A Student Perspective on Software Development and
Maintenance

Jonas Boustedt
Division of Scientific Computing
Department of Information Technology
Uppsala University
SE-751 05 Uppsala, Sweden
jbt@it.uu.se

March 24, 2010

ABSTRACT

How do Computer Science students view Software De-
velopment and Software Maintenance? To answer this
question, a Phenomenographic perspective was chosen,
and 20 Swedish students at four universities were inter-
viewed.

The interviews were analyzed to find in which dif-
ferent ways the informants, on collective level, see the
phenomena of interest. The resulting outcome spaces
show that software development is described in a num-
ber of qualitatively different ways reaching from prob-
lem solving, design and deliver, design for the future and
then a more comprehensive view that includes users,
customers, budget and other aspects. Software mainte-
nance is described as correcting bugs, making additions,
adapting to new requirements from the surroundings,
and something that is a natural part of the job.

Finally, conclusions from the results and additional
observations are discussed in terms of their implications
for teaching, and some suggestions for practical use are
given.

1. INTRODUCTION

One of the main goals for Computer Science and Com-
puter Engineering education is to prepare students for
careers in the software industry. It is possible to iden-
tify several indications on how the need for competence
in the industry influences the academic education. For
example we can see how the industry adopts new pro-
gramming languages and new methods for software de-
velopment and how this affects the content in computer
science educations [1].

The greater part of university level Computer Sci-
ence Education Research focuses on students who are
learning to program at beginners’ level. The reason
for this is that many of the problems that educators
are experiencing within the education programmes are
related to novices and their first programming course.
The throughput has been low and the drop-out rates
have been high. A specific circumstance that relates to
the introductory courses in programming is that many
of the students who take these courses are not computer
science majors. Still, they are often forced to take these
courses as a mandatory part in their study programmes.

Compared to research on novices, research on ad-

vanced level undergraduate students with Computer Sci-
ence or Software Engineering as major subjects, is most
moderate, and research on graduated students who have
recently started their professional careers in the indus-
try is even more rare’. Consequently we do not know
much about how well we manage to prepare our stu-
dents for their professional lives outside the academic
environment.

Surely, there are more to learn about what awaits a
student who gets a job in the software industry and
how prepared he or she is for that situation. In a rather
unique study, the researchers contacted a number of for-
mer students who recently had been employed by a big
software company, and they followed them for a couple
of months. The beginners experienced that they were
technically well prepared for the new situation; how-
ever, they did not think that they were prepared for
the social situation in the large, hierarchic work teams
and neither were they prepared for work with old and
vast legacy code. Their tasks were mainly to debug the
software, make minor additions and work on documen-
tation [1].

A generic term for tasks aimed at keeping existing
software system running is Software Maintenance?. Since
it is expensive to develop new software from scratch, the
natural endeavour is to get the longest possible life-time
from existing software systems. To obtain this goal, it
takes a carefully organized way to maintain the soft-
ware that builds the system. The research literature
in this area points out that software maintenance is a
task that newly employed persons in I'T organizations
are most likely to get [1, 6]. This work requires quali-
fied knowledge, for instance, the knowledge required to
diagnose malfunctions in a system. Nevertheless, it is
sometimes hard to recruit staff, partly because only a
few have adequate education for this work, and partly
because maintenance seems to have low status [6].

Even though software maintenance is a plausible work
task for newly graduated students it is not at all evident
that it is a topic in a computer science program. This is

!There are good examples of this kind of research however,
e.g., [1].

2The process of modifying a software system or component
after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment [14].



because it is often ascribed to the subject area Software
Engineering, which in its turn often is only a small part
of a typical computer science program [14]. Hence, it
may be that the students could and should be better
prepared for the tasks that many of them will face in
the beginning of their careers. The question is how to
alter the education in order to enhance the students’
competence and awareness about aspects of their future
profession. Can it be done without infringing too much
in the existing subjects?

Having the goal of improving the computer science
education, it is important to first take into account how
the students themselves experience their studies and
future prospects, and then start from this knowledge
when it is time to consider how the education could be
improved. The purpose of this study is to empirically
investigate how students view the concepts software de-
velopment and software maintenance. 1 also aim to in-
dicate how the results from these investigations can give
a basis for ideas that can help to make improvements
to the education and make students better prepared for
getting started with their future careers.

leave the university and look for work. The data were
collected via semi structured interviews with 20 final
year computer science or computer engineering students
at four different universities in Sweden and there were
18 male and 2 female informants in ages between 20
and 39, some of whom have had work experience from
the software industry. The reason for choosing different
universities was to get a variation that reflects the entire
population better compared with only selecting partici-
pants from one single educational institution. The infor-
mants follow different study programmes in computer
science, computer engineering or informatics. These ed-
ucations are three or five years long. Two of the four
institutions are major universities with heavy research,
whereas the other two are smaller institutions that have
not received official university status.

In order to protect the informants, their real identities
are kept secret. Instead, they are referred to as SO1 —
S20. Moreover, all informants are referred to as males
using masculine pronouns (he, his, him), because there
were only two female informants and for some persons
it would be easy to guess their identity.

The interviews were held in Swedish, the mother tongue

The study addresses students in the final stage of differ-of the participants, and consequently all quotes from the
ent computer science programmes and intends to an-interviews in this paper are translated into English.

swer the following research questions:

1. In which ways do students understand software de-
velopment?

2. In which ways do students understand software
maintenance?

2. METHOD

This study takes a phenomenographic perspective,
which means that it is designed to investigate how stu-
dents see things, and based on their descriptions, the
aim of the analysis is to find categorizations of qualita-
tively different ways to experience the phenomena.

In general, a phenomenographic study tries to answer
questions that relate to persons, often pupils or stu-
dents enrolled in some particular education. The ques-
tions concern in which ways various educationally re-
lated phenomena are understood or ezperienced within
this specific group and the data are collected through
interviews with the people in the group. However, it is
normally not possible to conduct interviews with every
person in the group, and consequently the participants
in a phenomenographic study must be a selection. It
is important that the informants are chosen in a way
that allows for a broad variation of possible ways to see
a phenomenon. This is because the phenomenographic
research aims to find and show the differences and vari-
ations in the way phenomena in the world are “under-
stood” (described) by people. It is anticipated that the
most common and important understandings are cap-
tured if (1) the number of participants is big enough
(about 20) and (2) the persons are selected with care
and (3) the researcher uses a keen ear during the inter-
views and adapts to what the informant says by posing
follow—up questions.

The population in this study are Swedish computer
science or computer engineering students who will soon

Two main topics for discussion during the interviews
was how the informants perceive the concepts of soft-
ware development and software maintenance. Software
development was discussed prior to software mainte-
nance, and then the interviews went on with discussions
of the informants’ view of how they would be affected
by these tasks in the future.

A phenomenographical approach was used to analyse
the interviews, which means that the transcribed inter-
views were examined to find expressions of “meaning”
of software development and maintenance. For each re-
search question, the goal was to establish an “outcome
space”; a set of categories that expressed distinct ways
of experiencing the “phenomenon” in question, on a col-
lective level. The next section gives an introduction to
phenomenography and Section 3.1 describes how it was
applied in this study.

3. PHENOMENOGRAPHY

Phenomenography originated in educational questions
of how learning comes about and how the learning pro-
cess can be improved. It gradually evolved and matured
into a research tradition that concerns how different as-
pects of the world appear to people. Essentially, the
studies within this approach are explorative and use em-
pirical data, and they all take a second order perspective
on a phenomenon. That is to say, the phenomenogra-
pher does not study the phenomenon as what it is (a
first order perspective), but the variation in how it is
experienced by a group of people. Marton gives the
following definition of this research specialization:

Phenomenography is a research method adapted
for mapping the qualitatively different ways
in which people experience, conceptualize, per-
ceive, and understand various aspects of, and
phenomena in, the world around them. [7]

Experiences from earlier studies had shown that dif-



ferent people described phenomena in only a few differ-
ent ways, which led to a fundamental epistemological
assumption, namely, that there are only a limited set
of qualitatively distinct ways to experience a given phe-
nomenon.

Bowden [3] outlines the phenomenographic research
process as having four stages: plan, data collection,
analysis and interpretation. The plan defines the pur-
pose and the strategies for the research, which naturally
is driven by an underlying question that the researcher
tries to answer. Essentially, the data are collected from
people’s statements in interviews where they are asked
open-ended questions about a phenomenon, and it is
important to make a careful selection of interviewees in
order to capture a wide variety of experiences. Dur-
ing the analysis, the transcribed interviews are sought
for different meanings and contexts concerning the phe-
nomena of interest. Finally, the results should be inter-
preted, and in applied phenomenography, this involves
how researchers and teachers can use the results in ped-
agogy and instruction.

In phenomenographic analysis, the researcher con-
verts the primary source of data by transcribing the
recorded interviews. The next step is to search the texts
for different expressions of meaning that relate to a cer-
tain phenomena. Walsh states:

Phenomenographic analysis — whether it is
seen as construction or discovery — focuses on
the relationship between the interviewee and
the phenomenon as the transcripts reveal it.
[16]

Manifestations of meaning are found where the in-
terviewee explicitly describes the phenomenon as such,
however, implicit descriptions can also reveal meanings,
e.g., in descriptions of the use, purpose, advantages or
drawbacks of the phenomenon.

The meanings of the focused phenomena are expressed
by quotes that form a pool of refined data, and the
quotes are usually de-contextualized, which makes it
possible to find distinct qualities. Nevertheless, refer-
ences to their original contexts are kept for the possibil-
ity of re-interpretation. The fragments of meaning are
condensed into clusters of meaning that are abstracted
and outlined in “categories of description.” A prominent
feature of the categories is that they are on a “collective
level” as they do not express any particular individual’s
understanding; rather they are the result of an ana-
lytical categorization of all relevant meanings found in
the data. In the process of forming categories, the re-
searcher tries to find different “dimensions” in the sense
that each category opens up a new way to “see.” This
avoids categories that are instances or variations within
the same dimension.

The main result of a phenomenographic study is the
“outcome space” which is constituted by the categories
of description and their logical interrelations, and since
a non-dualistic view is assumed, the outcome space can
be regarded as a synonym for the phenomenon [8]. A
common logical relation in an outcome space is “hier-
archic inclusiveness,” which implies that the categories
include each other in the sense that a certain under-
standing also includes or implies a more elementary un-

derstanding. As phenomenography originated in stud-
ies that aimed to understand or improve learning, it is
reasonable to range the outcome space in a hierarchy
where the quality of each category is valued by some
measure of compliance to the educational goals. Mar-
ton and Booth explain:

Thus, we seek an identifiably hierarchical struc-
ture of increasing complexity, inclusivity, or
specificity in the categories, according to which
the quality of each one can be weighted against
that of the others. [9, p.126]

3.1 How the phenomenographic analysis was
conducted in this study

In this study, the analysis started with reading all the
transcribed interviews to get an appreciation and overall
perspective of the whole context. During the reading,
all text sections relating to the specific concept, e.g.,
software development, were marked.

The next step was to collect all of the marked text sec-
tions and copy them into a separate document, and then
import the document into the computer based analysis
tool Atlas.ti [12]. This tool did not analyse the data au-
tomatically in any sense; however, it made the text easy
to tag. The tool made it possible to browse through the
text, to add comments, and to mark those quotes that
in some sense ascribed a meaning to the phenomena in
question. One or more labels were added, identifying in-
terpretations of each marked quote. The software sup-
ported examining the data from several perspectives.
For instance, it was easy to find and collect all quotes
coded with a certain label. On a higher level it was
possible to study the various codes of meaning through
an alternative view, where the labels were represented
as graphical symbols, structured as nodes in a graph.

The various codes of meaning were then analysed
to find qualitative similarities and differences between
them, and hence, different clusters of meanings were
condensed. Before these groups were considered as pre-
liminary categories of description, they were further
scrutinized in view of the requirement that categories
should open up new dimensions in the phenomenographic
outcome space, or new relations between dimensions.

The final step of the analysis process regarded the re-
lational perspective where the categories were arranged
in a logical structure based on two criteria: (1) an eval-
uation of their compliance with the educational goals,
and (2) an hierarchical ordering of the categories, such
as inclusiveness and dependency.

4. THE INFORMANTS AND THEIR PLANS

Most of the participating informants in this study
were relatively young. The median age was 23 and the
majority seemed to have started their university studies
shortly after graduating from upper secondary school.
However, some informants were more experienced — the
ages vary between 20 to 39. Most students studied at
three year bachelor or engineering programmes in com-
puter science; however, in three cases the informants
were studying at master level, which means four or five
years of study. Three of the students were not follow-
ing an integrated study programme consisting of sev-



eral subjects, but were taking a number of full semester
computer science courses instead, and they were do-
ing it on top of some other university degree. Unfor-
tunately, there were only two female informants in this
study and this reflects the uneven and undesired gen-
der distribution in many computer science related study
programmes in Sweden. All informants were in the final
stage of their education. Half of them had only about a
month to go before graduating and the other half had
one year to go.

Table 1: Summary of the informants’ future
prospects

Future profession

—_

Software developer

Programmer

Has other job, wants to be a programmer
Project leader, programmer, entrepreneur
Human Computer Interaction, programming
Requirements analyst

IT and design

el e N e N N S

Since the purpose of the present study is to investi-
gate how education prepares students for the demands
from the software industry, it was important that the
informants wanted such careers. It turned out that all
informants wanted to go for a job in the software in-
dustry in the future, with some different directions. A
summary of the informants’ choice of future professions
is shown in Table 1. Three main groupings appear in
the list of professions. The first and most dominating
desire (15 out of 20 informants) is the wish to work
with software development or programming. Within
that group, 11 informants want to work with software
development and 4 use more specific terms when they
say they are interested in “programming” or “coding”.
One of them had already got a surveillance job and was
pleased with that for now, but would actually like to
work as a programmer later.

The second group expressed a desire to do something
specific or have a specific role where programming is
part of the means to achieve the goals. One informant
would like to be a project leader and start his own busi-
ness in the future, but would like to start as a pro-
grammer. Another informant was especially interested
in the subject area Human Computer Interaction and
would like to improve the computer based tools that
people use at work, which probably would require some
programming.

The third group desired to work with “softer” areas
connected to software and system development. One
informant wanted to work with requirements analysis,
“the person who investigates what the program should
contain”, and one informant wanted to work with “IT
and design”. It is noteworthy, however, that these were
the two only female informants in the study.

In summary, an observation is that most of the in-
formants want to work with software development on a
rather tangible level and that some want to deal with
softer aspects, such as design of graphical user interfaces
or end user interviews; however, all of the informants see

a future profession related to software development.

5. HOW THE INFORMANTS VIEW SOFT-
WARE DEVELOPMENT

A number of qualitatively distinct ways to describe
software development appear in the informant collec-
tive, forming categories of description and the outcome
space, which can be interpreted as qualitatively differ-
ent ways to experience, understand or “see” the phe-
nomenon “software development”.

In the analysis, a professional perspective on software
development was used as a guidance when interpreting
the relations between the categories of description. Tak-
ing this position means that descriptions of “soft” qual-
ities is valued highly. The students are going to work in
a reality where aspects such as team work, communica-
tion with customers and users, helping them to define
what they want, the time frame, and the budget limits,
are very important to understand.

The first and most fundamental category describes
the phenomenon “software development” as creating or
building a program that solves a problem or satisfies a
demand. The descriptions often emanate from an ed-
ucational point of view or a hobby situation and they
mainly give a personal and subjective perspective on
programming.

The next category describes software development as
working out how a program should be constructed in or-
der to fulfill the expectations or requirements that have
been posed. In some cases, the descriptions also indi-
cate a professional attitude, for example there appears a
consciousness of the differences between hobby projects
and professional projects.

In the third category, software development is de-
scribed with future aspects in mind and takes a wider
perspective than only focusing on the specific applica-
tion to be developed. This way of seeing involves as-
pects of software quality that should be considered when
software is developed. These aspects are important to
make the software understandable, reusable, maintain-
able and endurable. This way of seeing has an obvious
professional point of view.

The fourth category describes software development
from a professional and businesslike perspective which is
manifested in many ways, such as, you have to actively
help customers and end users to understand what they
need and formulate their requirements, that there are
budget limits for software development projects, and
that it may take long time before you can expect to get
return on investments in a project.

A summary of the outcome space for the phenomenon
“software development” is shown in Table 2.

5.1 Category 1: Creating a program that solves

a problem

In this category of description, software development
is described as something that solves a problem, to
achieve something through building a program, to get
a computer to perform tasks for a user, or simply, to
write code. The informants describe the phenomenon
in general from a perspective that is mostly personal.

Some of the informants describe that they experience



Table 2: A summary of the outcome space for the descriptions of software development.

Category

How software development is described

1: Solve a problem

2: Design a program

3: Design for future

4: Understanding need and whole

Software development is described, mostly from a subjective perspective, as
finding a solution to a problem or creating or building a computer program
that solves a problem, that meets a need or realizes an idea.

Software development is described as finding out which functions and parts
should be included in a program to meet the need and how they should be
designed. Different design methods are described to achieve the goals.

Software development is described from a professional perspective as designing
for the future; it is important that the software can handle future changes, be
reused and that the design is documented so it can be understood.

Software development is described from a professional perspective as designing
software and understanding what the customers and end users need, what can
be achieved, the time frame, the economic aspects, and which methods to use.

software development as a satisfying problem solving
process. For example S15 tells that the work invested
in solving the problem is rewarded when he finally can
see his creation taking shape:

I see it as, well it is kind of a problem solving
that, that gives a reward when you manage
to solve it and you can see a result. That is
the reward I guess, that you manage to solve
the problem, that you see that you can create
something. That is what I think is fun. [S15]

In a similar way, S03 describes software development
as a challenge:

Good question, well, like a challenge, to find
a solution to a problem. [S03]

S10 starts to talk about problem solving and then
describes a head-on approach to reach the result, which
is to make a program:

Yes, problem solving, but, well, it is the pro-
gramming, just build on and go on and go
for a result that you want to achieve in some
way... [S10]

A similar way to describe software development is to
see it as achieving a goal, to solve a task; S09 describes:

No, I don’t know, it’s like a part of achieving
something, if I could say so. You will get like
a goal or something, a task... [S09]

Software development is described by S05 as creating
a program that can be used for something:

You create, you create a, you create some-
thing in a computer that a user should be
able to use for something. A hard question,
well, you create a program. [S05]

S18 describes that software development is about solv-
ing the “problems” we are having with tedious tasks in
our everyday life by having a computer making the work
for us:

To make computers, or machines in general,
ta make machines to do things for us that we
do not want to be bothered about ourselves,
so that the everyday life gets easier and more
comfortable. Well, first you become aware
of a problem, it would be great if there was
something that could do this because it is so
boring to just sit there and do the same thing
over and over again... you could have some-
thing that does it for you, you just snap your
fingers and you make the first step and then
everything else is settled because it is deter-
ministic work in some way, and it seems that
computers are good at doing that. So it is
this kind of things it starts with, it starts with
a problem I guess. [S18]

Many of the descriptions in this category make a gen-
eralizing use of the term “problem”. In some cases,
however, it is used in a more concrete context; That
someone has a real problem and assigns this problem to
another person that will solve it by writing a computer
program. For example, S04 describes how you can cre-
ate a program that solves a problem that a company
has:

. a company may have, well, that they have
some problem that they want to get solved,
and that you, well I don’t know, that you
kind of, from scratch can create like a, well,
a program that satisfies the need they have.
[S04]

Some of the informants were very concrete in how
they described software development, and one of the
aspects that appeared was how the software is created
through a personal work effort dealing with concrete
program source code. S08 describes how he implements
an idea into source code:

It’s about realizing I guess, being able to get
an idea in, into code you know... If I am
going to code something, then I usually starts
by having a look at examples of what other
people have done... when you look at other



peoples code you may get an aha moment in
your head... or looking at old code of my
own... and then you think that it is possible
to do it in this way but perhaps I should do
it a bit different, and it is in that moment
the code forms in my head, kind of... I don’t
like to plan to much ahead for exactly how I
should de it. I prefer to get started and then
let it flow for a while — when you get in some
basic stuff and then you build on that, kind
of... [S08]

S20 gives this summary of his view on software devel-
opment:

... because I see all development of software
as solving a problem, or dealing with a need,
through the computing power that resides in
a computer... [S20]

In summary, software development is understood as
problem solving in this category, that is, the challenge
or the process of creating code that solves a certain
given task. And the descriptions often express that it is
joyful and satisfactory to succeed in solving a problem.

5.2 Category 2: Designing a program

In the previous category software development was
described as writing programs that solve problems, only
the descriptions did not say how to write the programs
to achieve this goal. The second category of description
includes the first category, but what is added to the
descriptions is that they concern various approaches and
methods that the informants use to form, that is, design
the software. In this category we can observe a slight
shift towards the professional context.

Software development is generally described as some-
thing that takes place in steps. S09 describes that:

... you build something step by step, kind of.
Design, and then it is implementing it and,
well. [S09]

Some informants gave a fuller description of software
design, and did so mainly in two ways. The first way
to describe software design is that it is about planning
and specifying before you start to write program code,
and the other way is to develop an early prototype of
the software and then refine it in steps.

Software development is described as planning and
specifying in the beginning, S16:

Well, it is very much work with specifications
in the beginning, I guess. [S16]

S11 describes how software development follows a cer-
tain order where you analyse and plan in the beginning
before you program:

I would like to say that it is a number of
things, there is this software building routine,
you do some analysis first, only concerning
the function you want, you design the pro-
gram and in the last phase, the last stage, you
program and after that you look for bugs. So
that is just it, to plan first, what is it called,
design. [S11]

S05 describes that software development requires that
you first must plan what to do and how it should be
done, and only after this planning you can start creating
a design (in this case S05 refers to the graphical user
interface design). When the design of the user interface
is finished, you can write the code that handles what
should happen when someone uses the interface:

Planning what you want to achieve, and plan
how it should be accomplished. Then I usu-
ally start with creating the design, what it
will look like, and then I try to create the
logic that is behind when the user is playing
with the design, what it supposed to happen.
[S05]

This understanding of how software development takes
place is shared by S04 who has own experiences of soft-
ware development in professional settings. He describes
that it is important for him to start with a visual proto-
type of the program’s graphical user interface to be able
to get an understanding for what the program should
be able to do and what it should consist of:

I work lots in Photoshop, well, I make up the
entire user interface for exactly how it should
work, and then some ULM diagrams on top
of that. It depends a bit, but, well, I make
UML diagrams and then you start to pro-
gram after that, because then I believe that I
get an overview of the entire system and see
parts of how, how the parts are supposed to
be connected, and such. [S04]

S07 describes that the solution to a problem may be
useless unless he first has thought through and docu-
mented how the problem should be solved before the
program is written, and that this is probably the way
it is done in larger companies in the industry:

I could sit down and start coding it right
away, but the solution would probably be use-
less because I had not thought things through.
I would not have been sitting on the top look-
ing out over the problem and thought through
how it should work. Instead, the design is a
documentation that enables to get back an
check — have I really followed this, is it the
way I thought... it is important that you
spend much time on the first design... then
again, the design is not nailed in rock, indeed,
it can be changed... I can imagine that this
is how it works in companies that do much
software development. [S07]

S19 describes that it matters if it is hobby projects
or if it is a larger projects, because they are different.
In a hobby project you can work more directly with the
programming, whereas in a larger project, you need to
be more careful about the planning before you start to
program:

Then you sit and think about what different
parts are needed, modules or classes... and I
think about how they are put together... but
when it is kind of a hobby project, you can



start to type the code sooner than you are
supposed to. Usually you should plan more
and that. Like now, in the thesis work, I
planned very carefully. We planned for two
weeks and we had a whiteboard and we came
out with a lot of ideas and details, and it went
really damn good actually. So it depends if
it is a small project or a large project... [S18]

Likewise, S17 have a similar understanding that there
are differences between working professionally and de-
voting oneself in a hobby project. In professional con-
texts, a design phase is needed, where the developers
plan what to do before they implement the software.
The description also adds that the program should be
tested and that potential bugs should be corrected:

Well, it depends on if you work professionally
or only with a hobby system, but in any case
you must have a design phase where you in
some way sketch more or less carefully, sort
of, what you are going to do, and stuff. It
is very much about design, implementation,
and then testing and debugging and that...
but if you only are doing a hobby project at
home it becomes more of that you are not so
careful and not so formal, sort of. [S17]

Several informants describe a different way to develop
software. It is about working with prototypes that you
gradually change instead of planning a complete solu-
tion before starting to write the program code. S12
says:

Yes, but my way of developing the programs
is to... you make a prototype first and then
you have it in mind when you try to design
and improve, and in the design book we stud-
ied, it was supposed that you should make
prototypes and then rewrite the code and keep
on doing it all the time. Instead of having a
gigantic UML diagram and then follow it...
the basic idea is that you make prototypes
and they you improve the code and make a
prototype from the improved code. [S12]

S16 describes that a new methodology has come that
differs from older methods. Using the new method you
produce a usable prototype that you continuously de-
velop and refine in short intervals. This is far from the
waterfall method, where everything is completed in a
current phase before shifting to next stage. To S16, the
new methodology is preferable because he does not like
documenting — nor specifying:

It is very much scrum at the moment... it
is a rather new concept... besides, you get
a... continuous prototype that is usable, sort
of, unlike... the big companies are using...
more this waterfall method where you heave
things to next stage and next stage... This is
more round, because you work around all the
time, sort of, weekly instead... the waterfall
method is very directed towards writing doc-
umentation... or specifications. Naturally, it
is good to specify so that you understand how

it works... but I think the trial and error
method is more fun, sort of, that you program
instead of sitting there and thinking out how
it all should work. You always have a picture
in the head how you want it to work between
the different parts anyway... [S16]

Also S13 describes a prototype driven iterative model
and focuses above all on that the programmers are going
to be able to take part in the entire process:

I think you work in iterations, that you make
a first software and you present it and see,
are we on the right road? ...that you can
go around in the iterations, that you develop
all the way through, so that is the project
method you can say. I have learned many
process methods but I think this is the most
reasonable, that you develop programs so that
the programmer can follow all the way too.
Surely, the programmers are participating from
the beginning, and also maybe in the discus-
sion of what is possible and so on. [S13]

The descriptions, or understandings, in this category
of description, can be summarized as that there is a pro-
cess that is about working out, or designing, a solution
to a problem following some kind of methodology where
things are carried out in certain steps in a certain or-
der. The methods described are either an iterated step-
by-step refinement of a prototype or a two-step model
where you first plan for the code and then you imple-
ment it.

5.3 Category 3: Designing for the future

In the previous category of description, software de-
velopment is described as a more or less structured and
methodical process that focuses on producing a com-
puter program. The third category of description, de-
signing for the future, includes the understanding in
the previous category and adds descriptions that open
a new dimension of software development, namely an
awareness of a number of qualitative properties the de-
sign should have in addition to being the solution to
a specific problem. In this category, the focus is on in-
ner quality requirements on the software, including that
the design should be extendable, durable, reusable and
maintainable.

S09 describes that it is important to have a well thought-
out (inner) design, facilitating the possibilities for fur-
ther development of the program:

If someone would like to develop this further,
it is important that I have thought-out the
design in a way that they can see what I in
fact have done and where they can add to it
and how... well, to have kind of a structure
on the construction itself... that it is not a
heap of boards in which I am hammering nails
at random, but rather that I actually think
that this is a wall, here is a floor, the wall is
dependent, or that the roof is held by walls,
and such. [S09]

S01 describes how his understanding of software de-
velopment has changed from being only writing the code



into now include that you need to make a good design
that makes the programs durable and changeable:

This is something that has really changed
over the years. Because, when I used to hack
some code at home in front of my computer,
in principle it was like that, that you started
from an old project and improved it, or you
started from scratch and in principle sat down
and wrote code right away. In recent years I
have realized that it is not a practicable way if
you are making, above all, durable programs
that can cope with changes and can be sep-
arated in different paths along the develop-
ment process. So, I have first of all started
to realize the need for good design, good pro-
gram design, good code structure, and I feel
this is really something that the education
has helped me with, that I did not know be-
fore. [SO1]

Early in the interview, S11 mentioned the concept
design and was later asked to talk about what good
design means. He explains that his understanding is
that it is a durable design that is possible to understand
and build further on. He describes how this is based on
that the components of the design are separated in well
defined cells with only a few connections and that this
facilitates exchangeability:

Good design, that is a durable design that is
possible to, that is, first of all, easy to un-
derstand and secondly, it should work when
you build additions to the system and then it
should also be relevant, you should not pro-
gram more than what is needed, you know.
And then it is cohesion and coupling... that
relevant stuff is put together and these rele-
vant things has very little connection to oth-
ers because you have clusters, kind of. Well,
but the typical tourist sale thinking, you know,
that you have small cells and if one goes down
it is easy to exchange it, kind of. Roughly,
that they do not have so many connections
to each other. That’s right, that the same
things can mange, code that does the same
things should be put in the same classes and
should have low coupling to other classes so
they are easy to exchange, not many-to-many
relationships. [S11]

S12 talked about an agile process where it was im-
portant to develop a prototype quickly, but he would
like to go back and refactor the code in a later stage to
make the code reusable in the future:

Well, I guess it is above all to make the code
simpler and shorter and, a bit of this future
thinking, doing it all with modules and plu-
gins and such. [..] Well, that you think:
can I use this code for something else? In
that case you can break everything down in
smaller methods to be able to reuse the code
later. Perhaps you make more of these frame-
works or libraries, and then you do the ordi-
nary code just for the specific purpose you

are having. [...] Well, it is to be able to reuse
it in later projects. [S12]

S01 describes the importance of “seeing between the
lines” and be able to see the whole; that things will
change in the future and that you have to design soft-
ware in a way that it can handle changes:

Right now, I'm taking a class... and the pur-
pose of the class is to learn to evaluate and
make good designs ourselves... it is very im-
portant... because it is easy to learn to do
the handcraft, the mechanical handcraft, but
perhaps not the preparation for it... already
in the beginning when you sit down with at
specification or a requirements list, that you
kind of see the whole, and also notes that it
may come in things between the lines that
change the project in the future. And that
you have to think about future fields of ap-
plication for the program you are developing,
to make it easier for one who continues later
on... that you have a core that is very flex-
ible... that you can build on and extend in
many different directions. [S01]

According to S02, there are two different levels of de-
sign. The lower level is very important and it deals
with how the program is built internally with the pur-
pose to be maintainable, changeable and correctable.
The higher level is all about how the program can be
usable and understandable for a user:

Well, on the lower level you must decide how,
how the program itself should be constructed
on the, that is to say on the slightly lower
level which only the programmer cares about
and the user will not see at all. And that
part of the design can be very important, be-
cause if you design it poorly, then it can be
extremely hard to maintain later. If you want
to make changes, bug fixes or what ever, it
will be, could be enormously hard if you de-
sign it wrong [...] and besides, if later on you
do a bad design at the higher level where the
user uses the program, it can be completely
wrong when you use the program, that it can-
not be used because of its bad design; you
simply don’t understand how to use it. So
there are two different aspects to think about
there; that you design the underlying layer so
that it is possible to change and that you de-
sign the higher layer so it is possible to under-
stand what you are doing, what you are sup-
posed to do in order to get something done.
[S02]

In summary, this category of description comprises
the understanding that software development is solving
a problem by designing the program methodically and
ensuring that it is constructed in a way that makes the
work effort spent on design and coding reusable in a
future perspective; that the program is readable for fu-
ture programmers; that it is possible to exchange com-
ponents and make changes. Software development is



described as designing software with respect to various
quality criteria which lay beyond the horizon of what
functions the specific application should provide. Soft-
ware should be planned before it is written — or should
be refactored. Software should be reusable, modifiable
and endurable for future needs.

5.4 Category 4: Understanding what is needed

The previous categories have more or less described
software development from a point of view that em-
anates from the problem and how the software’s code is
produced. In the most advanced category, software de-
velopment is described from a perspective of the whole
that is close to a professional approach. This way of see-
ing, starts with the customer, the users, their require-
ments, needs and wishes. The customers gets a central
position and have great importance for the development
process, and it is a part of the developers’ job to help
the customers to know what their requirements on the
software should be. It is also apparent that there are
budget and time limitations to be aware of in a project,
and after the software has been delivered to a customer
it needs to be maintained.

S03 describes that software development is to evaluate
the customer’s requirements and then find a suitable
solution:

It is to evaluate the requirements of the cus-
tomer, I guess, and from that give, well, some
reasonable solution that follows the require-
ments. [S03]

According to S02, software development is a long pro-
cess, and it starts with the requirements from the cus-
tomer:

For me, it means all of this long process from
the point that you have the requirements un-
til you have delivered, you know. And then
it is... after that you must keep on main-
taining the program... In the beginning you
get some kind of requirements from the per-
son who orders the program... and then you
have to decide how you should work... and
try to keep it within budget... [S02]

As S04 points out, the first thing is to understand
what the customer needs, and there should be a re-
quirements specification:

WEell, that you, first you look at which needs
they have, what, what should be in the pro-
gram so to speak. Maybe some kind of re-
quirements specification is preferable. [S04]

S20 says it is essential to learn what the user needs,
and one way to achieve this is to interview the users:

Software development means, it is, above all
it is that you must investigate what the re-
quirements are, what it is that should be solved
to start with. Well, find out who is going to
use it and try to get some information from
interviews, in order that you do not start pro-
gramming right away... [S20]

If you want to introduce something new to the mar-
ket, S13 says, software development is much about ex-
ploring the needs, the requirements and the contexts of
the end-users. Programming is something that comes
in second:

Well, simply it is all about need, that there
is a need of something, and then that some-
one can express that need in a good way so
that another person can understand it. And
then that someone can handle the wishes and
then introduce them to a programmer... a re-
quirements specification that is passed on...
for example, that you want something new
that does not exist on the market... it is re-
quired that you make user investigations... to
see if there should be a system at all... you
test on different people.. you check the con-
text and the environment where the system
is going to be used... see what needs the peo-
ple have, if there is a need on the market
at all... there are design principles... when
it comes to ergonomics, well, context, envi-
ronment and things like that. Simply that
you should have a user focus... because pro-
gramming... comes rather long behind in the
hierarchy. [S13]

First of all, it is all about coming to an agreement with
the customer about what they want and if they can pay
for what the development will costs, says S06. Then you
keep in touch with the customer and deliver in portions.
The program will need maintenance until it eventually
will be taken out of service. Software development also
means that you develop personally and learn from your
experiences:

The customer. First you should find out what
they want, and then the customer must de-
cide... if it is worth the money... to find out
that people really want something. There
is when the program development starts, I
guess... it is the contact with the customers...
and then you have to go through certain cy-
cles... Scrum perhaps, there are some method
that says that you should deliver a piece at
the time and see to that it works a bit, and
then you go back and make changes. I is a
long process only to develop the program, but
there are also a certain measure of system
maintenance... and that goes on more or less
until 15 years later when the program dies...
Then personal development is involved... mostly
it is rewarding. If I make a program I want
to believe T have learned something. [S06]

S19 describes software development as a mission in
which it is included to find out and formulate what has
to be done before you implement and test the system:

Oh! It feels like a rather big concept, you
know. It is everything from the beginning to
the end. Well, you have some kind of mission
that you are supposed to accomplish, and one



part of the development is, what should I say,
to formulate or investigate what you are go-
ing to do, and then to implement it, the thing
itself, and test and redo it. [S19]

S14 describes various aspects that you must pay at-
tention to if you for example are going to develop a
system for a company. It concerns collecting informa-
tion from many involved roles related to the project, for
instance from the end-users, and then investigate which
requirements there are. The end-users are important,
but you also have to adapt the project to the budget
and time limits:

Then, I guess, they should contact those who
are involved in the different roles; what is be-
hind the technical so to speak to investigate
the requirements, as well as those who will
use the system to adapt it in the best way.
The users are very important, see... Bud-
get and those things are also very important.
Well, someone else must identify the require-
ments for the system and, kind of, start from
those basic requirements you have in the be-
ginning and how you can develop it and what
the time frame is, and then, well, interview
people and see their point of view and how
people use the system today. Do these user
scenarios and similar stuff... There will be,
well, rather many aspects to consider, really.
[S14]

S13 points out the importance of having a continu-
ous dialogue between the programmer and the customer
so that what eventually is delivered really is what the
customer wants. This is why it is important that the
programmer participates in meetings with the customer
from the very beginning:

Above all, it is important that the program-
mer knows what the customer wants... it
is this dialogue in the project that must be
present all the time, and that is why I think
the programmer should be engaged in it from
the beginning... when the discussions take
different turns, the programmer must be there
to say stop it or to encourage... We have seen
examples of what can happen when there is
one sitting here... and there is a programmer
sitting in the other end who says: well, I can
give you a house, and they got a house, only
it was not that house they wanted to have...
I believe it is important that the programmer
is in it from the beginning, and is allowed to
design and think as well, not only someone
who does what another person says, but is
involved in a process. [S13]

Altogether, this category of description gives exam-
ples of a comprehensive understanding of software de-
velopment in a professional perspective where the focus
is set on the understandings between customers, end-
users, developers and programmers.

10

6. HOW THE INFORMANTS VIEW SOFT-
WARE MAINTENANCE

The phenomenographic analysis of interviews revealed
four distinct categories of ways of perceiving and de-
scribing the phenomenon of software maintenance.

In the first category of description, the different de-
scriptions focus on that maintenance is to fix bugs in
the code and create patches that handle these errors.
These descriptions often express a view that mainte-
nance is a boring job that you would rather not deal
with, but the understanding that it can be challenging
and stimulating to resolve a bug also occurs.

The second category of description takes on a clear
time perspective and a user or customer perspective.
After a period of time after delivery of software, then
the customer discovers that there is something he or she
wants to add or change, but it also may involve errors.
Maintenance is, then, to address these concerns.

The third category of description, sees in a way, the
software in an even longer time scale. Here you can see
software in relation to external factors that can change
over time. For example, a new operating system or a
new release of a database can force adjustments in the
software.

Finally, in the most advanced category of description,
software maintenance is perceived as a continuous, on-
going effort to change, debug, add features and cus-
tomize the software. It is something natural which is
always there for better or worse. It is something you
would expect to be working with in the future.

A summary of the outcome space for the phenomenon
“software maintenance” is shown in Table 3.

6.1 Category 1: Handling bugs

Among the informants in the investigation is clearly
a way of perceiving the phenomenon of software main-
tenance as an activity associated with improving a soft-
ware that has been delivered to a customer, by address-
ing the errors, bugs, that the user has discovered. S07
explains also that errors are something you would ex-
pect of a newly developed software:

Yes, maintenance of software, that’s... Firstly
I do not think that you can release a software
that is flawless from the start but of course
you have to patch it and you have to upgrade
it to fix any bugs the user finds. Because it
is, ultimately it is he who will use the pro-
gram most. It is never the programmer who
uses their own program, but mostly it’s al-
ways the customer, so to speak, and it’s he
who discovers the errors and shortcomings.
So, maintenance of software is improvements
in the first stage, I guess... [S07]

Several informants describe expressly or implicitly that
maintenance is something different from development,
for example, that maintenance begins after the develop-
ment and that it might not be the same people who are
involved. S20 points out that maintenance of software
means that you collect and manage feedback about er-
rors from those who use the software in the real world
and that there are people who have the task of remedy-
ing the defects found after delivery has taken place:



Table 3: A summary of the outcome space for the descriptions of software maintenance

Category How software maintenance is described

Software maintenance is about collecting bug reports and taking care of the
bugs and patching the software after its delivery to make sure that the system
is up and running. The programmer who makes the corrections might have to
get into unfamiliar code and look for details.

1: Handling bugs

2: Change and add Software maintenance is about handling corrections to make sure that the sys-
tem is running and it is also about implementing the improvements, the changes
and the additions to the software that the customers or users probably will ask

for a while after delivery.

3: Adapt and update Software maintenance is about corrections and additions in the software, and it
is also about adapting the software to changes in external factors that impact
the software, for example new versions of software libraries, data bases and

operating systems.

Software maintenance is a natural part of the job. It is a continuous work
effort that is required in order to keep a software’s life long by making adequate
changes in the code. It is costly. There can be a contract between the customer
and the producer that regulates this work.

4: Continuous work

Software maintenance means that you also
get... one thing is that you have a good way
of collecting comments and bug reports from
the users, that you can get reports from when
the program has been used for its real pur-
pose so to speak. And that you have a num-
ber of persons that has as their job to, well,
update the program. First, I think of re-
moving bugs that may have been shipped,
but also perhaps to add, well, new features
and that. But first of all I believe that it
is about removing bugs that are discovered
afterwards. [S20]

Moreover, it is common that the view of software
maintenance, in the sense of dealing with bugs, is also
linked to the perception that maintenance is not as in-
teresting as the development process. For example, SO8
says that in order to correct errors in a program you
may need to familiarize with code that you have not
written yourself, and that feels awkward and is not so
stimulating:

Software maintenance, it feels like, software
maintenance, the phenomenon feels like some-
thing tiresome. It feels like much of bug cor-
rections, it feels like that. You just get it in
your head, you know, that it feels like some-
thing cumbersome, only because you proba-
bly have to get into other peoples code, if it is
not your own, and I don’t know. It feels like
it is a pretty, probably a much less stimulat-
ing part of the coding stuff, some way, well,

you are supposed to correct lots of, lots of er-
rors and it feels like, that if you are doing
something that is very messy when you are
coding, you will get to a limit when it starts
to be, when it has become so messy that you
really are getting tired of it. And it feels like
if you are going to maintain something, then
you will start right there from the beginning.
Then you are sitting with something that is
damn boring and you are kind of trying to
look for things you are going to change. But
I don’t know, if perhaps I should talk more
about maintaining a program in the sense of
developing it further. I don’t know, but that
does not feel like maintenance. Maintenance,
to me it feels only like correcting and it feels
like the absolutely most boring part of cod-
ing there is, and just that you have to, it is
all about sitting there looking for those tiny
details, and search for errors and that, yes.
[S08]

However, as S15 says, this is perhaps a task that you
get into the bargain:

Yes, no, but I guess It could be, it could be
interesting to be part of the whole process
from the customer and then to implement it
and then deliver, but about the maintenance,
bugs and such are not as interesting, but it
might be included, maybe you get it into the
bargain. [S15]

And even though the common perception is that it’s
more fun to work on developing new things than to
fix bugs, S15 tells that it may be satisfying to solve a
problem so that the program works better:

I don’t know. [S08]

Furthermore, SO8 describes that maintenance is very
boring because it is about to engage in correcting errors

and searching for small details: o
Yes, but it is to fix bugs and ensure that ev-

I don’t know, but it feels like maintenance of,
maintenance of code, no, but it feels like, then

11

erything runs on, isn’t it? So I guess it is,
well, now I have not much experience with



it but, but then it will be more like to keep
the system running. It’s almost more fun to
come up with new, like further development,
the development of new things. But then, al-
though it can of course give a satisfaction if
you manage to resolve a bug so that it works
much better then of course there is also a kind
of satisfaction. [S15]

6.2 Category 2: Change and add

The second category of description widens the per-
spective in the sense that maintenance is described as
something more than only beeing a bug correcting activ-
ity. This wider perspective introduces the understand-
ing that clients may come back in the future and ask for
changes in the software, or make suggestions for adding
new features to it.

One of the informants’ ways to describe software main-
tenance in this category is by saying that programmers
add new features to an existing and delivered software,
or to correct and modify some parts of the software.
S12 and S09 says:

Yes, that’s everything from testing for bugs
to correction, and implementation of new fea-
tures. [S12]

it is not just fixing bugs, but you need
updating and extending, I guess, but that’s
also part of maintenance. [S09 |

S05 says that failures and errors are discovered only
after the user has had time to really use the software,
and it is only after a while that the user comes back
with suggestions for changes in the software:

Maintenance, yes, if, after a while when the
user has really used the software, they dis-
cover little bugs and want improvements and
additions. Then the programmer can main-
tain it and fix errors and add things that they
want put in. [S05]

S03 says with a similar outlook that software mainte-
nance may be about to change the software through the
introduction of optimizations and extensions; that the
client wants to improve something that actually works,
but needs work even better:

Yes, optimizations, extensions. Now, we have
not done much to expand programs, but I can
imagine that there is much about it ... Yes, I
think it’s very seldom it is that, if you have, if
the customer is satisfied from the beginning,
comes back and says that this was not quite
what we had expected, but it’s probably more
that they want something more, or something
changed after using it for a while. [S03]

S02 and S18 describe that new requirements on the
functioning of software may arise afterwards; that the
user gets ideas for changes that would improve the user-
friendliness:

12

If you have built a program that you then
run for a while and decide yes it works as it
should, it may of course still be so that more
demands on the program can occur. And, in
that the requirements occur, it can be char-
acterized as maintenance, adding them, the
functions. Thus, for example, that you have
a text editor that you can not undo the work
in. It’s still working, but then, it can be that
you want to patch it and make sure you can
undo, so of course it can be characterized as
maintenance even if the program continues to
[work]. Tt is kind of finished but you want to
add something or you want to remove some
function, then you maintain it. Or if you find
a new bug that you want to fix. It may well
be that new bugs will be created when you've
fixed a bug. [S02]

Fix bugs, find them. When those who use the
program realize that, yes this is good, now,
now I want to be able to do this a little differ-
ent because it is difficult to specify ... because
you may sense that it was perhaps not quite
that but something like it, then you get to
change those little things and also to make it
easier to use. [S18]

S06 starts his description with telling that the opera-
tion of machinery must be ensured, but decides that it
is not included in software maintenance, which he then
describes in a way that is similar to what is narrated
previously. But in addition to describing how customers
want to expand the program with things that they were
not aware of before they got the chance to test it, he
also explains how the new features in turn can lead to
new errors to be addressed:

Maintenance of software, it’s partly to check
on the machines running the software actu-
ally works and if there are programs to be
running around the clock you need to have
back-up and stuff, though, it’s perhaps more
hardware maintenance... I have been doing
very little, but I suspect it is about, imple-
ment new features in the software that the
customer was not aware that they needed un-
til afterwards and then, and then clean up
all deficiencies are due to them new func-
tions and it can also be that, I think, there
is probably some extreme cases where you’ll
find things that can break in the software,
then it is kind of logical errors, but I don’t
think you actively are looking after them in
the same manner. [S06]

S10 describes in the following quotation that mainte-
nance of software is about patches and improvements.
Later, he gives his description of what he means by
patching where he says that software in some way must
be prepared to deal with patches, so that some parts of
the software should be replaceable:

It could be, for example, patching and im-
provement [...] How to update a portion of



the code or the entire code, but then one
must of course have a pretty good design...
If you are only updating a certain part you
must have arranged communications within
the program that can handle replacing parts,
and equally if you are going to build exten-
sions, it requires even more, that it deals with
additions too, so there is another level of ab-
straction. You have to move from that it just
works into making it work with, or think out,
additions. [S10]

The way of seeing software maintenance is that it is
about correcting the so-called bugs is included by the
understanding that it is about to introduce changes, im-
provements or additions to the software. We could see
this in the quotes in this section and, furthermore, we
can reason logically and conclude that both approaches
is to modify a software program, but what is described
as the correction of bugs is a more limited approach.

It is worth noting that both S03 and S06 say that they
have not been doing much with expanding programs.

6.3 Category 3: Adapt and update

This category of description opens up a new dimen-
sion to the perception of what software maintenance
means. It’s about understanding the software as an in-
tegral part of a larger system and that the software has
dependencies to changes in external parts of the sys-
tem, or that the software may require a change in the
external parts of the system to work better. The infor-
mants describe such dependencies and changes in oper-
ating systems, databases, graphics libraries and hard-
ware, but also changes in the behavior of users. This
way of perceiving software maintenance and the under-
lying causes for maintenance are more advanced than
the previous ones because it involves a more complex
view of the software and the context in which it exists.
This way of seeing also includes the understanding that
corrections, changes and additions to the software needs
to be performed.

Here follows a few quotes from informants who pro-
vide examples of this approach. S03 and S17, for exam-
ple, describes how a new version of an operating system
can lead to a need for adaptation of a software:

Yes, it depends on which program it is but it
may be that they added a feature, changed
the layout of any quick keys somewhere for
some function, yes, then it can surely be like
that the software must be optimized to a newer
version of some operating system or some-
thing similar, because it also happens of course.
[S03]

As T see it, it’s to search bugs, and receive
information and feedback from users and try
to adapt the product, and then also to keep
the product up to date with changes in hard-
ware and, yes, the software also, So to keep it
compatible with new operating systems and
such. [S17]

S04 describes how you can get a faster system, for
example by upgrading to a new version of the MySQL

13

database manager or indeed look at different parts of
the system so as to obtain a more efficient and safer
system:

First you will have like, optimization stuff
maybe, I mean both the program itself but
if the program may be using MySQL ... that
you may upgrade these versions to get a faster
system in some way ... external parts in some
way, but also ... that you might come up with
new solutions to make your system better ...
to get a more effective, safer or something,
system... Or they want more features, things
that you may have missed. [S04]

In a similar manner S10 describes a link between
maintenance and external software libraries. In this
case that the release of a new version of the OpenGL
graphics library had an impact. In the quote the “users”
are the programmers who use the graphics library in
their software and “those who do maintenance” are those
who maintain the graphics library:

... the maintenance becomes ... a bridge
between the different skills that develops ...
OpenGL is a graphics, yes, a graphics library
or what to say and there are somethings that
surprise me. They had a released a new ver-
sion and then everything was so different ...
It feels like when you saw it the first time that
they put a spoke in the wheels of their own
those who do maintenance and improve
things, they must convince those who use it,
perhaps more than the first time ... [S10 ]

S16 gives example of that software may need to be
adapted to changes in the hardware to effectively take
advantage of hardware improvements:

... there will be new, I mean, a physical hard-
ware that must be handled in the program or
else it kind of crashes, and perhaps it is so if
you update your computer into a giant com-
puter and use it only for a tiny little process,
and it’s also a bit sad because when you have
so much power in your computer you want to
use it well. [S16 ]

S14 describes how a system might have to be updated
and adapted to changes in the scale and scope of the
business, including taking care of bugs in the software:

Maintenance of software, it is, well to update
and adapt ... Yes, depending on whether you,
what needs you have. If a small business ex-
pands, you might have to adapt the systems
and the software you have to be able to use
it optimally, but, yes, but then it might, yes,
maintenance, yes, if anyone, I guess it also
includes that if you discover bugs and such,
that you take care of them, yes. [S14]

S11 describes how the software in the long term may
need to adapt to changes in system load, and that parts
of the system need to be updated and adapted to new
versions of external software libraries:



Maintenance of software, I have absolutely
zero personal experience ... But, that’s clas-
sic like that, you have a system that can han-
dle a certain load, and suddenly they found
themselves 20 years into the future and it is
triple, or quadruple the load, and you real-
ize that it really is not working. These al-
gorithms are no good, often perhaps it is in
the hardware, but anyway you can of course
detect that it is functionality that is miss-
ing and must be added, and maintenance is
for adding that to get the system to con-
tinue functioning. But to maintain the
code, well, I don’t know, replace old crummy
methods with new more effective ones, old
crappy libraries with new shiny ones. Possi-
bly there, one can call it maintenance possi-
bly, to streamline, yes, maintenance to stream-

line... [S11]

S13 explains that software maintenance may relate to
changes in people’s habits, for instance how they han-
dle payments, and that it is about modifications of an
existing system — not building a new system:

When you need to do it is, well, simply when
it is not needed to make a completely new
system. When there is a system that is well
structured in its fundamentals, but which may
need modifications to make it fit into today’s
society, or how to say, today’s time, if there
has been any change in the world that re-
quires that a system must be changed ... We
may take trains for example, train tickets,
people don’t have cash anymore but they have
cards, that’s one example, I mean, there is a
change in time, that people no longer have
cash, parking meters ... [S13]

In some of the quotes that have been used to describe
this category, one can also deduce an understanding of
that software may have a long life and that you can see
it in a time perspective. The next section describes this
in more detail.

6.4 Category 4: Continuous work

This category of description gives expression to an
understanding of software maintenance as a long-term
commitment with the intent to ensure that the software
may have a long life. In some of the informants’ descrip-
tions, there is an understanding that maintenance is a
completely natural part of the work with software or at
least that it is something they can expect in the future
workplace. The descriptions often contain words such as
“continuous”, “maintenance”, “responsibility”, “always”,
“keep up” and “costly ”. This view includes the previ-
ously described, but then adds a clear idea of that a
program needs to be maintained over a long time.

S16 describes that a computer program is not com-
plete in that it has been delivered, that maintenance is
something continuous:

So, maintenance is of course something con-
tinuous, but in fact a program develops, just

14

because you're done, have finished the pro-
gram and delivered it, it’s not a finished pro-
gram, in fact, for there will always come new
things you’ll need to take care of, for example,
new users who do things that you have not
thought of before... and a continuous main-
tenance is, it is of course to handle the new,
yes, the new conditions simply. Even when
there is new software, when, there is noth-
ing which requires that the program can deal
with a new motherboard, for example, or a
new graphics card. [S16]

A similar approach is described by S19 who says that
you will never be finished with the software:

That is when, when you are finished, in quotes,
and, yes, it is never finished, because first you
will always find errors you have made, so you
have to constantly correct them and ensure
that there is nothing new that breaks, and
test to make sure it was correct, and well
you know, the client may want, have iden-
tified something they want fixed, and then
you should see to that it gets repaired and
check that it works. Then that goes around,
and then I suppose it is if the client asks for
new functions in the program, that is proba-
bly also part of maintenance, and ensure that
the documentation is, or that you have it, or
update it all the time. [S19]

Initially SO7 describes software maintenance in terms
of bugs, patches and improvements, but after a while he
gets into a different way to describe maintenance which
has not previously been mentioned, that the operation
of a system can generate large amounts of data that
needs to be cleared:

... I do not know if it belongs to the software
maybe, but cleaning up databases, tidying up
kind of, and maintain in that sense. There
might be, there could be garbage in the sys-
tem which need not be there, that you need
to remove, and then you may well wonder if
maybe it is an improvement to just remove
it so that it is not stored at all, but per-
haps there are reasons, that there is an old
system that works towards the data, so that
is also software maintenance, to clean up in
database structures, to fix these peaces, be-
cause if you get untenable database, it will
also slow down the program. [SO7 ]

S04 describes his own experience of maintenance. Af-
ter having developed a “website” for a large company,
there was a constant need to maintain the page and
work with changes to it:

Yes, but it’s almost always like that when you
are doing a website, I think. I’ve made one to
a company here in ... a large company... All
the time it has, you must constantly maintain
the website... yes, but now we need, we would



like to have this and that, well then you have
to add that... Websites, perhaps they are a
different compared to Java programs, pure
programs, I think. That websites in particu-
lar... yes, there are much changes in websites.
[S04]

S09 describes software maintenance as a continuous
work effort. Even if the software meets its goals, it will
never be complete and perfect:

Actually, it would probably be to have some
sort of continuous bugfix, so to speak. Just
because the code is finished and you have
achieved your goals it does not mean that
it is complete, I think. Rather, you have to
constantly maintain it, so to speak, check if
there are vulnerabilities in it perhaps, and
then fix them. Because a code will never be
entirely perfect so to speak, at least not some-
thing very big and extensive, so yes, continu-
ous testing and dealing with misses and such
things. That it is maintenance for me any-
way. [S09]

The informants were asked to tell about how they
think they will be affected by maintenance in the fu-
ture. And in response S09 says that you can have a job
that includes software development, but also a respon-
sibility of the product after it is developed and then
maintenance will be something you will deal a lot with,
or “get stuck with” :

Yes, that is, if you have any job that in-
volves developing where you also have some
sort of responsibility for the product after-
wards, then maintenance is something you
certainly get to do a lot. Say you are devel-
oping an application, there is of course some
requirement that you also address misses and
security gaps, and then patches it, and such.
So maintenance is probably something you
will always get stuck with, so to speak. [S09]

Moreover, SO7 describes how a company can contrac-
tually commit to maintain a software product and thus
has an obligation to attend to the program:

And then that maybe you, some companies
may require a maintenance contract for the
product in question. It depends of course on
what kind of software... That the company
has an obligation to maintain the program as
well. [SO7]

S10 says that the reason for maintaining software is
to allow the software to keep up with developments:

Yes, to keep up with the latest developments,
usually they would like to do that, of course,
so that it becomes useful, it feels like there
is like a curve where certain sensitive areas
has a very steep curve on the things such as
getting old with time, so they must of course
be maintained more. [S10]

15

S12 gets into the problem that all of the changes and
additions eventually, after a long period of maintenance,
may lead to “chaos” in the code, and at that point it
might be time to do a complete review of the code:

There are some companies that are doing it
forever [laughs] T do not know, perhaps it
is wise to hold on until it starts to get too
chaotic, then you can of course try to do some
refactoring and come out with a new version
that has a better code and better structure
and is faster. [S12]

In summary, the most far-sighted approach to soft-
ware maintenance among the informants, is that soft-
ware simply needs to be constantly cared for, after it
was prepared, for it to be timely, error-free and adapted
to external circumstances. These are tasks that can be
expected in the future profession.

7. IMPLICATIONS FOR TEACHING

Research on computer science education issues has
mainly focused on the problems that many beginners
have when they learn to program. Less attention has
been drawn to the more advanced students and how
well they are prepared for future careers in the software
industry. This study was conducted to contribute to the
understanding of students’ ways of looking at important
aspects of working professionally with software in the
industry and to provide suggestions on how to use this
knowledge in the classroom.

The information booklets on courses related to com-
puter science often stress the vocational aspect — that
after the studies, the graduates can be employed, inter
alia, as software developers. And when the informants
in this study talked about their future plans, it appeared
that everyone wanted to engage in various forms of pro-
fessional development of software in the industry. This
was important to know because it strengthens the pur-
pose of the study and makes the phenomenographic re-
sults more relevant when you want to use them in teach-
ing. Overall, it is reasonable to assume that students
would be disappointed by a purely scientific approach to
computing. Nevertheless, computer science educations
have been criticized for having taken on too much of a
profession-oriented attitude with elements of Software
Engineering [13].

A reasonable question then becomes whether and how
to maintain a scientific focus while trying to prepare stu-
dents for a profession? The industry trend is sensitive
and will probably always feel that education is lagging
behind and will try to influence training. New pop-
ular programming languages and new working meth-
ods for the development of software are incorporated in
the training, but when students have entered the labor
market, perhaps the interest in these particular skills is
gone.

In my opinion, all students in various computer sci-
ence programs need to become aware of a number of
important aspects of professional work with software;
however, I am not saying that we should give them
purely vocational training. I assume that we still will
use traditional teaching, but I argue that we can take



advantage of the results from this study. The outcome
spaces can be carefully analysed to find dimensions of
variation which can be used to help learners discover
new ways of seeing.

7.1 Variation Theory

This study stems from the basic phenomenographic
premise that there is a limited number of qualitatively
different ways to experience a learning object in a cer-
tain group of people. Moreover, phenomenographers
mean that an important prerequisite for learning is the
ability to discern critical aspects of the learning object.
Variation theory shares the basic concepts of learning
with phenomenography and provides a theory for how
to give conditions for learners to identify critical aspects
and thereby get a richer understanding.

Above all, what should be learnt must exists in a con-
text that is meaningful to the learner, that you have
the proper relevance structure [9, p.140, p.155]. Then
instruction can be enhanced by helping students to dis-
cern the critical aspects of a particular learning object.
However, a mere listing of facts is not enough to en-
sure a rich understanding of complex phenomena; the
learner must be aware of the different aspects involved
and how they interact. This can be achieved by intro-
ducing carefully selected variations in what the learner
takes in through his or her senses [9, p.145, p.152].

The idea is to highlight relevant features of a learn-
ing object, for example by altering the “value” of some
aspects while others are kept unchanged. A dimension
of wariation is spanned by all the possible values for
some associated property or aspect of the learning ob-
ject. Empirical research on teaching has been able to
discern four different patterns of variation that use dif-
ferent combinations of invariance and variability: Con-
trast, Separation, Generalization and Fusion [10]. In
addition, the variations will help the learner to break
the natural attitude, which is required to start a reflec-
tion [9, p.148].

By analyzing the phenomenographic outcome spaces
it is possible to identify critical aspects of learning a spe-
cific learning object, and then to find the corresponding
dimensions of variation. Previous studies give sugges-
tions for teaching based on phenomenography and vari-
ation theory [2, 15]. In addition [15] reports successful
results from a pilot study that used the suggested vari-
ations and then assessed the learning experiences.

In the following two sections, results from the present
study are used to identify key aspects needed to get a
rich understanding of software development and soft-
ware maintenance. Similar to [15], the description cate-
gories are examined to identify dimensions of variation
which could be used in teaching and some proposals
for explicit variations are suggested. In this case, how-
ever, it is the professional perspective that determines
which aspects and dimensions of variation that will be
addressed.

7.2 Variations for software development

Based on how variation theory describes the mecha-
nisms for facilitating that learning takes place, the fol-
lowing discussion analyses the outcome space for ways of
understanding “software development”, outlined in Ta-

16

ble 2, with the aim to identify dimensions of variation
and suggests how to use the dimensions to help stu-
dents to see important aspects. The first two categories
of description do not particularly focus on professional
aspects of software development, and hence, they are
not further addressed here. Category 3 and Category
4 represent a richer understanding of software develop-
ment seen from a professional perspective. In fact, these
categories connect to advanced ways of seeing software
maintenance, which indicates an integrated understand-
ing of the professional context. The suggested dimen-
sions of variation for Category 3 and 4 are listed in
Table 4.

From a professional perspective, Category 3 addresses
an important aspect of software development: that de-
velopers should design solutions that are sustainable in
the long term. One reason that it can be difficult to re-
alize the importance of this aspect of software develop-
ment is the relative lack of positive response compared
with the satisfaction of making a program work. It re-
quires a comprehensive understanding of the conditions
for software development as a business over long time
to understand the point. The reward comes when it is
time to develop something new and it is discovered that
many of the components that have evolved in the past
can be reused, or when old deployed software easily can
be adapted to cope with new realities. This requires
well-designed and readable code, and proper documen-
tation.

There are several potential scenarios of what may
happen in the future which are values in a dimension of
variation that can support and enable the understand-
ing represented by Category 3.

In addition, there are many aspects of software qual-
ity that associate to software sustainability. Four im-
portant software quality dimensions involved in software
designs are: (1) code adaptivity, the ability to adjust
code to new circumstances, (2) code reusability, to what
extent existing pieces of software can be used in, e.g.,
other projects, (3) design understandability, the degree
of comprehensive design documentation, and (4) code
readability, the possibility to understand how the source
code works. Hence, each of these qualities can be varied
in separate dimensions of variation.

Now it is time to discuss how the variations in the
five proposed dimensions of variations can be done. The
idea is to expose students to different scenarios and a
software application with varying design qualities. How-
ever, since this may be too complex, the number of si-
multanious variations should be kept as few as possible.
Therefore, what the application does should be held in-
variant while the quality aspects of the software design
should vary — but not all at the same time. Hence, it
is suggested to use two different scenarios and two ex-
amples of different quality values for each dimension of
variation. Here is an example of values:

e Future scenarios:

— From a new requirements specification, it should
be investigated which parts can be reused from
the existing application

— Data has been migrated to a new database
system which caused the existing application



Table 4: Dimensions of variation related to software development description categories.

Category

Dimensions of variation

3: Design for future

Dimension of future events that can affect the software

Dimension of adaptions and adaptivity of designs
Dimension of reuse and reusability of designs

Dimension of comprehension of designs by documentation
Dimension of code readability and ability to read code

4: Understanding need

Dimension of end-user and customer aspects (eg competence)

Dimension of teamwork aspects (roles and communication)
Dimension of economical conditions and time limits
Dimension of domain context and knowledge

to malfunction and hence it must be adapted

Adaptivity quality values of software:
— It uses polymorphic structures, protected at-
tributes, and is highly “parameterized”

— It does not use inheritance hierarchies or in-
terfaces, and is highly coupled

Reuse quality values of software:
— Its parts are designed to be generic and are
placed in public software packages

— Its parts are mostly specific to the application
and are not separated

Understandability of the design:

— It is richly documented by text, listings and
diagrams explaining classes, interfaces, rela-
tions and libraries

— It is documented only by the sparsely com-
mented source code

e Readability of the source code:

— It is organized in packages, one class per file,
consistent indention style, commented classes
and methods

— It is put in one single file without any com-
ments, using funny names and following no
code conventions

The pairs of values suggested are inspired by the vari-
ation pattern contrast; that a certain quality is hard
to experience without experiencing a mutual exclusive
quality.

For each of the scenarios, the possibility to accomplish
the task can be discussed, evaluating different combina-
tions of quality values that vary one at the time while
the others are held invariant. This is an example of the
variation pattern separation. The analysis could be a
theme for a lecture, it could be handed out as a larger
team assignment or it could be a theme running through
an entire course.

If a teacher wants to go beyond discussing these as-
pects theoretically, the consequence would be that at
least eight different implementations of the application
and several versions of design documentation need to

17

be prepared and this may be too much for both the
teacher and the students. One way to reduce the num-
ber of combinations is to let pairs of dimensions vary
simultaniously, especially if it is not a particular goal
to contrast them against each other. For instance, code
reusability could be paired with design understandabil-
ity so that the example of highly reusable code is ac-
companied by a comprehensive design documentation,
and vice versa.

The variations can be done in different ways, but the
important thing is that the students get the chance to
experience how different qualities of software impact the
possability to work on the software in the future, which
is crucial for professional developers.

Category 4 represents an overall understanding of soft-
ware development which includes the relationship with
customers, end-users, economical conditions, deadlines,
teamwork and communication aspects. Four dimen-
sions of variation can be used to reveal these aspects:
(1) the dimension of end-user and customer aspects,
e.g., their different needs, circumstances and compe-
tences, (2) the dimension of teamwork aspects, such as
having different roles and communication, (3) the di-
mension of economical conditions and other constraints
such as time limits, and (4) the dimension of varying
domains and domain knowledge needed.

These non-technical aspects, such as taking a cus-
tomer perspective, are parts of the development process
which do not explicitly concern the program code, and
this can sometimes be difficult to teach to students who
may expect a technical content. Nevertheless, these are
very important aspects for a prospective developer to
realize and it is not always the case that our students
have this understanding:

Teaching software engineering convinces us
that most students, even at senior level, have
little understanding of real-world customers
using their code to achieve useful work. [17]

A suggestion for helping students understand the com-
plexity of Category 4, is to engage students in larger
development projects that mimic professional software
projects in different domains. These projects should in-
clude people playing different roles, such as end-users,
clients, project managers, designers, programmers and
economists. Some of the roles, such as clients and end-
users, may be played by people invited from the in-



Table 5: Dimensions of variation related to software maintenance description categories.

Category

Dimensions of variation

2: Change and add
3: Adapt and update

4: Continuous work

Dimension of things that customers may want to add or change
Dimension of external contexts that may affect the software

Dimension of tasks, activities and responsibilities expected at work

dustry, others may be played by faculty members and
then of course the students are the designers and pro-
grammers. In this case the teacher sets the stage and
prepares it to ensure that variations in the dimensions
of variation will happen. During the project each team
is monitored by the teacher who can introduce striking
variations that will affect the project team. For example
the client can make major changes to the requirements,
the indecisive end-user can be replaced by someone with
very strong views, or the budget may be cut down. It
is important that students get the opportunity to ex-
perience a variation of application domains in different
projects and this should help them to learn that domain
knowledge is essential. The software design process in-
cludes the application domain which is not always the
case in programming [11].

7.3 \Variations for software maintenance

This section examines the outcome space for software
maintenance to identify relevant dimensions of varia-
tion that are needed to reach a richer understanding.
Naturally, learning software maintenance should never
be the greater part of a computer science programme,
however, it will be rewarding to have experiences and a
deeper understanding of maintenance for those who go
to careers in the industry.

The outcome space for software maintenance has four
categories, see Table 3. The first category represents an
understanding that maintenance of software is all about
fixing bugs in the program. This way of seeing does
not particularly reflect professional circumstances and
therefore it is less interesting in this discussion.

In Category 2, the dynamic nature of software and
what clients need comes in focus as things may have
to be changed or added to the software. The relevant
dimension of variation is constituted by typical things
that may be changed or added and how this is connected
to the software.

Category 3 introduces an understanding that software
maintenance may involve adaptations to changes in ex-
ternal parts of the software system, such as operating
systems, hardware or third-party products. Thus, the
dimension of relevance consists of different external fac-
tors that may affect the software and what this implies
for the code.

Finally, in Category 4, software mainenance is seen as
a continous work effort that comes naturally in profes-
sional contexts. An appropriate dimension of variation
consists of different tasks, activities and responibilities
that are expected from persons who are employed in the
software industry. Table 5 summarizes the identified di-
mensions of variation.

To facilitate a suitable context for the variations re-

18

lated to Category 2 and Category 3, a larger software
system could be prepared along with detailed docu-
mentation. As an assignment, students should get ac-
quainted with the software and then they should receive
a series of maintenance tasks. These tasks should re-
flect the dimensions of variation related to Category 2
and Category 3. It should be noticed that the under-
standing of software maintenance represented by these
categories is strongly connected to the third category of
understanding of software development, “designing for
the future” and synergy effects should be expected.

The fourth category describes software maintenance
as something that comes naturally with the job. It re-
flects a professional perspective and an overall under-
standing of how expensive maintenance is and how ex-
tensive it is seen from the perspective of a program’s
entire lifetime. The variation in this case may be ob-
tained through visits to companies with large legacy
systems where students would get the opportunity to
see what people do at work, and by arranging inspiring
guest lectures.

7.4 Learning through maintenance

Some informants report that they think it is difficult
to read others’ code. One way to get used to reading
code and learn about software is by maintaining old
software.

At least one assignment should include sub-
stantial revisions to a previous programming
assignment or other moderately large program(s).
17, p.§]

By engaging in troubleshooting, or to make improve-
ments in a system, one can not fail to learn a lot about
things, such as how not to program, how to design the
next program so that it works better, how to use the
company’s proprietary APIs, and how the company’s
custom and practice permeates the way to program.

Spontaneously, many informants said that mainte-
nance, i.e, “to fix bugs”, is boring. This is an interesting
result in itself. Would a medic student find it boring to
deal with diagnosis and troubleshooting?

Hence, a maintenance engineer should be a
highly skilled, intelligent, and creative diag-
nostician. This requires that universities prop-
erly prepare students to enter the mainte-
nance workforce, and that maintenance or-
ganizations actively build and maintain their
body of knowledge. [6]

Could it be that those informants have their own bad
experiences from getting stuck in finding errors in a pro-



gram in pressured situations? Many students have ex-
perienced dozens of lines of compiler errors and lots of
strange bugs in their programs before they could even
run them, which may be perceived as very frustrating
and boring. However, troubleshooting, i.e., to make a
diagnosis based on how a program behaves, is poten-
tially an exciting task that requires a lot of knowledge
and creativity. Organized instruction on troubleshoot-
ing and training by solving tasks where students can
search for “exciting” errors in prepared code, could per-
haps result in a more positive attitude?

7.5 Unawareness of version control

Source code management?® is important to organiza-
tions that handle source code professionally. The sys-
tem keeps track of all the company’s different parts and
versions of source code and makes it possible to share
work in teams with large software systems. The pro-
grammer checks out pieces of source code, works on it,
and checks it back in again. And if there are conflicts
with others’ modifications, these are easy to identify.
Naturally, a source code management system is used
both for software development and maintenance activi-
ties.

Interestingly enough, none of the informants even men-
tioned the complex issues concerning source code man-
agement and version control systems. It is true that
some informants talked about “documentation” in gen-
eral terms, but no one touched this topic. In this aspect
computing education has not succeeded to properly pre-
pare students for their future careers.

Version control is probably one of the issues that pro-
fessionals would mention if they were asked about their
experiences from professional work with software. In
large organizations there are many different versions
and branches of programs and program libraries, and
that is a completely different thing than dealing with a
small program in a student project. The fact that in-
formants are not talking about this aspect is probably
because they are not very aware of it at all. However,
it is absolutely necessary to master source code version
control in serious professional contexts.

This “result” suggests that you should consider using
version control systems in programming courses — not
only in courses on software engineering. Version control
is something that can be introduced into teaching as a
learning outcome, but also as a means for learning by
letting students, from the outset of their studies, have
access to a system that can store their source codes and
other documents to be shared with other students, mak-
ing rollbacks or version ramifications. This would not
only teach students about versioning, but also make it
easier for their other activities, for example, it would be
easier to work in a group with major projects. Or why
not let a whole class work together on a more compre-
hensive software?

Begel and Simon suggest that we should work more
on projects with many community members in order to
train social and communicative abilities and they also
propose that students should be allowed to work with
existing software:

30ther terms used are source control, revision control or
version control.

19

Instead of a greenfield project, a more con-
structive experience might provide students
a large pre-existing codebase to which they
must fix bugs (injected or real) and write ad-
ditional features. Incorporating a manage-
ment component would be valuable, where
students must interact with more experienced
colleagues (students who have taken the class
previously, who can act as mentors) or project
managers (teaching assistants) who teach them
about the codebase or challenge them to solve
bugs several times until the “right” fix is found.
During the development process, students could
be asked to log bugs in a bug database, de-
velop bug reproduction steps, and/or triage
the importance of the bugs given some planned
release schedule. [1]

I suggest source code management should be a natural
part of computing education.

7.6 ldentification

Students who are interested in working professionally
with software need to learn the conditions and culture
of the business. In order to deepen knowledge and pro-
vide a mixed picture, it may be worthwhile to invite
companies to participate in classes, such as field trips,
guest lecturers or as clients for student projects [4, 5].
The following quote from one of my informants shows
the importance of identification:

Yes, to my great joy, because I thought the
programmers sat in a dark cellar and pro-
grammed ... they were deathly pale and had
dark circles under the eyes and they were
not socializing with anybody ... they worked
only at night ... But then we actually had
a teacher in this course who came from out-
side, she worked with Java programming ...
for companies ... and she told me that they
always work in teams, they helped each other,
they changed position in the group so it would
not be too monotonous, they worked only
during the day, and they kept their 40 hours a
week ... I had a very bad picture of program-
mers ... but she told me quite a lot so there-
fore my view of the programming profession
is positive, because I have heard someone sit-
ting in it daily... she took off one day a week
and did other things, she did not get caught
in programming, but it was still her main in-
terest, but she had found a good balance, so
I felt there is hope ... She was quite alone
in her Java role but now she had still other
people around her ... I realized that you are
not alone and that was great comfort to me,
I can say. [S13]

8. CONCLUSIONS

This paper reports results from a study with the gen-
eral purpose to investigate how students in Computer
Science experience aspects of their future profession.
The research questions raised were: (1) how students



experience software development, and (2) how they ex-
perience software maintenance. Twenty informants from
four different Swedish universities were interviewed. All
of them were in the later half of their educations and
some of them were graduating within months.

All informants wanted to work with aspects of soft-
ware development and they aimed for a job in the soft-
ware industry after graduation. Working as software
developers or programmers was the dominant future
prospect, whereas a few wanted to work with “softer”
issues such as requirements analysis.

The research questions were answered using phenomeno-

graphic analysis of the interviews and the resulting out-
come spaces are categorizations of qualitatively different
ways of seeing the phenomena.

The informants’ ways to describe software develop-
ment are reflected by an outcome space consisting of

four qualitatively distinct categories of description: “prob-

Y RIN14

lem solving”, “program design”, “design for future”, and
“understanding the need”. Their ways to describe soft-
ware maintenance also produced an outcome space with
four categories: “handling bugs”, “
and update”, and “continuous work”.

These results are discussed in terms of which dimen-
sions of variation are needed for obtaining rich ways of
seeing professional aspects of software development and
maintenance, and some examples are proposed for how
to utilize this in teaching.

It was found that not all informants had reached ad-
vanced ways of describing the phenomena, especially
software maintenance, which mostly was described as
dealing with bugs. However, this is not surprising as
it probably reflects the relative absence of experience
of maintenance in education. It was also observed that
version control of source code was never mentioned, ei-
ther in connection with software development or soft-
ware maintenance.

The final conclusion is that more can be done to bet-
ter prepare students for the transition into professional
life and the present work suggests a number of ways for
teachers who wants to address such issues in teaching. It
is hoped that the results presented here will contribute
to a widened understanding of the variation in how stu-
dents experience professional aspects of computing and
inspire teachers to reflect on teaching and learning.

9. REFERENCES

[1] A. Begel and B. Simon. Novice software
developers, all over again. In ICER ’08:
Proceeding of the Fourth international Workshop
on Computing Education Research, pages 3-14,
New York, NY, USA, 2008. ACM.

J. Boustedt. Students working with a Large
Software System: Experiences and
Understandings. Department of Information
Technology, Uppsala University, Uppsala, Sweden,
2007. Licentiate thesis.

J. Bowden. The nature of phenomenographic
research. In J. Bowden and E. Walsh, editors,
Phenomenography, Qualitative research methods
series, pages 1-12. RMIT University Press,
Melbourne, 1st edition, 2000.

change and add”, “adapt

20

[4] L. Jaccheri. Software quality and software process
improvement course based on interaction with the
local software industry. Computer Applications in
Engineering Education, 9(4):265-272, 2001.

L. Jaccheri and S. Morasca. On the importance of
dialogue with industry about software engineering
education. In J. B. Thompson and H. M.
Edwards, editors, SSEE ’06: Proceedings of the
20006 international workshop on Summit on
software engineering education, pages 5-8, New
York, NY, USA, 2006. ACM.

M. Kajko-Mattsson, S. Forssander, G. Andersson,
and U. Olsson. Developing CM3: Maintainers’
education and training at ABB. Computer
Science Education, 12(1-2):57-89, 2002.

F. Marton. Phenomenography - a research
approach to investigating different understandings
of reality. Journal of Thought, 21(3):28-49, 1986.
F. Marton. The structure of awareness. In

J. Bowden and E. Walsh, editors,
Phenomenography, Qualitative research methods
series, pages 70-79. RMIT University Press,
Melbourne, 1st edition, 2000.

F. Marton and S. Booth. Learning and
Awareness. Lawrence Erlbaum Associates, Inc,
Mahwah, New Jersey, 1997.

[10] F. Marton and M. F. Pang. On some necessary
conditions of learning. The Journal of Learning
Sciences, 15(2):193-220, 2006.

W. M. McCracken. Research on learning to design
software. In S. Fincher and M. Petre, editors,
Computer Science Education Research. Taylor
and Francis Group, London, 2004.

T. Muhr. User’s Manual for ATLAS.ti 5.0.
Scientific Software Development, Berlin, 2 edition,
2004.

[13] D. L. Parnas. Software engineering programmes
are not computer science programmes. Annals of
Software Engineering, 6(1-4):19-37, 1998.

R. Shackelford, J. H. Cross II, G. Davies,

J. Impagliazzo, R. Kamali, R. LeBlanc, B. Lunt,
A. McGettrick, R. Sloan, and H. Topi. Computing
Curriculum 2005: The Overview Report. ACM,
2005.

M. Thuné and A. Eckerdal. Variation theory
applied to students’ conceptions of computer
programming. Europeean Journal of Engineering
Education, 34(4):339-347, 2009.

E. Walsh. Phenomenographic analysis of interview
transcripts. In J. Bowden and E. Walsh, editors,
Phenomenography, Qualitative research methods
series, pages 13-23. RMIT University Press,
Melbourne, 1st edition, 2000.

L. H. Werth. Integrating software engineering into
introductory computer science courses. Computer
Science Education, 8(1):2-15, 1998.

[9]

[11]

[12]

[14]



