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Abstract

We use a posteriori error estimation theory to derive a relation be-

tween local and global error in the propagation for the time-dependent

Schrödinger equation. Based on this result, we design a class of h, p-

adaptive Magnus–Lanczos propagators capable of controlling the global

error of the time-stepping scheme by only solving the equation once. We

provide results for models of several different small molecules including

bounded and dissociative states, illustrating the efficiency and wide appli-

cability of the new methods.

Key words global error control · h, p-adaptivity · Magnus–Lanczos propagator

· time-dependent Schrödinger equation

1 Introduction

Understanding the dynamics of chemical reactions is a fundamental challenge

in quantum chemistry. By exposing molecular systems to very short laser pulses

it is possible to study, and also control, such reactions [37, 33, 24]. Mathematical

models of dynamic quantum mechanical processes, e.g., in chemical reactions,

are based on the time-dependent Schrödinger equation (TDSE). For realistic

problems, this equation cannot be solved analytically, and numerical solution

methods are of great importance to interpret experimental studies and to pro-

vide a deeper theoretical understanding of the reaction dynamics.

For problems including time-dependent fields, e.g., describing collisions or

interaction with electromagnetic radiation, the Hamiltonian operator in the
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TDSE depends explicitly on time. For highly accurate simulations involving

such Hamiltonians, the temporal variation has to be resolved by the time-

propagation scheme [19]. For such problems, it can be assumed that a time-

propagation method that includes automatic step size control can be more effi-

cient and simpler to use. It is also desirable to have an a posteriori estimate of

the error, resulting in a scheme where the step size is chosen to control (some

functional of) the global error introduced by the time propagation. Interesting

properties to control can be the ℓ2 error of the computed wave function or a

cross-correlation function of interest (i.e., the scalar product of the computed

wave function with some given state of the molecule).

An overview of standard propagation techniques for the TDSE with a time-

dependent Hamiltonian is given in [21]. A suitable numerical integrator for the

TDSE should preferably preserve the most important physical properties of the

exact propagator — unitarity and time-reversibility. In [19], integrators with

these properties based on two approaches are discussed; exponential integra-

tors and symplectic integrators based on partitioned Runge–Kutta (PRK) formu-

las. For the PRK methods, symplecticity guarantees unitarity of the evolution

operator (cf. [8]). As demonstrated, e.g., in [30], symplecticity is lost if step size

control in a straightforward way is applied. Therefore, we focus on adaptivity

for exponential integrators in this paper, where at least unitarity can easily be

retained in a practical implementation.

In [5], Cao and Petzold introduce a posteriori estimates based on the adjoint

method for systems of ordinary differential equations (ODE). Similar techniques

are also available for PDEs within the FEM framework, see, e.g., [2, 6] and refer-

ences therein. In this paper, we show how the theory developed in [5] can be

applied to the TDSE after spatial discretization by the method of lines,

iħ
d

d t
ψ(t ) = H (t )ψ(t ), (1)

ψ(0) = ψ0.

Here, ψ(t ) is the vector of the values of the wave function at time t representing

the spatial degrees of freedom and H is the Hamiltonian matrix which is hermi-

tian in the mathematical model of the physical process. Note that this model

is posed on an unbounded domain which is infeasible for numerical computa-

tions. For bound states, the wave function will stay within certain bounds and

the domain can be truncated and, e.g., periodic boundary conditions can be

imposed. For such problems, hermiticity is maintained. For dissociative states,

however, we normally have to include a transparent boundary resulting in that

hermiticity is lost.

In this paper, we only discuss time-discretization techniques and consider (1)

as a system of ODE. We assume that we have projected he spatial part of the

problem onto a subspace that is sufficient to obtain the desired accuracy. A suit-

able grid can, for instance, be determined using Fourier analysis [16]. In this
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case, the Hamiltonian matrix, corresponding to the unbounded operator in the

continuous case, is bounded (but may have a large norm).

Based on the a posteriori estimate, we derive an h, p-adaptive Magnus–

Lanczos time-propagator with global error control. We show that, due to the

conservation of probability and time-reversibility of the TDSE, an estimate of

the global error can be achieved without explicitly solving the adjoint problem.

The outline of this paper is as follows. In the next section, we investigate the

connection between local and global error for the TDSE and derive a low-cost

error estimator. Sec. 3 discusses the truncated Magnus expansion as a tool for

numerical integration, with a focus on the local error of this propagator. We

then use these results to design an adaptive Magnus–Lanczos propagator allow-

ing for global error control in Sec. 4. The performance of the proposed algo-

rithm is demonstrated in Sec. 5 for one-dimensional models of laser excitation

of the rubidium dimer (Rb2), the iodine-bromide molecule (IBr), and a three-

dimensional model of a chlorine dioxide (ClO2) molecule1. Sec. 6 addresses the

question in which cases it is preferable to solve the dual problem anyway, and

Sec. 7 concludes the article.

2 Error Growth in the TDSE: From Local to Global Error

A simple adaptive method is often based on local error estimates that can eas-

ily be derived, computed, and used for controlling the step size in an individ-

ual step. For example, there is a vast literature on step size control for Runge–

Kutta methods using two embedded methods to estimate the local error (see,

e.g., [12]). Raptis and Cash [28] exemplify how these techniques can be applied

to the one-dimensional TDSE. However, in many settings it is more interesting

to bound the global error, i.e., computing the desired quantity at a final time

within a given accuracy bound. In this section, we study how local perturba-

tions influence the error in the solution of the TDSE (and other PDEs with the

same conservation properties).

2.1 Error growth

We first consider the general linear system of ODE

ẏ(t )= A(t )y(t ),

y(0) = y0.
(2)

Assume that we integrate this system over the interval [0,T ], and let 0 = t0 ≤ . . . ≤

tk ≤ . . . ≤ tM = T denote the discrete points in time where the numerical method

evaluates approximations yk of y(tk). Also, let hk = tk − tk−1 denote the time

steps and let h = max(hk ).

1Note that the alternative notation OClO is common in the chemical literature to account for

the structure of the molecule.
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We are interested in estimating (some functional of) the global error,

e(T )= y(T )− yM .

As remarked earlier, Cao and Petzold [5] have shown how to connect the global

and local errors for step size control in ODE solvers by using the adjoint problem.

We begin by briefly reviewing their work.

Let ŷ be the solution of the perturbed ODE

˙̂y(t ) = A(t )ŷ(t )+ r (t ),

ŷ(0) = y0 +R ,

where ŷ represents an interpolant of the numerical solution.

A functional zH e(T ) of the error (where z is normalized) can be calculated

using

zH e(T )=

∫T

0
λH (s)r (s)d s +λH (0)R , (3)

where λ solves the adjoint problem

λ̇(t ) = −AH (t )λ(t )

λ(T ) = z.

In this paper, we apply this theory to the semi-discretized time-dependent

Schrödinger equation (1). For this equation, we have that A = −i H , and, if the

Hamiltonian matrix H is hermitian, the dual equation is identical to the primal.

We then also know that the ℓ2 norm of λ is preserved. This can be exploited to

simlify (3). Firstly, we apply the Cauchy–Schwarz inequality,

|zH e(T )| ≤

∫T

0
‖λ(t )‖‖r (t )‖ d t +‖λ(0)‖‖R‖ .

Then, norm-conservation gives

|zH e(T )| ≤

∫T

0
‖r (t )‖ d t +‖R‖ . (4)

Since the bound (4) is independent of z, it yields an estimate for any functional

of the error. In particular, the choice z =
e(T )
‖e(T )‖ results in an estimate for ‖e(T )‖.

From (4), it is also clear that the temporal error induced by the numerical prop-

agator can be bounded by a term that increases linearly in T . Moreover, an error

in the initial wave function is neither damped nor increased as time evolves.

Remark. If we want to extend the error estimate to the spatial discretiza-

tion, it is interesting to note that the error in the function evaluation in the ODE

(e.g., from the computation of the spatial derivative in the TDSE) can likewise be

bounded by a term that increases linearly in T .
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In contrast to the general case discussed in [5], the estimate (4) does not re-

quire solving the adjoint problem. This reduces the cost of global error con-

trol significantly. However, using (4) potentially results in that the error is over-

estimated and that unnecessarily small steps are used. We will investigate this

further in Sec. 6. Also note that if we are interested in the norm of the error,

the vector z depends on the solution and is thus unknown. In this case, we first

have to determine suitable values of z, for instance by the small sample statis-

tical method [18]. This is avoided by using our estimate (4), again reducing the

cost and also increasing the reliability of the global error control.

2.2 An efficient global error estimate for the TDSE

In the previous section, we described how a perturbation of the Hamiltonian

matrix and the initial data, e.g., arising from the numerical approximation, in-

fluences the global error. As a next step, we estimate these perturbations. For the

general system (2), Cao and Petzold derive an estimate for multi-step methods

with reference to Gear [7] for one-step methods.

In the following, we demonstrate how to distribute the errors coming from

the individual time steps in order to be able to get an efficient estimate by only

applying local information to estimate the global perturbation. Consider the

time step from tk−1 to tk as the solution of the perturbed initial-value problem

˙̂ψ(t ) =−iH (t )ψ̂(t )+ rk (t )

ψ̂(tk−1)=ψk−1 =ψ(tk−1)+Rk−1,

where rk is the residual due to the numerical approximation in the present step

and Rk−1 is the error made in the preceding steps.

Using (4), it holds that

‖e(tk)‖≤

∫tk

tk−1

‖rk (t )‖dt +‖Rk−1‖ .

Thus the error in the initial value for the next time step, from tk to tk+1, can

be estimated by ‖Rk‖ = ‖e(tk)‖. This leads to a recursion which results in the

following estimate of the global error

‖e(T )‖≤
M∑

k=1

∫tk

tk−1

‖rk (t )‖dt +‖R0‖ . (5)

If we now prescribe that 1
hk

∫tk

tk−1
‖rk (t )‖ d t ≤ ε

T , i.e., that the error of time step k

should not exceed the fraction hk /T of the allowed global error, and assume that

the initial value ψ(0) is given correctly, it follows that

‖e(T )‖≤
ε

T

M∑

k=1

hk ≤ ε.
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Thus we have found a way to control the global error based on a estimate of the

error of the numerical integrator in each single step.

Assume that we can estimate the local error e loc
k

for time step k . Then we can

view this error as perturbation of the initial value for the problem on the next

time interval and, from the results of the previous section on how local errors

are transported, we have that

‖e(T )‖≤
M∑

l=1

∥∥∥e loc
k

∥∥∥ .

It remains now to find a way of how to compute the local perturbations rk . As

will be shown in Sec. 3.1 below, this quantity can be estimated quite easily for

the Magnus propagator.

2.3 Generalization for problems with transparent boundary condi-

tions

So far, we have assumed that the Hamiltonian in the TDSE (1) is Hermitian.

However, if the problem setting involves a dissociative state, we have to truncate

the computational domain in space and introduce a non-reflecting boundary

condition to model the infinite domain. There are two techniques commonly

used for this, perfectly matched layers (PML) [11] (which is closely related to

complex scaling as Hein et al. [13] point out), and complex absorbing potentials

(CAP) [22]. Both approaches introduce artificial damping which results in that

the Hamiltonian matrix is not Hermitian.

For a TDSE problem with dissociative states, the sign of the complex absorb-

ing potential and the sign of the transformation to complex coordinates changes

in the dual problem, resulting in that the dual and primal equations are not

equal. However, since the dual problem is solved backwards in time, the wave-

packet for this problem is also damped. This means that the norm of the dual

solution λ is on longer conserved but

‖λ‖ ≤ 1. (6)

This means the estimate (5) derived above is still valid, but it might be less strict.

However, note that the adjoint problem is solved backward in time. Let us sup-

pose that the target φ is concentrated on the computational domain. If the

wave-packet dissociated, this would then mean that a dissociated state would

move together again. Apart from numerical perturbations, we can thus assume

that the norm of the dual problem is still conserved, that is, ‖λ‖ ≈ 1.

3 Truncating the Magnus Expansion

In this section, we introduce the truncated Magnus expansion [17] over a small

time interval as a tool for designing a numerical propagator and investigate the
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truncation error. We combine this knowledge of the local behavior with the re-

sults from the preceding section to derive an estimate of the global error.

3.1 The Magnus propagator

For problems with a time-independent Hamiltonian, the solution of the TDSE

(1) can be given in analytical form,

ψ(tk ) = U (tk−1, tk )ψ(tk−1)

U (tk−1, tk ) = exp

(
−

ihk

ħ
H

)
.

For time-dependent Hamiltonians, the Magnus expansion provides an ana-

lytical representation of the evolution operator where the higher order terms

decrease in powers of hk [17]. This representation can be used as a basis for the

numerical integration of the TDSE (1) in case a sufficiently small time step hk is

chosen and the solution is propagated by an exponential integrator based on a

truncated Magnus expansion. This procedure is successively repeated until the

solution at the desired time is reached.

The design of Magnus-based propagators involves two steps: Truncating the

Magnus expansion in a suitable way, and computing the matrix exponential effi-

ciently. We will consider the first step below and postpone the second to Sec. 4.1.

Since the terms of the Magnus expansion contain an increasing number of

commutators, evaluating them becomes costly as the order is increased. Sev-

eral ways of reducing the computational complexity have been proposed. In [3],

the terms are rearranged and in [4] the matrix exponential is split and a fourth-

order commutator-free scheme is derived. Starting from the formulation in [3],

we have earlier shown that it is often possible to simplify the evaluation of the

truncated Magnus expansion even further for the TDSE by evaluating some of

the terms simplifying [19].

3.2 Truncating the Magnus expansion: Local error

We first note that a Magnus-based propagator can be reformulated as a one-step

method using the definition of the matrix exponential,

exp A =

∞∑

l=0

Al

l !
= I +

∞∑

l=1

Al

l !
.

This representation is not useful for practical computations, but it shows that

the perturbed problem can be theoretically constructed as in [7] for one-step

methods. In the following, we develop a more practical strategy.

Consider the linear differential equation

ψ̇(t )= A(t )ψ(t ) (7)

7



with A(t ) =− i
ħ

H (t ). The Magnus expansion is an expression Ω(t ) such that the

solution of (7) can be written in the form (cf. [17])

ψ(t )= exp(Ω(t ))ψ0. (8)

The relation between A(t ) and Ω(t ) is given by

A(t )= dexpΩ(t )(Ω̇(t )),

where the dexp operator is defined by

dexpB (C ) =
∑

l≥0

1

(l +1)!
adl

B (C ),

with adB (C ) = [B ,C ] and adl
B (C ) = adB (adl−1

B (C )). If the step length h is suffi-

ciently small, the dexp operator can be inverted and the Magnus expansion gives

an expression for Ω,

Ω(t ) =
∑

l≥0

θl . (9)

The terms in θl are built up of l nested commutators and l+1 integrals and decay

as θl =O (hl+2) for l > 0. For a numerical solution, we truncate the expansion,

Ω
[n] =

n−2∑

l=0

θl .

The numerical solution then solves the perturbed equation

˙̃ψ(t ) = A[n]ψ̃, (10)

with A[n](t ) = dexpΩ[n](t )(Ω̇
[n](t )) = A(t )+ r and r ∈ O (hn). Using the fact that

dexpB (C ) = f (adB )(C ) with f (z) = (ez −1)/z, we can rewrite the residual as

ρn(adΩ[n] (ad
p−1

Ω
(B )),

(with ρn being the nth remainder term in the Taylor expansion of f ) plus the

non-vanashing part of the first n −1 terms of the expansion dexpΩ[n](t )(Ω̇
[n](t )).

For a numerical estimation of the residual, we are interested in having an easy-

to-compute approximation to the non-vanishing residual. Therefore, we only

take the leading order term θ̇n−1.

Knowing the residual, we can compute the local error in time step k ,

e loc
k =

∫tk

tk−1

r (τ)ψ̃k (τ)dτ=

∫tk

tk−1

θ̇n−1(τ)ψ̃k (τ)dτ+O (hn+2)

= θn−1(tk )ψ̃(ξ)+O (hn+2),

for some ξ ∈ [tk−1, tk ]. The ℓ2 norm of the local error can then be estimated by

∥∥∥e loc
k

∥∥∥=
∥∥θn−1(tk )ψ̃(ξ)

∥∥+O (hn+2). (11)
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This gives an expression for the local error under the assumption that the Mag-

nus expansion convergences. The classical proof of the convergence of the Mag-

nus expansion for ODE systems is based on the assumption
∫tk

tk−1
‖A(ξ)‖2 dξ <

π, i.e., in essence, h · ‖A(t )‖ has to be small (cf. [23]). For the continuous

Schrödinger equation, where the Hamiltonian operator is unbounded, the clas-

sical result is insufficient. Hochbruck and Lubich [14] explain, however, how to

obtain error bounds without requiring convergence in the expansion.

We briefly review their reasoning and discuss how this is related to our algo-

rithm. In [14], the case

A(t )=−iH (t )=−i(W +V (t )) (12)

is considered, where W =−∆+ I and ‖ dm

dt m V (t )‖≤ Mm , m = 0,1,2, . . ..

For this Hamiltonian and a space discretization with the pseudo-spectral

method, commutator bounds of the type

‖[A(τl ), [. . . , [A(τ1), A(τ0)]] . . .] v‖≤ K h‖W l/2v‖ (13)

can be proven.

Under the additional assumption that h‖W 1/2‖ ≤ c for some constant c , the

remainder of a nth order Magnus expansion is thus bounded by

‖r v‖≤C hn
‖W (n−1)/2v‖. (14)

Since ‖W 1/2‖∝ 1
∆x , these results show that care has to be taken when consid-

ering the residual. Including ∆x in the estimate for the local error, we have

‖e loc
k ‖ = ‖θn−1(tk )ψ̃(ξ)‖+O

(
hn+2

(∆x)n

)
,

‖θn−1(tk )ψ̃(ξ)‖ =O

(
hn+1

(∆x)n−1

)
.

In this paper, we are only interested in bounding the error in time given a fixed

discretization in space. That is to say, we do not consider the whole solution

space of the Hamiltonian operator but first project onto a subspace of interest.

For this case (∆x)−1 remains bounded. Nevertheless, relaxing the assumption∫tk

tk−1
‖A(ξ)‖2 dξ < π as provided by the results in [14] is desirable since the con-

stants that are proportional to some power of (∆x)−1 can be very large. In our

experiments, we choose the step size only regarding accuracy requirements and

do not observe any problems with stability, even if the Hamiltonians that we

consider are more complicated than those of form (12) (which is why the results

by Hochbruck and Lubich do not directly apply to our situation).

Note that Wensch et al. [35] derived a locally adaptive Magnus propagator.

Their reasoning is based on extrapolation and does not take the difficulties with

the norm of the Hamiltonian into account (i.e., they rely on convergence of the

Magnus expansion). The resulting error indicator is similar to ours but includes

an additional higher-order term.
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3.3 Global error control

In Sec. 2, we have shown that a global error smaller than some tolerance ε can

be achieved by controlling the local error. If the numerical solution ψk−1 has

been computed, the next step size hk should be chosen such that the local error

weighted by the step length is smaller than ε
T .

As discussed in the previous section, a first order estimate of the error is given

by (11). In this estimate, the value of ξ is unknown. Since ψ̃ varies only of the

order h over the interval, it is sufficient to use ψ̃k−1 for getting a first order esti-

mate.

The adaptive method should hence approve a step if

1

hk

‖θn−1(tk−1 +hk ))ψk−1‖ ≤
ε

T
. (15)

The only unknown in (15) is the step size hk . However, the left hand side is

still nonlinear in this parameter and it would be too costly to solve this equation

exactly. To resolve this issue, we use that the error is of order hn+1
k

. We then solve

equation (15) by the fixed point iteration

s0 =hk−1, s j+1 =

(
s j

ε/T

‖θn−1(tk−1+ s j ))ψk−1‖

) 1
n

· s j . (16)

We iterate until 1
s J
‖θn−1(tk−1 + s J ))ψk−1‖ ≤ ε

T and then set hk = s J . In order to

make the step size control more robust, one can check, after advancing the solu-

tion to time level k , if 1
hk
‖θn−1(tk−1+hk ))ψk‖≤

ε
T

. We also include safety factors

in (16) to keep the number of iterations and dismissed steps small.

When using the commutator-reduced formulation from [3] where each odd

term is merged with the following even term, we replace θn−1 by θ̃n−1 = θn−1+θn .

4 A Magnus–Lanczos-Propagator with Global Error Con-

trol

So far, we have only discussed the truncation of the Magnus expansion. How-

ever, using a Magnus-based numerical integrator requires repeatedly calculat-

ing matrix exponentials. A direct computation involving complete diagonaliza-

tion is far too expensive for large systems. If the discrete Hamiltonian is sym-

metric, the Lanczos algorithm is a viable alternative [26].

4.1 Short-iterative Lanczos propagator

The Lanczos algorithm computes the matrix exponential applied to a vector,

exp(− ihk

ħ
Ω

[n])ψk , using a polynomial expansion (see, e.g., [15]). The process

successively creates an orthonormal basis in the pth order Krylov subspace

spanned by {ψ,Ω[n]ψ, (Ω[n])2ψ, . . . , (Ω[n])p−1ψ}. The approximative solution is

then given by the projection of the exact solution onto the Krylov subspace.
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The Lanczos algorithm converges superlinear after a certain number of iter-

ations — depending in particular on the time step hk in our case. It turns out

that for practical solution of the TDSE, the algorithm is most efficient for p of

the order of ten [32]. The parameter p has to be chosen larger when hk is in-

creased because the wave function from the previous time step is used as the

initial vector for the Lanczos iteration. This means that a relatively small time

step should be used, but this is required anyway when the Hamiltonian has an

intense time-dependence.

Given the time step hk , we have to decide how large we want to choose the

Krylov space. Y. Saad [29] and Hochbruck et al. [15] propose to stop the Lanczos

iterations as soon as the generalized residuum is small enough. For the TDSE,

the corresponding termination criterion is

∆t

∣∣∣∣
(
exp(−i/ħ∆tΩ[n]

p )
)

p,1

∣∣∣∣ (Ω[n]
p+1)p+1,p < tol, (17)

where Ω
[n]
p is the approximation of the Magnus-weighted Hamiltonian Ω

[n] in

the p-dimensional Krylov space. Here, the notation (A)i , j is used for the (i , j )-

entry of the matrix A.

4.2 Adaptivity

Gathering the results in the previous sections, we have three parameters at hand

that can be chosen adaptively when performing a time step: The time step hk ,

the order n of the truncated Magnus series, and the order p of the Krylov space.

Since varying all these parameters at the same time is difficult, we simplify the

procedure using a few reasonable assumptions: First, we assume that we have

a significant time-dependence in the Hamiltonian. Otherwise all terms in the

Magnus expansion but the first will vanish. In that case, the propagation prob-

lem would simplify a lot, and other more efficient time-marching methods are

available (cf. [20]). Next, we also decide to fix the order of the Magnus expansion

n at some low order instead of adaptively choosing this parameter. The rea-

son for this is that higher order Magnus terms get increasingly complicated and

costly to evaluate. The actual choice of n depends on the structure of the prob-

lem and should assure that the commutators involved are not too expensive to

evaluate. As we will see later, n = 2,4 are convenient choices in many common

applications.

In Sec. 3.3, we proposed to use relation (15) to choose the step size hk based

on the Magnus approximation. This approach can easily be combined with a

p-adaptive Lanczos method, i.e., relation (17). We found this combination of an

h-adaptive Magnus and a p-adaptive Lanczos method to be very attractive. For

the time steps chosen by the Magnus approximation the number of Lanczos it-

erations necessary to keep the accuracy is rather small and thus the Lanczos iter-

ation is efficient. By imposing some upper bound on the time step, convergence
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of the Lanczos method is assured also for situations where the time-dependence

of the Hamiltonian is weak.

5 Experiments: Light-Matter Interaction

To examine the performance of the new adaptive time-propagation algorithms,

we apply the Magnus–Lanczos algorithm with global error control to TDSE mod-

els describing optical excitation of molecules using, e.g., laser pulses. We first

consider a basic model that includes two electronic states and discuss the cor-

responding Magnus expansion. Fig. 1 shows a generic configuration. In this

basic model, the TDSE has the form

H =

(
Tkin +Vg (x) Vc (t )

Vc (t ) Tkin +Ve (x)

)
, (18)

where wave packets are propagated on two potential energy surfaces Vg /e , cou-

pled via a time-dependent term Vc (t ). As mentioned earlier, we will present

computational results for three different molecules, Rb2, ClO2, and IBr. The sim-

ulations for the one-dimensional Rb2 model demonstrate the efficiency of our

new adaptive M/L methods for different orders of accuracy. This model is also

used later for providing a comparison of our low-cost algorithm for global error

control with a more standard version where the dual problem is actually solved.

The three-dimensional ClO2 model is used to verify that our new schemes are

applicable also to problems with several spatial degrees of freedom. Finally, we

provide computational results for the IBr system, where also a third, dissociative

state is included. This example shows that the method can also be applied for

problems where the Hamiltonian matrix is non-hermitian.

In our examples, we model experiments where the electronic states are cou-

pled with an ultra-fast pulse, V (t ) = µg e (r )ε(t ), where the light-matter interac-

tion is treated semi-classically, i.e., ε(t ) = E0·exp

(
−1

2

(
t−t 2

0

σ

)2
)
·cos(ω(t−t0)). Also,

we assume that the Condon approximation is used, i.e., the transition dipole

moment µg e is constant.

As remarked earlier, we discretize the kinetic energy operator using a pseu-

dospectral method on a uniform grid in space, resulting in that the action of the

kinetic energy matrix is easily computed using an FFT/IFFT pair. Since this is

the most costly part of the numerical propagation, we count the number of such

pairs needed in each simulation compare the computational costs for different

methods. Note that for each multiplication by the Hamiltonian matrix (18), one

FFT/IFFT pair for each state is needed.

For determining the error for the numerical schemes, we compare the results

to a reference solution, computed using a very small, uniform time step.

12



internuclear distance

laser pulse

wave packet

Figure 1: Configuration of a system with two electronic states: The wave packet is initially con-

centrated in the ground state (—) that is coupled to an excited state (– –) by a laser field.

5.1 Magnus–Lanczos propagators for a two-state system

Before presenting the simulations, we give some more details about the prop-

agator for system (18). For a system with a Hamiltonian given by (18) one can

simplify the first two Magnus terms by analytically computing the commutators

[19] yielding the following fourth order truncation

Ω
[4](tn+1, tn) =−

i

ħ
·∆t ·

[
Tkin +Va C0

C0 Tkin +Vb

]

+
1

ħ
· (∆t )2 ·C1 ·

[
0 −(Va −Vb )

(Va −Vb ) 0

]
,

(19)

where

C0 = 1
∆t ·

∫
∆t /2
−∆t /2 f

(
tn + ∆t

2 + t
)

d t ,

C1 = 1
(∆t )2 ·

∫
∆t /2
−∆t /2 f

(
tn + ∆t

2 + t
)
· t d t .

The integrals Ci can be evaluated analytically or by using numerical quadra-

ture. In the latter case, the formula has to be at least fourth order accurate for C1

and second order for C2 in order to retain fourth order accuracy of the resulting

scheme. If we want to combine the expansion with a sixth order error estimator,

the accuracy of both quadrature formulae has to be increased by two orders.
Note that using only the first term in Ω

[4](tn+1, tn) yields a second order accu-
rate propagator. Also note that the second term has an appealing form, since no
kinetic energy matrix is involved. This means that no furher FFT/IFFT computa-
tions are required when this term is added, and the fourth order scheme is only

13



marginally more computationally demanding than the second order method.
However, higher order terms in the Magnus expansion are still quite compli-
cated and involve commutators of kinetic and potential energies. For a sixth
order propagator, the following term needs to be added [19]:

θ̃3 =−i
6

5
C 2

1 (∆t)3

(
∆V 0

0 ∆V

)

−i
1

2

(
C2 −

C0

12

)
(∆t)3

(
−2C0∆V −(∆V )2 + [Tkin,∆V ]

−(∆V )2 − [Tkin,∆V ] 2C0∆V

)

−
1

60
C1(∆t)4

×

(
−4C0[Tkin,∆V ]

−4C 2
0∆V − (∆V )3 − [Tkin, [Tkin,∆V ]+ (∆V )2]−Vb[Tkin,∆V ]+ [Tkin,∆V ]Va

4C 2
0∆V + (∆V )3 + [Tkin, [Tkin,∆V ]− (∆V )2]+Va [Tkin,∆V ]− [Tkin,∆V ]Vb

4C0[Tkin,∆V ]

)
,

where ∆V =Ve −Vg and

C2 = 1
(∆t )3 ·

∫
∆t/2
−∆t/2 f

(
tn + ∆t

2
+ t

)
· t 2 d t .

Therefore, it is in general not efficient to increase the order beyond four. However, it

might, e.g., be interesting to use this third Magnus term for a fourth order method with

global error control. The term θ̃3 is then only required for error estimation, which is why

it usually suffices to use a low order finite difference stencil for the discretization of the

kinetic energy which reduces the cost of the matrix vector product to the order N . Note

also that for the step size control, only one product with the matrix θ̃3 is needed com-

pared to one for each dimension of the Krylov subspace if the sixth order approximation

would actually be computed.

5.2 Comparison of different methods – Excitation of the Rb2 molecule

We consider the excitation of Rb2 from the X 1
Σ
+
g ground state to the 11

Σ
+
u excited state.

The data for the potential curves is taken from Park et al. [25]. We set the pulse width to

100 fs, the wavelength λ= 1000 nm, and E0 =21.9 cm−1. The system evolves over 340 fs

on a spatial grid with 256 points.

In the tables describing the computational efficiency below, we use the notation

n1(n2) to refer to the adaptive Magnus–Lanczos method of order n1 using the term θ̃n2−1

for error control. Also, the notation n1/fixed referes to a the n1th order Magnus–Lanczos

method using a fixed time step.

The three first rows of Table 1 compare the performance of the different versions of

the adaptive algorithm. The methods 2(4) and 4(4) both use an approximation of the er-

ror of the second order method to choose the step size. Since including also the second

term in Eq. (19) does not require any additional FFT computations, the cost per time

step for the 2(4) and 4(4) methods are very similar. However, the 4(4) method produces

a slighly more accurate solution.

If we are interested in meeting a certain global accuracy criterion, the Magnus term

θ̃3 could be used to estimate the error for the fourth order scheme. Since this term is rel-

atively complicated, each time step of the 4(6) scheme is considerably more expensive

than for 4(4), even if no additional FFT/IFFT computations are involved (cf. the discus-

sion in the last paragraph of Sec. 5.1). However, as is clear from Table 1, the 4(6) method

14



method no. steps no. FFT/IFFT ℓ2 error ℓ2 error 11
Σ
+
u state

2(4) 24481 74480 ·2 1.7 ·10−6 1.2 ·10−6

4(4) 24487 74468 ·2 9.4 ·10−7 1.8 ·10−7

4(6) 906 4530 ·2 8.8 ·10−6 6.2 ·10−6

2/fixed 24481 69040 ·2 6.2 ·10−6 6.0 ·10−6

2/fixed 49500 136243 ·2 1.7 ·10−6 1.6 ·10−6

4/fixed 906 4516 ·2 5.5 ·10−5 5.2 ·10−5

4/fixed 1439 6828 ·2 8.8 ·10−6 8.2 ·10−6

Table 1: Different kinds of error control with tolerance 10−5.

is still much more efficient than if the less accurate error estimator is used. The number

of time steps can be reduced by a factor of 27 and the number of FFT/IFFT pairs, i.e. the

work, with a factor of 17 compared to method 2(4).

In the last column of Table 1, we report the ℓ2 error of the excited state function only.

In a practial computation, the excited state wave function is often the interesting part

of the result. We note that the error is mostly concentrated in the excited state, and the

error estimator used (which is defined for the full wavefunction) is still efficient.

In order to show the efficiency gain of the adaptive method, we also show results for

fixed step schemes in Table 1. For example, we take the number of iterations needed by

the 4(6) method and compute the solution with the same number of steps but fixed step

length. This results in a significantly larger error using just a slightly smaller number of

FFT/IFFT evaluations compared to the adaptive scheme. From the results in the table,

we also observe that the fixed step algorithm needs more than one and a half times as

many steps to reach the same accuracy as the adaptive variant. Correspondingly, for

the second order Magnus–Lanczos scheme with a fixed time step we need about twice

as many steps to reach the same accuracy as the 2(4) adaptive method.

5.3 A problem with several spatial degrees of freedom — Excitation of

the ClO2 molecule

To demonstrate that the new propagators are applicable also to problems with sev-

eral spatial degrees of freedom, we consider a model of the chlorine-dioxid molecule

[1, 36, 31] which involves three degrees of freedom. We propagate the solution over 60

fs with a laser of strength 21.9 cm−1, wavelength 386 nm, and width 20 fs. We use Radau

coordinates with a computational grid of size 128 x 128 x 64 and use potential energy

surfaces due to [27]. The results are summarized in Table 2. Again, our adaptive algo-

rithm gives an effective error bound and we need almost 50% more FFT computation to

reach the same accuracy with an equidistant grid.

5.4 A problem with a transparent boundary condition and three

states — Dissociation of the IBr molecule

We have also applied our new propagation algorithms to a model of a IBr system. As

for the Rb2 model studied earlier, the problem is one-dimensional. However, for the

15



method no. steps no. FFT/IFFT ℓ2 error

2(4) 3034 14799 ·2 3.6 ·10−5

2/fix 3034 13827 ·2 4.3 ·10−5

2/fix 5000 21114 ·2 3.6 ·10−5

Table 2: OClO with tolerance 10−4 (3D).

internuclear distance

laser field

initial state

X1Σ
0

Y0+

B3Π
0
+

Figure 2: Configuration of the IBr system with three electronic states.

IBr example a third, dissociative state is included. Note that the Magnus–Lanczos al-

gorithm developed in Sec. 3 can be applied also for dissociative problems, provided

that the Lanczos algorithm is replaced by the Arnoldi iteration [29]. The computations

presented below are performed using such a Magnus-Arnoldi scheme.

Starting with the lowest eigenfunction of the ground state, we excite the IBr molecule

to the B3
Π
+
0 state with a laser with a wavelength of 500nm, a width of 50fs and strength

219 cm−1. This state is statically coupled to the Y 0+ dissociative state. For the param-

eters of the potential energy curves, we refer to [10]. Fig. 2 shows the configuration in

this system and Fig. 3 visualizes the evolution of the wave packet in the three states.

The latter figure also includes the corresponding potential energy surfaces. One can see

that the wave packet stays stable in the ground state, whereas the fraction that is excited

moves away from the origin.

The spatial coordinate is discretized with 419 grid points and an complex absorb-

ing potential (CAP) boundary of the form described by Grozdanov and McCarroll [9] is

introduced at the last 82 points. The CAP-parameters are chosen such that the reflec-

tions from the sponge layer are negligible compared to the propagation error. The first

Magnus-terms for a three-state system are described in detail in [19].

Table 3 shows the results for a propagation over 120 fs. Apart from theℓ2 error, we also

consider the error in the cross-correlation with the 14th eigenstate of the B+
0 state. This
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Figure 3: Time-evolution of the IBr system. In the lower row, the potential energies are shown

(from left to right; X 1
Σ0, B3

Π
+
0

, Y 0+). Above each potential, the evolution of the corre-

sponding wave packet is visualized (time axis from bottom to top, internuclear distance

from left to right).

method no. steps no. FFT/IFFT needed ℓ2 error

2(4) 4504 21614 ·3 1.6 ·10−4

2/fix 4504 21929 ·3 3.4 ·10−4

2/fix 6600 29903 ·3 1.6 ·10−4

Table 3: IBr with tolerance 10−3 (including dissociation).
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is the highest eigenstate with energy below the energy crossing with the Y +
0 state. For

our adaptive computations, we get an absolute error of 6.5 ·10−8. This means that the

error is significantly overestimated for this functional. However, considering that the

cross-correlation itself is of size 6.0 ·10−6 , we end up with an relative error of 1.1 ·10−2

which is above the tolerance. The reason for this beahviour is that the main part of the

error in concentrated in the excited states, an observation which is further discussed

in Sec. 6 below. Note that our error estimator considers the absolute error and, thus,

cannot make a rigorous prediction for the relative error.

6 Efficiency of the Low-Cost Error Estimate contra the

Costs of Solving the Dual Problem

For the TDSE, the absolute value of the dual solution is known in advance, and we ex-

ploit this fact to derive the global error estimate (4). However, in Eq. (3), the absolute

value as well as the direction of the dual solution provide information on the size of the

error. Note that Cao and Petzold [5] consider a single ODE where the direction is re-

duced to the sign of the solution. Hence, by taking the norm we loose the information

of the direction which potentially makes the estimate less efficient for error control. On

the other hand, the estimate is available from only solving the primal problem once

which reduced the computational cost significantly compared to if a general method

for error control is used. Also, in case the functional 〈z, ·〉 depends on the error, using (4)

is often advantageous since the vector z is unknown.

In case one wants to include the directional information of the dual solution, the

following adaptive procedure would be suggested:

• Solve the dual solution with low tolerance and save it for each time step

• Solve the primal solution with adaptively choosing the time step according to

ki =

(
ki−1

ε/T

〈λ(ti ),Ω̃[2n+2](ti ,ki−1))ψ̃(ti )〉

) 1
2n

·ki−1, (20)

where λ(ti ) can be estimated by linear interpolation of the precomputed values

Note that this algorithm is generally not practical since it requires too much memory

for saving the dual solution at every time step. For the case with a symmetric Hamilto-

nian, this can be solved by exploiting the time-reversibility of the Schrödinger equation:

Solve the dual problem first without saving, then use the solution at initial time as ini-

tial value for a forward problem on the same discrete time points and solve this problem

parallely with the primal problem. For dissociative states one has to work with reversal

schedules [34].

As a specific example of the effect of using our low-cost error estimator, we revisit the

Rb2 model studied in Sec. 5.2. For the computations performed there, we used that the

norm of the dual solution is constant and did not actually compute it. For comparison,

we have also solved the problem adaptively based on (20), i.e., including a computa-

tion of the dual solution. We consider the error in the auto-correlation function (cross-

correlation with the initial state) as well as the error in the cross-correlation function

with the lowest eigenstate on the excited state. In both cases, we precompute the dual

solution with 5000 time steps (equidistant).
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For the auto-correlation, we now find that 8083 (+129 disapproved) steps are needed

and for the cross-correlation, we need 24252 steps. In the first case, the number of steps

can be reduced by a large amount by solving the dual problem as well, whereas one al-

most needs as many steps as without solving the dual problem when focusing on the

cross-correlation function. This verifies the earlier observation that the error is con-

centrated on the excited state, considering that the auto-correlation takes a value of

−(0.03+0.10i) and the cross-correlation a value of −(0.52+0.85i). We observe that while

the total computing costs decrease when explicitly soving the dual equation in the first

case, they increase in the second.

One specific problem setting which requires special attention is if we want to com-

pute a cross-correlation function which is small. In this case, the overestimation pro-

vided by our low-cost error estimator might not be acceptable (cf. Sec. 5.4). Then, we

have to trade the efficiency of the estimator against the cost of solving the equation sev-

eral times. Which way to choose is, of course, problem dependent (cf. the discussion in

the last paragraph of Sec. 5.4).

Here, it should be noted that when discussing the error in the computation of a small

cross-correlation, it makes no sense to consider the absolute error. If one assumes the

error to be directed in the same direction as the solution, the standard procedure yields

an estimate for the relative error. But in practice, we have to be aware that we do not

have a strict bound on the relative error since the direction of the solution is only a

rough approximation for the direction of the error.

Indeed, we found in our experiments that the part of the error in the excited state is

usually much larger than the excited-state-part of the solution. This seems reasonable

since the initial state was an eigenfunction of the ground state Hamiltonian. Therefore,

the wave function in the ground state to a main extent remains within this eigenstate. It

then changes slowly compare to the excited state wave function and is hence relatively

easy to approximate.

To sum up, it pays off computing the dual solution if

• there is a functional of the error we are especially interested in and

– the value of the functional is very small compare to the norm of the wave

function or

– the error is concentrated away from the interesting functional,

• and we have enough memory accessible to save the dual solution on a coarse

grid or we have an efficient scheme to compute the dual solution parallely with

the primal.

7 Summary and Conclusions

We have proposed and analyzed an h, p-adaptive propagator for the time-dependent

Schrödinger equation that allows for a global error control. The local error is estimated

based on extrapolation at the cost of effectively one (sparse) matrix-vector multiplica-

tion for a second order propagator. Duality-based error estimation theory was applied

to investigate the influence of local errors on the result at some final time T . As long

as no sponge layer is involved, the time-dependent Schrödinger equation has a special

structure making the primal and the dual PDE the same. Using furthermore the fact that

the norm is conserved, we get the global estimate without solving the dual problem.
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In this article, we focused on time-discretization techniques and used a simple FFT

implementation of a pseudo-spectral method for space discretization. In order to make

this method competitive especially for higher dimensions, it has to be combined with

adaptivity in space in future work.
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