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Abstract 

This report is intended as a users manual for a package of MATLAB scripts and functions, 

developed for recursive prediction error identification of nonlinear state space systems and nonlinear 

static systems. The core of the package is an implementation of related output error identification and 

scaling algorithms. The algorithms are based on a continuous time, structured black box state space 

model of a nonlinear system. Furthermore, to initialize the algorithm an initiation scheme based on 

Kalman filter theory is included. The purpose of the initialization algorithm is to find initial 

parameters for the prediction error algorithm, and thus reducing the risk of convergence to local false 

minima. An RPEM algorithm for recursive identification of nonlinear static systems, that re-uses the 

parameterization of the nonlinear ODE model, is also included in the software package. In this version 

of the software a new discretization of the continuous time model  based on the midpoint integration 

algorithm is added. The software can only be run off-line, i.e. no true real time operation is possible. 

The algorithms are however implemented so that true on-line operation can be obtained by extraction 

of the main algorithmic loop. The user must then provide the real time environment. The software 

package contains scripts and functions that allow the user to either input live measurements or to 

generate test data by simulation. The scripts and functions for the setup and execution of the 

identification algorithms are somewhat more general than what is described in the references. There is 

e.g. support for automatic re-initiation of the algorithms using the parameters obtained at the end of a 

previous identification run. This allows for multiple runs through a set of data, something that is useful 

for data sets that are too short to allow convergence in a single run. The re-initiation step also allows 

the user to modify the degrees of the polynomial model structure and to specify terms that are to be 

excluded from the model. This makes it possible to iteratively re-fine the estimated model using 

multiple runs. The functionality for display of results include scripts for plotting of data, parameters, 

prediction errors, eigenvalues and the condition number of the Hessian. The estimated model obtained 

at the end of a run can be simulated and the model output plotted, alone or together with the data used 

for identification. Model validation is supported by two methods apart from the display functionality. 
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First, a calculation of the RPEM loss function can be performed, using parameters obtained at the end 

of an identification run. Secondly, the accuracy as a function of the output signal amplitude can be 

assessed. 

Keywords: Identification, Kalman filter, MATLAB, Nonlinear systems, Ordinary differential 

equation, RPEM, Recursive algorithm, Sampling, Scaling, Software, State space model. 

 

Prerequisites 

 

This report only describes the parts of  [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ] and [12] that are required for 

the description of the software. Hence the user is assumed to have a working knowledge of the 

algorithm of these publications and of MATLAB, see e.g. [ 7 ]. This, in turn, requires that the user 

has a working knowledge of system identification and in particular of recursive identification methods 

as described in e.g. [ 8 ]. The algorithm for identification of static systems is described in some detail 

in the report. 

 

Revisions 

 

Revision 1: [ 10 ] describes revision 1.0 of the accompanying SW. The software of revision 1 has been 

tested with MATLAB 5.3,  MATLAB 6.5, and  MATLAB 7.0 running on PCs and  UNIX 

workstations. 

Revision 2: [ 11 ] includes functionality for recursive identification of static nonlinear systems. See 

sections 9 and 10 of the report. Furthermore, an error has been corrected in the RPEM algorithm. The 

timing error of one sample in the output equation of the RPEM affected identification results slightly 

in case an explicit dependence of input signals was used in the output equation. 

Revision 3: This revision adds a recursive algorithm for initialization of the dynamic prediction error 

algorithm. The new algorithm is based on Kalman filter theory, for details see sections 11 and 12. 

Revision 4: This revision corrects a bug that led to erroneous behaviour of the initilization algorithm, 

for model orders higher than 2. The bug was due to a missed scaling in the differentiation part of the 

code. The references [ 5 ] and [ 6 ] are updated accordingly.  

Revision 5: This revision includes the use of midpoint algorithm as a discretization algorithm.  

Revision 6: This revision corrects an error associated with scaling, introduced in the previous revision.  
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Installation 

 

The file SW.zip is copied to the selected directory and unzipped. MATLAB is opened and a path is set 

up to the selected directory using the path browser. The software is then ready for use. 

Note: This report is written with respect to the software, as included in the SW.zip file. It may 

therefore be advantageous to store the originally supplied software for reference purposes. 

 

Error reports  

 

When errors are found, these may be reported in an e-mail to: 

torbjorn.wigren@it.uu.se. 

 

1.  Introduction 

 

Identification of nonlinear systems is an active field of research today. There are several reasons for 

this. First, many practical systems show strong nonlinear effects. This is e.g. true for high angle of 

attack flight dynamics, many chemical reactions and electromechanical machinery of many kinds, see 

e.g. [ 1 ], [ 2 ], [ 3 ], [ 4 ], [5], [6]  and the references therein for further examples. Another important 

reason is perhaps that linear methods for system identification are quite well understood today, hence 

it is natural to move the focus to more challenging problems.  

     There are already a number of identification methods available for identification of nonlinear 

systems. These include grey-box differential equation methods, where numerical integration is 

combined with optimization in order to optimize the unknown physical parameters that appear in the 

differential equations. An alternative approach is to start with a discrete time black box model, and to 

apply existing methodology from the linear field to the solution of the nonlinear identification 

problem. This is the approach taken in the NARMAX method and its related algorithms. There, a least 

squares formulation can often be found, a fact that facilitates the solution. Other methods apply neural 

networks for modeling of nonlinear dynamic systems. See [ 1 ], [ 2 ]  and the references therein for a 

more detailed survey. 

     This report focuses on software that implements new nonlinear recursive system identification 

methods. Contrary to the above methods, this black box method estimates continuous time parameters 

in a general state space model, with a known and possibly nonlinear measurement equation. The main 

identification methods belong to the class of recursive prediction error methods (RPEMs) and the 

methods are of output error type. Advantages include the fact that the stability of the estimated model 

is checked by a projection algorithm, at each iteration step. The least squares approaches above cannot 

guarantee a resulting stable model - this needs to be checked after the identification has been 
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completed. A further advantage is that the connection to the physical parameters can be retained to a 

greater extent than if a discrete time nonlinear model is used as the starting point. There are also 

disadvantages. A major disadvantage with output error methods is that they sometimes converge to a 

local sub-optimal minimum point of the criterion function, meaning that careful initialization is 

needed.  The effect of local minimum points is reduced for the method described in [ 1 ] – [ 4 ], by a 

method that scales the states, the estimated parameters of the model and, most importantly, the 

Hessian of the criterion function. The scaling is implemented by a scaling of the sampling period used 

when running the identification algorithm, see [ 1 ] – [ 3 ] and [ 12 ] for details. One important aspect 

of this scaling method is that corresponding un-scaled parameter values can be calculated in a post-

identification step. 

       The nonlinear identification algorithms are based on a continuous time black box state space 

model. This model is structured in that only one right hand side component of the ordinary differential 

equation (ODE) model is parameterized as an unknown function. As shown in [ 1 ] and [ 2 ]  this 

avoids over-parameterization. The restriction imposed on the model structure may seem restrictive. 

However, it is motivated in [ 1 ]  and [ 2 ]  that the selected structure can always (locally in the states) 

model systems with more general right hand sides, a fact that extends the applicability of the method 

significantly. The selected parameterization of the right hand side function of the ODE is a linear-in-

the-parameters multi-variate polynomial in the states and input signals. The approach taken allows for 

MIMO nonlinear system identification. The covariance matrix of the measurement disturbances is 

estimated on-line. 

     The second revision of the software package adds an RPEM algorithm for recursive identification 

of nonlinear static systems. The algorithm re-uses the parameterization of the nonlinear function used 

in the RPEM for identification of nonlinear dynamic systems described above. Most of the code of the 

SW package has been re-used, however a number of scripts have been modified and appear in two 

versions. This is marked by the inclusion of “Static” in one of the duplicated m-files. All other m-files 

can be used as described for the RPEM for identification of nonlinear dynamics. Note that scaling is 

not applicable in the static case. The static algorithm is described in sections 9 and 10. 

      The third revision adds a Kalman filter based algorithm to the software package. The new 

algorithm is based on the same model structure as the RPEM for identification of nonlinear dynamic 

systems, and is intended to provide initial parameters for the RPEM. Most parts of the scripts and 

functions of the previous versions of the SW package can be used in combination with the new 

algorithm. 

     The fourth revision corrects a problem in the previous revision, associated with the differentiation 

of the measurements. 

     The fifth and sixth revisions includes the use of the midpoint integration method as another 

discretization algorithm applied on the continuous time black box state space  model. All of the 
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previous functions and scripts can be used with the new algorithm. The sixth edition corrects an error 

associated with the scaling that appeared in the fifth edition. 

     Recursive system identification is a software dependent technology. Hence, when publishing new 

methodology in this field, it is relevant to also provide useful software for application of the presented 

algorithms. This facilitates a quick practical exploitation of new ideas. The development of the present 

MATLAB software package is motivated by this fact.  

      The present software package is developed and tested using MATLAB 5.3, MATLAB 6.5, 

MATLAB 7.0 and MATLAB 7.9.  The software package does not rely on any MATLAB toolboxes. It 

consists of a number of scripts and functions. Briefly, the software package consists of scripts for 

setup, scripts for generation or measurement of data, scripts for execution of the RPEM and scripts for 

generation and plotting of results. There is presently no GUI, the scripts must be run from the 

command window. Furthermore, input parameters need to be configured in one or several of the setup 

scripts, as well as when running the scripts. In case of data generation by simulation, the ODE that 

defines the data generating system must be specified in standard MATLAB style. The software can 

only be run off-line, i.e. there is no support for execution in a real time environment. The major parts 

of the algorithmic loop can however easily be extracted for such purposes.  

      The report is organized according to the flow of tasks a user encounters when applying the scripts 

of the package. A detailed description of the software is given for the nonlinear dynamiccase, the static 

case is described more briefly in the end of this report. Before the software is described some basic 

facts about the ODE model and the scaling method are reviewed. 

 

2.  Model – ODE case 

The nonlinear MIMO model to be defined here is used for estimation of an unknown parameter vector 

 from measured inputs and outputs , given by 
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The superscript denotes differentiation times. The starting point for the derivation of the model is 
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where  is the state vector. The following polynomial parameterization of the 

right hand side function of (2 ) is used 
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Please see example 5 below for a low order example of the above parameterization. In order to obtain 

a discrete time model that is suitable for scaling two different discretization algorithms have been 

applied to ( 2 ), the Euler method and the midpoint method.  

 

2.1 Euler integration method 

The main reason for using the Euler method is that the sampling appears explicitly and linearly in the 

right hand side of the resulting difference equation model ( 5 ) . This is convenient when the scaling 

algorithm is introduced. The result of the discretization is 

 

 

( 5 ) 
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( 6 ) 

It can be remarked that the Euler method may require fast sampling in order not to introduce 

significant discretization errors. This is fortunately a less important effect in system identification 

applications. The reason is that the minimization algorithm uses the parameters as instruments to fit 

the model output to the measured data, as expressed by the criterion function. Even if an additional 

bias would be introduced in the estimated parameters, the input-output properties of the identified 

model can be expected to describe the data well. 

 

2.2 Midpoint integration method 

The purpose of using the midpoint integration rule is mainly the higher accuracy of the algorithm 

compared to the Euler method giving more accurate parameter estimates. The results of the 

discretization of ( 2 ) is: 
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is used  in the right hand side of the model ( 7 ). 
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3.  Scaling – ODE case 

 

3.1 Euler method 

During development of the RPEM described in [ 1 ]  -  [ 4 ] , it was noticed that problems with 

convergence to false local minimum points of the criterion were often highly related to the selection of 

the sampling period. The sampling period of course needs to be short enough during measurement, in 

order to capture the essential dynamics of the identified system. Hence the measurement sampling 

period cannot be arbitrarily selected. However, since the sampling period appears explicitly in the 

model ( 5 ) and in the corresponding gradient difference equation, it is straightforward to apply 

identification algorithms based on ( 5 )  with another, scaled value of the sampling period. This idea 

affects the updating of the states, the gradient and any projection algorithm that is used to control the 

stability of the model. A scale factorα  appears before the multiplication with the sampling period TS
 

in those three quantities. To explain the details, the scale factor α  and the scaled sampling period 

TS

Scaled
 are first defined as  

T TS

Scaled

S= α .
 ( 10 ) 

The model ( 5 ), ( 6 ) , as applied in the identification algorithm is then transformed into 
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where the superscript denotes scaled quantities. Note that the original sampling period must be 

retained in all time arguments, so as to refer to the correct measurement times. The gradient follows by 

differentiation of ( 11 ) and ( 12 )  
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Note that the above change from θθθθ  to 
sθθθθ  is not to be treated as a change of variables in the 

differentiation leading to ( 13 ) and ( 14 ). The originally derived gradient is applied, but with a scaled 

sampling period. The last affected quantity of the RPEM algorithm is the projection algorithm that is 

[1] 
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}1 − δ , δ > 0  ( 16 ) 
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In ( 15 ),  denotes the linearized system matrix of the model, denotes the model set, here 

defined as the asymptotically stable models with a margin  to the stability limit. The last equation 

stops the updating of the parameter vector in case the update would result in values outside the model 

set. Other details of an RPEM where the scaling algorithm is used can be found in [ 1 ] – [ 4 ] . 

 

3.2 Midpoint method 

The scaling of the sampling parallels the previous section, where the sampling ST is scaled according 

to ( 7 ). Applying the scaled sampling to the discretized model ( 7 ) – ( 8 ) generates the following 

result: 
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      When a scaled value of the sampling period is applied, the algorithm still attempts to minimize the 

criterion, thereby obtaining other minimizing parameter values than when the true sampling period is 

used. When testing the scaling algorithm experimentally, dramatic improvements were sometimes 

observed in the algorithmic behavior. Convergence speeds could be improved and initial values that 

lead to divergence and instability could be made to work well.  

     The application of the scaling algorithm results in other estimated parameter values than what 

would be obtained without scaling. Fortunately, as shown in [ 2 ] for the algorithm based on Euler 

discretization, the original parameters can be calculated from the estimated ones. The transformation is 

given by a diagonal transformation matrix that is a function of the applied scale factor. The results for 

the algorithm based on midpoint discretization algorithm appear in [ 12 ]. The analysis of the effect of 

the scaling is continued in [ 3, where the effect of the conditioning of the Hessian of the criterion 

function is analyzed in detail. This shows that the effect of the scaling is quite dramatic. Changes of 

the condition number by several orders of magnitude were obtained there, for a simple simulated 

second order example. 

    The scaling can be applied also to the initialization algorithm. There the scaling needs to be applied 

in the linearized system matrix, and in the differentiation step in case the model order is higher than 2. 

 

4.  Software package overview – RPEM ODE case 

The software package is command driven, i.e. no GUI is available. It consists of a number of  

MATLAB scripts and functions. These are described in the next subsection. 

 

4.1 Scripts, functions and command flow 

Roughly, the scripts and functions can be divided into five groups: 
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• Live data measurements. The two scripts of this group set up and perform clocked live data 

measurements. The scripts are SetupLive.m and MeasurementMain.m. 

• Simulated data generation. The four scripts of this group define a dynamic system, that is then 

used for generation of simulated data. The scripts and functions are SetupData.m, f.m, h.m and 

GenerateData.m. 

• Recursive identification. The five scripts of this group perform the actual identification tasks, 

supporting user interaction. The scripts and functions are SetupRPEM.m, RPEM.m, h_m.m, 

dhdx_m.m and ReInitiate.m. 

• Supporting functions - not called by the user. The four functions of this group are called by scripts 

of the previous group. They are all related to the implementation of the RHS model of the 

identified ODE. The scripts are GenerateIndices.m, f_m.m, dfdx_m.m and dfdtheta_m.m. 

• Preparation and display of results. There are eleven scripts in this group. They all prepare, 

compute and display results of the identification process. The scripts are PlotData.m, 

SimulateModelOutput.m, PlotParameters.m, PlotPredictionErrors.m, PlotEigenvalues.m, 

PlotCondition.m, ComputeRPEMLossFunction.m, PlotModelOutput.m, 

PlotSystemAndModelOutput.m, PlotResidualErrors.m and MeanResidualAnalysis.m. 

     These groups of scripts and functions need to be operated in a particular order to make sense. This 

order of execution between scripts and functions is displayed with arrows in Figure 1. A single 

directional arrow indicates that the script/function pointed at may be executed only after the execution 

of the pointing script/function. See Figure 1 for details. 

     There are three major ways to exploit the five groups of scripts and functions. 

1. In case the user has input and output signals available, the first step is to define and run the script 

SetupLive.m. This sets basic parameters like the sampling period. The user can then proceed 

directly to use the groups Recursive Identification and Preparation and display of results. The 

data, which can be simulated or live, should be stored in the (row) matrices u and y . 

2. In case the user is to perform live measurements, all the steps of the Live data measurement group 

should be executed first. The user can then proceed directly to use the groups Recursive 

Identification and Preparation and display of results. 

3. In case the user intends to use simulated data, this data can be generated by execution of the 

scripts and functions of the group Simulated data generation. The user can then proceed directly 

to use the groups Recursive Identification and Preparation and display of results. 
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           Figure 1: MATLAB scripts, functions and their relations in terms of execution order.
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4.2 Restrictions 

The main restrictions of the software are 

• The software is command line driven - no GUI support is implemented. 

• The software does not support true real time operation - there is no real time OS support 

implemented. 

• The software has been tested and run using MATLAB 5.3, MATLAB 6.5, MATLAB 7.0 and 

MATLAB 7.9.. 

  

5.  Data input – RPEM ODE case 

The generation of data begins the section where the actual software is described. Since the user has 

access to all source files, the descriptions below do not describe code related issues and internal 

variables. Only the parts that are required for the use of the software package are covered. When m-

files are reproduced, only the relevant parts are included, the reader should be aware that more 

information can be found in the source code. Note that the setup files are to be treated as templates, the 

user is hence required to modify right hand sides only - no addition or deletion of code should be used 

in the normal use of the package. 

 

5.1 Simulated data 

The generation of simulated data requires that the user  

1.  Modifies the underlying ODE model, as given by f.m and h.m. The function f.m implements the 

RHS of the ODE, using a conventional MATLAB function call. Note that the built in ODE solvers 

of MATLAB are not used. Instead an Euler algorithm is implemented. The reason is that this 

allows the generation of simulated data that can be exactly described by the applied model, should 

this be desired. The function h.m implements the (possibly nonlinear) measurement equation. The 

functions allow for addition of systems noise and measurement noise. 

2.  Provides further input data in the script SetupData.m. The parameters that define the data 

generation are directly written into this script. These parameters define the sampling period, the 

data length, the dimensions of the system, the type and parameters of the input signal, the type and 

parameters of the disturbances, as well as the initial value of the ODE.  

3.  Executes SetupData.m. This loads the necessary parameters into the MATLAB workspace. 

4.  Generates data by execution of GenerateData.m. After the execution of this script, variables with 

sampling instances, input signals and output signals are available in the MATLAB workspace.  

     Example 1: This and the following examples illustrates the use of the software package for 

identification of the system 
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( 25 ) 

This system is also used in [ 3 ] and [ 12 ], to asses effects of scaling. This system can be written in 

state space form as 

 

. 

 

( 26 ) 

Note that the ordering of states is not exactly as defined in the model ( 2 ). This is intentional since 

such situations are common in practical situations. It can be seen that the system is oscillatory with an 

input amplitude depending resonance frequency and damping.  

The relevant parts of the files f.m and h.m become 

f.m 

function [f]=f(t,x,u,w) 

 f(1,1)=x(2,1)*(2+u(1,1))-u(1,1); 

 f(2,1)=-x(1,1)-x(2,1); 

end 

 

h.m 

function [h]=h(t,x,u,e); 

   h=x(2,1)+e(1,1); 

end 

 

     Data is to be generated by simulation using a sampling period of . 10000 input-output 

samples are to be generated. The input signal is to be selected with a uniform distribution in 

amplitude, with a mean of 0, a range  and a clock period 3.0s. The measurement disturbance is 

to be white, zero mean with a standard deviation of 0.1.  

The setup script that performs this task is SetupData.m 

 

% dimensions... 

 

nu=1; % Input signal dimension 

nx_0=2; % State dimension 

ny=1; % Output dimension, normally 1 
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% Input signal related...Type may be selected among: 

% 

% InputType=[ 

%    'PRBS       '; 

%    'Gaussian   '; 

%    'UniformPRBS'; 

%    'SineWave   '; 

%    'Custom     ']; 

    

InputType=[ 

   'UniformPRBS']; 

uAmplitude=[ 

   1.0]; 

uMean=[ 

   0]; 

uFrequency=[ 

   0.1]; 

ClockPeriod=[ 

   30];% Clock period vector in terms of sampling time 

 

% System disturbance related...Type may be selected among: 

% 

% DisturbanceTypeSystem=[ 

%   'WGN     '; 

%   'SineWave'; 

%   'Custom  ']; 

 

DisturbanceTypeSystem=[ 

   'WGN     '; 

   'WGN     ']; 

wSigma=[ 

   0.0; 

   0.0]; % Gaussian system noise standard deviation (discrete time) 

wMean=[ 

   0; 

   0]; 

wSineAmplitude=[ 
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   0; 

   0]; 

wSineFrequency=[ 

   0; 

   0]; 

 

% Measurement disturbance related... Type may be selected among: 

% 

% DisturbanceTypeMeasuremet=[ 

%   'WGN     '; 

%   'SineWave'; 

%   'Custom  ']; 

 

DisturbanceTypeMeasurement=[ 

   'WGN     ']; 

eSigma=0.1; % Gaussian measurement noise standard deviation  

eMean=[ 

   0; 

   0]; 

eSineAmplitude=[ 

   0]; 

eSineFrequency=[ 

   0]; 

 

% sampling time and data length 

 

Ts=0.1; % Sampling time in seconds 

N=10000; % Number of data points 

SamplingInstances=(Ts:Ts:N*Ts); 

 

% ODE related... 

 

x0=[0.5 -1.0]'; % Initial values 

 

      The final step of the data generation is to execute the files SetupData.m and GenerateData.m. 

This is done in the MATLAB command window as follows 
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» SetupData 

» GenerateData 

… 

percentReady = 

   100 

»  

 

5.2 Live data 

The generation of simulated data requires that the user 

1.  Is connected to the system via MATLAB. The connection must be such that commands to control 

DA-converters that generate input signals can be issued from within MATLAB. Similarly, 

commands that read AD-converters that sample output signals must be available from within 

MATLAB. The script MeasurementMain.m probably needs modification in a few parts in order 

to interface correctly to the AD- and DA-converters of the system of the user. 

2.  Generates an  input signal, that is stored in the matrix (row vector in the one-dimensional input 

signal case) . 

3.  Provides further data in the script SetupLive.m. The parameters that define the data generation are 

directly written into this script. These parameters defines the sampling period, the data length and 

the dimensions of the system. 

4.  Executes SetupLive.m. This loads the necessary parameters into the MATLAB workspace. 

5.  Generates data by execution of MeasurementMain.m. After the execution of this file, variables 

with input signals and output signals are available in the MATLAB workspace. This script operates 

as a loop that continuously polls the MATLAB real time clock, waiting for the next sampling 

instance. This means that it may not be possible to use the computer for other tasks during the data 

collection session. The reason for this solution is that it avoids the need for a real time OS 

connection. Note also that the calls to AD- and DA-converters may be different on other systems. 

This script is hence likely to require some modification.    

      Example 2: The setup script file SetupLive.m becomes (empty since simulated data is used here) 

% dimensions...Note that nx is not really relevant,  

% it is however required in the RPEM setup so it is set in this file 

 

nu=[]; % Input signal dimension 

nx=[]; % State dimension 

ny=[]; % Output dimension, normally 1 

 

% sampling time and data length 
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Ts=[]; % Sampling time in seconds 

N=[]; % Number of data points 

SamplingInstances=(Ts:Ts:N*Ts); 

 

      The measurement process is started by typing  

» SetupData 

» GenerateData 

… 

in the MATLAB command window. During the measurement session, the script continuously displays 

the time, the inputs as well as the measured outputs, as commanded to DA-converters and read by AD-

converters. After termination all data that is needed for identification is available in the MATLAB 

workspace. 

 

5.3 Display of data 

After execution of either one of the chain of actions of section 5.1 or section 5.2, data can be plotted.  

1.  The PlotData.m script that is executed in the MATLAB command window.  This script makes use 

of the dimensions of the system in order to divide the plot into several sub-windows, and in order 

to provide the axis text. 

 Example 3:  The MATLAB command window command is 

» PlotData 

» 

 The following plot is generated 
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 Figure 2: The result of a PlotData command. 

 

6.  Recursive Identification – RPEM ODE case 

At this point everything is in place for a first identification run. 
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by h_m.m and dhdx_m.m. The function h_m.m implements the output equation of the model. 

Note that this function is allowed to be a nonlinear function of the state and input. The function is 
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system, the initial value used in the ODE model, the gain sequence ( )µ t t , the size of the initial 

value of the R -recursion, the initial value of the measurement covariance matrix ( )ΛΛΛΛ t , the stability 
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3.  Executes SetupRPEM.m. This loads the necessary parameters into the MATLAB workspace. 

      Example 4:  The system is to be identified with a second order model. The projection algorithm is 

to use a stability radius of 0.975 and the scale factor is selected equal to 2. The initial value of the 

measurement covariance matrix is selected equal to 0.1. The initial value of the R - recursion ( its 

inverse affecting the initial algorithmic gain) is selected equal to 100. The selection of the gain 

sequence ( )µ t t is a little more complicated, see [ 1 ]  for details. 

      The functions h_m.m and dhdx_m.m become 

h_m.m 

function [h_m]=h_m(x_m,u); 

   h_m=x_m(1,1); 

end 

 

dhdx_m.m 

function [dhdx_m]=dhdx_m(x,u); 

 dhdx_m=[1 0]; 

end 

  

     The setup script SetupRPEM.m becomes 

nx=2; 

x_m_0=[0.5 -1]'; 

 

% 

% Remaining initial values 

% 

 

muFactor=300; % To stabilize Gamma and to reduce the gain 

if exist('theta_0_new') 

   muFactor=1000; 

end 

mu_0=5; 

mu0=0.9995; 

y_m_0=0; 

initialNoiseVariance=0.1; % Initial value for the prediction error 

variance 

scaleFactorR=100; % the size of the initial diagonal approximation 

of the Hessian 
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% 

% Parameters 

% 

 

stabilityLimit=0.975; % The linearized pole radius used for 

stability checking and projection 

downSampling=10; % The downsampling factor used when data from the 

run is saved 

scalingTs=2; % The scaling factor with which the sampling period is 

multiplied during identification 

 

  

     Finally the user executes SetupRPEM.m in the MATLAB command window 

» setupRPEM 

»  

 

 

6.2 RPEM command window control and estimated parameters 

In order to perform an identification run the user is required to execute and provide input to the script 

RPEM.m. The execution of this script makes use of four additional functions, implementing the 

polynomial model applied for modeling of the RHS of the ODE. These functions are f_m.m, 

dfdx_m.m, dfdtheta_m.m and GenerateIndices.m. The latter function generates the exponents of all 

factors of all terms of the polynomial expansion. The generation of these indices involves nested 

loops. They are therefore calculated in advance and used in repetitive calls in the form of a table.  

     To identify the system, the user is required to 

1.  Execute the script RPEM.m 

2.  Provide the degrees of the polynomial model (polynomialOrders) when prompted. The 

polynomialOrders variable is a column vector with the first element corresponding to the maximal 

degree of x1 , the second element corresponding to the maximal degree of x2  and so on. The last 

element corresponds to the maximum degree of the derivative of highest degree of the last input 

signal component. In the present example, polynomialOrders = [1 2 3]' would mean that the  

highest degree term of the polynomial expansion is θ123 1 2
2 3

x x u .  

3.  Provide a list of indices that are not to be used (notUsedIndices) by the algorithm. The indices 

exclude terms in the polynomial expansions. Providing an empty matrix ([]) indicates that no terms 

shall be excluded. The list of not used indices are to be provided as rows in a matrix , where the 

number of rows equals the number of terms that are to be excluded from the model. In the present 
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example notUsedIndices = [0 0 0; 1 1 1] would mean that the terms θ000 and θ111 1 2x x u  are to be 

excluded from the model. 

4.  Specify the algorithm used as discretization method (method) as a text string. The user can provide 

either the text string ‘Euler’ or ‘midpoint’.  

5.  Provide the initial parameter vector (theta_0). Note that this parameter vector needs to correspond 

to a linearized system with all poles within the stability radius indicated by the script 

SetupRPEM.m. If the initial parameter vector does not meet this criterion the user is prompted for 

theta_0 again. Observe that the scale factor of the sampling period needs to be accounted for - it is 

a part of the linearized model, cf. [ 1 ].  

     Note: A good strategy is to initialize the algorithm with a model that has time constants and a static 

     gain that are similar to those of the system. 

      Example 5: The algorithm is in this example initialized with  

( ) ( )$ . . . . . . . .θθθθ 0 0 0000 10000 10000 0 0000 0 2500 0 0000 0 0000 0 0000= − −
T

. ( 27 ) 

This corresponds to the model 

( ) ( )ϕϕϕϕ x,u u x x u x x u x x x x u
T

= 1 2 2 1 1 1 2 1 2 . ( 28 ) 

       In this example comments and explanations have been added. To distinguish these from the actual 

commands the comments are in italics. The command sequence applied in the MATLAB command 

window is 

» RPEM 

ans = 

Input polynomialOrders and notUsedIndices  - The script asks for the max degrees of states and inputs 

K» polynomialOrders=[1 1 1]' 

polynomialOrders = 

     1 

     1 

     1 

K» notUsedIndices=[]   -  The script asks for terms of the polynomial that are to be excluded 

notUsedIndices = 

     [] 

K» return 

allIndices =        - The script returns the degrees of all included terms, input degrees to the right 

     0     0     0 

     0     0     1 

     0     1     0 

     0     1     1 
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     1     0     0 

     1     0     1 

     1     1     0 

     1     1     1 

ans = 

Input method      - The script asks for a discretization method, possible choices so far ‘Euler’ and 

‘midpoint’ 

K» method = ‘Euler’ 

method = 

        ‘Euler’ 

K» return 

ans = 

Input theta_0     -  The script asks for an initial parameter vector 

K» theta_0=[0 1 -1 0 -0.25 0 0 0]' 

theta_0 = 

         0 

    1.0000 

   -1.0000 

         0 

   -0.2500 

         0 

         0 

         0 

K» return 

LinearizedPoleRadii =      -  The script returns the polr-radii of the linearized, initial model 

    0.9000 

    0.9000 

… 

percentReady =    -   The script displays the fraction of the processing that is completed. 

   100 

ans =       -   The script displays the identified parameters – scaled parameters to the left 

    0.0003    0.0013 

    0.2508    1.0031 

   -0.4946   -0.9893 

   -0.0018   -0.0035 

   -0.4992   -1.9968 

   -0.2512   -1.0050 
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    0.0163    0.0326 

   -0.0174   -0.0347 

»  

The estimated parameters of the left column correspond to the ones obtained directly from the RPEM, 

i.e. these are scaled parameters. The right column contain parameters that are recomputed to 

correspond  to the original sampling period. Note that the exact result depends on the generated input 

signal. This may differ between systems and execution occasions since the seed for the random 

number generator may differ. Hence, slight variations of the estimated parameters are normal. 

 

6.3  Re-initiation, multiple runs and iterative refinement 

The script RPEM.m produces a result for a certain choice of degrees of the right hand polynomial of 

the ODE (if the stability check is not triggered so that the algorithm gets stuck close to the stability 

limit). In case the result is not deemed sufficient, then a higher degree right hand side may be needed. 

The opposite may also be true, i.e. the result is sufficient but the number of parameters used may be 

unnecessarily high. So there is a need to 

• Modify the degrees of the polynomial model of the ODE. 

• Remove specific terms of the polynomial model of the ODE. 

• Rerun the RPEM from the previous end results, with a redefined right hand side polynomial. 

Exactly this is supported by the script reInitiate.m.  

Note: Support for stepping also of the model order would be preferred. Such stepping does however 

have complicated (nonlinear) stability impacts. For this reason the development of such functionality 

is postponed to later versions of the software package. 

      In order to perform a new RPEM run with modified degrees, then user is required to 

1. Run the script reInitiate.m. That script prompts the user for polynomialOrders and 

notUsedIndices. The parameter vector at the end of the run, together with the previous and new 

degrees, are then used to re-initiate all relevant quantities of the RPEM. 

2. Rerun RPEM.m. Note that the RPEM does not need to prompt the user for any further information 

this time. 

     Example 6: In this example the degree of the input signal is increased to 2.  

The MATLAB command window commands become 

» reInitiate 

ans = 

Input polynomialOrders and notUsedIndices 

K» polynomialOrders=[1 1 2]' 

polynomialOrders = 

     1 

     1 
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     2 

K» return 

» RPEM 

… 

The identification is now finalized and everything is set for display of the results. 

 

7.  Display of results – RPEM ODE case 

The display of results is straightforward. By a study of the source code, users should be able to tailor 

available scripts and also write own ones when needed. 

  

7.1 Parameters 

In order to plot the parameters the user is required to 

1.  Execute the script PlotParameters.m. The components of the parameter vector are then plotted as 

a function of time. Note that the time scale is assumed to be seconds. In case another time scale is 

required, the figure needs to be edited after plotting, or the script needs modification.  

     Example 7: The command in the MATLAB command window is 

» PlotParameters 

»  

 The following plot is then generated 

 

               Figure 3: The result of a PlotParameters command. 
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7.2 Prediction errors 

In order to plot the parameters the user is required to 

1.  Execute the script PlotPredictionErrors.m. The prediction errors are then plotted as a function of 

time. Note that the time scale is assumed to be seconds. In case another time scale is required, the 

figure needs to be edited after plotting, or the script needs modification.  

     Example 8: The MATLAB command window command is 

» PlotPredictionErrors 

»  

 The following plot is generated 

 

             Figure 4: The result of a PlotPredictionErrors command. 
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             Figure 5: The result of a PlotEigenvalues command. 
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              Figure 6: The result of a PlotCondition command. 
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1.  Execute the script PlotModelOutput.m. The output signals of the model are then plotted as a 

function of time. Note that the time scale is assumed to be seconds. In case another time scale is 

required, the figure needs to be edited after plotting, or the script needs modification. 

     Example 12: The MATLAB command window command is 

» PlotModelOutput 

»  

 The following plot is generated 

 

 

            Figure 7: The result of a PlotModelOutput command. 
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               Figure 8: The result of a PlotSystemAndModelOutput command. 
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                Figure 9: The result of a PlotResidualErrors command. 
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8.1 RPEM loss function 
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 ( 29 ) 

The user is referred to [ 1 ], [ 6 ]    and the references therein for further details. In order to compute 
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   -1.7094 

»  

Note: Another relevant measure to use is the sum of the squared prediction errors. 

 

8.2 Mean residual analysis 

Mean residual analysis is a method that evaluates the obtained static characteristics of an identified 

model of any kind. It operates by sorting residual errors into bins, the bin being decided by the value 

of the measured output signal with the same time index as the residual error. The mean of the residuals 

are then computed, in each bin, and plotted against the range of the output signal. The number of 

samples of each bin is also plotted. The user is referred to [ 7 ]  for further details. In order to perform 

mean residual analysis, the user is required to 

1.  Execute the script MeanResidualAnalysis.m. 

2.  Provide the intervals used by the method when prompted for intervals. 

     Example 16: This example performs mean residual analysis using about 40 intervals, each with an 

output amplitude width of 0.1. The MATLAB command window command is 

» meanResidualAnalysis 

ans = 

Input intervals for division into bins 

K» intervals=(-2:0.1:2); 

K» return 

»  

 The following plot results 
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           Figure 10: The result of a MeanResidualAnalysis command. 
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The recursive algorithm is then developed exactly as in [1] and [2]. The main difference is that the 

state equation iteration and the corresponding state gradient iteration disappears. The end result is the 

following algorithm where all variables are explained in detail in [1] and  [2] 
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It should be noted that this algorithm collapses to a least-squares case. Hence it will always converge. 

 

10. Software – Static case 

 

All software for identification of nonlinear static systems fits into the framework of Figure 1. As much 

as possible of the software has been kept usable for both the nonlinear dynamic case and the nonlinear 

static case. However, static versions of the following 7 scripts replace or add to the dynamic 

counterparts, in case a static model is identified: dhdthetaStatic_m.m (new m-file), 

GenerateDataStatic.m, hStatic_m.m, RPEMStatic.m, SetupDataStatic.m, SetupRPEMStatic.m 

and SimulateModelOutputstatic.m. These files are now briefly described. 

 

SetupDataStatic.m:  This m-file sets up the parameters needed for static data generation. The file has 

been modified by selection of parameters needed for dynamic data generation consistent with the static 

case. Most variables are however left as dummy variables, so that SetupDataStatic.m does not 

prevent the successful execution of existing scripts later in the data processing chain. 
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GenerateDataStatic.m: This file has been created from GenerateData.m by deletion of the state 

iteration. Note that this script makes use of h.m that must be based only on input signals in the static 

case. The state argument in the call is an empty matrix.  

SetupRPEMStatic.m: This file has been created from SetupRPEM.m by setting the state dimension 

equal to zero, by setting state initial values equal to a 0x1 matrix, and by setting the sampling period 

scale factor scalingTs equal to 1. The latter is important since no scaling shall be applied in the static 

case. 

RPEMStatic.m: This file has been created from RPEM.m by deletion of the parts of the algorithm 

that are not relevant in the static case. This is true for the state variable iteration and the corresponding 

state gradient iteration. The exact details follow by a comparison of the RPEM of [2] with (32) above. 

A further modification is the use of calls to the functions hStatic_m.m and dhdthetaStatic_m.m, in 

order to compute output predictions and gradients. 

hStatic_m.m: This function computes (30) above. It was created by small modifications of f_m.m. 

The order of the output prediction (1) is e.g. included in the function call. 

DhdthetaStatic_m.m: This function generates ϕϕϕϕ  of (31). It was cretaed by small modifications of 

dfdtheta_m.m. The order of the output prediction (1) is e.g. included in the function call. 

SimulateModelOutputStatic.m. This file has been created from SimulateModelOutput.m by 

deletion of the state variable iteration and by a call to the function hStatic_m.m for computation of the 

output prediction. 

 

11.  Kalman filter based initialization algorithm 

 

The Kalman filter based algorithm for initialization of the RPEM (dynamic case) is based on (3) just 

like the RPEM. The recursive algorithm is then developed exactly as in [ 5 ] and [ 6 ]. The end result is 

the following scheme where all variables are explained in detail in [ 5 ] and  [ 6 ] 

Initiate 

)|0(),|0( SS TPTx −−
 

Iterate 

1

2 ))|(()|()( −+−−= RHTttHPHTttPtK
T

S

T

S  

))|()()(()|()|( SmS TttxHtytKTttxttx −−+−=  
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1))(),(,()|())(),(,()|( RtuttFttPtuttFtTtP
T

S +=+ ξξ  

It should be noted that this algorithm is similar to a least squares problem, solved recursively. Hence 

(33) will always converge. The key ides to obtain the algorithm is to replace the estimated states of the 

RPEM by an approximation ( )ξ t , obtained by repeated differentiation of the output signal. Note that 

the scaled sampling period needs to be applied in the preceeding differentiation step, cf. [ 5 ] and [ 6 ]. 

 

12.  Software – Kalman filter based initialization algorithm 

 

To use the Kalman filter based initialization algorithm the following steps are required. Please note, 

that since this algorithm is based on the same model structure as the dynamic RPEM in section 6 some 

of the information is identical. 

 

12.1 Initialization setup 

The preparation for the identification run requires that the user  

1. Modifies the output equation and the corresponding derivative of the underlying ODE model, as 

given by h_m.m and dhdx_m.m. The function h_m.m implements the output equation of the 

model. Note that this function is allowed to be a nonlinear function of the state and input. The 

function is not allowed to be dependent on the estimated parameters, it must be known a priori. 

Note also that the derivative of the function, with respect to the estimated state, needs to be 

supplied in the function dhdx_m.m. 

2.  Provides further input data in the script SetupInit.m. The parameters that define the data 

generation are directly written into this script. These parameters define the dimension of the 

system, the initial value used in the ODE model, the size of the initial value of the P -recursion of 

(33), the magnitude of the covariance matrices for the state and parameter vector system 

disturbances, ( xR ,1  and θ,1R  respectively), the magnitude of the measurement noise covariance, 

2R , the scale factor, as well as the down-sampling period used to avoid too large logs during long 

runs with high degree models. The reader is referred to [ 1 ]  - [ 6 ]  for details on these parameters, 

as well as on their use. 

3.  Executes SetupInit.m. This loads the necessary parameters into the MATLAB workspace. 

      Example 17:  The system used above is to be identified with a second order model, which implies 

that the true parameter and corresponding regressor vectors are 

( )T
00120110 −−−=θ  

( ) ( )ϕϕϕϕ x,u u x x u x x u x x x x u
T

= 1 2 2 1 1 1 2 1 2 . 

( 34 ) 

( 35 ) 
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The scale factor is selected equal to 2. The magnitude of the state and parameter disturbance 

covariance are selected to 0.01 and 0.001 respectively, while the measurement covariance matrix is 

selected equal to 1. The initial value of the P - recursion is selected equal to 0.1. The functions 

h_m.m and dhdx_m.m become 

h_m.m 

function [h_m]=h_m(x_m,u); 

   h_m=x_m(1,1); 

end 

 

dhdx_m.m 

function [dhdx_m]=dhdx_m(x,u); 

 dhdx_m=[1 0]; 

end 

  

     The setup script SetupInit.m becomes 

nx=2; 

x_m_0=[1 0]'; 

 

% 

% Remaining initial values 

% 

 

y_m_0=[x_m_0(1)]; 

scaleFactorP=1e-1; 

 

R1_x=1e-1;       % Scaling factor for state disturbance 

R1_theta=1e-3;   % Scaling factor for parameter vector disturbance 

R2=1e-2;         % Scaling factor for measurement noise 

 

% 

% Parameters 

% 

 

downSampling=10; % The downsampling factor used when data from the 

run is saved 

scalingTs=2; % The scaling factor with which the sampling period is 

multiplied during identification 
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     Finally the user executes SetupInit.m in the MATLAB command window 

» setupInit 

»  

 

 

12.2 Initialization command window control and estimated parameters 

In order to perform an identification run the user is required to execute and provide input to the script 

Init.m. The execution of this script makes use of four additional functions, implementing the 

polynomial model applied for modeling of the RHS of the ODE. These functions are F_m.m, 

dfdx_m.m, differentiateY.m and GenerateIndices.m. The latter function generates the exponents of 

all factors of all terms of the polynomial expansion. The generation of these indices involves nested 

loops. They are therefore calculated in advance and used in repetitive calls in the form of a table.  

     To identify the system, the user is required to 

1.   Execute the script Init.m 

2. Provide the degrees of the polynomial model (polynomialOrders) when prompted. The 

polynomialOrders variable is a column vector with the first element corresponding to the maximal 

degree of , the second element corresponding to the maximal degree of  and so on. The last 

element corresponds to the maximum degree of the derivative of highest degree of the last input signal 

component. In the present example, polynomialOrders = [1 2 3]' would mean that the  highest degree 

term of the polynomial expansion is . 

3.  Provide a list of indices that are not to be used (notUsedIndices) by the algorithm. The indices 

exclude terms in the polynomial expansions. Providing an empty matrix ([]) indicates that no terms 

shall be excluded. The list of not used indices are to be provided as rows in a matrix , where the 

number of rows equals the number of terms that are to be excluded from the model. In the present 

example notUsedIndices = [0 0 0; 1 1 1] would mean that the terms and  are to be 

excluded from the model. 

4.  Provide the initial parameter vector (theta_0). Note that unlike in the dynamic RPEM case, this 

parameter vector does not necessarily need to correspond to a linearized system with all poles within 

the unit circle. It is for example perfectly all right to choose theta_0=0. However, when using the 

initialization algorithm in combination with the dynamic RPEM it is important to check that the final 

parameter vector obtained with Init.m corresponds to a linearized model with poles within the 

stability region as described in section 6. If this is not the case it will not be possible to use the 

obtained parameter vector for initializing the RPEM  Observe that the scale factor of the sampling 

period needs to be accounted for - it is a part of the linearized model, cf. [ 1 ].  
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           Example 18: In this example the same system as in Example 17 is studied. The algorithm is in 

this example initialized with  

( ) ( )T
000000000ˆ =θ . (36 ) 

This corresponds to the model 

. (37 ) 

       In this example comments and explanations have been added. To distinguish these from the actual 

commands the comments are in italics. The command sequence applied in the MATLAB command 

window is 

>> Init 

ans = 

Input polynomialOrders and notUsedIndices  - The script asks for the max degrees of states and inputs 

K>> polynomialOrders=[1 1 1]' 

polynomialOrders = 

     1 

     1 

     1 

K>> notUsedIndices=[] 

notUsedIndices = 

     [] 

K>> return 

allIndices = - The script returns the degrees of all included terms, input degrees to the right 

     0     0     0 

     0     0     1 

     0     1     0 

     0     1     1 

     1     0     0 

     1     0     1 

     1     1     0 

     1     1     1 

ans = 

Input theta_0     -  The script asks for an initial parameter vector 

K>> theta_0=zeros(8,1) 

theta_0 = 

     0 

     0 
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     0 

     0 

     0 

     0 

     0 

     0 

K>> return 

… 

percentReady =    -   The script displays the fraction of the processing that is completed. 

   100 

LinearizedPoleRadii= 

   0.9956 

   0.9956 

ans =       -   The script displays the identified parameters – scaled parameters to the left 

    0.0000    0.0000 

    0.2450    0.9798 

   -0.4900   -0.9800 

   -0.0004   -0.0007 

   -0.4900   -1.9600 

   -0.2449   -0.9797 

   -0.0002   -0.0003 

   -0.0006   -0.0012 

»  

The estimated parameters of the left column correspond to the ones obtained directly from the RPEM, 

i.e. these are scaled parameters. The right column contain parameters that are recomputed to 

correspond  to the original sampling period. Note that the exact result depends on the generated input 

signal. This may differ between systems and execution occasions since the seed for the random 

number generator may differ. Hence, slight variations of the estimated parameters are normal. 

 

 

 

12.3  Re-initiation, multiple runs and iterative refinement 

The script Init.m produces initial parameters for the RPEM. To run the RPEM from the end results of 

the initialization algorithm, the function reInitiate.m is required. In order to perform an RPEM run, 

the user is required to 
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1. Run the script reInitiate.m. That script prompts the user for polynomialOrders and 

notUsedIndices. The parameter vector at the end of the run, together with the previous and new 

degrees, are then used to re-initiate all relevant quantities of the RPEM. 

2.  Run the SetupRPEM.m file, as described in section 6. 

3.  Rerun RPEM.m. Note that the RPEM does not need to prompt the user for any further information 

this time. 

Here, reinitiate.m is used in exactly the same way as described in section 6.3. Note, however, that the 

model structure is normally not changed when the initialization algorithm is used in combination with 

the RPEM, as the initial parameters are given for a specific model structure. By changing the model 

structure between the initialization and RPEM algorithms, the benefits of an initialization algorithm 

may be lost or significantly reduced. 

 

13.  Summary 

 

This report describes a software package for identification of nonlinear systems. Future work in this 

field, that result in useful MATLAB routines, will be integrated with the presently available 

functionality. Updated versions of this report will then be made available. 
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