
Ways to Understand Class Diagrams

Jonas Boustedt
Division of Scientific Computing

Department of Information Technology
Uppsala University

SE-751 05 Uppsala, Sweden
jbt@it.uu.se

March 24, 2010

ABSTRACT
The software industry needs well trained software de-
signers and one important aspect of software design is
the ability to model software designs visually and un-
derstand what visual models represent. However, previ-
ous research indicates that software design is a difficult
task to many students. This paper reports empirical
findings from a phenomenographic investigation on how
students understand class diagrams, UML symbols and
relations to object oriented concepts. The informants
were 20 Computer Science students from four different
universities in Sweden.
The results show qualitively different ways to under-

stand and describe UML class diagrams and the “dia-
mond symbols” representing aggregation and composi-
tion. The purpose of class diagrams was understood in
a varied way, from describing it as a documentation to
a more advanced view related to communication. The
descriptions of class diagrams varied from seeing them
as a specification of classes to a more advanced view
where they were described to show hierarchic structures
of classes and relations. The diamond symbols were
seen as “relations”and a more advanced way was seeing
the white and the black diamonds as different symbols
for aggregation and composition.
As a consequence of the results, it is recommended

that UML should be adopted in courses. It is briefly
indicated how the phenomenographic results in combi-
nation with variation theory can be used by teachers to
enhance students’ possibilities to reach advanced under-
standing of phenomena related to UML class diagrams.
Moreover, it is recommended that teachers should put
more effort in assessing skills in proper using of the basic
symbols and models, and students should get many op-
portunities to practise collaborative design, e.g., using
whiteboards.

1. INTRODUCTION
Most students with a major in computer science or

computer engineering aim to work in the software indus-
try after graduation. Hence, one of the main objectives
of university level computing education is to prepare
students for professional carriers in companies involved
in software development.
Not only does the software industry require people

who can solve problems and write code; they must also

know how to communicate and be able to discuss prob-
lems in teams and be willing to adapt to the company
culture. They should be prepared to get into other per-
sons’ code for maintenance and be good at documenting
what they are doing. The expectations are high.
People who discuss design of software need to repre-

sent their thoughts and ideas with some sort of model.
The Unified Modelling Language (UML) is a visual model
language that fits object oriented analysis and design
well [2]. Its rich set of diagram types and symbols is
used to model and document many of the aspects relat-
ing to software and it is at present the de facto standard
in the software industry [19].
The modern software design process involves an ex-

change of ideas on many abstraction levels, and it is
often an iterative process [13]. Not only will the model
language and the models support the design process
and the implementation of the program. In addition,
the collection of design documents is a documentation
of the system which will be used and maintained for a
long time by several persons.
Since one of the desired outcomes of computing edu-

cation is that students should be able to reflect on pro-
gramming problems and design solutions before they
write code, they are encouraged to use visual models.
One way or the other, UML and class diagrams come
as a natural part of teaching object oriented analysis
and design. Most modern textbooks on design and pro-
gramming use UML to visualize concepts and ideas, and
students who take a software engineering class will de-
vote more attention to software design processes and
UML models. Nevertheless, compared to all time spent
on learning programming, much less effort is put into
learning how to model software, and previous research
shows that students are poor at software design [7].
It is reasonable to assume that, for students, the soft-

ware design process is very different from coding, espe-
cially regarding feedback. Program code must be cor-
rectly written in order to execute in most programming
languages, whereas it is much harder to verify the syn-
tax and semantics of visual design models. This implies
that students can not “self-learn” how to draw “cor-
rect”diagrams in the same way they learn programming
guided by feedback from the harsh compiler.
Taken together, not at least in the industry, it is cru-

cial that people have a shared understanding of what

1



software models mean; that the meaning of the sym-
bols used in the design models are unambiguous to the
involved persons. Even if it may be impossible to reach
this goal for all students, educators should benefit from
knowing more about the students’ design “toolbox”and
how they understand some of the elements of software
design.
Indications from research [7], my own experiences of

student designs, and the requirements from the indus-
try have made me interested in how students handle
and understand class diagrams and their purpose. My
experiences of how differently students use or do not
use the symbols for whole-part relationships has made
me especially interested in how “the black and white
diamonds” are understood by learners.
The aim for this study is to empirically investigate

how students experience UML class diagrams and some
of the elements and concepts involved.

The main research questions in the study are, from the
students’ perspective:

• What is the purpose of a class diagram?

• What is a class diagram?

• What do the black and white diamond symbols in
a UML class diagram mean?

2. THE UML AND CLASS DIAGRAMS
This section is mainly intended for readers who need a

brief introduction to UML and object oriented concepts.
Since program code is in many cases far too detailed

to use as a basis for thoughts and discussions there has
emerged many graphical notation languages that are
designed to express ideas on several abstraction levels.
UML is frequently used in textbooks and in program-
ming and software engineering courses.
There are various competing development methods

that use different graphical notations to represent soft-
ware components, relations, program flow, et cetera.
Three dominating actors, represented by Grady Booch,
James Rumbaugh and Ivar Jacobson, the “three ami-
gos”, joined and agreed on a unified notation. UML 1.0
was released in 1997 and it is now a standard notation
language.
In object-oriented (OO) software, most classes and

objects have relations to other classes and objects. OO-
theory defines a number of relations between classes in-
cluding: aggregation, composition, inheritance, associ-
ation. In the UML class diagram, these relations are
symbolized by lines between the boxes that represent
classes. These lines appear in different variants: they
can be directed (arrow heads), undirected (only a line),
dashed (interface), or have special arrowhead symbols
(diamond, solid diamond, and closed arrowhead). The
relations can also be annotated with relation and role
descriptions.
In the static model diagram (class diagram) there is a

fairly limited set of symbols that can be used to express
how the designer wants to model the software. Rela-
tions between classes can be specified and each symbol
is associated to a certain concept from OO-theory. In
UML an “aggregation” is symbolized by a line with a

outlined (white) diamond in the end that is directed
towards the “container” and “composition” is symbol-
ized by a solid (black) diamond directed towards the
“whole”.

The distinction between aggregation and composition
(composite aggregation) is not unambigous in textbooks
and in research literature, see Section 6, and this is one
of the reasons for our third research question in Sec-
tion 1. Nevertheless, one way of describing both is that
aggregation and composition are when objects are parts
of something that constitutes a whole that is different
from the mere sum of the parts [6]. As an examle, con-
sider a MP3 player with its internal components; the
display, the buttons, the case, the circuit board with its
integrated components and in order to be a functioning
device, it also need batteries – and some tunes. And if
the owner, who sees the player as a whole, pushes the
play–button, all of the parts will secretly interact with
each other and perform the desired action. But there
must be a limit drawn at some point. The owner of the
player has a close relation to the player but is not a part
of it.
Some parts are loosely connected; aggregation – the

player can exist without the batteries and tunes which
could easily be replaced, whereas some parts are tightly
connected; composition – the player cannot exist with-
out its display, circuits and case.
The aggregation is more dynamic than the composi-

tion. For example the player “has” batteries and tunes,
but the batteries can be removed and replaced and the
songs may vary in numbers and titles. And batteries
and songs can be moved to other players. When the
player goes to the junkyard, the batteries and songs may
continue living their lives. The battery and song would
then be part of an aggregation which in a programming
language should be implemented using some dynamic
mechanism, i.e., pointers or reference variables.
However, the player is constructed by (consists of) a

case, circuit board, display, et cetera. These individual
parts are bound to this very player; as the whole consists
of its parts. When the player goes into the pocket, so
do the parts. This describes a tighter relation between
the whole and the parts, i.e., composition.

3. METHOD
This study takes a phenomenographic perspective,

which means that it is designed to investigate how stu-
dents see things, and based on their descriptions, the
aim of the analysis is to find categorizations of qualita-
tively different ways to experience the phenomena.
In general, a phenomenographic study tries to answer

questions that relate to persons, often pupils or stu-
dents enrolled in some particular education. The ques-
tions concern in which ways various educationally re-
lated phenomena are understood or experienced within
this specific group and the data are collected through
interviews with the people in the group. However, it is
normally not possible to conduct interviews with every
person in the group, and consequently the participants
in a phenomenographic study must be a selection. It
is important that the informants are chosen in a way
that allows for a broad variation of possible ways to see
a phenomenon. This is because the phenomenographic

2



research aims to find and show the differences and vari-
ations in the way phenomena in the world are “under-
stood” (described) by people. It is anticipated that the
most common and important understandings are cap-
tured if (1) the number of participants is big enough
(about 20) and (2) the persons are selected with care
and (3) the researcher uses a keen ear during the inter-
views and adapts to what the informant says by posing
follow–up questions.
The population in this study are Swedish computer

science or computer engineering students who will soon
leave the university and look for work. The data were
collected by semi structured interviews with 20 final
year computer science or computer engineering students
at four different universities in Sweden and there were
18 male and 2 female informants in ages between 20
and 39, some of whom have had work experience from
the software industry. The reason for choosing different
universities was to get a variation that reflects the entire
population better compared with only selecting partici-
pants from one single educational institution. The infor-
mants follow different study programmes in computer
science, computer engineering or informatics. These ed-
ucations are three or five years long. Two of the four
institutions are major universities with heavy research,
whereas the other two are smaller institutions that have
not received official university status.
In order to protect the informants, their real identities

are kept secret. Instead, they are referred to as S01 –
S20. Moreover, all informants are referred to as males
using masculine pronouns (he, his, him), because there
were only two female informants and for some persons
it would be easy to guess their identity.
The interviews were held in Swedish, the mother tongue

of the participants, and consequently all quotes from the
interviews in this paper are translated into English.
In one part of the interview, the informant was pre-

sented with a number of design diagrams in UML. The
interviewer encouraged the informant to discuss these
diagrams and talk about what kind of information he or
she could get from them. Furthermore, the informants
were asked to speculate about how they would imple-
ment the design in a programming language. The four
UML static class diagrams represented the same model
in four different levels of explicitness; the first diagram
showed 18 class boxes named ‘A’ through ‘R’ without
method names or attributes. Unannotated relation lines
were drawn between the classes, such as inheritance,
association, aggregation and composition; the second
diagram introduced more meaningful class names; the
third diagram added multiplicities to the relations; and
the fourth diagram introduced annotations to the rela-
tion lines, such as roles and relation descriptions. The
diagrams are further described in Appendix A.
A phenomenographic approach was used to analyse

the interviews, which means that the transcribed inter-
views were examined to find expressions of“meaning”of
various phenomena related to class diagrams. For each
research question, the goal was to establish an“outcome
space”; a set of categories that expressed distinct ways
of experiencing the “phenomenon” in question, on a col-
lective level. Next section introduces Phenomenography
and describes how it was applied in this study.

4. PHENOMENOGRAPHY
Phenomenography originated in educational questions

of how learning comes about and how the learning pro-
cess can be improved. It gradually evolved and matured
into a research tradition that concerns how different as-
pects of the world appear to people. Essentially, the
studies within this approach are explorative and use em-
pirical data, and they all take a second order perspective
on a phenomenon. That is to say, the phenomenogra-
pher does not study the phenomenon as what it is (a
first order perspective), but the variation in how it is
experienced by a group of people. Marton gives the
following definition of this research specialization:

Phenomenography is a researchmethod adapted
for mapping the qualitatively different ways
in which people experience, conceptualize, per-
ceive, and understand various aspects of, and
phenomena in, the world around them. [14]

Experiences from earlier studies had shown that dif-
ferent people described phenomena in only a few differ-
ent ways, which led to a fundamental epistemological
assumption, namely, that there are only a limited set
of qualitatively distinct ways to experience a given phe-
nomenon.
Bowden [5] outlines the phenomenographic research

process as having four stages: plan, data collection,
analysis and interpretation. The plan defines the pur-
pose and the strategies for the research, which naturally
is driven by an underlying question that the researcher
tries to answer. Essentially, the data are collected from
people’s statements in interviews where they are asked
open-ended questions about a phenomenon, and it is
important to make a careful selection of interviewees in
order to capture a wide variety of experiences. Dur-
ing the analysis, the transcribed interviews are sought
for different meanings and contexts concerning the phe-
nomena of interest. Finally, the results should be inter-
preted, and in applied phenomenography, this involves
how researchers and teachers can use the results in ped-
agogy and instruction.
In phenomenographic analysis, the researcher con-

verts the primary source of data by transcribing the
recorded interviews. The next step is to search the texts
for different expressions of meaning that relate to a cer-
tain phenomena. Walsh states:

Phenomenographic analysis – whether it is
seen as construction or discovery – focuses on
the relationship between the interviewee and
the phenomenon as the transcripts reveal it.
[25]

Manifestations of meaning are found where the in-
terviewee explicitly describes the phenomenon as such,
however, implicit descriptions can also reveal meanings,
e.g., in descriptions of the use, purpose, advantages or
drawbacks of the phenomenon.
The meanings of the focused phenomena are expressed

by quotes that form a pool of refined data, and the
quotes are usually de-contextualized, which makes it
possible to find distinct qualities. Nevertheless, refer-
ences to their original contexts are kept for the possibil-
ity of re-interpretation. The fragments of meaning are

3



condensed into clusters of meaning that are abstracted
and outlined in“categories of description.” A prominent
feature of the categories is that they are on a “collective
level” as they do not express any particular individual’s
understanding; rather they are the result of an ana-
lytical categorization of all relevant meanings found in
the data. In the process of forming categories, the re-
searcher tries to find different “dimensions” in the sense
that each category opens up a new way to “see.” This
avoids categories that are instances or variations within
the same dimension.
The main result of a phenomenographic study is the

“outcome space”which is constituted by the set of “cat-
egories of description” and their logical interrelations,
and since a non-dualistic view is assumed, the outcome
space can be regarded as a synonym for the phenomenon
[15]. A common logical relation in an outcome space is
“hierarchic inclusiveness,” which implies that the cat-
egories include each other in the sense that a certain
understanding also includes or implies a more elemen-
tary understanding. As phenomenography originated in
studies that aimed to understand or improve learning,
it is reasonable to range the outcome space in a hier-
archy where the quality of each category is valued by
some measure of compliance to the educational goals.
Marton and Booth explain:

Thus, we seek an identifiably hierarchical struc-
ture of increasing complexity, inclusivity, or
specificity in the categories, according to which
the quality of each one can be weighted against
that of the others. [16, p.126]

4.1 How the phenomenographic analysis was
conducted in this study

In this study, the analysis started with reading all the
transcribed interviews to get an appreciation and overall
perspective of the whole context. During the reading,
all text sections relating to the specific phenomenon,
e.g., class diagrams, were marked.
The next step was to collect all of the marked text sec-

tions and copy them into a separate document, and then
import the document into the computer based analysis
tool Atlas.ti [20]. This tool did not analyse the data au-
tomatically in any sense; however, it made the text easy
to tag. The tool made it possible to browse through the
text, to add comments, and to mark those quotes that
in some sense ascribed a meaning to the phenomenon in
question. One or more labels were added, identifying in-
terpretations of each marked quote. The software sup-
ported examining the data from several perspectives.
For instance, it was easy to find and collect all quotes
coded with a certain label. On a higher level it was
possible to study the various codes of meaning through
an alternative view, where the labels were represented
as graphical symbols, structured as nodes in a graph.
The various codes of meaning were then analysed

to find qualitative similarities and differences between
them, and hence, different clusters of meanings were
condensed. Before these groups were considered as pre-
liminary categories of description, they were further
scrutinized by the requirement that categories should
open up new dimensions in the phenomenographic out-
come space, or new relations between dimensions.

The final step of the analysis process regarded the re-
lational perspective where the categories were arranged
in a logical structure based on two criteria: (1) an eval-
uation of their compliance with the educational goals,
and (2) an hierarchical ordering of the categories, such
as inclusiveness and dependency.

5. RESULTS
The data analysis of how the informants describe UML

class diagrams was done on three different levels. The
first level is related to the first research question in Sec-
tion 1 and is focused on how the informants describe
the purpose and use of class diagrams in software de-
velopment contexts – a macro perspective.
The second level of analysis is focused on how the

informants describe the class diagram and its internal
structure as a phenomenon per se.
The third analysis level takes a micro perspective and

is focused on how the informants understand the dia-
mond symbol(s) in UML diagrams and their connection
to the object oriented concepts aggregation and compo-
sition.

5.1 Ways to see the purpose of class diagrams
This section presents the results of the analysis of

how the informants described the purpose of class dia-
grams; how they use them or how they think they are
used. During the analysis it was discovered that the in-
formants, on a collective level, focused mainly on three
different aspects: (1) How the class diagram helps to
understand an existing program or how you can docu-
ment an existing program, (2) how the class diagram
supports the design process and how you can document
a design, and (3) how a project team can use class di-
agrams interactively as they discuss, develop and agree
on their designs. The resulting phenomenographic out-
come space consists of three qualitatively distinct cate-
gories of description. A summary of the outcome space
for the phenomenon “use of class diagrams” is shown
in Table 1. The following sections describe, for each
description category, how the informants experience or
understand the purpose and use of class diagrams, by
highlighting and discussing selected quotes from infor-
mants.

5.1.1 Category 1: Code
In this description category, the use of class diagrams

is described as a way to document, describe and overview
existing program code. In this way, the class diagrams
makes it easier for a programmer to understand the code
of a software. In fact, the diagrams describe code and
can even be seen as code.
One way to see the purpose of class diagrams, among

the informants, is that class diagrams help people to
understand the code structure of a software or a system.
S01 describes that they give a graphical overview:

... so that would make it much easier, I think,
and I am not particularly experienced, it would
make it easier for me that never have got into
a, well, a new system; to have a graphical
overview of how components are connected
and such. I like UML. [S01]

4



Table 1: A summary of the outcome space for the descriptions of how class diagrams are used.

Category How the use and purpose of class diagrams are described

1: Code Class diagrams are used as a documentation of existing program code which is good for someone
who wants to learn about the software and perhaps is going to make changes to the program.

2: Design Class diagrams are used as a way to develop software designs. It is a tool that can be used to
model a solution to a problem and therefore it also documents existing or non-existing program
code.

3: Dialogue Class diagrams are used as a way to design software and are used as a means for a dialogue with
team members in a dynamic design process that will end up in program code. They are perfect to
use as a tool to develop, discuss and test models on a whiteboard together with the team.

S07 describes that the diagrams may not be so useful
unless you also have the code. The diagram is a docu-
mentation of the code and if you have the code you can
make a diagram that gives an overview of the code:

... the UML diagrams are maybe more use-
ful if you have the code first, before you are
going to develop something, develop a code
further so to say. So it just felt that if I get a
UML diagram from someone, it would not be
as worthwhile as if I get code from someone
and then apply a UML diagram. And the
UML diagram is used, well, as a documenta-
tion for oneself really, well, a brainstorm, a
list, you know, a plan for what it looks like.
It feels that it is more rewarding to get the
code first and from that make the UML dia-
gram – compared with what you get out from
only the UML itself, if you get what I mean.
[S07]

S04 mentioned UML in connection to software devel-
opment. When he was asked if this was part of designing
the software, he answered:

Yes, I guess it is important to have it in the
documentation. [S04]

This answer indicates a view that UML diagrams are
more part of the documentation of a system than part
of the development process.
S09 describes that the diagrams are closely related to

code, that they in fact can be regarded as code:

... due to the fact that the experience I have
from UML is almost exclusively in relation to
writing code, so by old habit, I see it as code.
[S09]

In summary, this way to understand the use of class
diagrams is mainly that they document or represent
code in a visual form (non-textual).

5.1.2 Category 2: Design
This category describes that class diagrams are used

to develop and model software designs before starting to
code. Class diagrams can be used to sketch a solution in
a top-down manner and can be refined gradually. The
design model can then be implemented into code which
will also make it a documentation of the code, why this

understanding also includes the understanding in the
previous category.
In the informants’ descriptions there is a specific un-

derstanding that UML diagrams are used when people
design a software system and that there are more than
just class diagrams in UML. For example, S02 says it
supports a top–down approach to the design process:

... I think that you do design with UML
rather much actually. That you describe some
different steps for how calculations should be
handled with, well, on some different ways
that you can use in UML. Not necessarily
only class diagrams because there are some
different models to use, so I think that it is
used pretty much when you want to sketch
what you want it to look like. And then it
can be done very roughly, that you only have
a module somewhere but for the time being
you don’t care how things look like inside the
module. Instead you start on a very high level
and work yourself downwards all the time. I
believe that is a pretty good way to make de-
signs. I think this i how you do it as well.
[S02]

For S14 it is good if you visualize a design first to get
an understanding of the parts – instead of coding in the
dark:

... yes, but it may be good and if you are
going to create a system, that you draw be-
fore how you think and how it should fit to-
gether to get an understanding, not just sit
and code in the dark, for example, that, well,
and then it shows how they fit together hier-
archically, which these classes can access and,
yes, such things. We have touched upon that
a bit more lately, in order to get, then you
get more grip on what is needed and what
is not needed. Otherwise, you may perhaps
think that you need ever so many things just
because you think it should be so complex.
[S14]

S02 starts with drawing the design in UML before the
coding and there are software tools that can be used for
making the design diagrams:

As I have done now, for example, in the side
projects, I usually work in, in an IDE called

5



NetBeans. And there you can draw a UML
diagram. So already there in the design phase
you draw a UML and, and think about what
you want it to look like, that you start kind
of. I usually tend to start at the stage that
I begin with the UML, and then I generate
code from the UML, and start from there,
when we are going to start to code. [S02]

Designing with UML, S20 says, is appropriate when
you deal with large designs in professional contexts;
however, in a small project it might be too time con-
suming. The class diagram is a structure that describes
the design of a software and programmers can use it to
understand what they are supposed to do:

Oh, yeah, but I still think that in a profes-
sional context, I think that UML, then it
might be useful. Because when you teach
and when you build something with friends
and so on, then it may be that you spend
too much time on the UML if everyone un-
derstands what kind of thing they are sup-
posed to do. But in a professional context,
it’s very important that you really have one,
well, great design and very defined design,
and then, it is also easier as a programmer to
develop things if you get this kind of chart so
you can see, then you know a bit more what
to do. [S20]

S20 explains that a visual representation helps people
to really understand a design and what they should do:

It requires graphic representation to really
understand, because I think everyone, all stu-
dents are more or less visual, so it helps a
lot. And then in a professional situation, it
is also a great way to instruct programmers
how they should begin their work, instead of
having a meeting with the designer for some
hours in which you write your own notes, you
get a diagram showing the key relationships,
and when you have done so much you can do
from it, then you can then proceed with more
details. [S20]

In a similar way, S09 describes how the diagram helps
a designer to form a structure that helps others to un-
derstand which parts they should work with:

Yes, strictly speaking it would be much like,
well, that together you prepare some sort of,
no, not together necessarily, that there is some-
one who has an eye on the project as a whole
that makes a UML that, or well, some sort of
structure from which the others can under-
take pieces, so to speak. [S09]

This description category can be summarized as fol-
lows: Class diagrams are used to design and model soft-
ware solutions before the software is implemented.

5.1.3 Category 3: Dialogue
In the third category, informants describe how they

use class diagrams interactively together with the other

team members in the project. The purpose can be to
get an understanding or agreement of what constitutes
the software as a whole and which parts a developer are
responsible of and their complexity. S07 describes:

The UML diagram is an aid during a devel-
opment process so that you can get the dif-
ferent, that you have a person A who makes
class B, and you have, yes, and so on, dif-
ferent people doing different things, and that
they can cooperate in a way and understand
the entire program and understand the ma-
jor issues affecting them. Then I think UML
diagrams are great, while the code is good if
you have to go in specifically in a certain part
and see: how can we improve this, or what is
here? [S07]

Some informants describe how class diagrams can be
used in vivid brainstorming processes. S02 talked about
his experiences of working out a coarse–grained sketch
of a design on a whiteboard together with his team:

When we have worked in groups, we usually,
at least at school anyway, we usually sit in
a room when we design our programs. We
take an empty room and then we write down
what we want to have on the blackboard.
We brain-storm which classes are needed and
what kind of thing we will try to do, and
then we sketch a very rough UML for what
it should look like. When we have done it,
we touch it up a bit, remove things that may
not be needed, divide something that, that is,
we divide some class into two parts if needed,
and so on. So that’s what we usually try to
do, that we try to outline a rough UML, ba-
sically, and then, based on that, we work to
produce what is wanted. [S02]

Informant S13 describes that he and his team-mate
were fortunate enough to have access to a whiteboard
of their own during the entire project period, and how
this was very useful. But they had not thought about
making a backup:

Since it is object-oriented programming, there
were of course many objects. There were
about 14 different ones or something, so, we
had to have a whiteboard in there and so, but
every time we came there you could look at
that and you always discovered something. It
was really, really good actually, because we
never erased anything. It was one day the
cleaning maid had erased it ... Yes, [laugh-
ter], it was close to murder in the house but
it was just to start drawing all over again,
and it was quite useful because then we got
maybe some other, we could not exactly re-
member what it looked like, but now we have
begun to photograph the whiteboard. [S13]

Several informants describe that it is a good idea
to develop software designs in collaboration with the

6



project team; however, collaborative work can also be a
source of problems that are hard to handle. S01 points
out a problem that he experienced when his group de-
signed a solution to an project assignment. After long
discussions, the group agreed on a solution model (using
class diagrams); however, when they started to imple-
ment the code, the subgroups started to do their own so-
lutions that deviated from the design documents. And
they did not go back and discuss this with the entire
group and the design documents were never changed.
Everybody knew this, but nobody wanted to start a
new design discussion.

It depends a bit on the project you are work-
ing on, and how well you have done your de-
sign, because what may look very fine on a
whiteboard and very logical and good, may
in the end, even if you only have missed a
detail in the program flow, it may be very
complicated later, because then you are really
locked by the image you had from the start,
so. There is also a big disadvantage to have a
clear picture before you start, because, espe-
cially if you work in a group it becomes easy
that you, you may not modify the common
picture, because I think then you can destroy
for someone else, who might have been, who,
who think strictly in accordance with the im-
age which we drew up together, and if you
keep rigidly fixed in the original image then,
then the program is not getting better from
that, but you may have to sit with the group
again and, and, or as soon as you discover
gaps in the common image, that you go back
and redraw it. [S01]

This category described the use of class diagrams as
being a tool for communicating and discussing about
software designs during the software development.

5.2 Ways to see what class diagrams are
The second analysis of the transcriptions was look-

ing for qualitatively different ways to understand and
describe what class diagrams are. The result is an out-
come space with three qualitatively different categories
of description: (1) The class diagram is a visualization
that shows classes as boxes with instance variables and
methods and the diagram shows how the classes are
connected to each other, (2) the class diagram is a vi-
sualization that shows classes and various types of re-
lations between classes, and (3) the class diagram is a
visualization that shows hierarchic structures of classes.

5.2.1 Category 1: Classes and connections
The descriptions in this category characterize class

diagrams as a visualization that shows classes and con-
nections between classes. It gives information about the
classes’ properties and what they “do”. The class dia-
grams used in the interviews represented classes with-
out specifications of attributes and methods and the
internals of the classes was not addressed explicitly in
the discussions; however, the understanding that class
diagrams can show this information was mentioned in-
directly, e.g., S02 who cannot see what the classes “do”:

... I can not really see what the different
classes do, of course, but I can just see how
the relationship to them looks like. [S02]

or directly, e.g., S17, who mentions variables and func-
tions:

... anyway, I do know this much about Java
diagrams that you should have both variables
and functions in the class diagram ... Yes,
then the important thing is what types the
variables have ... and then, if you are going
to implement this, you must of course also
have the functions, so you know what it is
you should do... [S17]

Informant S14 describes how he uses class diagrams to
define which classes to use and how they are“connected”
but uses no specific symbols to discern the character of
their connections.

I have not used these particular UML dia-
grams, you know, with the different [sym-
bols] ... but we have, you have drawn kind
of connections from which classes you should
use and roughly how they should fit together.
[S14]

S14 also describes that the diagram shows classes and
their connections. In this way, S14 says, it is possible
to see how the flow goes between classes:

... we think we need to sketch up how, kind
of, yes, like class models or whatever, giving
relationships, and showing how it, yes, how
all, all the flows must go, so to speak, so that
it becomes clear to the one who looks at it...
[S14]

When presented with the class diagram used in the
interview, S08 describes how it shows relations between
classes; how they communicate and since the classes do
not specify methods or properties, it is not possible to
implement the design.

Oops, the first thing I think of is just that this
only shows relationships between, between like
classes, and how they communicate with each
other in some way, and, you would surely not
be able to implement anything from this, but,
if you would have another sketch that shows
you how to implement, then maybe we could
apply this, discern where to start, and which
parts I can put aside to develop at the end,
and what part I need to develop in order to
test other parts. [S08]

S17 expresses a similar view:

I can see that there are different types of in-
formation that is primarily focused on the
communication between these boxes, for they
[the classes] all look exactly alike, they just
have different names... [S17]

S17 continues to describe different forms of arrows, but
cannot tell what they mean:

7



Table 2: A summary of the outcome space of descriptions of UML class diagrams.

Category How class diagrams are described

1: Classes and connections It is a diagram that shows classes with their internal methods and attributes,
and it also shows an overview of the connections or flow between the classes.

2: Related classes It is a diagram that describes classes and their connections. The connections,
or relations, can have a number of fundamentally different features.

3: Hierarchies It is a diagram that shows classes and how they are related in abstraction
hierarchies involving classes, instances, interfaces and sub-structures, such as
inheritance structures and aggregations.

... and then there are of course different kinds
of arrows, filled and non filled, dotted or,
what is it called, not dotted, straight lines,
and you can also see, if you think that this is
classes or modules or anything, you can see
which ones are most important or most cen-
tral. G here, for example, is in fact, seems
in fact to be in the middle of the chart, and
also has many arrows towards it, and above
all here, well, it is difficult to say when you
do not know what the arrows mean or what
it is all about, so I can probably not, well.
[S17]

Informant S12 describes that diagrams can be under-
stood as a combination of classes and flow:

... if you should do this smart, you can of
course draw, I usually make a mixture of class
diagrams and flow charts, it shows, well, from
this class and down to that class and it does
this, and then it goes to that class which does
that. [S12]

S16 describes how the connections between classes can
express a dependency between the classes:

I think the thicker arrows seems like, I do
not know how to explain them, but the ar-
row from A to B, for example, that is a thick
arrow, and I think it feels like A is very de-
pendent on B, for example, that it gets some-
thing big, I mean something important from
B. While B and C, here it is more like a re-
lationship, you know, because, well let’s say
relationship because I don’t recall. [S16]

In summary, a class diagram is described as a overview
visualizaion, showing a number of classes, some of which
have connections to each other

5.2.2 Category 2: Related classes
This category of description includes the previous cat-

egory and opens up a new dimension to how class dia-
grams can be understood; the connections between the
classes in the diagram, or relations, can be different in
their semantic nature. S20 tells how the class diagram
is a way to show the relation types and that there are
many different types that can be expressed in UML,
but he also says that he is not very familiar with the
notation for these relations:

As far as I know, the UML is, it’s a way to
show relationships between different entities,
and there are lots of them, I imagine, in UML,
a great many different types of relationships,
so many, and it is something that I, frankly,
never learned, or so much of anyway. [S20]

S20 uses an information perspective and explains how
relations can mean different things; in which direction
the information flows, how information is shared and
how parts are created by other parts:

If you have two elements that have a relation-
ship, how can they, how can the information
go between them, what information is com-
mon in those elements, and, or you could also
say how the parts have been created by others
really. It gets pretty abstract when talking
about what a relationship is. It seems more
like, well, the only thing described by the re-
lationship is that it is some form of informa-
tion flow that goes from one element to an-
other. Or if they have both in some way, then
you have, in fact, inheritance from a class is
that you copy information, well, so, I imagine
some kind of information flow when I think
of relationship ... my experience is that in
classes, when you program some kind of ap-
plication, mostly you, what you’re watching
mostly is, is which way the arrow points, in
which direction the relationship points, and
perhaps what, what symbol you have on the
element, if it is a circle or a square. [S20]

Many informants talk about inheritance as a relation
between classes in class diagrams. S14 describes that
classes involved in an inheritance relation have similar
properties. Moreover, he describes that information ex-
change between classes is a relation:

It may be that they, if they inherit, then they
have equal, or not equal but similar prop-
erties, or values in themselves, but then if,
if they have a different type of relationship,
it may surely be to collect information from
each other, so to speak, if it is to be presented
in any way, and then of course it can go in
different directions as well, and it depends
on how they are connected with each other.
[S14]

8



S17 explains what inheritance between classes means
and adds the understanding that it can provide for a
polymorphic behaviour:

Maybe I thought of different types of inheri-
tance and these, what’s the name, interfaces,
well, abstract classes, and such ... Inheri-
tance, a class that inherits another class will
get its parameters and functions, which in
Java means that you may have, poly, what’s
the name of it? I have forgotten what it’s
called, that functions have the same name,
but behave differently. [S17]

The previous quote touched upon interfaces and in
another explanation of different relation types, S20 ex-
plicitly describes that interfaces are involved in another
relation type; the implementation relation between a
class and an interface:

If this is a picture of object orientation, then
a relationship may be that what the arrow
points to is a class inheriting an existing su-
per class. It could also be an interface, and
here is another interface, or that it is a class
that implements an interface. Is there is more?
That is, well, what comes to mind within ob-
ject orientation at the moment. So there are,
well, there are many relationships like that.
[S20]

Talking about relations between classes, S19 describes
how class diagrams show inheritance relations involving
classes and interfaces; however, looking at the diagram,
he discovers a contradiction; a containment relation be-
tween two familiar graphical components, which makes
him slightly confused:

Inheritance is a relationship, I suppose, and
to implement an interface is a relationship
for sure, so that is imaginable, indeed. But
when I start talking about this now, I think
that there is someone who has put a JLabel in
a JPanel and then it’s relationships between
objects and not relations between classes, so
then there are both, in that case there are
both objects and classes in this diagram, and
then I get a bit confused. [S19]

Then, S19 shifts his perspective and opens up for a dif-
ferent interpretation of what can be represented by a
class diagram:

Or maybe this is not only inheritance, rather
it is some sort of diagram of something that
actually is built, so that there is a UserPage
that has a JPanel in which someone has put
a button, a label, and a text field. But I do
not know if there is such UML diagram type,
though I suppose there ought to be. [S19]

S19 is asked to explain his view and he describes that
he thinks of class diagrams as being on a conceptual
level – not on a design level:

Yes, that is how I imagine the word class dia-
gram. I think it’s called something else when

you describe some kind of, what shall we call
it, implementation, or well, something, a sys-
tem you have made. So I imagine that the
class diagram only means how the classes fit
together, I mean conceptually with inheri-
tance and implementation of interfaces, not
how you actually have a certain instance of
your – a system that is kind of made, but
perhaps that is the case if taking other class
diagrams. [S19]

S07 says it is possible to understand how the classes
are related and how they should be programmed if you
have proper names on the classes and if you are famil-
iar with the system. Nevertheless, S07 sees that some
classes are contained by another class:

Well, if you get real names there, and are
somewhat involved in what the system is sup-
posed to do, you can see how different classes
should fit together, how they should be pro-
grammed. Well, like this class G for instance,
it should contain J, H, K ... So this is a UML
diagram then, as I see it, and it is a class
diagram, you can say, and it helps program-
mers to see which relationships there should
be, you know. [S07]

S01 explains that it is easier to understand why classes
are related and in which way they are related if the
classes have names that explain their nature. The class
diagram gives an overview; however, it requires more
information in order to make it more understandable:

First ... it gives a general view. Now, much
more information than what is written here is
needed, such as explanatory class names, be-
cause when you have good names for things,
it is usually very much easier to understand
a relationship. Take for example what I said
earlier, if H should be a student and K a
course, then it would be much easier to see
the structure and why they must fit together,
or how they fit together. [S01]

Summary: A class diagram is described as a diagram
showing a number of classes, and some of the classes are
conncted, related, to each other in different ways. The
informants mentioned a number of relation types, e.g.,
inheritance, implements, information flow, and contain-
ment.

5.2.3 Category 3: Hierarchies
In this category, the descriptions are focused on that

the class diagram shows, or should show, classes struc-
tured in vertical hierarchies where the important thing
to illustrate is the structure itself, in addition to the
individual classes. It includes the previous categories
because the described hierarchies includes connected
classes and their relation types. Some of the informants
talked about hierarchic inheritance structures and ag-
gregation structures.
Sometimes these structures are referred to as trees,

and in the first presented diagram, S02 sees an inheri-
tance tree that includes most of the classes:

9



... it seems that we have some base class here
that B inherits from. B in its turn uses some
kind of interface here from which we have two
implementing classes, B and E. Further on,
we have two classes L and F that inherits
from E, and then it keeps on in that way fur-
ther down the tree. We have some class F
that has a sub–class G, and G in its turn has
three sub–classes, J, H, K, well, and in their
turn they use some other classes and then we
can traverse deeper down in the tree until we
get to N and O here farthest away. [S02]

S02 finds the diagram a bit confusing because it does
not consistently follow a hierarchic vertical structure.
It seems that the classes are expected to be organized
so that their vertical positions correspond to different
abstraction levels:

It is not easy to understand this UML in re-
gard of how the arrows go. We have some
arrows that go up, some go down, some go
sideways, so it is not really, it is not quite so
clear in which level all classes are in ... it feels
like, if an arrow goes down, then it is like a
lower level. Which means that you have ab-
stracted something, and therefore it gets a bit
weird to draw it upwards, because you don’t
abstract upwards, but you do abstract down-
wards and then it becomes a bit weird, that
you add arrows going up. And sideways is
ok, sideways is ok because then it is at the
same level so to speak, but when you draw
upwards it becomes a bit strange. Even if it
is possible to do so, it gets a little weird. It is
probably done so here, otherwise the arrows
would go around the other classes and then it
would look very bad, so I guess this has been
done only for show. [S02]

When S02 is asked what would make the diagram eas-
ier to understand, the answer is that some classes could
be split, and that the diagram could be re–structured
into something like a tree:

... you could divide certain classes in several
other classes, for example, that you divide
UserPage in two different, possibly that you
restructure the diagram slightly into a more
tree like diagram... [S02]

S17 talks about inheritance symbols in the diagram
and reacts on inheritance between classes on the same
vertical level in the diagram:

Then it has to be inheritance, I guess, and in
Java there are also interfaces, different types
of inheritance and relations. But I have a bit
of a hard time to understand those [classes]
on the same level here. [S17]

And when asked if it is more common to see the classes
in class diagrams structured as hierarchies, S17 answers:

As trees, yes. [S17]

S01 sees two kinds of structures in the diagram: inher-
itance structures and aggregations. He is also concerned
about the complexity of structure of the connections
and suggests a vertical restructuring:

Let’s see now, this looks like a classical UML
class diagram with inheritance structures on
one hand and aggregations on the other –
that classes are included in other classes ...
and quite spontaneously it feels like the con-
nections between all of these classes are way
to complicated. Surely, one could restructure
it or rebuild the classes to get a clearer struc-
ture. Above all when you, arrows shouldn’t,
the diagram is not well–structured. For ex-
ample you should draw inheritance hierar-
chies vertically instead of horizontally and ...
between Q and R the inheritance hierarchy
is rather going in the wrong direction in a
graphical sense, and this is something that I
recognize that I struggle with when you are
sitting there with your diagram. That you
want both that the arrows should not over-
lap each other and at the same time that you
want the hierarchy to be kept intact... And
that many classes have very many connec-
tions with other classes here indicates that
you could rebuild the system a bit, to be
more, where the classes would have more well
defined responsibilities. [S01]

S01 suggests an even more hierarchical restructuring;
that you can separate the diagram into components in
sub–diagrams and use these components in a top–level
diagram:

This is what I have done myself in many cases,
to divide complicated systems into several sub–
systems, and maybe not have everything in
the same [diagram] ... and then you would
have only four components ... [S01]

To summarize this category, class diagrams are de-
scribed as visualizations that show, or should show, hi-
erachic structures of classes.

5.3 Descriptions of diamonds and aggregation
The third analysis investigated how the informants

experience the black and white diamond symbols in
class diagrams. The result shows that the informants
described the phenomena in four qualitatively different
ways: (1) That the two classes connected with this sym-
bol are related,(2) that one of the related classes “has”
the other class, (3) that one of the classes contains the
other or that it consists of the other, and (4) that the
black and white diamond has different meanings where
the white diamons represents an aggregation and the
black diamond represents a composition.
The categories are described in the following sections

and a summary of the outcome space for the phenomenon
“class diagram” is shown in Table 3.

An interesting observation is that without meaning-
ful class names, most informants were uncertain and
vague in their descriptions of what the diamond sym-
bols meant. When the next version of the class dia-
gram was presented to them (the one that introduced

10



Table 3: A summary of the outcome space for descriptions of the diamond symbols in UML (aggre-
gations) – qualitatively distinct categories of description.

Category How the meaning of the diamond symbol(s) is described

1: Relation The diamond symbols mean that two classes are related to each other, that
they are connected someway.

2: Has The diamond symbols mean that a class is related to another class and that
the class “has” another class, which includes ownership and control.

3: Consist/contain The diamond symbols mean that a class contains another class or that it con-
sists of other classes. A class “has” another class “inside” itself.

4: Aggregation/composition The diamond symbols distinguishes between aggregation and composite aggre-
gation. The composite aggregation (black diamond) has restrictive require-
ments for existence and access to its parts, whereas aggregation (white dia-
mond) is more dynamic.

real class names instead of the letters ‘A’ – ‘R’), some
of the students who previously gave superficial descrip-
tions started to draw more advanced conclusions about
the relation symbols from the surrounding context.

5.3.1 Category 1: Relation
The black and white diamond relation symbols are

– relations. The first category describes the black and
white diamond relations in a way that reveals a vague
understanding of the phenomenon. The answers are of-
ten tautological (the relations are relations). It seems
as if the informants know that it means something spe-
cial, but that they do not remember exactly what it
was. Many of the informants were uncertain about the
diamond symbols. This is a typical way to describe this
uncertainty:

Well, I see in which ways the information
goes, with the arrows. Then I don’t, I’m not
sure, I don’t really remember what the filled
and the not filled mean, but it is, well, they
have relations between them ... [S14]

5.3.2 Category 2: Has
In this category, the diamond symbol is described as

a relation between classes, meaning that an instance
“has” one or many other instances. One common way
to explain what “has” means is to express it in terms
of implementation details; to say that the instance that
“has”the other instance, holds an instance variable that
refers to the other instance. When S02 looks at one of
the white diamonds in the diagram, he concludes:

It seems like B has some kind of instance of
C, but then you cannot determine if it is a
list or if it is only a single attribute of C. In
any case B has some kind of instance variable
that refers to an instance of C. [S02]

S02 seems pretty confident in his interpretation, whereas
S19 is more uncertain. At first he says that he don’t
have a clue, but then he gives a description that is sim-
ilar to what S02 described; the meaning of the white
diamond is that a class “has” another class; however,
what the black diamond means is a mystery.

I don’t have a clue about these arrows with
a diamond in one end and an arrowhead in
the other. Maybe it means that B has a C
somehow, which means that one of B’s – what
is it called? – fields or instance variables, is
of class C. I think that is what it could mean.
Then there are arrows here with a line and a
black diamond in the other end, and I don’t
have any idea what that means. [S19]

To S18, the expression that two classes are related
means that they are loosely connected and there are
two forms of loose connections; either that one instance
“uses” another instance – or that one instance “has” an-
other instance.

Well, you know, relations are loose, for me
anyway, but they are very loose in the world
of classes, and then I guess, well, they have
some kind of connection where one uses an-
other, or the other uses the first – or it has
someone, an instance of the first, or several,
maybe. [S18]

S18 explains that the difference between “uses” and
“has”means that there is a difference in equality of the
instances in a hierarchic sense. In comparison, “uses”
is more equal than “has”. In the has–relation, there is
an owner and something owned and the owner decides
what the owned must do. S18 explains:

Like an automobile that has a tire, it can even
have four tires if it is a good car [laugh], then
the tire may not be aware that it is an au-
tomobile that has got it, but it is still there
and does its task; it spins and does what it is
supposed to do, no matter where it is. Per-
haps it was a bike, if we suppose it was the
same tire; it still keeps on doing the same
thing regardless of who uses it, kind of. So,
it is some kind of relation that the automobile
has a tire, or the bike has a tire and the tire
does what tires do; it always do it in the same
way... Has – then it is more of an hierarchy
in some sense, the one rules over the other,
but “uses” is more on the same level, the first

11



class asks the other class about something in
the world, or the system you should say, and
then it may choose: “No, I don’t like you, I
am not going to answer that question” and
then the first has to accept that, but if it is
that the first “has” the other, it must do it,
in some way. It gets instructions to do this
and that and then it blindly follows the in-
structions. But it can also be when you “use
it”, that it ... if you have a process that uses
another process for example, then it can, I
don’t know, perhaps it is busy, it is perhaps
only a recommendation: “Could you do this,
please – it would be feasible?” [laugh], and
such stuff: “No, I don’t have time, I’m busy”,
for example. [S18]

In summary, the diamond symbol is described as rep-
resenting a “has”-relation meaning that one class has
some kind of ownership or control over an other class.
Some informants describe that a class has an instance
variable that refers to another class.

5.3.3 Category 3: consist/contain
This category describes the meaning of the diamond

symbols in terms of classes containing other classes (in-
stances) or consisting of other classes. S05 uses both
terms when he talks about a white diamond relation:

Ok. B consists of a class C, or many C – you
don’t know about that, and a class D inherits
C, so in principle one could say that there is
a container B that contains many D. [S05]

S06 uses several ways to describe what the diamond
symbol means. The first is “contains”, the second is
“owns”, the third is “lie in”. The fourth descriptive term
is “be aggregate in”:

And in some way, B contains a C, B owns a
C. I have no idea what the arrow that points
to the C does, but C lies somewhere in B. C
is an aggregate in B, so B owns a C somehow.
[S06]

S08 could not describe the diamond symbols when he
looked at the first class diagram – the one with only
symbolic class names; however, this changed when he
was presented with the next version. In this diagram
he could see some classes that were familiar to him; for
example, the class JPanel that implements a drawing
surface in which a programmer can put other graphical
components that should be displayed. Now he could use
his experiences and knowledge about Java Swing com-
ponents to figure out what the diamond symbol should
mean:

... well, a JPanel can contain a JLabel and
this JPanel seems to contain a JTextField
and it seems to contain a JButton too, so it
feels, in that way this open diamond should
mean that “this” contains “that” in some way.
[S08]

As we have seen earlier, S13 is not certain about the
meaning of the white and black diamonds; however, he

says that the class H contains the class K and that the
class J belongs to the class G. The interpretation is
then that the white diamond means containment and
the black diamond means belonging to a group:

... or H contains K, they have some form of
relation, connection – now I introduced an-
other word, connection – but, well relation,
while a relationship might be that you belong
to a certain, they, belong is maybe a better
word; that J belongs to G – and then it is
belonging to a group, maybe ... [S13]

The reason for why this category is more advanced
than the previous category (“has”) is that the descrip-
tions relate to concepts that adds to a deeper under-
standing, such as consist of (whole/part), containers,
aggregation, and belonging to a group. In addition, we
can see that the “has”–property also fits for all of the
listed concepts, and therefore this category includes the
previous.

5.3.4 Category 4: Aggregation and composition
In this description category the black and white dia-

monds are described as symbols for two similar, but yet
different forms of whole/part relations where the black
diamond is a “harder” relation and the white diamond
is a “softer” relation.

The difference between filled and not filled –
what are they – rhombs? And the distinction
between them is a bit – I have read about it
and I must always come back to it once I –
when I sit there – to define what the differ-
ence is, because as I see it, it is fine as a hair.
Anyway, in both cases it is about having ref-
erences to other objects, but in some cases
the connection is a bit harder, and that is
represented by these filled [black diamonds],
in the sense that this cannot exist without
the other. Perhaps you could say that if G is
a car and J is an engine, then G cannot work
without J; whereas, if H is a student and K
is a course, the student can function without
the course, but it is good if it has got it, for
example. [S01]

S10 was asked if he had reflected upon the difference
between the black and white diamonds:

Yes I have, I was a bit confused the last time
I thought about it too, but I know that the
filled, then, lets see, then these, for example
J, H, K must exist to make it possible for G to
exist. And this non filled, the slightly weaker,
that it may contain ... in those aggregations
that have non filled diamonds you can have
vectors or lists, and in those with filled dia-
monds you must have, I haven’t done this for
a very long time and therefore I don’t remem-
ber how to do it, if you do something clever
to prevent it from existing if something in the
collection it should have is missing. [S10]

Consequently, one interesting thing that may be dif-
ferent for the two forms, is what happens when the top

12



level object in an aggregate is created. S07 explains
that when you create a composite (top level) object, its
parts are created at the same time, which is not the case
for an aggregate.

This thing with composition and aggregation
is a bit hard to define. The way I see com-
position, is that it is kind of as soon as you
make this object, then these are also created,
in the other classes. Aggregation, then it is
that when I use this method, I create one of
these only to pass it along or to use that class
for example. [S07]

When asked to describe composition, he answers:

That a class is dependent, that it must have,
well like a car for example, a car needs a steer-
ing wheel, tires, and so forth to be precisely
a car, and therefore the car is dependent of
being able to use the steering wheel and use
the car, kind of, the parts. [S07]

And later when he is reading code and are trying to
draw a class diagram, he returns to this discussion:

Lets see, then it is to be hoped that we have
a human, a brain then and it is initialized im-
mediately; as soon as the class is loaded you
have a new brain, and this is pretty cool you
may think, that is called “brain” and as I in-
terpret it, the human consists of a brain, and
then we have a composition, a filled diamond
below to human brain. And since it is created
immediately and because there are no “add–
more–brain–method”, I suppose that ... and
besides it initializes immediately and there-
fore has a brain regardless if it wants one or
not... [S07]

Implicitly we can understand from his “thinking aloud”
that if the brain was not initialized in the construc-
tor and if there was an “add–more–brain–method”, the
human–brain–relation might be an aggregation (white
diamond) instead of a composite aggregation.
When asked if he sees a difference in the interpre-

tations of the white an black diamonds, S13 replies in
terms of mandatory and voluntary relations:

Yes I do, because, well, if we start with User-
Page, then it is very much to be put in there
and then you understand that the things that
the arrow or line goes to, simply must get in
there as I understand it. And then the white
are very voluntary, I would say... [S13]

Some informants experience that the black diamond
implies that the parts included in the aggregation are
“hidden”; this means that the parts in the composite ag-
gregate are not accessible as separate parts from some-
one outside the aggregation. S12 said he was a bit un-
sure about the black diamonds, but when he was asked
to talk about them again he said:

Well, it could be an aggregation that is hid-
den or something. [S12]

And when S18 talks about how the parts in a compo-
sition are created, he also mentions that the parts may
consist of parts in their turn, and that the top–level
class does not have to know about them (that they could
be hidden and abstracted):

The first thing the car does is to make itself
some wheels – or the first the Volvo does is
that it becomes a car, and then when it has
become a car, it becomes a Volvo, and when
a car is created it creates its wheels and ini-
tializes them in some way. And then perhaps
the wheels create their nuts. But the car does
not have to know about the nuts, the car does
only have to know about the wheel, that [the
nuts] is something that the wheel uses. [S18]

This description category introduced the understand-
ing of the differences between the two forms of diamonds
symbols, the black and the white, and their relation to
the concepts of aggregation and composition.

6. RELATED WORK
Understanding class diagrams is part of learning to

design OO software. McCracken points out the complex
nature of software design; it deals with ill-structured
problems without well-defined start and end states, and
there is no feedback during the process [18]. Eckerdal et
al. [7] studied students’ designs using data from an in-
ternational multi-institutional study [23]. It was shown
that 62% of the 314 informants could not design soft-
ware at all, only 2% produced complete designs, and the
design quality correlated with the number of completed
computer science courses. In my opinion, this indicates
that there is a potential to improve students’ design
skills and one piece in this puzzle may be to empha-
size the ability to express and interpret design solutions
using UML and class diagrams.
The present study shows a much varied understand-

ing of the diamond symbols in UML. One explanation
may be that UML lacks from precise definitions of these
symbols, discussed by [1, 11, 12, 19, 21]. Winston et al.
clarify the different semantic forms of whole-part rela-
tions in natural languages [26].
Empirical experiments have shown that size and struc-

tural complexity are early predictors for understand-
ability and modifiability of class diagrams [9], and lay-
out criteria and algorithms to make UML class diagrams
understandable and aestetical are proposed [8, 22]. Eye
tracking has been used to learn how people read and
understand class diagrams. Interestingly, it seems that
software engineers do not focus much on relations be-
tween classes [10], which the present study also indi-
cates. Experienced programmers read designs from the
center and outwards, whereas the novices read them
like a book. Layout, stereotype information and color-
ing can improve understandability; however, the similar
notations for aggregation and inheritance reduce read-
ability [27], which was also observed in this study.

7. IMPLICATIONS FOR TEACHING
The phenomenographic outcome spaces provide valu-

able information for teachers who reflect on aspects of

13



learning software design. The insights about students’
views are particularly valuable when evaluating educa-
tion and it is even possible to take advantage of this
knowledge in the classroom.

7.1 Variation theory
Variation theory can be applied to phenomeographic

results to help students discern the more advanced ways
to see various phenomena [16, 17]. This is an approach
that can be applied to all outcome spaces.
As an example, we explore the possibility of using

variations in order to facilitate understanding of the
diamond symbols and aggregations. Three important
dimensions of variation that could be seen in the cor-
responding outcome space that may help to discern the
differences and similarities between aggregation and com-
position are: (1) dynamic behaviour of parts, (2) visi-
bility of parts, and (3) ownership/life length of parts.
The identified dimensions of variation allow a teacher
to reflect on how to create learning situations that help
students to see the important aspects by introducing
variations.
Another aspect is that class names give students very

strong associations and they give an overview perspec-
tive of the design and the relations between different
classes in the diagram, e.g., the class names “Whole”
and “Part”. They may be so powerful that the relation
symbols are not noticed because they are redundant in
the context. One idea would be to vary the diagrams
by omitting the class names, or using fictitious names.
Then the relation symbols would stand out and the stu-
dents would have to reflect on their meaning.
More thorough discussions and concrete examples of

how phenomenographic results and variation theory can
be used in the classroom can be found in [3, 4, 24].

7.2 Practicing design skills
In the informant collective, the most advanced way

to see the purpose of class diagrams is the communi-
cating and collaborating view. However, this view was
not nearly expressed by all informants. This implies
that if we want to prepare our students for professional
design discussions, we must ensure that they get rich
experiences from such discussions and that they learn
a model language such as UML. This requires that stu-
dents should work in teams and have free access to
group rooms and whiteboards to be able to discuss and
produce collaborative designs. We should also make the
effort to discuss and assess designs including the formal
syntax and semantics of the modeling language, and we
should frequently use models in teaching and be explicit
about the notation.
In addition to the phenomenographic results, an in-

teresting observation from the interviews is that, over-
all, the informants were not very confident about UML
and concepts such as diamond symbols and variants of
aggregation; however, inheritance seems to be a well
known concept and nearly all of the informants recog-
nize the corresponding UML notation. This motivates
the following question to research: Is inheritance more
important for students to master than object composi-
tion?

8. CONCLUSIONS
The ability to model software visually and understand

such models are important skills in the software indus-
try. This paper describes a study of how a group of 20
students in the final part of their computing studies ex-
perience aspects of UML class diagrams. The research
questions asked how students experience: the purpose
of class diagrams, what class diagrams are, and what
the black and white diamond symbols mean.
The informants described the use of class diagrams

as (1) a documentation of code, (2) a means to make
a software design, and (3) a means for an interactive
design process together with the team.
The informants described a class diagram as a vi-

sualization of (1) classes with methods and instance
variables and connections to other classes, (2) different
kinds of relations between classes with many different
meanings, and (3) hierarchic structures such as inheri-
tance hierarchies and aggregations.
The informants described the black and white dia-

monds in UML as (1) relations, (2) a notation for when
a class “has” another class, (3) a notation for when a
class contains or consists of other classes, and (4) as a
notation to announce aggregation, but the black and
white diamonds discerns between composite aggrega-
tion and plain aggregation.
Only a minority of the informants could tell the differ-

ence between the white and black diamond, and many
informants could not explain what the diamonds mean
when they did not have help from descriptive class names.
The diamond symbol (and the term aggregation) was
often (vaguely) described as a “has”–relationship, but it
was more rare that informants described it in terms of
a “whole/part”-relation. The “has”–relation was some-
times explained by saying that a class has an instance
variable that can refer to another class. This is true, but
is also true for other types of relations than aggregation
– for example an ordinary association.
Although the concept of inheritance and the related

UML symbol were not subject to analysis, it was im-
possible to escape the observation that the informants
could relate to it and they knew how to implement it in
Java. S16 for example could specify inheritance when
he drew the UML-diagram, but he could not specify
other relations except for plain association-lines.
The fact that several informants said they did not

know UML very well stresses the importance of improv-
ing the learning; in the software industry they will most
certainly be expected to use UML or some other model-
ing language when they meet with colleagues to discuss
design. I strongly recommend that students should be
able to read designs and express their own design ideas
using a basic set of UML constructs. The results from
this study gives some implications for how the under-
standing can be improved. This may require the need
to review the whole range of courses to ensure that the
students will get the opportunity to learn about soft-
ware design and design models.

9. REFERENCES
[1] F. Barbier, B. Henderson-Sellers,

A. Le Parc-Lacayrelle, and J.-M. Bruel.
Formalization of the Whole-Part relationship in

14



the Unified Modeling Language. Software
Engineering, IEEE Transactions on,
29(5):459–470, May 2003.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The
Unified Modeling Language User Guide.
Addison-Wesley Longman, Reading,
Massachusetts, 1999.

[3] J. Boustedt. Students working with a Large
Software System: Experiences and
Understandings. Department of Information
Technology, Uppsala University, Uppsala, Sweden,
2007. Licentiate thesis.

[4] J. Boustedt. A student perspective on software
development and maintenance. Technical Report
2010-012, Department of Information Technology,
Uppsala University, 2010.

[5] J. Bowden. The nature of phenomenographic
research. In J. Bowden and E. Walsh, editors,
Phenomenography, Qualitative research methods
series, pages 1–12. RMIT University Press,
Melbourne, 1st edition, 2000.

[6] T. A. Budd. An Introduction to Object-Oriented
programming. Addison Wesley, Boston, 3 edition,
2002.

[7] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, and C. Zander. Categorizing student
software designs: Methods, results, and
implications. Computer Science Education,
16(3):197 – 209, 2006.

[8] H. Eichelberger. Aesthetics of Class Diagrams. In
VISSOFT ’02: Proceedings of the 1st
International Workshop on Visualizing Software
for Understanding and Analysis, page 23,
Washington, DC, USA, 2002. IEEE Computer
Society.

[9] M. Genero, M. Piatini, and E. Manso. Finding
“Early” Indicators of UML Class Diagrams
Understandability and Modifiability. In ISESE
’04: Proceedings of the 2004 International
Symposium on Empirical Software Engineering,
pages 207–216, Washington, DC, USA, 2004.
IEEE Computer Society.

[10] Y.-G. Guéhéneuc. TAUPE: Towards
Understanding Program Comprehension. In
CASCON ’06: Proceedings of the 2006 conference
of the Center for Advanced Studies on
Collaborative research, page 1, New York, NY,
USA, 2006. ACM.

[11] B. Henderson-Sellers and F. Barbier. Black and
White Diamonds. In R. France and B. Rumpe,
editors, ≪UML≫’99 – The Unified Modeling
Language, volume 1723 of Lecture Notes in
Computer Science, pages 550–565. Publisher
Springer Berlin / Heidelberg, 1999.

[12] B. Henderson-Sellers and F. Barbier. What is this
thing called aggregation? In Technology of
Object-Oriented Languages and Systems, 1999.
Proceedings of, pages 236–250, Jul 1999.

[13] C. Larman. Applying UML and Patterns. Prentice
Hall, Upper Saddle River, NJ, 2002.

[14] F. Marton. Phenomenography - a research
approach to investigating different understandings

of reality. Journal of Thought, 21(3):28–49, 1986.
[15] F. Marton. The structure of awareness. In

J. Bowden and E. Walsh, editors,
Phenomenography, Qualitative research methods
series, pages 70–79. RMIT University Press,
Melbourne, 1st edition, 2000.

[16] F. Marton and S. Booth. Learning and
Awareness. Lawrence Erlbaum Associates, Inc,
Mahwah, New Jersey, 1997.

[17] F. Marton and M. F. Pang. On some necessary
conditions of learning. The Journal of Learning
Sciences, 15(2):193–220, 2006.

[18] W. M. McCracken. Research on learning to design
software. In S. Fincher and M. Petre, editors,
Computer Science Education Research. Taylor
and Francis Group, London, 2004.

[19] D. Milicev. On the Semantics of Associations and
Association Ends in UML. Software Engineering,
IEEE Transactions on, 33(4):238–251, April 2007.

[20] T. Muhr. User’s Manual for ATLAS.ti 5.0.
Scientific Software Development, Berlin, 2 edition,
2004.

[21] M. Saksena, R. B. France, and M. M.
Larrondo-Petrie. A Characterization of
Aggregation. In In Proceedings of the 5th
International Conference on Object–Oriented
Information Systems (OOIS’98), pages 363–372.
SpringerVerlag, 1998.

[22] D. Sun and K. Wong. On Evaluating the Layout
of UML Class Diagrams for Program
Comprehension. In IWPC ’05: Proceedings of the
13th International Workshop on Program
Comprehension, pages 317–326, Washington, DC,
USA, 2005. IEEE Computer Society.

[23] J. Tenenberg, S. Fincher, K. Blaha, D. Bouvier,
T. Chen, D. Chinn, S. Cooper, A. Eckerdal,
H. Johnson, R. McCartney, A. Monge,
J. Moström, M. Petre, K. Powers, M. Ratcliffe,
A. Robins, D. Sanders, L. Shwartzman, B. Simon,
C. Stoker, A. Tew, and T. VanDeGrift. Students
designing software: a multi-national,
multi-institutional study. Informatics in
Education, 4:143–162, 2005.

[24] M. Thuné and A. Eckerdal. Variation theory
applied to students’ conceptions of computer
programming. Europeean Journal of Engineering
Education, 34(4):339–347, 2009.

[25] E. Walsh. Phenomenographic analysis of interview
transcripts. In J. Bowden and E. Walsh, editors,
Phenomenography, Qualitative research methods
series, pages 13–23. RMIT University Press,
Melbourne, 1st edition, 2000.

[26] M. E. Winston, R. Chaffin, and D. Herrmann. A
taxonomy of part-whole relations. Cognitive
Science: A Multidisciplinary Journal,
11(4):407–444, 1987.

[27] S. Yusuf, H. Kagdi, and J. I. Maletic. Assessing
the Comprehension of UML Class Diagrams via
Eye Tracking. In ICPC ’07: Proceedings of the
15th IEEE International Conference on Program
Comprehension, pages 113–122, Washington, DC,
USA, 2007. IEEE Computer Society.

15



APPENDIX

A. UML DIAGRAMS
The informants were asked to discuss four different

UML-diagrams and what the diagrams modeled.

Figure 1: The first class diagram
shows formally named classes and their relations.

The first class diagram contains a number of class
boxes labeled with letters (A - R) without information
on attributes or methods (see Figure 1). The classes
are connected by relation lines whose ends are deco-
rated with symbols: open arrow heads for navigability,
closed arrow heads for inheritance, black diamonds for
composition, and white diamonds for aggregation.
When the informants talked about this diagram they

could not get much help from the context to figure out
what the relation symbols meant.

Figure 2: The second class diagram
shows real–named classes and their relations.

The second class diagram keeps the same structure as
the previous, however, it introduces “real” class names
instead of formal letters (see Figure 2). The class names
provide a context making it easier to understand how
classes are related. Some of the informants who were
uncertain about the meaning of the relation symbols in

the first diagram could now make qualified guesses, or
confirm their earlier suggestions.

Figure 3: The third class diagram
adds multiplicities to some of the relations.

The third class diagram (see Figure 3) introduces mul-
tiplicity information to the relations, which indicates
how many instances that may be involved on both sides
of the relation. The multiplicity notation is not com-
pletely intuitive; however in combination with the class
names, most informants could for instance say that the
panel has five text fields or that the user list has an
arbitrary number of users.

Figure 4: The fourth class diagram
adds roles and relation descriptions to some of the relations.

The last class diagram (see Figure 4) in the sequence
introduces some relation names which may tell some-
thing about the relations’ character. Furthermore, some
of the relations have role names at the line ends. In some
UML software packages, role names are placed there
automatically using the names of the instance variables
that are used to implement the relation. In this case
a minus sign indicates that the instance variable is pri-
vate. Most informants were confused by these notations
and said that they had never seen this kind of annota-
tions.

16


