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Abstract 

This report presents two sets of data, suitable for development, testing and benchmarking of 

system identification algorithms for nonlinear processes. The first data set is recorded from a 

laboratory process that can be well described by a block oriented nonlinear model. The data 

set is challenging; it consists of only 500 samples, the nonlinear effect is large and the 

damping is not too good. The second data set is recorded from a laboratory process known to 

be governed by nonlinear differential equations.  

 

1. Introduction 

The field of non-linear system identification is developing rapidly today, with several 

powerful algorithms being available in standard software packages like the MATLAB System 

Identification Toolbox developed by L. Ljung (The Mathworks, 2010). That toolbox e.g. 

supports black-box methods based on NARX (Ljung, 1997), neural networks (Sjöberg and 

Ljung, 1992), block-oriented models (Billings and Fakhouri, 1982), as well as interfacing to 

grey-box models and algorithms (Bohlin, 1994). 

 

However, the development and characterization of new algorithms for identification of non-

linear dynamic systems are still challenging tasks. Simulated data and theoretical analysis are 

two standard tools used in this development. The use of measured data is reported more 

seldom, though. This is regrettable, since lack of testing against real data may result in a too 

poor robustness and algorithms that are not suitable for the operating conditions encountered 

in many applications.  

 



One reason for the limited experimental testing is the limited availability of publicly available 

sets of data, suitable for experiments. Such data should resemble significant nonlinear effects. 

At the same time it is an advantage when large parts of the measured data can be explained by 

a not too complex mathematical model. In such cases the data can also often be used for 

development of both black-box and grey-box algorithms. In addition, the modeling problem 

then has a reasonable size, and validation against a well defined “truth” allows conclusions to 

be drawn on the qualities of the applied methods. The sampling process needs to be well 

defined, in order to allow for the use of both continuous time and discrete time models. 

 

This report contributes by the presentation of two freely downloadable sets of input-output 

data for nonlinear identification The first set is recorded from the coupled electric drives 

(Wellstead, 1979; Wigren,1990). The speed control dynamics of that laboratory process can 

be accurately modeled by a third order block oriented nonlinear model. The second process 

consists of two cascaded tanks (Wigren, 2006) with free outlets. This laboratory process can 

be modeled with two coupled non-linear ordinary differential equations.  

 

Section 2 and 3 describe the processes, while the recorded data is discussed in section 4.  

Previously obtained identification results using the data are summarized in section 5. The 

conclusions follow in section 6. 

 

2. A third order block oriented nonlinear system 

The CE8 coupled electric drives (Wellstead, 1979) consists of two electric motors that drive a 

pulley using a flexible belt. The system is depicted in Fig. 1. The pulley is held by a spring, 

resulting in a lightly damped mode. The electric drives can be individually controlled 

allowing the tension and the speed of the belt to be simultaneously controlled. The drive 

control is symmetric around zero, hence both clockwise and counter clockwise movement is 

possible. Here the focus in only on the speed control system. The reason is that the angular 

speed of the pulley is measured with a pulse counter and this sensor is insensitive to the sign 

of the velocity. Following the sensor, analogue low pass filtering and anti-aliasing filtering is 

applied. The dynamic effects are generated by the electric drive time constants, the spring and 

the analogue low pass filtering. The latter has a quite limited effect on the output and may be 

neglected.  



 

By considering the sum of the voltages applied to the motors as the input, physical modeling 

results in a lightly damped linear third order system, as measured from voltages to pulley 

velocity. The pulley velocity is rectified by the pulse counter to give the speed, after which it 

is filtered. A tentative discrete time description of this system is 

 

 

 

 

Fig. 1: The CE8 coupled electric drives.  
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Here t  is discrete time, ( )tu  is the speed, ( )tw  is the systems noise, ( )ts  is the speed, ( )te  is 

pulse counter noise, and ( )ty  is the measured filtered output. The remaining symbols 

represent the polynomial coefficients of the filter models. The exact model of the analogue 

filtering is not known, however the bandwidth of the anti-aliasing filter is 12 Hz. This is less 

than the sensor bandwidth. Further information of the process is available in Wellstead, 

(1979), and in Wigren, (1990). 

 

3. A second order nonlinear state space system 

The second process is a fluid level control system consisting of two cascaded tanks with free 

outlets fed by a pump. The water is transported by the pump to the upper of the two tanks. 

The process is depicted in Fig. 2. The input signal to the process is the voltage applied to the 

pump and the two output signals consist of measurements of the water level of the tanks. 

Since the outlets are open, the result is a dynamics that varies nonlinearly with the level of 

water. The process is controlled from a PC equipped with MATLAB interfaces to the A/D 

and D/A converters. 

 

The laboratory process is suitable for physical modeling. Application of Bernoulli’s principle 

and conservation of mass results in 
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Here h1 and h2  denote the levels of the upper and the lower tank, respectively. ( )tw1  and 

( )tw2  are system noises. The outputs are given by ( )ty1  and ( )ty 2 ,  these are corrupted by 

the measurement disturbances ( )te1  and ( )te2  . The areas of the tanks are A1 and A2 while 



the effluent areas are denoted 

flow conversion constant by k

 

 

Fig. 2. The cascaded tanks. 

 

All data was collected in open loop experiments using zero

 

Two types of inputs were used for the coupled electric drives. The first 

PRBS with a clock period of 5 times the samplin

- PRBSu  V and + PRBSu  V, resulting in the process changing the belt rotation direction 

the effluent areas are denoted a1  and a2 . The gravity is denoted by g , the voltage to input 

k and the applied voltage to the pump by ( )u t .

4. Data 

All data was collected in open loop experiments using zero-order hold (ZoH) sampling.

puts were used for the coupled electric drives. The first 

PRBS with a clock period of 5 times the sampling period. The signal was 

V, resulting in the process changing the belt rotation direction 

, the voltage to input 

. 

 

order hold (ZoH) sampling.  

puts were used for the coupled electric drives. The first input signal was a 

The signal was switching between  

V, resulting in the process changing the belt rotation direction 



frequently. Three realizations were recorded for 5.1,0.1,5.0=PRBSu . The input-output data was 

collected with a sampling period of 20 ms. The second type of input signal was obtained from 

a PRBS with a clock period of 5 times the sampling period, switching between -1.0 V.and 

+1.5 V (first realization), as well as between -1.0 V and +3.0V (second realization). The 

signal in each clock interval of constant signal level and with a duration of 5 sampling 

periods, was then multiplied with a random number, uniformly distributed in amplitude 

between 0 and 1. The resulting input signal is then uniformly disributed in amplitutude. The 

reason for this is that when the system is nonlinear, both the frequency and amplitude contents 

of the input signal are important for identification (Wigren, 1990). The input-output data was 

again recorded with a sampling period of 20 ms. The input-output data obtained from the first 

realization of the input signal is depicted in Fig. 3. 

 

 

 

Fig. 3. Coupled electric drives input-output data. 

 

The data that was recorded from the cascaded tanks also used an input signal that was 

generated as the uniformly distributed input signal above. The data of the file Tank1.mat used 



a clock period of 30,  a sampling period of 5.0 s and provide 2500 samples of input-output 

data for both the upper and lower tank. In Tank2.mat a clock period of 15 samples was used, 

the sampling period was 4.0 s, and 7500 samples of data were recorded. 

 

The data files available for download are summarized in Table 1. 

 

 

System File  Input Output Comment 

Drives DATAPRBS.mat u1 z1  

Drives DATAPRBS.mat u2 z2 Wigren, 1990 

Drives DATAPRBS.mat u3 z3  

Drives DATAUNIF.mat u11 z11 Wigren, 1990 

Drives DATAUNIF.mat u12 z12  

Tanks Tank1.mat u y Wigren, 2006 

Tanks Tank2.mat u y  

 

Table 1. Summary of downloadable data. 

 

5. Previous identification results 

 

The coupled electrical drives process was identified using a recursive prediction error method 

based on the nonlinear Wiener model in Wigren, (1990). The cascaded tank process was 

recursively identified with a prediction error method, based on a general state space model in 

Wigren, (2006). The reader is referred to those publications for details of the results. It is 

expected that these results can be significantly improved since they are based on recursive 

algorithms. 

 

 

6. Conclusions 

 

This report has presented two freely downloadable sets of data, suitable for support of the 

development of new nonlinear system identification algorithms. More contributions of 



downloadable data is needed to support researchers with diverse data addressing the very 

wide class of nonlinear dynamic systems. 
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