there are several ongoing research processes (including
one ethnographic two-year research), several small intercon-
nected pieces of research (e.g. [35]), and doctoral research
work.

3.8 Organizational Matters
Although we have had to learn many lessons the hard

way, we got some things right from the beginning. The
most important has been a long-term relationship between
stakeholders. Organizational knowledge and understanding
can only be gained through long and active relationship,
and through working with and within the organization for
a long time. Trust cannot be established overnight or over
the Internet. Before starting the program there already was
a ten-year history between the college and the partners of
the college, such as University of Joensuu, North West Uni-
versity, and University of Southern Denmark. In addition,
a number of people and organizations, such as the Finnish
Evangelic Lutheran Mission (FELM) and Tumaini’s previ-
ous ICT directors hired by FELM, had successfully estab-
lished trust between international networks and the univer-
sity. This long-term relationship paved the way to successful
tightening of the collaboration.

Second, thorough understanding of the university organi-
zation, culture, bureaucracy, and politics is indispensable
to success. In the establishment phase of the BIT pro-
gram key people—the provost and top administration, as
well as the ICT director—had a thorough understanding of
how decision-making in the university works. In the imple-
mentation phase, the ICT director was well positioned in the
organization and had good knowledge of the workings of the
university organization. Without this organizational under-
standing, amendments to and changes in the curriculum and

program execution would have been very slow and many ad-
ministrative issues would have been frustrating. Our expe-
rience underlines the quintessence of local, Tanzanian man-
agerial knowledge as well as international collaboration.

Third, a strong support of the university administration
is fundamental to success. From the very beginning, the
provost and deputy provost for academic affairs were strong
supporters of the program, and the deputy provost for ad-
ministration looked favorably at the necessary (quite re-
markable) funding requests for the program. Throughout
the program implementation, the support of top administra-
tion has been imperative to success. Our colleagues working
with similar program plans in another college in East Africa
report that their work is nigh impossible due to the adverse
attitude of the administration to computers and ICT in gen-
eral 9.

Organizational Structure
Earlier in this paper we noted that BIT program did not fit
well under any of Tumaini’s four faculties, so in the begin-
ning the BIT program was not associated with any faculty.
In the beginning, this turned out to be a great asset for the
program. Although faculty provides a clear position and
weight within university organization, it also entails rigid-
ity and bureaucracy. Departments at Tumaini have to get
decisions approved on three levels: on departmental level,
on faculty level, and on administrative or academic board
level. Some decisions require an additional decision on uni-
versity senate level. Not being associated with any faculty
exempted the BIT program from faculty-level debates and
freed it from intra-faculty competition.

Problems began to arise soon, though. Firstly, about half-
way the academic year students noticed that not belonging
to any faculty means that students do not have a repre-
sentative in the university’s academic board. Secondly, the
national student loans’ board requires that every student
must belong to some faculty. Thirdly, special ‘faculty re-
quirements’ determine how much money a student is eligi-
ble to get from the loan board. Fourthly, official forms have
a box for a faculty stamp. These might not be issues in
many other countries, but Tanzania’s governmental insti-
tutions are notorious for the inflexibility when it comes to
paperwork. Already in the very beginning of the program
implementation it became clear that none of the existing
faculties were willing to consider IT to belong under their
compartment, so it was necessary to find an alternative or-
ganizational arrangement.

Because of these issues, in an administrative meeting in
the middle of the second semester it was decided that an
ICT Directorate will be founded, and that the BIT pro-
gram will belong to that directorate10. The directorate
answers directly to the university management—regarding
academic issues to the Deputy Provost for Academic Affairs
(DPAA), regarding administrative and financial issues to the
Deputy Provost for Administration (DPA) and generally to
the Provost. This arrangement, which is not uncommon in
Tanzania, suits well a situation in which faculty is too large
an organizational unit, but in which there is still a need for
a unit that has the status and functions similar to those of
a faculty.

9Personal SMS, June 22, 2008, 18:04
10Internal Memo: BIT Program Planning Meeting, Friday,
April 4 2008, 15:00–16:00, §12

56

3.9 Skills and Competences
Initially, there was great ambiguity about what exactly

are the competences that graduates of the program would
be prepared for. It was unclear if those competences are
mainly about theoretical competence (computer science),
processual knowledge (computer and software engineering),
or application knowledge (technological disciplines). This
ambiguity was reflected in students’ comments and questions
about the program as well as in staff members’ emphases in
their courses. Following a workshop on skills development,
organized by the college, five competence areas and a num-
ber of essential skills were explicated and included in BIT
program description11.

Five Competence Areas
A number of authors have described the key competences
that IT professionals must have (e.g., [15, 30]), and those
competences are presented, for instance, in SIGITE Cur-
riculum Committee’s IT2005 model curriculum. The com-
petences listed in texts like the ones above are numerous
and very general, but for the BIT curriculum we selected
and outlined five areas of competency: network adminis-
tration, web development, hardware support, programming,
and academic competency.

Network administration competency. One of the
most urgent skills needed in the ICT sector in Tanzania is
network administration. In the BIT program, competency in
network administration is built through six regular courses,
and those who wish to go deeper into the topic can support
the regular courses with one to three application courses and
elective courses, as well as with two internships. The compe-
tence track begins with introductory, theoretically oriented
courses, which also teach students some practical aspects,
such as punching network cables and building cable runs.
The courses continue to networking concepts in operating
systems, building blocks of networks, network services and
protocols, network security, and network troubleshooting.

Web developer competency. The dotcom boom never
reached most parts of Tanzania. Most of Tanzania’s enter-
prises, organizations, and institutions do not have visibility
in the Internet. Electronic services and operations, such
as e-Learning, e-Business, distance work, and e-Government
are largely unknown. Developing these operations and de-
veloping services for yet-underdeveloped information society
requires an army of competent web developers.

Hardware support competency. Perhaps the single
most important competency for Tanzanian IT profession-
als is competency in hardware support. For instance, many
computing facilities are seriously underutilized due to hard-
ware failures that could be repaired relatively cheaply and
easily12. One of the main reasons for the large number of
hardware problems is that a large percentage of Tanzania’s
computers are donated from Europe or the U.S., and the do-
nated, used computers face hardware problems much more
often than the brand new computers in industrialized coun-
tries do. Many of those hardware problems could, however,
be easily fixed with just basic knowledge of computer hard-
ware and with some improvising. Also, knowledge about
the most common causes of hardware problems (dust, UV

11Notes on Workshop on Skills Development, Tuesday, May
6 2008, 9:00–16:00

12Field Notes: Pomerini Secondary School, October 13, 2008

radiation, humidity, heat, and vibration [11]) is essential for
avoiding hardware problems in the first place.

Programming competency. Programming is an essen-
tial skill for any computing professional [4]. One could argue
that programming is not a central part of an IT curriculum,
because programming is more of a productivity and devel-
opment activity, whereas IT is a field focused more towards
analysis, deployment, installation, and maintenance of IT
systems (cf., e.g., [9]). However, many of the tasks of IT
professionals require programming knowledge. In addition,
modern web development tasks require programming and
database management skills.

Academic competency. As described earlier, one of the
key principles in Tumaini’s BIT program is that it ought to
be internationally recognized. That is, graduates of that
program should be able to pursue further studies in interna-
tionally recognized Master’s level programs worldwide. In
their further studies, B.Sc degree holders must be able to
produce academic text and to understand, critically analyze,
and combine academic readings.

Skills
In the course of time we have come to learn that Tumaini’s
IT curriculum also teaches (or should teach) a number of
skills that are not explicitly mentioned in the curriculum,
but which should be explicit. Below we introduce ten skills
that are a part of a Tanzanian IT professional’s vocational
proficiency, and which are currently being explicitly incor-
porated to the program content.

Core IT Skills. Naturally, the most important skills for
an IT professional are skills related to developing, analyz-
ing, deploying, implementing, constructing, maintaining, in-
stalling, and troubleshooting information technology equip-
ment. The core skills of a Tanzanian IT professional are sim-
ilar to those that ACM/IEEE IT Curriculum [4] addresses.
(Note, however, that in addition to the five core competences
we described above, a Tanzanian IT professional scarcely
copes without, for instance, some electrical engineering and
some material science knowledge (e.g., [22]).)

Team-working and networking skills. Work in com-
puting industry is usually done in teams. In addition, many
IT professionals are free agents, who work on a project ba-
sis, and whose income depends on their networking skills. In
BIT program, team-work is practiced not only in the class-
room, but also through the many practical assignments and
internships. For instance, when students work at the nine
Internet centers of the NGO Global Outreach, they need to
work with the lab managers at each center and with head-
masters of the schools where the centers are located.

Interdisciplinary and innovation skills. Information
technology is a service operation, so IT professionals need
to be open to the problem management styles and require-
ments of other academic fields, industries, and society. Espe-
cially in developing countries, where material conditions and
availability of tools may be limited, and where solutions and
innovations must often be creative and innovative, IT pro-
fessionals need to transcend boundaries of academic fields,
cultures, and professions.

Leadership and management skills. In Tanzania there
is a dire shortage of skilled and educated IT workforce, and
a Bachelor’s degree is a relatively high degree. Many stu-
dents will assume managerial positions in their organiza-
tions, and they must be prepared for leadership. Practice

57

with team dynamics and managerial skills is incorporated in
the curriculum through assignment of roles in teamwork. In
addition, students can take elective courses in management
topics.

Law, ethics, moral, and work ethic. Awareness and
knowledge of the social aspects of information technology
is essential for IT professional. Already in the first year,
students get acquainted with the ethical codes of ACM and
IEEE as well as with typical cases in computing ethics. In
the second year of the curriculum the Faculty of Law orga-
nizes for BIT students a course on Tanzania’s cyber laws.
But we consider ethical and moral issues to be of such im-
portance that those issues must be woven to several courses
in the curriculum (cf. [7]).

Sustainable planning skills. IT systems are a major in-
vestment for Tanzanian individuals and organizations. The
investment must be useful over a long period of time, it must
be usable by various people without difficult training, and
it must be maintainable by various people. Any IT system
must be planned to serve users over an extended useful life
span. Hence, life-cycle analysis and design for prolonged op-
eration are topics in several courses.

Life-long learning skills. The terrain of IT is con-
stantly changing, and every fiscal quarter seems to bring
along new things that one should know or be able to do. Life-
long learning is a skill and an attitude that students must
assume in order to continue to be professionals throughout
their career. We encourage life-long learning as an attitude
by requiring students to individually select, study, and ana-
lyze topics in a number of courses.

Customer service skills. Unfortunately, in Tanzanian
office world customer service is an underrated concept. Too
often those with the skills and knowledge to solve a problem
use their position to gain social status, money, and politi-
cal leverage instead of focusing on how to solve customer’s
problems efficiently. Students must understand that it is
a matter of professional responsibility, ethics, and pride to
serve customers. Students must understand that a positive
attitude to customer service is a sine qua non of establish-
ing and maintaining a good reputation, and therefore their
attitude indirectly affects their income. Students practice
their customer service attitude and skills through their in-
ternships as well as through practical training at Tumaini’s
public Internet labs.

Research skills. Although research is not a central part
of a bachelor’s degree, a bachelor’s degree is the first step-
ping stone to an academic career, and bachelor-level grad-
uates must be able to find out relevant information about
topics in their field, evaluate that information, and utilize
that information to inform their work. At BIT program, the
B.Sc thesis project spans over two years’ period and teaches
students the necessary tools for their work and for contin-
uing education on M.Sc level. In addition, critical reading
skills are essential for their academic career, yet reversing
the uncritical attitude that the Tanzanian educational sys-
tem instills is challenging.

Globalization and social responsibility. Even though
Africa does not seem to be a part of the“flat world” [17], stu-
dents in developing countries must understand the forces of
globalization as well as the forces that have supercharged the
modern marketplace and economics. Students in developing
countries bear the same responsibility over the have-nots of

the world as students in industrialized do. BIT curriculum
includes compulsory development studies course and other
courses that teach BIT students awareness of poverty, its
reasons, and some potential ways out of poverty.

4. CONCLUSIONS
In this article we have analyzed our experiences of imple-

menting a contextualized B.Sc program in IT in Tanzania.
The rich understanding that we have gained from our re-
search and work has offered us insights and lessons that can
benefit other institutions undertaking similar projects. This
section pulls together the insights we have gained and the
lessons we have learned.

4.1 Principles Revisited
Earlier in this paper we noted that in the course of pro-

gram implementation we had to clarify the principles asso-
ciated with the BIT program. In addition to clarification of
the semantic content of the principles, a deeper analysis of
the six program principles led us to consider those princi-
ples in two ways: firstly, the principles are not a mere bullet
list of items, but the principles are interconnected; and sec-
ondly, the principles arise from two kinds of considerations
or motivations.

Interconnected Principles. The program principles
are interconnected and interdependent in various ways (Fig-
ure 2). First of all, international recognition of an educa-
tional program involves the idea that a non-standard pro-
gram cannot be just a collection of courses, but its curricular
and pedagogical aspects must be based on scientific research.
Continuous research-based development of a program also
sustains its international recognition. Second, sensitivity to
context can come only from a thorough understanding of
the context, which, again, requires continuous investment
in research. Context-sensitivity also necessitates a practical
orientation.

Figure 2: Interconnections of Program Principles

Third, a practical approach and a problem-based orien-
tation are closely related. A practical approach depends
on a problem-based orientation, for a practical approach re-
quires a real-world environment and authentic problems [20,
21]. A problem-based orientation, on the other hand, pro-
motes practical, sometimes engineering-oriented approach of
getting the job done efficiently with minimal resource con-
sumption. For the same reasons, an interdisciplinary ap-
proach supports a problem-based curriculum: a bricoleur in

58

Figure 3: Local and Universal Considerations vs.
Internal and External Motivations

IT fields should be able to choose whatever tools or theo-
ries he or she finds suitable for the job. Even more, the
very idea of a research-based program entails a problem-
based orientation. That is, research arises from unanswered
questions, open problems, and lack of understanding. Espe-
cially applied research and engineering work are essentially
problem-solving enterprises.

Motivations and Considerations. The six program
principles arise from different kinds of motivations and con-
siderations (Figure 3). Firstly, whereas some of the princi-
ples arise from local needs and competences, some other
principles are more universal by nature. Secondly, some
principles are mainly motivated by the needs of the program
whereas other principles are mainly motivated by external
requirements and pressures.

Figure 3 presents the program principles on two axes: a
‘local vs. universal’ continuum and an ‘internal vs. external’
continuum. The local/universal axis maps the six principles
according to the locality of each principle: Concepts at the
local end of the axis are considered to be important from a
local perspective, and concepts at the universal end of the
axis are universally accepted and adopted practices or con-
ventions. The internal vs. external axis maps the principles
according to the source of each principle: Concepts at the
internal end of the axis arise from the program itself (“in-
ternal motivations”), and concepts at the external end of
the axis meet requirements that are imposed by some exter-
nal actors. Consider international recognition, for instance.
International recognition is not important at all to the pro-
gram per se (an educational program can be very successful
without being recognized internationally). However, many
other stakeholders—such as other academic institutions, the
ministry of education, collaboration partners, and the pri-
vate sector—require the program to be internationally rec-
ognized.

4.2 Lessons Learned
Roughly speaking, our analysis can be condensed to four

lessons. Those lessons are based on our research material
and experiences we have gained from developing and imple-

menting a contextualized IT program. Although the lessons
seem intuitively appealing, one should keep in mind that the
recommendations we make are probably not generalizable to
all developing countries.

Lesson 1: Ambiguities Hinder Success
In a non-standard program students, staff, and other stake-
holders must have a common understanding of what the
keywords regarding the program mean, how they are imple-
mented, and why they are important. Similar, there must
be an understanding of why some innovations or functions
(e.g. transparency in grading) are important and how one
should utilize those innovations or functions. When deci-
sions about pedagogy, operations, communication channels,
or any other aspects of the program are made, the more clar-
ity there is about those decisions, the higher the chances for
success. For instance, we did not succeed to communicate
the concept of contextuality to all stakeholders, which lead
to delayed adoption of the idea; on the other hand, those
stakeholders who had a joint understanding of the concept
of contextuality, unequivocally adopted the idea.

Lesson 2: Contextualization Is a Slow Process
In our work on contextualized IT curriculum design we did
not anticipate and appreciate some crucial contextual issues
in Tanzania. For instance, we did not consider the fact that
most students enter university being fully computer illiterate
or the fact that Tanzanian educators are mostly unfamil-
iar with (and even resistant to) problem-based pedagogy.
Similar, although we have set up an online learning plat-
form Moodle, although we have good online course material
for some of the courses, and although the program utilizes
teachers from a collaborating university to help with online
teaching, most of BIT program teachers choose not to utilize
Moodle. We attribute this reluctance to, firstly, the teach-
ers’ lack of experience on online teaching (in the role of a
student as well as in the role of a teacher), and secondly, to
the fact that online teaching demands more time than tra-
ditional instruction does [39]. It has taken us a lot of time
and effort to construct a good fit between the stakeholders’
strengths, program aims, organization, pedagogy, and sup-
port functions. Furthermore, this issue continues to be one
of the key issues of the program’s continuing development.

Lesson 3: Organization Matters
Each institution has its own organizational structure, prac-
tices, politics, channels of influence, ways and means of nego-
tiation, administrative roles, student-staff relationship, hier-
archies, bureaucracy, processes, codes of conduct, unspoken
rules, and methods of working. Difficult as it may be, im-
plementers of a successful educational program must find
ways to make the organization work for the program, and
not try to fight the organization. Political deftness is a rare
skill, and it is difficult to find people who are able to make
the system work seamlessly. Organizational experts are as
important as content experts.

Lesson 4: It Is Difficult to Get Feedback
Students know best what students want. The more often
they can really tell what they feel about the program, the
better. In Tanzania this is, however, a difficult task to
achieve. Students are not used to telling what they re-
ally think about their teachers or their institution—it seems

59

that some students do not even believe that feedback can
even lead anywhere. Others are reluctant to give critical
feedback. However, when students do decide something to-
gether, they are very strongly united behind their decisions.
A pitfall to this lesson in Tanzania is, however, that students
often do not know enough about technology to make in-
formed demands. A mass student movement about a poorly
understood thing is scarcely constructive phenomenon and
always hard to deal with.

This article is the first report of a three-year investiga-
tion of the development of Tumaini University’s BIT pro-
gram. In our future research, we focus on the challenges
of online teaching in Tanzania, public-private partnership
development, public perceptions of IT and ICT, issues of e-
privacy, and course contextualization. In the end, we hope
that this report encourages ambitious, alternative initiatives
in IT education in developing countries, and clarifies some
ambiguities regarding contextualized IT education.

5. REFERENCES
[1] R. L. Ackoff. The Art of Problem Solving. John Wiley

& Sons, Inc., New York, NY, USA, 1978.

[2] ACM Computer Engineering Curriculum Committee.
Computer engineering 2004: Curriculum guidelines for
undergraduate degree programs in computer
engineering.

[3] ACM Computer Science Curriculum Committee.
Computing curricula 2001: Computer science, 2001.

[4] ACM Information Technology Curriculum Committee.
Computing curricula: Information technology volume,
2005.

[5] M. Agar. Ethnography. In N. J. Smelser and P. B.
Baltes, editors, International Encyclopedia of the
Social & Behavioral Sciences, volume 7, pages
4857–4862. Elsevier, Oxford, UK, 2001.

[6] P. Atkinson and M. Hammersley. Ethnography and
participant observation. In N. K. Denzin and Y. S.
Lincoln, editors, Handbook of Qualitative Research,
pages 248–261. SAGE, London, UK, 2nd edition, 1994.

[7] R. H. Austing, B. H. Barnes, D. T. Bonnette, G. L.
Engel, and G. Stokes. Curriculum ’78:
Recommendations for the undergraduate program in
computer science– a report of the ACM curriculum
committee on computer science. Communications of
the ACM, 22(3):147–166, 1979.

[8] N. Bangu, R. Haapakorpi, H. H. Lund, N. Myller,
F. Ngumbuke, E. Sutinen, and M. Vesisenaho.
Information technology degree curriculum in
Tanzanian context. In P. Cunningham and
M. Cunningham, editors, IST-Africa 2007 Conference
Proceedings, volume CD-ROM, Maputo, Mozambique,
May 9–May 11 2007.

[9] D. P. Bills and J. A. Biles. The role of programming in
IT. In SIGITE ’05: Proceedings of the 6th Conference
on Information Technology Education, pages 43–49,
Newark, NJ, USA, 2005.

[10] M. C. Borba. Ethnomathematics and education. For
the Learning of Mathematics, 10(1):39–43, 1990.

[11] E. Brewer, M. Demmer, M. Ho, R. J. Honicky, J. Pal,
M. Plauché, and S. Surana. The challenges of
technology research for developing regions. IEEE
Pervasive Computing, 5(2):15–23, 2006.

[12] F. P. Brooks, Jr. The computer scientist as toolsmith
II. Communications of the ACM, 39(3):61–68, 1996.

[13] L. Cheptegei. Standards and contextual sensitivity in
computer science/information technology degree
curricula: A case of five sub-sahara africa universities.
Master’s thesis, University of Joensuu, Joensuu,
Finland, 2008.

[14] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder,
A. Tucker, A. J. Turner, and P. R. Young. Computing
as a discipline. Communications of the ACM,
32(1):9–23, 1989.

[15] J. J. Ekstrom, S. Gorka, R. Kamali, E. Lawson,
B. Lunt, J. Miller, and H. Reichgelt. The information
technology model curriculum. Journal of Information
Technology Education, 5:343—361, 2006.

[16] C. Ellis and A. P. Bochner. Introduction: Talking over
ethnography. In C. Ellis and A. P. Bochner, editors,
Composing Ethnography: Alternative Forms of
Qualitative Writing, pages 13–48. AltaMira Press,
Walnut Creek, CA, USA, 1996.

[17] T. L. Friedman. The World is Flat: A Brief History of
the Twenty-First Century. Farrar, Straus, & Giroux,
New York, NY, USA, 2005.

[18] R. W. Hamming. One man’s view of computer science.
Journal of the ACM, 16(1):3–12, 1969.

[19] C. Islas, M. Vesisenaho, M. Tedre, and E. Sutinen.
Implementing information and communication
technology in higher education in Tanzania. In
P. Cunningham and M. Cunningham, editors,
IST-Africa 2006 Conference Proceedings, volume
CD-ROM, Pretoria, South Africa, May 3–May 5 2006.

[20] D. H. Jonassen. Instructional design model for
well-structured and ill-structured problem-solving
learning outcomes. Educational Technology Research
and Development, 45(1):65–95, 1997.

[21] D. H. Jonassen. Toward a design theory of problem
solving. Educational Technology Research and
Development, 48(4):63–85, 2000.

[22] J. Kemppainen. Building ICT facilities for education
in a developing country. Analysis of an ICT project at
Tumaini University/Iringa University College
2000–2004. Master’s thesis, University of Joensuu,
Department of Computer Science and Statistics,
Joensuu, Finland, December 11 2006.

[23] D. E. Knuth. Theory and practice. Theoretical
Computer Science, 90(1991):1–15, 1991.

[24] S. Loft Rasmussen and E. Larsen. Social
empowerment through ICT education: An empirical
analysis of an ICT-educational program in Tanzania.
Master’s thesis, IT University of Copenhagen,
Copenhagen, Denmark, March 3 2008.

[25] J. M. Longino. Evaluation of implementation of BSc
IT curriculum at Tumaini University. Master’s thesis,
Lappeenranta University of Technology,
Lappeenranta, Finland, September 2 2008.

[26] H. H. Lund, J. Nielsen, E. Sutinen, and M. Vesisenaho.
In search of the point-of-contact: Contextualized
technology refreshes ICT teaching in Tanzania. In
Proceedings of the Fifth IEEE International
Conference on Advanced Learning Technologies, 2005.
ICALT 2005., pages 983–987, July 5–July 8 2005.

[27] K. Mgaya. Development of information technology in

60

Tanzania. In E. P. Drew and F. G. Foster, editors,
Information Technology in Selected Countries. United
Nations University, Tokyo, Japan, 1994.

[28] A. Moreno. Program animation as a learning scaffold.
Unpublished Manuscript, 2008.

[29] A. Moreno and M. S. Joy. Jeliot 3 in a demanding
educational setting. Electronic Notes in Theoretical
Computer Science, 178:51–59, 2007.

[30] H. Reichgelt, B. Lunt, T. Ashford, A. Phelps,
E. Slazinski, and C. Willis. A comparison of
baccalaureate programs in information technology
with baccalaureate programs in computer science and
information systems. Journal of Information
Technology Education, 3:19–34, 2004.

[31] G. W. Ryan and H. R. Bernard. Data management
and analysis methods. In N. K. Denzin and Y. S.
Lincoln, editors, Handbook of Qualitative Research,
pages 769–802. SAGE, Thousand Oaks, CA, USA, 2nd
edition, 2000.

[32] E. Sutinen and J. Tarhio. Teaching to identify
problems in a creative way. In Proceedings of the
FIE’01 Frontiers in Education Conference, volume
T1D, pages 8–13, Reno, NV, USA, October 10–13
2001.

[33] E. Sutinen and M. Vesisenaho. Ethnocomputing in
Tanzania: Design and analysis of a contextualized ICT
course. Research and Practice in Technology Enhanced
Learning, 1(3):239–267, 2006.

[34] M. Tedre. The Development of Computer Science: A
Sociocultural Perspective. PhD thesis, University of
Joensuu, Department of Computer Science and
Statistics, Joensuu, Finland, 2006.

[35] M. Tedre and B. Chachage. University students’
attitudes towards e-security issues: A survey study in
Tumaini University, Tanzania. In Proceedings of the
5th International Workshop on Technology for
Innovation and Education in Developing Countries
(TEDC2008), Kampala, Uganda, July 31–August 2

2008.

[36] M. Tedre and R. Eglash. Ethnocomputing. In
M. Fuller, editor, Software Studies / A Lexicon, pages
92–101. MIT Press, Cambridge, Mass., USA, 2008.

[37] M. Tedre, E. Sutinen, E. Kähkönen, and P. Kommers.
Ethnocomputing: ICT in cultural and social context.
Communications of the ACM, 49(1):126–130, January
2006.

[38] M. Tedre, E. Sutinen, P. Kommers, and E. Kähkönen.
Appreciating the knowledge of students in computer
science education in developing countries. In
Proceedings of the IEEE conference ITRE/TEDC
2003, pages 174–178, Newark, NJ, USA, August 11–13
2003.

[39] L. A. Tomei. The impact of online teaching on faculty
load: Computing the ideal class size for online courses.
Journal of Technology and Teacher Education,
14(3):531–541, 2006.

[40] M. Vesisenaho. Developing University-Level
Introductory ICT Education in Tanzania: A
Contextualized Approach. PhD thesis, University of
Joensuu, Department of Computer Science and
Statistics, Joensuu, Finland, 2007.

[41] M. Vesisenaho, M. Duveskog, E. Laisser, and

E. Sutinen. Designing a contextualized programming
course in a Tanzanian university. In Proceedings of the
36th Annual Frontiers in Education Conference, pages
1–6, 2006.

[42] M. Vesisenaho, J. Kemppainen, C. Islas Sedano,
M. Tedre, and E. Sutinen. Contextualizing ICT in
Africa: The development of the CATI model in
Tanzanian higher education. African Journal of
Information and Communication Technology,
2(2):88–109, 2006.

[43] L. Wittgenstein. Philosophical Investigations.
Blackwell Publishers, Oxford, UK, 2nd bilingual
edition, 1958.

61

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Koli Calling '08, November 13–16, 2008, Koli, Finland. Copyright 2008 ACM
978-1-60558-385-3/08/11…$5.00.

A Typology of CS Students’ Preconditions for Learning
Maria Knobelsdorf
Freie Universität Berlin

Takustr. 9

D- 14195 Berlin

+48-30-838-75187

knobelsd@mi.fu-berlin.de

ABSTRACT
Problems that first year students encounter when majoring in
Computer Science (CS) are complex and interrelated. We assume
that CS majors drop the subject because, among other non-
educational reasons, the teaching process and learning
environment do not fit their preconditions for learning. Before
meaningful educational interventions can be developed to address
this issue, a profound understanding of students’ learning
backgrounds is needed. For this reason, we developed a
biographical research approach, which allows us to analyze
students’ individual computing experiences retrospectively.

Students’ computing experiences are individual and thus vary.
However, students still share some common experiences, beliefs,
and perceptions and a certain coherence or relationship should
exist between them. Therefore, the objective of our research is to
reconstruct typical patterns among the single characteristics of
students’ preconditions. For this purpose an empirically-based
typology is planned. This paper presents our research design,
providing a detailed description of how to develop an empirically-
based typology.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, Literacy, Self-

assessment.

General Terms

Experimentation, Human Factors.

Keywords

Typology, CS, Computers and Society, CS Education Research,
Pedagogy, Computer Biographies.

1. INTRODUCTION
In Computer Science (CS), there is a consistently high drop-out
rate, especially among female CS students. A myriad of issues
contribute to this problem. For example, women may not study
CS because they do not perceive themselves as computer
scientists or identify with CS as a subject.

The reasons for high drop-out rates in CS are complex and
interrelated and some aspects of this issue relate particularly to
matters of CS Education. The latter is the focus of our research
project at the Institute of Computer Science, Freie Universität
Berlin. We investigate how students familiarize with CS, and we
assume that this is influenced and formed by, among other factors,
the interaction with CS artifacts. Our objective is to elaborate on
this interaction in both formal and informal settings. For this
purpose, we developed a biographical research design based on
the principles of qualitative social research in which we analyze
students’ computing experiences retrospectively [31].

Our goal is to examine if these individual experiences comprise
patterns that could be identified as types and embraced in a
typology of CS students’ preconditions for learning. The intent is
to provide a practical and useful summary of the research field, as
well as a theoretical background that could be used to develop
educational interventions for teaching introductory CS classes. In
this paper, we present our research approach and preliminary
findings. The paper consists of four parts:

1. In section 2, we examine the drop-out problem in CS
and provide a rationale for our research purpose.

2. In section 3, we present our research design. It includes
the theoretical background, our research instrument, and
an overview of the intended typology development.

3. In section 4, the methodology of an empirically-based

typology is presented.

4. Finally, section 5 describes the current status of our
intended typology development, summarizing studies
conducted to date.

The paper concludes with section 6 where we discuss areas for
future research.

2. RESEARCH MOTIVATION
Problems that first year students encounter when majoring in a
subject are complex and interrelated. Before initiatives are
developed to motivate more students to major in CS, it is
necessary to understand why so many students who were accepted
into CS programs, drop the subject so quickly. The drop-out rates
in CS have always been extremely high at German universities for
decades. Therefore, it is reasonable to explore the reasons for the
high drop-out in CS in general.

The Freie Universität Berlin conducted in 2006 an empirical
study throughout the university and examined the reasons why
students drop a subject and leave the university [34]. Even though
the results of that study are not the topic of this paper, it is
interesting considering the several items of the study. The first
main topic was students’ preconditions for learning, which
included the family’s and the student’s educational background,

62

the reason for the subject choice, information on the subject and
university to be chosen, and expectations of the subject and
program. Next it surveyed students’ personal conditions like
family situation, financial situation, and health. The third main
topic referred to students’ experiences with their degree program
and subject, including qualification requirements, conditions at
the university, and learning experiences. Finally, the last main
topic focused on the reasons for dropping the subject: personal
and family reasons, financial situation, conditions at the
university, motivation, disappointment, unmet expectations,
performance and failure, and changing their profession. These
items show how complex the reasons for dropping out are and
how they are influenced by very different reasons like financial
circumstances, how the subject is perceived, or learning
environment.

As CS educators, we concentrate on matters of learning in order to
contribute to the avoidance of drop-out. The preconditions for
learning (including education and expectations of the subject) as
well as students’ experiences with the subject (including
conditions at the university and learning experience) are the major
points of interest. Considering the education process holistically is
important, and it is crucial to how we understand learning.

From a constructivist perspective, learning is a process in which
students construct knowledge and understanding individually.
Students actively take part in this individual process. Learning
becomes not only cognitive knowledge acquisition, but it also
includes and affects all aspects of a student's personality [10].
This means that interest in and perceptions of CS do not arise
suddenly; they develop gradually in a process of experience and
understanding. Therefore, students enter CS class not as tabula
rasa, but with some already acquired knowledge, ideas, and
expectations. It is important to consider students’ prior
experiences and to incorporate students’ everyday contexts into
teaching [9], [33]. From now on, we subsume under the term
preconditions for learning all aspects of students’ educational
background: every aspect of student’s cognition and personality
that will affect the further learning: e.g. preconceptions, pre-
knowledge, beliefs, expectations, motivation, and interest.

Research aimed at understanding students’ interest and
involvement in CS was conducted mainly with a focus on gender.
It revealed that students frequently have wrong, limited, or
inadequate ideas about career opportunities in CS, as well as
social environment and culture [8]. Beliefs about IT jobs and
careers are highly biased and restricted to the cliché of a lonely
male programmer in front of a computer-screen [27]. Students’
preconceptions about CS should also be considered: Many
students believe CS is primarily concerned with using and
administrating computers [25]. Students who are comfortable
using a computer believe to be successful in CS, as well [5], [36].
Previous research on students’ knowledge when they begin a CS
program confirmed their different levels of pre-knowledge [13],
[16], [17], [24], [32]. Hence, it is reasonable to think that students’
preconditions for learning CS have a major impact on their
success in studying the subject.

We assume that CS majors drop the subject because, among other
non-educational reasons, the teaching process and learning
environment does not fit their preconditions for learning [3].
Before meaningful educational interventions are developed to
address this issue, a profound understanding of students’ learning
backgrounds is needed. Hence, our research questions are:

1. What preconditions for learning do CS students have
before starting university studies?

2. How do these preconditions develop and influence
further learning?

3. What kind of a patterns, similarities or differences
among the single characteristics of students’
preconditions can we reconstruct?

4. How are these preconditions related to what is expected
from students in the first year of studies?

In the next section, we present the research design that focuses on
these research questions.

3. RESEARCH DESIGN
Based on our research questions, the research design considers CS
students’ preconditions for learning. Consistent with
constructivism, we intend to examine these preconditions from the
students’ perspectives because we want to provide a background
for teaching that allows the students’ individual expectations to be
met. Furthermore, we intend to examine these preconditions
retrospectively because we are interested in students’ perspectives
on a specific moment: the beginning of their university studies.
This purpose involves a biographical perspective on learning.

3.1 Biographical Research
Biographical research in education considers life as a process of
learning and individuals’ biographies as stories of learning. A
biography (as opposed to curriculum vitae) is considered a
subjective construction of reminiscent moments in life, where an
individual describes particular situations and learning processes
that were important for him or her. These processes refer not only
to a formal setting. They also include experiences, changes, and
decisions a subject went through and that established his or her
self-conceptualization, world-view, and habits [11].

In his research on biography and education, Marotzki concludes
that the process of creation of self-conceptualization and world-
view is important for the construction of biographies: “The
perspective of individual sense- and meaning-making leads
directly to the approach of modern biographical research […] An
understanding of learning and education […] becomes possible
only when one comes to understand processes of learning and
education as specific way of interpreting oneself and the world.”
([26], p. 103). A research approach that focuses on biographical
learning processes must therefore consider self-creation and
world-making of individuals.

Our research design is based on this biographical approach. We
are not interested in the entire biography, but in the parts that are
relevant to CS Education. Therefore, we concentrate on all parts
of a biography referring to learning, experiencing, and
understanding CS. In particular, we are interested in every kind of
interaction between one or more persons and CS artifacts. CS
artifacts include both physical occurrences/values that can be
referred to with the general term “information technology” as well
as all non-physical occurrences/values that are referred to with the
term “information science”, e.g., algorithms, software, diagrams,
etc. Since the students’ interactions with CS artifacts comprise a
broad field, our research approach focuses on the interaction with
computers only. For more information, especially a detailed
analysis about the role of computing experiences, see [31].

63

3.2 Methodology
We have developed a biographical research approach, which
allows us to analyze students’ individual computing2 experiences
retrospectively. Our data gathering method provides an
autobiographical essay (usually hand-written) on computing
experiences, which we call a computer biography [31]. We ask
students to write down their computer biographies and encourage
them to start with the first contact with a computer they can recall.
We stimulate this writing process with “lure texts”, which are
quotes from other computer biographies. The question is
intentionally open-ended to encourage the individuals to make
their own decisions about which experiences were most
significant. It is important to note that students are not asked about
any specific aspects explicitly. The fact that certain references to
different aspects occur indicates how important such experiences
are to students’ relationships with CS artifacts.

Computer biographies of CS majors explain why and how
students chose to study CS. Such texts usually follow a typical
narrative pattern and are constructed in a very coherent way.
Additionally, we find important experiences that fostered or
constrained the students’ development. Since computing and CS
are closely related (especially for novices), computer biographies
reveal information about students’ understanding and beliefs of
CS [21].

According to the biographical perspective and constructivism,
every student constructs knowledge individually and has different
perceptions and beliefs about CS. Consequently, we should
reconstruct the biographical learning process of each student and
develop personalized interventions. However, our institution’s
structure and capacity make it impossible to achieve this degree of
personalization. Therefore, effects of educational interventions are
likely to be limited to these students, whose biographical learning
processes "match" these interventions. However, interventions
should reach all students.

Students’ computer biographies are individual and thus vary.
However, students still share some common experiences, beliefs,
and perceptions. In addition, certain relationships should exist
between several experiences, beliefs, and perceptions in a
student’s computer biography. This requires the reconstruction of
some typical pathways in computer biographies and the
development of a typology of students’ biographical learning
processes of CS.

What exactly is a typology? Typologies play a major role in
conceptualizing complex social realities. A certain social reality is
surveyed and empirical data is collected. A typology is the result
of a data grouping process that provides a structured and reliable
overview of this social reality. Data elements that correspond to
one or several characteristics are merged together into one type.
Types are constructed to structure and understand these
characteristics with regards to their differences and similarities.
This can be done with a theoretical or empirical purpose. “The
construction of classes, categories, or types is a necessary aspect
of the process of inquiry by means of which we reduce the
complex to the simple, the unique to the general, and the
occurrent to the recurrent.” ([30], p. 3).

2 The term computing refers to all kinds of computer usage and
interaction.

Types and typologies can be determined by many different
characteristics and for different purposes. “[Typologies] can be
used for classificatory or descriptive purposes, as heuristic devices
and as methodological conveniences.“ ([30], p. 8). Therefore, the
objective of a typology is two-fold. The first purpose is
descriptive and helps to structure the collected data in order to
make it manageable and to provide an overview. It is convenient
and useful when the social reality is extensive and of a complexity
that can be reduced with a typology. The second purpose is
heuristic and has a theory-building function: It is assumed that the
correlation between the elements of a type is not incidental. It is
reasonable that a certain relationship exists between the elements
of a type . The output is of hypothetical quality and serves as a
background for theory building (Kluge, pp. 43). “This capability
is built into [types], since as composites they are given a structure
with functional consequences, and hence types are systems.”
([30], p.8)

The results of our research should reduce the multitude of
elements in our computer biographies to a few groups and
therefore provide an arrangement (primarily descriptive) and
structuring of our research field (CS students’ preconditions for
learning). This will produce manageable results that can easily be
used in CS class for diagnostic reasons. Our results should also
serve heuristic purposes. Because our results will form a certain
relationship between the elements of our research field, it will
provide a theoretical background for proposing hypotheses and
theory-construction in the field.

The next section presents a detailed methodology description of
how to develop a typology. We rely on this methodological
background in section 5, where we present the results of our
previously conducted studies to serve as a background for the
indented typology.

4. AN EMPIRICALLY-BASED TYPOLOGY
This section summarizes qualitative social research about the
development of an empirically-based typology. Kluge3 reviewed
the main core of social literature and research about typology
theories and methodology. She gives an account of this review in
[18], referring, among others, to [2], [6], [7], [12], [14], [22], [23],
[37]. The author was engaged in theoretical work as well as
empirical research (Sonderforschungsbereich “Statuspassagen

und Risikolagen im Lebensverlauf” of the University Bremen4),
where she contributed as a qualitative social researcher in the
domain of methodology. Drawing from her experiences, she
proposes a normative model that summarizes the essential aspects
of different typification5 approaches by [12], [22], and [23]. These
authors focus on different data gathering or analysis methods and
generate different sorts of types. Their different proceedings can
be summarized in a general model that can be adapted. Since each
of these proceedings contains methods that are useful for our
approach, we intent to implement Kluge’s model and adapt
methodology proposed by her in each stage.

3 In this paper we refer to Kluge’s work in [18]. Because the book

is in German, content only is reflected. Kluge provides a brief
English summary of her work in [19].

4 Sfb 186, funded since 1988 by the DFG (German National
Research Foundation).

5 The word typification means the process of developing a
typology.

64

4.1 Types and Typology
A type consists of a set of characteristics that are interrelated and
logically connected in regards to content. Each characteristic has
different parameter-values and can be understood as a dimension
of comparison. Each case6 is classified according to its parameter-
values, and then the groups are compared. A type can be
understood as some multidimensional space of parameter-values
and is coined as a property-space. Barton & Lazarsfeld developed
and described the theoretical background of property-spaces as
well as multidimensional tables that represent property-spaces [4].
Table 1 is an example of a two-dimensional property-space
containing characteristics A and B that are defined by parameter-
values: A1, A2, B1, and B2. The numbers in the table show the
arrangement of the cases in accordance to the characteristics’
values (e.g., the number 10 indicates that there are 10 cases that
express A1 and B1).

Table 1. An example of a two-dimensional table.

Characteristic A

Characteristic B

value B1 value B2

value A1 10 3

value A2 7 1

Types are developed from the grouping process. Therefore, each
type should be homogenous inside (internal homogeneity) in order
to form common characteristics. Among themselves, types should
be highly heterogeneous (external heterogeneity) in order to
broaden diversity of the research field. However, different types
can form a typology only when they refer to the same property-
space ([18], p. 42).

Typologies play a major role in conceptualizing complex social
realities since classifications used in sciences are not appropriate
for this purpose. There is a difference between a typology and a
classification. A classification must be mutually exclusive and
exhaustive. A type, on the other hand, combines characteristics
that are not uniquely and exclusively allocated to it. There is no
clear separation between types. Therefore, it is important to
remember that a typology cannot reproduce the reality. Types are
based on predefined characteristics and represent only a part of
reality. Hence, generalizations must be handled cautiously ([18],
p. 25).

“[T]he research practice is confronted with the problem how these
types can be constructed systematically and transparently. In
current sociological literature, there exist only few approaches in
which the process of type construction is explicated and
systematized in a detailed way. […] Also different concepts of
type are used (e.g. ideal types, empirical types, structure types,
prototypes etc.) or the concept of type is not defined explicitly at
all.” [19]. Therefore, Kluge proposes a four-stage model of an
empirically-based typification ([18], pp. 260), which is presented
in the next section.

6 The term case means a data item, unit, or entity which can be a

complete interview or a part of it, e.g. a certain decision every
interviewed person is talking about. In our research approach a
case is a complete computer biography.

4.2 A Four-stage Model of an Empirically-

based Typification
The model generalized by Kluge consists of four main stages,
where the first three stages can be repeated (see Figure 1). These
stages are:

1. Developing the relevant dimensions of comparison

2. Case grouping and empirical regularities analysis

3. Analysis of coherence and typification

4. Types characterization

The four stages will be described in more detail in the next four
subsections.

4.2.1 Developing the Relevant Dimensions of

Comparison
The first stage forms characteristics and establishes dimensions of
comparison. It is important to note that each case consists of all
defined characteristics. Otherwise, cases cannot be compared with
each other. A typology makes sense only when all types are
related to each other. Thus, this stage is very important. Only the
established dimensions of comparison form the basis of typology.

In order to substantiate the dimensions of comparison and to form
further characteristics, collected data is analyzed intensively: each
case is evaluated separately and then compared to all the others.
Thematic coding by Glaser, Strauss, and Corbin is frequently
used. First, the data is coded with thematic keywords and then,
based on the keywords, the cases are compared to each other. This
way, both a case study and comparison can be combined together
very effectively. Similarities and differences between the cases
can be elaborated on ([18], p. 266-269).

4.2.2 Case Grouping and Empirical Regularities

Analysis
After establishing dimensions of comparison and their parameter-
values, all cases can be grouped. Basically, there are two ways to
proceed at this point. In a bottom-up process, the two most similar
cases (i.e., two cases which have the same or similar parameter

Stage 1

Developing the relevant
dimensions of comparison

Stage 2

Case grouping and
empirical regularities

Stage 3

Analysis of coherence
and typification

Stage 4

Type characterization

Figure 1. Model of the empirically-based typification

([18], p. 261).

65

value for one characteristic) are merged iteratively together into a
group or cluster (agglomerative process). In a top-down process,
all cases are treated as one group that is divided into sub-groups
with the same or similar parameter value according to one
characteristic (divisive process) ([18], p. 270).

The agglomerative process is very time consuming because all
cases must be compared to each other during each step. Hence,
this process is conducted with computers, and agglomerative
algorithms that perform cluster analysis are used. The
disadvantage of this process is that it is difficult to trace which
characteristics form the cluster, and one or two irrelevant
characteristics can significantly distort the result. Combinations of
characteristics that do not appear in the data are not incorporated.
Only digressive cases, which could not be allocated to any cluster,
can be found with adequate merging algorithms ([18], pp. 275).

Multidimensional tables that represent the dimensions of
comparison are helpful to illustrate the grouping process [23].
Table 2 shows an example of a two-dimensional property-space.
Multidimensional tables provide “a general view over all possible
combinations which are theoretically conceivable. Since all
possible combinations often do not exist in reality and/or the
differences between individual combinations of attributes are not
relevant for the research question, single fields of the attribute
space can be summarized.” [19].

4.2.3 Analysis of Coherence and Typification
Under the presumption that characteristics do not correlate
randomly, an interrelation and logical connection in regards to
content between the grouped characteristics must exist. The
groups or clusters that were found in stage 2 become types when
this coherence and connection can be identified. This process is
based on the preliminary features of each group and on further
characteristics concerning similarities and differences between the
cases and the groups. There is no methodological advice on how
to proceed at this point. As Kluge writes, the most difficult step is
to systemize the analysis of sense coherence and logical
connection of the grouped characteristics ([18], p. 279).

4.2.4 Types Characterization
The typification finishes with characterizing the types as
comprehensively and as precisely as possible in regards to the
relevant characteristics, their combinations, and their coherence.
Because the cases of one type are not entirely equal in each
characteristic, the problem lies in how to picture the similarities.
Different forms of types exist for this purpose: prototypes are real
cases that represent the type best; ideal types present the essential
characteristics in their pure form; and if only opposite types exist,
extreme types are useful.

If only extreme or ideal types are used, the risk of losing diversity
and the appearance of inconsistency of the investigated reality
arises, since the focus lies on the pure or extreme aspects.
Abbreviations of types must also be used carefully because, again,
this can cause a distortion of the results ([18], p. 280).

5. A TYPOLOGY OF CS STUDENTS’

PRECONDITIONS FOR LEARNING
In this section we summarize the results of our previous studies
that constitute the preliminary dimensions of comparison for the
typification.

5.1 The Four Dimensions of Comparison
We analyzed the computer biographies from four different
perspectives: sense, structure, habits and pathway. We will
summarize this approach very briefly. For further reading, see
[20], [21], [31].

Figure 2. The analytical dimensions self-image, world-image,

and habits specifying the biographical computing process

([31], p. 32).

Based on the biographical research approach discussed in section
3.1, we used a coding paradigm suggested by Tiefel [35] in her
work on adapting Grounded Theory for the analysis of
biographical learning processes: “a modified coding paradigm is
proposed, with analytical perspectives geared to the reconstruction
of subjective processes of making sense and constructing
coherence.” ([35], p. 66). However, according to constructivism,
learning takes place through interaction. Therefore, Tiefel
suggests considering interweaving the following perspectives into
the analysis process and reconstructing the biographical learning
process through them:

• The self creation of human beings and their subjective
processes of sense-making are summed up under the notion
of sense perspective and the self-image is then reconstructed
from it. In our case, the self-image includes self-judgment
and attitudes of one’s own computer skills and orientation in
the computer world.

• The relationship of human beings to the world and their
coherence-creation are summed up under the notion of
structure perspective and then the world-image is
reconstructed from it. In our case, world-image includes
personal theories and preconceptions about computing and
CS.

• Finally, human beings’ attitudes and contexts of interaction,
reaction, and strategies of action are summed up under the
notion of the habits perspective and then habits or behavior
are reconstructed from it. In our case, habits include learning

Computing Experiences Peers

World-Image
Notion of computing

and Computer Science

Self-Image
Confidence, perceptions
of one’s own skills and

position to CS

Attitudes towards Computing and

Computer Science

Habits
Patterns of computing

and of problem
solving strategies

Motivation …

66

strategies, typical performances with the computer, and
reactions to problems.

These three perspectives form an analytical point of view on the
holistic biographical learning process ([31], p. 31). Based on
Tiefel’s coding paradigm, Figure 2 illustrates an analytical
approach: computing events are experienced individually and
influenced by internal and external factors. These experiences are
part of the biographical learning process of CS and therefore
affect students’ world-image, self-image, and habits related to CS.
Different experiences in students’ lives are interrelated. With each
new experience, these three dimensions, separated only on an
analytical level, are affected ([31], p. 32).

While analyzing the biographies, we realized that the biographical
process is a further analytical perspective on the three dimensions
because through the biographical process the world-image, self-
image, and habits develop, change, and interact. The biographies
of CS majors who had just entered the university revealed three
periods. We call the first period the introductory period. It starts
with the first contact with a computer. It contains experiences and
situations that are initiated either by coincidence or by others.
After the introductory period, a period of development begins. It is
characterized by meaningful experiences in which students
develop their interests. Then a decision period might take place. It
contains important experiences that are crucial for the future.
These experiences are described in more detail than other events
in a biography [21]. Additionally, we analyzed one biography of a
PhD student who graduated in CS several years ago where we
examined a period that follows the decision period. Therefore, we
assume that the process likely continues after the decision period.

As a result, the four dimensions (world-image, self-image, habits,
and process) establish the dimensions of comparisons of our
typology. These four dimensions provide many different grouping
combinations, which also depend on how many dimensions each
attribute has. The process dimension, for instance, can have three
attributes: Introductory Period, Development Period, and Decision
Period. Table 2 shows an example of a possible four-dimensional
table of the corresponding property-space. W1, W2, S1, S2, H1,
and H2 are not further specified parameter-values of the
dimensions world-image, self-image, and habits and are shown
just for illustrative reasons.

Table 2. Example of a possible four-dimensional table for the

property-space of computer biographies.

 Process

Introductory

Period

Development

Period

Decision

Period

World-

image

W1

W2

Self-image S1

S2

Habits H1

H2

The results of our studies (described in the next subsection) can
serve as preliminary parameter-values of these four characteristics
and form possible dimensions of comparison.

5.2 Parameter-Values
In our previous studies, we surveyed biographies of students
majoring in different subjects: CS, Bioinformatics, Mathematics,
Psychology, CS Education, and German Philology. The
comparison between CS-affiliated and non-affiliated students
helped in contrasting and understanding the biographies of CS
majors. At the beginning, we analyzed the biographies using the
Grounded Theory approach and open and axial coding ([1], pp.
271). In the last two studies, we used qualitative content analysis
by Mayring [29]. We collected a large number of parameter-
values of world-image, self-image, habits, and process. These
characteristics are summarized below.

5.2.1 Psychology and German Philology Students
We have found the following attributes among students majoring
in Psychology and German Philology: CS is perceived as a closed
world that a person can only enter with special skills (a
“clubhouse”). CS is an incomprehensible and complicated subject.
The computer is perceived as a CS artifact and also as a tool used
for working. Students’ only interrelation with CS happens using
the CS artifact computer.

Relating to self-image, the students believe that computer
scientists are using the computer in a different way (more
professional) and are able to understand “the mystery” behind it.
The students believe that they are not capable of learning
computer-based skills because they are missing a certain “pre-
understanding” and “skills” (a special gene) that computer
scientists have naturally. Therefore, these students see themselves
as outsiders of the CS world.

These students are mainly autonomous learners, and they often
feel helpless and left alone with problems they cannot solve and
understand (learnt helplessness, attribution theory). They prefer to
be taught how to use the computer and this is what they expect
from a CS class at school. When using a computer, they want to
understand how something works before they try to perform it
themselves.

5.2.2 CS Students
We have found the following attributes among the CS majors: CS
is perceived as a closed world a person can only enter with special
skills, and these students think they have these skills. Based on
these beliefs, the students see themselves as insiders, and the
computer is omnipresent for them. As for their self-conception,
they see themselves as “born to be computer scientists”. They are
interested in computers because they are fascinating, and
computer activities are fun. They view computer problems as a
challenge. They are mainly autonomous learners (learning by
doing) and enjoy it. Consequently, these students often
overestimate their skills and do not respond to formal learning
environments.

Among the CS majors, we also found the following attributes: CS
is perceived as a closed and interesting world a person can enter
by changing his or her status from a user to a designer. They think
that they are capable of learning things connected with a
computer, and they are interested in computers because they can
produce something on their own. They are mainly autonomous
learners (learning by doing) and enjoy this situation, too. In
contrast to the characteristics in the paragraph above, these
students do not perceive themselves as being born with these
skills; they accept that such skills are developed. Therefore, they
are more willing to accept learning in formal settings.

67

5.2.3 Bioinformatics Students
Among the Bioinformatics majors, we found the following
characteristics: CS is perceived as a fun and creative world, where
a person can always discover and learn new things. A computer is
a tool for creating. Concerning their self-conception, they think
that they are capable of learning things connected with a
computer, and computer activities are fun. These students are
mainly autonomous learners (learning by doing) who enjoy trying
things out in a playful way. In comparison to the CS students,
these subjects did not identify with the computer, just as
psychology students did not. But in contrast to psychology
students, they were not afraid or did not feel intimidated by the
computer.

5.2.4 Summary
Table 3, Table 4, Table 5, and Table 6 summarize the
aforementioned characteristics according to the four dimensions:
world-image, self-image, habits, and periods.

Table 3. Attributes of the world-image dimension

Attributes of the world-image dimension

Clubhouse

W1 CS is a
closed world

W1.1 only a person with
special skills can enter

 W1.2 a person can enter by
changing their status from a
user to a designer

Nature CS

W2 CS is a
world

W2.1 where a person can
always discover and learn
new things

 W2.2 that is fun and
creative

 W2.3 that is interesting

 W2.4 incomprehensible

Nature

Artifact

W3 The
computer is

W3.1 a toy

 W3.3 a tool (to work with:
a pragmatic view)

 W3.4 a tool (for creating: a
creative view)

Table 4. Attributes of the self-image dimension.

Attributes of the self-image dimension

Self-

conception

S1 Concerning
the “CS world”

S1.1 I am an insider.

S1.2 I am an outsider.

S2 Concerning
myself

S2.1 I was born to become a
computer scientist.

S2.2 I became a computer
scientist.

S2.3 I know that one can
become a computer
scientist, but this process is
not completed for me yet.

S3.2 I know that one can
become a computer
scientist, but I will never be
one.

Learning S3 S3.1 I am able to learn
things on the computer.

S3.2 I am not capable of
learning things at the
computer.

Sensation S4 Computer
activities are

S4.1 fun

S4.2 dull

Interest S5 I am
interested in
computers
because

S5.1 they are fascinating.

S5.2 I can produce
something on my own.

S5.3 they are useful and
helpful.

Motivation S6 At the
computer, I’m
motivated most
when

S6.1 I can do some context-
based things.

S6.2 I can perform, try
different roles.

S6.3 the activities include
creativity.

S6.4l I can work
independently and be self-
determined.

Table 5. Attributes of the habits dimension

Attributes of the habits dimension

Reactions H1 To
computer
problems

H1.1 I feel helpless.

H1.2 I appreciate the challenge.

Learning

behavior

H2 Things I
can do on the
computer

H2.1 I am a self-learner
(learning by doing).

H2.2 I was taught.

Behavior H3 When I do
something on
the computer

H3.1 I simply try things out.

H3.2 I try to understand things
before I do them.

Table 6. Attributes of the Process dimension.

Attributes of the Process dimension

Transition B1 A transition B1.1 has been
experienced from use to
design

B1.2 has not been
experienced

B2 A development B2.1 has been
experienced from a
regular use to a
professional use

B2.2 has not been
experienced

Period P1 Introductory Period

P2 Development Period

P3 Decision Period

68

Currently, we are working on further characteristics. We examine
stereotypes in CS: how students reproduce them and what kind of
influence they have for successful learning [15]. We also plan a
study about mindsets based on the self-theories by [10].

5.3 Further Proceedings
In this subsection, we outline how we plan to continue our
research project and the intended typology. We describe the data
collection, analysis, and typology stages, and we provide a
timeline for these activities.

5.3.1 Data Collection
The dimensions seem to be constant. Each new aspect is a further
attribute to one of the dimensions. Since all the examined
attributes have been elaborated on in different studies, we were
not able to compare all cases to all characteristics. These attributes
form a certain dimensions of comparison but are preliminary for
the development of a typology. In order to construct types, the
data must be based on all attributes (see section 4.2.1). Therefore,
it is necessary to survey new data that will refer to a certain
dimension of comparison. It is also necessary to survey new data
that will provide new attributes or further information on the
existing one. For this purpose, we collected at the beginning of the
winter-semester 2008 new computer biographies of first year CS
students at our institute. In a second data collection step, we are
planning to conduct semi-structured interviews with a subset of
the same students in order to gain additional information. The
intended typology will be based on this data.

5.3.2 Data Analysis
In the process of data analysis that corresponds to stage one and
two of the empirically-based typology (see sections 4.2.1 and
4.2.2), we will use the qualitative content analysis by Mayring
[29].

Qualitative content analysis by Mayring “[…] is defined as […]
an approach of empirical, methodological controlled analysis of
texts within their context of communication, following content
analytical rules and step model, without rash quantification.” [28].
Within this model, a category system is developed and several
approaches are possible. As Mayring suggests, “[t]he main idea of
the procedure is to formulate a criterion of definition, derived
from theoretical background and research question, which
determines the aspects of the textual material taken into account.
Following this criterion the material is worked through and
categories are tentative and step by step deduced. Within a
feedback loop those categories are revised, eventually reduced to
main categories and checked in respect to their reliability.” [28].

Coding methods in Grounded Theory are not restricted, which is
an advantage when a research question is open and very little is
known about the research field. The disadvantage is that many
steps are not standardized, nor well-defined. Therefore, a lot of
expertise and capacity is necessary for decision-making and
analysis. Since we have already conducted our study, we gained
some knowledge and understanding of our research field. Using
the typology, we aim to specify and structure our results.
Therefore, we need a standardized and well-defined method to
analyze our data effectively, and qualitative content analysis fits
these criteria.

5.3.3 Research Schedule
Data collection is conducted in the winter-semester 2008,
followed by data analysis and selection of students for interviews.
The objective of the semi-structured interviews with the CS

majors is to get more information on the single attributes. Next,
we will collect computer biographies of the non-CS majors,
analyzing and comparing them to the data of the CS majors in
order to obtain a high contrast level. This data will be used for the
grouping process and construction of the subsequent stages of
typology. Table 7 provides an overview of the future activities.

Table 7. Overview of future activities.

Activity Purpose

Collect new computer
biographies of first year CS
students (on their first day at the
university)

Collect computer biographies of
non-CS majors

Type biographies

To survey the current data

To survey the contrast data

To prepare for data analysis

Analyze collected data

Choose students for interviews

Develop semi-structured
interviews

To gain some new
characteristics

To choose interviewees

Conduct interviews with the
same first year CS students two
months after they started their
studies

To gain more information
on characteristics

Analyze interviews (stage 1)

Grouping process (stage 2)

Analyze coherence and
typification (stage 3)

Types characterization (stage 4)

To construct a typology

Conduct interviews with the
same interviewees, one year
later,

To gain information about
students’ further learning
process at the university

Analyze interviews To examine CS program
influences on further
learning

In section 2, we stated four research questions we intend to
answer with this research project:

1. What preconditions for learning do CS students have
before starting university studies?

2. How do these preconditions develop and influence
further learning?

3. What kind of a patterns, similarities or differences
among the single characteristics of students’
preconditions can we reconstruct?

4. How are these preconditions related to what is expected
from students in the first year of studies?

Using the typology, we will answer questions 1-3 and make
certain predictions about students’ development in their university
studies. In order to answer questions 4 we will analyze what is
expected from CS students in the first year of studies and to
compare this with the typology result. At this early stage, we have
not developed a methodological approach for this objective, yet.
Finally, we intend to conduct semi-structured interviews with the

69

same CS students one year later and question them about their CS
studies. The interview structure will be developed based on the
typology.

It would be appropriate to test the typology using quantitative
methods like a standardized questionnaire, but this would be an
additional research project.

6. CONCLUSION
In this paper, a research design that combines different theoretical
and methodological approaches from sociology, psychology,
education, and CS was presented. We outlined how we adapt
theory and methods to answer a research question from CS Ed
(Education). How is this research design supposed to be
evaluated? Certainly, it would be possible to evaluate each aspect
independently. However, empirical methods from social sciences,
whether qualitative or quantitative, are not “recipes” for data
survey and analysis. The main challenge is that using a given
methodology properly involves adaption of its epistemological
and ontological context as well.

CS Ed research often approaches using methodology in an
algorithmic way. However, we need empirical evidence to provide
valid and sustainable results. For instance, when Grounded
Theory is used to develop a theory about student understanding of

programming concepts, the researchers have to think and behave
in the tradition of qualitative empirical research, similar to
sociologists. However, by doing this, they will depart from CS Ed
research. This raises the question: how do we judge research
design like the one presented in this paper? Overall, is such a
research design still CS Ed research? Where do social sciences
end and where does CS Ed starts?

The research design described in this paper intends to examine CS
students’ learning backgrounds retrospectively. The intention is to
analyze the preconditions for learning that CS students have and
how these preconditions develop and influence further learning.
Finally, the objective is to reconstruct patterns, similarities or
differences among the single characteristics of students’
preconditions. For this purpose an empirically-based typology is
planned. It must be discussed if this research approach is
appropriate for the research purpose.

As for methodology, different stages are planned. It must be
discussed if the data collection and analysis is appropriate. A clear
question is whether the property-space is complete. The
qualitative social research talks about data saturation, but remarks
that the researchers must decide themselves when the property-
space is complete. Finally, the research project presented in this
paper intends to examine how CS students’ preconditions are
related to what is expected from students in the first year of
studies. Based on the knowledge of these preconditions, the
overall goal is to better understand why CS students drop the
subject due to learning reasons. Therefore, this paper concludes
by asking if the intended research design is suitable to this
purpose.

7. ACKNOWLEDGMENT
I would like to thank Carsten Schulte, Essi Lahtinen, Josh
Tenenberg, and the reviewers for their helpful comments that
improved this paper so much.

8. REFERENCES
[1] Andreas Böhm 2004 Theoretical Coding: Text Analysis in

Grounded Theory. In A Companion to Qualitative
Research (Flick, Uwe, Kardorff, Ernst von and Steinke,
Ines, eds.). Sage Publications Ltd, 270–275

[2] Bailey, K. D. 1973 Monothetic and Polythetic Typologies
and their Relation to Conceptualization, Measurement and
Scaling. American Sociological Review 38, 18–33

[3] Barker, L. J., Garvin‐Doxas, K. and Jackson, M. 2002
Defensive climate in the computer science classroom. In
Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, 43‐47

[4] Barton, A. H. 1955 The Concept of Property-Space in
Social Sciences. In The Language of Social Sciences
(Lazarsfeld, Paul F. and Rosenberg, Morris, eds.). Free
Press, 40–53

[5] Beaubouef, T. 2003 Why Computer Science Students
Need Language. ACM SIGCSE Bulletin 35, 4, 51–54

[6] Becker, H. S. 1968 Through Values to Social
Interpretation. Essays on Social Contexts, Actions, Types,
and Prospects, Greenwood Press

 [7] Capecchi, V. 1968 On the Definition of Typology and
Classification in Sociology. Quality and Quantity 2, 1-2,
9–30

[8] Cohoon, J. M. and Aspray, W. 2006 Women and
Information Technology. Research on
Underrepresentation, MIT Press

[9] Donovan, M. S. and Bransford, J. D. 2005 How students
learn. History, mathematics, and science in the classroom,
National Academies Press

[10] Dweck, C. 2000 Self-theories: their role in motivation,
personality, and development, Psychology Press

[11] Ecarius, J. 2006 Biographieforschung und Lemen/
Biographical Research and Education7. In Handbuch
erziehungswissenschaftliche Biographieforschung
(Krüger, Heinz-Hermann and Marotzki Winfried, ed.). VS
Verlag, 91–108

[12] Gerhardt, U. 1984 Typenkonstruktion bei
Patientenkarrieren/Typification and Patient-careers7. In
Biographie und soziale Wirklichkeit (Kohli, Martin and
Robert, Günter, eds.). Metzlersche Verlagsbuchhandlung,
53–77

[13] Greening, T. 1998 Computer Science: Through the Eyes
of Potential Students. In Proceedings of the 3rd
Australasian conference on Computer Science Education,
ACE 1998, 145‐154

[14] Hempel, C. G. and Oppenheim, P. 1936 Der Typusbegriff
im Lichte der neuen Logik, A.W. Sijt Hoff's
Uitgeversmaatschappij N.V.

[15] Hewner, M. and Knobelsdorf, M. 2008 Understanding
Computing Stereotypes with Self-Categorization Theory.
In Proceedings of the 8th Baltic Sea Conference on
Computing Education Research, Koli 2008, Finland

7 This book/text is only available in German. The German title is

translated by the author of this article.

70

[16] Hoffman, M. E. and Vance, D. R. 2005 Computer literacy:
what students know and from whom they learned it. ACM
SIGCSE Bulletin 37, 1, 356‐360

[17] Kinnunen, P. and Malmi, L. 2008 CS minors in a CS1
course. In Proceeding of the fourth International
Computing Education Research Workshop, ICER 2008,
79‐90

[18] Kluge, S. 1999 Empirisch begründete Typenbildung/
Empirically Grounded Typification7. Zur Konstruktion
von Typen und Typologien in der qualitativen
Sozialforschung, Leske + Budrich, Opladen

[19] Kluge, S. 2000 Empirically grounded construction of
types and typologies in qualitative social research. Forum:
Qualitative Social Research [Online Journal] 1, 1 (2000),
http://www.qualitative-research.net/fqs-texte/1-00/

1-00kluge-e.htm

[20] Knobelsdorf, M. and Schulte, C. 2007 Das informatische
Weltbild von Studierenden/Students’ CS world-view7. In
Didaktik der Informatik in Theorie und Praxis. 12. GI-
Fachtagung Informatik und Schule - INFOS 2007, 69–79

[21] Knobelsdorf, M. and Schulte, C. 2008 Computer Science
in Context - Pathways to Computer Science. 7th Baltic
Sea Conference on Computing Education Research, Koli
2007. In Conferences in Research and Practice in
Information Technology (Australian Computer Society,
Inc., ed.), Sydney, Australia

[22] Kuckartz, U. 1990 Computerunterstützte Suche nach
Typologien in qualitativen Interviews. In Fortschritte der
Statistik-Software 2. SOFTSTAT '89. 5. Konferenz über
die wissenschaftliche Anwendung von Statistik-Software.
(Faulbaum, Frank, Haux, Reinhold and Jöckel, Karl-
Heinz, eds.). Gustav Fischer, New York, 495–502

[23] Lazarsfeld, P. F. and Barton, A. H. 1951 Qualitative
Measurement in the Social Sciences. In The Policy
Sciences (Lerner, Daniel and Lasswell, Harold, eds.).
Stanford University Press, 155–192

[24] Lewandowski, G., Bouvier, D. J., McCartney, R., Sanders,
K. and Simon, B. 2007 Commonsense computing (episode
3): concurrency and concert tickets. In Proceedings of the
third International Computing Education Research
Workshop, ICER 2007, 133‐144

[25] Maaß, S. a. W. H. 2006 Programmieren, Mathe und ein
bisschen Hardware…Wen lockt dies Bild der Informatik?/
Programming, maths, and a bit of hardware…who is
attracted by this picture of CS? 7 Informatik Spektrum 29,
1, 125–132

[26] Marotzki, W. 2004 Qualitative Biographical Research. In
A companion to qualitative research (Flick, Uwe,
Kardorff, Ernst von and Steinke, Ines, eds.). SAGE, 101–
107

[27] Martin, C. D. 2004 Draw a computer scientist. In
Proceedings of the 9th Annual Conference on Innovation
and Technology in Computer Science Education. ITiCSE
2004, 11–12

[28] Mayring, P. 2000 Qualitative Content Analysis. Forum:
Qualitative Social Research [Online Journal] 1, 2 (2000),
Art. 20. http://nbn-resolving.de/urn:nbn:de:0114-
fqs0002204

[29] Mayring, P. 2004 Qualitative Content Analysis. In A
Companion to Qualitative Research (Flick, U. and Kardoff
E. and Steinke I. von, eds.). Sage Publications Ltd, 266–
269

[30] McKinney, J. C. 1969 Typification, Typologies, and
Social Theory. Social Forces 48, 1, 1–12

[31] Schulte, C. and Knobelsdorf, M. 2007 Attitudes towards
Computer Science - Computing Experiences as a Starting
Point and Barrier to Computer Science. In Proceedings of
the third International Computing Education Research
Workshop. ICER 200, 27–38

[32] Simon, S., Fincher, S., Robins, A., Baker, B., Box, I.,
Cutts, Q., Raadt, M. de, Haden, P., Hamer, J., Hamilton,
M., Lister, R., Petre, M., Sutton, K., Tolhurst, D. and
Tutty, J. 2006 Predictors of success in a first programming
course. In Proceedings of the 8th Austalian conference on
Computing education, ACE ’06, 189‐196

[33] Sinatra, G. M. 2005 The “Warming Trend” in Conceptual
Change Research: The Legacy of Paul R. Pintrich.
Educational Psychologist 40, 2, 107–115

[34] Thiel, F., Blüthmann, I., Lepa, S. and Ficzko, M. 2007
Ergebnisse der Befragung der Studierenden in den
Bachelorstudiengängen an der Freien Universität Berlin
Sommersemester 2006. http://www.ewi-psy.fu-berlin.de/
einrichtungen/arbeitsbereiche/schulentwicklungsforschun
g/forschung/bachelorbefragung.html

[35] Tiefel, S. 2005 Coding in terms of Grounded Theory.
Modifying coding guidelines for the analysis of
biographical learning within a theoretical framework of
learning and education. ZBBS 6, 1, 65–84

[36] Turner, E. H. and Turner, R. M. 2005 Teaching entering
students to think like computer scientists. In Proceedings
of the 36th SIGCSE technical symposium on Computer
science education, 307–311.

[37] Weber, M. 1988/1904 Die "Objektivität"
sozialwissenschaftlicher und sozialpolitischer Erkenntnis/
The Objectivity of the Sociological and Social-Political
Knowledge. In Gesammelte Aufsätze zur
Wissenschaftslehre (Winckelmann, J., ed.). Mohr,
Tübingen, 146–214

71

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee.

Koli Calling '08, November 13–16, 2008, Koli, Finland. Copyright 2008 ACM

978-1-60558-385-3/08/11…$5.00.

Understanding Computing Stereotypes with

Self-Categorization Theory
Michael Hewner

Georgia Institute of Technology
801 Atlantic Drive

Atlanta, Georgia, USA

hewner@gatech.edu

Maria Knobelsdorf
Freie Universität Berlin

Takustr. 9
14195 Berlin, Germany

knobelsd@mi.fu-berlin.de

ABSTRACT

The partly completed study presented in this paper explores
characteristics of stereotypes in Computer Science. The study
describes student autobiographical essays about computing,
analyzed with particular attention to the ways in which students
use computing stereotypes. We describe how self-categorization
theory, taken from the psychology stereotype literature, might

explain the essays we see and discuss potential implications of
self-categorization theory on CS Education in general.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, Literacy, Self-

assessment.

General Terms

Experimentation, Human Factors.

Keywords

Stereotypes, CS, Computers and Society, CS Education Research,
Pedagogy, Computer Biographies, Categorization, Group Identity.

1. INTRODUCTION
Students in Computer Science (CS) have to cope with negative
stereotypes associated with the field. Previous research has shown
that stereotypes are frequently mentioned when students consider
reasons not to further their CS education [7, 13] . Bigger’s [3]
study of CS student retention shows evidence that students
leaving CS had more negative stereotypes of computing careers
then those who did not. We know that some students embrace
stereotypical “nerd” behaviors but that many others distance

themselves from them [10]. Some advocate improving the image
of CS in order to improve retention [11]. However, an
examination of the literature on stereotype psychology strongly
suggests that attempting to change stereotypes is problematic [12].
Before CS educators attempt to change stereotypes, we should
further consider the effect of stereotypes on thinking.

In the in-progress study presented in this paper, we analyze with
regard to stereotypes a set of computer autobiographies written by
students. The preliminary results are examined using self-
categorization theory. This psychological theory describes how
stereotypes are used to create individual identities and we present

it in the second part of the article. The paper concludes with a
discussion section and some potential implications of this theory
to CS education and teaching.

2. EMPIRICAL STUDY
Even though stereotypes had not been the subject of our previous
empirical studies [5, 6], we observed that students often
mentioned computing stereotypes. In the current study, we

reinvestigate empirical data with the focus on stereotypes. This
data consists of students’ autobiographical essays about
computing experiences (computer biographies). We asked
students to describe experiences about computing but otherwise
the question was intentionally left open-ended in order to
encourage the students to make their own decisions about what
experiences were most significant.

“Stereotyping is the process of ascribing characteristics to people
on the basis of their group membership.” [9] We used this
definition as we asked the following research questions:

1. Do students mention stereotypes, explicitly or
implicitly, in their biographies?

2. What kinds of stereotypes do they mention?

3. Do they use stereotypes in order to explain their
decisions, behavior, preferences, or interests with regard
to computing and CS?

In the current study, we examine 271 biographies: 244
biographies were written by German university students, 27
biographies were written by US college seniors. In both samples,
some of the students are CS majors and some are studying
majoring in non-computing fields. For more information about
data collecting see [5, 6]. Though students were not asked about

stereotypes explicitly, considerable references to stereotypes
occur in our autobiographies. This indicates how important
stereotypes are to student’s relationship with computing. The next
section describes our analysis of the autobiographies’ use of
stereotypes.

2.1 Qualitative Content Analysis
Qualitative content analysis by Mayring is a methodology from
qualitative social research used to analyze systematically textual
data. “The main idea of the procedure is, to formulate a criterion
of definition, derived from theoretical background and research
question, which determines the aspects of the textual material
taken into account. Following this criterion the material is worked
through and categories are tentative and step by step deduced.

Within a feedback loop those categories are revised, eventually
reduced to main categories and checked in respect to their
reliability.” [8] This procedure can be divided into five

72

consecutive steps in which a category system is developed. These
steps will be briefly explained next, illustrating the analysis we
have done so far. Because of space reasons we will not describe
the complete category system in detail. Instead, we focus on the
categories that are relevant for our preliminary results.

In the first step of qualitative content analysis, the relevant text
samples are chosen out of the complete data sample in accordance
to the research questions and the theoretical background. In our
study, we chose samples explicitly mentioning stereotypes
(research question 1). We looked for groups ascribed
characteristics or attributes and how the students positioned
themselves in relation to such groups (research question 2 and 3).

In the next two steps, the relevant text samples are grouped

together in accordance to principal topics that can be found in the
text samples, and, from them, subtopics are generated. In the forth
step, all topics and subtopics are explicated by defining categories
and subcategories that describe exactly when a text sample is part
of a category or not. Very often typical examples are provided
with the category. The categories, together with coding rules and
related textual passages, form the category system.

Based on the chosen samples we generated the first main category

Stereotypes, with two subcategories: socializing aspects
(characteristics that refer to social life: contact to other individuals
and attitudes towards them, hobbies, dress and lifestyle) and
gender aspects. Students distanced themselves from certain
aspects of computing. From these text samples, we generated the
next main categories: Differentiation from (the subcategories):
stereotypes, partial knowledge, CS class in school, CS, computers;
Affiliation with (the subcategories): CS class in school, CS,

Computers; and Refusal of CS/computers due to (the
subcategories): fear, incompetence, dependence, feelings of
uselessness.

Students identified with or distinguished themselves from groups.
We denoted this in the main category Self-Image. We found that
individuals were describing grouping processes and used them to
explain why they considered themselves interested in CS or not.
We generated four subcategories: grouping process, user, non-
expert, expert.

Once the category system is defined, 10-50% of the data is coded.
After the first coding pass, the category system is revised and

extended as the last and fifth step. Then the final data coding with
the complete data sample is performed. The final coding will be
done by more than one person in order to measure intercoder-
reliability.

We have revised the categories described in the paragraphs above
and currently we are now in the process of final coding using the
MAXQDA coding-software [1]. Because we are still in the coding
process, these results must be seen as a preliminary outcome.

2.2 Differentiation from Stereotypes
Students (especially non-computing students) frequently use
stereotypes in a negative way to differentiate themselves from
“nerdy” computer experts:

“My prejudices concerning computers, which make things
more complicated instead of making them simpler, were
confirmed. I felt helpless and always needed to ask my flat-
mate‟s boyfriend for help. He was a real „freak‟ and was able

to help quickly in most cases, but I always felt uncomfortable,
due to the fact that I seemed „stupid‟, and guilty, because I

didn‟t keep in touch with him otherwise (well, computer-
freaks are usually boring) and I felt I was using him.
[07P1979wU6].

Biographies frequently reproduce negative stereotypes. Many of
our biographies use the negative stereotype as a way of explaining
their own problems with computing:

“I didn‟t experience any further improvements with the
computer, I hadn‟t had a Commodore 64 like my other
friends, but wasn‟t interested in games only either, so I
dissociated myself from the computer and I thought it sucked.

In the 11th grade, I had to take CS classes, in which we used
DOS. Unlike my friends, I had no clue about it. The computer
became a nightmare.” [10P1982wU6]

2.3 Affiliation with Stereotypes
Students often use stereotypes to describe their own identities. In
this biography a student who previously enjoyed computers
describes how he left computers for a more “punk” image:

“In that period I found a computer somehow un-cool and I
switched to guitar. This way I got to know many musicians.
We practiced hard, started bands, played gigs and were as
punk as our stomachs could take it and as much as our

parents allowed. I would use a computer only when
necessary.” [22ImU8]

Though his reasons for leaving computers are unclear to him, it is
clear that being a punk helped him clarify a “cool” identity in his
social group.

Similarly, “cool” aspects of computer culture can be attractive for
students with interests in computers:

“Several years later I saw „Matrix‟ in a cinema. Neo, a young
hacker, was able find something out due to his computer
knowledge exclusively. Something, that was inaccessible for
the rest of the human race. This knowledge becomes the
power and reason why he starts exploring the new world. This
philosophical and, for me, revolutionary idea brought me to
the idea of making peace with the computer again. […] It

didn‟t take long and I was searching after „hacker books‟ in
our local library. Suddenly everybody was talking about bank
robberies and Trojans, viruses and worms. I dived into this
world, which was more interesting than one could imagine.”
[07ImU8]

2.4 Ambiguous Stereotypes
Students who seemed to enjoy Computer Science nonetheless
took special pains to differentiate themselves from stereotypes.

“[...] I was beginning to distance myself from people by
becoming so closely involved with technology and unique
expertise. To be frank I was a little afraid of being sucked into
the CS major stereotype of being a pale, scruff poorly dressed
student who knew little more than gaming, hacking, and
which hardware on the market was the best […]. With this
realization, I decided to pick up a certificate in information
technology through the college of management.”
[547580242]

 “I used it almost every day to play games or to check what it

was able to perform, which made me a computer junkie
immediately. However, I was busy not only with computers,
but I also had a family and friends with whom I would
regularly meet.” [03ImU8]

73

This emphasis of distinctiveness from the CS stereotype was one
of the most frequent commonalities between the US and German
biographies. It was these sorts of biographies more than any other
that led us to explore stereotypes more closely. Obviously,
students in computing think about stereotypes frequently when

asked about their relationship to computers. It was a point of
concern for us that excitement about computing seem tied to
negative stereotypes even in the minds of computing majors.

3. PSYCHOLOGY OF STEREOTYPES
It should be clear from the patterns we have highlighted in our

biographies that students use stereotypes in complex ways when
describing their relationship to computing. To help understand
these results, the psychology stereotype literature represents a
valuable resource. We introduce one theory here, and discuss its
implications for our biography results and computing education in
general.

Stereotypes are generalizations about groups ([12] pg. 26). When
negative generalizations are applied broadly by members of a
culture, they can lead to the prejudice and discrimination typically
associated with the word “stereotype”. However, most modern
psychology stereotype research theorizes that stereotype

formation is a normal, not pathological, process of cognition.
Stereotypical generalizations give us useful abstractions that help
us understand social situations. Psychologists don’t agree on the
exact cognitive structure of stereotypes. This paper draws on self-
categorization theory, an explanation of stereotypes that we found
provided some interesting insights into our biographies.

3.1 Categorization
The basic prediction of self-categorization theory is that

individuals will naturally view a social context in terms of two
groups: an in-group that is viewed as similar to the self and an
out-group that is differentiated from the self. These
categorizations change as the social context changes ([9] pg. 87).
For example, A CS major in an introductory CS class might feel
that he or she is a "CS major" and differentiate him or herself
from the "computer enthusiasts" in the class. However, the same
CS major might feel a great deal of kinship with the same

enthusiasts at a party, regardless of major because the context
divides more neatly into “computer /non-computer people”.

In real social situations, multiple categorizations are of course

possible: individuals are divided by gender, major, dress, hobbies,
etc. What makes a particular categorization salient is a
combination of a variety of factors [9]:

 Categorizations explicit in the situation. The two

opposing teams at a sporting event are likely to
categorize along team lines. It's important to note that
although multiple categorizations are frequently
possible, sometimes categorization is so compelling
there is no choice.

 Categorizations relevant to personal goals. If I am

trying to find people to help me fix my computer
problem, nerdy appearances might become salient

 Categorizations with a large amount of meaning.

Categorizations with a large number of associations
(like existing stereotypes) will be preferred to
categorizations that do not help understand (e.g. hair

color).

 Categorizations dividing the social context. If everyone

falls on one side of categorization, it is not useful for
understanding.

 Categorizations establishing a positive identity. If can I

see myself in a relatively high status group, I will prefer
categorizations that let me do that.

This categorization process naturally lends itself to the use of
common stereotypes to make inferences about other group’s
behavior. It also suggests that stereotypes are naturally used to
understand the self. By categorizing oneself, the individual can

incorporate a group identity into their view of themselves (at least
until the social context changes and the salient categorizations are
different).

3.2 Group Identity
A person’s categorization of others into groups affects that

person’s behavior. One of the best known examples of this is
called the “minimal group” effect in which individuals
categorized into two groups based on arbitrary characteristics (like
underestimating or overestimating dots) will, despite the
arbitrariness of the categorization, favor their own group members
when given the opportunity of the allocate resources between the
groups ([12] pg. 238). Individuals also judge a statement made by
a member of their own group to be closer to their own opinion,

and opinions expressed by members of an out-group to be further
from their own ([9] pg. 127-158).

When individuals categorize themselves as members of a

particular group, their view of themselves becomes dependent on
their perception of the group as a whole. If good characteristics
are ascribed to the group, the individuals’ self-perception is
enhanced by association. Individuals are apt to view positive
information about groups they belong to more uncritically to
maintain a positive self-identity.

Sometimes group members cannot view their group in a positive
way. For example, if a group does poorly on an objective task or
if commonly accepted wisdom makes positive comparison
impossible (e.g. business students might have a high status when
compared to physics majors on the basis of creativity, low status

when compared on basis of intelligence). When a group’s status is
low, it is considered to be under a group-directed “threat” [4].
Group members have a choice: When they feel a low amount of
commitment to a group, they are likely to report that they are
atypical of the group and potentially affiliate with other groups.
Group members with a high amount of commitment emphasize
the group’s homogeneity, may act in a more stereotypical way,
and try to change the group status. Even if status improvement is
not possible, high identifiers may continue to affiliate.

When individuals receive information that threatens their sense of
membership in a group, it is considered to be a self-directed threat

[4]. For example, if someone who considers him- or herself a
Computer Scientist has difficulty understanding a class of
algorithms (considering algorithmic understanding to be a
characteristic of Computer Scientists), external evidence has
called into question his or her group membership. Similar to a
group-directed threat: group members that have a low amount of
commitment are likely to distance themselves (e.g. just decide that
they are a Computer Scientist who is bad at algorithms). Group

members that feel a high affiliation are likely to take action to
restore their perception of acceptance within the group – perhaps
by studying that group of algorithms until they are clear.

74

This process of distancing oneself from a group is known as
“individualization”. We believe that this is the phenomenon we
saw in some of our biographies (section 2.4) – students distancing
themselves as from being classified as “normal” Computer
Scientists, because of the implicit low status of the prevalent

stereotype about Computer Scientists. Most of our computing
majors’ biographies expressed excitement about the field of CS
itself. But despite this interest in the subject matter of CS, this
distancing can be seen as evident individualization and of low
commitment to CS.

4. DISCUSSION
What are some possible implications of self-categorization theory
for understanding the effects of stereotypes on CS students? The

first implication is that stereotypes significantly affect students’
self-perceptions as Computer Scientists. This occurs even after the
student is officially in the major and ought to be “cured” of
stereotypical misconceptions. Because individuals are constantly
adjusting their categorizations in view of the social context,
seemingly “minor” social issues in the classroom can cause
students to categorize themselves in opposition to other Computer
Scientists and teachers.

This theory suggests that privileging particular attributes as
definitive for CS is likely to have negative effects. When teachers
focus on using a particular style of mental process [14] or elevate

some students as exemplary Computer Scientists at the expense of
others [2], they create a category of enrolled students who are not
meeting the standards of Computer Science. If students have a
high commitment, threatening their self-image as Computer
Scientists can encourage them to work harder. But our biographies
suggest that student’s commitment to Computer Science may be
low. If this is true then challenging student identity is more likely
to exclude them than encourage them to work harder.

Self-categorization lends support to the view that CS hurts itself if
it enforces one particular vision of the Computer Scientist in the
classroom. By promoting different potential CS identities (one
potential example could be different specializations in algorithms,
systems, languages, etc.), students could be encouraged to
categorize between a variety of different choices within CS rather
than as CS/not CS. The more choice involved with an identity,
and the more unique it is, the more likely it is to have strong

affiliation. There are other benefits to strong commitment. When a
group categorization becomes central to an individual's identity,
the individual is motivated to act in ways that preserve the group's
status in order to protect their own identity. When a group is
having problems (for example, peers having difficulty in class),
individuals who are strongly committed to a group are more likely
to work with other group members to preserve their collective
identity.

Finally, it can be important to recognize that the same self-
categorization processes that affect our students also operate
within the wider CS community. If as CS educators, we hope for
our educational improvements to be adopted by the CS field at
large, we should be aware that we can inadvertently threaten the
identities of established members of our field by proposing to
change CS in sweeping ways. Stereotype change is in many ways
equivalent to a group threat because it casts into question the

identities of people well-established under the traditional order. In
this way, a potential innovation can lose the support of high
affiliators who normally could be counted upon to devote
significant time and energy to CS.

Going forward, we intend to finish this study and publish a more
complete account of what we elaborated on. We also think that
the predictions of self-categorization theory represent an
interesting future research direction that should be explored in
further detail. Clearly however, the study presented here suggests

rather than verifies the claims of self-categorization theory and
more stereotype specific research needs to be undertaken before
we can understand how stereotypes affect students’ self-identities.

5. DISCUSSION QUESTIONS
1. Are the predictions of self-categorization theory useful to

us as CS educators?
2. What are the logical next steps, in terms stereotype research

for Computer Science?

6. ACKNOWLEDGEMENTS
This research is supported in part by a grant from the National
Science Foundation BPC Program #0634629.

7. REFERENCES
[1] MAXQDA - The Art of Text Analysis. Available from
http://www.maxqda.com/ (2007); accessed August 31, 2008.
[2] Barker, L. J., Garvin-Doxas, K. and Jackson, M. Defensive
climate in the computer science classroom. In Proceedings of
SIGCSE 2002 (Cincinnati, 2002). New York, 2002. ACM.
[3] Biggers, M., Brauer, A. and Yilmaz, T. Student perceptions
of computer science: a retention study comparing graduating
seniors with cs leavers. In Proceedings of SIGCSE 2007
(Portland, 2007). New York, 2007. ACM.

[4] Ellemers, N., Spears, R. and Doosje, B. Self and Social
Identity. Annual Reviews in Psychology, 532002), 161-186.
[5] Hewner, M. and Guzdial, M. Attitudes about Computing in
Postsecondary Graduates. In Proceedings of ICER 2008 (Sydney,
Australia, 2008). New York, 2008. ACM.
[6] Knobelsdorf, M. and Schulte, C. Computer Science in
Context - Pathways to Computer Science. In Proceedings of the
7th Baltic Sea Conference on Computing Education Research

(Koli Calling 2007) (Koli National Park, Finland, November,
2008). Sydney, 2008. Australian Computer Society, Inc.
[7] Margolis, J. and Fisher, A. Unlocking the Clubhouse: Women
in Computing. MIT Press, Cambridge, Massachusetts, 2002.
[8] Mayring, P. Qualitative Content Analysis. Available from
http://www.qualitative-research.org/fqs-texte/2-00/2-00mayring-
e.htm (2000); accessed August 31, 2008.
[9] Oakes, P. J., Haslam, S. A. and Turner, J. C. Stereotyping

and Social Reality. Blackwell, Oxford, 1994.
[10] Rasmussen, B. and Håpnes, T. Excluding Women from
Technologies of the Future? A Case Study of the Culture of
Computer Science. In Sex/Machine: Readings in Culture, Gender,
and Technology. Indiana University Press, Bloomington, Indiana,
1991.
[11] Ross, J. Image of Computing. Available from
http://www.imageofcomputing.com (2007); accessed August 31,

2008.
[12] Schneider, D. J. The Psychology of Stereotyping. Guilford
Press, New York, 2004.
[13] Turkle, S. Computational Reticence: Why Women Fear the
Intimate Machine. In Sex/Machine. Indiana University Press,
Bloomington, Indiana, 1988.
[14] Turkle, S. and Papert, S. Epistemological Pluralism: Styles
and Voices within the Computer Culture. Signs: Journal of
Women in Culture and Society, 16, 1 1990, 128-157.

75

Helping Students Debug Concurrent Programs

Jan Lönnberg
Department of Computer
Science and Engineering

Helsinki University of
Technology

Espoo, Finland
jlonnber@cs.hut.fi

Lauri Malmi
Department of Computer
Science and Engineering

Helsinki University of
Technology

Espoo, Finland
lma@cs.hut.fi

Anders Berglund
∗

Department of Information
Technology

Uppsala Computing Education
Research Group, UpCERG

Uppsala University
Uppsala, Sweden

anders.berglund@it.uu.se

ABSTRACT
We use empirical studies of how students understand con-
current programming and write concurrent programs to de-
termine problem areas in students’ understandings and ap-
proaches. We then suggest ways to deal with these prob-
lems to help students understand what is wrong with their
concurrent programs. These include testing and visual de-
bugging tools to help students find and understand their
errors as well as feedback from teachers that makes use of
these tools and knowledge of the students’ understandings
to clearly explain to students where they have gone wrong.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—Computer science education;
D.1.3 [Programming techniques]: Concurrent program-
ming; D.2.5 [Software engineering]: Testing and debug-
ging—Debugging aids

General Terms
Human Factors, Verification

Keywords
programming education, software visualisation

1. RESEARCH AIMS
The long-range goal of our project is to help programmers

produce better concurrent programs. We approach this by
developing methods and tools to help programmers under-
stand what a concurrent program does. Better understand-
ing is essential for both debugging and learning purposes.

∗Currently also affiliated with Department of Computer Sci-
ence and Engineering, Helsinki University of Technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

Our large-scale approach is to identify the needs of the
intended users and then design solutions to address them.
The general questions we therefore seek answers to are:

1. What kind of defects do programmers inexperienced in
concurrent programming introduce in their concurrent
programs, and why?

2. Which of these defects are hard to find or understand
and why?

3. What kind of tools can assist a programmer in find-
ing and understanding these most problematic defects,
and how well do they work?

We focus on inexperienced users, in particular students,
for several reasons. One is that their inexperience means
they need more help. Another is that helping students un-
derstand their mistakes not only helps them get their pro-
grams to work; it also helps them learn. Finally, it is easier
to introduce new ways to work to students than to experi-
enced professionals with ingrained habits.

Our primary approach to helping programmers under-
stand their programs is software visualisation; using a va-
riety of presentation techniques to facilitate understanding
of programs and algorithms and their behaviour. Price et
al. [13] state that while software visualisation (SV) “has
tremendous potential to aid in the understanding of concur-
rent programs”, few SV systems have seen production use,
especially in the domain of tools for professional program-
mers. They also note that when an SV system is designed,
the content to be shown must be selected according to the
goals of the system, which, in turn, are based on the re-
quirements of the users. Thus, in order to answer our third
question properly, we must answer the first two.

In this paper, we summarise some answers to the first two
questions and use these as a basis for suggesting some for
the third question. We also present questions about teaching
programming raised when seeking answers to our questions.

2. STUDENTS’ UNDERSTANDINGS
Defects are the result of a programmer’s error. Many of

these errors are due to wrong or incomplete understandings.

2.1 Understanding Program Execution
One thing that can be incorrectly understood is how a

program is executed. Ben-David Kolikant finds that stu-

76

dents initially approach a concurrent programming assign-
ment from a user’s perspective, in which program behaviour
is seen only through the user interface, and not all of them
are able to switch to a programmer’s perspective [2]. Sim-
ilarly, Ben-Ari and Ben-David Kolikant describe how high-
school students make assumptions based on informal con-
cepts rather than use formal rules and avoid using concur-
rency [1]. We found students who saw the programming
assignment as an ideal problem, in which many limitations
of real-life programming, such as finite memory or network
delays, do not apply [11]. We also found that students in-
troduce many defects in their programs that appear to be
caused by misunderstanding or reasoning incorrectly about
concurrent program execution [9].

It seems that part of the problem is that the program’s
runtime behaviour, a necessary part of the programmer’s
perspective, is hard to examine or interpret, preventing stu-
dents from effectively understanding what their program
does and reasoning in terms of the relevant concurrency
model. This suggests to us that students need to be shown
the consequences of their understandings of what their pro-
gram is supposed to do, the circumstances it is supposed to
work in and what correctness entails. Showing students the
exact behaviour of a concurrent program is a complex issue
that we discuss further in Subsection 4.1.

Providing students with tools to study memory allocation
would help them understand how their programs use (or
misuse) memory. In its most basic form, this would involve
using a profiler to get information on the maximum memory
use of their program. More detailed visualisations, such as
charts that show memory use over time categorised by where
the memory is allocated, can be used to help students un-
derstand memory use in more detail. Other resource usage
issues, such as use of CPU time or network or disk capacity,
can be handled similarly.

2.2 Understanding Goals
Students may also have a different understanding of what

they are trying to achieve than their teachers. Ben-David
Kolikant explains that students define a “correct program”
as a program that exhibits“reasonable I/O for many legal in-
puts” [3]. We found that, apart from the expected problems
with writing reliable concurrent programs, a lot of students
wrote programs that were missing required functionality or
implemented this functionality in ways that conflicted with
requirements or required additional limitations on the run-
time environment [9]. One reason we found for this was
that students had different aims in their assignment, seeing
it primarily as something they have to do to get a grade or
as an ideal problem in an ideal context in which simplifying
assumptions apply [11]. Others considered their submission
a working solution to a real problem or even something that
raises possibilities for future development [11]. The students
also considered different potential sources of problems: the
hypothetical user of the program (even when the assignment
was specified in terms of the input and output of methods,
not user requirements), underlying systems that could fail,
especially network connections in a distributed system, and
the programmer (the student) as a error-prone human [11].

The purposes of the programming task and sources of
failure we found suggest that many of the errors made by
students are misunderstandings of what their program is
supposed to do and what situations it’s expected to cope

with rather than actual misunderstandings of concurrent
programming itself. This is in line with our quantitative
analysis of students’ defects [9]. Assuming that it is de-
sirable to have clearly-defined and specific goals (which is
useful in guiding students’ learning and simplifies assess-
ment), this suggests that teachers should make goals more
explicit and concrete. The goals should specify what the stu-
dent should achieve rather than how, allowing students to
find their own solutions to problems. Students should also
be provided with ways to explore problems related to these
goals. The student should see his or her program clearly fail
to work correctly rather than be told afterwards that he or
she did something the wrong way.

3. STUDENTS’ DEVELOPMENT APPROACHES
Developing a concurrent program is a complicated busi-

ness, and students are likely to go about it the wrong way.

3.1 Structuring the Solution
If we, as teachers or tool developers, are to communicate

with students effectively, we need to speak their language.
We found that students see the process of developing a pro-
gram in a concurrent programming assignment in three dif-
ferent ways: writing the code that implements the solution,
designing an algorithm that solves a computational problem
and producing an application that solves a real-life problem.
Similarly, they understood the tuple space data structure in
four distinct ways, as a specification that describes the ex-
ternally visible properties of the operations on the space, as
an implementation of the tuple space described in terms of
how it works, in terms of how it is used in a program and
as one way out of many to achieve a goal in a program.
In both cases, this shows that even in a very simple assign-
ment, students can make use of different levels of abstraction
to structure their solution. [10]

In Subsection 4.1, we discuss how this affects showing a
student how his or her program works.

3.2 Finding Ways a Program Can Fail
Verification is the process of making sure a program is

correct by finding any defects that may exist. The usual
way to do this is to test the program. Finding sufficient test
cases for a sequential program can be difficult. Exposing
concurrency-related defects through testing is even harder.

Students are often quite sure of the correctness of their
program and neglect to test it. In Ben-David Kolikant’s
study of high-school and college students who had finished
their CS studies [3], more than a third of the students were
sometimes satisfied with only compiling their program to
ensure it is correct and half of them did not check that their
program’s output is correct.

We found our students have a wide range of approaches
to testing. Some students used completely unplanned, cur-
sory, testing. Some tried to ‘break’ the system (e.g. through
stress testing), while others covered a variety of different
cases. Moreover, some students found they cannot test their
program adequately by themselves and need help from an-
other person or tool, that testing in itself is not sufficient or
that you have to prove your program correct yourself. [11]

The students’ verification approaches could be improved
by providing testing tools to generate scenarios that are hard
to discover using normal testing procedures and more ex-
plicit and detailed guidance on how to apply different veri-

77

fication techniques in practice. The assignment itself could
be changed to encourage students to learn and apply dif-
ferent verification techniques by explicitly requiring models,
as done by Brabrand [4], or by requiring students to create
suitable tests, e.g. using test-driven development.

Model checkers, such as Java PathFinder [16] are often
used to find concurrency-related defects by specifying re-
quirements that are checked against all the possible states
of the program. If the requirement does not hold, a coun-
terexample is generated that consists of an execution of the
program that violates the requirement. Model checking can
in many cases be used to prove correctness properties. How-
ever, as model checkers require that the program has quite a
small state space and does not interact with entities outside
the program model, adapting programs to a model that can
be verified is often hard and error-prone work.

An alternative approach to finding concurrency bugs is
to increase the chance of interleavings that lead to failure.
Stress testing is a well-known approach, and its usefulness
can be further improved by making sure interleavings occur
often and in many places. One straightforward and realistic
approach is to distribute the program’s threads over multi-
ple processors. Another way to do this is to automatically
and randomly change the thread scheduling to make con-
currency failures more likely to occur (e.g. [15]). This is the
approach used by the automated testing system of our con-
current programming course to increase test effectiveness.

4. UNDERSTANDING FAILURES
Once a failure has been found, the underlying defect must

be tracked down. Programmers can be helped to understand
what their programs are doing by providing ways for them
to explore their programs and by explaining their defects.

4.1 Software Visualisation
The goal of Software visualisation is to explain, through

graphical representations, what a program does. Visualisa-
tion has been applied to debuggers to create visual debuggers
such as DDD [18]; debuggers with graphical representations
of data. Most debuggers concentrate on individual threads
and can only show the current state of the program while
the cause of a program malfunction usually lies in the past
(which is especially problematic in concurrent programs, as
duplicating a failure may be difficult); RetroVue [5], with its
tree view of all executed operations, ability to examine all
previous states of the program and thread display showing
lock operations and execution times of threads, is a clear
exception to this. However, it does not aid the programmer
much in finding interrelated operations.

Answering queries about the reasons for events and states
in a program is a promising new idea of this type that has
not yet been developed to a level at which it can be used
in concurrent software development. This approach has an
obvious application in explaining to students how their pro-
grams failed. The Whyline [7], which uses dynamic depen-
dence graphs to explain to novices the reason why a program
did something (wrong), addresses the problem of explaining
relationships. This approach has been found useful in some
types of debugging situations in educational visual program-
ming environments [7]. DDGs are of particular interest for
concurrent programs, as interactions between threads (e.g.
use of locking or shared variables) are clearly shown as edges.

A few debuggers and software visualisation systems have

been designed with concurrency in mind. Most of them
use sequence diagrams to display method calls; JaVis [12]
adds collaboration diagrams to show interactions between
objects. These diagrams can become cumbersome for com-
plex executions. Kraemer [8] describes many visualisations
for specific aspects of concurrent programs such as call graphs
and time-process diagrams for message traffic. Visualisation
techniques for programs can also be applied to study model
checkers’ counterexamples, as in e.g. Bogor [14].

Showing the user the executed instructions helps the user
understand what the program is doing. In particular, show-
ing the user the sequence of instructions that led to an unex-
pected event can be very useful; studies show that program-
mers often require information on the causes of an event
and how different events are interconnected when looking
for hard-to-find bugs [17, 6]. Concurrency can also make it
very hard to trace the cause of an unexpected event.

Based on the empirical results above, we suggest that
what is needed is a tool to generate execution history vi-
sualisations automatically from a running program that are
easy to understand and navigate and provide the informa-
tion needed by the student in an easily understandable form.
Traditional visualisations such as sequence or collaboration
diagrams are obvious approaches to doing this, and dynamic
dependence graphs are a promising new addition.

There are several indications that students understand
their program in terms of higher-level constructs than those
in the code. One is that students see developing a pro-
gram as solving algorithmic problems rather than straight-
forward implementation. Another is that they understand
tuple spaces at higher levels of abstraction than their actual
implementation [10]. This suggests that program visualisa-
tion tools should allow users to choose a level of abstrac-
tion by grouping together parts of the code or execution to
correspond to their understandings, similarly to the ability
to change between program- and algorithm-level behaviour
suggested by Price et al. [13]. The tool could then visu-
alise the behaviour of the program in a fashion closer to the
student’s view. For example, if students understand their
programs as sets of communicating entities, the tool should
be able to show them the communication between these en-
tities and the relevant aspects of their state even though this
state may be spread out over several objects, and part of the
communication is implicit in locking mechanisms.

4.2 Feedback
Based on the reasoning above, we summarise our sugges-

tions and propose a systematic way of providing feedback
about programming assignments to students based on an
understanding of the underlying misunderstandings (a sim-
ilar format could be used in a more general programming
context for bug reports):

1. An execution of the program which fails. This can be
automatically generated by testing or model checking
and shown using the visualisations we have described.
The requirements of the assignment should be such
that not adhering to them causes the program to fail
in some situation the student can reconstruct. If the
failure is incorrect behaviour (e.g. output), show it and
the sequence of events leading up to it, focusing on the
information relevant to the student understanding the
failure. If the failure is resource overuse (e.g. memory),
show how the resource is used (when and where).

78

2. A description of the defect that causes the failure. This
can be expressed as a change to the code that elimi-
nates the defect. Apart from failing executions, possi-
ble defects can in many cases be automatically listed
based on empirical information on defects and the fail-
ures they result in. However, determining the exact de-
fect will in most cases involve manual debugging work.

3. The underlying error. Using empirical information on
the reasoning behind similar defects, and available in-
formation on the student’s reasoning (e.g. documen-
tation, comments, structure of code), a teacher can
describe what he or she thinks the error is.

4. A teacher can try to determine what the student has
not understood well enough and explain it.

5. Suggestions for how to detect similar problems: veri-
fication strategies effective against this type of defect
and design strategies that avoid introducing them.

5. DISCUSSION
While these questions have been raised in a concurrent

programming context, they are also interesting in a purely
sequential context. However, the answers depend on whether
concurrency is involved, particularly in the third question.

1. How explicit should teachers make assignment goals?

2. How should students be shown programs’ resource use?

3. How should teachers encourage students to apply more
useful ways of structuring and verifying programs?

4. How much help should students get in finding their
programming errors?

6. REFERENCES
[1] M. Ben-Ari and Y. Ben-David Kolikant. Thinking

parallel: The process of learning concurrency. In
Fourth SIGCSE Conference on Innovation and
Technology in Computer Science Education, pages
13–16, Cracow, Poland, 1999.

[2] Y. Ben-David Kolikant. Learning concurrency as an
entry point to the community of computer science
practitioners. Journal of Computers in Mathematics
and Science Teaching, 23(1):21–46, 2004.

[3] Y. Ben-David Kolikant. Students’ alternative
standards for correctness. In The Proceedings of the
First International Computing Education Research
Workshop, pages 37–46, 2005.

[4] C. Brabrand. Constructive alignment for teaching
model-based design for concurrency. In Proc. 2nd
Workshop on Teaching Concurrency (TeaConc ’07),
Siedlce, Poland, June 2007.

[5] J. Callaway. Visualization of threads in a running Java
program. Master’s thesis, University of California,
June 2002.

[6] M. Eisenstadt. My hairiest bug war stories.
Communications of the ACM, 40(4):30–37, 1997.

[7] A. J. Ko and B. A. Myers. Designing the Whyline: a
debugging interface for asking questions about
program behavior. In CHI ’04: Proceedings of the

2004 conference on Human factors in computing
systems, pages 151–158. ACM Press, 2004.

[8] E. Kraemer. Visualizing concurrent programs. In
Software Visualization: Programming as a Multimedia
Experience, chapter 17, pages 237–256. MIT Press,
Cambridge, MA, 1998.

[9] J. Lönnberg. Student errors in concurrent
programming assignments. In A. Berglund and
M. Wiggberg, editors, Proceedings of the 6th Baltic
Sea Conference on Computing Education Research,
Koli Calling 2006, pages 145–146, Uppsala, Sweden,
2007. Uppsala University.

[10] J. Lönnberg and A. Berglund. Students’
understandings of concurrent programming. In
R. Lister and Simon, editors, Proceedings of the
Seventh Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), volume 88 of
Conferences in Research and Practice in Information
Technology, pages 77–86, Koli, Finland, 2008.
Australian Computer Society.

[11] J. Lönnberg, A. Berglund, and L. Malmi. How
students develop concurrent programs. In
M. Hamilton and T. Clear, editors, Proceedings of the
Eleventh Australasian Computing Education
Conference (ACE2009), volume 95 of Conferences in
Research and Practice in Information Technology,
Wellington, New Zealand, 2009. Australian Computer
Society. To appear.

[12] K. Mehner. JaVis: A UML-based visualization and
debugging environment for concurrent Java programs.
In S. Diehl, editor, Software Visualization, pages
163–175, Dagstuhl Castle, Germany, 2002.
Springer-Verlag.

[13] B. A. Price, R. M. Baecker, and I. S. Small. A
principled taxonomy of software visualization. Journal
of Visual Languages and Computing, 4(3):211–266,
1993.

[14] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: A flexible
framework for creating software model checkers. In
Proceedings of Testing: Academic & Industrial
Conference — Practice And Research Techniques,
June 2006.

[15] S. D. Stoller. Testing concurrent Java programs using
randomized scheduling. In Proc. Second Workshop on
Runtime Verification (RV), volume 70(4) of Electronic
Notes in Theoretical Computer Science. Elsevier, July
2002.

[16] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering Journal, 10(2):203–232, Apr.
2003.

[17] A. von Mayrhauser and A. M. Vans. Program
understanding behavior during debugging of large
scale software. In ESP ’97: Papers presented at the
seventh workshop on Empirical studies of
programmers, pages 157–179, New York, NY, USA,
1997. ACM Press.

[18] A. Zeller. Animating data structures in DDD. In The
proceedings of the First Program Visualization
Workshop – PVW 2000, pages 69–78, Porvoo,
Finland, 2001. University of Joensuu.

79

Minority Report

Computer Science Skills Perceived by Students in Different Disciplines

Tuukka Ahoniemi
Department of Software Sciences
Tampere University of Technology

Finland
tuukka.ahoniemi@tut.fi

ABSTRACT
Software skills are more and more required within different
technical disciplines and the skill requirements vary through
time and discipline. Within the Computer Science (CS) dis-
cipline the evolution is naturally rather well understood and
adapted by Computer Science teachers. However the needs
of other disciplines towards CS should be inquired from the
representatives of those disciplines. Students themselves
form an important part of it. This article presents excerpts
from a research that identified differences between software
skill requirements in other disciplines than Computer Sci-
ences, or actually Information Teachnology in general.

The research was conducted by analyzing over 200 student
responses to a questionnaire. The analyzed results show
clear differences between the role of CS in different disci-
plines. This paper discusses the different roles of CS and
poses new questions that should be considered when plan-
ning a CS curricula. The presented results also provide a
basis for extending the research into a more general view.

Categories and Subject Descriptors
K.2.1 [Computing Milieux]: COMPUTERS AND EDU-
CATION—Computer and Information Science Education

General Terms
Human Factors

Keywords
CS Minor Student, Disciplines, Teaching, CS Curricula

1. INTRODUCTION
The rapid evolvement of computer sciences has naturally

had an affect on the teaching of it, both pedagogically and
contentually [5]. The pedagogical development is often some-
thing that is done between the teachers of that discipline.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

However, when it comes to the contents of teaching, the rep-
resentatives of other disciplines should be listened also, es-
pecially if one is teaching CS for students majoring in some-
thing else than CS.

A wide needs assessment study on CS skills has been con-
ducted by Sami Surakka [8]. In his thesis, Surakka evaluates
the needs for different skills in the perspective of university
curricula for students majoring in CS. In contrast to that,
the research presented here leaves CS students (or actually
all IT students) totally without attention.

This paper presents excerpts from a wider research that
studied how non-IT students felt about the importance of
different software skills [1]. The research also studied the
opinions of teaching staff, but this paper is focused on stu-
dents. These results form a basis for discussion on CS minor
student motivation and on the contents of CS curricula.

To begin with, the paper introduces some motivation and
background for the whole study. Then, the conducted re-
search’s settings are shortly introduced in Section 3 and its
results in Section 4. Section 5 then discusses the results do-
ing some conclusions about them, resulting into the posing
of new, relevant questions.

2. BACKGROUND
As CS itself is something to study for CS students, it often

is merely a tool for learning something else in other disci-
plines. For instance CS students learn SQL because they
might need to be working with all sorts of databases in their
future. An automation engineering student might need to
learn SQL because some certain CAD-tool might the input
of it and thus SQL is just a tool for learning something1 to
do with a CAD-tool. The approaches for learning SQL can
then be really different between these two students.

Different approaches cause different motivations towards
the subject. The possibility of using realistic examples that
are related to one’s own area of expertise has a notable im-
pact on the motivation [2]. For instance, in the basic pro-
gramming courses a problem of both parties getting frus-
trated has been observed by Wilson et al.[9]: Students study-
ing something else than the programming itself do not nec-
essarily yet understand they might need the general princi-
ples of programming in their later studies or work. On the
other hand the ones studying programming do not under-
stand the content of other disciplines well enough for the
teacher to apply realistic programming examples. Different
solutions have been applied to this problem by considering

1The author, having been only a CS student, does not know
what could one do with such. . .

80

the creation of different programming courses for different
disciplines.

For scientists a programming course that has both pro-
gramming and science taught paraller with breadth first ap-
proach has been developed[4]. Using the same principles
courses have been developed for art students [7]. Many ex-
periments however are mostly based on things outside pro-
gramming, for instance the use of games [3], and not the
teaching of programming skills itself [4].

In high school level the results of teaching programming
have been improved by choosing a language that is more
easily approachable, like Python [6]. The effective use of
teaching technologies like visualizations and pedagogical in-
terpreters can also be used to facilitate the approach towards
programming.

3. RESEARCH SETTINGS
The student opinions were measured using a quantitative

research method, a questionnaire. When it comes to measur-
ing opinion, a qualitative research method could have given
richer results, but would not have been practical to apply.
With a questionnaire it was possible to reach multiple stu-
dents within each different discipline.

Not all students in all disciplines study CS, so it was im-
portant to select the students that do. To achieve this, the
students were selected from those who had already enrolled
to CS courses excluding the very first programming course.
This ensured that all of the students had already studied
at least the first programming course and knew something
about CS, and of course were about to study more of it.
Altogether 507 students were approached to answer the web
questionnaire explained more thoroughly in the following.

3.1 The Questionnaires
The students were divided into two groups and both groups

had their own questionnaire to answer: questionnaires A and
B. The questionnaire A was wider in subjects, containing
skills all around CS while questionnaire B was concentrated
mostly on basic, fundamental skills of CS.

The division to two groups was based on the amount of CS
studies the student had completed. The purpose was not to
have second-year students answering a questionnaire full of
skills they have not yet heard of. The students were allowed
to make the decision by themselves. They had both of the
questionnaires available and they were instructed to choose
questionnaire B if they had been studying only ”couple of”
courses of CS and questionnaire B if they had studied more.

The questionnaires contained a categorized list of skills,
each related to the question: ”How important do you find the
following skills concerning your future (work and studies)?
The students valued each skill with an integer out of scale
1 to 4. 1 meaning completely unimportant and 4 meaning
very important. If a skill or its importance was unknown for
the student he could choose option ”I do not know”.

All the different skills that were asked to rate are not
explained here but in general the students rated all sorts
of skills related to the following categories: Basic program-
ming (only in questionnaire B), Object-Oriented Program-
ming, Data Structures and Algorithms, Software Process
and Different Environments and Platforms. The results sec-
tion presents some of the most interesting skills individually
also. The results were analyzed calculating weighted aver-
ages for each disciplines and then comparing the answers.

3.2 Degree programmes under focus

Table 1: Degree programmes under focus and their
abbreviations used in this paper
Abbrv. Degree programme

AU Automation Engineering
EL Electrical Engineering
SC Science and Engineering
IKM Information and Knowledge Management
COM Communications and Electronics

The original research was focused to cover all different dis-
ciplines inside Tampere University of Technology (TUT) ex-
cept Information Technology. However, this paper presents
only the most important results from the the most inter-
esting disciplines. Because different universities have degree
programmes of their own it is needed to describe briefly the
degree programmes that are discussed here.

Table 1 presents the degree programmes and their abbre-
viations that are used later in this paper when presenting
the results. Besides more traditional degree programmes
like Automation Engineering (AE), Electrical Engineering
(EL) and Science and Engineering (SCI) this study includes
Information and Knowledge Management (IKM) and Com-
munications and Electronics (COM).

Information and Knowledge Management is a proportion-
ally new degree programme in TUT which concentrates on
handling and managing rapidly growing amount of informa-
tion training specialists that understand both information
technology and industrial engineering. The studies include
a good overall view on software engineering also, but the
focus is not at all on developing software. This makes IKM
students an interesting group from the perspective of CS
teacher. The students have totally different background and
basis than CS students.

Communications and Electronics, roughly said, is a com-
bination of information technology and electronics. COM
students study plenty of software skills and like IKM stu-
dents, their focus is different than CS students. COM stu-
dents use software skills as a tool for creating networks and
network communication as well as creating hardware and
systems in general–software skills are often used in a lot
lower abstraction level and in more restricted programming
environments.

4. RESULTS
This section presents main output of the student ques-

tionnaires. The values of separate skills are left out, but the
most interesting differences are mentioned to form the basis
for the discussion. Some of the following skill categories also
include numerical representation of the weighted averages of
all the skills within that category–to clarify the differences
amongst the degree programmes in a wider perspective. The
scale is from 1 to 4, 1 meaning a completely useless skill and
4 the most important value.

Altogether 256 responds were received out of 507, so 50%
of the students answered the questionnaire. For the dis-
ciplines that are under the focus of this research, a total
amount of 231 responds were received.

4.1 Basic programming skills

81

All the skills in this category were included only in the B
questionnaire. This means that only students having studied
only a course or two of computer sciences rated these.

Basic programming skills were perceived important in gen-
eral. The average for all the skills by all the respondents was
3.0. The one skill being noticeable less important than other
skills was the most theoretical one, recursion. The average
values for all the disciplines can be seen from Table 2.

A big exception within this category was the overall opin-
ion of students inside Information and Knowledge Manage-
ment degree programme. As all other disciplines valued the
skills of this category with an overall average at least 3.0,
IKM students gave only an average value of 2.2.

Table 2: The average importance of all basic pro-
gramming skills in different disciplines
Programme AU EL SC IKM COM All

N (only quest B) 32 26 27 21 27 133

AVG 3.1 3.2 3.0 2.2 3.3 3.0

4.2 Object-Oriented Programming and Design
In general the skills within this category were found im-

portant: The average of all the skills within all the respon-
dents was 3.0. Especially the skill basics of object-oriented
programming were found very important by all disciplines.

The respondents of A-category valued all of the skills in
this category at least quite important without big differences
between disciplines. Science and Engineering students, how-
ever, found design patterns and software architectures less
important than others.

The IKM students who answered B-questionnaire gave
noticeable smaller values than respondents from other dis-
ciplines. For example, for inheritance, IKM students even
gave the only non-important value in this whole category:
only 1.8 whilst the average of all respondents is 2.6.

4.3 Data Structures and Algorithms
Table 3 presents the perceived importance of data struc-

tures and algorithms in different disciplines. As expected,
there were differences between the importance of different
skills within this category. The average of all skills by all re-
spondents is the scale middle 2.5. The most important skills
were the selection of a suitable data structure and the selec-
tion of a suitable algorithm. These were found important by
nearly all disciplines.

Again, the Information and Knowledge Management stu-
dents who answered questionnaire B were the most criti-
cal towards the importance of the skills within this cate-
gory. This supports the view of the IKM degree programme
teaching staff mentioned in the wider research[1]: The IKM
students dread the data structures and algorithms courses
because they feel the courses are too technical for their focus.

Table 3: The average importance of all data struc-
tures and algorithms related skills in different disci-
plines
Programme AU EL SC IKM COM All

N 62 50 32 37 50 231

AVG 2.5 2.5 2.9 2.2 2.7 2.5

4.4 Software Process
Table 4 presents the perceived average importances of

software process related skills. The average of all skills by all
respondents was as high as 3.3 meaning the Software Process
in general is important for all the students. Extremely im-
portant skills were understanding the program specification
document and understanding the whole software process. Es-
pecially Information and Knowledge Management students
found these two very important giving as high average values
as 3.9.

The students in Science and Engineering degree programme
gave noticeable smaller values to all of the skills. Students
in other disciplines on the other hand valued the skills high.
Even the advanced skills like creating a program design doc-
ument and software project management were valued impor-
tant or even very important.

Table 4: The average importance of all software pro-
cess related skills in different disciplines
Programme AU EL SC IKM COM All

N 62 50 32 37 50 231

AVG 3.4 3.3 2.3 3.5 3.4 3.3

4.5 Different Environments and Platforms
This category consisted of many various skills and thus it

is irrelevant to handle this category as a whole instead of
single skills. The most important of them were robust pro-
grams (average 3.2) and basic problems and concepts of con-
currency (average 3.1 in questionnaire A, only 2.2 in ques-
tionnaire B, though). The least important were computer
graphics and programming for mobile platforms.

Between different disciplines there were differences in the
results of this category. The Information and Knowledge
Management students who answered questionnaire B gave
Basic Problems and Concepts of Concurrency only a really
low value of 1.5 while the average of all respondents was 2.2
and Science and Engineering students gave as high value as
3.3. This result however does not give anything generaliz-
able about the disciplines because the answers to question-
naire A in these two disciplines are completely the other way
around. What this can tell about is the differences between
one discipline: Students who study more Software Sciences
can have a completely different target for the software skills.
One must also notice the small amount of SCI respondents
to questionnaire A: Only five answered were received.

Automation Engineering, Electrics, and Communications
and Electrics students perceived these skills rather impor-
tant in general. Especially lower abstraction level program-
ming skills like Low-Level Programming and Embedded Sys-
tems were found important within these disciplines.

5. DISCUSSION AND CONCLUSIONS
It is of course relevant to question that ”Do students really

know what they need? Do they know what is best for them?
Aren’t teachers just for that reason–to know better?” Yes,
teachers know better, and the problem with these results
would also be that some students know better than others
and thus the ones that do not know would skew the results.
However, this is not the problem in this context. The results
are still relevant.

82

How important students perceive a subject for their own
future, is directly related to their motivation. To avoid ma-
jor lacks of knowledge due to this lack of motivation, a set of
compulsory courses has been ruled within each degree pro-
gramme. Still, the motivation problem affects the studying
performances in spite of the obligatoriness of the course. For
voluntery courses the perceived importance affects the en-
rollment directly. So at the end, the results of this paper
can be treated as a some sort of a motivation meter.

The research gave expected results: There are differences
between disciplines when CS skills are concerned. This is
rather obvious but the idea was also to find out what sort
of differences they are.

On the basis of these results (and the wider ones includ-
ing the teaching staff view [1]) within the disciplines Au-
tomation Engineering, Electrics, and Communications and
Electrics software skills act a great role–work related to own
discipline subject requires the applying of software skills as
a tool. This applying is often related to the more techni-
cal side of computer sciences: programming, and especially
programming to more restricted, embedded systems.

Information and Knowledge Management and Science and
Engineering students represent a completely different ap-
proach to CS needs. IKM students focus more on the ab-
stract, software process related skills. SCI students on the
other hand do not find software process relevant at all but
use CS mostly as a tool for mathematical modeling.

A positive result was that nearly all students found basic
programming skills important. An interesting exception for
this was the IKM students answering to questionnaire B.
They found only few software skills important despite the
big role of CS in the general idea of the whole degree pro-
gramme. An easy explanation to this is again to agree with
the previous questioning: The students might not yet know
what they really need. This opinion is supported by the fact
that IKM students having studied CS a bit further (ques-
tionnaire A respondents) found the skills much more impor-
tant. Another explanation is the structure of CS studies for
IKM students within the curricula of Tampere University of
Technology[1].

The respondents all represented students of same univer-
sity which greatly weakens the generalizability of the results.
Once again, the results thus have to be treated as interesting
and suggesting. Another important factor weakening this
aspect is that no advanced statistical analysis was made for
the results.

A proper statistical analysis of the results would have re-
quired a greater amount of respondents and even with that
would have still had the following lacks considering general-
izability:

• Respondents come from one university and represent
only one nationality (characteristics of disciplines and
future work life expectations could vary locally).

• The answers would still represent only the opinions of
students. The opinions of teaching staff and persons
from business life should also be taken into account.

Expanding and internationalizing the amount of respondents
is something that could be done in the future and the opinion
of teaching staff is touched upon in the larger research [1].
Finding enough respondents from business life that would
represent the needs of a certain discipline students is then

almost an impossible task. But having completely generaliz-
able results is not actually that important because neverthe-
less the universities that could apply the results have that
much of variance within, so that the applying would anyway
require adaptation. For further studies, this research should
offer ground work to continue with.

These results represent the view of students and by adapt-
ing that, it is possible to benefit out of the results. The
results raise the following questions that should be consid-
ered inside other universities/institutes of teaching also, es-
pecially when designing a CS curricula:

• Is the CS curricula done only considering CS students
or does it also take into account students doing only a
CS minor?

• Is the set of courses that is offered as The CS mi-
nor degree suitable for all the students in different
disciplines that actually need CS? Or should multiple
different CS minor degrees be offered? For instance
Communication and Electrics students would benefit
from low abstraction level courses with more techni-
cal aspect where as Information and Knowledge Man-
agement students need more overview-like courses and
high abstraction level courses more related to running
a software project.

• And most of all: How could we fix the possible gap
between student and teaching staff opinions on what
really is important? How could the students know bet-
ter what is best for them?

6. REFERENCES
[1] T. Ahoniemi. Ohjelmistotekniikka eri

koulutusohjelmissa. Master’s thesis, Tampere
University of Technology, 2008.

[2] T. Ahoniemi, E. Lahtinen, and K. Valaskala. Why
Should We Bore Students When Teaching CS? In
Proceedings of the 7th Baltic Sea Conference on
Computing Education Research, November 2007.

[3] J. D. Bayliss and S. Strout. Games as a ”Flavor” of
CS1. In SIGCSE ‘06: Proceedings of the 37th SIGCSE
technical symposium on Computer science education,
pages 500–504, New York, NY, USA, 2006. ACM.

[4] Z. Dodds, C. Alvarado, G. Kuenning, and
R. Libeskind-Hadas. Breadth-First CS 1 for Scientists.
SIGCSE Bull., 39(3):23–27, 2007.

[5] G. Engel and E. R. (Eds.). ACM Computing Curricula
2001. Computer Science. 2001.

[6] L. Grandell, M. Peltomäki, R.-J. Back, and
T. Salakoski. Why Complicate Things?: Introducing
Programming in High School using Python. In ACE
‘06: Proceedings of the 8th Australasian conference on
Computing education, pages 71–80, Darlinghurst,
Australia, Australia, 2006. Australian Computer
Society, Inc.

[7] L. A. S. King and J. Barr. Computer Science for the
Artist. SIGCSE Bull., 29(1):150–153, 1997.

[8] S. Surakka. Needs Assessment of Software Systems.
PhD thesis, Teknillinen korkeakoulu, 2005.

[9] G. Wilson, C. Alvarado, J. Campbell, R. Landau, and
R. Sedgewick. CS-1 for Scientists. SIGCSE Bull.,
40(1):36–37, 2008.

83

Student-Generated Podcasts for Learning and
Assessment

Colin G. Johnson
Computing Laboratory

University of Kent
Canterbury, Kent, CT2 7NF

England

C.G.Johnson@kent.ac.uk

ABSTRACT
The aim of this paper is to discuss our experience with,
and some broader thoughts on, the use of student-produced
podcasts as a means of supporting and assessing learn-
ing. The results of an assessment using this medium are
reported, and student evaluation of the assessment pre-
sented and discussed.

1. INTRODUCTION
The aim of this paper is to discuss our experiences with

using student-produced podcasts as a means of assessment
in computer science.

Podcasts, and related media such as radio programmes,
are an increasingly important way of communicating sci-
ence to a general audience. Using podcasts as an assess-
ment method presents an opportunity for students to en-
gage with course material in a fresh new medium.

A number of projects have tackled aspects of univer-
sity learning using podcasts. Most commonly, these are
used as ways of presenting course material. For example,
the ProfCast software (www.profcast.com) is widely used
in many universities to record and make available lecture
material. A large amount of advocacy has been made con-
cerning this teaching style. However, only a small num-
ber of studies (e.g. [12, 8, 9]) have attempted to evalu-
ate the effects on learning. Some of the more substantial
studies include those of Evans[7], Bell et al. [2], Edirs-
ingha&Salmon [6], and Baird&Fisher [1]. These generally
portray a positive picture of such use. However, these
studies tend to show this solely from the point of view of
students’ self-evaluation, which is valuable but provides
only a single perspective.

Another way in which podcasts have been used is in pro-
viding short podcasts that give supplementary material
to students; such attempts have been analysed by Clark,
Taylor et al. [4, 5], who give a largely positive summary of
the benefits. A second use of short podcasts is in provid-
ing assessment feedback [11]. Bennedsen and Caspersen
[3] have used video podcasts of the program development
process to act as a demonstration of practical skill.

However, most efforts in using podcasting in education
have been teacher-created. In this paper we explore the
idea of student-created podcasts for learning and assess-
ment. This has received little attention in the research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

literature. One recent example is given by Thompson
[13], who discusses the use of student-created podcasts
as a way for teacher-training students to reflect on their
learning and to provide a repertory of teaching tips to be
shared amongst students on a course.

2. THE ASSESSMENT
We prepared a podcast-based assessment as a compo-

nent (5% of total module marks) of the assessment on our
Introduction to Intelligent Systems module. This is typi-
cally taken by students mid-way through their degree, and
is typically taken by 40–50 students. There were a number
of reasons for adopting this form of assessment:

• We hypothesised that students would find an alter-
native form of assessment interesting and fresh, and
would engage student interest more than an assess-
ment in a previously encountered style. In particu-
lar, we believed that students at this stage in their
degree might be revitalised by being presented with
a novel form of assessment.

• We wanted students to begin to engage with the re-
search literature. However, at their stage of sub-
ject knowledge, asking detailed questions requiring
technical knowledge of research literature is too ad-
vanced. Therefore, this was seen as a way of getting
students to engage with the gist of some research
papers, without having to go into technical detail.
Therefore, this assessment acts as part of the stu-
dents’ learning on the course, as well as forming a
summative assessment.

• We believe that it is an important skill for science
students to be able to communicate about their work
to a general audience, and this type of activity pro-
vides some early practice in this.

The assessment is given in figure 1. Students could work
on this as individuals or in a group of two (in which case
both students get the same mark). Students were also
given advice about how to cite sources, and how to hand
in the assessment. Beyond the advice given in the as-
sessment, no specific guidance was given about the prac-
tical issues of creating the podcast; it was assumed that
students doing a computing degree would have sufficient
general IT knowledge to be able to work this out for them-
selves (students with practical issues were encouraged to
contact the course tutor; no such queries were raised). If
this kind of assessment were to be applied elsewhere, it
would be probably be necessary to provide more detailed
instructions/training in the use of recording software and
equipment.

84

Question 2

Create a short (audio) “podcast” which gives an
overview of some piece of research in neural net-
works. You should record a talk/discussion of
around five minutes, which presents the main
points of a neural network research paper of
your choice in a style that would be accessible
to a general audience with some broad scientific
knowledge.

To find a paper to talk about, use a site such
as http://scholar.google.com. You will prob-
ably find a topic about some application of neu-
ral networks to be most accessible. For example,
you might use “neural networks” “face recogni-
tion” to find a paper about the application of
neural network techniques in face recognition.

You can choose a topic that has been covered
in the lectures, or another topic. Fewer marks
will be available if you choose a topic that has
already been covered in some detail in the lec-
tures.

Please write the reference to your paper on the
paper hand-in, using the format given in the sec-
tion how to quote bibliographical sources below.
If you use any additional resources (papers, text-
books, web sites) please also mention these.

Your podcast should be a single audio file of
around 5 minutes. There will be a penalty for
any files that run significantly over 7 minutes
or under 3 minutes. Your file should be in .mp3,
.wav, or .ogg format. Hardware for audio record-
ing can be found in the multimedia room in the
Octagon.

To give you an idea of the sort of thing that we
are looking for, have a listen to the podcasts at:

• http://www.bbc.co.uk/radio4/science/

thematerialworld.shtml

• http://www.guardian.co.uk/science/

podcast

• http://www.nature.com/nature/

podcast/index.html

Figure 1: Details of the podcast assessment.

3. ISSUES FROM THE ASSESSMENT
A number of issues arose from the assessment and from

thinking around this kind of assessment in general.

3.1 Student Reaction
The first reaction we received to setting this assessment

was a student asserting that the form of the assessment
was “offensive” and “degrading”. A couple of students
also sought reassurances that the audio files would not be
made available on the department website or to other stu-
dents. The nub of this seems to be that the use of voice,
as opposed to written material, has a “personal” quality
to it, that is not an issue when it comes to other forms
of presentation. In particular, the recorded voice has par-
ticular issues, as we are not accustomed to the sound of
our recorded voice, and many people react negatively to
hearing their recorded voice.

Other students informally expressed a positive attitude

towards the assessment, in particular commenting on it
being something interestingly different to what they usu-
ally do.

3.2 Unexpected Issues
A small number of unexpected issues arose as a result

of the assessment:
Two students chose to submit work using a computer-

synthesized voice, one explaining that they had attempted
to record their voice and had not liked it, another submit-
ting in this form without explanation.

One student “group” consisted of two students, but only
one spoke on the recording.

Several students complained about the difficulty in find-
ing relevant research papers, in particular ones that were
available without charge, despite the advice given about
finding papers. This was surprising, but might reflect (1)
students working off-campus and not having automatic
IP-related logins to certain university library subscription
journals, or (2) weak web-search skills on behalf of the
students.

3.3 Diversity Issues—Disability and Person-
ality Diversity

This form of assessment could provide particular diffi-
culties for students with certain disabilities, which do not
occur as problems elsewhere in the range of assessments.
We offered an alternative assessment to any students who
were affected by this.

Another diversity related issue relates to the well-known
idea that a wide range of assessment methodologies is a
positive thing because it gives students with different pref-
erences in styles of learning/presentation an opportunity
to shine. Does this sort of assessment, for example, give
an opportunity for students who are more fluent in speak-
ing to be assessed using those skills, as opposed to the
fluency in writing that is assessed in many assessments?
Or is this diversity in preferences overemphasised?

3.4 Marking
One of the advantages of this as an assessment medium

is that marking is very practical. It is possible to listen to
the assessment whilst simultaneously writing comments.
This presents a valuable practical advantage to this form
of assessment, as we are are under increasing pressure to
find forms of assessment that can be marked efficiently
without compromising on the quality of evaluation or feed-
back given.

One issue of concern encountered during marking was
that of form versus content. We decided not to specif-
ically allocate marks to these two aspects of the assess-
ment, as it is in practice difficult to separate them out.
Whilst informal efforts were made to avoid being swayed
by the presentational confidence of the students, there is
a danger in marking this kind of work that a presentation
presented confidently and fluently can have a spurious au-
thority that a better-researched but shoddily presented
piece of coursework does not have.

A few students submitted files that, despite claiming
to be in one of the formats specified, did not play using
standard software. Sorting out these issues took a lot of
time.

One useful exercise for analysing an assessment is to
note what comments were made repeatedly when mark-
ing the work. This can be usefully communicated back to
the students for general feedback, and to future years of
students as “common pitfalls”. When marking this work,
the following issues came up in a number of different stu-

85

Question 1 2 3 4 5 Mean StdDev

Did you think that this was a useful assessment in terms of learning
new material and presenting what you had learned? (1 (not useful)–5
(very useful))

2 1 3 4 3 3.4 1.3

Do you think that this is a kind of assessment that we should use in
the future? (1 (not at all)–5 (yes, very much))

3 2 2 4 2 3.0 1.4

Was the assessment well explained? (1 (not at all well explained)–5
(very well explained))

0 2 5 3 3 3.5 1.0

Table 1: Numerical evaluation of the assessment: question, numbers of responses at each scale-point 1-5,
mean, standard deviation.

dents’ work:

• There is not enough structure to the talk; alterna-
tively, there is structure, but the “scaffolding” lan-
guage used to flag up the structure was not present.

• There were inconsistencies in the granularity of ex-
planation throughout the talk. In particular, stu-
dents would leap from highly detailed explanations
of one component of the material, to very general
explanations of a related part. Also, some weak
assessments didn’t show any sense of direction to
the granularity: they might have been improved e.g.
by starting with higher level explanations and then
“drilling down” to more technical detail.

• There were problems with the use of technical vo-
cabulary. Some students used a vocabulary that was
far too advanced for the audience specified. Instead,
they could either have defined technical terms in sim-
pler language, or sometimes just avoided it and ex-
plained things directly in a simpler way.

By contrast, the following were positive features that ap-
peared commonly in marking

• Well structured, and structure well explained.

• Clear explanation.

• Appropriate for the specified audience.

3.5 Evaluation
Students were asked to evaluate the podcast assessment

in two ways: through three questions on a 5-point Likert
scale, and through free text comments. The results from
the numerical evaluation are given in table 1. Thirteen
students responded. Overall these results show a very
mixed view of the assessment.

The free text comments also showed a diversity of opin-
ion about the value of the assessment. A number of stu-
dents remarked positively on the originality of the method
of assessment, and the ability to choose a topic freely
within the scope of the module. However, a number of
students expressed problems with knowing what assump-
tions should be made about the audience, about access to
papers (as noted above) and finding relevant papers, and
about the practicalities of recording and producing an ef-
fective podcast. A number of students suggested that a
written alternative should have been offered, and com-
mented on the lack of a detailed mark scheme.

4. CHANGES
There are a number of things that we might do differ-

ently if presenting a similar assessment in future years. In
particular, we would consider:

• Give some more instructions about how to structure
a presentation in this form. A number of podcasts
submitted showed evidence that students had read
and understood the material, but the actual presen-
tation was weak. In particular, ways of marking out
sections and providing a “scaffold” for the overall
structure of the talk.

• Give more detailed instructions about how to find a
relevant paper, in particular instructing the students
that they might find more free-to-access papers by
using a computer on the university campus rather
than their computer at home.

• Providing more explicit guidance about the audience
that the podcast should be targeted at; one way to
do this would be to give particular exemplars of the
kind of audience being targeted rather than a generic
description.

• We are uncertain as to whether it would be sensible
to divide the marks for form and content. Whilst
this would potentially be valuable, it may prove dif-
ficult to do in practice.

5. QUESTIONS FOR DISCUSSION

• One argument for setting this kind of assessment
is that a large proportion of students doing the as-
sessment are “digital natives” [10], and are likely to
relate to material such as podcasts rather than tra-
ditional forms of assessment such as essays. Is this
really true? There does not appear to have been
any academic work on the demographics of podcast
listeners, and evidence from less formal surveys re-
ported in the press appears to be inconclusive (see
e.g. http://www.comscore.com/press/release.asp?
press=1438,http://www.eweek.com/c/a/Messaging
-and-Collaboration/What-Blogs-Podcasts

-Feeds-Mean-to-Bottom-Line/, http://www.vnunet.
com/vnunet/news/2141338/ youth-today-spurn

-podcasting). How much do students expect uni-
versity work to reflect the values of the “world out-
side” versus being an internal world with its own
ways of doing things?

• Is it appropriate to expect students to “perform” in
this fashion? Is it beyond the reasonable expecta-
tions of students that they are assessed using the
medium of recorded voice? Is this too personal a
medium to be used in assessment?

• Is there a demographic bias in the kind of students
who listen to podcasts, and therefore a bias in the as-
sumption that this is a more “native” form of assess-
ment for most students. For example, some surveys

86

of podcast usage have suggested gender and age bi-
ases in general podcast listening (e.g. http://www.

comscore.com/press/release.asp?press=1438). Is
this an issue for the use of podcasts in learning?

• How can we separate form and content in marking
this kind of assessment? Indeed, should we?

• Could we use these in a shared fashion, e.g. for shar-
ing information between students? Would there be
a way of introducing this so that students would find
it acceptable?

• Is there a danger of the advantages of this being
temporary? Is there a danger with these “gee-whiz”
technologies just being seen as a vacuous attempt to
“be trendy”?

• Is this a particularly good, or particularly bad, form
of assessment for computer science students by con-
trast with students from other subjects?

• Would it be interesting to explore a multi-episode
podcast, e.g. as a way of getting students to reflect
on an ongoing piece of project work?; or, as a way
of supporting student learning by asking them to
produce a regular podcast covering various chapters
of a book, a collection of research papers, or similar.

6. CONCLUSIONS
We have discussed our attempt at using student-generated

podcasts as a way of promoting learning and of carrying
out assessment. Overall, the reaction to this amongst stu-
dents was mixed. We have presented a number of issues
that arose during the development and marking of this
assessment, and presented a number of questions for dis-
cussion and for refection by teachers who are planning to
use this form of assessment themselves.

7. REFERENCES
[1] Derek E. Baird and Mercedes Fisher. Neomillennial

user experience design strategies: Utilizing social
networking media to support ”always on” learning
style. Journal of Educational Techology Systems,
34:1, 2005-06.

[2] T. Bell, A. Cockburn, A. Wingkvist, and R. Green.
Podcasts as a supplement in tertiary education: an

experiment wih two computer science courses. In
Proceedings of MoLTA 2007, 2007.

[3] Jens Bennedsen and Michael E. Caspersen.
Revealing the programming process. SIGCSE Bull.,
37(1):186–190, 2005.

[4] Steve Clark, Catherine Sutton-Brady, Karen M.
Scott, and Lucy Taylor. Short podcasts: The impact
on learning and teaching. In Proceedings of mLearn
2007, pages 285–289, 2007.

[5] Steve Clark, Lucy Taylor, and Mark Westcott.
Using short podcasts to reinforce lectures. In
UniServe Science Teaching and Learning Research
Proceedings, pages 22–27, 2007.

[6] Palitha Edirsingha and Gilly K. Salmon.
Pedagogical models for podcasts in higher education.
In Proceedings of the EDEN Conference, 2007.

[7] Chris Evans. The effectiveness of m-learning in the
form of podcast revision lectures in higher
education. Computers & Education, 50(2):491–498,
February 2008.

[8] Maree Gosper, Margot McNeill, Karen Woo, Rob
Phillips, Greg Preston, and David Green.
Web-based lecture recording technologies: Do
students learn from them? In Proceedings of
EDUCAUSE Australasia 2007, 2007.

[9] C. McLoughlin and M. Lee. Listen and learn: A
systematic review of the evidence that podcasting
supports learning in higher education. In World
Conference on Educational Multimedia, Hypermedia
and Telecommunications, pages 1669–1677, 2007.

[10] Mark Prensky. Digital natives, digital immigrants.
On the Horizon, 9:5, 2001.

[11] Chris Ribchester, Derek France, and Anne Wheeler.
Podcasting: A tool for enhancing assessment
feeedback. In 4th Conference on Education in a
Changing Environment. Salford University,
September 2007.

[12] S.K.A. Soong, L.K. Chan, C. Cheers, and C. Hu.
Impact of video recorded lectures among students.
In Australasian Society for Computers in Learning
in Tertiary Education (ASCILITE) Conference
2006, 2006.

[13] Linda Thompson. Podcasting: The ultimate
learning experience and authentic assessment. In
ICT: Providing Choices for Learners and Learning.
Proceedings of Asciilite Singapore 2007, 2007.

87

Algorithm Recognition by Static Analysis and Its
Application in Students’ Submissions Assessment

Ahmad Taherkhani
Department of Computer
Science and Engineering

Helsinki University of
Technology

Finland
ahmad@cs.hut.fi

Lauri Malmi
Department of Computer
Science and Engineering

Helsinki University of
Technology

Finland
lma@cs.hut.fi

Ari Korhonen
Department of Computer
Science and Engineering

Helsinki University of
Technology

Finland
archie@cs.hut.fi

ABSTRACT

Automatic program comprehension (PC) has been exten-
sively studied for decades. It has been studied mainly from
two different points of view: understanding the functional-
ity of a program and understanding program structure. In
this paper, we address the problem of automatic algorithm
recognition and introduce a method based on static analy-
sis to recognize algorithms. We discuss the applications of
the method in the context of automatic assessment to widen
the scope of programming assignments that can be checked
automatically.

Keywords

program analysis, algorithm recognition, automatic grading

1. INTRODUCTION
Current automatic assessment systems for programming

exercises, such as CourseMarker [9], BOSS [12] or Web-
Cat [4] provide many advantages for large programming
courses. These systems have versatile methods to check the
submitted programs, among which checking correctness and
functionality (tested against teacher’s test data) and pro-
gram structure are perhaps the most important ones.Other
features available in some systems include checking program-
ming style [5], the use of various language constructs [19],
memory management [1], and run time efficiency [19].

Despite the multifunctional capabilities, it may be difficult
to set up assignments that require the use of specific algo-
rithms. For example, a data structures course could have
assignments such as ”Write a program that sorts the given
array using merge sort”, or ”Write a program that stores
the given keys in a binary search tree and outputs the keys
in preorder”. In this case, applying automatic assessment
would require setting up tests for intermediate states of the
algorithm instead of only the final state or output, yet the
tests may not reveal usage of a different algorithm than re-
quested.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

In this paper, we present a method, based on research
on PC, that supports automatic checking of and feedback
on algorithms. The prototype implementation is based on
applying static analysis of program code, including various
statistics of language constructs and especially roles of vari-
ables. These allow the characteristics of various algorithms
to be distinguished. The prototype has been built to distin-
guish between several common sorting algorithms, but the
technique can be applied to other classes of algorithms as
well. The first steps in our research on PC (in general) and
a description of the new method is presented. Finally, some
preliminary results and discussion follow.

2. PROGRAM COMPREHENSION
The problem of PC can roughly be classified into three

categories. In the following, we present these categories and
describe the most common applications of each.

Understanding functionality : Most of the studies in the
field fall into this category. The PC problem is seen as the
problem of understanding what the program does. The ear-
lier studies were mainly motivated by the need of software
developers, testers and maintainers to understand a system
without having to read the code, which is a time-consuming
and error-prone task (see for example [8, 14]). An automatic
PC tool could be useful in software projects, for example, in
verification and validation tasks.

Analysing structure and style: PC can be seen as exam-
ination of the source code, for example, to see how control
structures are used and to investigate coding style. The
objectives of these analyses could be to monitor students’
progress, to ensure that students’ submissions are in ac-
cordance with teachers’ instructions, and to get a rough
idea about the efficiency of the code. Tools that perform
these kinds of analyses are mostly used in computer science-
related courses at universities and are often integrated into
plagiarism detection systems [5, 17, 18].

Recognizing and classifying algorithms: The PC problem
can also be viewed as the problem of algorithm recognition,
i.e., being able to classify algorithms implies understanding
a program. Therefore, the process of finding out what family
of algorithms an algorithm belongs to or what kind of algo-
rithm it resembles involves program comprehension tasks.
The primary use of such an algorithm recognition tool is to
examine submitted exercises and make sure that students
have used the algorithm that they have been asked to. In
this paper, the PC is discussed from this point of view.

88

Methods in the PC field can be divided into two categories:
dynamic and static analysis. In dynamic analysis, a program
is executed by some input, and the output is investigated in
order to understand the functionality of the program. These
methods are often used in automatic assessment systems,
where the correctness of students’ submissions is tested by
running their program using some predefined test input and
comparing its output with the expected one (see for exam-
ple [4, 9, 12]).

Static analysis, on the other hand, involves no execution of
the code. These approaches analyze a program using struc-
tural analysis methods, which can be carried out in many
different ways, focusing on different features of the code, for
example, the control and data flow, the complexity of the
program in terms of different metrics, etc. Most PC studies
are based on static program analysis. We present the main
approaches below.

2.1 Knowledge-based approaches
Knowledge-based techniques concentrate on discovering

the functionality of a program. These approaches are based
on a knowledge base that stores predefined plans. To un-
derstand a program, program code is matched against the
plans. If there is a match, then we can say what the pro-
gram does, since we know what the matched plans do. The
plans can have other plans as their parts in a hierarchic
manner. Depending on whether the recognition of the pro-
gram starts with matching the higher-level or lower-level
plans first, knowledge-based approaches can be further di-
vided into three subcategories: bottom-up, top-down, and
hybrid approaches.

Most knowledge-based approaches work bottom-up, in which
we try to recognize and understand small pieces of code,
i.e., basic plans first. After recognizing the basic plans, we
can continue the process of recognizing and understanding
higher-level plans by connecting the meanings of these al-
ready recognized basic plans and by reasoning what problem
the combination of basic plans tries to solve. By continu-
ing this process, we can finally try to conclude what the
source code does as a whole. In top-down approaches, the
idea is that by knowing the domain of our problem, we can
select the right plans from the library that solve that partic-
ular problem and then compare the source code with these
plans. If there is a match between source code and library
plans, we can answer the question of what the program does.
Since we have to know the domain, this approach requires
the specification of the problem (see, for example, [10]). Hy-
brid approaches (see, e.g., [15]) use both techniques.

Knowledge-based approaches have been criticized for be-
ing able to process only toy programs. For each piece of code
to be understood, there must be a plan in the plan library
that recognizes it. This implies that the more comprehen-
sive a PC tool is desired to be, the more plans must be added
into the library. On the other hand, the more plans there
are in the library, the more costly and inefficient the process
of searching and matching will get. To address these is-
sues of scalability and inefficiency, various improvements to
these approaches have been suggested including fuzzy rea-
soning [3]. Instead of performing the exhaustive and costly
task of comparing the code to all plans, fuzzy reasoning is
used to select a set of more promising pieces of code, i.e.,
chunks, and carry out the matching process in more detail
between those chunks and the corresponding plans.

2.2 Other approaches
The following approaches to PC can also be discerned.
Program similarity evaluation approaches: As the name

suggests, program similarity evaluation techniques, i.e., pla-
giarism detection techniques are used to determine to what
extent two given programs are the same. Therefore, these
approaches focus on the structural analysis and the style of
a program, rather than discovering its functionality. Based
on how programs are analyzed, these approaches can be
further divided into two subcategories: attribute-counting
approaches [5, 17] and structure-based approaches [18]. In
attribute-counting approaches, some distinguishing charac-
teristics of the subject program code are counted and an-
alyzed to find the similarity between the two programs,
whereas in structure-based approaches the answer is sought
by examining the structure of the code.

Reverse engineering approaches: Reverse engineering tech-
niques are used to understand a system in order to recover its
high-level design plans, create high-level documentation for
it, rebuild it, extend its functionality, fix its faults, enhance
its functions and so forth. By extracting the desired informa-
tion out of complex systems, reverse engineering techniques
provide software maintainers a way to understand complex
systems, thus making maintenance tasks easier. Reverse en-
gineering approaches have been criticized for the fact that
they are not able to perform the task of PC and deriving
abstract specifications from source code automatically, but
they rather generate documentation that can help humans
complete these tasks [16]. Since providing abstract speci-
fications and creating documentation from source code are
the main outcomes of reverse engineering techniques, these
techniques can be regarded as analysis methods of system
structure rather than understanding its functionality.

In addition to the aforementioned techniques, the follow-
ing approaches to understand programs or discover similari-
ties between them have also been presented: techniques used
in clone detection methods [2], PC based on constraint satis-
faction [21], task oriented PC [6] and data-centered PC [11].
Detailed discussion of these approaches is beyond the scope
of this paper.

3. METHOD
Our approach in recognizing algorithms is based on ex-

amining the characteristics of them. By computing the dis-
tinguishing characteristics of an algorithm, we can compare
these characteristics with those collected from already rec-
ognized algorithms and conclude if the algorithm falls into
the same category.

We divided the characteristics of a program into the fol-
lowing two types: numerical characteristics and descrip-
tive characteristics. Numerical characteristics are those that
can be expressed as positive integers, whereas descriptive
characteristics cannot. The numerical characteristics exam-
ined in our method are: number of blocks (NoB), number
of loops (NoL), number of variables (NoV), number of as-
signment statements (NAS), lines of code (LoC), McCabe
complexity (MCC) [13], total operators (N1), total operands
(N2), unique operators (n1), unique operands (n2), program
length (N = N1 + N2) and program vocabulary (n = n1 +
n2). The abbreviation after each characteristic is used to
refer to it in Table 1, which is explained later in this section.
From these characteristics, N1, N2, n1, n2, N and n are the
Halstead metrics [7] that are widely used in program similar-

89

Table 1: The minimum and the maximum of numerical characteristics of five sorting algorithms

Algorithm NoB NoL NoV NAS LoC MCC N1 N2 n1 n2 N n

Insertion 4/6 2/2 4/5 8/11 13/21 4/6 40/57 47/58 3/6 2/4 88/114 6/9
Selection 5/6 2/2 5/6 10/10 16/25 4/5 47/59 51/57 4/6 2/5 98/116 6/11
Bubble 5/6 2/2 4/5 8/11 15/21 4/5 46/55 49/57 4/6 2/4 95/112 6/9
Quicksort 5/9 1/3 4/7 6/15 31/41 4/10 84/112 77/98 9/17 2/7 161/198 13/22
Mergesort 7/9 2/4 6/8 14/22 33/47 6/8 96/144 94/135 11/14 5/9 190/279 17/23

ity evaluation approaches. In addition to these, some other
characteristics in connection with these numerical charac-
teristics are computed such as variable dependencies (both
direct and indirect), the information whether a loop is incre-
menting or decrementing, and the interconnections of blocks
and loops. Descriptive characteristics comprise whether the
algorithm is recursive or not, whether it is in-place or re-
quires extra memory, and the roles of variables used in it.

Based on initial manual analysis of many different ver-
sions of common sorting algorithms, we posited a hypothe-
sis that the information mentioned above could be used to
differentiate many different algorithms from each other. In
the prototype version, however, we decided to restrict the
scope of the work to sorting algorithms only. We studied
five well-known sorting algorithms: Quicksort, Mergesort,
Insertion sort, Selection sort and Bubble sort. The problem
was whether new unknown code from, for example, student
submissions could be identified reliably enough by compar-
ing the information gathered from the submission with the
information in a database. We developed an Analyzer that
can count all these characteristics automatically. An unfor-
tunate obstacle was, however, that the automatic role ana-
lyzer we got access to did not evaluate the roles of variables
accurately enough. Due to time constraints, we could not
replace it with another one, and some role analysis had to
be carried out manually.

The recognition process is based on calculation of fre-
quency of occurrence of the numerical characteristics in an
algorithm on one hand, and investigation of the descriptive
characteristics of that algorithm on the other hand. First,
many different versions of the implementation of sorting al-
gorithms are analyzed with regard to aforementioned char-
acteristics and the results are stored in the database. There-
fore, the Analyzer has the following information about each
algorithm: the type of the algorithm, the descriptive char-
acteristics of the algorithm and the minimum and maximum
values of the numerical characteristics. When the Analyzer
encounters a new submitted algorithm, it first counts its
numerical characteristics and analyzes its descriptive char-
acteristics. In the next step, the Analyzer compares this in-
formation with the corresponding information of algorithms
retrieved from the database. If a match between the charac-
teristics of the algorithm to be recognized and an algorithm
from the database is found, the type of the latter algorithm
is assigned to the recognized algorithm and its information
is stored in the databases. If no match is found, the algo-
rithm and its information are stored in the database as the
type ”Unknown”. An instructor can then examine the algo-
rithms marked ”Unknown” to ensure that they really do not
belong to any type of algorithms. If an algorithm marked
”Unknown” does belong to a type (a false negative case),
the instructor can assign the correct type to that algorithm.
This way, as new kinds of implementations of an algorithm

are encountered, the allowed range of numerical characteris-
tics of that algorithm can be adjusted in the database. Thus,
the knowledge base of the Analyzer can be extended: next
time, the same algorithm is accepted as that particular type.

The numerical characteristics are used in the earlier stage
of the decision making process to see if the recognizable al-
gorithm is within the allowed range. If it is not, the process
is terminated and the algorithm is labelled ”Unknown”with-
out any further examination. In these cases, an informative
error message about the numerical characteristics that are
above or below the permitted limits is given to the user. If
the algorithm passes through this stage, the process proceeds
to investigate its descriptive characteristics.

Figure 1: Decision tree for determining the type of

a sorting algorithm

Figure 1 shows a decision tree to determine the type of a
sorting algorithm. At the top of the decision tree, we exam-
ine whether the algorithm is a recursive one and continue the
investigation based on this. Highly distinguishing character-
istic like this improve the efficiency, since we do not have to
retrieve the information of all algorithms from the database,
but only those that are recursive or that are non-recursive.
In the next step, the numerical characteristics are used to
filter out algorithms that are not within the permitted lim-
its. As can be seen from Figure 1, the roles of variables
play an important and distinguishing role in the process.
All examined Quicksort algorithms included a variable with
Temporary role, while none of the examined Mergesorts did.
Since the Temporary role often appears in swap operations,
this is somehow expected: Quicksort includes a swap opera-
tion, but in Mergesort there is no need for swapping because
merging is performed. In the case of the three non-recursive
algorithms that we examined, only Selection sort included
a Most-wanted Holder. For the definition of different roles
see [20]. The rest of the decision making process shown in
Figure 1 is self-explanatory.

90

As an example of the numerical characteristics, we present
the result of analyzing the numerical characteristics of the
five algorithms in Table 1. We collected an initial data base
containing 51 different versions of the five sorting algorithms
for the analysis. All algorithms were gathered from text-
books and course materials available on the WWW. Some
of the Insertion sort and Quicksort algorithms were from au-
thentic student submissions. For each characteristic in the
table, the first and second number depict, respectively, the
minimum and maximum value found from the different im-
plementations of the corresponding algorithm. As can be
seen from the table, the algorithms fall into two groups with
regard to their numerical characteristics: the small group
consists of Bubble sort, Insertion sort and Selection sort,
and the big group comprises Quicksort and Mergesort.

4. DISCUSSION
The Analyzer is only capable of deciding which sorting

algorithm a given algorithm seems to be. The correctness of
the decision cannot be verified by using this method, since
it is very difficult, if not impossible, to verify this using only
static analysis. Dynamic methods should be used as well.

Our method assumes that algorithms are implemented
using conventional and widely-accepted programming style.
The method is not tolerant to the changes that result from
using an algorithm in an application. Moreover, algorithms
are expected to be implemented in a well-established way.
As an example, although it is possible to implement Quick-
sort in a non-recursive way, a recursive implementation is
much more common. The same assumption is made by other
PC approaches as well, e.g., knowledge-base approaches.

The most useful application of the Analyzer is perhaps
verifying students’ submissions. There are many large size
computer science courses lectured at universities where stu-
dents are required to submit a number of exercises in order
to complete a course. The Analyzer can be used to help
instructors to verify the correctness of the type of the sub-
missions. It is also possible to develop the Analyzer further
to provide the students with detailed feedback about their
submissions in different ways.

Although the method is examined only for sorting algo-
rithms, it can presumably be applied to recognize other al-
gorithms as well. Moreover, as we described previously, the
roles of variables turn out to be a distinguishing factor that
can be used to recognize sorting algorithms. This is, how-
ever, a topic well worth discussing further:

1. How well can the method be applied to recognize other
algorithms?

2. What other factors could be used to characterize dif-
ferent algorithms?

3. Is there a minimum set of characteristics that is enough
to solve the identification problem and how could it be
found?

4. Roles of variables are cognitive concepts, thus a human
analyzer may disagree with an automatic role analyzer.
Is this causing serious problems?

5. REFERENCES
[1] K. Ala-Mutka and H.-M. Järvinen. Assessment process for

programming assignments. Advanced Learning
Technologies, 2004. Proceedings. IEEE International
Conference on, pages 181–185, 30 Aug.-1 Sept. 2004.

[2] H. A. Basit and S. Jarzabek. Detecting higher-level
similarity patterns in programs. In Proceedings of the 10th
European Software Engineering Conference, pages 156–165.
ACM, 2005.

[3] I. Burnstein and F. Saner. An application of fuzzy
reasoning to support automated program comprehension.
In Proceedings of Seventh International Workshop on
Program Comprehension, 1999., pages 66–73. IEEE, 1999.

[4] S. Edwards. Improving student performance by evaluating
how well students test their own programs. Journal on
Educational Resources in Computing, 3(3):1–24, 2003.

[5] B. S. Elenbogen and N. Seliya. Detecting outsourced
student programming assignments. In Journal of
Computing Sciences in Colleges, pages 50–57. ACM, 2007.

[6] A. Erdem, W. L. Johnson, and S. Marsella. Task oriented
software understanding. In Proceedings of the 13th IEEE
International Conference on Automated Software
Engineering, pages 230–239. IEEE, 1998.

[7] M. Halstead. Elements of Software Science. North Holland,
New York. Elsevier, 1977.

[8] M. Harandi and J. Ning. Knowledge-based program
analysis. Software IEEE, 7(4):74–81, January 1990.

[9] C. Higgins, P. Symeonidis, and A. Tsintsifas. The marking
system for CourseMaster. In Proceedings of the 7th annual
conference on Innovation and Technology in Computer
Science Education, pages 46–50. ACM Press, 2002.

[10] W. Johnson and S. E. Proust: Knowledge-based program
understanding. In IEEE Transactions on Software
Engineering, volume SE-11, Issue 3, March 1985, pages
267–275. IEEE, 1984.

[11] J. Joiner, W. Tsai, X. Chen, S. Subramanian, J. Sun, and
H. Gandamaneni. Data-centered program understanding. In
Proceedings of International Conference on Software
Maintenance, pages 272–281. IEEE, 1994.

[12] M. Joy, N. Griffiths, and R. Boyatt. The BOSS online
submission and assessment system. In ACM Journal on
Educational Resources in Computing, volume 5, number 3,
September 2005. Article 2. ACM, 2005.

[13] T. J. McCabe. A complexity measure. In IEEE
Transactions on Software Engineering, volume SE-2,
number 4, December 1976, pages 308–320, 1976.

[14] D. Ourston. Program recognition. In IEEE Expert, volume:
4, Issue: 4, Winter 1989, pages 36–49. IEEE, 1989.

[15] A. Quilici. A memory-based approach to recognizing
programming plans. In Communications of the ACM,
volume 37 , Issue 5, pages 84–93. ACM, 1994.

[16] A. Quilici. Reverse engineering of legacy systems: a path
toward success. In Proceedings of the 17th international
conference on Software engineering, pages 333–336. ACM,
1995.

[17] M. J. Rees. Automatic assessment aids for Pascal
programs. SIGPLAN Notices, 17(10):33–42, 1982.

[18] S. S. Robinson and M. L. Soffa. An instructional aid for
student programs. In Proceedings of the eleventh SIGCSE
technical symposium on Computer science education, pages
118–129. ACM, 1980.

[19] R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic
assessment of programming exercises. In Proceedings of the
6th Annual SIGCSE/SIGCUE Conference on Innovation
and Technology in Computer Science Education,
ITiCSE’01, pages 133–136, Canterbury, UK, 2001. ACM
Press, New York.

[20] J. Sajaniemi. An empirical analysis of roles of variables in
novice-level procedural programs. In Proceedings of IEEE
2002 Symposia on Human Centric Computing Languages
and Environments, pages 37–39. IEEE Computer Society,
2002.

[21] S. Woods and Q. Yang. The program understanding
problem: analysis and a heuristic approach. In 18th
International Conference on Software Engineering
(ICSE’96), pages 6–15. IEEE, 1996.

91

Students’ Individual Differences in Using Visualizations

Prospects of Future Research on Program Visualizations

Essi Lahtinen
Department of Software Systems
Tampere University of Technology

Tampere, Finland
essi.lahtinen@tut.fi

ABSTRACT
The range of available visualization tools for programming
education is impressive but the research on them is biased
mainly on testing the pedagogical effectiveness of the visual-
ization tools. Most of the studies apply empirical techniques
in controlled experimentation situations. The results on the
field are summarized to be “markedly mixed”.

As learning, in constructivist point of view, is seen as a
process affected by the individual also the use of visualiza-
tions in learning programming depends on the learner. In-
stead of only studying whether visualizations in general are
effective for learning, we should also study in which condi-
tions visualizations are effective for certain kinds of learners.
Controlled experimentation is also critizised as a method of
studying learning since it creates artificial learning situations
that do not reveal the real needs of the learner.

This article presents a literature review on the work car-
ried out in the field of visualizations and analyzes the situa-
tion. On the basis of related work, we propose research ques-
tions for future work and discussion about research settings
and methodology for achieving useful results for developing
the field of visualizations further. The aim is that with this
ground work we could better utilize the earlier work: vi-
sualization tools that have already been developed and the
research results related to these tools.

1. INTRODUCTION
Learning programming is generally difficult. One of the

big learning problems novice programmers often face is that
they have to handle abstract concepts to which they do not
have a concrete model in their everyday life [21]. Thus vi-
sualizations sound intuitively like a good way to concretize
the abstract subject in the beginning. Actually, Stasko et
al. [25] present the early development of algorithm visual-
izations as taking one step further from the pictural presen-
tations that teachers use on black boards in programming
classrooms.

Research on the use of visualizations in CS education has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ‘08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

long roots too. In their book Computer Science Education
Research [7], Fincher and Petre recognize animation, visu-
alization, and simulation as one of the ten motivating areas
for CS education research still in the year 2004. This re-
flects how much work has been put into visualization when
research on teaching CS was still in its infancy. However,
according to Hundhausen et al. [11], visualizations have not
succeded to become a part of mainstream programming ed-
ucation. Among other aspects of visualizations, the reasons
for this have also been studied and analyzed [19, 4]. Still,
results of the research on visualizations have not been able
to make a change.

The aim of this article is to deliberate how the enormous
amount of work that has already been done in the field of
visualizations could be utilized better to support learning
programming. On the basis of visualization research and
literature, the article discusses some ideas for future work
on visualizations. The next section will introduce and com-
ment the work carried out on visualization so far. Section
3 proposes some further research questions on the area and
Section 4 opens a discussion on how these should be ap-
proached. Section 5 presents conclusions.

2. THEORETICAL BACKGROUND
The software visualizations (SV) used in educational pur-

poses are often divided into two main groups according to
the level on which they present the details of the software:
algorithm visualizations (AV) and program visualizations
(PV). AVs handle the software on a higher abstraction level.
For instance, AV could present the principles of quicksort
regardless of the programming language. A PV would in-
stead present how quick sort is implemented in one spe-
cific programming language and show the implementation
details of this specific program. PVs are often used in intro-
ductory programming courses when students learn program-
ming structures using a certain programming language. AVs
instead are typically used in courses concerning algorithms
and datastructures. Price et al. [20] present AV and PV as
two subcategories of SV but do not limit SV to these groups.

This article limits to study only the literature concerning
AV and PV. Since AV is developed for much longer time
than PV, most of the literature review concerns AV. For
example, the most extensive articles mentioned here, a vi-
sualization research meta-study by Hundhausen et al. [11],
a literature review by Stasko and Hundhausen [25], and a
state of field report by Shaffer et al. [24], all concentrate
mainly on research on AV. The literature review by Stasko
and Hundhausen [25] does mention some PV tools too. The

92

development of PV tools and research on them has followed
similar paths than AV research. AV is so close to PV that
many PV developers apply the results gained in AV research.

2.1 Development of Visualizations
By now the range of available visualization tools is im-

pressing. There are PV tools available for the basics of
practically any language used in teaching introductory pro-
grammin, for example [23], an even language independent
flowchart visualizators. The range of AV tools used in the
algorithm and data structure courses is even wider, for in-
stance [17].

Many of these SV tools have been evaluated empirically to
prove or measure the educational effectiveness of the tool.
Still research into visualization is very tool-oriented. The
evaluation studies start almost always from the tool or its
features, not from the users needs.

Many of the tools are developed by expert programmers
or teachers of programming which is always not only a good
idea. For example, an eye-tracking study [3] reveals that ex-
pert and novice programmers use different visual attention
strategies when using a visualization tool. Thus, it can be
difficult for an expert to understand how the tool should be
built to support the novice programmers way of using it.
Stasko and Hundhausen [25] request that in the future visu-
alization tools should be developed using a learner-centered
design process and usability specialists as designers instead
of CS teachers. Instead of developing tools and materials ac-
coring to the technical visions of the developers one should
study how students use visualizations and develop tools and
materials according to their needs.

The learning problems in programming are often con-
nected to more advanced issues than individual concepts,
so the learning materials and visualization tools should also
be directed to develop more advanced programming skills
[15]. Instead of only presenting new concepts or algorithms,
visualizations should also take this into account. However,
most of the available visualizations tend to present concepts
[24]. Research on visualizations [25, 11] requests one ap-
proach to confront this problem: the visualizations should
always activate students to take part in it. Student en-
gagement is vital for learning when using visualizations. A
working group on the educational impact of visualizations
has addressed this by developing a visualization engagement
taxonomy that defines how intensively the learner is taking
part in the visualization [18]. There are also recommenda-
tions on the pedagogical requirements of visualization tools
and features that should always be implemented to a tool
[22, 18]. In addition to easing the use of the visualization
tool these features also give support to the learner engage-
ment, for example, by letting the learner control the run of
the visualization according to his own needs.

2.2 Studies on the Educational Effectiveness
There are plenty of studies showing that the use of visu-

alizations makes students understand programming better,
for example [5, 23, 2, 1]. On the other hand, there are some
studies showing that using visualizations does not make a
difference, for example [13, 9], studies where some of the ex-
periments show a difference and some do not [8], and even a
study that reports that the use of visualizations distracted
the students from the essential [10].

To sum up the situation, Hundhausen et al. have per-

formed a wide meta-study on the studies carried out on the
field of AV [11]. It handles 24 different, individual studies on
educational effectiveness of AV. The motivation of the meta-
study is that the conclusions of the earlier studies in the field
are“markedly mixed”and they want to explore deeper under
the surface. They conclude that “how students use AV has
a greater impact on effectiveness than what AV technology
shows them.” This conclusion reflects that even though a
lot of work has been carried out on the field of AV and their
effectiveness, the results are still vague.

The focus of the meta-study by Hundhausen et al. [11] is
in the studies that use the most commonly applied method
of evaluating the effectiveness of visualization, that is, AV
effectiveness evaluations that employ empirical techniques in
controlled experimentation situations. Détienne places hard
methodological criticism on such studies in her psycologically-
driven book of the cognitive aspects of software design [6].
“One can [. . .] try to isolate it [a single factor in a learning
situation] but at the risk of creating a rather artificial sit-
uation.” Instead of empirical research, the book promotes
theoretical research for studying learning and other cognitive
processes. Similarly to Detienne, Fincher and Petre empha-
size that the presence of theory is important for CSER in
their book [7]. Finally, the book guides researchers to carry
out empirical research in CSE while taking theory into ac-
count.

In a thorough literature review of research carried out in
the field of AV [25], Stasko and Hundhausen discusses similar
questions about the limitations of AV effectiveness studies
than the ones risen by Détienne [6] and Fincher and Petre
[7]. They agree that to gain more realistic results, visualiza-
tion research should in the future use other research meth-
ods than controlled experimentation. The review focuses in
empirical research since theoretical research has not been
carried out on AV.

In addition to controlled experiments, Stasko and Hund-
hausen [25] list and discuss other empirical methods that
are less rigorous and have been used to research AV: Ob-
servational studies have been used, e.g., for researching stu-
dents’ understanding of visualizations and the role of visu-
alizations. Questionnaires and surveys have helped to un-
derstand users’ preferences, opinions, and advice regarding
AV technology design and use. Usability studies have been
used for defining the human-computer-interaction problems
of AV. The literature review [25] only lists one study [10] us-
ing ethnographic field techniques in AV research. This study
follows students constructing their own visualizations both
using a visualization tool and using art supplies.

2.3 Studies on the Backgrounds of Users
One of the current learning theories, constructivism, holds

that a learner constructs his own comprehension of the sub-
ject through his prior knowledge [12]. This theory empha-
sizes that learning is an individual process that reflects the
background of the learner. Since each person learns individ-
ually also the use of visualizations in learning programmin
is a personal process.

A notable remark when trawling through the research car-
ried out on visualizations is that there is very little material
on the individual differences of students when using soft-
ware visualizations. Learning style, different types of pro-
gramming related difficulties, and many other differences
between students may still affect the way student perceives

93

visualizations and the way he uses them.
There are studies where students are divided into a target

group and a reference group randomly but later on when an-
alyzing the results only certain kinds of students have been
found to benefit from the use of visualizations. Visualiza-
tions can, for example, be beneficial only for the mediocre
students [5] or the novice programmers and the students
with difficulties in the programming course [1]. Also a sur-
vey on students’ voluntary usage of visualizations [16] shows
that the students who find the programming course too diffi-
cult or easy tend not to use program visualizations in learn-
ing. These studies show that the background of the students
makes a difference. However, it is not possible to make a
generalization to all visualization tools according to a few
studies only.

Since the background and the personality of the student
makes a difference for the use of visualizations, it could be
possible that the individual differences of students are one
of the explanatory factor for the “markedly mixed” results
of visualization effectiveness research. Studying the back-
ground information of the students could clear the results of
earlier studies. In small groups of students the differences
between different kinds of students might not be statistically
significant and thus this kind of aspects can be difficult to
perceive and verify in many study setups.

An interesting remark is that even if the differences be-
tween students’ use of visualizations have not been stud-
ied so much, there is literature on the differences of pro-
gramming teachers [4]. The study devides teachers into four
groups according to the way they used the visualization tool
in teaching.

3. INTERESTING RESEARCH QUESTIONS
The ”ultimate question” in the prior research on visual-

izations seems to be whether visualizations are effective in
learning or not. Many of the studies address this same ques-
tion with different research settings. However, this research
question is on a very general level. A simple yes or no ques-
tion about a phenomenon as complex as learning is close to
impossible to answer. The answer naturally depends on the
learner, the learning process, the visualization, the way it is
used, etc., as many of the studies already recognized. This
is one of the reasons why the answer to the question is still
”markedly mixed” even if the question has been addressed
in many studies for such a long time. Instead of seeking for
an answer to this huge question, it would be beneficial to
start by seeking for conditional generalizations. That is, try
to find the conditions under which visualizations that have
certain characteristics will be effective to learn particular
things by particular students.

The conclusion of Hundhausen et al. [11] claims that
the way students use AV has an important impact on effec-
tiveness. There is only little evidence on the way students
use visualizations in a real learning situation by themselves
since almost all the evaluation research has been done in the
artificial learning situations that Detienne [6]–for instance–
critisizes. After all, most of learning takes place in students
own time, in real learning situations. Thus, this path should
be followed further. If we want visualizations to catch on in
mainstream CS education, we need to study their usage in
realistic learning situations in real CS class rooms and adapt
the visualizations to suit these conditions. In addition, the
research setup needs to be oriented to study the learners and

not only the tool.
Shaffer et al. [24] claim that “the theoretical foundations

for creating effective visualizations are steadily improving”.
However, they demand more fundamental research on how
to develop and use visualizations. To get an answer to this,
we should find out who are using them and how. Only with
this background information it will be possible to develop
them to the right direction in the future and utilize the ex-
isting tools better. The background information will also
help to gain a maximal benefit out of the existing visualiza-
tion tools.

Even if the ultimate goal of research on visualizations is
to find out how visualizations should be developed to be ben-
eficial for students this might not be a good starting point.
In order to approach the solution of this questions, we be-
lieve there is a set of more fundamental questions that needs
to be answered first. For example: What kind/type of stu-
dents use visualizations in real class rooms and in real study
sessions? (Real as opposed to artificial/controlled.) In what
kind of situations (study sessions) do students (certain types
of students) use visualizations? In which ways do students
(certain types of students) use visualizations in their real
study sessions? etc.

4. AN OPENING FOR A DISCUSSION
As stated, we want to study the use of visualizations in a

user-oriented manner in real learning situations.
In studies about the use of PV, there is evidence that

you can create a study situation where the students choose
whether they want to learn certain thing or complete a cer-
tain assignment using traditional methods (pen and paper
or a normal compiler) or using a visualization tool [14]. Ba-
sically the idea in this study was to offer students the possi-
bility to use the visualization tool in their independent study
sessions but not make the use obligatory and see whom of
the students use it and how. The study shows that there are
different kinds of students: a group that always wants to use
the visualization tool when it is possible, a group that never
wants to use it, and groups of students who change their
opinions about the use of the tool during the course. If
the backgrounds, programming related learning difficulties,
and other characteristics of these student groups could be
studied wider, we could find some answers to the research
questions mentioned in the end of previous section.

The contradiction in this proposal is that we wanted to ap-
proach the research problem about the use of visualizations
more student-oriented and less tool-oriented. Now we pro-
pose a study setup where you offer the students a possibility
to use a visualization tool upon their choise. Is that not
just another variation of tool-oriented again? The problem
is that it is not possible to research the use of visualization
tools with no tool at all. However, instead of making a study
where the students are randomly divided into a target group
and a reference group and the other is forced to use the tool
or its certain feature and the other one not allowed to use
it, we propose to let the students make the decision upon
their own interests and thus change the orientation of the
study from looking at the tool or its certain features to the
student and his/her background.

The proposal for topics of discussion are: Is it possible to
study the use of visualization tools in a user-oriented way?
Is the above mentioned proposal still too tool-oriented to
gather interesting information?

94

5. CONCLUSIONS
The answers to the research question proposed in this ar-

ticle would contribute to the research on visualizations as
important background information. This information could
be helpful in understanding the results of earlier studies bet-
ter. It could also give directions to the further development
of old visualization tools and their usage. In addition, this
knowledge is important if tools are in future developed using
learner-centered principles as suggested [25].

The next step is to search for the answers for the dis-
cussion questions and design the research settings for the
proposed research questions.

6. ACKNOWLEDGMENTS
Nokia Foundation has partly funded this work.

7. REFERENCES
[1] T. Ahoniemi and E. Lahtinen. Visualizations in

Preparing for Programming Exercise Sessions. In
Proceedings of the Fourth Program Visualization
Workshop, pages 54–59, Florence, Italy, June 2006.

[2] R. Baecker. Sorting out sorting: A case study of
software visualization for teachhing computer science.
In Software Visualization: Programming as a
Multimedia Experience, pages 369–381. MIT Press,
1998.

[3] R. Bednarik. Methods to Analyze Visual Attention
Strategies: Applications in the Studies of
Programming. Joensuun yliopisto, 2007.

[4] R. Ben-Bassat Levy and M. Ben-Ari. We work so hard
and they don’t use it: acceptance of software tools by
teachers. In ITiCSE ‘07: Proceedings of the 12th
annual SIGCSE conference on Innovation and
technology in computer science education, pages
246–250, New York, NY, USA, 2007. ACM.

[5] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen.
The jeliot 2000 program animation system. Computers
& Education, 40(1):1–15, 2003.

[6] F. Detienne. Software Design – Cognitive Aspects.
Springer-Verlag, London, 2002.

[7] S. Fincher and M. Petre. Computer Science Education
Research. Taylor and Francis, The Netherlands, Lisse,
2004.

[8] S. R. Hansen, N. H. Narayanan, and D. Schrimpsher.
Helping learners visualize and comprehend algorithms.
Interactive Multimedia Electronic Journal of
Computer-Enhanced Learning, 2(1):10, 2000.

[9] C. Hundhausen and S. Douglas. Using visualizations
to learn algorithms: Should students construct their
own, or view an expert’s? Proceedings of IEEE
Symposium on Visual Languages, pages 21–28, 2000.

[10] C. D. Hundhausen. Integrating algorithm visualization
technology into an undergraduate algorithms course:
Ethnographic studies of a social constructivist
approach. Computers & Education, 39(3):237–260,
2002.

[11] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages & Computing,
13(3):259–290, 2002.

[12] K. Illeris. The Three Dimensions of Learning. Krieger
Publishing Company, Malabar, Florida, 2002.

[13] D. J. Jarc, M. B. Feldman, and R. S. Heller. Assessing
the benefits of interactive prediction using web-based
algorithm animation courseware. SIGCSE Bull.,
32(1):377–381, 2000.

[14] E. Lahtinen, T. Ahoniemi, and A. Salo. Effectiveness
of integrating program visualization to a programming
course. In Proceedings of The Seventh Koli Calling
Conference on Computer Science Education,
November 2007.

[15] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers.
ITiCSE 2005, Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in
Computer Science Education, pages 14–18, June 2005.

[16] E. Lahtinen, H.-M. Järvinen, and
S. Melakoski-Vistbacka. Targeting program
visualizations. SIGCSE Bull., 39(3):256–260, 2007.

[17] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual algorithm
simulation exercise system with automatic assessment:
TRAKLA2. Informatics in Education, 3(2):267–288,
2004.

[18] T. Naps, G. Rössling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. Velazquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. SIGCSE Bulletin,
35(2):131–152, June 2003.

[19] T. L. Naps, G. Rössling, J. Anderson, S. Cooper,
W. Dann, R. Fleischer, B. Koldehofe, A. Korhonen,
M. Kuittinen, C. Leska, L. Malmi, M. McNally,
J. Rantakokko, and R. J. Ross. ITiCSE 2003 working
group reports: Evaluating the educatiocal impact of
visualization. SIGCSE Bulletin, 35:124–136, June
2003.

[20] B. Price, R. Baecker, and I. Small. An Intorduction to
Software Visualizaton. In Software Visualization:
Programming as a Multimedia Experience, pages 3–34.
MIT Press, 1998.

[21] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137–172, 2003.

[22] G. Rössling and T. L. Naps. A Testbed for Pedagogical
Requirements in Algorithm Visualizations. ITiCSE
2002, Proceedings of the 7th Annual SIGCSE
Conference on Innovation and Technology in
Computer Science Education, June 2002.

[23] J. Sajaniemi and M. Kuittinen. Visualizing roles of
variables in program animation. Information
Visualization, 3(3):137–153, May 2004.

[24] C. A. Shaffer, M. Cooper, and S. H. Edwards.
Algorithm visualization: a report on the state of the
field. In SIGCSE ‘07: Proceedings of the 38th SIGCSE
technical symposium on Computer science education,
pages 150–154, New York, NY, USA, 2007. ACM.

[25] J. T. Stasko and C. D. Hundhausen. Algorithm
Visualization. In Computer Science Education
Research, pages 199–228, The Netherlands, Lisse,
2004. Taylor and Francis.

95

PatternCoder: A Programming Support Tool for Learning
Binary Class Associations and Design Patterns

James H. Paterson

School of Engineering and Computing
Glasgow Caledonian University

Glasgow G4 0BA, UK
+44 141 331 3028

james.paterson@gcal.ac.uk

John Haddow

School of Computing
University of the West of Scotland

Hamilton ML3 0JB, UK
+44 1698 283100

john.haddow@uws.ac.uk

Ka Fai Cheng

School of Engineering and Computing
Glasgow Caledonian University

Glasgow G4 0BA, UK
+44 141 331 3820

k.cheng@gcal.ac.uk

ABSTRACT
PatternCoder is a software tool to aid student understanding of
class associations. It has a wizard-based interface which allows
students to select an appropriate binary class association or design
pattern for a given problem. Java code is then generated which
allows students to explore the way in which the class associations
are implemented in a programming language. This paper
describes the rationale behind the tool, gives a description of the
tool itself, and reports on our experiences of using the tool in our
teaching.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Design, Languages

Keywords
Java, UML, patterns, associations

1. INTRODUCTION
The transition from design to code often represents an obstacle
which is difficult for students studying object-oriented design and
programming to surmount. They are often taught to follow a
process which includes identifying a set of classes to represent the
entities in a scenario, and constructing a diagram, typically a
UML class diagram, to describe these classes. The diagram will
also represent the associations between the classes. UML notation
can describe a number of different association types, including
aggregation, generalization, and so on. The class diagram can
then be a starting point for implementing the classes in a
programming language such as Java to create a working solution
for the original scenario.

This process presents difficulties at a number of stages. The first
area of difficulty is in the design. For example, Thomasson et al.
[14] identified a range of common design faults which occurred in
novice designs, including a wide variation in the number of

classes identified in response to a written scenario. The second
area of difficulty lies in translating a completed design into code.
Clearly it is unlikely that a successful implementation will result
from a flawed design. However, we have observed that the
implementation stage is extremely difficult for many students
even when the design is valid or has been improved on the basis
of feedback given.
There may be many reasons for such difficulties. However, in
developing PatternCoder, we have focused on difficulties arising
from a lack of a clear understanding of how classes are
associated, and how instances of those classes communicate in
order to perform the operations required of the system. In the
study of Thomasson et al.[14], a large percentage of the student
work exhibited what the authors describe as “non-referenced
class faults”, where students understood the need for a class to
represent a concept but were unable to relate this to other classes.
Sanders et al.[12] studied student understanding of object-oriented
concepts. A striking observation in their results is a complete lack
of recognition of the concept of message passing, and they
comment that the topic of object interaction is poorly covered in
many textbooks.

We suggest that placing an emphasis on teaching the specific
ways in which classes and objects can relate and communicate
with each other helps students with a key aspect of their designs
as well as with implementing those designs. This has been done
by having students explore a simple system designed to showcase
a range of association types. The UML representation and the
Java implementation were examined. This approach has
similarities to the model-based approach to teaching programming
described by Bennedsen and Caspersen [4] in which code patterns
are used to implement specific association types. We found that
the interactive Object Bench feature of the BlueJ IDE1 is
particularly useful for exploring the interactions between objects.
At a more advanced level, we teach design patterns, based on the
work of the so-called “gang of four” (GoF)[7], and again, there is
an emphasis on the way that the classes within a pattern relate and
communicate. A design pattern defines a set of classes which
work together through specific relationships and collaborations. In
fact, we see the fundamental class relationships essentially as
simple patterns: the ‘common problems’ are simply the problems
of modeling the ways in which two types of real-world objects

1 http://www.bluej.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '08, November 13–16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11…$5.00.

96

can be related. These relationships then form the building blocks
of the more complex patterns such as the GoF patterns.
The PatternCoder tool goes a step beyond the teaching of specific
examples by providing support to students as they work on their
own designs and allowing them to generate their own examples.

2. DESCRIPTION OF THE
PATTERNCODER TOOL
PatternCoder is essentially a code generation tool which can add a
set of one or more classes to a project based on code templates. It
has been developed as an extension to BlueJ. The student is
initially prompted to select a pattern or association from a list,
with a diagram and additional textual information given to help
identify which is likely to be appropriate for the scenario which
he or she is working on. The student is encouraged to think about
the issues of multiplicity and navigability which will determine
key implementation details. Once a decision is made, generic
class names are replaced with scenario-specific names, and the
classes are created within the current BlueJ project.

Knowledge of the relationships between classes is encapsulated in
the code templates and in XML pattern definition files. These are
text files, separate from the executable code, and can be easily
customized to suit the approaches taken by different instructors.
Examples of the templates and pattern files, and the way these are
written, are shown in a previous paper[9].

The files supplied with the tool are designed to produce fully
working code examples which allow the way the pattern or
association works to be explored ‘out of the box’. This is
illustrated here using an example of a scenario which involves a
simple ecommerce system which processes orders. The student
has identified that each order will consist of a number of items,
that these are modelled as Order and OrderItem classes and that
these classes are associated in some way. On starting
PatternCoder (which is done by selecting a BlueJ menu option),
the student can explore the available patterns and their
descriptions, settling in this case on a Whole-Part (or aggregation)
association where the whole can contain multiple parts, as shown
in figure 1.

Figure 1. Selecting the appropriate pattern

The following steps, generated by the XML pattern file, allow the
generic names Whole and Part to be replaced with the specific
names Order and OrderItem, as shown in figure 2. Finally, the
Order and OrderItem classes are added to the current project.
These classes do not at this point contain any scenario-specific
logic, but they do contain enough code to allow the classes to be
compiled, instances to be created, and generic operations such as
adding and removing OrderItems to and from an Order to be
performed. The student can use the generated classes in the
following ways:

• as code examples to explore and understand the code
required to implement the relationship. The ability to
generate additional code examples may be useful to
students who have difficulty in looking at examples
given in lectures and extracting the necessary parts of
the code to apply the given solution in another scenario.

• as a starting point to develop the complete solution by
adding scenario-specific attributes and logic: for
example a method to calculate the total cost of an
Order. The generation of what is often referred to as
“boilerplate” code has the same advantage in terms of
saving time as it would for a professional developer, but
for the novice has the additional benefit of allowing
concentration on the logic without the frustration caused
by errors or incorrect implementation of the association.

Figure 2. Naming the classes

PatternCoder can be considered to simply be a conduit for
transforming the knowledge encapsulated in the code templates
and pattern files into working code. This means instructors are
free to use their own knowledge and preferences to modify or
expand on the choices and information presented to the students.
The tool is supplied with a ‘starter set’ of design patterns which
provides examples of several types of patterns but do not cover
the whole catalog of GoF patterns. Instructors are free to add
other patterns which they wish to teach. Similarly, a set of binary
association patterns is included. These use our own nomenclature
and descriptions of these associations, but instructors are able to
modify them to suit the way they want to teach. Contributions
from the community are welcomed and may be distributed
through the www.patterncoder.org website. For example, there is

97

an ongoing project which aims to translate pattern files and
templates into Portuguese.

The informational text which is displayed at each step is stored in
the XML pattern definition files as HTML code, allowing
instructors to create content aligned with the skill levels of
students as they progress through examples, and to highlight
specific points in the text, and potentially to provide hyperlinks to
more detailed tutorial material. This could, for example, support a
set of learning activities based on the idea of scaffolding and
fading out in Cognitive Apprenticeship[5].

We have recently used the customizability of PatternCoder to
provide an alternative set of binary association patterns[10]. One
of the difficulties in learning about these associations lies in the
ambiguities caused by the gap which exists between programming
languages and UML. The concept of an association does not in
fact exist in Java, for example. The association must be expressed
in code using the available tools: classes, attributes and methods
[8]. This requires thought about exactly what is implied about the
classes, and understanding of how to map that meaning to code.
For example, a simple one-to-one association between two classes
may be implemented using an attribute of one class. However,
there may be situations where that association is temporary, and is
best implemented using a reference contained in a parameter in a
method call. The difference is not clearly expressed in the model,
but very much affects the implementation details. These patterns,
based on the work of Stevens[13] on the semantics of binary
associations, are designed to encourage students to think about
this kind of issue. There are many more complex aspects of class
diagrams, such as qualified associations[1] which could be
illustrated by creating patterns in PatternCoder, although we
would certainly not wish to present these to novices.

3. RELATED TOOLS
There are many tools designed for professional developers which
offer ‘round-trip’ code generation, in which changes made to a
UML class diagram are immediately reflected in programming
language code which is automatically generated. To take just one
example, in the eUML plug-in for Eclipse2 you can draw classes
and an association between them, and edit the properties of the
association. These properties are then reflected in the Java code
generated for the classes. Similarly, many professional tools such
as IBM Rational Developer3 have much more sophisticated
support for building design patterns into a model or project than
PatternCoder offers. However, such tools are not suitable, or
intended, for novice developers, are often complex, and do not
offer tutorial content.

Green[2] is a round-tripping UML editor plug-in for Eclipse
which is specifically designed for educational use. The aim of this
tool is quite similar to that of PatternCoder, but the
implementation is significantly different. Green is essentially a
UML diagram editor which allows classes and associations to be
added interactively to a project. PatternCoder’s wizard-driven
approach, in contrast, does not try to provide any support for
diagramming. Green’s knowledge of associations is encapsulated
in Eclipse plug-ins, which are themselves written in Java, in

2 http://www.soyatec.com/euml2
3 http://www.ibm.com/developerworks/rational

contrast to the relatively easily modified templates and XML files
used by PatternCoder. There is no tutorial content embedded
within the tool to help students decide on the most appropriate
association type. Finally, there is no specific support in Green for
design patterns.

Patterns+UML[6], like PatternCoder, is an educational tool
designed to provide support for the implementation of design
patterns. The authors emphasize its use for exploring situations
where a class can play roles in more than one design pattern, and
they correctly state in comparison that PatternCoder does not
support interaction between patterns. The wizard-based process
for implementing a pattern appears similar to PatternCoder,
Unlike PatternCoder and Green, there is no IDE integration. It is
not clear in the reference whether it is possible to customize the
patterns offered to the user or whether binary associations are
included.

There is considerable research effort ongoing into the
development of model-driven development tools which can
automatically map UML associations, including the more
complex types of association, into code[1,8]. This is not a trivial
task, due to the conceptual gap between model and programming
languages discussed in the previous section, and current
professional UML tools which offer code generation support for
only a limited range of associations. Genova has described a
prototype code generation tool for UML associations, JUMLA
[8].

Note that unlike all of these, PatternCoder does not attempt to be
a model-driven development tool. It does not analyze a model and
its associations in order to generate code. Instead, it asks the
student to think about his or her model and to actively make a
decision on what type of association should be implemented.

4. DISSEMINATION
The PatternCoder tool is open-source software, and has been
made freely available for download since mid-2006. It was
originally known simply as the Design Patterns extension for
BlueJ. In summer 2007 the www.patterncoder.org website was
created to distribute the tool and related materials. The download
includes binaries and source code, javadocs and a guide to
installing and using the tool. PatternCoder works with BlueJ on
Windows, Linux and MacOS. The project code is hosted on
Google Code4 for ease of collaborative development. A basic set
of teaching materials which we have developed and used are also
available for download on the website. A number of papers and
presentations have been given on the tool and teaching
approaches based on it [9,10]. Approximately 1100 downloads
were recorded over a 12 month period to June 2008. Integration
with BlueJ, which is widely known and used in the CS education
community, has an advantage in terms of dissemination. We are
grateful to the BlueJ team for placing a link to our tool in their
website, and website statistics show that this link brings a
significant level of traffic to the PatternCoder site.

Pears et al.[11] noted that very few teaching tools have seen
widespread adoption within CS education, and identified some
possible reasons for this, including the origins of many tools as

4 http://code.google.com/p/patterncoder

98

solutions to local problems, and a lack of development and
funding to make tools suitable for use across a wide range of
institutions. A further reason may be a lack of readily available
teaching materials. One of the most widely adopted tools is BlueJ,
and the availability of a textbook[3] written by the tool authors
and closely based on its use may be a significant factor. We
propose to develop a comprehensive set of tutorial materials
which will make use of and integrate with PatternCoder.

5. EVALUATION
PatternCoder has been used with our students on level 2 and level
3 modules in object-oriented programming and design. At level 2
it was introduced alongside lab exercises specifically designed to
illustrate a range of class associations. Feedback from the students
was very positive. Several students commented that they were
now beginning to make sense of the meaning of the relationships
defined in UML class diagrams and of how the relationships
translate to code. It was encouraging to note from dialogue with
students that many had taken the positive step of downloading
PatternCoder and installing and using it on their home computers.
The level 3 students found the tool helpful for revising class
relationships, which many of them had struggled with previously,
and some were then observed to be using the tool and applying
the concepts in their projects which involved the design and
implementation of a complete system.

The work submitted by the level 2 students was reviewed to
identify the level of incidence of the set of common design faults
reported by Thomasson et al.[14]. It should be emphasized that
this is a very small scale review of the work of 20 students who
were organized into groups of 3 or 4. The fault types are
described as “non-referenced classes” (NRC), “references to non-
existent classes” (NEC), “single attribute misrepresentation”
(SAM) and “multiple attribute misrepresentation” (MAM).
Details of the nature of these faults can be found in the reference.
We also identified a further fault, which we refer to as
“unspecified association” (UA), where an association line is
drawn in the class diagram, but there is no indication at all of
multiplicity, navigability or association type. The results are
shown in Table 1, together with the equivalent results obtained by
Thomasson et al. The striking feature apparent in the table is that
no non-referenced class faults were observed in the work of our
students, in contrast to the high incidence of this fault in the
previous study. This suggests that these students at least have a
clear understanding that a class must be associated with other
classes in order to play a part in a system.

Table 1. Percentage of designs containing each fault

fault this work reference [14]*

NRC 0 89

NEC 20 31

SAM 60 50

MAM 20 15

UA 80 -

*average over 3 design exercises

Although most of the designs exhibited some examples of
unspecified associations, the number of these was a small
proportion of the total number of associations in each design,
suggesting that there is also good understanding of the need to
consider the nature of each association in order to implement it.

The results described here refer to design diagrams, whereas the
specific role of PatternCoder is to support the coding of patterns
and associations. However, part of the rationale of the tool is to
develop understanding of the nature of associations and the need
to implement them in code, and it is hoped that such
understanding will feed back into improvements in design skills.
It is not possible to deduce from these results the specific
influence of the PatternCoder tool has had. The teaching emphasis
placed on associations is likely to be a major factor. The fact that
students were working in groups and discussing their designs may
also have been significant. These results are based on a very small
body of work and so it is not possible to draw strong conclusions.
However, it does appear that a teaching approach emphasing class
associations, supported by the use of PatternCoder, has the
potential to improve understanding in an area which has been
shown previously to cause difficulty for students.

6. LIMITATIONS AND FUTURE
DEVELOPMENTS
The current release of PatternCoder has a number of issues which
warrant further development. It is currently possible only to add
new classes to a project, so there is no way of including an
existing class within a pattern or association and modifying its
code accordingly. This makes it difficult to use PatternCoder to
build up a set of associations between multiple classes or to
refactor a design to make use of a pattern. The authors of the
Patterns+UML tool[6] emphasize this limitation in comparison to
their tool, and we acknowledge and plan to address this.

Pattern file management could be improved to make it easier to
install or uninstall patterns or to let the user navigate and select
from within multiple named sets of patterns. Creation of pattern
files and templates is done simply by editing text files (templates
and XML pattern files). Although this process is documented, it
would be helpful to have a tool which would provide a user-
friendly interface to help instructors customize patterns and create
new ones. Support for internationalization of the user interface
has not yet been implemented, although the pattern files and
templates can be easily edited and translated into other languages.

PatternCoder has been implemented as a BlueJ extension because
we see BlueJ as a good fit for a teaching approach which
emphasizes class associations. However, it would be relatively
straightforward to create a standalone version, or one which
integrates with other popular IDEs such as Eclipse or Netbeans.

7. CONCLUSION
Class associations and collaborations present difficulties for many
students of object-oriented design and programming, something
which has become apparent through our own experience and
through studies reported in the literature. The PatternCoder tool
was developed to support a teaching approach which emphasizes
the nature and importance of associations between classes which
collaborate within design patterns and through simple binary class

99

associations. Initial experience suggests that this approach can
produce significant benefits.

One of the problems with evaluating tools such as PatternCoder is
that unless the tool is widely adopted, the body of student
experience and work available for study is limited. It would be
valuable to be able to draw together experiences with the tool
from a larger number of institutions. Dissemination of the tool is a
key target in order to promote wider adoption and potentially give
access to a wider base for evaluation. The tool is being promoted
to the community through papers and conference presentations,
and a website has been designed to provide free access to the tool
for instructors and students. Tutorial materials are also under
development to lower the barrier to adoption of the tool. It is
hoped that these efforts will drive future adoption, evaluation and
development of PatternCoder.

8. REFERENCES
[1] Akehurst, D., Howells, G. and McDonald-Maier, K. (2007),

“Implementing associations: UML 2.0 to Java 5”, Journal of
Software and Systems Modelling, Vol. 6, No 1, 3–35.

[2] Alphonce, C. and Martin, B. (2005), “Green: a customizable
UML class diagram plug-in for Eclipse”. In Companion to
the 20th annual SIGPLAN conference on Object-Oriented
Programming Systems, Languages, and Applications, ACM
Press, 168-169.

[3] Barnes, D.J. and Kölling, M. (2008), “Objects First with
Java. A Practical Approach”, 4th Edition, Prentice Hall /
Pearson Education.

[4] Bennedsen, J. and Caspersen, M (2008) “Model-Driven
Programming”, In Reflections on the Teaching of
Programming, Lecture Notes in Computer Science Vol.
4821, 116-129, Springer-Verlag Berlin / Heidelberg,

[5] Collins, A., Brown, J.S. and Newman, S. (1989) “Cognitive
Apprenticeship: teaching the craft of reading, writing and
mathematics” In L. Resnick (Ed.) Knowing, learning and
instruction: essays in honor of Robert Glaser (pp453-494).
Hillsdale, NJ: Lawrence Erlbaum.

[6] Denegri, E., Frontera, G., Gavilanes, A., and Martín, P. J.
(2008), “A tool for teaching interactions between design
patterns”. In Proceedings of the 13th Annual Conference on
innovation and Technology in Computer Science Education,
371.

[7] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995)
“Design Patterns: Elements of Reusable Object-oriented
Software”, Addison-Wesley, Boston, MA.

[8] Génova, G., Ruiz del Castillo, C. and Llorens, J. (2003),
“Mapping UML Associations into Java Code”, Journal of
Object Technology, Vol. 2, No. 5, 135-162.

[9] Paterson, J.H. and Haddow, J. (2007), “Tool support for
implementation of object-oriented class relationships and
patterns”, ITALICS, Special Issue on Innovative Methods of
Teaching Programming, Vol 6, No 4, 108.

[10] Paterson, J.H., Haddow, J and Cheng, K.F. (2008),
“Drawing the Line: Teaching the Semantics of Binary Class
Associations”, In Proceedings of the 13th annual SIGCSE

conference on Innovation and Technology in Computer
Science Education, 362.

[11] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., Devlin, M., and Paterson, J. (2007), “A survey
of literature on the teaching of introductory programming”.
In Working Group Reports on ITiCSE on innovation and
Technology in Computer Science Education (Dundee,
Scotland, December 01 - 01, 2007). J. Carter and J. Amillo,
Eds. ITiCSE-WGR '07. ACM, New York, NY, 204-223.

[12] Sanders, K., Bousted, J., Eckerdal, A., McCartney, R.,
Moström, J., Thomas, L. and Zander, C. (2008), “Student
understanding of object-oriented programming as expressed
in concept maps”, In Proceedings of the 39th SIGCSE
technical symposium on Computer science education, 332-
336.

[13] Stevens, P. (2002), “On the interpretation of binary
associations in the Unified Modeling Language”, Software
and Systems Modeling, Vol. 1, No. 1, 68.

[14] Thomasson, B., Ratcliffe, M. and Thomas, L. (2006),
“Identifying Novice Difficulties in Object Oriented Design”,
In Proceedings of the 11th annual SIGCSE conference on
Innovation and Technology in Computer Science Education,
28-32.

9. WEBSITE
The PatternCoder website is located at www.patterncoder.org.

The website includes:

• Brief overview and screenshots of the tool

• Downloadable guide to installation and use

• Download of binaries, source code and Javadocs – free
download, no registration required

• List of publications and other resources

• Contact information

100

Automatic Assessment of Program Visualization Exercises

Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso & Tapio Salakoski

Department of Information Technology
University of Turku

20014 Turku, Finland

{ertaka, temira, milaak, sala}@utu.fi

ABSTRACT

ViLLE is a visualization tool for teaching programming to
novice programmers. It has an extendable support for multiple
programming languages which enables language-independent
learning of programming. As a new feature, ViLLE supports
automatically assessed exercises. The exercises can be easily
integrated into a programming course by using the TRAKLA2
web environment.

Keywords: teaching programming, novice programming,
program visualization, automatic assessment.

1. INTRODUCTION

Visualization – defined as presenting a program or algorithm
graphically – is a useful method in teaching novices to write and
understand programs. Program visualization can be used in
concretizing otherwise abstract concepts related to program
execution. Typical program visualization techniques include
highlighting executed code lines, color coding the program
code, viewing variable information, and visualizing subprogram
calls. Mere visualization, however, is usually not enough to
engage students in the learning process. As Naps et al. [8]
suggested, the deeper the learner’s engagement with the
visualization is, the better the learning results.

ViLLE is a program visualization tool, developed at the
University of Turku. It has been designed to help the novice
programmers to understand the basic concepts of program
execution. One key factor in the development has been the
language independency paradigm: instead of focusing on the
syntax of a specific programming language, the students should
understand the execution of programs in a more basic level:
how do the variables work, what is a subprogram, and how the
references are passed. To make this possible, ViLLE has an
extendable support for programming languages; almost any
language (with some limitations) can be defined with the built-
in syntax editor. Moreover, the visualization of example
programs can be viewed with any of the defined languages.
ViLLE comes with a predefined set of languages, including
Java, C++, JavaScript, Python, PHP and a pseudo language with
an easy-to-follow syntax.1

As a new feature, ViLLE has a support for automatically
assessed exercises. By using the TRAKLA2 web environment, a
collection of exercises can be made available in the web.
Students are awarded points on the completion of the exercises,
and the teacher can easily monitor their advance. Lehtonen [5]
noticed that students are more enthusiastic to use a tool, when
there is a “prize” to be collected. Because the system keeps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '08, November 13–16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11…$5.00.

score on the completed exercises and gathered points, it’s easy
to include the ViLLE exercises as a mandatory part of the
course.

2. RELATED WORK

Various other program and algorithm visualization tools have
been developed. Jeliot3 [7] is a program visualization tool,
which focuses on teaching basic concepts of procedural and
object oriented programming to novices. It relies heavily on
animations, with a focus on consistency of visualizations and
comprehensive support for Java features. JIVE [1] is a static
program visualization tool, which visualizes the relationships
between objects and methods. JAVAVIS [9] visualizes program
behavior by displaying objects graphically and program
execution with a sequence diagram. BlueJ [2] is a tool for
program visualization and visual programming, allowing users
to edit programs by directly manipulating their UML structure.
TRAKLA2 [6][4] is an algorithm visualization system with
support for automatic assessment of exercises.

ViLLE has some unique features compared to the systems
mentioned above. Firstly, the programming language support is
not limited to a single language – almost any imperative
language (including user-defined pseudo languages) can be
added to ViLLE with the built-in syntax editor. Students can
select the language any time during the execution without the
need to rewrite or re-compile examples. Secondly, the controls
are made flexible, including for example the ability to step
backwards in the execution. In addition, all editors needed
(including the syntax-, question- and example editors) are
included in the package. Thirdly, the possibility to combine
automatic assessment of exercises with program visualization is
a feature not commonly found in similar tools.

101

Figure 1: ViLLE exercises in the web

3. KEY FEATURES

ViLLE’s key features are presented here in four categories. A
more comprehensive description of features can be found in
Rajala et al. [10].

Level of abstraction. Some of ViLLE’s features support high
level of abstraction in learning to program. ViLLE has a support
for multiple programming languages, including Java, Python,
C++, PHP, JavaScript, and a pseudo language. Furthermore,
new languages can be easily defined with the built-in syntax
editor. The parallel mode in ViLLE’s visualization area utilizes
the support for multiple languages by visualizing the execution
in two different languages simultaneously. Another abstraction
of programs – the roles of variables [12] – is also supported by
ViLLE.

User interaction. Teacher can create pop-questions and attach
them to example programs with the built-in question editor. As
a new feature, these questions can be automatically assessed
(see next section). Example programs can be edited in the
visualization view, which allows the user to easily see the

effects of modification on program code. The animation
controls in the visualization view are flexible: the user can move
one step at a time both forwards and backwards or view
visualization continuously with adjustable speed. There is also a
slider which shows how far the visualization has progressed,
and which can be used to move to any state of the program.

Execution tracing. The tool visualizes the progress of program
execution by highlighting the executed code line. The progress
slider has also another function: It shows the number of steps in
a program, and thus it can be used in measuring the efficiency
of algorithms or programs. An explanation is automatically
generated for each program line. Method calls are visualized
with a call stack, which shows each method call in its own
frame. The progress of execution and the method’s variables are
displayed in the frame. ViLLE also supports the use of
breakpoints.

Customization. ViLLE includes a predefined set of examples
divided into different categories. These examples can be
exported to a web server and thus made directly accessible to
students. Teachers can also create their own example collections
with the tool and use them in teaching.

102

Figure 2: the visualization view in ViLLE

4. AUTOMATIC ASSESSMENT

ViLLE now supports the automatic assessment of the exercises.
The TRAKLA2 environment handles students’ logins, and
stores the points and the number of completed exercises.
Teacher prepares the exercises with ViLLE’s built-in question
editor (currently multiple choice and graphical array questions
are supported) and sends the exercises to server administrator
who then prepares the course and uploads the files to the server.
The example categories in ViLLE are equivalent to rounds in
the exercise set. Each round can be given opening and closing
dates. Moreover, the maximum points allowed can be defined
for each example, as well as the minimum number of points
required for each round.

The students can retake the exercises as many times as they
want. In the future versions, the possibility to add randomized
parameters to the exercises is going to be implemented. Thus,
retaking the exercises becomes more challenging.

5. EVALUATION OF THE TOOL

ViLLE has been evaluated in various studies. Rajala et al. [11]
evaluated the effectiveness of ViLLE at University of Turku.
The students participating were randomly divided into two
groups: the treatment group used ViLLE, while the control
group only had access to a web based tutorial. Learning was
measured with a pre- and post-test. The results showed that
ViLLE was most beneficial to students with no previous

programming experience, since the statistically significant
difference in the pre-test between them and the experienced
students disappeared after using the tool.

Laakso et al. [3] studied the effects of cognitive load in using
ViLLE. While all the students gained statistically significant
learning results with the system, the results showed that the
students who had been familiarized with the tool beforehand,
learned significantly better.

There are a few more studies with promising results not yet
published. ViLLE seems to be most beneficial for novice
students when used in the engagement level (see [8]) of
responding. The effects of long time usage of the tool seem
encouraging as well, since the students who used the system
throughout entire course gained higher grades than the other
students.

6. FUTURE WORK

One of the new features we are planning to include in the future
versions of ViLLE is a support for exercise templates. With
templates the teacher can define parts of code (or even entire
code) to be randomly generated or parameterized within given
limits. This way exercises can be retaken a number of times
with different starting values for variables, loops or arrays. The
possibility to automatically generate questions for templates or
self-written examples is another feature to be implemented
soon. This should make the preparation of examples more
flexible and less time consuming.

103

More information and the system itself can be downloaded from
the ViLLE homepage: http://ville.cs.utu.fi.

7. ACKNOWLEDGMENT

This work was partially supported by the Nokia Foundation and
by Academy of Finland, project 121396, Automatic Assessment
Technologies for Free Text and Programming Assignments.

8. REFERENCES

[1] Gestwicki, P. & Jayaraman, B. 2002. Interactive
visualization of java programs, IEEE Symposia on Human-
Centric Computing Languages and Environments,
Arlington, 226-235.

[2] Kölling, M., Quig, B., Patterson, A. & Rosenberg, J. 2003.
The BlueJ system and its pedagogy. Computer Science
Education., Special Issue of Learning and Teaching Object
Technology 12(4), 249-268.

[3] Laakso, M.-J., Rajala, T., Kaila, E. & Salakoski, T. 2008.
The Impact of Prior Experience in Using a Visualization
Tool on Learning to Program. Appeared in Cognition and
Exploratory Learning in Digital Age (CELDA 2008).

[4] Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X.,
Korhonen, A. & Malmi, L. 2005. Multi-perspective study
of novice learners adopting the visual algorithm simulation
exercise system TRAKLA2. Informatics in Education, 4(1),
49-68.

[5] Lehtonen, T. 2005. Javala – Addictive E-Learning of the
Java Programming Language. In Proceedings of Kolin
Kolistelut / Koli Calling – Fifth Annual Baltic Conference
on Computer Science Education. Joensuu, Finland, 41-48.

[6] Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O., & Silvasti, P. 2004. Visual Algorithm
Simulation Exercise System with Automatic Assessment:
TRAKLA2. Informatics in Education Volume 3(2), 267-
288.

[7] Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M. 2004.
Visualizing Programs with Jeliot 3. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI
2004), Gallipoli (Lecce), Italy. ACM Press, New York,
373-380.

[8] Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S. & Velázquez-Iturbide, J. Á. 2002.
Exploring the Role of Visualization and Engagement in
Computer Science Education. In proceeding Working
group reports from ITiCSE on Innovation and Technology
in Computer Science Education ITiCSE-WGR 02, 35(2),
131-152.

[9] Oechsle, R. & Schmitt, T. 2001. JAVAVIS: Automatic
Program Visualization with Object and Sequence Diagrams
Using the Java Debug Interface (JDI). In proceedings
Revised Lectures on Software Visualization, International
Seminar, May 20-25, 176-190.

[10] Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski, T. 2007.
VILLE - A language-independent program visualization
tool. Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007), Koli
National Park, Finland, November 15-18, 2007.
Conferences in Research and Practice in Information
Technology, Vol. 88, Australian Computer Society.
Raymond Lister and Simon, Eds.

[11] Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski, T. 2008.
Effectiveness of Program Visualization: A Case Study with
the ViLLE Tool. Journal of Information Technology
Education (Innovations in Practice section), 7, 15-32.

[12] Sajaniemi J. 2002. PlanAni - A System for Visualizing
Roles of Variables to Novice Programmers. University of
Joensuu, Department of Computer Science, Technical
Report, Series A, Report A-2002-4.

104

JLS/JLSCircuitTester: A Comprehensive Logic Design and
Simulation Tool

David A. Poplawski
Department of Computer Science
Michigan Technological University

Houghton, Michigan

pop@mtu.edu

Zachary Kurmas
School of Computing

Grand Valley State University
Allendale, Michigan

kurmasz@gvsu.edu

ABSTRACT
JLS and JLSCircuitTester are logic design, simulation and
testing tools that meet the needs of instructors and stu-
dents in logic design and computer organization courses.
They were designed and implemented by instructors of such
courses expressly to lecture with, to do student projects,
and to subsequently grade those assignments. They are
free, portable, easy to install and easy to learn and use,
yet powerful enough to create and test circuits ranging from
simple collections of gates to complete CPUs. They come
with on-line tutorials, help, and pre-made circuits taken di-
rectly from the pages of several commonly used computer
organization textbooks.

1. MOTIVATION
JLS is a GUI-based digital logic design and simulation tool

designed expressly for use by instructors and students of
digital logic and computer organization. In particular, it is
simple enough to be operated by an instructor during lec-
ture, and has a very shallow learning curve necessary for
student use. JLSCircuitTester adds functionality to sup-
port comprehensive, batch-oriented testing and grading of
student-designed circuits. Together they provide an easy to
use, yet powerful, mechanism to visualize the construction
and operation of a wide range of digital logic circuits. Both
are implemented in Java and will operate on any platform
with the Java Runtime Environment (JRE) installed.

Tools like JLS have been around for a long time. Burch
[1] and Wolffe [10] contain excellent, although slightly dated
summaries many free, GUI-based circuit simulators. Many
of the listed simulators are too simple to be used to construct
complex circuits and CPUs because they support simple
logic gates and wires only. (Some, for example, lack a mecha-
nism to bundle wires.) Most of the listed simulators are plat-
form specific (mainly Windows and Macintosh). A few are
Java applets and, hence, have restricted functionality. (For
example, applets may not load or save files.) Two are Java
application programs and, hence, available on all platforms:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

LogicSim [9] and Logisim [1]. Another, TkGate, is imple-
mented in C and Tcl/Tk, but can be built and installed on
various platforms. Section 4 compares JLS/JLSCircuitTester
with these other tools.

2. REQUIREMENTS
JLS and JLSCircuitTester have been designed and im-

plemented by faculty who have years of practical experience
teaching computer organization courses. The tools were mo-
tivated by needs for in-class presentation (lecture), by a de-
sire to get students to test their knowledge of logic design
by completing assigned projects, and the subsequent task of
testing and grading those projects.

2.1 Lecture
Imagine using a digital logic simulator during lecture to

demonstrate circuit concepts. For this approach to be prac-
tical, the simulator’s common, fundamental operations must
be quick, intuitive and easy. For example:

• Creating and placing logic elements should be conve-
nient (drag and drop, cut and paste, etc.).

• Connecting elements (i.e., drawing wires) should re-
quire minimal work (e.g., using simple mouse clicks).

• Elements (and their connections) should be easily re-
arranged so that new elements can be introduced to
encourage experimentation and the testing of alterna-
tives.

In addition, instructors must be able to quickly and easily
incorporate material prepared in advance and then modify
it to demonstrate different principles or to help answer stu-
dents’ questions.

• Circuits from existing popular textbooks should be
readily available so they need not be reimplmented by
every instructor.

• Importing and integrating subcircuits created prior to
class should require minimal effort.

• Instructors should be able to specify multiple sets of
input signal values and/or sequences and memory el-
ement values in advance then easily use and modify
them during lecture.

Finally, it should be easy for students to observe the step-
by-step behavior of the circuit during lecture.

105

• Instructors should be able to choose whether the sim-
ulation of a given circuit progresses quickly to the end
result, or incrementally (under instructor control) so
students can observe time-varying circuit behavior.

• Signal values and memory element values should be
easy to see and/or monitor in real time.

2.2 Assignments
Many instructors assign circuit design projects to their

students as a way of reinforcing concepts presented in class
and assessing whether the students are grasping those con-
cepts. A good, user-friendly digital logic simulator is the
ideal tool for this use.

It is usually the case that students will have little, if any,
experience with logic simulation tools. Hence many of the
same features that make a simulator ideal for lecture are also
useful to students when preparing assignments. In addition,
there are several student-oriented requirements:

• The tool should be easy to install and portable so that
a student can install it on his or her platform, which
may be different from the instructor’s, and then use it
at his or her convenience.

• Everything must be as intuitive as possible and easy
to learn. (In other words, the learning curve should be
very short and gradual.)

• Users should be able to use the same flexible interface
to model anything from simple combinational circuits
with simple gates to complex, modular circuits (such
as complete CPU implementations).

• Users (especially students) must have access to tuto-
rials that walk them through the steps of creating in-
creasingly complex circuits using more and more fea-
tures.

• On-line help must be extensive, complete and easily
navigable.

• The GUI should detect and prohibit obvious errors,
such as nonsensical circuits (e.g., two wires to the same
input, or directly connecting two non-tristated out-
puts) and overlapping elements.

• Undo/redo should be available so students can easily
eliminate non-working “solutions”.

• Cut/paste should be supported in order to make cir-
cuit replications convenient.

• Debugging should be simple, especially with respect to
slowly stepping the simulation of a circuit and the in-
terrogation and display of signal and memory element
values.

2.3 Grading
For the instructor, grading student circuits for correctness

must be as convenient as possible. In its simplest terms, this
means that there must be a way to load and simulate a cir-
cuit in “batch” mode (i.e., from the command line), without
the GUI appearing and without further human intervention.
Running a simulator in batch mode requires that input sig-
nal values and/or memory element values be configurable

externally to the circuit being tested — preferably in files
that are read by the simulator prior to or during simulation.
To be most useful, the batch mode should have the ability
to simulate the circuit under test multiple times with differ-
ent, sometimes exhaustive, sets of interrelated, time varying
inputs. The ability to compare circuit generated outputs
with instructor-provided correct answers, and conveniently
report on the results, will greatly simplify grading. In addi-
tion, providing students the ability to easily test their own
circuits will improve learning by motivating students to fix
problems instead of submitting an incorrect assignment and
receiving a lower score [4].

3. OUR SOLUTION
JLS and JLSCircuitTester directly address the needs raised

above. JLS is written in Java and has been tested on many
platforms without modification. It consists of a simple to
use, yet powerful, graphical editor that allows users to cre-
ate and modify logic circuits, and a simulator that will show
(in multiple ways) the operation of the circuit over a period
of time. Circuits as simple as a few logic gates or as com-
plex as complete CPU microarchitectures with embedded
subcircuits have been created and simulated in JLS.

Logic circuits can contain the standard gate types: AND,
OR, NOT, NAND, NOR, XOR, tri-state buffer and a log-
ically neutral time delay element; composite elements: de-
coder, multiplexer, and adder; memory elements: registers,
SRAM, and ROM; a clock and various mechanisms for con-
necting gates and elements via wires and wiring elements.
Users can easily create state machines using JLS’s state ma-
chine editor. Combinational circuitry specified by a truth
table can be generated by using JLS’s truth table editor.
Circuits can include copies of other circuits (subcircuits),
nested to an arbitrary depth. Complex, time-varying multi-
signal inputs can be specified.

JLSCircuitTester provides a robust batch mode with which
students and instructors can thoroughly test a circuit. Users
provide a text file describing the set of tests to run. Each test
specifies the initial input signal and memory element values
as well as the expected final output signal and memory el-
ement values. JLSCircuitTester then simulates the circuit
once for each test, compares the observed output values to
the expected output values, and reports any discrepancies.

A thorough evaluation of a complex circuit requires many
tests. JLSCircuitTester provides a number of short-cuts to
simplify the generation of a large, possibly exhaustive, set of
tests. For example, users can specify a list of values for each
input. JLSCircuitTester will then generate one test for each
unique combination of input values. Users can also write
a Java class to calculate expected output values instead of
having to type them out by hand. See [4] for more details.

4. COMPARISONS WITH OTHER TOOLS
Many existing logic design and simulation tools are very

limited in the sense that they provide minimal functionality
(e.g., simple logic gates and wires only). Such tools are well
suited to limited situations (e.g., just simple logic) where all
that is being taught matches what is available.

LogicSim has an intuitive circuit drawing mechanism and
the ability to display current signal values. It also has a
subcircuit (module) inclusion mechanism. However it only
supports basic logic gates, flip-flops, and clocks. Wires can-

106

not be bundled. Simple inputs values come from switch and
number-input elements. Outputs are displayed by LED and
LCD-like elements. There is only a limited concept of time
and no concept of propagation delay. There is no batch exe-
cution mechanism and, therefore, little to assist with grading
of students’ circuits.

Logisim has an easy-to-use drawing mechanism and the
ability to display current signal values. It supports basic
logic gates, tri-state gates, flip-flops, constant value sources,
and has a subcircuit inclusion. There are no other complex
elements, no propagation delays and no batch execution and
testing capability.

The tools most comparable to JLS in functionality are
LogicWorks 5 [2] and TkGate [3]. LogicWorks is a commer-
cial product (i.e., not free) that runs on Windows and Mac
platforms only. It has little support for batch execution and
grading.

TkGate is JLS’s principle competitor. It has features that
JLS does not:

• A multi-lingual interface.

• Support for transistors as a basic element.

• Static critical path analysis.

• An interactive “tty” element for user interaction with
the circuit.

• Customizable appearance features (e.g., colors).

• Tools for generating memory files from microcode and
assembly language.

• Virtual peripheral devices (user defined input/output).

• A batch mode for which the input is a complete Verilog-
based scripting language that can control many as-
pects of the simulator.

However, JLS and JLSCircuitTester have the following:

• Truth tables with an arbitrary number of single-bit
inputs and outputs can be specified as basic elements.

Using a truth table can be more intuitive and conve-
nient than a gate-level implementation of a needed but
pedagogically uninteresting subcircuit.

• A state machine (Moore machine) editor.

This feature simplifies the construction of circuits con-
taining a state machine (e.g., CPU control) tremen-
dously. Mapping an abstract state machine specifica-
tion to hardware (state register and input/next state
combinational functions), while straightforward, is te-
dious, error prone, and extremely difficult to modify,
extend, observe in operation, and debug.

• Instructors can “lock” parts of the circuit they don’t
want students to modify, thereby simplifying grading
because certain circuit parts will be guaranteed to be
in place and correct.

• The ability to give a wire a name, then put refer-
ences to that named wire in other parts of the circuit,
thereby avoiding long wire runs across the circuit that
complicate the visualization.

Figure 1: Truth Table Example.

Figure 2: State Machine Example.

107

• Complete platform independence and extreme simplic-
ity of installation (simply download a single Java jar
file for JLS, another for JLSCircuitTester).

• A library of circuits from popular computer organi-
zation textbooks is available, including directions on
how to interact with the circuits to observe their be-
havior. Included currently are Patterson and Hennessy
[6], Patt and Patel [5], and Tanenbaum [8], with more
being added.

• Extensive static error checking to avoid the construc-
tion of “illegal” circuits.

• A testing framework that has a shallow learning curve
and can be learned quickly regardless of experience
with circuit design.

The key contributions from this list are JLS and
JLSCircuitTester’s portability and ease of installation, JLS’s
state machine and truth table elements, JLSCircuitTester’s
powerful, yet simple, mechanisms for testing and grading
circuits, and the library of existing textbook circuits.

5. PUBLICATIONS
JLS was first presented in a poster session at SIGCSE

2007, then in a paper presented at the 2007 Workshop on
Computer Architecture Education [7]. JLSCircuitTester was
first presented in a poster session at SIGCSE 2008. The
ITiCSE paper discusses how providing students access to
JLSCircuitTester greatly improved the quality of computer
architecture projects [4] .

6. REFERENCES
[1] Carl Burch. Logisim: a graphical system for logic

circuit design and simulation. J. Educ. Resour.
Comput., 2(1):5–16, 2002.

[2] Capilano Computing. LogicWorks 5 Interractive
Software. Prentice Hall, 2003.

[3] Jeffrey Hansen, 2006. http://www.tkgate.org.

[4] Zachary Kurmas. Improving student performance
using automated testing of simulated digital logic
circuits. In ITiCSE ’08: Proceedings of the 13th
annual conference on Innovation and technology in
computer science education, pages 265–270, New York,
NY, USA, 2008. ACM.

[5] Yale Patt and Sanjay Patel. Introduction to Computer
Systems: From Bits & Gates to C and Beyond.
McGraw Hill, second edition, 2004.

[6] David Patterson and John Hennessy. Computer
Organization and Deisgn: The Hardware/Software
Interface. Morgan Kaufmann, third edition, 2005.

[7] David A. Poplawski. A pedagogically targeted logic
design and simulation tool. In WCAE ’07: Proceedings
of the 2007 workshop on Computer architecture
education, pages 1–7. ACM, 2007.

[8] Andrew Tanenbaum. Structured Computer
Organization. Prentice Hall, fifth edition, 2006.

[9] Andreas Tetzl, 2006.
http://www.tetzl.de/java logic simulator.html.

[10] Gregory S. Wolffe, William Yurcik, Hugh Osborne,
and Mark A. Holliday. Teaching computer
organization/architecture with limited resources using
simulators. In SIGCSE ’02: Proceedings of the 33rd
SIGCSE technical symposium on Computer science
education, pages 176–180, New York, NY, USA, 2002.
ACM Press.

108

PeerWise

Paul Denny, John Hamer, and
Andrew Luxton-Reilly

Dept. of Computer Science
University of Auckland

Auckland, New Zealand
{paul, j.hamer, andrew}@cs.auckland.ac.nz

Helen Purchase
Dept. of Computing Science

University of Glasgow
Glasgow, United Kingdom

hcp@dcs.gla.ac.uk

ABSTRACT
PeerWise is a web-based system that allows multiple-choice
question banks to be built solely from student input. The
system provides a number of intrinsic reward structures that
encourage students to contribute high-quality questions in
the complete absence of instructor moderation. Several op-
portunities for learning arise, spanning the range from sim-
ple drill-and-practice exercises to deep, reflective study. Af-
fective skills are also developed, as students are challenged to
give and receive critical feedback and provide quality judge-
ments.

The system is freely available, and has been used in a
range of disciplines in two Universities.

Categories and Subject Descriptors: K.3.1 Computers
and Education: Computer Uses in Education

General Terms: Human factors.

Keywords: MCQ, peer assessment, automated, question
test bank, PeerWise, contributing student.

1. RATIONALE
There is a lot to learn in computing, not least in intro-

ductory programming. Some of it is quite subtle (such as
integer-float widening rules, or operator precedence), some
of it can be encyclopedic in nature (API libraries), and much
requires high-level cognition (problem decomposition, algo-
rithm design, coding).

Further, as teachers in a professional discipline, we have
a responsibility to prepare students with the skills neces-
sary for them to function effectively in the knowledge econ-
omy. These skills include: working collaboratively, making
informed judgements, presenting information, etc. [3, 4].

PeerWise addresses these challenges by allowing students
to compose multiple-choice questions and contribute them to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

a shared repository, where they are available for answering
by other members of the class. Student identities are kept
confidential; i.e. although PeerWise knows who contributed
and answered each question, this information is not revealed
to users. Figure 1 shows the main selection screen that stu-
dents use to select the questions they answer.

Figure 1: Students have access to all contributed
questions.

Several opportunities for learning arise in this process.
First, the student must choose a topic and understand it
deeply enough to be able to frame a suitable question. The
question will often be inspired from a misconception or dif-
ficulty with which the student struggled when learning the
topic. The question must include a stem, a set of alterna-
tives, an indication of which alternative is correct, and a
written explanation for why this alternative is correct and
the other alternatives are wrong. Questions can also be
tagged with keywords, in which case the student needs to
think about how the question relates to the course.

A second phase of learning arises when students select
and answer questions from the repository. If their answer
differs from the alternative deemed correct by the author,
they need to reflect on who is in error. A frequency table of
responses from other students is displayed, so students know
how many other students gave the same or different answer.
Figure 2 shows the student view of the frequency table.

109

Figure 2: Students can see how their classmates re-
sponded to the question.

Students are encouraged to apply critical analysis skills
by judging the contributions of others. They are able to
rate both the quality and the difficulty of a question, as a
means of providing feedback to the author and to encour-
age or discourage other students from attempting it. Peer-
Wise provides a discussion thread on each question, to allow
uncertainties to be debated and for conveying possible im-
provements. Students are able to express their agreement
or disagreement, displayed as a small star or cross, with any
comment posted and the comments are displayed in the dis-
cussion thread in order of agreement. Prolific authors and
authors who contribute popular or highly rated questions
are shown on leader boards, which serve to stimulate high
quality engagement with the system. Figure 3 shows a typ-
ical discussion thread associated with a question.

Figure 3: A discussion thread is included with each
question.

PeerWise was first used in 2006, and is currently used
by courses in Computer Science, Engineering, Population
Health and Pharmacology at The University of Auckland,

and Computer Science and Chemistry at The University of
British Columbia. The classes range in size from 16 to 869.

1.1 Typical usage
PeerWise works best with large classes, ideally with a hun-

dred or more students. We have limited experience in its
use with small classes. Our best practice recommendations
are to require each student to contribute a small number of
questions (perhaps two) and to answer, say, ten or twenty
questions. Awarding a few marks for achieving these mini-
mal participation requirements is usually sufficient to ensure
a rich question bank.

We have not found it necessary to restrict the choice of
topic, or to insist on students posting comments. Some guid-
ance in selecting keyword tags may be appropriate, however.

Generally, students are given several weeks in which to
contribute their questions, followed by a shorter period in
which to answer the minimum requirement. There is usually
no need to close access to the system until after the end
of the course, as students are likely to voluntarily use the
repository as a revision tool.

2. EVIDENCE FOR SUCCESS
We have looked at the following measures of success:

2.1 Student usage patterns
Usage log data provides detailed information of when stu-

dents are using PeerWise and what they are doing. We have
found distinct patterns of use for contributing and for an-
swering questions [6]. Where contributions of new questions
are required by a specific date, there is a distinct peak lead-
ing up until that date, with little or no activity after. Stu-
dents tend not to continue writing new questions after the
assessment of that component is complete. Most students
contribute the minimum number of questions.

Answering questions follows a different pattern. There is
a distinct peak before the minimum answer due date, but
further peaks precede test and examination dates. However,
most feedback on the quality of questions is done during the
time questions are being contributed.

These patterns are consistent across different courses, and
do not appear to be dependent on the lecturer, grading in-
centives, or use of MCQ questions in the final exam. They
show that students value PeerWise as a revision tool, and are
willing to spend time using it without any explicit incentive.

2.2 Examination performance
We have also done a correlation study between PeerWise

activity and overall course performance [5]. Our approach
involved dividing the students into quartiles based on their
performance in a mid-semester test that was administered
before any use of PeerWise. Each quartile was then divided
into equal-sized “most PeerWise active” and “least PeerWise
active”groups, using various measures of activity (number of
contributed questions, number of questions answered, num-
ber of comments, total size of comments, number of days
active, and a combined measure).

We found a significant correlation between all activity
measures and performance on the MCQ section of the exam.
Further, three of the activity measures (total length of com-
ments, days active, and the combined measure) showed a
significant correlation with the written examination ques-
tions. There is no reason to expect that extensive experience

110

with MCQs would help in performance of written questions,
unless such experience led to a deeper understanding of the
material. Our results suggest it is not merely the activities
of creating and answering MCQs that result in improved
non-MCQ performance, but a high engagement with Peer-
Wise (as evidenced by comments and activity days). This
engagement thus suggests the development of a deeper level
of understanding.

2.3 Course coverage
We have looked at the topics on which students choose to

write questions and the“tags” they use to classify their ques-
tions, in a course that provided neither guidance or incentive
to influence student choice. Our interest in this study was in
the coverage of PeerWise question banks, and in the ability
of students to come up with accurate tag.

We found that the coverage was indeed comprehensive,
and the tagging was largely effective.

2.4 Question quality
We studied the quality of questions created by students

in a large, first-year programming course [7]. We found that
students are capable of writing questions that faculty judge
to be of high quality. The best questions have well written
question stems, good distracters and detailed explanations
that discuss possible misconceptions.

We inspected a sample of questions closely to study spe-
cific aspects of question construction. In particular, we as-
sessed the clarity of the language used describing the ques-
tion and recorded whether any minor grammatical errors
were present. We also inspected the set of distracters for
each question, recording how many of them were meaning-
ful and feasible. Finally, we classified the usefulness of the
explanations written by question authors.

Because students can write comments about the questions
they answer, even poorly written questions can become use-
ful learning resources if the comments left by others are in-
sightful. In all of the cases we examined, questions with
incorrect solutions were identified by other students in the
class, and comments describing the mistake were provided.

We also looked at the accuracy of the student ratings
(i.e. how accurately the students were able to judge the qual-
ity of the questions). The judgements that students make
about the quality of questions they answer are reasonably
accurate, and correlate strongly with staff judgements. This
is particularly interesting since students are using questions
as a learning resource and a self-assessment tool, whereas
staff generally use questions for summative assessment and
diagnosis of misconceptions.

These results suggest that not only can students create
high quality questions, but their ability to accurately deter-
mine the quality of the questions created by other students
ensures that high quality questions are answered more fre-
quently than low quality questions. Figure 4 illustrates how
the high quality questions in a typical course are answered
more frequently than the low-quality questions.

3. RELATED WORK
The idea of student-contributed questions is not new, and

a number of initiatives that share our aims have been re-
ported in the literature.

Horgen [9] used a lecture management system to share
student generated MCQs. Fellenz [8] reported on a course

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400

Number of responses to question

St
ud

en
t r

at
in

g
of

 q
ue

st
io

n

Figure 4: Students choose to answer high quality
questions more frequently than low quality ques-
tions

where students generated MCQs which were reviewed by
their peers, although technology was not used to support
this process. Fellenz reported that the activity increased
student ownership of the material and motivated students to
participate. Barak [2] reports on a system named QSIA used
in a postgraduate MBA course in which students contribute
questions to an on-line repository and rank the contributions
of their peers. Arthur [1] reports on a large course activity
in which students in one lecture stream prepare questions
for a short quiz which is then presented to students in an-
other stream. The questions are stored in a simple electronic
repository. Yu [10] has students construct MCQ items and
submit them to an on-line database where they are peer-
assessed. Feedback about quality is used to improve the
items before they are transferred to a test bank database to
be used for drill-and-practice exercises.

All of these reports agree that student-contributed MCQs
is a powerful idea. The major contribution of PeerWise is a
tool that is simple for new institutions to adopt and which
supports very large classes with little or no moderation re-
quired by instructors.

4. REFERENCES
[1] N. Arthur. Using student-generated assessment items

to enhance teamwork, feedback and the learning
process. Synergy, 24:21–23, Nov. 2006.
www.itl.usyd.edu.au/synergy.

[2] M. Barak and S. Rafaeli. On-line question-posing and
peer-assessment as means for web-based knowledge
sharing in learning. International Journal of
Human-Computer Studies, 61:84–103, 2004.

[3] M. Birenbaum. Assessment 2000: toward a pluralistic
approach to assessment. In M. Birenbaum and
F. Dochy, editors, Alternatives in Assessment of
Achievement, Learning Processes and Prior
Knowledge, pages 3–31, Boston, MA., 1996. Kluwer
Academic.

[4] B. Collis. The contributing student: A blend of
pedagogy and technology. In EDUCAUSE Australasia,
Auckland, New Zealand, Apr. 2005.

[5] P. Denny, J. Hamer, A. Luxton-Reilly, and
H. Purchase. Peerwise: students sharing their multiple

111

choice questions. In ICER’08: Proceedings of the 2008
International Workshop on Computing Education
Research, Sydney, Australia, Sept. 2008.

[6] P. Denny, A. Luxton-Reilly, and J. Hamer. The
PeerWise system of student contributed assessment
questions. In Simon and M. Hamilton, editors, Tenth
Australasian Computing Education Conference (ACE
2008), volume 78 of CRPIT, pages 69–74, Wollongong,
NSW, Australia, 2008. ACS.

[7] P. Denny, A. Luxton-Reilly, and B. Simon. Quality of
student contributed questions using peerwise. In
M. Hamilton and T. Clear, editors, ACE’09:
Proceedings of the Eleventh Australasian Computing
Education Conference (ACE2009), CRPIT,
Wellington, New Zealand, Jan. 2009. ACS. (submitted
for publication).

[8] M. Fellenz. Using assessment to support higher level
learning: the multiple choice item development
assignment. Assessment and Evaluation in Higher
Education, 29(6):703–719, 2004.

[9] S. Horgen. Pedagogical use of multiple choice tests -
students create their own tests. In P. Kefalas,
A. Sotiriadou, G. Davies, and A. McGettrick, editors,
Proceedings of the Informatics Education Europe II
Conference. SEERC, 2007.

[10] F.-Y. Yu, Y.-H. Liu, and T.-W. Chan. A web-based
learning system for question posing and peer
assessment. Innovations in Education and Teaching
International, 42(4):337–348, Nov. 2005.

112

Towards Students’ Motivation and Interest –
Teaching Tips for Applying Creativity

Ralf Romeike
Department of Computer Science

University of Potsdam
A.-Bebel-Str. 89

14482 Potsdam, Germany

romeike@cs.uni-potsdam.de

ABSTRACT
Our research revealed creativity as a pathway to computer science
in the biographies of CS freshman. Furthermore the application of
creativity in CS classes was found to be a powerful instrument to
address students’ motivation and interest. This poster concludes
the findings of the research projects by giving concrete teaching
tips of how creativity could be regarded when planning and
conducting CS lessons.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, Literacy, Self-
assessment.

General Terms
Experimentation, Human Factors.

Keywords

Creativity, Computer Science, Wider Access, Computers and
Society, CSE Research, Pedagogy, Motivation..

1. INTRODUCTION
Creativity research suggests that the application of creativity in
education has the potential to raise students’ motivation and
interest and thus their achievement.
In a study investigating the question whether this potential is
reflected in biographies of CS majors creativity was found to
form a potential pathway to CS [1]. Students in whose pathways
creativity characteristics were found perceived CS as fun,
creative, and self-exploring. It was found that it was most
rewarding for students to strive for good working software, based
on self chosen and meaningful tasks, even if the resulting
products did not have any outside value. Most important to the
students were their activities (mostly programming), what is
typical for creative processes.

The application of creativity in CS high school classes approved
the potential when creativity is applied – motivation, fun, interest
and achievements improved in a high school programming lecture
[2]. The implications of this research for applying creativity in
teaching are illustrated in Fig. 1 and summarized as follows.

2. APPLYING CREATIVITY
According to our research the use and application of creativity is
based on three drivers: the subject and habits, the regard of
personal factors and issues and the choice of creativity supporting
tools, which are mainly responsible for a creative environment
[3]. The creativity supporting factors are interrelated: interest
stimulates motivation and vice versa; especially design processes
are interesting to students. Creativity in CS especially gets
obvious in (software) design processes, which generally culminate
in a product. In CS lessons such a product is the goal of a
constructive learning process and results from the adequate
composition of CS concepts represented as building blocks. The
CS concepts are fundamental for an understanding and efficient
use of ICT and the potential for constructing artifacts with ICT,
which again fosters students’ motivation to engage in computing.
According to these drivers the implications are illustrated in Fig. 1
and summarized as follows. Further explanations and references
to the underlying research can be found in the papers cited.

2.1 Computer Science as a creative subject
and activity
In CS creativity can be fostered due to the characteristics of the
subject. This especially gets obvious to students in programming
and should be supported by applying tasks that reflect the creative
sides of programming. This can be done by

• focusing on the products as well as on the creative
process

• allowing tinkering around and trial & error for finding a
solution

• applying a building block metaphor when introducing
CS concepts

2.2 Regarding personal factors
Creativity requires intrinsic motivation; also, intrinsic motivation
can be stimulated by creative activities. In CS lessons creative
activities stimulate motivation and interest of the students. This is
more likely to occur if the tasks assigned

• are meaningful to students

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '08, November 13–16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11…$5.00.

113

• are open tasks and thus allow for problem finding and
problem defining

• are contextualized tasks

2.3 Choosing ICT that support creativity
Information- and Communication Technologies (ICT) have the
potential to foster creativity in CS. Many of the tools available for
teaching in CS per se fulfill creativity characteristics. Also, ICT
form a major part of the learning environment. In order to ensure
best possibilities for creativity tools need to be chosen that
support [4]

• pain-free exploration and experimentation
• immediate and useful feedback for one’s actions
• no big penalties for mistakes, meaningful reward for

success
• easy way to undo and redo
• visualizing data processes
• searching for knowledge and inspiration
• composing a work step by step
• disseminating results to gain recognition

3. CONCLUSION
The creative perception of CS is a very attractive one. We highly
encourage educators to try out the possibilities of creativity and
the chances it offers for teaching CS.

4. REFERENCES
[1] Knobelsdorf, M. and Romeike, R. Creativity as a Pathway to

Computer Science. In Proc. of the 13th Annual Conference on
Innovation and Technology in Computer Science Education
(ITICSE 2008), Madrid. ACM Press, 2008.

[2] Romeike, R. Applying Creativity in CS High School
Education - Criteria, Teaching Example and Evaluation. In
Proc. of the 7th Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), Koli, Finland, 2008.

[3] Romeike, R. Three Drivers for Creativity in Computer Science
Education. In Proc. of the IFIP-Conference on "Informatics,
Mathematics and ICT: a golden triangle", Boston, 2007.

[4] Shneiderman, B. Creativity support tools. Commun. ACM, 45
(10), 2002, 116-120.

OriginalityChallengeInspiration

Identification

Relevance

Possibilities for
exploration

Feedback Undo/Redo

Visualization

Self determination

Problem finding Experimentation Open Goals Restrictions Concept knowledge Concrete Learning

Ideas

Creative
CS process

Student

CS
(Domain)

Motivation

Interest

Construction -
potential

CS
concepts

Product Building
blocks

through

through
as

ICT

Dissemination

Knowledge
ressource

Composing step by step

Possiblities for
Exploration

Fig. 1: Factors and implications for creative computer science lessons.

114

Presentation of Automatic Conflictive Animations

Andrés Moreno
Department of Computer Science and Statistics

University of Joensuu, Finland
firstname.lastname@cs.

joensuu.fi

Niko Myller
Department of Computer Science and Statistics

University of Joensuu, Finland
firstname.lastname@cs.

joensuu.fi

General Terms
Human Factors, Languages

Keywords
CS1, animation, programming, conflictive animation, con-
structivism

1. INTRODUCTION
Conflictive animations is an approach to use animations in

programming education which was introduced at last year’s
Koli Calling [4]. Conflictive animations are created so that
they do not animate faithfully what the programs intend to
do. They aim to compel the student to critically review the
animation by asking them to spot possible errors or mistakes
in the animation. Thus, students take a new role in their
relation to educational tools, which are now prone to fail.

Previously, program visualization has been used to demon-
strate the fundamental concepts of programming. Lecturers
present programming concepts along its visual representa-
tion using program visualization tools. Programs written by
teachers or students are animated step by step showing how
the computer executes its statements. Teachers can concen-
trate in the explanations as the tool provides the correct
graphical representation. Students can later use these same
tools to review the lessons or debug their own programs.

Automatic generation of program visualizations is possi-
ble with tools like Jeliot 3 [3]. Algorithm animation tools
like MatrixPro [2] allow to create animations of certain data
structures and operations on them automatically. These
tools solve one of the common issues teachers have with
algorithm animation; they often complain about the time
consuming task of creating animations of their own exam-
ples [5].

To allow for a convenient way of creating conflictive ani-
mation activities we have started implementing them in Je-
liot 3, which is described in Section 2. Jeliot 3’s architecture
has been modified to allow the development of conflictive an-
imations for individual concepts. These modifications and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 ...$5.00.

new user interaction features are shortly discussed in Sec-
tion 3.

2. JELIOT 3
In order to demonstrate the capabilities of conflictive an-

imations in programming learning, we have used Jeliot 3, a
program visualization environment. Jeliot has been effective
in improving the learning of elementary computer science
and programming [1]. It visualizes Java programs automat-
ically without any user involvement. Thus, novices can start
using Jeliot 3 on their first day of learning to program. Jeliot
3 supports the addition of stop and think questions, which
ask the students about the result of the following statement
or expression.

Fundamental components of the GUI can be seen in Fig. 1.
The source code editor is in the left-hand pane, while the
right-hand pane is used to display the visualization. VCR-
like buttons to control the visualization are located in the
lower left corner. Fully dynamic animation of the data and
control flow of the program is displayed, including every
aspect of the program execution (e.g, method calls, object
construction, and expression evaluation). The animation
is created automatically from the source code, so that the
student needs only to learn to use the control buttons in
order to work with Jeliot 3.

3. CONFLICTIVE FEATURES
Jeliot 3’s modular architecture has been extended to add

support for alternate and potentially conflictive animations.
Jeliot 3’s Java interpreter has been altered to produce a
faulty interpretation of correct source code. The Java inter-
preter notifies the start and end of a conflictive animation to
the visualization engine using an special instruction. This
information is used by the user interface to support, i.e., give
feedback, the student finding the error.

Three concepts are already implemented in Jeliot 3 for po-
tential conflictive animation including basic loop operation
and advanced inheritance concepts. Thus, any source code
that contains the implemented conflictive concepts leads to
a conflictive animation that students can interact with. The
framework that has been implemented in Jeliot 3 provides
the structure to add more conflicts for other concepts with
relative ease.

New potential conflicts could reflect common misconcep-
tions of students’ understanding of Java execution, but it is
more important the new role the student takes when watch-
ing the animation than the conflict itself.

115

Figure 1: Conflictive user interface of Jeliot 3. In
the picture, the student has pressed the Fault button
and asked why she thinks there is an error.

3.1 User Interaction
Jeliot 3 UI needs to change when users are dealing with

conflictive animations. As the mission of the student is to
spot the error, we include a Fault button that, when pressed,
indicates to the visualization tool that the user thinks a con-
flict (i.e. error) has occurred. Moreover, the Play button has
been removed to force the student go step by step. Figure 1
shows the user interface of Jeliot 3 after the user has pressed
the Fault button at the right time.

Conflictive animations can be used in assessment by ask-
ing students to press the Fault button whenever they detect
a conflict. To avoid random trials, there is a limit, 3, to the
number of times the Fault button can be pressed in a single
run of the animation. If this limit is reached, the animation
is restarted. In addition to this, the conflict may only be
apparent to the students some time after it has happened.
In Jeliot 3, students have a variable number of steps after
which they can still report the occurrence of an error.

When the user presses the Fault button, she will be in-
formed of the success of her trial. If unsuccessful, she will
have to continue watching the animation looking for an er-
ror. If the students has pressed the Fault button at the
correct time, a multiple choice question checks whether her
reason for pressing it was the correct one. This helps the
student to reflect better on what has happened and why;
teachers could gather this valuable feedback to identify mis-
understandings held by the students.

Finally, when a conflict animation has been spotted, Je-
liot 3 rewinds itself and correctly animates the conflictive
concept. On the contrary, if the animation reaches the end
and the user has not spotted the error, she is given a hint
of where the error is and asked to try again.

Awareness of the conflicts.
It is still not clear how we should make the students aware

of the possible conflicts present in the animation. On one
hand, students should be aware of the types of conflicts or
their levels of abstraction that are possible in the current
animation in order to be able to concentrate on right aspects
of the program execution. Due to the interpretative nature
of Jeliot 3, it can not detect and warn in advance of the

errors that are going to happen.

4. DISCUSSION
In this paper we have presented an implementation of con-

flictive animations that addresses the responding level of the
engagement taxonomy [6]. The responding activity corre-
sponds to the act of students spotting in time when the an-
imation has gone wrong. Higher levels in the taxonomy,as
changing or presenting, are not suitable for automatic cre-
ation, but they should also be considered when working with
conflictive animations.

It is worth noting, that according to our beliefs, spotting
and identifying the error is not paramount. With conflic-
tive animations students should now pay more attention to
the animation and force themselves to understand the ani-
mation principles and the programming concepts presented
with them.

Correct presentation and interaction with conflictive an-
imations is an open topic, and only one possibility is im-
plemented in Jeliot 3. Feedback from students is currently
being analysed for different modes of interaction as well as
effectiveness of the concept. We consider that automatic
generation of conflictive animations opens the door to ex-
plore all the possibilities that conflictive animation can of-
fer to improve students understanding of programming and
their usage of visualization tools.

5. REFERENCES
[1] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen.

The jeliot 2000 program animation system. Comput.
Educ., 40(1):1–15, 2003.

[2] V. Karavirta, A. Korhonen, L. Malmi, and
K. Stalnacke. Matrixpro - a tool for demonstrating data
structures and algorithms ex tempore. In Proceedings of
ICALT 2004, pages 892–893, 2004.

[3] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing Program with Jeliot 3. In Proceedings of the
International Working Conference on Advanced Visual
Interfaces, AVI 2004, pages 373–380, Gallipoli (Lecce),
Italy, 2004.

[4] A. Moreno, E. Sutinen, R. Bednarik, and N. Myller.
Conflictive animations as engaging learning tools. In
R. Lister and Simon, editors, Seventh Baltic Sea
Conference on Computing Education Research (Koli
Calling 2007), volume 88 of CRPIT, pages 203–206,
Koli National Park, Finland, 2007. ACS.

[5] T. Naps, S. Cooper, B. Koldehofe, C. Leska,
G. Rößling, W. Dann, A. Korhonen, L. Malmi,
J. Rantakokko, R. J. Ross, J. Anderson, R. Fleischer,
M. Kuittinen, and M. McNally. Evaluating the
educational impact of visualization. In ITiCSE-WGR
’03: Working group reports from ITiCSE on Innovation
and technology in computer science education, pages
124–136, New York, NY, USA, 2003. ACM.

[6] T. L. Naps, G. Rößling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. Á. Velázquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. In ITiCSE-WGR ’02:
Working group reports from ITiCSE on Innovation and
technology in computer science education, pages
131–152, New York, NY, USA, 2002. ACM Press.

116

Is Automatic Evaluation Useful for the Maturity

Programming Exam?
Bronius Skupas

Institute of Mathematics and Informatics
Akademijos str. 4

LT-08663 Vilnius, Lithuania
+37068477349

bskupas@ktl.mii.lt

Valentina Dagiene
Vilnius University,
Naugarduko str. 24

LT-03225 Vilnius, Lithuania
+37069805448

dagiene@ktl.mii.lt

ABSTRACT
The optional maturity programming exam is considered as an
outcome of the secondary curriculum on information technologies
in Lithuania. The most important part of the exam is the
evaluation of the students’ programs. A special application was
developed for automatic and manual evaluation of programs. It
evaluates program correctness, programming constructs and
style. The application proposes a score to evaluators who make
the final decision. A comparison of evaluations shows potency in
this area.

Keywords
programming examination, automatic evaluation, programming
style.

1. PROGRAMMING EXAM AND A
SCHEME OF ASSESSMENT
In Lithuania, informatics and information technologies (IT) were
incorporated into the optional maturity examination block. A
common discussion on the development of maturity examination
in information technologies and informatics was presented in [1].
Considering that programming as a branch is fairly important to
the state’s economy, the decision was made to introduce a special
examination in programming.

Since the content of the informatics curriculum puts an emphasis
on information technologies, it was decided to develop two types
of maturity examinations. The first one is intended to evaluate
the students’ skills of using information and communication
technologies (ICT) at a school level. Another one is focused on
programming skills and is intended to promote the professional
studies (informatics, computer science, software engineering,
etc.) in higher education.

The national examination in programming (since 2006) focuses
on: knowledge and understanding – 30%, skills – 30%, and
problem solving – 40%. The examination consists of test
questions in IT (25%), test questions in programming (25%) and

two practical programming tasks (50%).

The aim of the programming test is to examine the level of
students’ knowledge and understanding of the tools required in
programming (elements of the programming language, data types
and structures, control structures, basic algorithms).

The goal of practical tasks is to create programs for the given
problems. Developing programs is one of the most important
parts of that type of examination as well as one of the most
difficult tasks for students.

In the sequel we will focus on programming tasks and their
evaluation.

2. EVALUATION PROCESS
The problems selected for the programming part are oriented
towards the selection of data structures and application of basic
algorithms to work with the data structures created. Solutions of
problems must be batch style programs: input data must be read
from the text file and output should be made in another text file.
Students have to write programs using the FreePascal
programming language.

The criteria for the evaluation of programs have been found
(Table 1). The proportions of points allocated for each particular
task varied in rather a narrow range, depending on the particular
difficulty and extent of the task.

Table 1. Programming evaluation criteria and weight in 2008

Evaluation criteria %
Program testing result. If all the tests are positive, all
points are marked, otherwise, the points are marked for
reading from the file, correct parts of the program.

70

Subroutines, their parameter lists, correct calls to them,
subroutines are performing actions required in the task. 18

Data types and variables. Suitability of data types for the
task, their correctness and rationality. Correct use of
variables.

4

Style of the programming. Accordance with the spelling
rules, comments, structuring of the program’s text layout,
names of the constants, types and variables as well as
their suitability for the task.

8

Testing of solutions of the exam was challenging. Prognosis was
for 1500 students. We had some practice with Olympiads in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling '08, November 13–16, 2008, Koli, Finland.
Copyright 2008 ACM 978-1-60558-385-3/08/11..$5.00.

117

mailto:bskupas@ktl.mii.lt
mailto:dagiene@ktl.mii.lt

Informatics, but the amount of participants was lower there. The
analysis of the exam has showed that evaluation will be quite
different from that of Olympiads in Informatics. Usually quite
good programmers participate in contests on programming and
even there the scores are sometimes very low. It was clear, that
automatic evaluation in examination should be very different
from contests in evaluation of non-functioning programs.
The main difference between the concept of the Olympiad and
that of maturity examination in programming is the idea of
“fixing” small errors in programs. The problem with the “fixing”
concept was that it is difficult to tell whether it is small error or
big, and how many patches we can provide, etc. After patching
we must retest the program with all data sets, and afterwards we
think how many points a student lost with this error…
It has turned out that an interactive system is required for
evaluation.

2.1 Program testing with data sets
Every solution must be compiled; afterwards it must be run with
several data sets. In some tasks several different outputs can
possibly be evaluated as correct. This gives an idea to use a
different output correctness checker for each task.

As students are not professional programmers, it is common to
have different simple errors in output format. Namely, forgotten
spaces between numbers, all the output in one line, etc. could be
examples of such style errors. A decision was made to split the
correctness checker into two output evaluating programs: the
output format checker and the output evaluator.

2.2 Automatic analysis of the source code and
automatic evaluation of the programming style
Manual evaluation of the programming style is subjective.
Several evaluators usually provide a different score. This caused
an idea to create an automatic programming style evaluating
application that can generate a reference score for evaluators.
This application had to make analysis of used data structures and
subroutines.

”Research on measurable programming style definitions was very
active in the 1980’s” and is still in progress [3]. The main
problems in this area are standards for the good programming
style and choice of measure. Pascal programming style Rees [4]
measures with simple statistics such as percentage of comment
lines, number of gotos, and the average length of identifiers.
Later P. W. Oman and C. R Cook [5] proposed taxonomy for
programming style.

After the expert discussion it has been agreed that the main
programming style concept will be based on the Charles Calvert
(Borland employee) concept [2]. Later on, following criteria were
selected for Pascal programming style evaluation: reasonable text
indentation; spaces before keywords; same capitalisation for all
variable, procedure names; definition and usage of procedures
and functions; definition and usage of the record data type;
definition and usage of the array data type; comment percentage.

After the source analysis we faced a long list of different error
counters. The national examination schema was rather different
from the set of these counters. How to convert a huge amount of
data to only several numbers? The start was from the with

Rees [4] range idea. According to it the best values for some
factor are achieved in a specific range. If the values are outside of
the range, they have a regression to low values. The obtained
values, multiplied by weights and bias, were added to the sum of
products. This technique was used in the experimental
examination and showed a great potency in usage.

We have done several experiments with the data obtained by
application and human evaluators. The correlation between
manual and automatic evaluation is rather promising. It was
between 0.61 and 0.72.

There were two types of exceptions. First type of exceptions was
high scoring for very short (5-7 not empty lines) programs and
second type was low score for non-functional solutions.

The program analyser was too sensitive to in case of syntax
errors. Sometimes human evaluators fixed errors and marked
them with high score. On the other hand, an automatic evaluator
had problems with syntax and marked with very low score. We
also reduced analyser sensitivity for syntax errors forced re-
evaluation of the programming style after simple error fixing.

2.3 Discussion and problems
• Is it necessary to evaluate the programming style in

programming examination?
• Is it possible to have a universal set of requirements for

programs with a good programming style?
• What technologies can be used for the best human and

automatic evaluator congruence?

3. ACKNOWLEDGEMENTS
Some activities in evaluating programs are part of the project
"Integrating On-line Judge into effective e-learning" (UVa
Online Judge) which has been funded from the European
Commission under the grant number 135221-LLP-1-2007-1-ES-
KA3-KA3MP.

4. REFERENCES
[1] Blonskis, J., Dagienė, V., 2008, Analysis of Students’

Developed Programs at the Maturity Exams in Information
Technologies. Lecture Notes in Computer Science:
Informatics Education – Supporting Computational
Thinking: International Conference in Informatics in
Secondary Schools – Evolution and Perspectives. 2008, Vol.
5090. p. 204-215.

[2] Calvert Ch. Object Pascal Style Guide, accessible at
http://dn.codegear.com/article/10280.

[3] Ala-Mutka, K., Uimonen, T. , Järvinen, H.-M., 2004,
Supporting Students in C++ Programming Courses with
Automatic Program Style Assessment, Journal of
Information Technology Education, Volume 3, 2004,
accessible at http://jite.org/documents/Vol3/v3p245-262-
135.pdf.

[4] Rees, M. J., 1982, Automatic assessment aids for Pascal
programs. SIGPLAN Notices, 17 (10), 33-42.

[5] Oman, P. W., Cook, C. R., 1991, A programming style
taxonomy, Journal of Systems and Software, v.15 n.3,
p.287-301, July 1991.

118

http://dn.codegear.com/article/10280
http://jite.org/documents/Vol3/v3p245-262

"How a Contextualized Curriculum work in Practice”

Joseph M. Longino
Department of Information Technology, Faculty

of Technology Management
Lappeenranta University of Technology

P.O. Box 20
Skinnarilankatu 34

FIN-53851, LAPPEENRANTA, Finland
joseph.longino@gmail.com

Mikko Vesisenaho
Research and Development Center for

Information Technology in
Education(TOTY),Faculty of Education,

University of Joensuu,
P.O. Box 111

FIN-80101 JOENSUU, Finland
mvaho@joyx.joensuu.fi

ABSTRACT
In developing countries higher learning institutions have been
at the forefront of acquisition developing and use of technol-
ogy. Most of institutions influence the dissemination and
therefore accessibility of technology in their respective re-
gions. Moreover the higher learning institutions have been
at the forefront in producing the ICT skills in need within
the respective communities and hence influence the knowl-
edge and its application within the society. In developing
countries such ICT skills being produced mostly focus on
satisfying the various industrial ICT demands.
In this study we try to analyze the role of the higher learn-
ing institutions in the provision of ICT education and there-
fore assess the application of such educational curriculum to
stimulate development and information access to informa-
tion divisive communities in the developing countries.

Categories and Subject Descriptors
4 [Educational technology, software, and tools]

General Terms
Curriculum Evaluation

Keywords
Computer science education, Information and communica-
tions technology, Developing countries, Curriculum Evalua-
tion, contextualization, Higher education, Tanzania.

1. INTRODUCTION
In Tanzania Information technology knowledge is vital to

supplement the pace fast growing economic and development
activities [4], which demands high and reliable level of ex-
pertise in computing field. On the other hand motivation for
the research arose from challenges that many of the develop-
ing countries face today. One of these challenges is to utilize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Koli Calling ’08 November 13-16, 2008, Koli, Finland
Copyright 2008 ACM 978-1-60558-385-3/08/11 $5.00.
.

the education system as a means to provide advancement
in learning and therefore to stimulate development within
their local context [8].
In 2006, a purposeful research was carried out at Tumaini
University to design a contextualized curriculum that can
supplement for such needs hence facilitate development in
Tanzanian context [6]. A contextualized curriculum took
advantage of six principles namely curriculum contextual-
ize, projects, practical, interdisciplinary orientation, inter-
national recognition and continuous research for the pro-
grams formative and development [5].
The program begun on September 2007, and implementation
followed the CATI (Contextualize, Apply, Transfer, and Im-
port) model with emphasis on students to identify societal
expectations at the early stage in learning process, in which
case the graduates will potentially cater for societal exper-
tise needs on ICT [6].
Therefore the evaluative research aimed at understanding
the process of implementation according to the six defined
principles, evaluate contribution of the knowledge derived
from the curriculum to societal development and finally sug-
gesting a way forward to the future of the IT in a developing
context.
This has a vital role in producing skills which sufficient qual-
ity to promote societal development and or improve the re-
spective livelihoods in such communities [2].

2. RESEARCH APPROACH
On the basis of the research, as a single case study uti-

lized a case analysis technique where by a phenomena was
observed as a snapshot of its implementation time to reveal
progress and commitment towards the set of objectives of
curriculum under investigation [7]. In combination to this is
an emergent exploratory, qualitative inquiry approach. The
basis of selecting such a hybrid approach allows diversity in
determining the limits of the study, which goes hand in hand
with the fact that our behaviors are mostly determined by
the influences surroundings [3].

Figure 1 shows the data collection and selection proce-
dure. The field work was conducted on the actual setting
where implementation had been taking place hence facili-
tating the collection of a variety of empirical material case
study, personal experience, introspective, life story inter-
view, observational, historical, interaction, and visual texts-
that describe routine and problematic moments and mean-
ing in individual lives.

119

Figure 1: Data collection procedure.

3. RESULTS
Observation of the Constructs in Implementation of B Sc

IT curriculum different participant groups of the B Sc IT
curriculum observe the implementation process in different
perspectives. From the chosen constructs observable by the
study each group gave an inspiration to the study hence as-
sisted to depict the reception of B Sc IT on its respective
setting. Below is the table which shows the extent of sat-
isfaction in implementation of B Sc IT curriculum by the
different actors.

3.1 The six principles
Since implementation of B Sc IT curriculum is based on

the six principles[1], it is therefore important to understand
their effect and reflection by the participant groups in the
implementation. The study revealed that to a larger extent
the six principles had been satisfied through implementa-
tion. However, some parts which are considerably impor-
tant were observed to be overlooked in the implementation
process of which will be detailed in later sections.

3.2 Transition in learning
Students participated on the first phase of implementation

join from other disciplines majority being from bachelors ed-
ucation (B. Ed)[1]. Students found it was interesting to join
the B Sc IT program managed to do so provided they could
meet the admission criteria and or pass the entry exam for
B Sc IT program. The drive among majority of the students
to join B Sc IT program is influenced by the trend of tech-
nology, and therefore mostly felt that it was more important
to learn and later teach technology education than just con-
ventional education and therefore be able to contribute to
the ICT development within their respective communities
through education.

3.3 Constructing foundational knowledge in the
use of ICT

Smooth understanding of the ICT concepts and the re-
spective E-learning environment namely moodle makes the
inception of the B Sc IT program very successful. This is
being facilitated by the availability of computing facilities
which enables students to adapt and understand technology
very fast hence improving their ICT awareness within a very
short time from the commencement of the program.

However, its is still quite early to overlook for ambitions
among students, for example if at all they are willing to
go abroad to pursue further studies especially in advanced
IT programs and therefore it is such a restriction to imple-
menters to really know the precise level of skills that they
can provide to such students. This is expected to have been
learn t in the second year, after having identified students
expectations and focus on their study in the B Sc IT pro-
gram.

3.4 Inclusive information society
For a contextualized curriculum to accomplish its goals,

it becomes necessary for implementation to focus on estab-
lishing and inclusive information society. The society aims
at spreading the ICT knowledge to surrounding community
and therefore promoting ICT awareness and creativity in
solving basic problems using ICT. However ICT awareness
also must clearly define the precise boundaries as to what
kind of problems that ICT solutions can intervene as a useful
tool in solving such problems.

3.5 Contextual framework in BSc IT Curricu-
lum

Considering contextualize of B Sc IT curriculum, it works
on different levels which are curriculum, topic, and peda-
gogical levels. Pedagogical approach has been different as
compared to many other programs since it was contextual-
ized specifically for Tumaini University. Through this, the
university will be able to produce professionals who will be
specialists to ICT problems within Tanzania and at the same
time these compete, work and pursue their further study
abroad as defined in the internationalization context.

3.6 Practical orientation
Implementation took a project based approach so that

graduates will have sufficient hands on experience. There-
fore, more efforts were made aiming at practical sessions
which involves finding solutions to given project problems
either in group work or at individual level. Through this
approach it is therefore clear that students will be able to
start thinking of their area of specialization in either aca-
demic or as employed professionals, earlier enough hence
establish their career path.

3.7 Pedagogical thinking in the contextualized
ICT education

Introduction of the E-learning environment has its vital
impact in the learning process. Most students in the intake
are used to the conventional lectures, and find it very im-
portant to have lecturers have lecturers present physically in
finding the mutual understanding of knowledge being deliv-
ered. With E-learning incorporated within B Sc IT curric-
ula, it therefore becomes important to change the pedagog-
ical thinking among students. This enables them to under-
stand why they are learning in the new and different ways,

120

what do they benefit from learning in new ways, and also
which new learning ways will fit to their learning context.

3.8 Emphasizing on internationalization of B
Sc IT curricula

Implementation of B Sc IT curriculum emphasizes on in-
ternationalization, as defined on the six principles. Inter-
nationalization context defines the need importance of the
B Sc IT curriculum to align with the international stan-
dards, which means that knowledge to be achieved by stu-
dents should be recognized at the international level and in
turn providing them with the right to pursue further stud-
ies and career both within national and international level.
Students in the program receive their lectures and feedback
from international teachers and or professors who have a
remarkable experience on particular field in education and
technology.

4. CONCLUSION AND RECOMMENDATIONS
Participant observation revealed the lacking of enough ex-

pertise by the tutors in the implementation which in way
affects the process of knowledge transfer to students. In this
way a more knowledgeable group staff with enough academic
expertise will highly suffice for the tutoring and research on
the same curriculum in order to improve and stabilize it.

Through the results of this research, our study realized a
satisfactorily inspiration on the six principles as the main
drivers of the curriculum. This had been achieved through
efforts being made by the administration of the university
which aims to promote the B Sc IT program to become a
useful tool to bring about changes and development as well.
However there had been some conflicts realized within the
six principles which appear to be pulling the curriculum be-
tween the two extremes. The principles are internationaliza-
tion and contextualize whereby the implementation is trying
to contextualize ICT education and at the same time pro-
moting the curriculum for international recognition which
results to contraction if such constructs in implementation.
Further more the study realized the importance of emphasiz-
ing, scheduling and promoting e-learning, practical session,
and interactive tutoring in order to simplify the learning
process and therefore successful in implementation.

Finally the study recommends an iterative and longitudinal
review research on the curriculum to promote its stabiliza-
tion, efficiency and sustainability thus, more suitable and
applicable in a developing context.

5. REFERENCES
[1] Tumaini University 2006. Tumaini University bachelor

of science in information technology (BSc-IT)
curriculum. BSc IT Curriculum, 1:6–7, 2006.

[2] Vesisenaho M. Sutinen E. Lund H.H. Contextual
analysis of students learning during an introductory ict
course in Tanzania. Institute for Electronic and
Eelectrical Engineers-Technology for Education in
Developing Countries (IEEE-TEDC0́6),Retrieved on
January 10th, 2008, 4:9–13, 2006.

[3] Longino J.M. Evaluation of implementation of bsc it
curriculum at tumaini university. Master’s thesis,
Faculty of Technology Management, Department of
Information of Technology, 2008.
http://https://oa.doria.fi/handle/10024/42444.

[4] Veen M. Mulder F. Lemmen K. What is lacking in
curriculum schemes for computing/informatics?
Association for Computin and Macinery (ACM)
SIGCSE Bulletin, 36:186–190, 2004.

[5] Haapakorpi R. Lund H.H.(2007) Bangu N. Myller N.
Ngumbuke F. Sutinen E. Vesisenaho M. Information
technology degree curriculum in tanzanian context.in p.
cunningham m. cunningham, m.(eds.). Proceedings of
Information society technologies Africa, IST-Africa
2007,May, Maputo,Mozambique, International
Information Management Corporation (9 pages).

[6] Vesisenaho M. Developing University level Introductory
ICT Education in Tanzania:A contextualized approach.
PhD thesis, Department of Computer Science and
Statistics, 2007.
ftp://cs.joensuu.fi/pub/Dissertations/vesisenaho.pdf.

[7] Yin R.K. Case Study Research Design and Methods,
volume 3. SAGE publications, 2003.

[8] Mulder F. van Weert T. Ifip/unesco’s informatics
curriculum framework 2000 for higher education.
Association for Computing Machinery-SIGCSE,
Retrieved on January 20th, 2008, 33:75–83, 2001.

121

Author Index

Ahoniemi, Tuukka 80

Bangu, Nicholas51
Berglund, Anders 76

Cheng, Ka Fai . 96
Clear, Tony . 41

Dagiene, Valentina 117
degraaff, erik . 1
Denny, Paul .109

Haddow, John . 96
Hamer, John . 109
Hewner, Michael 72
Hill, Jonathan .41

Isomöttönen, Ville 25

Johnson, Colin . 84

Kaila, Erkki . 101
Kiesmüller, Ulrich 16
Knobelsdorf, Maria 62, 72
Kollanus, Sami . 25
Korhonen, Ari . 88
Koski, Marja-Ilona 32
Kurhila, Jaakko 32
Kurmas, Zachary 105

Lönnberg, Jan . 76
Laakso, Mikko-Jussi101
Lahtinen, Essi .92
Liu, Yong . 41
Longino, Joseph119
Luxton-Reilly, Andrew 109

Malmi, Lauri 76, 88
Moreno, Andrés 115
Myller, Niko . 115

Ngumbuke, Fredrick51

Pasanen, Tomi A. 32
Paterson, James96
Pears, Arnold . 41
Plimmer, Beryl .41

Poplawski, David 105
Purchase, Helen 109

Rajala, Teemu 101
Romeike, Ralf .113

Salakoski, Tapio 101
Skupas, Bronius117
Sorva, Juha . 5
Sutinen, Erkki . 51

Taherkhani, Ahmad 88
Tedre, Matti . 51

Vesisenaho, Mikko 119

Whalley, Jacqueline 41

122

Keyword Index

Adult Education 32
Adult Learning Theories 32
Algorithm recognition 88
Algorithms . 16
Assessment . 84
Associations . 96
Automatic assessment 88,101
Automatic evaluation 117

Categorization . 72
Computer Biographies 72
Computer Science Education 51
Computers and Society72
Computing curricula 80
Computing education 113
Computing Education Research 41,62,72
Conflictive animation 115
Contextualization 51
Contextualized education 119
Contributing student pedagogy . . .109
Creativity .113
CS minor student 80
CS novices . 62
CS1 . 5,115
Curriculum issues 119

Debugging . 76
Didactics of Informatics 16
Different disciplines 80
Digital Ink . 41

Education .25,105
Engineering Education Research1
Ethnocomputing 51
Evaluation . 32
Experimentation 62
Explanograms .41

Human Factors .62

IT Education . 51

Java . 96

Learning . 1,92
Logic . 105

MCQ . 109

Novice programming 101

Patterns . 96
Peer assessment 109
PeerWise . 109
Phenomenography5
Podcasts . 84
Problem Solving Process 16
Program visualisation 92,101,115
Programming education 76,101
Programming examination 117
Programming style 117

Question test bank 109

References . 5
Review .92
Robots . 32

Secondary CS Education 16
Simulation . 105
Software visualisation 76
Static program analysis 88
Stereotypes . 72
Student development 1
Students understandings 5

Tablet PC . 41
TDD . 25
Teaching Experiment32
Tool-Based Analysis16
Typology . 62

UML .96

Variables . 5

123

Recent technical reports from the Department of Information Technology
2009-004 Arnold Pears and Lauri Malmi: The 8th Koli Calling International Conference on Com-

puting Education Research
2009-003 Erik Nordström, Per Gunningberg, and Christian Rohner: A Search-based Network

Architecture for Mobile Devices
2009-002 Anna Eckerdal: Ways of Thinking and Practising in Introductory Programming
2009-001 Arne Andersson and Jim Wilenius: A New Analysis of Revenue in the Combinatorial

and Simultaneous Auction
2008-026 Björn Holmberg: Stereoscopic Estimation of Surface Movement from Inter-Frame

Matched Skin Texture
2008-025 Björn Holmberg: High Dimensional Human Motion Estimation using Particle Filtering
2008-024 Therese Bohlin and Bengt Jonsson: Regular Inference for Communication Protocol

Entities
2008-023 Pierre Flener, Justin Pearson, and Meinolf Sellmann: Static and Dynamic Structural

Symmetry Breaking
2008-022 Josef Cullhed, Stefan Engblom, and Andreas Hellander: The URDME Manual version

1.0

2008-021 Åsa Cajander, Elina Eriksson, Jan Gulliksen, Iordanis Kavathatzopoulos, and Bengt
Sandblad: Användbara IT-stöd - En utvärdering av ett forskningsprojekt vid CSN, Cen-
trala studiestödsnämnden

2008-020 Stefan Engblom: Parallel in Time Simulation of Multiscale Stochastic Chemical Kinet-
ics

2008-019 Ken Mattsson, Frank Ham, and Gianluca Iaccarino: Stable Boundary Treatment for
the Wave Equation on Second-Order Form

2008-018 Pierre Flener and Xavier Lorca: A Complete Characterisation of the Classification Tree
Problem

2008-017 Henrik Johansson: Design and Implementation of a Dynamic and Adaptive Meta-
Partitioner for Parallel SAMR Grid Hierarchies

2008-016 Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi: R-automata

February 2009
ISSN 1404-3203

http://www.it.uu.se/

124

	it-tr-front.pdf
	table_of_contents
	p1-degraaf
	1.INTRODUCTION
	2.MOTIVATION FOR LEARNING
	3.LEARNING IN VIRTUAL REALITY
	4.CONCLUSIONS
	5.REFERENCES

	p5-sorva
	p16-kiesmüller
	p25-kollanus
	p32-koski
	p41-clear
	1. INTRODUCTION
	2. PROJECT GOALS
	3. PROGRESS TO DATE
	4. DESIGN OF SYSTEM
	4.1. Heterogeneous Technology Set
	4.2 Compatibility Issues
	4.3 Intellectual Property Issues
	5. DESIGN PROCESS
	5.2 Research Linked Teaching & Learning

	6. GLOBAL DIMENSIONS
	6.1 Diversity of Participant Roles
	6.2 Rolling Cast of Actors – Team Turnover
	6.3 Communication Processes
	6.4 Software Config. & Test Environments

	7. FUTURE WORK
	8. CONCLUSION
	9. ACKNOWLEDGMENTS
	10. REFERENCES

	p51-tedre
	p62-knobelsdorf
	p72-hewner
	p76-lönnberg
	Research Aims
	Students' Understandings
	Understanding Program Execution
	Understanding Goals

	Students' Development Approaches
	Structuring the Solution
	Finding Ways a Program Can Fail

	Understanding Failures
	Software Visualisation
	Feedback

	Discussion
	References

	p80-ahoniemi
	p84-johnson
	p88-taherkhani
	p92-lahtninen
	p96-paterson
	p101-kaila
	p105-poplawski
	p109-denny
	p113-romeike
	p115-moreno
	Introduction
	Jeliot 3
	Conflictive features
	User Interaction

	Discussion
	References

	p117-skupas
	p119-longino
	author_index
	keyword_index
	it-tr-back

