
Koli Calling 2009
9th International Conference on
Computing Education Research

Arnold Pears and Carsten Schulte

Department of Information Technology

Uppsala University

Box 337, SE-751 05 Uppsala, Sweden

Technical report 2010-027
November 2010

ISSN 1404-3203

From the Conference Chairs

This is the proceedings of the 9th Koli Calling International Conference on
Computing Education Research.. Once again the unique atmosphere of the Koli
Nature Park and the unique conference it hosts for Computing Educators each
year has gathered researchers from many corners of the globe for stimulating
discussions and presentations. The 9th conference in the series is again run in
cooperation with ACM SIGCSE and we thank them for their support.

There are many people to thank, and we extend again our sincere thanks
to the support team at the University of Joensuu for logistic support, han-
dling registrations, negotiations with the Koli Hotel and the printing of the
pre-proceedings. We also wish to acknowledge the sponsorship of the Routledge
- Taylor and Francis Group who have contributed to the conference coffers since
2008.

This year Koli Calling received a total of 29 paper and tool submissions to
the conference. After reviewing and due consideration by the programme com-
mittee and conference chairs the final proceedings comprises 6 research papers,
12 discussion papers, 2 tools and 2 posters. We hope you enjoy reading these
contributions and gain inspiration to develop ideas further and innovate in your
teaching and research.

It has been our pleasure to coordinate this conference, and also manage the
reviewing of papers and the production of the programme and the proceedings.
We hope that you also derive enjoyment and inspiration from the fruit of our
labours.

Happy reading.

Arnold Pears and Carsten Schulte
Koli Calling 2009 Conference Chairs

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

1

Table of Contents

Session 1. Research Papers 1

Using Roles of Variables in Algorithm Recognition . 1
Ahmad Taherkhani, Ari Korhonen, Lauri Malmi

Defects in Concurrent Programming Assignments . 11
Jan Lönnberg

A note on code-explaining examination questions . 21
Simon

Session 2. Discussion Papers 1

Praxis-oriented teaching via client-based software projects 31
Malgorzata Mochol, Robert Tolksdorf

Exploiting the Advantages of Continuous Integration in Software
Engineering Learning Projects . 35

Sandro Pedrazzini

Remodelling Information Security Courses by Integrating Project-Based
and Technology-Supported Education . 39

Pino Caballero-Gil, Jorge Ramió-Aguirre

Session 3. Tools

TRAKLA2 . 43
Ari Korhonen, Juha Helminen, Ville Karavirta, Otto Seppälä

Web Eden: support for computing as construction? . 47
Meurig Beynon, Richard Myers, Antony Harfield

Session 4. Discussion Papers 2

Understanding open learning processes in a robotics class 51
Ilkka Jormanainen, Meurig Beynon, Erkki Sutinen

Mental Models of Data: A Pilot Study . 55
Leigh Ann Sudol, Mark Stehlik, Sharon Carver

Quick Introduction to Programming with an Integrated Code Editor,
Automatic Assessment and Visual Debugging Tool - Work in Progress . . . 59

Juha Helminen, Lauri Malmi, Ari Korhonen

Diagnostic Web-based Monitoring in CS1 . 63
Olle Bälter

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

2

Session 5. Research Papers 2

Implementing a Contextualized IT Curriculum: Changes through
Challenges . 67

Matti Tedre, Nicholas Bangu

Communicating with Customers in Student Projects: Experimenting
with Grounded Theory . 76

Ville Isomöttönen, Tommi Kärkkäinen

Recalling Programming Competence . 86
Jens Bennedsen, Michael Caspersen

Session 6. Discussion Papers 3

Implementation of Computer Science in Context - a research perspective
regarding teacher-training . 96

Ira Diethelm, Claudia Hildebrandt, Larissa Krekeler

Levels of Awareness of Professional Ethics used as a Sensitizing Method
in Project-Based Learning . 100

Tero Vartiainen, Ian Stoodley

Visual Program Simulation Exercises . 104
Juha Sorva

Benefits and Arrangements of Bachelor’s Thesis in Information Engineering 108
Teemu Tokola, Kimmo Halunen, Juha Röning

Session 7. Poster

Constructive Alignment: How? . 112
Neena Thota, Richard Whitfield

He[d]uristics - Object-oriented Qualities in Examples for Novices 114
Marie Nordström

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

3

Using Roles of Variables in Algorithm Recognition

Ahmad Taherkhani
∗

Department of Computer
Science and Engineering

Helsinki University of
Technology

P.O. Box 5400, 02015 TKK
Finland

ahmad@cs.hut.fi

Lauri Malmi
Department of Computer
Science and Engineering

Helsinki University of
Technology

P.O. Box 5400, 02015 TKK
Finland

lma@cs.hut.fi

Ari Korhonen
Department of Computer
Science and Engineering

Helsinki University of
Technology

P.O. Box 5400, 02015 TKK
Finland

archie@cs.hut.fi

ABSTRACT
Automatic assessment tools are widely used in programming
education to provide feedback for students on large courses
and to reduce teachers’ grading workload. Current auto-
matic assessment methods typically support analysis of cor-
rect functionality and structure of the target program and
programming style. Additional features supported by some
tools include analysis of the use of specific language struc-
tures and program run time. However, no tools have pro-
vided a method to check what algorithm the student has
used, and give feedback on that.

In this paper, we present a method for automatic al-
gorithm recognition from Java source code. The method
falls under the program comprehension research field. It
combines static analysis of program code including various
statistics of language constructs and analysis of Roles of
Variables in the target program.

We have successfully applied the method in a prototype
for recognition of sorting algorithms although the current
method is still sensitive to changes made to recognizable
algorithm. Based on the promising results, however, we
believe that the method can be further developed into a
valuable addition to the future automatic assessment tools,
which will have significance on programming and algorithms
courses.

Keywords
Static program analysis, algorithm recognition, program com-
prehension, program understanding, sorting algorithms, roles
of variables

1. INTRODUCTION
Algorithms form the basic building blocks of computer

science. They have an important role in programming ed-

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09, October 29-November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$5.00.

ucation after CS1, though the first programming courses
generally introduce some basic algorithms, like linear search
and selection sort. Further courses, CS2 and data struc-
tures, on the other hand, often include many programming
assignments where students are required to implement or
apply specific algorithms to solve problems.

As the first programming courses are often large, many
teachers apply some automatic assessment tools, like Boss[21],
CourseMarker[18] or WebCAT[11] to provide quick feedback
for students, and to reduce their own workload in grading.
For an overview of the field, see the survey by Ala-Mutka[1].
These tools are able to analyze many different aspects of the
target program, such as program correctness, programming
style, program structure, use of specific language constructs,
or even run time efficiency. WebCAT introduced a novel
aspect to the field, as it supports analyzing how well the
program has been tested.

However, none of the existing tools is able to analyze how
the problem has been solved in terms of used algorithms.
It is difficult to automatically check a programming assign-
ment such as “Write a program that sorts an array using
Quicksort that switches to Insertion sort when the sorted
area is less than 10 items“. The final output of the pro-
gram is a sorted array and gives no clue what algorithm has
been used in reality. A simple approach would be to check
some intermediate states, but this is clumsy and unreliable
as students may very well implement the basic algorithm in
slightly different ways, for example, by taking the pivot item
from the left or right end in Quicksort.

This is the starting point of this research. Our aim is to
develop methods that could automatically recognize algo-
rithms from source code. This is a challenging problem in
computer science, which has similarities to some other prob-
lems in the field of Program Comprehension (PC). Despite
the extensive studies and efforts already done, there still
seems to be a lack of an adequate and efficient technique
that is able to tackle our research problem.

In general, PC is to find pieces of source code that can be
identified to be a particular algorithm. By doing this and
viewing them as a whole, we can acquire a partial under-
standing of the meaning of the code. We call this Algorithm
Recognition (AR).

In addition to automatic assessment, there are several
other applications that could apply the methods and tech-
niques developed to solve the AR problem. First, AR can
be used to enable source code optimization, i.e., tuning ex-
isting algorithms or replacing them with more efficient ones.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

1

This is a key problem in developing compilers for parallel
processing machines, that is how to identify algorithms that
can be parallelized, and how to replace them with new par-
allel algorithms that compute the same results. A good
overview of this challenging area is presented by Metzger
and Wen [24]. Second, many businesses and organizations
are faced with the problem of maintaining and developing
large legacy codes with documentation that is insufficient,
outdated or simply non-existent. This maintenance problem
is often addressed with automatic methods and tools that
analyze the source code to extract and present information
about it on some higher level of abstraction. Much of the
previous research in this area has dealt with the recognition
of code structures and dependencies such as automatic gen-
eration of UML diagrams or dependency graphs from source
code. Another problem that has been addressed is code
refactoring by identifying clones in the code, that is, pieces
of code that implement the same thing [4, 22]. For software
maintenance tasks, such information would be very valuable.
It helps understanding both the purpose and structure of the
code, and provides optimization hints for algorithm replace-
ment. Third, Algorithm recognition techniques can also be
used in source to source translations. A widely recognized
and employed technique is program translation via abstrac-
tion and reimplementation [37], which was introduced to
address the weaknesses of the other well-known approach
called source to source translation by transliteration and re-
finement. Finally, it is beneficial to be able to identify clones
from larger student programs as well, because recognizing
and understanding abstractions is a central skill in building
programming competences.

In this paper, we present a new method to recognize algo-
rithms. We describe a prototype that is implemented based
on applying static analysis of program code, including vari-
ous statistics of language constructs and especially roles of
variables. These allow us to distinguish between various
characteristics of different algorithms. The prototype has
been built to distinguish between several common sorting
algorithms, but the technique in general can be applied to
other classes of algorithms, as well. We emphasize here that
the focus of the paper is in the method, not in presenting
extensive results of data analysis using the method. Such
work remains for future work. An early version of this work
has been published in [36].

We start by giving an overview of program comprehension
in Section 2 followed by defining the algorithm recognition
problem in Section 3. In Section 4, we present a survey of
various techniques that have been applied in PC research.
Section 5 includes the description of the new method, and in
Section 6 we explain how it has been applied in recognizing
sorting algorithms. Some initial results are presented. The
paper ends in discussion and some conclusions.

2. PROGRAM COMPREHENSION
Program comprehension (PC), also known as program un-

derstanding, can be described as a collection of activities re-
lated to understanding computer programs, including their
functionalities, structures, implementation styles, as well as
research on human mental models in the understanding pro-
cess. Different activities provide different outcomes: knowl-
edge about what the program does, how different parts of
the program are related and depend on each others, how
the program is implemented, and how it is understood by a

human. Basically these outcomes turn low level information
into higher level such that can be used in different applica-
tions and be further analyzed for different purposes.

In this section, we give an overview of the methods that
can be used to tackle the PC problem. We also present a
classification of different approaches to the problem.

2.1 Methods applied in PC
Methods in the PC field can roughly be divided into two

main categories: dynamic methods and static methods.
Dynamic methods involve executing the program using

some predefined input and examining the output in order to
understand the behavior of the program. As the behaviour
of a program depends on its input, different kinds of inputs
must be used to fully understand the behavior of the pro-
gram. Although the output for a particular input is always
exact, outlining a comprehensive behavior of a program can-
not be guaranteed by using dynamic methods. This follows
from the fact that the input determines which path of the
program will be executed, thus finding a set of inputs that
executes all possible paths is difficult.

Despite the shortcomings, dynamic methods provide an
indispensable way to ensure that a program works correctly
in the intended way. This is perhaps the reason why these
methods are mainly used in automatic assessment of stu-
dents’ work. The correctness of the submissions are tested
by running their programs using some predefined test inputs
and comparing the outputs with the expected values (see for
example [10, 18, 21]). Although the dynamic methods are
not widely adopted in PC, they can play an invaluable com-
plementary role in solving the problem by bringing in the
estimate about the correctness of the code.

Static methods, on the other hand, do not include pro-
gram execution, but are based on the overall examination
of code. In static methods, structure of program is ana-
lyzed in a general manner, that is, in a sense of using all
the possible inputs. Static methods include many different
techniques that can be used depending on the focus of the
study. These techniques include analyzing different features
of the code such as control and data flow, the complexity of
the program in terms of different metrics, and so on. The
thoroughness and comprehensiveness make static methods
suitable for the PC problem. In fact, most of the PC stud-
ies are based on static methods.

2.2 Classification of PC
Based on the objectives and applications, the problem of

PC can be classified into the following three categories.
Understanding functionality : The objective of a consider-

able part of studies in the PC field has been to understand
the functionality of programs, i.e., to understand what the
programs do. The earlier studies in PC were mainly moti-
vated by the need of software developers, testers and main-
tainers to understand code without having to read it, which
is a time-consuming and error-prone task [17, 27]. An au-
tomatic PC tool could be useful in software projects, for
example, in verification and validation tasks.

Analysing structure and style: Another category is study-
ing a program from the structural perspective. PC can be
seen as examination of the source code, for example, to see
how control structures are used and to investigate coding
style. The objectives of these analyses could be to monitor
students’ progress, to ensure that students’ submissions are

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

2

in accordance with teachers’ instructions, and to get a rough
idea about the efficiency of the code. Tools that perform
these kinds of analyses are mostly used in computer science-
related courses at universities and are often integrated into
plagiarism detection systems [12, 31, 32].

Discovering programmers’ mental model : The focus of
these studies is to understand the mental models that repre-
sent programmers’ understanding of programs. By discover-
ing how programmers understand programs, suitable tools
can be developed to support the process of understanding.
Although the ultimate objective is to help programmers and
maintainers in their work, these studies approach PC mainly
from the pedagogical point of view (see for example [35]).

Recognizing and classifying algorithms: PC can also be
viewed as the problem of Algorithm Recognition (AR). Be-
ing able to recognize and classify algorithms implies under-
standing a program. Therefore, finding out what family of
algorithms a given algorithm belongs to or what kind of al-
gorithms it resembles involves PC. The applications of such
AR tools include source code optimization, helping program-
mers and maintainers in their work, examining and grading
students’ submissions, and so on.

3. ALGORITHM RECOGNITION
We define Algorithm Recognition (AR) to be an activity

to outline algorithms from source code. We limit the goal to
analyze the source code automatically to identify pieces of
code that can be matched against a set of known algorithms.
Thus, the aim is to abstract the purpose of the code, and
recognize, for example, those parts that have potential for
improvement. AR problem thus belongs to the PC research
field and can be regarded as a subfield of PC.

There is a close relationship between AR and the activity
of PC that studies the functionality of programs. Recog-
nizing an algorithm enables us to discover its functionality.
Moreover, by understanding the functionality and imple-
mentation pattern of an algorithm, we can determine which
algorithm it is. That is, examining the functionality of a
given sorting algorithm by matching it against the plans in
the knowledge-base system, it can be recognized to be, for
example, the Bubble sort algorithm (see [17]).

The same computational task, such as sorting an array
or finding the minimum spanning tree of a graph, can be
computed using different algorithms. For example, the sort-
ing problem can be solved by using Bubble sort, but also by
QuickSort, MergeSort or Insertion Sort, among many others.
However, the problem of recognizing the applied algorithm
has several complications. First, while essentially being the
same algorithm, Quicksort, as an example, can be imple-
mented in several considerably different ways. Each imple-
mentation, however, matches the same basic idea (partition
of array of values followed by recursive execution of the al-
gorithm for both partitions), but they differ in lower level
details (such as partitioning, pivot item selection method or
use of recursion). Moreover, each of these variants can be
coded in several different ways, for instance, using different
loops, initializations, conditional expressions, and so on.

The exact definition of AR problem that we tackle is the
following:

AR problem Let P be a set of algorithms. Given an
arbitrary source code S written in a programming language,
identify all the implementations of algorithms Ai within S
such that each Ai matches some Pi ∈ P .

Although the aforementioned variation makes AR a diffi-
cult task, there are other complexities that make the prob-
lem even more challenging. In real-world programs, algo-
rithms are not “pure algorithm code” as in textbook exam-
ples. They include calls to other functions, processing of
application data and other activities related to the domain,
which greatly adds complexity to the recognition process.
The implementation may include calls to other methods or
the other functionalities may be inlined within the code.

In terms of computational complexity, AR can be regarded
to be comparable to many undecidable problems. For exam-
ple, it is similar to the problem of deciding the equivalency of
syntactical definitions of programming languages, which is
also known as the equivalency problem of context-free gram-
mars, and is proven undecidable [3]. As will be described in
Section 5, we will approach the problem by converting it into
the problem of examining the characteristics of algorithms.
Furthermore, we will limit the scope of our work to include a
particular group of algorithms. In addition, we are not look-
ing for perfect matching, but aim at developing a method
that provides statistically reasonable matching results.

4. RELATED WORK
Knowledge-based techniques are one of the earliest

techniques adopted to solve the PC problem. These tech-
niques concentrate on discovering the functionality of a pro-
gram and are based on a knowledge base that stores pre-
defined plans. Plans, also known as idioms, clichés, etc.,
are frequently used stereotype schemas and are extracted
from the algorithms that are meant to be recognized by a
knowledge-based PC tool. To understand a program, pro-
gram code is matched against the plans. If there is a match,
then we can say what the program does, since we know what
the matched plans do.

As mentioned previously, there is a close relationship be-
tween AR and understanding the functionality of a program.
Because the latter task is often carried out using knowledge-
based techniques, and since these techniques constitute the
most widely applied methods in the problem, we give a brief
overview of them.

Knowledge-based PC is often referred to as the cognitive
process of program understanding, suggesting that the pro-
cess of understanding a program is about understanding the
goal of that program, i.e., the intention of the programmer.
This intention is achieved using plans, that is, the techniques
used for implementing the intention [33, 28]. In this context,
writing a new program is a process of rewriting the goal of
that program into a set of subgoals using plans as the rules
of the rewriting process. A program can be created by com-
posing simple plans in a complex way. PC can be regarded
as a reverse process: understanding the goal through under-
standing the subgoals using plans. In this reverse process,
single plans that are recognized from the target program are
combined in a hierarchical manner into plans with higher-
level abstraction. The final goal of the target program is
ultimately recognized by continuing this process. Heuristics
and artificial intelligent techniques are often exploited in the
process of concluding the goal of the program.

Algorithms are formed from plans. For example, as Letovsky
and Soloway describe [33], Mergesort can be thought of as
a collection of the following plans: a plan for recursion on a
binary tree, a plan for splitting a sequence into two, a plan
for sorting pairs of numbers, and finally a plan for merg-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

3

ing sorted lists. As this example illustrates, plans are not
to be confused with algorithms or procedures since they are
conceptually different.

Depending on whether the recognition of the program
starts with matching the higher-level or lower-level plans
first, knowledge-based techniques can be further divided bottom-
up, top-down, and hybrid techniques. Most knowledge-based
techniques work bottom-up (see, e.g., [17]), in which we try
to recognize and understand small pieces of code, i.e., basic
plans first. After recognizing the basic plans, we can con-
tinue the process of recognizing and understanding higher-
level plans by connecting the meanings of these already rec-
ognized basic plans and by reasoning what problem the com-
bination of basic plans tries to solve. By continuing this, we
can finally try to conclude what the source code does as a
whole. In top-down techniques, the idea is that by know-
ing the domain of our problem, we can select the right plans
from the library that solve that particular problem and then
compare the source code with these plans. If there is a match
between the source code and library plans, we can answer
the question of what the program does. Since we have to
know the domain, these techniques require the specification
of the problem (see, for example, [19]). Hybrid techniques
(see, e.g., [29]) use both techniques.

Knowledge-based techniques have been criticized for being
able to process only toy programs. For each piece of code to
be understood, there must be a plan in the plan library that
recognizes it. This implies that the more comprehensive a
PC tool is desired to be, the more plans must be added into
the library. But, the more plans there are in the library,
the more costly and inefficient the process of searching and
matching will get. To address these issues of scalability and
inefficiency, various improvements to these techniques have
been suggested including fuzzy reasoning [9].

The idea of applying fuzzy reasoning in PC is that in-
stead of performing the exhaustive and costly task of com-
paring the code to all plans, a set of more promising pieces
of code, i.e., candidate chunks can be selected and the more
detailed matching can be carried out only between these
candidate chunks and the corresponding plans. The process
is as follows. In the beginning, potential chunks are identi-
fied from the source code. Chunks are pieces of code that
can be understood apart from other parts of code, and do
something meaningful independently. For example, a swap
operation can be considered as a chunk. The number of
chunks that can be identified in large programs can obvi-
ously be large. Thus, the number of candidate chunks needs
to be reduced and only the most promising chunks should
be selected for further examination. This is carried out us-
ing some heuristics resulting in a smaller group of chunks,
called candidate chunks [8]. Once the candidate chunks are
found, the system retrieves from the plan library only those
plans that look similar to these chunks. It applies fuzzy
reasoning using distinguishing code characteristics to rank
these plans according to their similarity to the code and se-
lects the highest-ranked plans to be more closely investigated
and compared. Because the more detailed investigation and
comparison includes computationally more expensive oper-
ations, the efficiency comes from the fact that only selected
plans are compared to candidate chunks.

Program similarity evaluation techniques, i.e., pla-
giarism detection techniques are used to determine to what
extent two given programs are the same. The main moti-

vation for these studies and the main application for these
tools have been to prevent students to copy each other’s
works. These techniques focus on the structural analysis
and the style of a program, rather than discovering its func-
tionality. Therefore, they fall into the second class of our
previously presented classification of PC. These techniques
perform many different static analyses on programs includ-
ing structural analysis, control flow analysis and data flow
analysis, among others. This makes them an attractive and
useful method in PC. There are several common character-
istics of source code used in our method and in these tech-
niques including various complexity metrics (see Section 5).
In what follows, we explain these techniques briefly.

Based on how programs are analyzed, these techniques
can be divided into two categories: attribute-counting tech-
niques [12, 31] and structure-based techniques [32]. In attribute-
counting techniques, some distinguishing characteristics of
the subject program code are counted and analyzed to find
the similarity between the two programs, whereas in structure-
based techniques the answer is sought by examining the
structure of the code.

The most common and distinguishing characteristics that
have been used in attribute-counting methods are Halstead’s
metrics [16]. These characteristics are counted from the pro-
gram code, and the result is compared with the correspond-
ing result obtained from the other program code following
the same procedure. Finally, a number indicating the simi-
larity between two programs is derived from the results by
applying some formula, which varies in different works.

The accuracy and reliability of attribute-counting meth-
ods have been criticized claiming that these methods fail to
detect the similar programs that have been modified even
in textual manner. Structure-based methods have been sug-
gested as an improvement, arguing that these methods are
much more tolerant to different modifications imposed by
students to make the program look different [25].

Structure-based methods can be further divided into string
matching based systems and tree matching based systems.
As described in [25], string matching based systems use
different string matching methods, such as Running-Karp-
Rabin and Greedy-String-Tiling (see for example [38]) and
parameterized matching algorithm (see, e.g., [2]).

Similarity evaluation techniques have been studied both
for analyzing natural languages and program code. Detect-
ing similarities in natural language is generally considered
to be more difficult, for example, because of ambiguity and
complexity of natural languages. However, some tools are
capable of detecting similarities between both programs and
natural languages [25].

Reverse engineering techniques are used to under-
stand a system in order to recover its high-level design plans,
create high-level documentation for it, rebuild it, extend
its functionality, fix its faults, enhance its functions and so
forth. By extracting the desired information out of com-
plex systems, reverse engineering techniques provide soft-
ware maintainers a way to understand complex systems,
thus making maintenance tasks easier. Understanding a
program in this sense refer to extracting information about
structure of the program, including control and data flow
and data structures, rather than understanding its function-
ality. Different reports that can be generated by carrying
out these analyses indeed help maintainers to gain a bet-
ter understanding of program enabling them to modify the

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

4

program in a much more efficient way, but do not provide
them with direct and concise information about what the
program does or what algorithm is in question. Reverse en-
gineering techniques have been criticized for the fact that
they are not able to perform the task of PC and deriving
abstract specifications from source code automatically, but
they rather generate documentation that can help humans
to complete these tasks [30].

Since providing abstract specifications and creating doc-
umentation from source code are the main outcomes of re-
verse engineering techniques, these techniques can be re-
garded as analysis methods of system structure rather than
understanding its functionality. Thus their relevance to our
method is not high.

Clone detection techniques: aim at finding clones in
source code. Clone means the duplication of some piece
of a source code, which is either intentionally copied by a
programmer from somewhere else in the same system to be
reused directly or with some small modifications, or is cre-
ated by him without awareness of the existence of the same
code elsewhere in the same system such that solves the same
problem and could have been reused. Clones make the main-
tenance task more difficult and thus, it is important to find
them. The clone detection problem is about searching for
the same or almost the same code in a program and in this
sense it resembles the plagiarism detection problem.

Clone detection techniques are close to our research, as
our purpose is to look for similar patterns of code in the
source. However, there is the following essential difference
between these two: in clone detection, the goal is to find
similar or almost similar pieces of code within a program
or software and therefore, all kinds of identifiers that can
provide any information in this comparison process can be
employed. These identifiers may include comments, rela-
tion between the code and other documents, etc. For ex-
ample, comments may often be cloned along with the piece
of code that programmers copy and paste. Our purpose, on
the other hand, is to identify implementations of some pre-
defined set of algorithms for human inspection that would
support understanding the purpose of the code. We are not
looking for similarities within the program. Thus, we can
not make use of identifiers like comments in the same way.

Traditionally, clone detection techniques are based on struc-
tural analysis, i.e., structural organization, control and data
flow of the source code as well as abstract syntax tree anal-
ysis (see for example [5]). Marcus and Maletic [22] have
introduced a new technique to detect high-level clones in
source code. Their method detects clones by identifying
the implementation of similar high-level concepts. They use
LSI (Latent Semantic Indexing) as an information retrieval
technique to statically analyze the software systems and to
identify semantic similarity (similar words) among the code.
Various files and documentations, as well as comments and
identifiers within the source code can be investigated using
LSI when trying to find the similarity between two programs
and detect clones.

Basit and Jarzabek [4] have designed a tool prototyped
named Clone Miner for detecting clones in a file, simple
clone as they name it, and clones in different files, which
they call structural clones or design-level similarities. Sim-
ple clones are detected in a process where source code is
first tokenized and then similarities in the token sequence
are evaluated. After this, data mining techniques are used

to find structural clones. This is carried out by investigat-
ing the pattern of co-occurring simple clones in different files.
The technique is claimed to be the first one employing data
mining techniques to detect design-level similarities, and be-
ing capable of scaling up to handle big systems.

In addition to the aforementioned techniques, the follow-
ing techniques to understand programs or discover similari-
ties between them have also been presented.

Program understanding based on constraints satisfaction [39,
40], Task oriented program understanding [13], Data-centered
program understanding [20], and Understanding source code
evolution [26].

5. METHOD
Despite the extensive study on PC, much less research

has been carried out in the AR field. We introduce a new
method for AR that is based on static analysis of source
code including various statistics of language. The novelty of
our method is the use of roles of variables in AR.

Our approach in recognizing algorithms is based on ex-
amining various characteristics of them. By computing the
distinguishing characteristics of an algorithm, we can com-
pare these characteristics with those ones collected from al-
ready recognized algorithms and conclude if the algorithm
falls into the same category.

We divide the characteristics of a program into the fol-
lowing two types: numerical characteristics and descriptive
characteristics. Numerical characteristics are those that can
be expressed as positive integers, whereas descriptive char-
acteristics describe some properties of the algorithm in ques-
tion and are not expressed as numbers. Table 1 shows the
numerical characteristics used in our method. The abbre-
viations in the table are used to refer to the corresponding
characteristic in Table 3, which is explained in Section 6.
The four last characteristics in Table 1, that is N1, N2, n1,
n2, N and n are the Halstead metrics [16], that are widely
used in program similarity evaluation techniques.

In addition to these numerical characteristics, the follow-
ing characteristics in connection with these characteristics
are computed as well:

• Variable dependencies: direct and indirect dependen-
cies between each variable that appears in the algo-
rithm to all other variables. If variable X gets its value
directly from variable Y, then X is said to be directly
dependent on Y. If there is a third variable Z on which
Y is dependent (either directly or indirectly), then X is
indirectly dependent on Z. A variable may have both
a direct and an indirect dependency on another one.

• Incrementing/decrementing loops: A loop can be de-
termined as being incrementing or decrementing by
examining how the value of its loop counter changes.
If the value of a loop counter increases after each iter-
ation, the loop is said to be an incrementing loop and
if the value decreases after each iteration, the loop is
said to be a decrementing one.

• Nested/non-nested blocks/loops: interconnection be-
tween blocks and loops. Expresses how many nested/non-
nested blocks/loops each block/loop has.

Descriptive characteristics are the following:

• Recursive: whether the algorithm is recursive or not.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

5

Table 1: The numerical characteristics used in the method
Abbreviation Numerical characteristic

NoB Number of blocks in an algorithm. A block refers to a sequence of statements wrapped in
curly braces. A block can be a method or a control structure (loops and conditionals).

NoL Number of loops in an algorithm. Supported loops are for loop, while loop and do while loop.
NoV Number of variables in an algorithm.
NAS Number of assignment statements in an algorithm.
LoC Lines of code.
MCC McCabe complexity, i.e., cyclomatic complexity [23].
N1 Total number of operators in an algorithm.
N2 Total number of operands in an algorithm.
n1 Number of unique operators in an algorithm.
n2 Number of unique operands in an algorithm.
N Program length (N = N1 + N2).
n Program vocabulary (n = n1 + n2).

• In-place: whether the algorithm requires extra mem-
ory, e.g., whether it needs auxiliary arrays to carry out
the task (used for identifying sorting algorithms)

• Roles of variables: what is the role of each variable in
the algorithm? This will be explained in more detail
in the next subsection.

Using the numerical characteristics, each algorithm can be
represented as an n-dimensional feature vector, where n is
the number of the numerical characteristics. Algorithms are
recognized by identifying their position in the vector space
which consists of the set of the algorithms that are supported
by the Analyzer (the implemented tool that performs the
recognition task based on the method), i.e., the algorithms
that exist in the knowledge-base of the Analyzer. Thus, the
task of algorithm recognition can be converted to the task of
pattern recognition, that is, identifying vectors. In the next
steps, a more detailed and accurate process of recognition
is carried out by examining the other characteristics related
to the numerical characteristics, as well as by investigating
the descriptive characteristics.

The recognition process is based on calculating the fre-
quency of occurrences of the numerical characteristics in
an algorithm on one hand, and investigating the descriptive
characteristics of the algorithm on the other hand. Based on
these a decision tree is built to guide the recognition process.

The first phase of setting up the Analyzer is training.
Many different versions of the implementation of algorithms
that are to be recognized by the Analyzer are analyzed with
regard to the aforementioned characteristics and the results
are stored in the database. Thereafter the Analyzer has the
following information about each algorithm: the type of the
algorithm, the descriptive characteristics of the algorithm
and the range of values each numerical characteristic can
have (within the teaching material). Now, when the Ana-
lyzer encounters a new unknown algorithm, it first counts its
numerical characteristics and analyzes its descriptive charac-
teristics. Then, the Analyzer retrieves the information of al-
ready known algorithms from the database. From this infor-
mation, the minimum and maximum limits of the numerical
characteristics are counted. If the numerical characteristic
values of the unknown algorithm fall into the ranges of cor-
responding minimum and maximum value in the database,
the examination process continues. Otherwise, information

about the numerical characteristic that is outside this range
is given to the user and the algorithm is classified Unknown.
Finally, its information is stored in the database.

Due to efficiency, the information of all algorithms should
not be retrieved from the database, but the number of re-
trieved algorithms should be kept as small as possible. This
should not, however, cause any relevant algorithm to be left
out of the process of matching. Once the unknown algorithm
is verified to be within the permitted range, it is examined
in more details with regard to its descriptive characteristics.
Depending on the results of this examination, the algorithm
is assigned a type if it has those characteristics of the same
type algorithms existing in the database. Alternatively, if
the characteristics of the algorithm cannot be verified as
conforming to those of algorithms from the database, it is
assigned an ”Unknown” type. The information of the algo-
rithm is stored in the database in both cases.

A user can always change the type of an unknown algo-
rithm in the database, if the algorithm can be verified as
a particular type by manual inspection. For example, the
unknown algorithm might be a Quicksort that is labeled
as unknown by the Analyzer because it is longer than the
Quicksort algorithm versions existing in the database due
to a different implementation style. The knowledge of the
Analyzer can be extended in this way. Next time, an algo-
rithm implemented using the same style will be recognized
as a Quicksort.

As mentioned, one novelty of the method is the use of
roles of variables in the process of recognizing algorithms.
In the following, we will present a brief introduction to roles
of variables. For more information on roles see [34].

Roles of variables
The concept of role of variables was first introduced by Sa-
janiemi [34]. The idea behind them is that each variable
used in a program plays a particular role that is related to
the way it is used. Roles of variables are specific patterns
how variables are used in source code and how their val-
ues are updated. For example, a variable that is used for
storing a value in a program for a short period of time can
be assigned a temporary role. As Sajaniemi argues, roles
of variables are part of programming knowledge that have
remained tacit. Experts and experienced programmers have
always been aware of existing variable roles and have used

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

6

them, although the concept has never been articulated. Giv-
ing an explicit meaning to the concept can make it a valuable
tool that can be used in teaching programming to novices,
explaining to them the different ways in which variables can
be used in a program. Moreover, the concept can offer an
effective and unique tool to analyze a program with different
purposes. In this work, we have extended the application of
roles of variables by applying them in the problem of algo-
rithm recognition.

Roles are cognitive concepts, implying that human inspec-
tors may have a different interpretation of a single variable.
However, roles can be analyzed automatically using data
flow analysis and machine learning techniques [7, 15].

From all variables in novice-level procedural programs,
99% can be covered using only nine roles [34]. Currently,
there are 11 roles recognized that cover all variables in novice-
level programs in object-oriented, procedural and functional
programming. These roles are presented in Table 2.

An example
Figure 1 shows a typical implementation of Selection sort
in Java. There are five variables in the algorithm with the
following roles. A loop counter, i.e., a variable of integer
type used to control the iterations of a loop is a typical ex-
ample of a stepper. In the figure, variables i and j have
the stepper roles. Variable min stores the position of the
smallest element found so far from the array and thus, has
the most-wanted holder role. A typical example of the tem-
porary role is a variable used in a swap operation. Variable
temp in the figure demonstrates the temporary role. Finally,
data structure numbers is an array that has the organizer
role.

 // i and j: steppers, min: most-wanted holder

 // temp: temporary, numbers: organizer

 for (int i = 0; i < numbers.length-1; i++){

int min = i;

 for (int j = i+1; j < numbers.length; j++){

 if (numbers[j] < numbers[min]){

 min = j;

}

}

 int temp = numbers[min];

 numbers[min] = numbers[i];

 numbers[i] = temp;

}

Figure 1: An example of stepper, temporary, orga-
nizer and most-wanted holder roles

6. APPLYING THE METHOD ON SORTING
ALGORITHMS

In order to demonstrate the feasibility of our method, we
decided to restrict the scope of the work to sorting algo-
rithms and apply the method to the five sorting algorithms
Quicksort, Mergesort, Insertion sort, Selection sort and Bub-
ble sort. Sorting algorithms were selected because they are
widely used, easy to analyze, there are many different algo-
rithms performing the same task and finally, from the per-
spective of our method, sorting algorithms include both very
similar (like Insertion sort and Bubble sort) and yet differ-
ent algorithms (like Mergesort and Bubble sort). For these
reasons, sorting algorithms seemed to be a good choice to
test how the method works. In this section, we explain the
process of recognizing sorting algorithms.

We manually analyzed many different versions of these
common sorting algorithms. Based on the results of these
analyses, we posited a hypothesis that the information men-
tioned in Section 5 could be used to differentiate differ-
ent sorting algorithms from each other. The problem was
whether new unknown code could be identified reliably enough
by comparing the information gathered from the unknown
code with the information in a database.

As an example of the numerical characteristics, we present
the result of analyzing the numerical characteristics of the
five algorithms in Table 3. We collected an initial data base
containing 51 different versions of the five sorting algorithms
for the analysis. All algorithms were gathered from text-
books and course materials available on the WWW. Some
of the Insertion sort and Quicksort algorithms were from au-
thentic student submissions. For each characteristic in the
table, the first and second number depict, respectively, the
minimum and maximum value found from the different im-
plementations of the corresponding algorithm. As can be
seen from the table, the algorithms fall into two groups with
regard to their numerical characteristics: the small group
consists of Bubble sort, Insertion sort and Selection sort,
and the big group comprises Quicksort and Mergesort.

We developed a prototype Analyzer that can count all
these characteristics automatically. The Analyzer is imple-
mented in Java and the current version is able to process
source code written in Java. It parses the code, counts its
numerical characteristics shown in Table 3 and analyzes all
related characteristics as well as the descriptive character-
istics (see Section 5). These information are stored in a
database consisting of four tables: Algorithm, Block, Vari-
able, and Dependency. A software detecting roles of vari-
ables was also integrated into the Analyzer.

Figure 2 shows a decision tree to determine the type of
the five aforementioned sorting algorithms. The decision
tree was constructed based on the numerical and descrip-
tive characteristics of these algorithms. At the top of the
decision tree, we examine whether the algorithm is a recur-
sive one and continue the investigation based on this. Highly
distinguishing characteristic like this improves the efficiency,
since we do not have to retrieve the information of all algo-
rithms from the database, but only those that are recursive
or that are non-recursive. In the next step, the numeri-
cal characteristics are used to filter out algorithms that are
not within the permitted limits. If a recognizable algorithm
has less or more numerical characteristics than those of the
other recursive/non-recursive algorithms retrieved from the
database, the process of recognition is terminated and an
informative error message is given about the particular char-
acteristic that does not fit within the permitted limits.

As can be seen from Figure 2, the roles of variables play
an important and distinctive role in the process. In the case
of recursive algorithms, Quicksort typically include Tempo-
rary role, since it performs swap operation (where the use
of Temporary role is typical). This is not the case in Merge-
sort. Because merging is performed in Mergesort, there is
no need for a swap operation there. Thus, a Temporary role
does not usually appear in Mergesort.

In the case of the three non-recursive algorithms that
we examined, only Selection sort included a Most-wanted
Holder. Insertion and Bubble sort do not include selection
of a min (or max) element and therefore have no variable
appearing in Most-wanted Holder role (for the definition of

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

7

Table 2: The roles of variables and their descriptions
Role Description

Stepper Assigned to a variable that systematically goes through a succession of values, e.g.,
values stored in an array.

Temporary Variable that holds a value for a short period of time appears in temporary role.
Organizer A data structure holding values that can be rearranged is a typical example of the organizer

role. For example, an array to be sorted in sorting algorithms has an organizer role.
Fixed value A variable has a role of fixed value if it keeps its value throughout the program. The

fixed value role can be thought as a final variable in Java which is immutable once it
has been assigned a value.

Most-wanted holder A variable is said to have a most-wanted holder role if it holds a most desirable value
that is found so far.

Most-recent holder Is given to a variable that holds the latest value from a set of values that is being gone
through. Moreover, a variable that holds the latest input value is a most-recent holder.

One-way flag One-way flag is a role assigned to a variable that can have only two values and once
its value has been changed, it cannot get its previous value back again.

Follower Follower is a role indicating a variable that always gets its value from another variable.
In other words, its new values are determined by the old values of another variable.

Gatherer Variable that collects the values of other variables. A typical example is a variable
that holds the sum of other variables in a loop and as a result, its value is
changed after each execution of the loop.

Container A data structure into which elements can be added or from which elements can be
removed if necessary, has a role of container. For example, all Java data
structures that implement Collection interface.

Walker Can be assigned to a variable that is used for going through or traversing a data structure.

Table 3: The minimum and the maximum of numerical characteristics of five sorting algorithms (see Table 1)
Algorithm NoB NoL NoV NAS LoC MCC N1 N2 n1 n2 N n

Insertion 4/6 2/2 4/5 8/11 13/21 4/6 40/57 47/58 3/6 2/4 87/115 5/10
Selection 5/6 2/2 5/6 10/10 16/25 4/5 47/59 51/57 4/6 2/5 98/116 6/11
Bubble 5/6 2/2 4/5 8/11 15/21 4/5 46/55 49/57 4/6 2/4 95/112 6/10
Quicksort 5/9 1/3 4/7 6/15 31/41 4/10 84/112 77/98 9/17 2/7 161/210 11/24
Mergesort 7/9 2/4 6/8 14/22 33/47 6/8 96/144 94/135 11/14 5/9 190/279 16/23

different roles see Table 2). The rest of the decision making
process shown in Figure 2 is self-explanatory.

When testing the method we distinquish the following
cases. True positive indicates a case where the analyzer cor-
rectly recognizes an algorithm that it belongs to the target
set of five sorting algorithms. True negative correspondingly
indicates rejecting an algorithm which is not among the tar-
get set. False positive denotes that a wrong algorithm is
incorrectly recognized as belonging to the target set, and
False negative correspondingly an algorithm belonging to
the set which is not recognized as such.

The Analyzer was tested using various tests designed to
produce true positive and true negative cases, as well as
false positive and false negative cases. For example, when
tested by Shell sort algorithm, the Analyzer correctly gave
the following error message: ”The algorithm seems to be
a non-recursive algorithm that has the following character-
istics out of the permitted limit: program length and the
number of the loops are above the permitted limit”. It is a
correct error message, since the Shell sort code was longer
and had three for loops.

False negative cases are the most common error the An-
alyzer makes. Simply by adding some extra and irrelevant

 Recursive algorithm?

 Yes No

 Numeric characteristics Numeric characteristics

 within permitted limit? within permitted limit?

 Yes No Yes No

 Includes temporary Error Includes most-wanted Error

 role? holder role?

 Yes No Yes No

 In-place? Mergesort Selection sort Outer loop incrementing,

 inner decrementing?

 Yes No Yes No

 Tail recursive? Mergesort

 Inner loop counter initialized Bubble sort

 Yes No to outer loop counter's value?

 Yes No

Quicksort Mergesort

 Insertion sort Bubble sort

Figure 2: Decision tree for determining the type of
a sorting algorithm

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

8

code, for example a swap operation or two, the Analyzer
can be made believe that the algorithm is not the type that
it actually is. These cases, however, result from idiosyn-
cratic code and, as we will discuss in Section 7, our methods
is currently not tolerant to irrelevant changes that are in-
tentionally made to the code, and expects algorithms to be
implemented in a well-established way.

False positive cases are much rare than false negative, be-
cause in order to occur, a false positive case requires that the
recognizable algorithm passes the steps shown in the decision
tree, which cannot happen so often compared to false nega-
tive cases. For example, in order to recognize an algorithm
falsely as a Selection sort, the algorithm has to have the
right amount of numerical characteristics and additionally,
include at least one variable playing Most-wanted Holder.
This is not as likely as a true Selection sort being labelled
as unknown due to reasons like using an extra variable or
failure in producing a correct role (see Section Section 7).

7. DISCUSSION
The Analyzer is a proof-of-concept of the described method,

and we have successfully applied it identifying sorting algo-
rithms from tested sample programs. However, the number
of tests we have performed is still very small, and there re-
main important problems to address.

First, we recognize that the method is statistical by na-
ture, and we cannot claim that it could ever achieve 100%
accuracy in the recognition problem. Rather, the goal is
to minimize the numbers of false positives and negatives.
Above we already concluded that false positives are a smaller
problem, because the descriptive characteristics and roles of
variable give rather detailed and specialized information of
the sample code. It is rare that two arbitrary code segments
have similar characteristics (both descriptive and numerical,
as well as the indicated roles of variables) by chance.

The problem of false negatives is the serious one. Simple
additions of application code within the algorithm code, or
using slightly different structuring of the code easily lead to
the case where the algorithm is not recognized. Therefore,
our next step will be applying techniques from knowledge-
based program comprehension. We need to identify schemas
from the source code and add this to the recognition prob-
lem. This would help to match algorithm schemas and iden-
tify such schemas which belong to application code. The
schema information could be used in building the decision
tree, or it could be used as an additional phase for reconsid-
ering cases labeled Unknown.

Roles of variables turned out to be a very distinctive factor
that can be used to recognize sorting algorithms. However,
they also give rise to the next challenge. Roles of variables
are cognitive concepts, which means that different program-
mers with different background may assign different role to
the same variable [6, 14]. To an automatic role analyzer that
assigns roles to variables, roles are technical concepts, not
cognitive. The challenge rises from making the connection
between cognitive and technical concepts. Therefore, it is
not easy to develop a role analyzer that can detect the roles
with high degree of accuracy (i.e., the roles that are in ac-
cordance with programmer’s perception or mental model of
roles) [14]. However, progress in this field has been made,
and the role analyzer we are currently using [7] gives al-
ready good results, though we are looking for getting access
to even better ones.

The current version of the Analyzer is only capable of
classifying algorithms into the five above-mentioned sorting
algorithms, or label them as Unknown. We need to extend
the Analyzer to other fields of algorithms. This, on the
other hand, is very straightforward hard work, which basi-
cally only includes training the system with new algorithms
and manual analysis of target algorithms to build the more
complex decision tree. In addition, the construction of the
decision tree needs to be automated.

The current system assumes that the algorithms work cor-
rectly. Recognizing incorrect algorithms is out of the scope
of the method. Dynamic analysis methods, such that are ap-
plied in automatic assessment tools, could be used for that.

Our main motivation is to build a tool that could be used
in automatic assessment to provide feedback for students,
and as a part of the grading process for the teacher. Here,
we have yet a rather long way to go.

8. ACKNOWLEDGMENTS
This work was supported by the Academy of Finland un-

der grant number 111396.

9. REFERENCES
[1] K. Ala-Mutka. A survey of automated assessment

approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

[2] B. Baker. On finding duplication and near-duplication
in large software systems. In Second Working
Conference on Reverse Engineering, pages 86–95.
IEEE, 1995.

[3] Y. Bar-Hillel, M. Perles, and E. Shamir. On Formal
Properties of simple Phrase Structure Grammaras.
Zeit. Phonetik, Sprachwiss. Kommunikationsforsch.
14, 1961.

[4] H. A. Basit and S. Jarzabek. Detecting higher-level
similarity patterns in programs. In Proceedings of the
10th European Software Engineering Conference,
pages 156–165. ACM, 2005.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Proceedings of International Conference on
Software Maintenance, pages 368–377, 1998.

[6] M. Ben-Ari and J. Sajaniemi. Roles of variables as
seen by CS educators. SIGCSE Bulletin, 36(3):52–56,
2004.

[7] C. Bishop and C. G. Johnson. Assessing roles of
variables by program analysis. In Proceedings of 5th
Baltic Sea Conference on Computing Education
Research, Koli Calling 2005, 2005.

[8] I. Burnstein, K. Roberson, F. Saner, A. Mirza, and
A. Tubaishat. A role for chunking and fuzzy reasoning
in a program comprehension and debugging tool. In
9th International Conference on Tools with Artificial
Intelligence (ICTAI ’97), pages 102–109. IEEE, 1997.

[9] I. Burnstein and F. Saner. An application of fuzzy
reasoning to support automated program
comprehension. In Proceedings of Seventh
International Workshop on Program Comprehension,
1999., pages 66–73. IEEE, 1999.

[10] S. Edwards. Improving student performance by
evaluating how well students test their own programs.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

9

Journal on Educational Resources in Computing,
3(3):1–24, 2003.

[11] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In OOPSLA
’03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 148–155, New York,
NY, USA, 2003. ACM.

[12] B. S. Elenbogen and N. Seliya. Detecting outsourced
student programming assignments. In Journal of
Computing Sciences in Colleges, pages 50–57. ACM,
2007.

[13] A. Erdem, W. L. Johnson, and S. Marsella. Task
oriented software understanding. In Proceedings of the
13th IEEE International Conference on Automated
Software Engineering, pages 230–239. IEEE, 1998.

[14] P. Gerdt and J. Sajaniemi. An approach to automatic
detection of variable roles in program animation. In
Proceedings of the Third Program Visualization
Workshop (ed. A. Korhonen), Research Report
CS-RR-407, Department of Computer Science,
University of Warwick, UK, pages 86–93, 2004.

[15] P. Gerdt and J. Sajaniemi. A web-based service for
the automatic detection of roles of variables. In
ITICSE ’06: Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 178–182, New York, NY,
USA, 2006. ACM.

[16] M. Halstead. Elements of Software Science. North
Holland, New York. Elsevier, 1977.

[17] M. Harandi and J. Ning. Knowledge-based program
analysis. Software IEEE, 7(4):74–81, January 1990.

[18] C. Higgins, P. Symeonidis, and A. Tsintsifas. The
marking system for CourseMaster. In Proceedings of
the 7th annual conference on Innovation and
Technology in Computer Science Education, pages
46–50. ACM Press, 2002.

[19] W. Johnson and S. E. Proust: Knowledge-based
program understanding. In IEEE Transactions on
Software Engineering, volume SE-11, Issue 3, March
1985, pages 267–275. IEEE, 1984.

[20] J. Joiner, W. Tsai, X. Chen, S. Subramanian, J. Sun,
and H. Gandamaneni. Data-centered program
understanding. In Proceedings of International
Conference on Software Maintenance, pages 272–281.
IEEE, 1994.

[21] M. Joy, N. Griffiths, and R. Boyatt. The BOSS online
submission and assessment system. In ACM Journal
on Educational Resources in Computing, volume 5,
number 3, September 2005. Article 2. ACM, 2005.

[22] A. Marcus and J. I. Maletic. Identification of
high-level concept clones in source code. In 16th IEEE
International Conference on Automated Software
Engineering, pages 107–114. IEEE, 2001.

[23] T. J. McCabe. A complexity measure. In IEEE
Transactions on Software Engineering, volume SE-2,
number 4, December 1976, pages 308–320, 1976.

[24] R. Metzger and Z. Wen. Automatic Algorithm
Recognition and Replacement. The MIT Press, 2000.

[25] M. Mozgovoy. Enhancing Computer-Aided Plagiarism
Detection. Doctoral dissertation, University of
Joensuu, 2007.

[26] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree
matching. In ACM SIGSOFT Software Engineering
Notes, Volume: 30, Issue: 4, July 2005, pages 1–5.
ACM, 2005.

[27] D. Ourston. Program recognition. In IEEE Expert,
volume: 4, Issue: 4, Winter 1989, pages 36–49. IEEE,
1989.

[28] S. Paul, A. Prakash, E. Buss, and J. Henshaw.
Theories and techniques of program understanding. In
Proceedings of the 1991 conference of the Centre for
Advanced Studies on Collaborative research, pages
37–53. IBM Press, 1991.

[29] A. Quilici. A memory-based approach to recognizing
programming plans. In Communications of the ACM,
volume 37 , Issue 5, pages 84–93. ACM, 1994.

[30] A. Quilici. Reverse engineering of legacy systems: a
path toward success. In Proceedings of the 17th
international conference on Software engineering,
pages 333–336. ACM, 1995.

[31] M. J. Rees. Automatic assessment aids for Pascal
programs. SIGPLAN Notices, 17(10):33–42, 1982.

[32] S. S. Robinson and M. L. Soffa. An instructional aid
for student programs. In Proceedings of the eleventh
SIGCSE technical symposium on Computer science
education, pages 118–129. ACM, 1980.

[33] L. S. and S. E. Delocalized plans and program
comprehension. In Software, IEEE, Volume: 3, Issue:
3, pages 41–49. IEEE, 1986.

[34] J. Sajaniemi. An empirical analysis of roles of
variables in novice-level procedural programs. In
Proceedings of IEEE 2002 Symposia on Human
Centric Computing Languages and Environments,
pages 37–39. IEEE Computer Society, 2002.

[35] M.-A. Storey, K. Wongb, and H. Müller. How do
program understanding tools affect how programmers
understand programs? In Science of Computer
Programming 36 (2000), pages 183–207. IEEE, 2000.

[36] A. Taherkhani, L. Malmi, and A. Korhonen.
Algorithm recognition by static analysis and its
application in students’ submissions assessment. In
A. Pears and L. Malmi, editors, Proceedings of Eighth
Koli Calling International Conference on Computing
Education Research (Koli Calling 2008), pages 88–91.
Uppsala University, 2009.

[37] R. C. Waters. Program translation via abstraction and
reimplementation. IEEE Transactions on Software
Engineering, 14:1207–1228, 1988.

[38] M. J. Wise. Yap3: improved detection of similarities
in computer program and other texts. In Proceedings
of the twenty-seventh SIGCSE technical symposium on
Computer science education, pages 130–134. ACM,
1996.

[39] S. Woods and Q. Yang. The program understanding
problem: analysis and a heuristic approach. In 18th
International Conference on Software Engineering
(ICSE’96), pages 6–15. IEEE, 1996.

[40] S. G. Woods and Q. Yang. Constraint-based program
plan recognition in legacy code. In Working Notes of
the Third Workshop on AI and Software Engineering:
Breaking the Toy Mold (AISE-95), 1995.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

10

Defects in Concurrent Programming Assignments

Jan Lönnberg
Aalto University

School of Science and Technology
P.O. Box 15400

FI-00076 Aalto, Finland
jlonnber@cs.hut.fi

ABSTRACT
This article describes a study of the defects in the pro-
grams students have written as solutions for the program-
ming assignments in a concurrent programming course. I
describe the underlying causes of these defects and the ap-
plications in developing teaching, grading and debugging
of this information.

I present the effects of the students’ approaches to con-
structing and testing programs on their work, how teach-
ing can be and has been improved to support the students
in performing these tasks more effectively and how soft-
ware tools can be designed to support the development,
testing and debugging of concurrent programs.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education; D.1.3 [Programming tech-
niques]: Concurrent Programming

Keywords
Concurrent Programming, Defect Cause Analysis

1. INTRODUCTION
An important first step in improving a process is under-

standing where it fails to produce the desired result and
why. Quantitative information is particularly helpful in
this endeavour, as it allows accurate and easy prioritisa-
tion of possible improvements.

Students’ solutions to programming assignments provide
information that can be used to improve several inter-
linked processes. The purpose of an assignment is typic-
ally twofold: to allow students to learn to apply in prac-
tice what they have been taught and to evaluate how well
they have learned. The assignment solutions submitted
by students (submissions) can also be used to evaluate,
indirectly, the teaching the students have received. The
submissions can also be used to improve assignments and
assignment grading processes to make them determine the
students’ skills more effectively and accurately.

Information on the defects introduced by programmers
can be used as a starting point for the development of de-
bugging methodology and tools. Studying programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

assignments in education allows one to get statistically
meaningful data on errors made in a specific task. By con-
trast, in professional development contexts, large numbers
of programmers seldom implement the same specification.

In this article, I will describe the defects found in stu-
dents’ programming assignments in a course on concurrent
programming and their causes, to the extent they can be
deduced. I will then present some conclusions that can
be drawn from these data that are relevant to teachers,
assignment developers and graders.

1.1 Related Work
The work described here can be considered to belong to

two different areas of research: research on defects in pro-
grams and research on students’ problems with program-
ming. The former research field aims to improve quality
of software by understanding why programmers err, while
the latter aims at improving the quality of teaching.

1.1.1 Defects in Software
When studying program defects (discrepancies between

the actual program and the correct one, commonly known
as bugs), and the underlying programming errors (mis-
takes), several approaches can be taken that support dif-
ferent approaches to the overarching goal of improving
software quality.

One approach, used by e.g. Eisenstadt [8] with the goal
of understanding and mitigating difficulties in debugging,
is to concentrate on collecting anecdotal data on bugs that
were hard to fix and the debugging process involved. The
conclusions include types of bugs (such as writing out-
side allocated memory) that are hard to track down and
the methods used by the programmers who tracked them
down (e.g. adding print statements and hand simulation
of execution). Natually, this approach only provides data
on bugs that result in a story the programmer finds inter-
esting enough to remember and share.

Another approach, such as that used by Ko and Myers
[16] to form an understanding of errors in order to improve
error prevention, detection and correction, is to set up an
experiment that is videotaped and analysed in detail. This
approach can be used to get very detailed information on
error causes, especially if the programmers think aloud,
allowing their reasoning to be examined in detail. How-
ever, this requires a lot of time for analysis (40 h for 15
h of observation), making it prohibitively time-consuming
unless one only observes a few students doing a small pro-
ject. Furthermore, observation of this type is often hard
to do in the natural working environment of the students,
which may affect their behaviour.

Defects can be classified in a variety of ways, depending
on the relevant aspects. For example, Eisenstadt [8] and
Grandell et al. [11] form categories based on the observed

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

11

defects; others (such as Spohrer and Soloway [26]) con-
struct a classification based on distinctions they wish to
study, such as whether the defects are caused by miscon-
ceptions about programming language constructs. Defects
can be classified, for example, based on their symptoms
(how and when the defect manifests itself), or on the dif-
ference on the syntactic level between the incorrect code
and the intended correct code. In both cases, a variety
of different category sets have been formed by different
authors.

If sufficiently detailed information is available on the
underlying errors, defects can be classified based on the
underlying error. Errors can be classified, for example, by
the type of cognitive breakdown involved in the error (lack
of knowledge, mistake) (e.g. Ko and Myers [16]) or the part
of the program design that is incorrect (e.g. Spohrer and
Soloway’s goal/plan analysis [26]).

In a software development context, many different types
of information related to bugs are useful, resulting in a
multifaceted classification scheme such as the IEEE stand-
ard classification for software anomalies (deviations from
expectations observed in program operation or document-
ation, including bugs) [15]. In the IEEE classification,
bugs are classified according to a wide range of proper-
ties, such as how and when the defect was detected, the
type of the defect and the error underlying it and the im-
pact of the defect. Beizer’s classification [3] focuses on the
aspect of the program or development task that was in-
correctly developed, such as requirements, data structures
or data processing.

Eisenstadt [8] also classifies by two other aspects that
are interesting from a debugging point of view: why the
bug was hard to track down and how it was tracked down.

1.1.2 Students’ Programming Errors and Miscon-
ceptions

Several studies have been made of students’ errors in
programming assignments (e.g. [11, 26]) and misconcep-
tions about algorithms (e.g. [25]). The goal of these stud-
ies is usually to improve programming education by devel-
oping an understanding of students’ misconceptions and
errors.

The programming assignment studies mentioned above
all use the students’ code as data; either the final versions
submitted by the students [11] or every syntactically cor-
rect version compiled by the students [26]. This code was
then (mostly manually) analysed for defects.

1.2 Applications
As noted in the introduction, information on the types

of defects in students’ programs can be applied both in
developing teaching and grading and in the development
of debugging tools and methodology.

1.2.1 Teaching and Assignments
The results of an assignment can be used to determ-

ine whether students are effectively learning what they
should. In particular, if a large number of students has
problems understanding or applying some relevant know-
ledge, the teaching of this knowledge should be improved.

If students, on the other hand, produce many defects
unrelated to the subject matter they are being taught, the
assignment may be testing the wrong knowledge and skills.
If the defects can be traced to misconceptions about the
assignment or the artificial environment in which it is done
(if it exists), the students may be distracted from learning
relevant matters by difficulties specific to the assignment.
Penalising students for defects that are arguably caused

by a badly-designed assignment rather than any problem
the student may have is hardly just, so it is important to
recognise or eliminate these defects.

1.2.2 Code Reviews and Manual Assessment
An experienced code reviewer can quickly spot common

defects in the programs he reviews, as he knows what to
look for. This applies even more strongly to a grader who
reads many similar programs. Information on common
defects can therefore be very useful to new graders in a
course as a substitute for actual experience (both gen-
eral and assignment-specific). Information on the errors
underlying a defect can be used to guess the error made
even in the absence of explanatory reports or comments.

1.2.3 Verification and Automatic Assessment
One of the simplest and most commonly used ways to

detect defects in a program is to test it and hope that
the defects cause failures (incorrect program behaviour).
However, testing is practically never exhaustive for non-
trivial programs [6] and often gives little indication of the
actual location of the defect, leaving the actual debug-
ging (finding and correcting the defect) to be done essen-
tially manually, with the aid of tools that help examine
program execution and detect common errors [23]. Ex-
haustive model checking is often applied to concurrent
programs, but this requires that the entire system be mod-
elled within the verifier and large amounts of memory and
processing time.

Programming assignments are assessed automatically in
systems such as BOSS [22] or CourseMarker (formerly
CourseMaster) [13] by executing tests on the code to be
assessed and assigning a grade based on the number of
tests that passed [1]. With larger programming assign-
ments, this technique is usually used as a supplement
to manual assessment instead of a substitute [1]. Test-
ing does not work as well with concurrent programs, as
the relative timing of the execution of different operations
can have a critical effect on both the desired and the ac-
tual behaviour of the program. For this reason, manual
assessment (using tests and/or model checking to check
functionality) or requiring students to apply model check-
ing to their own designs before implementation (e.g. [5])
seems to be favoured for assessing “real-life” concurrent
programs. However, automatic assessment has been used
for small and clearly delimited concurrent programming
assignments such as solving the reader-writer problem or
the producer-consumer problem in the SYPROS [12] in-
telligent tutoring system. SYPROS goes beyond mere as-
sessment to providing detailed feedback tailored to each
student while he tries to solve the assignment.

One of the problems with automatic assessment is that
it is hard to design tests that detect all common errors
and distinguish between different types of error without
empirical data on real students’ errors. This research into
error types and frequencies in concurrent programming
assignments is intended to mitigate this problem.

1.2.4 Testing and Debugging Tools and Methods
Current debuggers do not appear to fully make use of

potentially useful visualisation and interaction techniques;
most have very limited visualisations and many provide
only a graphical replacement for the traditional textual
user interface. A lot of visualisation research has been
done that involves exploring new visualisation techniques
based on what the researchers feel would be useful or filling
a niche in a taxonomy rather than studies of the require-
ments of programmers (see e.g. [14]). Most debuggers can

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

12

only show the current state of the program, even though
the cause of a program malfunction usually lies in the past.
Concurrency also makes debugging harder, as concurrent
processes often interact in unexpected ways. These prob-
lems combine to make it hard, even with a debugger, to
find bugs. Only a few debuggers (e.g. RetroVue [7]) are
specifically designed to aid in debugging concurrent pro-
grams, and they do not seem to be widespread.

Having quantitative data on programming errors would
provide a background against which debugging methods
and tools could be developed that address common real-
world problems [21]. One foreseeable problem with us-
ing data from university programming assignments is that
the data do not reflect the skills of professional program-
mers. This can be mitigated by using advanced university
courses.

2. SETTING
This study is centred around the Concurrent Program-

ming course at Helsinki University of Technology1 in Au-
tumns 2005 to 2008. The goal of this course is to teach
students the principles of concurrent programming: syn-
chronisation and communication mechanisms, concurrent
and distributed algorithms and concurrent and distributed
systems. Most students major in Computer Science or a
related subject such as Mobile Computing and have com-
pleted a Bachelor’s degree or a roughly equivalent part of
a Master’s degree.

This paper describes a study of the defects in the pro-
grams students wrote in the three mandatory program-
ming assignments2 of the Concurrent Programming course
at Helsinki University of Technology during the autumns
of 2005, 2007 and 2008. Due to differences in grading,
the autumn 2006 instance of the course has been left out.
All of the assignments were to be done in Java. Students
could choose to do the assignments alone or in pairs; in
both cases, the grading was the same. In 2005, students
were allowed to retry the assignment several times. This
was reduced to one resubmission in 2006. Resubmission
was eliminated completely in 2008; the grading was made
less severe and a test package provided to students to com-
pensate.

Students were required to submit both the actual pro-
gram source code and a brief report outlining how their
solution works with an emphasis on concurrency.

As the students were required to submit their solutions
through a WWW form that compiled their code, all the
submissions were valid Java programs. The last submis-
sion by a student or pair of students before the deadline
was assessed. Only submissions done before the initial
deadline have been examined in this research; late sub-
missions and resubmissions after receiving a failing grade
have been left out.

2.1 Trains
In the first assignment (Trains), the students are given

a simulated train track with two trains and two stations.
The students’ task is to write code that drives these trains
from one station to another by receiving sensor events and
setting the speed of the trains and the direction of the
switches on the track.

2.2 Reactor
1Since 1 January 2010, this is the Aalto University School
of Science and Technology.
2For details, see the course web sites at:
http://www.cs.hut.fi/~jlonnber/T-106.5600.html

The second assignment (Reactor) is about the Reactor
design pattern [24]. The students’ task is to, using the
synchronisation primitives built into the Java language,
implement a dispatcher and demultiplexer that can read
several handles that have blocking read operations at the
same time and sequentially dispatch the events read from
these handles to event handlers. The students then imple-
ment a simple networked Hangman game that uses this
Reactor pattern implementation.

2.3 Tuple Space
In the third assignment (Tuple space), the student im-

plements a simple tuple space [9] containing only blocking
get and put operations on tuples implemented as String

arrays. They are to do this using Java synchronisation
primitives and use this tuple space implementation to con-
struct the message passing part of a distributed chat server.

3. METHODOLOGY
The process applied here consists of three separate phases:

data collection, defect detection and defect classification.
They are described in this section.

3.1 Data Collection
The obvious source of information on defects in stu-

dents’ programs is the programs themselves. Furthermore,
since students’ programming assignments are graded by
checking them for defects, the grading process already in-
corporates much of the necessary defect detection work.

Initial experiments with Java PathFinder [28] in which
the model checker failed to complete verification even of
simplified versions of the programming assignments de-
scribed here, encouraged the use of testing to support our
grading. Hence, the choice was made to assess the pro-
grams manually, essentially by reading the code and the
students’ explanations of it and checking whether it is cor-
rect. Testing was used to find situations that the programs
did not behave correctly in.

This work was done primarily by hand by myself and
assistants working according to specifications I provided
and whose work I checked and, as needed, assisted with.
This classification is explained further in Subsection 3.2.

3.2 Defect Classification
In order to serve the requirements of both teaching and

tool development, I have classified the defects found in
the students’ programs using two separate classifications.
One classification is by the underlying error (to the extent
it can be determined), which helps determine what under-
standing or skill is lacking in the student who introduced
the defect. In the other classification, defects are divided
based on whether the program failures they cause occur
deterministically.

Note that apparently non-functional requirements (such
as using a mechanism that is not available) can be clas-
sified in this way by considering the execution of a call
to a forbidden feature as a failure or by considering the
operation to behave incorrectly. Since such requirements
are typically based on a notional execution environment,
it is natural to use the failure induced by this type of error
in such an environment for classification purposes. This
also makes this classification by failure consistent when
the limitations of a notional environment are artificially
introduced in the real environment, as in our Concurrent
Programming course.

Defects and failures are defined here with respect to
the written assignment specification, as interpreted by the
person assessing the assignment.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

13

http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html
http://www.cs.hut.fi/~jlonnber/T-106.5600.html

3.2.1 Classifying Defects by Error
Errors can be classified by the task the programmer was

performing when he made the error. This allows one to
easily determine the knowledge and skills involved and
provide feedback to the student to help him or her under-
stand his or her error.

Inadequate testing can be considered a separate prob-
lem as it does not introduce defects into the code, although
it (by definition) may prevent defects from being found.

I initially formed this classification by grouping together
defects based on similarities in how they deviate from the
corresponding correct solution; this is conceptually sim-
ilar to the goal/plan analysis of Spohrer and Soloway [26].
However, instead of constructing a full goal/plan tree for
each program (which was found to be very time-consuming
due to the size of the programs involved and not very
useful), only the incorrect parts of the program are con-
sidered. Defects are classified by the incorrect or miss-
ing subgoal or subplan in the most specific correct goal
or plan (assuming top-down development, this means the
students’ errors are assumed to be made as late as is plaus-
ible in the development process). Most defects can be
explained this way as errors in a specific plan or goal.
Similarly, goals are considered equivalent if a plan that
achieves them both is known. Plans are differentiated by
their subgoals. While this greatly decreases the amount of
different errors, this occasionally results in two otherwise
correct plans interfering with each other; these errors are
handled separately, as are cases where the students’ plans
cannot be determined. With some minor refinements and
additional defect classes, this classification was used as a
basis for assessment in 2007 and 2008.

Previously, I performed the analysis of defects [17] us-
ing only the students’ programs and reports as data and
constructed a classification schema based on the assess-
ment criteria of the Concurrent Programming course at
the time and on defect classifications found in the literat-
ure, especially the classification of Eisenstadt [8]. The top
level of classification in that analysis was a division into:

Concurrency errors Misconceptions or design errors re-
lated to concurrency

General programming errors Misconceptions or errors
related to the programming language or non-concurrent
algorithms

Environment errors Errors related to the environment
in which the assignment was performed

Goal misunderstandings Misunderstandings of the re-
quirements of the assignment

Slips Slips or other careless errors

One problem with this classification was that only a
small amount of the students’ errors could be unambigu-
ously placed in one of the above categories; only 23 %,
45 % and 34 % for the respective assignments. This was
because asking students to explain the reasoning behind
their entire solution in a written report did not give enough
information to reconstruct their errors. Another reason
was that some errors can fit into many classes.

Because of this, a phenomenographic analysis was done [19,
20] to provide an understanding of how students under-
stand concurrent programming in order to analyse their
defects meaningfully. The resulting phenomenographic
outcome spaces led to some changes to the classification.
While it would be possible to distinguish between errors

made in designing the solution and implementing it, stu-
dents did not consistently make this distinction [20, Table
3]. For this reason, it is hard in some cases and not very
useful to make this distinction. The distinction between
concurrency and general programming errors is similarly
ignored. One reason is that, in a concurrent programming
assignment, most programming errors are in some way re-
lated to concurrency; the question of where to draw the
line has no clear answer. Another reason is that the phe-
nomenographic study did not show that students make
this distinction. Some did, however, show an awareness
of the difference between deterministic and nondetermin-
istic errors [20, Table 4]. Understanding the requirements
of the assignment can be seen as a source of difficulties
that is great enough to structure one’s work around [20,
Table 3]. Alternative understandings of the goal of an as-
signment, which lead to understanding the requirements
differently, exist [20, Tables 1 and 2].

The distinction between the programming and the as-
signment environments is made in order to determine which
errors are irrelevant in assessing the students’ concurrent
programming knowledge and skill and could be reduced
or eliminated by changing the assignment.

Requirement-related error A programmer can fail to
understand part of a specification correctly or fail to
take it into account properly when designing or im-
plementing his solution. Some understandings of the
goals of a programming task (e.g. seeing a passing
grade as the goal of a programming assignment) can
lead to this. Pointing out the requirement and a fail-
ure in which it is violated should be enough to ex-
plain this type of error to the programmer. Commu-
nicating requirements as tests with a clear pass/fail
indication can help programmers detect these. Elim-
inating this type of error should be a priority when
designing programming assignments.

Programming environment-related error Some mis-
conceptions of the goals of a programming task that
relate to the target environment, such as considering
unbounded memory usage to not be a problem, can
result in this type of errors. Alternatively, there may
be something about the language, API or other as-
pects of the execution environment the programmer
has not understood, in which case explaining the rel-
evant aspect (e.g. by referencing a specification) may
help. Finding problems in students’ knowledge of a
programming environment in general can be helpful
to them, but secondary in many advanced courses
to the actual topic of the course, such as concurrent
programming.

Assignment environment-related error Misconceptions
about the framework provided for a programming as-
signment can also result in errors. These are distin-
guished from errors in the previous category in that
they relate to systems that are only used in this par-
ticular programming assignment. Therefore, these
errors, like the requirement-related errors above, can
be seen as indications of the assignment being con-
fusing instead of lack of any understanding or skill
relevant to concurrent programming in general. This
type of error is avoided if no framework is provided
(as in the Reactor assignment); large amounts of this
error suggest that the framework is confusing and
should be simplified.

Incorrect algorithm or implementation Programmers
may introduce errors when creating or implementing

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

14

an algorithm. These errors vary from creating an al-
gorithm that does not work in all necessary cases to
forgetting to handle a case. Showing a programmer
how his code fails is enough if the error is not due
to insufficient or incorrect knowledge. Since some
students do not make a clear distinction between
creating an algorithm and an implementation, these
errors are grouped together. A programming assign-
ment should allow students to make errors of this
type, as they provide valuable indications of defi-
ciencies in the students’ knowledge or skill.

In each assignment, different subtypes of the aforemen-
tioned errors can be distinguished. They are described
in the following to the extent they merit interest either
by being common, surprising or illustrative of students’
understandings of concurrent programming.

3.2.2 Classifying Defects by Failure
An alternative classification is by the type of failure;

this is relevant for testing and debugging. Some students
showed an awareness of this distinction [20, Table 4].

Deterministic failures occur consistently for a given in-
put (or sequence of stimuli in the case of a reactive
program) and are thus easy to reproduce. This al-
lows traditional debugging, based on repeated execu-
tions, single-stepping and breakpoints and examin-
ing program states, to be used. History-based de-
bugging methods can also be used.

Nondeterministic failures are hard to duplicate; a logging-
based debugging approach is therefore more useful
than traditional debugging, since the failure only
needs to occur once while logging is being done.

Since the debugging technique must be chosen based
on the symptoms and nondeterministic failures may ap-
pear to be deterministic in many tests, it makes sense
to always use techniques appropriate for nondeterministic
failure when debugging concurrent programs.

This classification was done by examining the effect of
each defect class on program execution through testing
and reasoning.

4. RESULTS
In this section, I describe the defects found in the stu-

dents’ programs in terms of the defect classifications de-
scribed in Subsection 3.2. Detailed lists of defects are also
available [18].

4.1 Trains
An interesting aspect of the Trains assignment (described

in Subsection 2.1) is that, since the train simulation com-
bined with the student’s train control code takes no input
from outside, almost all failures are nondeterministic; a
deterministic failure would occur in every possible execu-
tion, making it easy to detect. It is therefore not surpris-
ing that all the deterministic failures are due to misunder-
standings of the requirements. Since the concurrent pro-
gramming aspect of the assignment is easy in comparison
to the other assignments, it is hardly surprising that most
of the students’ errors are related to the simulator and
what they are supposed to do with it. Figure 1 shows, for
the three yearly instances of the course that I have ana-
lysed, the total amount of submitted programs and the
amount of defects found in each class in both the error-
and failure-based classifications.

4.1.1 Requirement-related Errors
The train simulator used in the Trains assignment proved

to have some confusing aspects in its original form used
in 2005. Particularly problematic was that the students’
code could easily access information about the simulated
trains that was not supposed to be available. The trains
could also communicate with each other in ways that stu-
dents were not allowed to use in the assignment, such as
shared variables. This allowed students to avoid much of
the expected semaphore usage. The assignment also re-
quired students to implement the required random delay
at stations themselves, which in many cases was replaced
by a fixed delay. These problems were eliminated in the
2006 version of the assignment by redesigning the sim-
ulator and its API so that the options available to the
student in the simulation environment matched the re-
quirements.

After this, the most common form of requirement-related
error (accounting for almost all of the requirement-related
errors in 2008) is that at least one train uses the second-
ary choice for a track or station platform even when the
primary choice is free, ignoring the requirement to use
the upper platform or shorter track where possible. This
requirement exists to prevent statically allocating one al-
ternative to each train, removing the need for choosing
between alternative tracks. However, it is vague, hard to
test for (our test package does not detect it) and over-
looked by a few students every year.

4.1.2 Programming Environment-related Errors
In three cases in 2005, students had clear misunder-

standings of the Java language or API, such as accident-
ally generating negative random numbers or leaving out
the break statement at the end of a case of a switch and
insisting that the fall-through is a compiler bug. Before
2004, introductory programming was taught at Helsinki
University of Technology using Scheme instead of Java, so
some students may have been unfamiliar with Java.

4.1.3 Assignment Environment-related Errors
The train simulator used in the first assignment proved

to pose problems of its own by introducing issues of train
length, speed and timing that cause problems for stu-
dents unrelated to the learning goals of the assignment
and hence distract the student from the concurrent pro-
gramming the assignment is about. Some of the rules of
the simulation were also not obvious to the students.

By far the most common type of error here was pla-
cing the sensors used to release a track segment too near
a switch, allowing the other train to enter or change the
switch before the first has left. This type of error has de-
creased since 2005, probably because the simulator and its
documentation have been revised for clarity several times.
Other sensor-related issues, ignoring the crossroads at the
top of the track and setting the trains’ speed too low ac-
count for the rest of the errors in this category.

4.1.4 Incorrect Algorithm or Implementation
Almost all the solutions were close enough to being cor-

rect for specific problems to be identifiable. Most of the
errors were found in the train segment reservation code.
Some solutions consisted of subsolutions that did not com-
bine properly or relied on train events happening in a
specific order; there is no indication that the students
considered the possibility that the order could be differ-
ent. Others had more localised problems, such as changing
switches at the wrong time or not at all, using the wrong
semaphore or the right semaphore at the wrong time or

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

15

2005 2007 2008
Submissions 128 60 52
Requirement 53 10 11
Programming 3 0 0
Assignment 70 20 10
Incorrect 28 16 5
Deterministic 39 2 0
Nondeterministic 115 44 26
Total 154 46 26

2005 2007 2008

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Incorrect
algorithm or
implementa-
tion
Assignment
environment-
related error

Programming
environment-
related error

Requirement-
related error

D
e

fe
ct

s/
su

b
m

is
si

o
n

Figure 1: Defects found in Trains assignment

initialising a semaphore to the wrong value; many of these
appear to be implementation slips since a correct solution
is described and similar situations are handled correctly
in the same program. A few unnecessarily complex solu-
tions introduced the possibility of deadlock by ignoring
the possibility of a sequence of semaphore operations be-
ing interleaved with operations made by the other train.

Only a few errors were obvious implementation slips,
such as forgetting a break or else, matching sensors incor-
rectly, parenthesising a logical expression wrong, making
an array one element too small or accidentally duplicating
or commenting out code.

4.2 Reactor
The Reactor design pattern in the second assignment

(see Subsection 2.2) turned out to be hard to understand
for some students; in many cases, the students’ programs
are correct solutions to what they consider to be the prob-
lem. Clarifying the intent and structure of the Reactor
pattern was clearly necessary, so I wrote a simplified ex-
planation of the Reactor pattern for the next year’s course.

The defects found are summarised in Figure 2. The
increase in defects between 2005 and 2007 can be mostly
ascribed to more aspects of the programs being taken into
account in assessment, such as memory use.

4.2.1 Requirement-related Errors
Until students were provided with a test package in

2008, many made changes to the Reactor API or the way
it uses threads to simplify the Reactor or the Hangman
server. These errors account for roughly a third of the
requirement-related errors. Similarly, problems with input
and output formats and the rules of the Hangman game
were common until the test package was introduced.

The most commonly ignored requirement was to ensure
that the Reactor does not buffer an arbitrary amount of
data if it cannot handle events quickly enough. In 2005
and 2006, this was not considered a problem, but in 2007
and 2008 it was found to occur in the majority of submit-
ted solutions. This error by itself accounts for more than
three quarters of the requirements issues found in 2008.
The fact that it remained common in 2008 is probably
due to the fact that the test package did not include a
test case for this scenario.

A few of the submitted Reactor implementations in 2005
submitted all events to all event handlers. It was found
that Schmidt’s pseudo-code for the Reactor implementa-
tion [24] can also be interpreted this way; for the 2006
course, I wrote a simpler explanation of the Reactor pat-
tern that eliminated this ambiguity. A similar ambiguity

involved the amount of events to dispatch for each call
to handleEvents(). Using busy waiting or polling in the
Reactor or Hangman and failure to terminate properly ac-
counts for the remaining cases.

The sharp decrease in deterministic errors in 2008 is
almost entirely due to failures to comply with the specified
APIs and I/O formats (about 80 % of the deterministic
errors) being essentially eliminated by the test package.

4.2.2 Programming Environment-related Errors
In 2005, the console I/O required by the Hangman cli-

ent was by far the most problematic aspect of the pro-
gramming environment. The client was deemed unneces-
sary and removed the next year. Several cases of using a
fixed TCP port number when required to use a free one
as shown in the example code have been found.

Four cases in 2005 were due to misconceptions about
Java.

4.2.3 Incorrect Algorithm or Implementation
Many solutions, especially in 2007, failed to correctly

handle events that were left undispatched after handle re-
moval or received after handle removal; again, there is no
indication that these students considered this sequence of
events. Some failed in other ways to correctly remove
handles from use. The increase in 2007 may be, like
the previous error, due to improved assessment guidelines.
Again, the testing package makes this type of error easier
to detect.

Several different cases were found of incorrect buffer
management algorithms in the Reactor implementation.
In some cases, status variables were set at the wrong time
or not at all. Two circular locking dependencies were
found, which can be seen as two subsolutions conflicting.
In some solutions, the defect involved notifying the wrong
thread or at the wrong time; again, with no indication
that such a possibility had been taken into account. In
some case, messages were overwritten or lost, either due to
possible interleavings not being considered or because the
student did not consider it relevant to handle certain situ-
ations, such as messages appearing faster than they can
be dispatched or before the main loop is entered. Only
a few cases of using collections or variables without the
necessary synchronisation were, however, found, mostly
involving a flag variable or the list of active handlers not
being protected by a synchronized block with no explan-
ation given.

A few obvious implementation slips were found, such
as having the Hangman server and client connected to
different ports, starting the same thread twice, declaring

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

16

2005 2007 2008
Submissions 107 51 40
Requirement 93 112 38
Programming 15 11 1
Incorrect 51 56 17
Deterministic 94 102 8
Nondeterministic 65 77 49
Total 159 179 57

2005 2007 2008

0

0.5

1

1.5

2

2.5

3

3.5

4

Incorrect
algorithm or
implementa-
tion

Assignment
environment-
related error
Programming
environment-
related error

Requirement-
related error

D
e

fe
ct

s/
su

b
m

is
si

o
n

Figure 2: Defects found in Reactor assignment

an array that was one element too small and using a stack
instead of a queue.

4.3 Tuple Space
In the tuple space assignment (described in Subsection 2.3),

the requirements of the assignment were once again prob-
lematic in the 2005 original. However, many of the de-
fects found were clear indications of careless or unskilled
concurrent programming. By this time, the Java program-
ming environment was apparently familiar to the students,
as no clear misunderstandings of the programming envir-
onment were found. The defects found are summarised in
Figure 3.

4.3.1 Requirement-related Errors
As in the first assignment, about half of the requirement-

related errors in 2005 were due to the requirement to pre-
tend that the chat system was running in a distributed en-
vironment. Making the corresponding error in later years
and causing failures in the distributed context was much
less common. There were fewer problems with the divi-
sion between tuple space and chat system than between
Reactor and Hangman. Polling occurred in a few cases in
either the chat system or tuple space.

The most commonly ignored requirement of the chat
system’s functionality was that messages stay in order.
As an example of the variety of other errors of this type,
a few students in 2005 and 2007 allowed their chat sys-
tem to combine messages stored in the log for delivery to
new listeners into one message that looked the same to
the user of the provided GUI, arguing that they could ig-
nore the specification as long as the user experience is the
same. Yet again, the test package seems to help students
understand they have a problem.

The semantics of the tuple space also caused problems.
Most of these errors involved limiting the tuples in some
way, such as considering the first element in a tuple to be
a String used as a key as in the textbook. Some solutions
changed the blocking, matching or copying semantics of
the get operation. One error of note of this type (which
the test package did not detect) is storing references to
tuples in the tuple space rather than copying their con-
tents, which only 2 students in 2007 did, but 10 in 2008.
This suggests that students rely on the test package to
detect errors in conforming to requirements such as these.

Again, most of the decrease in deterministic errors in
2008 can be attributed to the test package helping stu-
dents understand they have misinterpreted the specifica-
tion (more than two thirds of the deterministic errors in
2005 and 2007).

4.3.2 Assignment Environment-related Errors
The GUI provided to the students to make the require-

ments easier to understand sends messages when listen-
ers leave (and, in 2005, when they join) a channel; this
caused some students to require this behaviour for their
implementation to work.

4.3.3 Incorrect Algorithm or Implementation
The tuple space proved to be unproblematic to imple-

ment. Only a few cases of critical sections having the
wrong extent and notify() being used instead of no-

tifyAll() were found. More common was for the tuple
space to match patterns against tuples incorrectly. A few
solutions also corrupted their own data structures while
executing, for various reasons including implementation
slips, understanding returning an object to mean return-
ing its contents and using library classes incorrectly.

Cleaning up after a handle is removed for use appears to
often have problems, as does ensuring memory use stays
within reasonable limits. Similarly, getting rid of unused
tuples is a difficult area, accounting for roughly a third of
the errors in this category. In some cases (especially those
where no cleaning up is done at all), this could be because
cleanup is not considered by the student to be relevant to
the assignment (i.e. the intended execution environment is
not understood to have limited memory). However, most
of the reports of students with this error suggest an aware-
ness of memory limitations and a choice to use a simple
algorithm that wastes memory rather than a complex one
that conserves it, suggesting this is a compromise to save
time and/or decrease chances of a programming error.

Initialisation proved to be surprisingly problematic, es-
pecially, interestingly enough, the ChatServer constructor
for connecting to an existing chat system, which often did
not replace all the tuples it got. This invariably causes
the system to grind to a halt when the third server node
is connected. Outside this method, forgetting to replace
tuples was uncommon.

The buffer of messages that the chat system has to main-
tain for each channel proved to be problematic, with fail-
ure to handle a full buffer or simultaneous writes, insuf-
ficient locking of the buffer or related sequence numbers
and indices being common in 2005 and 2007. The test
package may account for the decrease in 2008. Circular
locking dependencies, on the other hand, became much
more common in 2008, typically in the form of the lock-
ing for different operations, such as writing messages and
closing listeners, interfering with each other.

5. DISCUSSION

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

17

2005 2007 2008
Submissions 84 49 39
Requirement 93 49 21
Assignment 3 0 0
Incorrect 70 51 36
Deterministic 98 58 28
Nondeterministic 68 42 29
Total 166 100 57

2005 2007 2008

0

0.5

1

1.5

2

2.5

Incorrect
algorithm or
implementa-
tion
Assignment
environment-
related error

Programming
environment-
related error

Requirement-
related error

D
e

fe
ct

s/
su

b
m

is
si

o
n

Figure 3: Defects found in Tuple space assignment

This study suggests several areas in which students have
problematic understandings that lead to incorrect concur-
rent programs. These problematic understandings are re-
lated both to assignment goals and to the concurrent pro-
gramming concepts or development practices that are be-
ing taught.

The quantitative results appear to show dramatic de-
creases in certain types of defect in the students’ pro-
grams as the intended result of certain changes to the
assignments. In particular, providing tests helps students
notice their problems with understanding assignment re-
quirements. It is possible that other changes to the course
(for example, changes to the resubmission policy) or the
participating students (for example, the course no longer
being mandatory except for international master’s stu-
dents) may also have affected the results.

5.1 Understanding Program Execution
The large amount of defects found in students’ programs

that cause failures nondeterministically is not surprising,
since these defects are both hard to find and correct. Test-
ing software that helps make these defects manifest will
help students find such defects by themselves. The results
of the Reactor assignment seem to bear this out. How-
ever, no such dramatic improvement can be seen in the
Tuple space assignment. One plausible reason for this is
that the students were not capable of debugging their pro-
grams despite knowing that they contain bugs. Reasons
cited by students include not understanding the tests and
being unsure whether the tests timed out due to deadlocks
or their code being too slow. The latter can be mitig-
ated by providing debugging tools that can clearly show
pending and previous operations on semaphores, monitors
and tuple spaces, allowing students to determine what the
exact failure is.

Many students introduce defects in their programs that
appear to be caused by misunderstanding or reasoning
incorrectly about concurrent program execution. In par-
ticular, many difficult concurrency bugs the students in-
troduce appear to stem from two different parts of their
programs interacting badly. Students should either be en-
couraged to consider their program as a whole or design it
in such a way that interaction between parts is minimised.
Another common source of bugs is that some possible or-
derings of events have not been taken into account. It may
be helpful to increase the emphasis on designing programs
to avoid unexpected interactions between processes. In
both cases, the bugs can also be found, naturally, during
verification.

Part of the problem is that the runtime behaviour of a
concurrent program, a necessary part of the programmer’s
perspective, is hard to examine or interpret, preventing
students from effectively understanding what their pro-
gram does and reasoning in terms of the relevant concur-
rency model. Another possible problem is that the mod-
els of concurrency used in textbooks such as the one by
Ben-Ari [4] used in the course do not match the concur-
rency model of e.g. Java [10] in all the relevant aspects.
For example, Java allows compilers and multiprocessor ar-
chitectures to reorder operations within a thread as long
as all the operations within this thread produce the same
result. This means that other threads may read combin-
ations of values of variables that are impossible in text-
book concurrency models. To address this, I suggest a
greater emphasis in teaching concurrent programming on
real-world concurrency models than the aforementioned
textbook models. In order to understand how their pro-
grams fail, students should be shown how their programs
really behave so that they can realise that their under-
standing of concurrency is incomplete and correct it.

I suggest that what students need to effectively under-
stand what their concurrent programs do is a tool to gen-
erate execution history visualisations automatically from
a running program that are easy to understand and nav-
igate and provide the information needed by the student
in an easily understandable form. The large amount of
nondeterministically manifesting defects in students’ pro-
grams demonstrates a clear need for debugging tools that
do not rely on repeated execution and stepping as is the
traditional approach. Instead, the information needed for
debugging should be captured for post-mortem examina-
tion from a failing execution when it occurs.

Giving students tools to study memory allocation would
help them understand how their programs use (or misuse)
memory. In its most basic form, this could involve using a
profiler to get information on the maximum memory use of
their program. More detailed visualisations, such as charts
that show memory use over time categorised by where
the memory is allocated, can be used to help students
understand memory use in more detail. Other resource
usage issues, such as use of CPU time or network or disk
capacity, can be addressed using similar visualisations.

5.2 Verification
Students have a wide range of approaches to testing.

Some students used completely unplanned, cursory, test-
ing. Some tried to ‘break’ the system, while others covered
a variety of different cases. Moreover, some students found
they cannot test their program adequately by themselves

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

18

and need help from another person or tool, that testing
in itself is not sufficient or that you have to prove your
program correct by hand. [20, Table 4]

The students’ verification approaches could be improved
by providing testing tools to generate scenarios that are
hard to discover using normal testing procedures and more
explicit and detailed guidance on how to apply different
verification techniques in practice. The assignment itself
could be changed to encourage students to learn and ap-
ply different verification techniques by explicitly requiring
models, as done by Brabrand [5], or by requiring students
to create suitable tests, e.g. using test-driven development.

Adapting programs to a model that can be checked us-
ing a model checker is often hard and error-prone work.
This makes this approach especially impractical for stu-
dents to use in an assignment unless the modelling of
their solution is in itself a goal of the assignment as in
Brabrand’s course above or the assignment is carefully de-
signed to facilitate efficient model checking.

An alternative approach to finding concurrency bugs is
to increase the chance of interleavings that lead to failure.
Stress testing is a well-known approach, and its usefulness
can be further improved by making sure interleavings oc-
cur often and in many places. One straightforward and
realistic approach is to distribute the program’s threads
over multiple processors. Another way to do this is to
automatically and randomly change the thread schedul-
ing to make concurrency failures more likely to occur (e.g.
[27]). This is the approach used by the automated testing
system of our concurrent programming course.

5.3 Communicating Goals
Students may have a different understanding of what

they are trying to achieve than their teachers. Many of
the students in this study wrote programs that were miss-
ing required functionality or implemented this functional-
ity in ways that conflicted with requirements or required
additional limitations on the runtime environment. One
reason we found for this was that students had different
aims in their assignment, seeing it primarily as something
they have to do to get a grade or as an ideal problem in an
ideal context in which simplifying assumptions apply [20,
Table 1]. The students also considered different potential
sources of problems: the hypothetical user of the program
(even when the assignment was specified in terms of the
input and output of methods, not user requirements), un-
derlying systems that could fail, especially network con-
nections in a distributed system, and the programmer (the
student) as a error-prone human [20, Table 2].

These purposes of the programming task and sources
of failure of the students suggest that many of the er-
rors made by students are misunderstandings of what their
program is supposed to do and what situations it is expec-
ted to cope with rather than actual misunderstandings of
concurrent programming itself. It is hard for a student to
discover such problems by himself if all he has to go on is
a specification in natural language that is open for several
different forms of misinterpretation.

In a course that, like our Concurrent Programming course,
has as its goal to teach students software implementation
techniques with an emphasis on reliability and correctness,
it is desirable to have programming assignments with clear
and specific goals. One reason is to guide the students
into applying the techniques that they are expected in the
course to learn to apply. Another reason is that it is hard
to say how correct a program is if it is not clear what it
is supposed to do. Hence, requirements should be self-
contained in the sense that they should be unambiguous

and not require specific knowledge of a (hypothetical) us-
age context or users. The teachers and students can then
focus on issues more relevant to the learning goals of the
course, such as correctness and efficiency. Finally, if the
requirements are specific enough to be expressed as test
cases or some other form that can be checked automatic-
ally, it is much easier to use automation to assist in assess-
ment and in helping students determine whether they are
solving the right problem and whether they are solving
it correctly. All this suggests that teachers should, when
designing programming assignments for implementation-
oriented courses, make assignment goals more explicit and
concrete. Naturally, in courses that are intended to teach
students to determine user requirements or design systems
to meet user requirements, this approach is not applicable;
there is a clear need for students to be able to cope with
vague or unknown requirements.

One important aspect is that the goals should specify
what the student should achieve rather than how, allowing
students to find their own solutions to problems. The
student should be able to see his program clearly fail to
work correctly rather than be told afterwards that he did
something the wrong way or failed to take a usage scenario
into account.

Two different types of measures have been taken on our
Concurrent Programming course to address these issues.
One was to change the environments in which several of
the assignments were done to make limitations more con-
crete, such as actually making the Trains and Tuple space
assignments function as distributed systems (in the form
of separate processes) rather than as threads within one
virtual machine. The other major change was made after
several students each year requested that they be given ac-
cess to the package of tests for the assignments used by the
course staff to support assessment. Giving the students a
test package that clearly states whether their solution ful-
fils the specification’s demands appears to have decreased
the amount of errors even in assignments where students
had easy acccess to tests, such as Trains. Naturally, giv-
ing students pre-written tests can easily eliminate their
motivation for designing their own test cases. Introducing
a test package is similar to introducing automatic assess-
ment and allowing students to resubmit each assignment
many times. Even when unlimited access to automatic as-
sessment has been given, it seem that only a small minor-
ity of students make use of repeated reassessment rather
than trying to correct their mistakes independently [2].

6. CONCLUSIONS
The analysis of defects found in students’ concurrent

programs described in this paper shows that students of-
ten have difficulties understanding requirements and tak-
ing them into account and in noticing defects that lead to
nondeterministic failures. It seems that both issues can be
addressed by providing students with test packages that
show them how their programs fails to meet requirements.
Nondeterministic execution is also difficult for students
and debugging tools based on capturing and visualising
execution histories can help address this.

7. ACKNOWLEDGEMENTS
I’d like to thank the teaching assistants who did much

of the hard work of finding the students’ bugs: Teemu
Kiviniemi, Kari Kähkönen, Sampo Niskanen, Pranav Sharma,
Yang Lu, Ari Sundholm and Pasi Lahti. I’d also like to
thank the people who’ve given me feedback on this work,
in particular Lauri Malmi and the reviewers.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

19

References
[1] K. Ala-Mutka. A survey of automated assessment

approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

[2] K. Ala-Mutka and H.-M. Järvinen. Assessment pro-
cess for programming assignments. Advanced Learn-
ing Technologies, 2004. Proceedings. IEEE Interna-
tional Conference on, pages 181–185, 30 Aug.-1 Sept.
2004. doi: 10.1109/ICALT.2004.1357399.

[3] B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 2 edition, 1990. ISBN
1850328803.

[4] M. Ben-Ari. Principles of Concurrent and Distrib-
uted Programming. Pearson Education, second edi-
tion, 2006.

[5] C. Brabrand. Constructive alignment for teaching
model-based design for concurrency. In Proc. 2nd
Workshop on Teaching Concurrency (TeaConc ’07),
Siedlce, Poland, June 2007.

[6] I. Burnstein. Practical Software Testing. Springer,
2003.

[7] J. Callaway. Visualization of threads in a running
Java program. Master’s thesis, University of Califor-
nia, June 2002.

[8] M. Eisenstadt. My hairiest bug war stories. Com-
munications of the ACM, 40(4):30–37, 1997. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/248448.
248456.

[9] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, Jan. 1985.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. Sun Microsystems, third
edition, 2005.

[11] L. Grandell, M. Peltomäki, and T. Salakoski. High
school programming — a beyond-syntax analysis of
novice programmers’ difficulties. In Proceedings of the
Koli Calling 2005 Conference on Computer Science
Education, pages 17–24, 2005.

[12] C. Herzog. From elementary knowledge schemes to-
wards heuristic expertise — designing an ITS in the
field of parallel programming. In C. Frasson, G. Gau-
thier, and G. I. McCalla, editors, Proceedings of 2nd
International Conference on Intelligent Tutoring Sys-
tems, volume 608 of LNCS, pages 183–190. Springer,
June 1992.

[13] C. Higgins, P. Symeonidis, and A. Tsintsifas. The
marking system for CourseMaster. In Proceedings of
the 7th annual conference on Innovation and Tech-
nology in Computer Science Education, pages 46–
50. ACM Press, 2002. ISBN 1-58113-499-1. doi:
http://doi.acm.org/10.1145/544414.544431.

[14] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko.
A meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing, 13(3):
259–290, June 2002.

[15] IEEE. IEEE standard classification for software an-
omalies. Technical Report Std 1044-1993, IEEE,
1994.

[16] A. J. Ko and B. A. Myers. A framework and meth-
odology for studying the causes of software errors in
programming systems. Journal of Visual Languages
& Computing, 16(1-2):41–84, 2005.

[17] J. Lönnberg. Student errors in concurrent program-
ming assignments. In A. Berglund and M. Wigg-
berg, editors, Proceedings of the 6th Baltic Sea Con-
ference on Computing Education Research, Koli Call-
ing 2006, pages 145–146, Uppsala, Sweden, 2007.
Uppsala University.

[18] J. Lönnberg. Understanding students’ errors in con-
current programming. Licentiate’s thesis, Helsinki
University of Technology, 2009.

[19] J. Lönnberg and A. Berglund. Students’ understand-
ings of concurrent programming. In R. Lister and
Simon, editors, Proceedings of the Seventh Baltic Sea
Conference on Computing Education Research (Koli
Calling 2007), volume 88 of Conferences in Research
and Practice in Information Technology, pages 77–86.
Australian Computer Society, 2008.

[20] J. Lönnberg, A. Berglund, and L. Malmi. How stu-
dents develop concurrent programs. In M. Hamilton
and T. Clear, editors, Proceedings of the Elev-
enth Australasian Computing Education Conference
(ACE2009), volume 95 of Conferences in Research
and Practice in Information Technology, pages 129–
138. Australian Computer Society, 2009.

[21] J. Lönnberg, L. Malmi, and A. Berglund. Helping
students debug concurrent programs. In A. Pears
and L. Malmi, editors, Proceedings of the Eighth Koli
Calling International Conference on Computing Edu-
cation Research (Koli Calling 2008), pages 76–79.
Uppsala University, 2009.

[22] M. Luck and M. Joy. A secure on-line submission
system. Software - Practice and Experience, 29(8):
721–740, 1999.

[23] R. C. Metzger. Debugging by Thinking. Elsevier,
2004.

[24] D. C. Schmidt. Reactor: An object behavioral pat-
tern for concurrent event demultiplexing and dis-
patching. In J. O. Coplien and D. C. Schmidt, edit-
ors, Pattern Languages of Program Design. Addison-
Wesley, 1995.

[25] O. Seppälä, L. Malmi, and A. Korhonen. Observa-
tions on student errors in algorithm simulation ex-
ercises. In Proceedings of the 5th Annual Finnish /
Baltic Sea Conference on Computer Science Educa-
tion, pages 81–86. University of Joensuu, November
2005.

[26] J. C. Spohrer and E. Soloway. Novice mistakes: are
the folk wisdoms correct? Communications of the
ACM, 29(7):624–632, 1986. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/6138.6145.

[27] S. D. Stoller. Testing concurrent Java programs us-
ing randomized scheduling. In Proceedings of Second
Workshop on Runtime Verification (RV), volume
70(4) of Electronic Notes in Theoretical Computer
Science. Elsevier, July 2002.

[28] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated Soft-
ware Engineering Journal, 10(2):203–232, Apr. 2003.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

20

A Note on Code-Explaining Examination Questions
Simon

University of Newcastle
PO Box 128, Ourimbah
NSW 2259 Australia

+61 2 4348 4074

simon@newcastle.edu.au

ABSTRACT
The BRACElet project, which explores aspects of the way
students learn to program, involves questions to assess the
students’ skills in tracing, reading, and writing code. In a recent
examination based on the BRACElet specification, students’
marks were significantly lower on the code-reading questions
than on the other two types. A close examination of the students’
answers leads to the conclusion that a marking scheme for code-
reading questions should be proposed explicitly, and that work is
still required to ensure that students fully understand what sort of
answer will earn them full marks for such a question.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education – Computer Science Education.

General Terms
Measurement, Experimentation, Human Factors.

Keywords
Novice programmers, CS1, tracing, comprehension, SOLO
taxonomy.

1. INTRODUCTION
The McCracken working group of ITiCSE 2001 [7] provided
evidence that students’ inability to program after a first
programming course was, if not universal, at least widespread and
apparently independent of the nature of the institution at which
the students were studying.

The Leeds working group of ITiCSE 2004 followed this up with
an investigation into student programmers’ code-reading skills.
“Even when our principal aim is to teach students to write code,
we require students to learn by reading code. In our classrooms
we typically place code before students, to illustrate general
principles. In so doing, we assume our students can read and
understand those examples. When we exhort students to read the
textbook, we assume that the students will be able to understand
the examples in that book” [3]. In other words, it seems unlikely

that we can claim to be teaching students to write code if they
can’t read and understand it.

The BRACElet project [12] has for some years been exploring
this relationship between student programmers’ skills at reading
code and at writing it. In recent papers [4, 6, 11] the question has
been probed more deeply, with attempts to normalise the
assessment of code tracing, reading, and writing skills, and to
establish whether there is a recognisable hierarchy in the
acquisition of these skills.

1.1 The BRACElet 2009.1 (Wellington)
specification

While the BRACElet project was initially restricted to recognised
project members, a new initiative in early 2009 saw the study
design published [13], with an invitation to non-members to run
their own studies and publish the results independently of the
main project.

According to the study design, the code-reading and code-writing
questions are to be accompanied by a set of basic skills questions,
which typically take the form of code-tracing or desk-checking
questions. These questions should establish whether students can
show a basic knowledge of the programming constructs to be used
in the reading and writing questions. If they cannot, it might be
reasonable to expect that understanding code and writing code
will be beyond them.

The BRACElet 2009.1 (Wellington) specification [13] requires
that students be tested on the following:

• Tracing questions, in which students are expected to trace
through code with specified values. There are to be three
types of tracing question: one non-iterative and non-recursive,
one iterative without control logic within the loop, and one
iterative with control logic within the loop.

• Reading/understanding questions, in which students are
required, for example, to determine the purpose of a piece of
code. These questions must not use the same code as the
tracing questions, or students might use the tracing output to
determine the purpose. They should also have some
uninitialised variables (such as parameters), to make tracing
harder. At least one question must be similar in complexity to
one of the writing questions.

• Writing questions, in which students are to write a piece of
code that satisfies given specifications. At least one of these
questions should be of similar complexity to one of the
tracing questions, and at least one should be of similar
complexity to one of the reading/understanding questions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling ’09, October 29 – November 1, 2009, Koli, Finland.
Copyright 2009 ACM 978-1-60558-952-7/09/11…$5.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

21

A BRACElet paper from the same conference as the Wellington
specification explored a possible finding that students might
actually be learning to write code before they could read it [9].
Unable to find statistical evidence for or against the finding, the
paper left the question open, but it also made in passing the
tantalising observation that “it would (probably!) not be
reasonable to ask students in one question to read and understand
a given piece of code, and in another to write the same piece of
code.”

The exam reported on in this paper has a set of questions based on
the BRACElet 2009.1 (Wellington) specification [13], but also
rises to the challenge of the foregoing observation. It includes the
three tracing questions, as specified. It also includes three
reading/understanding questions meeting the same specifications,
and three writing questions meeting the same specifications. Thus
there are three non-iterative non-recursive piece of code, virtually
but not entirely identical, one in a tracing question, one in a
reading question, and one in a writing question; there are three
similarly related iterative questions without control logic within
their loops; and three similarly related iterative questions with
control logic within their loops. To experienced programmers the
three questions in each set might be effectively identical, but
perhaps they would not appear so to a novice student.

In setting the exam I expected that the better students would see
the correspondence between the questions in each set, and would
thus, for example, be able to answer the code-writing questions by
modifying the code provided in the tracing and reading questions.
But the better students are the ones who would least need to do
that, so perhaps it really was possible, for all intents and purposes,
to “ask students in one question to read and understand a given
piece of code, and in another to write the same piece of code.”

1.2 The role of SOLO in BRACElet
The SOLO taxonomy [1] was introduced to the BRACElet project
in 2006 [5, 14]. SOLO categorises a student’s answer to a
question not according to its correctness but according to its level
of abstraction. A student’s answer can be classified as
• Prestructural: essentially showing no idea of what the

question is about;
• Unistructural: showing some knowledge of one particular

aspect of the question;
• Multistructural: showing understanding of all parts of the

question, but not of how they synthesise into a whole;
• Relational: showing a holistic understanding of the question;
• Extended abstract: going beyond a holistic understanding of

the question to place the answer in some hitherto unspecified
context.

The essential finding of BRACElet papers using the SOLO
taxonomy is that the more abstract a student’s answers to code-
reading questions, the more likely the student is to perform well
on code-writing questions. When asked to explain the purpose of
a piece of code, students who give relational answers tend to be
better programmers than students who give multistructural
answers. In this sense a relational answer to a code-reading
question is a ‘better’ answer than a multistructural, unistructural,
or prestructural one [4, 6].

2. THE COURSE AND THE EXAM
The introductory programming course from which this data is
drawn runs for a single semester of 12 teaching weeks, and its
final assessment item is a three-hour written exam to which
students are not permitted to bring reference materials such as
notes and books. The programming language used in the course is
Visual Basic. The nine questions that were used for this analysis
are presented in Appendix A.

One of BRACElet’s early concerns about code-reading questions
was that students might not understand what was being asked of
them, that they might not understand what type of answer was
being sought, either because the wording of the question was
inherently ambiguous or because students had not had sufficient
exposure to such questions.

With regard to the concern about ambiguity, rather than the early
question wording of “In plain English, explain what the following
code does”, I used the words “Explain what the following code
does. You are not being asked to explain each line of the code;
you are being asked to explain its overall purpose.”

To offset the concern about students’ familiarity with the question
type, the weekly exercises in this course always included a code-
explaining question, generally with the same initial wording that
was to be used on the exam questions.

While it was not possible to collect accurate data on this point,
anecdotal evidence suggests that when doing the weekly exercises
the students almost invariably skipped this question (which was
always the first question in the set). When asked why, they
explained that it was too hard to read and understand code; they
would rather write it.

This offering of the course is at the university’s campus in
Singapore, where the official language is English but other
languages are widely spoken. The course caters both to
Singaporean students and to students from other countries where
English is not the first language. Of the 57 students who
consented to take part in the study, only 10 indicated that they
speak English at home. All of the students are enrolled in a
computing degree; 23% of them are female; and their ages range
from 17 to 34, with a median of 20 and mean of 21.

3. ANSWERS TO THE CODE-READING
QUESTIONS

It was immediately apparent after the marking that students’
marks on the code-reading questions were not as high as their
marks on the code-tracing or code-writing questions. This was
borne out by scatter plots of the students’ marks in the three
sections. Figure 1 shows the students’ percentage marks in each
of the three sections, plotted against their overall marks for the
exam. If the problem had become apparent during the marking,
the marking scheme might have been adjusted to remedy the
problem, at least in part; but these exams were marked by the
lecturer at the overseas campus according to a rubric developed
by the lecturer at the home campus, and the overseas lecturer
followed the rubric faithfully.

While the scatter points of Figure 1 are difficult to interpret
visually, the trend lines appear to support the observation that
students score comparable marks on the code-tracing and code-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

22

writing questions, and lower marks on the code-reading questions.
Paired two-sample t-tests showed that there is no significant
difference between the mean marks of the tracing questions (mean
46%) and the writing questions (mean 49%), but that both differ
significantly from the mean mark of the reading questions (mean
31%), with p<0.01.

Why, then, do students earn lower marks for these questions? If
they can show some understanding of code by tracing its
execution, and can write code, why can they not determine and
explain the purpose of a small code segment?

Any attempt to answer this question must be informed by a close
examination of the code-reading questions themselves – which, as
mentioned earlier, are provided in Appendix A. An underlying
assumption to this approach is that the code-tracing and code-
writing questions are not problematic. This is not guaranteed, but
the assumption appears reasonable on the basis that I have used
both of these question types for many years – they are known and
familiar – while this is my first use in exams of code-explaining
questions, so the lower marks make them a clear target for
investigation.

3.1 Q26: assignment within If within loop
Question 26 asks the students to determine the purpose of a code
segment consisting of an assignment statement within an If
statement within a For loop. After initialisation the loop works
through an array of strings called strTitle, assigning to a variable
strOne any element of the array whose length is greater than that
of strOne. When the loop has finished, strOne will have the value
of the longest title in the array. The purpose of the code is thus to
find the longest title in the array.

I believed this to be the most difficult of the three code-reading
questions. This is partly because of its combination of structures,
but also because in it I had unintentionally used two different
inbuilt Length functions, one to determine the size of an array and
one to determine the length of a string. Nevertheless, it was the
one on which students scored best, although the average mark was
only 1.72 / 5.

An ideal answer to the question is an accurate description of the
code’s purpose at a relational level in the SOLO hierarchy.
Examples (preceded by the code numbers assigned to the students
who wrote them) are

pd015: After the given code statements are executed, strOne
will have the element of the strTitle array whose length is the
largest.
pd042: This is a program to show the longest title available.

Some students came close, but with either a minor flaw…
pd051: Store the longest lenght from the array strTitle to
strOne
(it is the title, not its length, that is stored)

or an unwarranted extension …
pd006: The purpose is to find the longest length of string
inside the title and locate it to the first place.
(several students suggested this, perhaps misled by the
deliberately uninformative variable name strOne)

Some answers were clearly accurate, but expressed in SOLO
multistructural rather than relational terms:

pd020: The program will compare each string that is store in
the array with the variable strOne which contain the string in
index 0 of the array.
If the compare result shows that the length of the string in the
index is greater than the string length store in strOne, then
strOne will be overwrite by the longer length. The
comparision will be done until the program has go through all
the strings store in the array.

An answer of this sort was not awarded a good mark, as the
express intent of the question was to determine whether students
can take the next step beyond desk-checking code to determine
what it achieves. I considered a SOLO relational answer to be a
clear requirement of this and the other code-explaining questions.

However, a SOLO relational answer is not in itself sufficient, as
illustrated by these incorrect relational answers:

pd025: This code displays the titles with the most number of
characters in descending order.
pd026: It is to check which title of a string is longer than the
previous title of a string.

-20%

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80 100

Exam mark

Tracing
Reading
Writing
Linear (Tracing)
Linear (Reading)
Linear (Writing)

Figure 1: Students’ marks in tracing, reading, and writing, plotted against overall exam mark

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

23

pd031: To find out the total of the title.
pd033: It will display the value of strTitle in the reverse
order.
pd034: The purpose of this code is to search for the required
book title. If the index of strTitle is more than the required
length, the book is found.

An incorrect relational answer such as those above can be caused
by a slight error in understanding the code, a complete and utter
guess at its purpose, or anything between. True misunderstanding
is evident only when students attempt to explain their answers,
either in addition to or instead of the expected relational answer.
One student, for example, failed to recognise that parentheses
indicate an array …

pd049: The overall purpose for the code is to compare the
length between One and Title.
If the Title length is greater than One length, the strOne will
be equal to the strTitle multiply with i.
According to the code, i is equal to 1 to strTitle.Length – 1.

Another student appears to think that the assignment symbol
represents equivalence, akin to its meaning in mathematics:

pd056: When the value of i between 1 and strTitle.Length–1,
the value of One and title are always the same while the
length of title more than the length of One.

3.2 Q25: assignment within loop
Question 25 asks the students to determine the purpose of a code
segment consisting of an assignment statement within a For loop.
On each iteration, the loop subtracts an array element dblLoss(i)
from a variable dblBalance. When the loop has finished,
dblBalance will have had each element of the array subtracted
from it. The purpose of the code is thus to compute the new
balance after accounting for all of the losses.

I expected that students would perform better on this question, as
its structure is simpler, lacking the selection within the loop. In
fact their average mark of 1.49 / 5 was somewhat lower than for
question 26.

Examples of fully correct answers to this question are
pd004: The overall purpose of the code is to check what is the
remaining balance after all the losses have been subtracted
from the balance.
pd013: Subtracts the loss amount from the balance amount as
long as there is loss amount still available.
pd006: The overall purpose is to remove index zero of loss
and following decimos. No matter how long that dblLoss
have, it will be totally deducted.
(Like a number of other answers from this offering of the
course, this one requires some compensation for difficulties of
expression in a language that is presumably not the student’s
first.)

There are still answers that are almost right, but this question has
fewer of these:

pd003: the dblbalance will be deducted until the second end
of dblLoss
(Believing, like a number of other students, that looping from
0 to Length–1 omits the last element of the array.)

There were also fewer multistructural answers, answers that
describe the process rather than its purpose:

pd051: The code will loop from i=0 to i=dblLoss.Length–1
everytime it loop the value in dblBalance will be minus by the
value in dblLoss(i) and the result will be store back to the
dblBalance.

There are still wrong relational answers …
pd036: The codes try to sort the number (dblBalance) from
the biggest (highest) number to the smallest number
pd041: The overall purpose of this code is:
Subtracting a balance value from a loss that is incurred based
on the length of the loss given.

and wrong multistructural answers …
pd002: This code here is to mainly calculate the Balance.
According to this balance = balance – loss of (i). Here
dblLoss.Length–1 will be the loss subtracted by 1. So i will be
0 to the value that has been subtracted. After finding out (i),
we can find out the balance.
pd023: Balance value will be reduced by 1 whenever there is
a loss.

However, this question also elicited a number of answers that
were so relational as to leave out information that must be
considered important …

pd011: Calculate how much money left on the balance
Some of these answers add contextual information that cannot be
deduced from the code, putting them into the extended abstract
SOLO category …

pd014: To see whether our company still profits or not.
If the value of dblBalance = positive (+) then we get profits
But if it is negative (–), we loss.
pd031: To find out the account balance. To avoid the
inefficient fund when the loss is greater than the balance.

Also of interest are the answers that appear not to recognise the
loop or the array:

pd016: The code makes the balance deduct from itself
This code is calculate the final balance after deducting the
loss.
pd026: It is to calculate the remaining balance amount by the
difference of the previous balance and the loss made.

These answers appear to be clearly wrong, but there must remain
a shadow of doubt: might it be the case that the student has
understood the code correctly but failed to express its iterative
aspect?

3.3 Q24: somewhat involved If statement
Question 24 asks the students to determine the purpose of a code
segment consisting of an If – Then – ElseIf – Else statement, with
a boolean operator in one of the branches. The statement
determines whether a permit is needed to remove a tree, based on
its health, height, and girth. In more detail, the purpose of the
code is to indicate that a permit is required to remove a tree if it is
free of disease and either more than 3m tall or more than 0.35 in
girth, but that otherwise it can be removed without a permit.

I saw this as the easiest of the three questions. It did not involve
loops or arrays, and could be followed by a single pass through
the code. Yet the average mark for this question was marginally
the lowest of the three, at 1.46 / 5.

It is possible that my expectations for this question were different
from those for questions 25 and 26. Section 3.2 mentions answers

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

24

that are so relational as to leave out information that must be
considered important; yet surely I did just that in the first
paragraph of this section, when I wrote that “the statement
determines whether a permit is needed to remove a tree, based on
its health, height, and girth.” In order to demonstrate an
understanding of the code, an answer must explain how the
determination depends on these factors. Yet such an answer
would appear to be tending away from the relational and towards
the multistructural, thus confounding the express intent of the
question.

Some of the correct relational answers are
pd025: This code performs a check on the attributes of the
tree which fulfil the requirements of removing that tree with
or without a permit.
If the tree is diseased, then it can be removed without a
permit.
If its Height is greater than 3 or the girth of the trunk is
greater than 0.35 then permit is required.
Otherwise no permit is required to remove it.
pd044: The overall purpose of this code is the removal of
trees that are diseased. If the trees are diseased then no permit
is required to remove them. However, if the tree’s height is
greater than 3 or its girth is greater than 0.35, then a permit
would be required to remove the tree otherwise no permit is
required.
(This answer is actually wrong in the relational first sentence,
but correct in the rest, which explains the code to the required
level of detail.)
pd052: It checks which type of tree requires permit to
remove. A tree which is more than the height of 3 or the girth
is more than 0.35 requires permit. Other than this and
diseased tree, no permit is required.
(This is another answer that requires some allowance for
difficulties of expression.)

A large number of answers were correct except in confusing Or
with And:

pd002: The overall purpose of this code is to say whether the
permit is required to remove the tree or not. When the height
of the tree is more than 3 and the girth is more than 0.35; then
permit is required, or else if the height is less than 3 and the
girth is less than 0.35, then no permit is required to remove
the tree. If it is a tree which is diseased also, no permit is
required.
pd042: This is a program to check whether a permit is
required for removing tree or not. Only if a tree has height
more than 3 and girth more than 0.35 and it doesn’t have any
disease, we will need a special permit to remove that tree.
Otherwise, we don’t need a special permit.

Other answers showed additional confusion about whether the
diseased condition should be combined with And or Or:

pd016: This code is to check if the tree requires a permit in
order to be removed. If the tree is diseased and is above 3m in
height and above 0.35m in girth, it requires a permit. If the
tree has dimensions lesser than those required or is not
diseased, it doesn’t require a permit for removal.
pd034: The following code is designed for a permit
requirement to remove trees. If the tree is diseased and its
height and girth are more than 3 & 0.35 respectively, a permit

is then required to remove it. Any other conditions except the
above does not require a permit.
pd055: – To protect trees which is still in the save size
– Tall trees is still in protection due to health issues, but when
it get to tall (>3 or >0.35) it might get dangerous, so it’s
permited to be removed.

Many answers completely ignored the disease condition, perhaps
because of a failure to understand boolean variables …

pd003: this overall purpose is for someone with dblHeight >
3 or dblGirth > 0.35 will need permit to remove the tree
other than that do not need permit
(This answer also confuses the tree with the feller, a confusion
that was not penalised.)
pd051: If the number in dblHeight >3 or the number in
dblGirth >0.35 then the messagebox will show the message
“Permit required to remove this tree” if not the message box
will show the message “No permit required”.

One answer is even more suggestive of a failure to understand the
boolean variable …

pd009: The code shows Messagebox under different situation.
When the Height of a tree is higher than 3 or the Girth of a
tree is larger than 0.35 the tree will be Diseased. Other
situations there is no permit required.

Probably because the expected answer is more complex than for
questions 25 and 26, more answers to question 24 displayed
evidence of difficulty with English.

pd049: The purpose of this code is for asking the permit to
remove the tree which is under diseases.
According to the code the tree height which is under 3 and the
girth which is under 0.35 is no permit required to remove.
However, the tree height is over 3 and the girth is over 0.35
will be required to ask the permit for removing.
pd056: The purpose of the code is to display whether the tree
should be removed. When the tree higher than 3 and girth
more than 0.35, it is required to be removed. Else if the tree is
no higher than 3 and girth no more than 0.35, or the tree got
diseased, it can not be removed.
(This answer appears to interpret ‘permit required for
removal’ as meaning ‘removal permitted’ – or even required.)

This question, more than either of the others, gave rise to
relational answers that are not sufficiently detailed …

pd004: The overall purpose of the code is to check whether a
permit is required to remove the tree by running through some
tests like whether it is diseased or by testing the height and
girth of the tree.
pd007: The purpose of this code is to see which condition of
a tree are allowed to be freely cut down, without the need of
special authorization. The program may be useful when some
workers would cut down trees in the city to free up some
space. They would not need permission to remove a diseased
trees or those that are below certain height and certain girth.
(This is a fine example of an answer in the extended abstract
SOLO category.)
pd018: Check whether a permit is required.
pd020: The code are used to determine whether the tree that
need to be removed require a permit or not.
pd026: It is to check whether the user requires to have a
permit to remove the tree, based on the tree’s condition,
height, and girth rate.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

25

pd027: To determine if a permit is need to chop down a tree.
Using the guidelines given.

Each one of these answers is correct, but all of them could be
guessed by reading the code without understanding it. They were
therefore not considered satisfactory answers to the question.

4. EXPLORING THE CODE-READING
QUESTIONS

In an attempt to explain the disparity in students’ marks between
the code-explaining questions on the one hand and the code-
tracing and code-writing questions on the other, the preceding
examination of the three code-reading questions gives rise to a
number of questions.

4.1 Understanding vs ability to explain
Some early BRACElet papers suggest that the original intention
in using code-explaining questions was to determine whether
students could understand code. Indeed, one early paper [14] uses
the phrase ‘comprehension skills’ in its title. This might be
problematic: comprehension is a mental state that cannot be
measured directly. More recent papers [4] refer to ‘the ability to
explain code’, which is more readily measurable than the
comprehension of code.

A more explicit BRACElet goal is to determine whether students
can express the purpose of the code in a manner that fits within
the SOLO relational category. “A vital step toward being able to
write programs is the capacity to read a piece of code and
describe it relationally” [14]; “students who cannot read a short
piece of code and describe it in relational terms are not
intellectually well equipped to write similar code” [5].

Unfortunately, when I set this exam and its marking scheme I had
not fully considered the significance of this distinction. In my
perception, the students’ understanding of a piece of code and
their ability to explain that code at a relational level were
effectively the same thing, and I believed that by measuring the
latter I would be determining the former.

4.2 The marking scheme
The conflation of understanding with ability to explain makes it
difficult to allocate part marks to code-reading questions. The
marking of these questions has a tendency to all or nothing – full
marks for a correct purpose expressed at a relational SOLO level,
and few or no marks for any other answer.

Notwithstanding the importance of relational answers as
established in earlier BRACElet papers, it is clear that an answer
in relational form is far from sufficient: the answer must also be
correct. Otherwise on question 26 (section 3.1), marks would be
given to pd025, pd026, pd031, pd033, and pd034, even though
their answers are completely wrong, simply because they are
relational. On question 25 (section 3.2), the same would apply to
pd036 and pd041. On any of the three questions, such marks
would be allocated to an answer such as “it counts the butterflies
in the garden”, even though this patently has nothing to do with
the code.

On the other hand, correctness alone is also insufficient. A
multistructural answer that correctly traces the code fails to
display an understanding of it, and so counts for little. An answer

such as that of pd020 to question 26 (section 3.1) is really just a
translation of the code into English. It demonstrates no
understanding of what the code is doing, but merely a skill at
reading and interpreting individual statements in the programming
language. If the goal is to measure understanding, it is clearly
worth few or no marks.

I was not prepared to make the marking scheme entirely binary –
full marks for a correct relational answer and no marks for
anything else; but I did tend toward such a scheme, with
multistructural answers being given at most 2 of the 5 marks. This
somewhat defies the standard practice for short-answer questions,
which tend to have a clear basis for allocating the full range of
part marks to partly correct answers.

4.3 Level of relational detail
It seems that an inherent problem with code-reading questions is
the difficulty of specifying the level of detail expected in the
answer. Many students fall short of the detail considered
necessary; for example, pd011, pd014, and pd031 on question 25
(section 3.2). Others go well beyond the required detail into a full
multistructural description of the code. Even after being set
practice code-reading questions every week, the students in this
class showed very little feeling for the level of detail that was
required. It must be remembered, though, that many of the
students appear to have ignored those practice questions.

Worse, I did not fully consider when setting the questions that a
satisfactory answer for question 24 required a great deal more
detail than answers for questions 25 and 26. On question 24
(section 3.3), the answers of pd004, pd007, pd018, pd020, pd026,
and pd027 appear to be at or beyond the relational level of correct
answers to questions 25 and 26, yet do not demonstrate a full
understanding of the intricacy of the code.

Perhaps the best illustration of underspecified relational answers
is pd018 on question 24 (section 3.3). This student, who wrote
one of the least specific answers for this question, scored full
marks for the other two reading questions and 89% on the exam.
The student surely understood the code – but did not understand
how that understanding was to be expressed.

It might be argued that any correct relational answer, no matter
how short on detail, should be considered correct. But almost
anyone, even somebody with no knowledge of programming,
might be able to guess a generic purpose of permits for tree
removal; and therefore an answer expressing that purpose cannot
be taken as showing an understanding of the code.

Taken to the logical extreme, a correct relational answer to any of
these questions would be “this code does what it was designed to
do”. Yet once again, such an answer shows no understanding
whatever of the code, and so should receive no marks,
notwithstanding that it is both relational and accurate.

In retrospect, question 24 is simply a bad question. Given the
intention of having three virtually identical questions without
iteration or recursion, one for tracing, one for reading, and one for
writing, it was felt that some complexity was warranted, and the
form chosen for that complexity was the somewhat involved If
statement. However, I now believe that the form is quite
inappropriate for a code-reading question that expects a relational
answer. In terms of cognitive load theory [10], it places a very

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

26

high load on working memory, a load that is almost certainly
inappropriate for a short examination question.

4.4 Problems with expression
The Leeds working group used only multiple-choice questions.
“We were concerned that if students were required to explain the
function of a piece of code, poor performance might be due to a
lack of eloquence, not a lack of understanding of the code” [3]. In
its early days, the BRACElet project adopted the same practice,
although possibly not for entirely the same reason: “We decided
to maintain the multiple-choice question (MCQ) format used by
the Leeds group in our study in order to ensure that we had no
variation in our data analysis between markers and institutions”
[12]. However, “Our problem set was further extended to include
a set of questions that were more open, subjective questions
designed to test a higher level of the Bloom taxonomy. An
example of a more open question is a question that asks the
student to explain the purpose of a code snippet” [12].
It would seem from a handful of the answers examined here that
eloquence, or perhaps written expression at a more basic level,
might indeed be an issue. Most of the answers were
comprehensible, notwithstanding that many of them were written
by students whose first language is not English. A few, such as
pd049 and pd056 in question 24 (section 3.3) and pd003 and
pd006 in question 25 (section 3.2), were less clear. However, this
problem need not necessarily concern us. Many other disciplines
require a great deal more writing than a computing degree; and
regardless of the discipline area, a degree from an English-
speaking university implies a certain facility with written and
spoken English, and students who lack that facility will not tend
to earn marks as high as those who possess it.
It is thus possible that a student who understands the code can
produce an answer that is confusing or just plain wrong because
of a lack of fluency in English; but this can be considered a
problem with the student’s language skill rather than a problem
with the question type.

5. A SUBSEQUENT DATASET
For a subsequent exam on a different campus I used the same
questions but revised the marking scheme, giving full marks to a

correct relational answer and three of the five marks to a correct
multistructural answer. Figure 2 shows the students’ marks on the
reading, explaining, and writing questions. There is no longer a
significant difference between question types. The students’
tendency to respond multistructurally rather than relationally to
code-explaining questions, now just a reduced likelihood of
scoring full marks on those questions, shows as a shallower slope
to that trend line. Even with that tendency, I suspect that the line
would have been less shallow had question 24 not been such a bad
question.
Discussions with members of the BRACElet project suggest that
this sort of marking scheme is in fact the norm, and that my own
almost binary marking scheme was very much the exception.

6. DISCUSSION
Code-reading assessment can help to address important research
questions, to which the answers might eventually have major
impacts on the way programming is taught.

In addition, the students’ answers to the code-reading questions
are extremely illuminating in a number of different ways. In some
cases, at least, they offer explanations for students’ weaknesses
that are not evident from other types of exam question.

However, there do appear to have been two problems with my use
of these questions, one of which is easily remedied, the other of
which is perhaps not so easily dealt with.

The problem of the marking scheme potentially attends any new
type of question proposed for assessment. (This is not to say that
the marking of old question types is appropriate; just that it tends
to conform to some sort of accepted standard.) The simple
solution is that when a new question type is proposed, a marking
scheme should be proposed along with it. My adoption of code-
explaining questions is evidence that when a new question type is
proposed without a marking scheme, a teacher of considerable
experience can devise a scheme that simply doesn’t work.

In response to this problem, I propose in Appendix B a fairly
generic marking scheme for a 5-mark code-explaining question. If
other teachers using and reporting on such questions report their

Figure 2: Later students’ marks in tracing, reading, and writing, against overall exam mark

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

27

own marking schemes. some notion of a standard marking scheme
might eventually be arrived at.

The problem to which I currently have no answer is that of the
level of relational detail required in an answer. This is a critical
aspect of the answer: too little detail and the answer might well be
a guess; too much detail and the answer might well be a
multistructural translation of the code into English. In this
particular course a reasonable effort was put into preparing the
students, both with the weekly exercises and with the wording of
the question preamble, but this effort appears not to have paid off.

It might be worth considering preceding code-explaining
questions with a complete example, question and answer, on the
examination paper. This should help if the students’ problem is
not knowing what level of explanation is required; it would not
help if their problem is a genuine inability to explain the code at
that level.

It might also be worth considering multiple-choice code-
explaining questions. Before my experience with this exam I
might have thought it impossible to devise plausible distractors
for such questions. However, students’ answers are often a good
source of distractors, and I could now, for example, propose the
following choices for question 26:

(a) To find the longest title in the array of titles.
(b) To find the length of the longest title in the array of

titles.
(c) To move the longest title in the array of titles to the first

place in the array.
(d) To sort the array of titles according to title length.
(e) To find a specified title in the array of titles.

It would be particularly interesting to include both free-form and
multiple-choice code-explaining questions in the same
examination paper and to explore the relationship between the
marks awarded for each.

There is a clear value to code-explaining examination questions,
both as a research instrument and as an instrument of assessment.
But I believe that if they are to achieve their full potential in
assessment, a way must be found of ensuring that the students
understand just what sort of answer will achieve full marks.

7. ACKNOWLEDGMENTS
I am grateful to the BRACElet leaders, Raymond Lister, Tony
Clear, and Jacqui Whalley, for initiating the project, for
developing it, and particularly for publishing their research design
and inviting other researchers to implement it. I am also grateful
to the BRACElet members on whose examination questions some
of my own were based. Discussions with members of the
BRACElet project and with people attending Koli Calling 2009
have helped to reshape this paper considerably. For this, too, I am
grateful.

8. REFERENCES
[1] JB Biggs and KF Collis (1982). Evaluating the quality of

learning: the SOLO taxonomy (Structure of the Observed
learning Outcome). Academic Press, New York.

[2] T Clear, R Lister, Simon, DJ Bouvier, P Carter, A Eckerdal,
J Jacková, M Lopez, R McCartney, P Robbins, O Seppälä,

and E Thompson (2009). Naturally Occurring Data as
Research Instrument: Analyzing Examination Responses to
Study the Novice Programmer. SIGCSE Bulletin 41(4).

[3] R Lister, ES Adams, S Fitzgerald, W Fone, J Hamer, M
Lindholm, R McCartney, JE Moström, K Sanders, O
Seppälä, B Simon, and L Thomas (2004). A multi-national
study of reading and tracing skills in novice programmers.
SIGCSE Bulletin 36(4), 119-150.

[4] R Lister, C Fidge, and D Teague (2009). Further evidence of
a relationship between explaining, tracing, and writing skills
in introductory programming. 14th Annual Conference on
Innovation and Technology in Computer Science Education,
Paris, France.

[5] R Lister, B Simon, E Thompson, JL Whalley, and C Prasad
(2006). Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. 11th Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education. Bologna, Italy, 118-122.

[6] M Lopez, J Whalley, P Robbins, and R Lister (2008).
Relationships between reading, tracing and writing skills in
introductory programming. 2008 International Workshop on
Computing Education Research (ICER’08), Sydney,
Australia, 101-111.

[7] M McCracken, V Almstrum, D Diaz, M Guzdial, D Hagen,
Y Kolikant, C Laxer, L Thomas, I Utting, and T Wilusz
(2001). A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students.
SIGCSE Bulletin 33(4), 125-140.

[8] J Sheard, A Carbone, R Lister, B Simon, E Thompson, and
JL Whalley (2008). Going SOLO to access novice
programmers. 13th Annual Conference on Innovation and
Technology in Computer Science Education, Madrid, Spain,
209-213.

[9] Simon, M Lopez, K Sutton, and T Clear (2009). Surely we
must learn to read before we learn to write! 11th Australasian
Computing Education Conference (ACE2009), Wellington,
New Zealand, 165-170.

[10] J Sweller (1988). Cognitive load during problem solving:
Effects on learning. Cognitive Science 12, 257-285.

[11] A Venables, G Tan, and R Lister (2009). A closer look at
tracing, explaining and code writing skills in the novice
programmer. Fifth International Workshop on Computing
Education Research, Berkeley, CA, USA, 117-128.

[12] J Whalley, T Clear, and R Lister (2007). The many ways of
the BRACElet project. Bulletin of Applied Computing and
Information Technology 5(1).

[13] JL Whalley and R Lister (2009). The BRACElet 2009.1
(Wellington) specification. 11th Australasian Computing
Education Conference (ACE2009), Wellington, New
Zealand, 9-18.

[14] JL Whalley, R Lister, E Thompson, T Clear, P Robbins,
PKA Kumar, and C Prasad (2006). An Australasian study of
reading and comprehension skills in novice programmers,
using the Bloom and SOLO taxonomies. 8th Australasian
Computing Education Conference (ACE2009), Hobart,
Australia, 243-252.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

28

APPENDIX A: The three sets of equivalent questions

These are the nine questions written to explore students’
capability in comparable tracing, reading, and writing tasks. On
the exam paper the three tracing questions came first, followed by
the three reading questions, and then the three writing questions.
Here they are grouped according to the code structure rather than
the task type, to highlight their comparability.

The language used in this course is Visual Basic. Java
programmers might need to adjust to the absence of braces and to
the convention of prefixing variable names with a 1-letter or 3-
letter indication of their type.

1. A somewhat involved If – ElseIf – Else statement

Tracing version
Q21. Suggest a value for intAge and a value for strDay that will

result in a value of "Half price" for strPrice when the
following code statements are executed.
If intAge <= 6 Then
 strPrice = "Free entry"
ElseIf intAge <= 15 And
 strDay.IndexOf("S") = 0 Then
 strPrice = "Half price"
Else
 strPrice = "Full price"
End If

Expected answers: any integer from 6 to 15 inclusive and any
string beginning with “S”.

Reading version
Q24. Explain what the following code does. You are not being

asked to explain each line of the code; you are being asked
to explain its overall purpose.
If blnDiseased Then
 MessageBox.Show("No permit required")
ElseIf dblHeight > 3 Or
 dblGirth > 0.35 Then
 MessageBox.Show("Permit required to
 remove this tree")
Else
 MessageBox.Show("No permit required")
End If

Expected answer: It indicates that no permit is required to remove
a tree if it is diseased, or if it has a height <=3 and a girth <=0.35;
otherwise a permit is required.

Writing version
Q27. The movie price calculator form below [the form was

illustrated] shows 3 textboxes, txtBasePrice, txtRating, and
txtAge, that accept the normal or base price of a ticket, the
rating of the film, and the age of the customer. A button
btnCalculate executes code that will display the actual price
for this ticket in another textbox, txtThisPrice.

 The price of a ticket is the base price multiplied by a
multiplier, where:
• for customers aged under 6 the multiplier is zero;
• for customers aged over 64 the multiplier is 0.75;
• for customers aged from 18 to 64 the multiplier is 1;
• for customers aged from 6 to 17 the multiplier is 0.5,

unless the film rating is "R", in which case the
multiplier is 1.

 Write code to calculate the ticket price and display it,
appropriately formatted, when btnCalculate is clicked. You
are not expected to reproduce the parameters (the items in
parentheses) for the event handler. Just write “(parameters)”
where they would normally appear. You may assume that
valid data has been entered in the first three textboxes –
your program is not required to check this.

If statement from expected answer:
If intAge < 6 Then
 dblMultiplier = 0
ElseIf intAge > 64 Then
 dblMultiplier = 0.75
ElseIf intAge < 18 And
 txtRating.Text <> "R" Then
 dblMultiplier = 0.5
Else
 dblMultiplier = 1
End If

2. A simple loop with assignment

Tracing version
Q22. What will be the value of strIng1 after the following code

statements are executed?
Dim i As Integer
Dim strIng1 As String = ""
For i = 1 To 4
 strIng1 = strIng1 & CStr(i * 2) & " "
Next
strIng1 = strIng1 & Environment.NewLine
 & "When do we capitulate?"

Expected answer: “2 4 6 8
When do we capitulate?”

Reading version
Q25. Explain what the following code does. You are not being

asked to explain each line of the code; you are being asked
to explain its overall purpose.
For i = 0 To dblLoss.Length - 1
 dblBalance = dblBalance - dblLoss(i)
Next

Expected answer: It subtracts every loss (or every element of the
array dblLoss) from the balance.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

29

Writing version
Q28. A form has a textbox txtNum in which the user has entered a

positive integer. Write lines of code to calculate the product
of the numbers from 1 to the integer in txtNum, and display
that product in a message box. (A ‘product’ of numbers is
what you get when you multiply those numbers together.)

 Your code does not need to be a full event handler; just
write the lines that do the task described, like the code
samples in questions 21-26. And your code is not required
to check whether the textbox contains a positive integer –
just assume that it does.

Expected answer:
n = CInt(txtNum.Text)
intProduct = 1
For i = 2 To n
 intProduct = intProduct * i
Next
MessageBox.Show(intProduct, "Q28")

3. A simple loop with If and assignment

Tracing version
Q23. What will be the value of intLast after the following code

statements are executed?
Dim intNums1() As Integer = {1,5,2,4,2}
Dim intNums2() As Integer = {4,2,4,7,1}
Dim intLast As Integer = -1
Dim i As Integer = 0
Do
 If intNums1(i) < intNums2(i) Then
 intLast = i
 End If
 i = i + 1
Loop Until i = intNums1.Length

Expected answer: 3

Reading version
Q26. Explain what the following code does. You are not being

asked to explain each line of the code; you are being asked
to explain its overall purpose.
strOne = strTitle(0)
For i = 1 To strTitle.Length - 1
 If strTitle(i).Length > strOne.Length
 Then
 strOne = strTitle(i)
 End If
Next

Expected answer: It finds the longest title in the array of titles.

Writing version
Q29. A program has an array of integers called intChoice. Some

of the integers in the array, but not all of them, will have
values of zero. Write program code (just the relevant lines,
not an event handler) to count and display the number of
non-zero integers in intChoice.

Expected answer:
iNumber = 0
For iCount = 0 To intChoice.Length - 1
 If intChoice(iCount) <> 0 Then
 iNumber = iNumber + 1
 End If
 Next
MessageBox.Show(CStr(iNumber), "Q29")

APPENDIX B: Proposed marking scheme for Question 25, worth 5 marks

Relational (summary) answers
Answer that provides a correct relational summary, with or
without a line-by-line description: 5 marks.
Answer in summary form, correct but incomplete, eg “subtracts
the loss from the balance”: 2 or 3 marks depending on the extent
of the incompleteness.
Summary answer that’s possibly correct but too general, eg “it
balances the books”: 1 mark.
Summary answer that’s completely incorrect, eg “subtracts 1 from
each balance” or “it finds the sum of all the balances”: 0 marks.

Line-by-line (multistructural) answers
Fully accurate and complete answer couched as a line-by-line
description: 4 marks.
Partially accurate answer in line-by-line form: proportionally less
than 4 marks.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

30

Praxis-oriented teaching via client-based software projects

Malgorzata Mochol
Freie Universität Berlin, Institute for Computer

Science, Networked Information Systems
Königin-Luise-Str. 24-26, D-14195 Berlin

mochol@inf.fu-berlin.de

Robert Tolksdorf
Freie Universität Berlin, Institute for Computer

Science, Networked Information Systems
Königin-Luise-Str. 24-26, D-14195 Berlin

tolk@ag-nbi.de

ABSTRACT
How to work in teams, manage people, negotiate with clients,
delegate tasks, plan milestones, deliver results on time and,
in the end, conduct a “real” IT project are the aims of our
client-oriented IT project for bachelor and master degree
students. In this paper we explain the ideas behind practice-
oriented IT projects as well as the experiences and lessons
learned from past projects.

Categories and Subject Descriptors
K.3.2. [Computer and Education]: Computer and Infor-
mation Science Education—computer science education, in-
formation systems education; K.6.1 [Management of Com-
puting and Information Systems]: Project and People
Management—management techniques (e.g., PERT/CPM),
systems analysis and design

1. EDUCATIONAL OBJECTIVES
Student IT projects at universities, even if they are course

requirements of a computer science degree[4], are usually in-
ternal courses characterized by invented (fictional) problems
with well-defined goals and requirements, default and con-
stant workflows, predefined work packages and coding from
scratch without the need to understand foreign code. Ac-
cording to[6], the traditional computer science curriculum
leads to certain difficulties, from the education aspect to
the problems students encounter in the working world fol-
lowing graduation; these courses are marked by their lack
of practical relevance to actual industrial IT projects with
which graduates are confronted when they start their work-
ing life. To enhance the student’s skill set, we have devel-
oped a concept at the Institute for Computer Science1 of the
Free University of Berlin2, for IT projects with active par-
ticipation from industry partners. Our main teaching goals
in practice-oriented projects are:
1http://inf.fu-berlin.de/en/index.html
2http://fu-berlin.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

• to simulate real-life situations with regard to real-world
problems, industrial clients, proposals, contract, mile-
stones and the final product hand-over;

• to give our students a team-based experience while cre-
ating a comprehensive real software product[3] for a
real-world application;

• to give our students the opportunity to work on their
communication, processing and leadership skills: prob-
lem solving, conflict management (between client and
team members), soft skills, personnel management, which
are, according to[2], “the critical tools essential to re-
solving and taking action on practical problems within
families, workplaces and communities”;

• to give project participants the opportunity to learn
about risk- and crisis management;

• to teach the students how to set up internal and ex-
ternal meetings, including preparation of productive
meetings and a conducive meeting atmosphere;

• to afford our students the opportunity for project-based
learning in order to develop/enhance the ability to ar-
rive at informal judgment, the capability to address a
specific problem in complex, real-world settings, their
communication skills as well as technical competence.

2. CONCEPT AND CLIENTS
During our software courses, students are involved in in-

dustry-like projects which require hands-on participation.
Our commercial partners that usually have already collab-
orated with our group in the context of research projects,
events and other activities, play the role of a real-world com-
mercial client (different partners in each semester).

The project is entirely managed by the students, i.e. the
students have (almost) full control of the work flow, its
progress, time plan as well as being held responsible for all
project-related ups and downs. The participants negotiate
and make arrangements with the client, interview the client
in order to conduct a requirements analysis, prepare a pro-
posal based on the client’s needs, plan milestones and deliver
them on time and to the satisfaction of the client.

In past semesters our courses were conducted in collabo-
ration with local and regional firms in Berlin and the state
of Brandenburg and, starting this summer term, also with
international organizations:

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

31

• For neofonie GmbH 3 students developed a web-based
tool for editing, application and evaluation of the Hearst
Patterns[5] (summer term 2007).

• With Condat AG4 students worked on a metadata-
based repository for saving and intelligent querying
TV-channel data. Specifically, the students developed
a web-based application with an RDF-metadata repos-
itory containing TV-program data (including the trans-
formation of the data into RDF format) and a corre-
sponding API to store TV data in and query from the
repository (winter term 2007/2008).

• For Projektron GmbH 5 students designed and imple-
mented a semantic search engine for tickets within the
client’s project management system; the application
developed analyzed existing tickets and identified their
commonalities so as to, in the case of similar tickets,
mark them as cognated tickets (summer term 2008).

• For Espresto AG6 students utilizing modern web tech-
nologies (e.g. AJAX) enhanced an existing content man-
agement system with regard to usability and clarity
issues while keeping in mind browser compatibility,
which was vital to the client (winter term 2008/2009).

• During summer term 2009 we were cooperating with
Village Scribe Association (VSA) vzw.7, an associa-
tion for the advancement of innovative information and
communication technologies for rural development in
South Africa. The students worked on awareNet8 ex-
tensions, an interactive education and communication
software featuring an intelligent platform that provides
semiautomatic monitoring to protect its users. Partic-
ipants developed an image-uploader and working on a
lexical analysis for the awareNet text fragments.

3. ROLES WITHIN THE PROJECT
As mentioned in the previous section, the project is led by

students: they act as contractor and are responsible for the
success (or failure) of the project. The students with their
lecturers and commercial partners play different roles that
simulate real-world projects (cf. Fig 1):

Figure 1: Different roles in the project

3http://neofonie.de
4http://www.condat.de/
5http://projektron.de/
6http://www.espresto.de
7http://dorfschreiber.org/Intro.html
8http://www.awarenet.eu/

Project manager(s) At the beginning of each semester
students, usually graduate (master) students, apply
for one or two project management positions. They
send a CV with a letter of motivation of why they
want and are suited for the position. During the course
of the project the manager deals with client’s various
requests, learn to negotiate with clients, manage the
problems in the project team, which is usually com-
posed of 20-25 students, learns to cope with major
technical issues, delegates and coordinates work, main-
tains an overview of the project’s tasks and activi-
ties, and motivates the team. The project manager
is responsible for the proposal, intermediary and final
presentation of the results, and success of the overall
project. The project manager forms teams appropriate
to the project requirements, designates team leaders
(3-5 team leaders depending on the project settings)
and, at the end of the semester, assesses the team lead-
ers and together with them prepares grading proposals.

Team leaders After the project management has been ap-
pointed, it selects the team leaders. Leaders learn how
to manage a small team of 3-5 persons and delegate the
work to their team members. They must coordinate
and delegate the tasks, maintain a careful overview of
the work progress, carry out development work in or-
der to be able to discuss the technical issues and, in
some cases, persuade the team to take on a particular
solution. Team leaders motivate the team members,
settle a dispute, if necessary, and report to the project
manager on the project’s progress. At the end of the
semester team leaders evaluate and assess each team
member and together with the project manager pre-
pare the grading proposal.

Project co-workers Co-workers work on the implementa-
tion/technical level and are responsible for their as-
signed tasks. They report to the team leader with
regard to the task’s progress and difficulties.

Client Each semester one of our commercial partners act as
a client. The client presents a dilemma and specifies
a number of issues and requests to be solved by the
students, however, as in real life, the client does not
provide the problem’s exact specifications. The client
decides whether to accept the proposal submitted by
the students, the suggested milestones and, at the end,
whether to approve of the final results.

Lecturers Prior to the project the lecturers get together
with the commercial partner to prepare the project
framework: define the project area and goals, check
the complexity of the tasks, clarify the project volume
and review the technologies which can theoretically be
utilized to solve the problem in question. The lecturers
supervise the project, specifically by lending support
and assistance to the project managers and team lead-
ers. We introduce the students to project management
and coach them mainly at the very beginning of the
semester. However, most important of all we remain
in the background and let the students learn by do-
ing and experience the ups and downs of a real-life
project. We only intervene if we think the situation
urgently requires our direct intervention.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

32

4. RUNNING THE PROJECT
In the following, we outline the main steps and flow of the

project shown in Fig. 2:

Figure 2: Main steps within the project
Before the kick-off: The students are in a constant dia-

log with the client, carry out the requirement analysis,
prepare a detailed schedule with milestones, describe
sub- and end results, and submit it to the client, who
will decide whether to accept, reject or call for revision.

After the kick-off: If the students win the project they
work according to the plan they prepared. After the
project kick-off-meeting, during which the proposal is
signed by the client and the student project manager,
the implementation of tasks, goals and milestones starts.

Internal and external communication: To organize the
internal project communication students use e-mails
as well as project and tasks mailing lists. Further-
more, to establish software development process and
policies, and to keep an overview of the project team’s
progress, we recommend that the students utilize Trac
system9, which is a wiki- and issue-tracking system for
software development projects. Trac uses a minimal-
istic approach to web-based software project manage-
ment. In the last summer term, the Trac ticket sys-
tem was especially used for sub-tasks allocation: the
project manager and the tasks leaders assigned tickets
with a specific sub-task to a particular individual (as-
signed ticket), the individual accepts the ticket (active
ticket) and after completion of the task closes the tick-
ets (closed ticket). The utilization of a project manage-
ment system allows students to become familiar with
the activities that are common in IT practice and to
give them a chance to learn aspects which a real-world
project manager or team leader has to deal with.

External communication with the client is almost ex-
clusively conducted by the project manager who is also
responsible for keeping the client (as far as necessary)
up-to-date on the project’s progress and for the on-
time delivery of the milestones. Only in special cases,
where both the project manager and the client decide
that direct communication between team members and
client is needed, e.g. to clarify technical issues, specific
students contact their counterpart on the client’s side.

9http://trac.edgewall.org/

Circumstances for a real project: To realistically sim-
ulate the problems and difficulties of a real-world project
the client treats the student as if they are contractors,
i.e. the students can expect no special treatment. The
clients (i) may react harshly if they are not pleased
with the progress of the project, (ii) may demand more
than what was originally agreed in the contract in or-
der to challenge the students’ negotiating abilities, (iii)
might sometimes change some parts of the tasks or
bring forward the deadline for milestone delivery to
stimulate the students’ resourcefulness.

Project close out: If the project is brought to a successful
conclusion, the students will be rewarded not only with
good grades and ECTS points but usually with a prize.
For the current summer term, for instance, the client
Village Scribe Association vzw. was so pleased with
the results achieved that it asked the South African
embassy in Germany to host the closing ceremony of
our project. Embassy officers and staff and other mem-
bers of the VSA was attending the event as well. At
the ceremony, the students presented the goals and fi-
nal results of the project with a demonstration of the
software application developed.

5. LESSONS LEARNED
Since the launch of the practice-oriented student software

projects, the students’ activities along with their motivation,
project progress and coordination, communication within
the team and with the client have been closely monitored.
On the basis of our observations we have discovered a num-
ber of recurring characteristics and issues:

• There is an initial period of “disorientation” among the
students which eases up around the third project week.

• We have noticed that the view “success of the project
stands or falls with the project manager” is even more
evident in student projects where there are individual
team members whose morale crashes, even if the mo-
tivation of the rest is constant.

• Communication is central to the project: even if in-
ternal communication, primarily at the start, leads to
difficulties, they often dissipate over the course of the
project. Here again, the project manager plays a cru-
cial role.

• Clear briefing and goals are crucial to the project’s
success and the students’ morale. Even if goals are
not very well defined at the beginning of the project,
it is extremely important that after the requirements
analysis and contract signing all participants (i) share
the same view with regard to the problem to be solved,
(ii) know the goals, and (iii) hold a common vision of
the solution.

• Students are quite knowledgeable with regard to soft-
ware development but usually have little understand-
ing of project management issues and team work.

• Students have reservations regarding learning and try-
ing out new technologies. For instance, in the current
project, many discussions and difficulties arose with re-
gard to Python and its frameworks due to the fact that
most students were familiar only with Java or C++.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

33

• There are always 1 or 2 students who drop out in the
middle of the project; this can discourage the remain-
ing participants, but, on the other hand, it has a pos-
itive impact on their learning and experience in the
context of risks management.

• Participating students and especially students play-
ing leadership roles are highly motivated since they
are working for a “real” client with real-world require-
ments, and they get to experience the rewards of meet-
ing an actual need with the software solution they
themselves develop; these observations overlap with
the findings presented in[6].

• The lecturers should, to some extent, monitor the com-
munication between the partners and the work within
the project. We do so by requiring all participants to
send weekly reports with their achievements during the
week, problems encountered and their plan for the fol-
lowing week. Searching for common problems and ad-
dressing them with the project management and team
leaders seems to be an appropriate balance between
tight supervision, which is opposed to our concept, and
letting the students run completely without advice.

Especially in the starting phase, the lecturers have
to insist that proper communication and management
structures and practices should be established (e.g.
no issues are left open without assigning a person in
charge and a deadline).

6. CONCLUSIONS & DISCUSSION ISSUES
Our real-world business-oriented project courses are highly

popular and beneficial to all parties. Due to the huge de-
mands from both the students and the companies we have
not been able to accommodate everyone. Even if some uni-
versities have already conducted similar courses[1, 8, 9] this
is in our opinion still not enough and therefore more uni-
versities should offer such praxis-oriented software projects
considering them as an important issue in the students edu-
cation. This, in turn, would (i) enhance the qualifications of
students while strengthening commercial cooperations - stu-
dents familiar with real-life problems prior to their gradua-
tion are preferentially sought by industry[8], (ii) strengthen
not only the students’ programming skills but also soft skills
- industry is emphasizing the need for graduates to have both
technical skills and soft skills[7] and (iii) strengthen or es-
tablish binding between the university and the industry[9].
However, despite the obvious benefits of such projects and
the positive feedback from both students and companies, we
still have reservations regarding the format of the course and
how projects are implemented.

• Do we conduct software development for free?
Students develop and turn over to a client a working
application (software with source code, documentation
and user handbook), i.e. we give away free software
which the company uses for its own while we retain no
user rights. Students receive no remuneration for their
many hours of work.

• Continuity? Until now, the role of the client has been
played by companies that change with each project.
One question worth considering is whether it would be
better and more beneficial for students if (i) the client’s

relationship (and perhaps also the subject’s relation-
ship) to a group of students remained constant over the
course of the study, so that (ii) students could build
up a sustainable relationship with one company (e.g.
resulting in a related master/bachelor’s thesis, student
jobs or a permanent position after graduation).

• Evaluation? Until now, the observations outlined in
Sec. 5 remain just that and benefits may be gained
from a structured formal evaluation approach (system-
atic evaluation of learning outcomes, student feedback,
project management, etc.).

• Overall Strategy? There should be a defined over-
all strategy of the teaching institution on how such a
course is embedded in further industry-related activ-
ities like students internships in companies, research
cooperations with industry, or finding industry part-
ners for invited talks in regular courses.

7. REFERENCES
[1] K. Alho. Using the world wide web to assist software

project course work. Information & Software
Technology, 40(4):245–248, 1998.

[2] H. Boggs and S. Laurenson. Problem-based teaching: A
bridge to meaningful learning. Ohio State Univ., Center
on Education and Training for Employment, 1997.

[3] John F. Dooley. A software development course for
cc2001: The third time is charming. In Proc. of the
13th Annual Conf. on Innovation and Technology in
Computer Science Education, pages 346–346, 2008.

[4] K. A. Hawick H. A. James and C. J. James. Teaching
students how to be computer scientists through student
projects. In 7th Australasian Computing Education
Conference (ACE2005). Conferences in Research and
Practice in Information Technology(CRPIT), pages
259–267. Australian Computer Society, Inc., 2005.

[5] M.A. Hearst. Automatic acquisition of hyponyms from
large text corpora. In Proc. of the 14th Internat. Conf.
on Computational Linguistics, pages 539–545, 1992.

[6] C. Johansson and Pc Molin. Maturity, motivation and
effective learning in projects - benefits from using
industrial clients. In Proc. of the 1995 2nd Internat.
Conf. on Software Engineering in Higher Education,
pages 99–106. Computational Mechanics Publ, 1995.

[7] D. Rundus K. Christensen and Z. G. Prodanoff.
Partnering with industry for a computer science and
engineering capstone senior design course. In Proc. of
the ASEE Southeast Section Conference, 2003.

[8] C. 0. Ruud and V. J. Deleveaux. Developing and
conducting an industry based capstone design course.
In Proc. of the 27th Annual Conf. Teaching and
Learning in an Era of Change, volume 2 of Frontiers in
Education Conference, pages 644–647, 1997.

[9] V. Korhonen V. Isomöttönen and T. Kärkkäinen. Agile
Processes in Software Engineering and Extreme
Programming, volume 4536/2007 of LNCS, chapter
Power of Recognition: A Conceptual Framework for
Agile Capstone Project in Academic Environment,
pages 145–148. Springer, 2007.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

34

Exploiting the Advantages of Continuous Integration in
Software Engineering Learning Projects

Sandro Pedrazzini
SUPSI, University of Applied Sciences

of Southern Switzerland
6928 Lugano-Manno, Switzerland

Canoo Engineering AG,
Kirschgartenstrasse 5

4051 Basel, Switzerland

sandro.pedrazzini@supsi.ch

ABSTRACT
There are some practices in software development that are hardly
exercised at the university. Some of them should be introduced in
the courses or in the labs, not only because they will be useful in
the working world, but because they add benefits to the learning
process itself. One of those practices is continuous integration, a
state-of-the-art software engineering methodology. In this paper I
will explain how we setup a continuous integration platform for
our students, introducing continuous integration practices as part
of our project-based software engineering lab, and what benefits
can students achieve from it.

Keywords
Continuous integration, project-based learning, team work, active
learning, responsibility.

1. INTRODUCTION
The core topic of the whole process and experiments is the

setup and regular use of a so called “Continuous Integration
Platform”, i.e. a platform where the students can access and use
tools for version management and continuous integration (CI).
The platform is used by the students to manage their projects and
to exercise agile development methodologies during their works.
The concrete aspects of such a recurrent and continuous practice
match well with project-based learning (meant as a group activity
that goes on over a period of time, resulting in a product), and
helps to get more benefits from it. In project-based learning you
typically have a timeline and milestones, and the means to
evaluate your improvements ([11]). Correctly using CI tools
allows to keep the software project under control but also to keep
track of it, being able to better evaluate the project itself and the
personal improvements.

Exercising such methodologies, strongly iterating over all
development phases during the whole project timeline, with short
analysis and development cycles, already helps in better
understanding the advantages of the agile way of development.

But this is not all.

Observing the students’ different approaches to the projects
allowed us to understand, besides this, some more learning
benefits of exercising such a practice in our projects.

2. CONTINUOUS INTEGRATION
Integration is a practice in software development that

happens when in a development team, a member of the team must
integrate his work with the work of the other colleagues, or when
the work of an entire team must be integrated with a series of
external modules, production environments, databases,
configurations, etc., specific to a particular platform. Often the
integration is performed as the last development step before going
into production. Because it is a very critical phase in the project, it
may require days, weeks or even months.

These days, weeks or months are the periods of greatest
pressure for the development team right because they correspond
to the phase prior to the production. Every day is a day more of
delay in putting the application into production. Each error found
in this phase is likely to be managed and resolved in a hurry,
without the necessary care and quality.

The general idea behind the practice of continuous
integration is to transform the process of integration into a non-
problematic event, or, even better, to turn it into a "non-event" at
all.

How to achieve this goal? Integrating the most frequently as
possible, automate the verification needed during the integration,
executing all unit and functional tests as part of the process and
always generating the final project artifacts (deliverables).

Continuously integrating means integrating at each
interaction, after any changes that a developer executes in the
central code repository (common repository to which all team
members have access and where everyone sends his changes).
This means that at each new integration every developer adds only
a few hours project work. So, eventually discovered integration
problems can only be related to such few hours of work and are
therefore easily identifiable.

The automation of the integration process is permitted by the
combination of some tools: a version control system (VCS, some
products available: CVS, [2], Subversion, [6]), a build tool (like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '09, October 29 - November 1, 2009, Koli, Finland.
Copyright 2008 ACM 978-1-60558-952-7/09/11…$5.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

35

Ant, [1], Maven, [5] or others) and a system (like TeamCity, [7])
that regularly monitors the changes and triggers a build process at
each modification.

So, as soon as a developer performs a change to the code
repository (where all the project data are stored), sending his own
last changes to the central server running a VCS, another process,
through polling, notices the changes and starts a build process.

With build process we mean the full compilation, the execution of
all tests, the generation of distribution files (“deliverables”), and
any further control, such as dependencies checking, style
checking, etc.

3. THE PLATFORM
Along with the rest of the documentation of the course of software
engineering and with the main book used in the course ([12]) we
set up a platform for continuous integration, used during projects,
accessible through the internal e-learning platform already used
for the various learning stages of the course.

We integrated an existing product ([7]) and provided a dedicated
configuration in order to facilitate its use for internal students’
projects.

In particular, we developed a basic script (template) for the build,
so that each project can be recognized by the CI tool and treated
uniformly (compilation, test execution, generation of deliverables,
different kinds of checks) without the need for further special
configurations.
The script has been developed following the general needs of our
projects, but can be freely modified and adapted by the students at
any time. Each team manages its own copy.

The infrastructure used allows the students to remotely monitor
the project build process in different ways: through a Web
interface, through email notification (various levels of
configuration are possible), or through a plug-in installed on the
suggested development environment (Eclipse IDE, [3]).

3.1 General Positive Values
Here is a list of general positive values that such a CI platform can
bring to the students’ activity on projects:

• quick feedback on the situation of the project
(development, problems, regression testing, functional
testing, etc..),

• experience on all activities and processes of an end-to-
end project, already from the first iteration,

• access the history of the whole project (past changes,
old failing tests subsequently corrected, decisions on
design and redesign, refactoring, etc.),

• remotely monitor the progress of various projects, tests,
changes, etc. (this is especially useful to the teacher),

• ensure a quick build (because made with a system of
agents that provide free resources) even in the presence
of many projects and many changes,

• administer the project in a simple and intuitive way,
thank to a rich Web 2.0 interface.

4. DIDACTICAL VALUES
More than the general CI positive values, already generally
recognized as added values during the software development
process, there are some more special values for students, related to
their activity and their project-based learning process.

4.1 Active learning
Accessing the continuous integration tool through the e-learning
platform allows the students to administer their projects in an
active way, being able to monitor their single project evolution, its
maintenance, its tests and the problems related to them.

4.2 Tracking personal improvement
From the information made available by the CI tool the student
can derive his personal improvement over time, looking at the
decisions taken regarding the evolution, the project growing, the
functionality implemented, the test coverage, the failing tests
corrected, etc.

4.3 Work in team
The continuous integration platform facilitates and promotes
working in team, an essential aspect of software development.

Each team member can send his changes separately and see them
automatically integrated into the final product. Each member can
also monitor the execution of tests (directly through the Web,
through the available plug-in or through a notification sent by
mail by the CI tool). The work of each member can be accessed
and changed by all other members of the team (collective
ownership). Code reading, code understanding and code
reviewing become part of the usual work for every team member.

4.4 Responsibility
The platform, as used in the course, forces each element of the
team to take his responsibility for correcting possible errors (test
failed) due to his last modification.

Whoever takes care of the correction can register himself into the
platform, and the latter will inform the rest of the team that
someone has taken the responsibility of the correction. The team
will also be informed as soon as the correction will be effective.

The direct consequence of this way of working is that every
student, before sending the changes to the central repository, must
check on his local machine if all tests are passing. The student is
forced to pay attention to the quality of the code, increasing at the
same time the degree of accuracy.

Responsibility is, by the way, a crucial attitude in project-based
learning. Exercising it through the project itself can have a
positive impact on improving each single student’s learning
process.

4.5 Maintenance
There is a phase in the software development life cycle that can
hardly be exercised at the university: this is the maintenance.

There are different visions on maintenance, and definitions
slightly vary depending on whether we look at it in terms of
traditional methodologies or in terms of more agile ones ([13]). In
both cases, however, maintenance is seen as the phase that follows
the first delivery.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

36

In the academic world this step is often overlooked because what
counts more in exercises and students’ projects is usually the
delivery. This is in contrast to what happens in the software
industry, where the maintenance phase is a crucial one, because it
takes years and determines the further development and success of
an application.

Working with a continuous integration platform allows the
students to transform the phase of development to a phase of
maintenance. The early integration of work and the end-to-end
project setup lead to the ability to deliver (even partially) in faster
cycles. Short development cycles, and the use of evolutionary
development methodology, lead to the overlapping between
development and maintenance. This overlapping is a typical
aspect of the agile development methodologies.

The student who has the opportunity to work in a project in this
way, is forced to work also for general refactoring and redesign
activities, working for maintenance aspects for a good percentage
of his time, becoming aware of the different problems and
significance of this phase.

4.6 Regression tests
Another aspect hardly practicable during the study and directly
related to the maintenance phase is the regression test ([9]).

Tests are accumulated during time, and their number grows
proportionally to the application size. The most important value of
tests, after their use during the development phase, is their
regression aspect, i.e. the ability to inform the developer that
everything that worked successfully before a given change or
before a new release, still works correctly after the change has
been effectively integrated into the application.

Precisely because related to the development time and to the
application evolution, the importance of regression tests in a
software engineering learning module is often only theory.

With the continuous integration platform that allows you to
reduce the integration time and facilitate the development in short
iterations, the role of regression tests is correctly emphasized.

4.7 Release management
The continuous integration platform, with the combination of a
VCS system and an automatic build system, facilitates the
management of different versions of a product.

The platform allows you to configure the version number of the
build. In this way you can get unambiguous bundles (products),
easily manageable and storable.

In the case of "branch", usually a maintenance version, which
needs its own evolution, independent of the "trunk" (main
version), you can manage the two elements as two different
subprojects within the same platform, so that one does not
influence the other, and, above all, so that you can work on one or
the other, keeping track of the various versions delivered to the
customer.

The release management is also an organizational aspect, rarely
exercised in university courses.

4.8 Further values
Beyond the concept of continuous integration, introduced by agile
development methodologies, but still less used and then to be

considered innovative ([10]), especially in teaching and learning
approaches, the use of an integration platform enhances and
promotes distance work, development within distributed teams,
and active participation on complex projects.

Projected into the real world, promoting distance activities does
not only mean teaching and promoting outsourcing tools (still
useful), but may also mean working from home (home office),
with all what this implies in terms organization, quality of life,
etc.

Learning to use such a tool gives added value to the e-learning
practice itself. Indeed, you do not only use communication and
learning tools from an academic point of view (the possibility to
study at home), but you use them as real working tools (possibility
of working from home), practicing them for your future working
activity.

5. CONCLUSIONS
We explained and introduced the role of continuous integration in
academic development projects, as mean to improve the
development methodology on one side, and as mean to enrich the
project-based learning experience of students on the other side.

We think that such a practice is so important that a software
engineering lab activity should always be based on this.
University bachelor or master courses that prepare students to
actively enter the working world, should consider addressing this
topic in a practical way, allowing the students to access such a
platform and organize their software engineering projects.

The experimentation phase has yielded positive results. The
students acquired more self-confidence in their development
activities, easily monitoring their own work and the evolution of
their projects. We are strongly convinced that this kind of
experience will help our students to be proactive with newest
development methodologies and practices in the companies where
they will begin their working activities.

6. REFERENCES
[1] Apache Ant: http://ant.apache.org/.
[2] CVS: http://www.nongnu.org/cvs/.
[3] Eclipse: http://www.eclipse.org.
[4] JUnit: http://www.junit.org.
[5] Maven: http://maven.apache.org.
[6] Subversion: http://subversion.tigris.org/.
[7] TeamCity: http://www.jetbrains.com/teamcity.
[8] Duvall et al.: Continuous Integration: Improving Software

Quality and Reducing Risk, Addison-Wesley, 336 pp., ISBN
978-0321336385, 2007.

[9] Massol Vincent, Husted Ted: JUnit in Action, Manning
Publications Co., ISBN: 1930110995, 2003.

[10] Mastropietro R. et al.: Analysis and Evaluation of Cobra
Information System, Final Report, internal report SUPSI-
DTI, 2008.

[11] Moursund D.G.:Project-Based Learning Using Information
Technology, International Society for Technology in
Education: Eugene, OR, 2003.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

37

[12] Pedrazzini Sandro: Tecniche di progettazione agile con Java:
Design pattern, refactoring, test. Edizioni Tecniche Nuove,
298 pp., ISBN 88-481-1916-6, 2005 (Italian).

[13] Robert Cecil Martin: Agile Software Development.
Principles, Patterns, and Practices. Prentice Hall
International, 2002.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

38

Remodelling Information Security Courses by Integrating

Project-Based and Technology-Supported Education
Pino Caballero-Gil

Department of Statistics, O.R. and Computation
University of La Laguna
38271 Tenerife, Spain

pcaballe@ull.es

Jorge Ramió-Aguirre
School of Informatics

Polytechnic University of Madrid
28031 Madrid, Spain

jramio@eui.upm.es

���������

��������	
���������	����
��������������������	����	� �����
����

��� ����
���� ��� 	��� ��������� �
����� �����	
��� ����� �������
������� ����� �����
���
��	
���� ��	��
�� ����
������ ����

��	���������� ��
�� ������ ��������� 	��� ���� ��� ������	
���
����������� � ���
�� �� ��� 	����
��� �����
��� 	��	� ����
��� �����

��!��	
����� 	� ���	���
"��� ����
���� �#���
������ ��� 	����
��� ��

�����
	������������
"�����	������	
���� ���� 	�����	
���� �����	�����
	����
��� �� �����
	��� ���� ��������� ������� �� ���!��	$������

���������� �
���
�� ����� ������
��	�
�� %����	��� &�
����� �%&��

�����	
��� �
����
	�
��������� �	����	� ��	
��	
��� ���� ����
����
����
��	
��$��
��	��� ��
�	�� ��� �
��� 	� �����
���� 	�� �����
	��

�������� ���� �� %&� �������� �������� ��� '���
�� (��� �����	���	�����

�'(��� ���� ���
������� �����
	���)�	�� ���
����� ��������
�����
��	
��������
���
���������	
�������������	�
���������
��	��
�
������

�*
���� �
*�� ��������
��� ������
��	
��� ���� 	���� ��*�� ����

�������������������#�������	����	��	��������������������	�
��	�����
���������	��������	���
���������	
��	
���	�����������

���	
��	����������	����	����������
%�+�,� -������	�������������� �	������./� &����
	�� ����

���	��	
�����

0�1�2�-��	����
�����	��./�&����
	������'��	��	
����

��3�-�������������� �

��+�,� !�������	� "���
	�	�� /� &����
	���
�	���
	��� ����
���	��	
����

(�1�1�-������	����������	��./�����	���
���&����
	���

(�2�4�-"���
	�	����#��������
�����$�#������������	��./�
&����
	������'��	��	
����

%	�	��&��	����
0��
����5��
��
�
	���&����
	�����������

'	�������
 ������	
��� &����
	��� %���
������ ���������� ����� 6��*��

%����	���7�	��*���

() $�����*��$���
���� ����� ��� �� ���	�
�� �	������� ��� ��	���	
�
	��� ����
���	
��
	���

�	���
	���������
���
�
	����������	���������
��	
����������	��
��

���� ������	� 	��������
�� ����� ���� ������� 	��	� �� �����
	�� ����

������� �� ���!��	� ��� ����	�
�	����	� �������� ���
����� ��������
�����	���������	������	�������	����8�����
	��	�������������
	�9���

 ������	
��� �����
	�� �����
��� ����
��������� �����
�� 	��� ���	�

������� ���� ��*� -:4.� ����� 	��	� �
��� ������
��� ����
"�� 	���

����	����� ��� �����
	��� ����� ;<� ���	� 	��	� 	���� ����� 	��� ����
����
�*
���� ���� �����	���
��� 	�� �����
	�� �#
�	
��� ���� ������������

�����
	�� ����
�����	�� �����	
������ ������ �� ����� ����� �#
�	�� ����

�����	��	������*
����� �������
	���#���	���

�����
��� �� �����
	��
�� ����� ������#� ���
	�
�������� �
������

	����
���� ���� ���$	����
���� ���	��	�� ���� ����� 	�����	
���� ����
����	
���� ������	��� =�
����
	
��� ����� �����	���� ��� ���� 	�����

�������
��� 	������ 	�� �	����	��
�� ������ 	�� ����� 	������������� 	��

������ ���
��� ��
��
����� 	�� �����
	�� ������
����� ��	� ������
���
�����
����
�	��������	�
�����	��	
���	��
��
����	���	��
����������

���
����	�������	��� ��	������	����������
����
	
��������
�	��������

����� ���!��	�� ���� �������� 	�� �������� �� �����
	��� ��
��
�� ��
���
	
��� �	���� ��	� ����� ��� 	���� �	
���
�������	� 	���
	
�����

	����
�������������������	����	�������	�	��	����
����	��	������	��

��������
���
��	���
�������8��	9��8��9�����8��9���

��
�� ������ ��������� ��� ��������� 	��	� �
���� ������ ������
�� ���

	�����	
������������	
����	����
������
������	
��������
	�����!��	���
 	� �����
���� 	��� ��������� 	������� 	��������
�	
������ 	����������

�����������'(���������
������������
	�����	��
�������#��������

+) ���$�����*�$�,���-$�$�$����
 �� �����
	��
�� ���
����
�� -::.� ��� 8	��� ���	��	
��� ���
������	
���
����� ����	���
"��� �
���������� ���
�
��	
���� ��� ����� ��� ���� ���

����	��
��� 	����	�� 	�� 	��	�
������	
��� ��
�
��� ����� ������ ���

���	���$������	��� ��	
�
	
���� ���
�
���� ��� �	���
���9� >�� 	���
8?������� ������	
��� &����
	�� @��������	� ��	9� ��� 7 &�� -;.�

8
������	
��� �����
	�9�
�� ���
���� ��� 8���	��	
���
������	
��� ����

������	
��� ���	���� ����� ����	���
"��� �������� ����� �
����������
�
����	
���� ���
�
��	
���� ��� ���	���	
���
�� ������ 	�� ����
��/�

�	���
	��� �
��� ������ �����
��� ���
��	�
��������
������	
���
���
�
��	
��� ��� ���	���	
���� ����
�������� �����
���
������	
���

���� �����
�	
��� ���� ��	���	
�
	�A� ����
���	
��
	��� �
��� ������

�������
��� ��	���
"��� ���	�
�	
���� ��� ������� ���� �
����������

�����
��������� ���� ���	��	
��� ��������� ��
����� ���� �����
�	����

������	
��A� ���
���
�
	��� �
��� ������ �����
��� 	
����� ����

���
����� ������� 	�� ���� ���� ���
������	
���9� �� �	���� ������

������	
��� �����
	��
�� 	����� ����� ��� �� �������� ��	�� 	�� ���	��	�

�	���
	�� ���� ����
���	
��
	�� ���
������	
���
��
��� �����	���

'���
��
���	����*���
�
	��������������
����������������	����	�
����*�����

��������������������������
������	���
	���	���������
����	��	����
�������

��	� ����� ��� �
�	�
��	��� ���� ����
	� ��� �������
��� �����	���� ���� 	��	�

���
�������� 	�
����	
��� ���� 	��� ����� �
	�	
��� ��� 	��� �
��	� ��������� �����

�	���
���� ��� ������
���� 	�� ���	� ��� �������� ��� 	�� ���
�	�
��	�� 	�� �
�	���

����
������
�������
�
������
��
������B����������

�����������	
�����>�	�����+C�D�7��������:��+,,C���

%����
��	�+,,E��%@�C;E$:$2,44E$C4+$;B,CB::FG4�,,��

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

39

���	���� ���� 	�� ������	��� ���
���
�
	�� ��� �����
������	
���� 	�

�������� ��	� ����� ��������� ���	���� ���� ��	��
�� �����	���
���	�������	���������������	���������������
���������

 �� �����
	�� ���	� ��� ������	���� ��� �� ������ ������	�
�����
���
�����	���� ��	��*� ���� ��	������ �����
	��� ����	��������� �����
	��

���������	�� �����	��� ������
���� ���� �	�
��� ������ �	����

������	��� %����	��� �����
	��
�������� 	��� ���	��	
��� ��� 	���

�	���
	����������	������������������	�����7�	��*������
	��
��

��������� ��� 	��� �����
	�� ��� �����	��� ��	��*�
�����	���	������

0�	������ �����
	�� ���	��	�� ��
���� ��	��
�	���
	�� ���� ��	��
���������	�� %���	�������� ����
���� 	��� 	�����	
���� ���
�� ����

���	���� 	�� ������	��� ��
���� ����
���	
��
	���
�	���
	���

��	���	
�
	�� ���� ��
������ %����	��� ������
���
���	
�
��� 	���
�����	���������������
�������
����	�����	���#��
�����
���������

�����	��� ��
����� &����
	�� ���������	� ���	����� 	��� �����
	��

��������
�� ����	
���� %����	��� �	�
��� ��������	����� �����	���
�����	��� ������ 	�� ���
�� ����
		
��� �����	��� ��
����������� ����

�
����� ���	���	� ��	����	
���� ������	��
�� ����	��������� ����

��
������
���� �
���
��������
�� �����	��� �	�
���� ���� �����	���
������
��� ���	� �������� ��	� ����� 	��� 	����
���� *�������� ���

�����	��� ���	���� ���� ��	��*� ���
������	�� ��	� ����� 	��� ����

����	� �����	��� ��
���� %��������	���� �
���� �� �����
	��
��������
���������
������*�������������*
����� 	����
���
	������	
���������

�������
����������������
���	��*��

.) �/$��$�%��00����1���
@����������������
���
�������	�������������	��������
	����������
��������������-:�2�:;.�� �����	
�������	���	��
������ �������
	������

��	���	����	�
�����
���������������	����-E.�������	���	��������������

	����	�������	������

������
��� 	��)
����� -3.� 86�
��� �����
	��
�� �
��������
�� �����

����������������������	
������	��������������
	�����������������	��
	��	�������������������	���	�������	��������
	�������#��
���	���

���
���������
�����
��
�����
����	�
��9����������
����� 	����
��� ��

�����
	�� �����
���
	�� 	����� �������/� �� ������� �������� ��������
���	��������������������������	���������������	��������
	����

 �������
	�������	
������������������������������ ��
����	�����
��
-C.�� ����� 	�� �
������	� ����������� ���� ��������/� 8%����	���

�����
	�� ������ ��� 	��� ������ ��� 	��� ����
������� �
��� �����

����	
��	��	���������	
��������	����
���������������	�������
	��
��
����
�������� ���	�9�� ���� 8�� �����	��� ��
����� ��� �����	���

���
����
�������
�������������������	�����������	��������
	�����
���
����	��	�������	��	���������������
��������������*�9�

���� ��	����� ��� -:1.� ����*���
������	
��� �����
	�� ������	�� �����
��
����
	�� ����
����� ���
��	� *�������� ���
����
��
����	���

�������������������
�
���:,����
������
��/�8�����
	������
	��	�����

���� �������� ������� ���	���� ���	���� ���� ��	�������
����
����	��������� ��	��*� ���� 	���������
��	
���� �����
	���

�����	
��� ���	��� �����
	��� �������� ���� ����
��	
��� �����
	���

��	������ �����
	��� ���
����� ���� ���������	� ���
������	
���
���	���� �����
	��� ����
���� �����
	�� ���� ��
	
����
�����	���	����

���	��	
����������
�����	�
�������������������
����	
���9��

2) �1���,�3���*��0����$���
���� %����	
��� %���
����� ���!��	� ���������� ��� 	��� �����
�	
���

���� %����	
��� @���
������ 	��� �����
�	
��� ���� ������	
���
&��	��������	��� ����%����	���&��
�	��
��
	������
������+,,4�-1.�

����������� ���
	
��� �
��	�� ��� �����
	�� 	��
��� ������� 	��� �
���

*
���� ��� ������� ���������
�����
��� �����
	��
������� ��
��
������

�������	�	
����������������	�� �����	
�������
	������
����	�����
������	�� ��/� 8&����
	�/� ������ ���� '�
��
����� $� ������� ����

����
��	
��� ��� ������� ���	���� 	�� �����	��� ���	���� ���� 	���

������	
��� ���	�
���� 	����
��� &����
	�/� �������	�	
��� ����
@��������	� $� ���� �����
"�	
����� ��	
�
	
��� �����
�	���
	�� 	���

�����	
���� ����������	��
�������	�	
���� ����
����	
���� ����

���������	� ��� �����
	�� ���������� ���� 	��������
��� ���� ��

�����	���	���� ���� ����
��	
����9� %��������	���� ������
��� 	�� 	���

%����	
���%���
�������	�� 	������ ��������
��	
���� ����
����	��	�

��
������	
��������
	�����	�����
�
	��	�����	���	������
	��������	��
���� ������ ������� ������
��� 	����
����� ����
���� �� ��������	���

���
�����������������������	
�����������
	�������	����	���

���� ��	����� ��� -:+.� �	�	�� 	��	� 	��� ����
��	
��� ��� 	������ ����

����	
��� ����	
	�	��� �� 	��	��� ��� 	�� ������� 	��	� �	����	��

������	�����������
�����
��
����������	�
�*���
	
����������	�
������
����� ��� �
�
	�	
���� ��� �����	���� ���� ���	���� ������	������ 	�
��

����� ��*���������
�� -+.� 	��	� �����������	�� �	����	�� ���
�	�

���
��	� 	��� ���	���	� ��	���� ��� 	�����	
���� ������� ���� 	��
��
����������	������$���������
��	
�����

@���� %&� ������	���
��� �����
�� 	��
�� ��	���� !����
	�� �����
����
�
��� ������� ����	
����� H
�
��� �	����	�� �� 	��������

������	���
�����	����� 	��� 	����������	�������	
��� 	��	����	�
�� ��

�����
	��������	����#
�
"���	��
����
	
����	�
�*
�����
�
	��	����*��

�������� ���
�
����� %��������	���� ���
����	��	� ��!��	
��� ��� %&�

	����
����������
�����������������
�����������
�	����� �������
	��
	�����	
���� ������	��� ���� *�������� ����	� ��� ����� �
����
��

��������	���
�	�� �����	��� ���	���� ���� ��	��*��� >�� 	��� �	����

������
	�
�� ��	��� 	��� ����	
���� ���� 	����
���� *�������� ��	�
�
�	
���
����� ��	���� �� ����� ���� ��� �#������	� ������	��� ��
��

��*� ��������� �� 	����
��� ���������
	�� ������ ������
�� ���

	�����	
������������	
������
�	������
����� �������
	���

4) 0��0���5��-����6����*�����
H
���� 	��	� �� �����	�� ��� �� +1,��%�&�%����	��� &�
����� �������
���� ���
�����	� 	�� ����	� 1E,� 	����
��� ������� �� �������	� ����	
���

	��	������������ 	��������������
��
�� 	��������	���������	
���	��	�

������� ��� ����	��� 	�� �� �����
	��� �� ����
���� ��	
��	
��� ���� ���
���
���� ����� 	��� ������� ���� �� �����
	�� �����	
��� 	�������
	��

�������
	��
��@��	����'������������

6������� ������	� ����� ����������� �����
	�$����
�
�� �������/� ��

&����
	��� 7�	��*� &����
	��� %���	�������� ���� &����
	��
@��������	�
�� ������ 	�� ����
��� �	����	��
	�� ���� �������
���

�����
	�� ������	��� =����	���	����� ���
�� �	���� %&� 	��
����

�����������	���	����	�������	������������	���������
����	��
	��
	�������
	�������������	������������	�������������	�������������

���	���	� ��	����	
���� ������	�� ���� ���
��������
�� ��� ���������

����	�������� �������� �
��� ��� 	��� �	���� ������ 	��� ���
�	�� ���
������	�� ����� 	��� �
���� ��� &����
	�� @��������	�� ���� ����� ���

�
����
����%&����	������������

H
���� 	��� 	�	��� ���
������ 	����
��� 	
��� ��� +1,,� ������ ���� �� %&�

�������� 4<� ������������ 	�� :+,� ������ ����
�����	��� :+� �%�&���

�
��� ��������	� �� ����	��� ��� �� 	����
��� 	
���� 6����� �����
	��

������ ���� ��������� 	���� ���� �������� ���
������
�� 	�� 2� �%�&�

����������#������� ��� 	�� ����
���� 2��%�&�
������	
��� �����
	��

�������� ���� �
����
�� ������� :� ���� +��)�	�� �������� ����� �����
���
����� �����
��� �� ���!��	$������ ���� 	���������$������	���

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

40

���������� �
����
�� ��
��������
	�� ���	���� ���� ����
���� �����

���$*�������������
���������
	���
	���	��������	�#	��-:,�:3.��

 �� 	��� �
��	� ��������� ������� ����� ������ :�� �� ���!��	$������

���������
������
�����	�	�������	�������������	������%��	
�
��	
���
��	���
	�� �%��� ������'(���������� 	��� ������	��� ���	������ ����

	�����
�	��������
	�
��	�����������������
������	
���	����������	�

	��� ���!��	�
�� 	������� ��� ����� �������
�������	�	
��� ����� ���
>���&&I���
��� ����
���� �� ����	
����� ����	������
���������
���

	���*
	�
	�� �� ���
���	����%����
��� ����
�����������*� 	�����

�������������������������	
�����%���6����	�������������������	��
����������
�	���������	������!��	���������	��	�����������
�����	����

	�����������
���	��	��������
������
���	���/�

:�� &�	�������	���%�����	�����
+�� H�����	
������	���%�����	
�
��	���

3�� H�����	
������%��	
�
��	��&
��
���5�����	��%&5���

1�� &
���	�������%&5�	��������	���
��������	
�
��	����

 ��	�����������������������������6
�������&����
	�������������+���

	������!��	$�������������������
�����	����	��	������
�
����
�	�����
������
��� 	����������������
���	����-:2.��������
������� ���� 	���

������
��� 	����
�� 	�� �������
���
������� ��	��*���������� ���

	���������
���	�����@����
����	���������
���	����	��*�
��	����*��
����� 	��	� 	��
��
������� ��	��*�� ���� ������� ����� ���� 	���� ���

�		��*�� ������������ 	���������
��� 	�������		��*�� ���� ������ �����

�#���
	
�����������
�
	
�������	���������������	�������	��	����������
�
��������
������
����
���	����
�������
���
���������	����	��	��

���� 	��
�� ������
��	
��� �*
����
�� ������ 	�� 	��� 	�� ��	�
�� �������

������	
����
*��������������������������

��

���&	�()����&�	��#�$���	�����������	�����	�����7�	��$����6		���

'���
�
���
��� ���� ���
��

������	��

:� �
�	�����������	������������
��
������	
��������������	�������

+�)��
�������
	�����
�
	
�����

3� &����	$(���%���	�������/��	�������������*��
�������*������������	�����������������
1� '���
�$(���%���	�������/��#�����	
�	
����
�������

4� 0
�
	����
���	������������������	
���/��	����������������
��	
������

&������%�����
��	
����

2� >���'H'�
;� &B@ @��

E� &$���'�

C� >���&&I�
:,� '&���

������� %��	���� ����
��	���	
��	
���

::� ?
#����������$	
��������������

:+� %��������$����������������/�(�������������	���������

'���
��(��� �����	���	����
:3� %��	
�
��	
����������
�	��	
�����	���
	
�����

:1� %��	
�
��	��/�	����������
������������	�������	
�
��	
����
���������
:4� ?���	
���/����	
�
��	
�������������	
����J�4,C��	��������

�

���&	�+)����&�	��#�6�	&	����	�����������	�����	�����7�	��$����6		���

'���
�
���
��� ���� ���
��

������	��

:� �	�����	
���	��
���������	��*
��/�����
����	
������	��	
�����	���

+� �	�����	
���	��
������������
	��
�����/���
��
����������
�����	����	���

3� >����
�����	����	�������		��*��������	�/��
�*�����������
�
	
����
�	���
�����	��	
�������
�
�������	�����
	��	�� ���� ���
	��� ������������ ����
�	���
��� �����
��� ������������ 	����	�� ���� ���*
��� ��	�������
����

��������
�	�����	
����������
�
��	
��������������
�������
����������
�����	���

1� �	���
���	�����K�	����
����/���������
�
	
���������
������*�	����	����K�
�!��	
���������������
�������*���
����*�����	����
�����
	��������������������������*�	��������	�����
���������	��*�����
	�������	���

6
$?
�&����
	��

4� 6
$?
�	��������
������������
	��������
�����

2� ����E,+�::���	������/�6�'��5%1�������	
������������
�
	
�����	���
;� 6
�
�'��	��	���������/�6'����('����������
�
	
�����	���

E� ����E,+�:#����	���������1$6����������*�/��I&��������'����������
�
	
�����	���

C� ����E,+�::
/�6'�+����&��%%@'����&$%%@'���

&����
	��
��)���	��	�� :,� ������	
���
��)���	��	�/��,������
	����

::� &����	�*������������	������������	���	
��	
���
��)���	��	��

&����
	��
��@�7����

:+� ������	
���
��@�7����

:3� ��	���	
��	
���
��@�7����

:1� 5��	
�������%������	
���
��@�7����
:4� &���
���@�7���/�&��������	��*���L�7������	��

�

���������������������� ����
���� 	��� �����
������
���	�������	���
������
���	���/�

:�� &�	����������
�����
���������	��*��

+�� =��� ��� ���
�� �����
	�� ��������/� ������� ��� ������	� �'�
�������� ���� ��������� �
��������	� ��� && 0� ��������	
����

���������	����6�'�*���������	�	
���@�%��
�	����

3�� �������	�	
������ �����
	�� ��		
����
�����
��� ������
���
6�'�
�������	�	
����
	�� 6'�+�� ���� ���������	� ����

����
����	
�����������	���	
��	
�����������

&
���	���������	���������
���	�������	���������	�	����	���/�

:�� &�	����������	����
	���������	������	
������	�������	���

������
���	�������

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

41

+�� 6
������� ��	��*� 	����
�� ������
�/� 	����� ��� 	����
���

�����������������������������
�	����
������	����	����	���

3�� �		��*�����
������
���	�����	��	�	�����	���������
����

 ����	�����������������
��� 	�� 	������!��	$�������������������
���

	��� �
��	� �������� 	��� ���!��	� �����
�	
��� ���	� ��� �
���� 	�� 	���
�	����	��
�� ������ 	��
�������� 	��
�� ��	
��	
��� 	�� ������ 	���

���	������ �	� 	��� ����� �	����	�� ��� 	��������	� �
��� �� ������	�	
���

������
��� 	����
����� ����� 	�� ������ ��	� 	��� ���!��	� ���� �� ������
L
�	���������
���������������#
����	�����������	��������	�	������!��	�

������	
����������	��	
������ ������	��� �	����	����������	���������
�	��	���� 	��	� ���� 	��� �������� ��� ������� ��	�
�� ���� ��� 	��� ��
��

��!��	
���� ��� 	��� ������ ��
�� ����
��	
��� ��� ���!��	$������ ����

�
�	���� �����
��$������	��� ��������� �
���� ����� �������� 	��
�	����	��������	� ������� ���� ��	�
��
������	
����
��� �
�	��
���

	����������	�
������	
�����	�
����
��	������	������

8) �$��*��$����������*5���
?
��	��
	�
�� �����*����� 	��� ��������
�� 	��� ���������� ��� �����
������	��������������
��	��������
	���
��������������
�����������

������
��� ���� �#������� ��	� �� ����� ���
���� 	�� ������ ����
�
��

��*��
����	��	������	�
�������	�����#��
�
	������������	���������
�	���� 	��
���
��� ��� ����	�
	�� ��� 	��� �	����	�� ���
��� 	��
��

��	�������� ��*� ���� ������
��� 	��� ���!��	��� ���� 	��� �
�	����

�����
������
������	�
�������������������	������������
��������	��
������
���������	����	�
���������#��
�
	���
��	������	�������	�
�����

���� ��
��
���� ���
��� 	��� ���������
�� 	��� ������	
��� 	��	�� ���
�	�	���
�� -4.�� 	��� ���
�� 	��*� ��� �� ��
����
	�� 	�������
�� 	�� ����	��

�
	��	
���� ��� �
��� �	����	�� �����	� �������
	���	� ���
���

��������� ��
�� ����� ������� ��� ����� 	������� ����������� �	���� 	��	�
�����	��������
	
�����
�����
��
��������������
������	
�
	
���	��	�

�����������	�����
������������������������*�	��������
��/��

:�� 0��
�����������������
�
�������
�����!��	
������
+�� 0�	�
����	��	����	�����	����
��
���������	�
�����������

3�� ��	���
������
���������
	�������
�����

1�� '���������*��	����������
��	�������
4�� &	
����	���������	
��������
�����

2�� %���	���������*�������
�����

��
������ ������	�� 	��	� �� �
#��� 	�����	
���B����	
���� ���������

������ �	����	�� 	�� ������ �
��
���	� ������	��� �� 	��� 	���
	
�����

���	���$������ ���������� ���	� �	����	�� ��� ��	� ��	� 	�� ������	����
	�����������������
���
��	
�������	���	�����	
�������
�����	���	��
���

��
���� �������� 	���� ���� ��	� ��	
��	���� �� ���� ����������
��	
��	
���
����
������	�
����	�������	������!��	$���������������

��� �	����	�� ���� ��	
�����
��������
�� 	��� ��	
��� �������� ��� 	���

���!��	� ����������	�� ���
��
��� ����� 	��� ������ ��	��� �	������

��	����	
��� ���� ����
����	
��� 	�� 	��� �
���� �	��� ��� ���!��	�

������	�	
����&��	��*
����
�����
���������
��	
��������������
���

��
�
	
��� ���� ��������
�� ���� ��	�
���� 	���*�� 	�� 	��� ���������
���!��	$������ ��*$
�$	����� ���������� �������� 	��� ����������

�	����	�� ����
��� 	��	� ������ 	���������� ���� ��*������� ����

��������
�
	
���� ���� 	��	�
	�
�� ��� 	�� 	���� 	�� ��� ����� ���� 	�*��
��	
���� 	�� ���� ���� ����	�� 	��������
��� ������
����� ������ ���

�
	��	
��������
�����	�������&	����	�����	������������������
��	�

�������������	���
���������	��*�����������	�����
����
	��
�������
��	��*��
	�
�� �� ����
�
��� ��	� ��� �	�
�	� ��
���
���� ��� 	��	� ���

��
�	��	
����� ����� ���� ��� ������ ��
�� �
��	�
������ ����� 	���

��
����
	�� 	�� �	����	����
	��
������� ��	��*� �����
	��

�������	�	
����������������	����������������
��������������
���

����
��������������	����	����	��	��	�����
����
	���

9) ����5*�$����
%��	�
�� ���������� ��� 	��� ���	��	� ��� ����
����� ���� �� �����
	��

���������#
�	���������������	�������
���������
�
	
���
����������
��
�� ��*� ��������� �� ���!��	$������ ��������� 	��	� ������
"���

��	������	
�����*
��������	�����	
���������	�����
�� �������
	���?���

�� ���	
������
�������	�	
����
	� ������	�� 	��� 	��
��� ��� '(� ����

������� ��	��*��� &
���� 	�
��
�� �� ��*�
�� ���������� ����� �����

����	
�����#
�	� �������� 	��� ������	
���������
�
������	�������	���

���������	����������������������

:) ��'��65��%"�����
��
����*����������	������	���&���
���@
�
�	������&�
�����K ��

����?�0�5�������'��!��	�� 7+,,E$,++32B�& ��

;) ��-��������
-:. �%@�M�5 %��+,,2��&���
���
�����������������������	���

�����	��������
	������
������	
�����������������
������2��

-+. ����	�����L��I���0�����%��7���H��������0����
����������)���

&�
	���M���+,,:��&�����	�����	����
������������	������
6��*
���H�����5����	�� �
%&���;:$EE��

-3.)
������@���:CC3�������
���%����	���&����
	���7
�	�� ? '�

&�%��13$4+��

-1. %����	
���%���
������+,,4���%@��� &�K� ������

-4. %�����M���:CCC��>��)����
������ �����	
���=�
����
	��

����������
����������	
����&��
�����3;�1��

-2. �����
�����M�����H�	
N���"��M��� �OP�"���M���=����
"����� ��
�:CCC������������������������	��������
	�����������%@�

& H%&��)����	
��3:�+��1+$1;���

-;. ?������� ������	
���&����
	��@��������	���	��+,,+��'���
��
I��:,;D31;��

-E. H���
���&���+,,3�������
�������������7��&����
	����
�*���

�������
	������	�����

-C. ��
����%�����%�
���&$(���?�
�*���0���:CCE�� �	����	
���
&����
	��
�	��	���%���
������� ����%����	����+4$3,��

-:,. @���"��������L���>������	��'���L���	�����&���:CC2��

�������*��������
���%���	���������%5%�'�������

-::. 7 &���+,,,��������
�	����B����
��	
���B�
�	���B�	��$

����
��B��	$,,��	���

-:+. '����������L���'������	��M��%���:CC4���		
	�����	�����	���

	����
���������������	�����������	��������������	�
��	���
�����������	�������	�����
���������
�����/�����������

& H%&��)�����+;��3��43$4C��

-:3. &����
����)���:CC1������
���%���	���������6
������

-:1. �������
����@���H�
	"��
��0���+,,;��%������)�������

(������������ ������	
���&����
	��� ����&����
	��K�

'�
�����4�+���21$2;��

-:4. �����	����0������+,,;��+,,;�H������&����
	��&�������

0���
		��������������	����

-:2. Q���
*�6���0����0���+,,:��0
������	������������
��	���

	����
������ ������	
���&��	����&����
	��R� ������	
���
&��	���������	
���%�����������

-:;. 6�������'�M���6��
��M�@���+,,1��0��
��
�������

�������	
�������������������	�����#���
��������������	���
�����
	�����������%@�& H%&��)����	
��32�:��1,+$1,2�

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

42

TRAKLA2

Ari Korhonen
Helsinki University of

Technology
P.O. Box 5400

02015 TKK
archie@cs.hut.fi

Juha Helminen
Helsinki University of

Technology
P.O. Box 5400

02015 TKK
juha.helminen@cs.hut.fi

Ville Karavirta
Helsinki University of

Technology
P.O. Box 5400

02015 TKK
vkaravir@cs.hut.fi

Otto Seppälä
Helsinki University of

Technology
P.O. Box 5400

02015 TKK
oseppala@cs.hut.fi

ABSTRACT
TRAKLA2 is an online practicing environment for data struc-
tures and algorithms. The system includes visual algorithm
simulation exercises, which promote the understanding of
the logic and behaviour of several basic data structures and
algorithms. One of the key features of the system is that
the exercises are graded automatically and feedback for the
learner is provided immediately.

The system has been used by many institutes worldwide.
In addition, several studies conducted with the system have
revealed that the learning results are similar to those ob-
tained in closed labs if the tasks are the same. Thus, au-
tomatic assessment of visual algorithm simulation exercises
provides a meaningful way to reduce the workload of grading
the exercises while still maintaining good learning results.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI), Distance learning; K.3.2 [Computer and

Information Science Education]: Computer science ed-
ucation—data structures and algorithms

Keywords
automatic assessment and feedback, visual algorithm simu-
lation exercises, data structures and algorithms, trakla2

1. INTRODUCTION
Understanding the fundamental principles of data struc-

tures and algorithms is necessary for all programmers, and
the ability to write efficient programs based on this knowl-
edge is an important skill. Learning the concepts involved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29-November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$5.00.

requires both theoretical knowledge and program compre-
hension skills. TRAKLA2 [11] provides a graphical environ-
ment for learners to practice and test their understanding of
data structures and algorithms by solving short exercises.

Visualizations are a key part of explaining how data struc-
tures and algorithms work. They provide a way to abstract
out implementation details and leave what is essential in
order to understand the state of a data structure. Draw-
ing such visualizations using pen and paper is an often used
element of both homework and examinations.

In a typical pen-and-paper exercise the student might be
asked to draw images of an AVL tree when a given series of
operations is performed. The main drawback of this type
of an exercise is the amount of time and effort spent on
drawing. In many cases the changes to data structures are
also very localized, thus most of the time is spent copying
from the previous image.

TRAKLA2 transforms these pen-and-paper exercises into
electronic form. The underlying idea of simulating the al-
gorithm is the same. However, instead of being forced to
repeatedly draw the structures, the user is given a set of
corresponding visualizations that can be manipulated with
a mouse. The idea is to perform the same transformations
made by the algorithm being simulated. This allows the
student to concentrate better on studying the algorithm.

Having more time on task is not the only benefit. Visual
algorithm simulation exercises can be automatically graded
and feedback given when the learner is still engaged with the
problem. The grading is based on comparing the learner-
made simulation sequence to a sequence produced by an ac-
tual algorithm implementation. The feedback for the learner
is based on the number of correct steps in this simulation
sequence. TRAKLA2 also randomizes the input data for
algorithms, thus it discourages cheating and allows more
opportunities for practicing.

The system is still evolving. Currently we have some 50
ready-made exercises for data structures and algorithms cov-
ering most of the topics studied on a typical CS2 course. In
addition, we have a set of advanced exercises, for example,
to cover courses such as spatial data algorithms. In their
current form the exercises can effectively be used to com-
plement or replace existing simulation-based homework. In
addition, we are in the process of including new areas of

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

43

interest and a variety of new kind of exercises for basic pro-
gramming courses.

The rest of the paper is divided into the following sections.
Section 2 describes the system, and in Section 3 we discuss
related tools. Section 4 explains how the system has been
adopted and disseminated. Section 5 briefly introduces some
of the numerous evaluations done on the system. Finally,
Section 6 gives some future directions.

2. DESCRIPTION OF THE TOOL
TRAKLA2 is an environment for supporting the learning

of data structures and algorithms. It is based on the Matrix
algorithm simulation framework [5] written in the Java pro-
gramming language. The system provides automatically as-
sessed visual algorithm simulation exercises that are meant
to be accompanied by some other study material such as
lectures, lecturer’s notes, textbook, etc. Indeed, TRAKLA2
is primarily intended to be used as a practicing environ-
ment rather than a stand-alone learning environment. The
current selection of exercises includes operations on binary
trees, heaps, sorting algorithms, various dictionaries, hash-
ing methods, and graph algorithms. See Table 1 for a com-
plete list of the simulation exercises.

The algorithm simulation exercises are solved in the fol-
lowing manner. The student simulates the operations car-
ried out in a given algorithm by manipulating data struc-
ture visualizations. No coding or typing of text is required,
since all manipulation is carried out in terms of graphical
user interface operations. The system records the sequence
of operations, and finally allows the student to submit it
to the server. On the server side, the student’s sequence
is compared to a sequence generated by a working imple-
mentation of the algorithm, and the student is given imme-
diate feedback. There exists also a version that does not
need any server connection in which case the grades are not
stored anywhere. Thus, the client can also check the solu-
tion, which reduces the time it takes to give feedback. The
grade of the student’s solution is stored on the server, and
the teacher can monitor students’ points and other statis-
tics. After receiving the feedback, the student can retry the
exercise, if needed. The initial data for the exercise, i.e. the
input for the algorithm, is randomly generated for each try.

The primary user interface for the exercises (see Figure 1)
is a Java applet. The applet provides visualizations of data
structures, push buttons for requesting Reset, Submit, and
Model solution for the exercise as well as buttons for brows-
ing one’s own solution backwards and forwards. Simula-
tion is carried out by drag-and-dropping data items (e.g.,
keys to be sorted by a sorting algorithm or records to be
inserted into a binary search tree) or references (i.e., point-
ers in linked lists and trees) from one position to another.
Some of the exercises also include push buttons to perform
exercise-specific operations such as rotations in trees.

TRAKLA2 has been released as open source under the
Apache License. The Matrix framework required by the sim-
ulation exercises has been released under the GNU General
Public License (GPL).

3. RELATED TOOLS
At least two systems provide exercises similar to the ones

in TRAKLA2, namely MA&DA [8] and PILOT [1]. Nei-
ther of the tools, however, enable an instructor to manage

student accounts and points. Furthermore, the sets of avail-
able exercises are not even nearly as comprehensive as in
TRAKLA2.

In addition, there are numerous systems that visualize
algorithms and programs, and provide other kinds of inter-
action ranging from algorithm animations to pop-up ques-
tions. However, the number of such tools is too extensive
to be listed here, thus we only give a couple of examples.
JHAVÉ [12] and ViLLE [3] both include pop-up questions in
which the student is expected to predict some aspect of the
animation. JHAVÉ is targeted to algorithm visualizations
and ViLLE for program visualizations. Both systems have
recently been integrated with TRAKLA2, however. More-
over, JHAVÉ and the corresponding TRAKLA2 exercises
have been embedded into tutorials that deal with the algo-
rithms in question, thus providing additional learning ma-
terial. The differentiating characteristic of TRAKLA2 exer-
cises is the aim to activate the learner to trace an algorithm
(learning by doing) instead of merely observing the visual-
izations. The most important feature in this learning process
is the feedback received from the system, which is automat-
ically generated. The feedback is immediate and speeds up
the assessment cycle, which we believe promotes learning.

4. DISSEMINATION
The hosting of the system has previously been provided by

the Helsinki University of Technology with funding from the
Ministry of Education in Finland for the Network project
on basic programming studies to promote best practices.
It has been employed by nine (9) different institutions in
Finland: Helsinki University of Technology, University of
Turku, Tampere University of Technology, Helsinki Poly-
technic - Stadia, Lappeenranta University of Technology,
University of Helsinki, University of Kuopio, Åbo Akademi
University, and one in the US: Indiana University East,
Richmond, Indiana. In total, the system has been used on
over 50 courses, by over 6500 students who have submitted
over 380,000 solutions to the exercises.

The system has been installed by other universities as
well. In addition, there is also a commercial provider that
hosts TRAKLA2 internationally (in Europe, Asia, Africa
and Australia) as part of its service1.

5. EVALUATIONS OF THE TOOL
Over the years, many evaluation studies about TRAKLA2

and the simulation exercises have been carried out. Here,
we present the most important results and introduce the
various research questions addressed. For a more complete
list of studies, see the list of publications on the TRAKLA2
research site.

In one of the first studies, we compared the learning re-
sults of students solving algorithm simulation exercises in in-
structed classroom sessions with students using a web-based
learning environment [7]. The study concluded that there
was no significant difference in the final exam results be-
tween the randomized student groups if the exercises were
the same. Thus, some of the classroom activities can be
replaced with this type of web-based material.

Several studies have focused on the use of resubmissions
in the system. One of the key findings is that an encour-
aging grading policy combined with the option to resubmit

1http://www.bythemark.com/

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

44

http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/
http://www.bythemark.com/

Figure 1: TRAKLA2 exercise view. The assignment instructions are located in the top area of the window

together with some navigation buttons. The algorithm to be simulated is defined on the left and the data

structures to be manipulated are on the right.

Table 1: List of available TRAKLA2 exercises.
Topic / Exercise Topic / Exercise Topic / Exercise

Basic algorithms Search trees Algorithm Analysis

Binary search Binary Search Tree Search Order of Growth
Interpolation search Binary Search Tree Insertion Running time of recursive algorithms
Preorder Binary Search Tree Deletion Running time of iterative algorithms
Preorder with stack Faulty binary search tree Asymptotic analysis
Inorder Digital Search Tree Spatial Data Algorithms
Postorder Radix Search Tree Point in Polygon
Levelorder Single rotation Point in Polygon with R-Tree
Postfix evaluation Double rotation Douglas-Peucker Line Simplification
Infix to Postfix AVL-tree insertion Closest pair of points
Dynamic programming Red Black Tree Point-Region Quadtree Insert

Sorting algorithms Red Black Tree Coloring R-Tree Insert
Quicksort B-Tree Polygon Traversal
Radix-exchange-sort Trie Line Sweep
Counting methods for sorting Hashing Visibility with Rotational Sweep
Insertion sort Linear probing Expanding Wave-method
Mergesort (iterative/recursive) Quadratic probing Voronoi Construction
Heapsort Double hashing Adding a point to TIN
Selection sort Separate chaining Polygon Skeleton

Priority queues Rehashing
Build heap Graph algorithms

Heap operations BFS
MinHeap Insert DFS
MinHeap Delete Prim’s algorithm

Dijkstra’s algorithm
Dijkstra’s algorithm with heap

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

45

the solutions is an important factor in promoting students’
learning [10]. In addition, the students solving more exer-
cises get better grades. However, the article notes that in or-
der to prevent the aimless trial-and-error method of problem
solving, the number of resubmissions allowed per assignment
should be carefully controlled. Fortunately, another study
found that only a small number of students actually resub-
mit without thinking in between submissions [4].

In a more recent empirical study [9], collaborative learn-
ing on different Extended Engagement Taxonomy levels was
examined with learning materials related to the binary heap
that used visualizations on the different levels [6]. Pre- and
post-tests were used as the test instruments in the experi-
ment. In the study, statistically significant differences were
found in favor of the students on the higher level of engage-
ment, where also the TRAKLA2 exercises fall, in the total
and pair average of the post-test scores.

In another study, students’ simulation sequences recorded
in TRAKLA2 were analyzed to infer existing student mis-
conceptions of the build heap algorithm [13]. The results of
this study suggest that misconceptions about how specific al-
gorithms operate might be automatically recognizable from
the simulation sequences. Such information would have high
value for educators both for preventing and adressing mis-
conceptions.

6. FUTURE WORK AND WEBSITE
In addition to the simulation exercises, other types of ex-

ercises and learning tools can be integrated into the system.
Already, ViLLE system [3] provides exercises for the basic
programming course (CS1) that can be incorporated into

TRAKLA2. As mentioned, JHAVÉ [12] system has also
been integrated into TRAKLA2. In the future, we are plan-
ning to include other similar tools such as Jype [2] to cover
even more topics and courses. The idea is to avoid the need
to learn to use many different systems by the learners, and
thus focus on learning the content of the courses instead.

The project can be followed on a website that is located at
http://svg.cs.hut.fi/TRAKLA2/. You can easily create a
test account or utilize the stand-alone exercise applets with-
out logging in. In addition, Koli Calling Conference main-
tains a website at http://cs.joensuu.fi/kolistelut/tools/
that contains a brief overview of the system, a short video
about the system, this paper, and some additional material.

7. ACKNOWLEDGMENTS
We thank the numerous people that have been involved in

designing, implementing, testing, developing, and evaluating
TRAKLA2 and its earlier versions during the past 18 years
for their invaluable contributions.

This work was supported by the Academy of Finland un-
der grant number 210947 as well as Ministry of Education,
Finland.

8. REFERENCES
[1] S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and

R. Tamassia. PILOT: An interactive tool for learning
and grading. In Proceedings of the 31st SIGCSE
Technical Symposium on Computer Science Education,
pages 139–143. ACM Press, New York, 2000.

[2] J. Helminen. Jype – an education-oriented integrated
program visualization, visual debugging, and

programming exercise tool for python. Master’s thesis,
Department of Computer Science and Engineering,
Helsinki University of Technology, March 2009.

[3] E. Kaila, T. Rajala, M.-J. Laakso, and T. Salakoski.
Automatic assessment of program visualization
exercises. In A. Pears and L. Malmi, editors,
Proceedings of the Eighth Koli Calling International
Conference on Computing Education Research (Koli
Calling 2008). Uppsala University, 2008.

[4] V. Karavirta, A. Korhonen, and L. Malmi. On the use
of resubmissions in automatic assessment systems.
Computer Science Education, 16(3):229 – 240,
September 2006.

[5] A. Korhonen. Visual Algorithm Simulation. Doctoral
dissertation (tech rep. no. tko-a40/03), Helsinki
University of Technology, 2003.

[6] A. Korhonen, M.-J. Laakso, and N. Myller. How does
algorithm visualization affect collaboration? video
analysis of engagement and discussions. In J. Filipe
and J. Cordeiro, editors, Proceesing of the 5th
International Conference on Web Information Systems
and Technologies, pages 479–488, WEBIST 2009,
23-26 March, Lisboa, Portugal, 2009. INSTICC —
Institute for Systems and Technologies of Information,
Control and Communication.

[7] A. Korhonen, L. Malmi, P. Myllyselkä, and
P. Scheinin. Does it make a difference if students
exercise on the web or in the classroom? In
Proceedings of The 7th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in
Computer Science Education, ITiCSE’02, pages
121–124, Aarhus, Denmark, 2002. ACM Press, New
York.

[8] M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch.
Student-built algorithm visualizations for assessment:
flexible generation, feedback and grading. In ITiCSE
’05: Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 281–285, New York, NY,
USA, 2005. ACM Press.

[9] M.-J. Laakso, N. Myller, and A. Korhonen.
Comparing learning performance of students using
algorithm visualizations collaboratively on different
engagement levels. Journal of Educational Technology
& Society, 12(2):267–282, 2009.

[10] L. Malmi, V. Karavirta, A. Korhonen, and
J. Nikander. Experiences on automatically assessed
algorithm simulation exercises with different
resubmission policies. Journal of Educational
Resources in Computing, 5(3), September 2005.

[11] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual algorithm
simulation exercise system with automatic assessment:
TRAKLA2. Informatics in Education, 3(2):267–288,
2004.

[12] T. Naps. JHAVÉ: Supporting Algorithm
Visualization. Computer Graphics and Applications,
IEEE, 25(5):49–55, 2005.

[13] O. Seppälä, L. Malmi, and A. Korhonen. Observations
on student misconceptions – a case study of the
build-heap algorithm. Computer Science Education,
16(3):241–255, September 2006.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

46

http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://svg.cs.hut.fi/TRAKLA2/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/
http://cs.joensuu.fi/kolistelut/tools/

Web Eden: support for computing as construction?
Meurig Beynon

Department of Computer Science
University of Warwick

Coventry CV4 7AL, UK

wmb@dcs.warwick.ac.uk

Richard Myers
RJM Solutions

Haverflatt, Burrells
Appleby CA16 6EG, UK

Richard@rjmsolutions.com

 Antony Harfield
Department of Computer Science

University of Warwick
Coventry CV4 7AL, UK

ant@dcs.warwick.ac.uk

ABSTRACT

As Ben-Ari has observed, whatever the merits of adopting a

constructivist pedagogical stance towards Computer Science

education (CSE), it is impossible to reconcile the classical view of

computer science with a constructivist epistemology. There are

nonetheless good reasons for wishing to invoke a broader

epistemological framework in connection with modern

developments in computing practice. These include: the extent to

which computing technologies must be studied in the broader

engineering context; the greater prominence that the experiential

and phenomenological aspects of interaction with computers have

acquired; the aspiration (e.g. in agile methodologies) to construct

computer artefacts as an integral part of gaining the domain

knowledge required for complex software development. This

paper proposes Empirical Modelling (EM) as a constructivist

pedagogical approach that promises to address such broader

issues in CSE within a constructivist epistemological framework.

In the light of Ben-Ari’s insights, this is possible only through

adopting an alternative view of the nature of computing. The Web

Eden interpreter is introduced as a suitable first prototype for an

EM tool to support this vision for “computing as construction”.

Categories and Subject Descriptors

K.3.1 [Computer Uses in Education], K.3.2 [Computer and

Information Science Education]: Computer Science Education,

D.2.6 [Programming Environments]: Interactive environments.

General Terms

Design, Experimentation, Human Factors, Languages, Theory.

Keywords

 Computer Science Education, educational technology,

epistemology, constructivism, Empirical Modelling.

1. CONSTRUCTIVISM AND COMPUTING

1.1 Issues for Computer Science Education
The educational emphasis of classical computer science reflects

the perception of the computer as a reliable, predictable device

suitable for performing computation in the sense identified by

Stein [2]: “Computation is a function from its inputs to its output.

It is made up of a sequence of functional steps that produce – at

its end – some result that is its goal.” Teaching programming is at

the core of the classical discipline. Learning to program involves

using formal languages whose syntax and semantics is not

negotiable. As Ben-Ari observes [1], whilst CSE that respects this

tradition may benefit from a constructivist pedagogical stance, it

cannot embrace a constructivist epistemology such as has been the

focus of controversy in the philosophy of science (cf. Latour [3]).

Modern computing nonetheless provokes questions that are not

easily addressed by traditional computer science. For instance:

a. How should we place classical Computer Science in the

broader engineering context? Applying computing technology in

complex systems raises concerns traditionally associated with

engineering. In asking "What can we expect of formal

verification?", the distinguished software consultant Michael

Jackson stresses the need to take fuller account of the engineering

perspective in complex systems development. And whilst Ben-Ari

remarks upon the affinity between CSE and engineering education

[1], he identifies the extent to which his findings generalise to

engineering education as an open question.

 b. To what extent are experiential and phenomenological

concerns within the scope of Computer Science? In many modern

applications of computing technology, the requirements relate as

much to experience as to abstract function. The concrete physical

characteristics of the technology itself then play an essential role.

When we consider the relative merits of different devices and

interfaces for speed-texting, for instance, we are led to think of the

computer as resembling an instrument, and to recognise the

impact that acquired skills have upon effective performance.

 c. Can we interpret programming activity as a legitimate way of

developing domain understanding? Agile methodologies are

prominent in current software development. In such approaches –

contrary to traditional programming precepts – the conception of

the software product and the domain understanding this presumes

are apparently developed even as the product is being constructed.

Interpreting software as embodying domain understanding rather

than merely meeting a functional requirement raises challenging

philosophical and ontological questions (cf. Loomes and Jones

[4]). The Play-In approach to software development advocated by

David Harel illustrates a process of software construction that

resembles the negotiation of meaning in a constructivist idiom.

Such questions all relate to how far we can conceive interaction

with computers as “computational” in the narrow sense of Stein

[2]. Accepting that interaction with computers must be program-

like in this sense makes it hard even to formulate these questions.

This has motivated many critiques of classical computer science.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Koli Calling '09, October 29 - November 1, 2009, Koli, Finland.

Copyright 2009 ACM 978-1-60558-952-7/09/11 $10.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

47

1.2 Broader Visions of Computer Science
Discrepancies between computing practice and classical computer

science theory have been noted by many researchers and

interpreted in many different ways. Writing in 1998, Ben-Ari [1]

remarked that “the gap between the standard libraries (especially

the GUI libraries) of a modern programming environment and the

model of the computer is so great that motivating beginners has

become a serious problem". For Ben-Ari, the GUI libraries are

obstacles to the appreciation of the computer as an “accessible

ontological reality” of which the student must develop a mental

model. By contrast, Winograd and Flores [5:78] contend that

“computers do not exist, in the sense of things that possess

objective features and functions, outside of language” and argue

for a reconceptualisation of computing beyond the “rationalistic”

epistemological framework. Ridley [6] articulates the perplexing

issues that surround database theory, where the relational model

that was once viewed as the foundational cornerstone of the field

is widely perceived as inadequate to account for modern practice.

The fact that Boden [7:1414] reviews the history of the concept of

computation under the heading "Computation as a Moving

Target” reflects the subtlety of the notion. Cantwell-Smith [8]

highlights the inadequacy of traditional accounts of computation

in modern computing practice, and highlights the fact that what is

understood by the “semantics of computation” in theoretical

computer science is not to be confused with “the [content

relation] that holds between the computational process and the

world outside it” (which Smith describes as “the semantics of the

semantics of the process”). Stein [2] argues for the need to move

from the classical interpretation of “computation as calculation”

to “something one might call computation as interaction”.

These diverse critiques of classical computer science indicate that

there is considerable interest in broadening the scope of the

science of computing to embrace issues that cannot be addressed

by focusing solely on the classical theory of computation. Ben-Ari

[1] offers cogent reasons for believing that computer science as

narrowly interpreted as the study of program-like interactions with

computers cannot be based on an epistemological framework that

embraces a constructivist stance. But whilst the critiques by

Winograd and Flores, Cantwell-Smith, and Stein offer helpful

insight into what an alternative science and an alternative

epistemological framework might be like, they are ill-developed

in respect of principles and tools, especially when viewed

alongside Turing’s profound mathematically-based contribution to

our understanding of algorithmic processes.

1.3 Empirical Modelling
The approach to computing to which the Web Eden tool to be

introduced in the second section of the paper relates is that of

Empirical Modelling (EM) [9]. EM is based upon an

unconventional epistemological framework that is consonant with

William James’s radical empiricist philosophical stance [10].

James’s conception of knowing is rooted in direct experience –

his primary thesis is that relationships between experiences are

themselves given in experience. This is the basis on which one

experience (e.g. managing one’s expenses) can serve as the

content of another (e.g. manipulating a spreadsheet). Though such

knowing is of its essence a personal matter, this is no obstacle to

its potential classification as having an objective quality, if indeed

one’s own experience is experienced as cohering with that of

another person experiencing the same situation (cf. the way in

which a financial spreadsheet can represent public information

about a company’s finances). The nuances to which such a

concept of knowing can be adapted are sufficient to admit the

kind of realist conception of a computer that Ben-Ari endorses

[1], subject to certain reasonable contextual assumptions. It makes

good sense to view a computer in this way when considering it as

a computational device in a narrow sense for instance, but is not

so appropriate if the experience of the computer that is the subject

of concern is the colour of the display, or the possibility of erratic

operation due to hardware failure is taken into account.

The basic thesis of EM is that there are fundamental and generic

principles to help to construct artefacts intended to be experienced

as having a specific content. The key to this construction is to

introduce counterparts in the artifact for the relevant observables

of its referent, and define dependency relations – automatically

maintained as in a spreadsheet – to reflect the way in which

changes to sets of observables are linked in latent atomic changes

of state. In EM, the role of such artefacts – known as construals –

is to mediate the modeller’s experiential understanding of a

situation before this can be articulated in propositional terms.

Developing such construals is conceptually prior to programming

activity. Like spreadsheets, construals primarily represent a

current state of affairs or situation rather than a process.

EM engages directly with questions a, b and c above.

Because of the fundamental role it gives to personal experience, it

is clearly intimately linked with b. The way in which EM invokes

experiential and phenomenological concerns is well-oriented to an

engineering perspective. EM principles can be applied to making

sense of situations from the perspectives of human agents with

different perceptions and capabilities. By imaginative projection

(“to what observables subject to which dependencies can a

thermostat respond, and which can it change?”), EM can be

applied to other kinds of agent. Building construals is an activity

that then discloses viable physical and interpretative mechanisms

that might be exploited in applications. In this way, it lays the

foundation for many different potential functional uses.

Conventional programming activity and the concerns of classical

computer science can be interpreted as a specialised form of

interaction within the broader framework that EM affords. The

emphasis classical CSE puts on abstraction and logic reflects the

fact that the empirical activities associated with identifying the

computer as “an accessible ontological reality” [1] are a matter of

prior engineering to be taken for granted. In contrast, EM

addresses contexts where the nature and robustness of the would-

be computational mechanisms is yet to be established [9:#087].

Such a reconceptualisation of computing enables the blending of

engineering and classical computer science outlooks sought in a.

The radical nature of this reconceptualisation is highlighted by the

insights that EM brings to question c. James’s epistemological

stance maintains that all knowing is ultimately rooted in

connections that can be experienced. In EM, building construals

is about relating knowing to its experiential roots. Though EM

can lead to the realisation of program-like behaviours, this

realization takes the form of an enactment of pre-rehearsed

interactions within a constructed concrete live environment, rather

than the specification of an abstract computational process

optimised to a specific pre-conceived functional objective. On this

basis, EM is an activity that supports the development of domain

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

48

understanding, but not an activity that can be properly viewed as

programming. And where conventional CSE principles and tools

are concerned with situations and interpretations that have been

reliably pre-established and with associated knowledge that can be

expressed in propositional form, the emphasis in EM is upon

principles and tools that support the experimental learning

activities that must precede such an understanding [9:#098]. It is

for this reason that the principal EM tool, the EDEN interpreter to

be introduced in section 2, is of its essence a technology to

support learning without reference to any specific domain.

1.4 EM in relation to other critiques
EM has many points of contact with the critiques cited above. In

EM, the emphasis in interpreting interactions with computers is

on “the semantics of the semantics” in the sense of Smith [8].

There is scope for the negotiation of meaning that is relevant in

particular to the social processes that frame the protocols for

computer use and the identification of patterns of interaction and

interpretation with devices that can be deemed to be program-like.

As in Stein’s conception of computation-as-interaction [2], much

importance is attached to maintaining models of the external

current state to which the computing activity refers (cf. for

instance Stein’s discussion of her use of “bootstrapping directly

from physical interaction” to equip a robot with a capacity to read

maps [2:19]). The realisation of system-like behaviours through

the rehearsal and orchestration of primitive interactions amongst

agents is well-aligned with the computational metaphor of “a

community of interacting entities” proposed by Stein [2:9].

The crucial difference between EM and the proposals associated

with the critiques mentioned above is that the development of EM

has been intimately connected with identifying principles and

building tools to support their application. These principles are

more discriminating in the kinds of analysis and application that

they endorse. For instance, in keeping with Ben-Ari’s realist view

of the nature of the computer [1], they legitimise Winograd and

Flores’s contention that “[computers] are created in the

conversations human beings engage in when they cope with and

anticipate breakdown” only in particular contexts. They likewise

echo Ben-Ari’s reservations about the scope for bricolage in

conventional programming by calling into question Turkle and

Papert’s claims – cited by Stein [2:16] to support her concept of

computation-as-interaction – about the amenability of traditional

programs to experimental development [11]. And, because they

focus upon “the semantics of the semantics” of a computational

process rather than its abstract denotational/operational semantics,

they challenge the notion that the “new generation of software

engineering and design tools” identified by Stein in [2:16]

illustrates a decisive shift from the usual computational metaphor.

2. THE WEB EDEN ENVIRONMENT
The Web Eden environment [12] is an online environment for

constructing interactive models using EM principles. It represents

a radical new concept in technology-enhanced learning (TEL) that

has been applied in particular to CSE [9:#107], but – as motivated

above – can address any learning domain. By exploiting non-

standard principles based on modelling dependency relationships

for software construction, it introduces a new paradigm for open

source development that blends with the learning experience.

Because of its distinctive approach to software construction, Web

Eden affords an unusually intimate blending of domain learning

with model-building in the spirit of Latour’s construction [3,

9:#100]. This gives unprecedented scope for exploiting the

environment to support learning in many different idioms. We can

use Web Eden to guide learners through traditional tutorial-like

learning material. Web Eden also enables the learner to explore

live dynamic artefacts (as opposed to static pages of learning

material). If the learners become really advanced, they are able to

build their own artefacts and associated learning activities. Web

Eden can run as a stand-alone environment, or we can embed it

inside a virtual learning environment such as Moodle [9:#106].

Web Eden, like a spreadsheet environment, features counterparts

of meaningful variable quantities ("observables"), defined

connections between these which express the ways in which

changing the value of one observable directly affects the value of

another ("dependencies") and specific instances of redefinition of

observables, both manual and automated, that correspond to

meaningful action on the part of different agents. The use of

dependency is a common – if implicit – feature of much

educational software (e.g. tools like Mathematica, The Geometer's

Sketchpad, AgentSheets and Matlab, and learning artefacts such

as Cabri Geometry and Logotron's Visual Fractions), and its

merits are endorsed by the wide range of educational applications

for spreadsheets [13]. The motivating idea that makes Web Eden

distinctive is that these merits cannot be fully realised within a

conventional conceptual framework for computing [9:#096]. In

particular, dependency cannot be integrated into an educational

tool based on orthodox software principles (such as Imagine

Logo) without compromising its conceptual integrity [9:#104].

Conventional TEL software offers little support for integrating the

roles of the teacher (a pedagogical expert who conceives and

specifies the educational content, interfaces, learning outcomes

and exercises), the learner (typically a naive computer user who

interacts with the learning environment through a preconceived

interface) and the developer (an expert programmer who

implements the environment). The Web Eden environment is

open for interaction in all three roles at all times [9:#080]. What is

more, the interaction takes essentially the same form for teacher,

learners and developers alike. Every change to the current state to

the current environment, no matter how it is to be interpreted (for

instance, whether it is a change to the specification of the

environment, a step in the learning process, or a revision to the

interface or the underlying program), can be expressed as a

redefinition of observables in the model. All restrictions upon

interaction and interpretation are then of their essence purely

discretionary, according to the expertise and interests associated

with each specific role. This does not preclude the specification of

interfaces to constrain the ways in which particular agents can

redefine observables where this is appropriate.

Web Eden is a web-enabled version of the EDEN interpreter

[9:#106]. EDEN was web-enabled by Richard Myers in a prize-

winning final year computer science project at the University of

Warwick in 2007-8. It exploits state-of-the-art tools that make it

possible for server and client machines to share the computational

load in interpreting a model. It also overcomes the problems of

efficiently interpreting many EDEN models concurrently by

enabling distributed processing and load-balancing over many

EDEN virtual machines. Many hundreds of models have been

built using EDEN [14]. All such model-building has a strong

ingredient of domain learning. Many models have an explicit

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

49

educational objective and the range of learning applications is

broad. Web Eden inherits the qualities of EDEN as an educational

technology (cf. the “Applications Area” hyperlink at [9]), creating

a platform for the full realisation of the pedagogical advantages

for which previous experience of EDEN has offered proof-of-

concept, and helping to overcome the practical obstacles to wider

dissemination and adoption. It addresses the portability issues

encountered in downloading the interpreter and models, simplifies

the integration of the EDEN engine with other applications

through the use of web interfaces, and is designed to incorporate

session-sharing features that obviate the need to set up networks

for collaborative and distributed modes of interaction.

The most comprehensive practical introduction to Web Eden and

the modelling principles on which it is based can be found in the

workshops prepared in conjunction with The Sudoku Experience -

an online activity for gifted and talented pupils organised by the

University of Warwick in July 2008 [12]. In these workshops,

novice learners are first acquainted with the basic concepts and

techniques that are required for model-building. This involves

introspecting about the kinds of observables and dependencies

that are significant in solving a Sudoku puzzle. They are then

shown how these can be related to other tasks, such as devising

formulae to convert between different ways of indexing the

squares of a Sudoku grid. Once the principles of model-building

have been introduced, their application to Sudoku solution is

illustrated with reference to a "colour Sudoku" extension and the

automation of a technique that is first conceived and implemented

as a 'manually executed' pattern of interaction. In the final

workshop, the Web Eden environment is configured to allow

collaborative concurrent solution of Sudoku puzzles.

Web Eden was also applied in an online database module in the

Virtual Studies in Computer Science (ViSCoS) programme at

Joensuu University, Finland in 2008-9. This involved integrating

Web Eden with the Moodle environment [9:#106]. In the module,

design flaws in the international standard RDB language SQL are

exposed by contrasting and critiquing different strategies for

implementing SQL over a pure relational algebra notation. This

practical and interactive approach to highlighting abstract design

issues exploits the scope for open-ended interaction that Web

Eden affords, which encompasses the capacity for implementing

additional notations within the Web Eden environment on-the-fly.

The Web Eden Sudoku model was re-used in a second-year

undergraduate module in December 2008. The Alloy tool for

formal specification was used to generate the five essentially

different abstract mathematical groups of order 8. To make the

structure of these groups more accessible, the 9-by-9 grid in the

colour Sudoku model was adapted for displaying and

manipulating the corresponding group tables [12]. Simple patterns

of redefinition and renaming of elements served to acquaint

students without specialist mathematical knowledge with the

character of a mathematician's intuitive, rather than purely abstract

and axiomatic, understanding of group structure.

Other illustrative examples of the use of Web Eden can be

accessed via [12]. The environment has recently been further

developed to support more sophisticated online use with personal

and public project data. The fact that the essential interaction with

online models is mediated entirely through definition of

observables prepares the ground for several significant extensions.

These include: comprehensive monitoring of interactions that

enables intermediate states to be recorded and revisited as if

"live"; novel possibilities for collaboration primarily mediated

through interaction with artefacts rather than communication

based on language; potential for graphical user interfaces for

fabricating scripts from templates. And though we have gathered

informal evidence in support of our claims [9:090], we recognize

the need for more rigorous evaluations through empirical studies.

We envisage the deployment of Web Eden not as the release of a

product that meets a clearly preconceived specification, but as

initiating an ongoing organic process of continuing development

associated with the progressive extension, refinement and

adaptation of existing models and of the environment itself to

better meet educational goals. Teachers, developers and learners

will all participate in this process. A major concern in TEL has

been that of standardisation. In 2002-4, the principles underlying

Web Eden were effectively deployed at the BBC R&D

Laboratories in resolving critical issues of cross-platform

portability of digital content. This gives us confidence that,

appropriately deployed, Web Eden can offer rich experiences

customised to diverse learners and contexts. To achieve this goal,

we aspire to bring together representatives from schools,

universities and industry worldwide to establish an online “Centre

for Constructivist Computing” to promote the creation of models,

teaching and learning strategies, and extensions and refinements

of the modelling tool through open source development.

3. REFERENCES
[1] M. Ben-Ari. Constructivism in computer science education.

SIGCSE Bulletin, 30(1):257--261, 1998.

[2] L.A.Stein, Challenging the Computational Metaphor,

Cybernetics and Systems 30(6), September 1999, 1-35.

[3] B.Latour, The Promises of Constructivism, In Ihde, D. (ed.)

Chasing Technoscience: Matrix of Materiality, 2006, 27-46.

[4] M.J.Loomes and S.V.Jones, Requirements Engineering: A

Perspective Through Theory Building, Proc. ICRE'98, 1998,

100-107.

[5] T.Winograd and F.Flores, Understanding Computers and
Cognition, Addison-Wesley, 1987

[6] M.J.Ridley, Database Systems or Database Theory, Proc.

LTSN-ICS TLAD Workshop, Coventry, UK, 2003.

[7] M.Boden, Mind as Machine: A History of Cognitive Science,

Volume 2, Clarendon Press, Oxford, 2006.

[8] B.Cantwell-Smith, Two Lessons of Logic, Comput. Intell. 3,

214-218, 1987.

[9] Empirical Modelling website and EM papers as indexed at

http://www.dcs.warwick.ac.uk/modelling

[10] W.James, Essays in Radical Empiricism, Bison Books, 1996.

[11] S.Turkle and S.Papert. Epistemological Pluralism: Styles and

Voices within the Computer Culture, Journal of Women in

Culture and Society 16(1): 128-157, 1990.

[12] http://www.warwick.ac.uk/go/webeden

[13] J.E.Baker, S.J.Sugden, Spreadsheets in Education: The First

25 Years, Spreadsheets in Education, 2003.

[14] http://empublic.dcs.warwick.ac.uk/projects/

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

50

Understanding open learning processes
in a robotics class

Ilkka Jormanainen
University of Joensuu

Departmenf of Computer Science
P.O. Box 111

FI-80101 Joensuu, FINLAND

ijorma@cs.joensuu.fi

Meurig Beynon
University of Warwick

Department of Computer Science
Coventry CV4 7AL, UK

wmb@dcs.warwick.ac.uk

Erkki Sutinen
University of Joensuu

Departmenf of Computer Science
P.O. Box 111

FI-80101 Joensuu, FINLAND

sutinen@cs.joensuu.fi

ABSTRACT
Robotics is a functional approach for learning basic concepts of
computing. In this role, it has been successfully used in
introductory classes of Computer Science and Information
Technology from primary to higher education. In a typical
scenario, learners design and program robots in small groups that
comprise between 2 and 4 students. Although such activity is
stimulating for learners, the teacher of the class may find it hard to
follow each individual student’s learning processes. Empirical
Modelling gives the teacher a platform to monitor individual
group processes by collecting data from the construction and
programming of the robots and allowing the teacher to model the
empirically observed process. Unlike most adaptive learning
systems, the model and the modelling process are transparent and
open to the teacher, and even the students are able to assess their
own learning based on the derived models.

Categories and Subject Descriptors
K.3.3 [Computers and education]: Computer uses in education –
Computer-assisted instruction (CAI).

General Terms
Design, Human Factors

Keywords
Educational robotics, student modelling, Empirical Modelling,
intervention, agency.

1. INTRODUCTION
Educational robotics has become a recognised tool for teaching at
different school levels from kindergarten to university. The
diversity of disciplines to which educational robotics has been
applied is wide, and educational robotics is also a recognised part
of computer science curricula [6]. The usual work process with

educational robotics is based on group oriented working methods
and open-ended problem solving. This readily leads students to
take different paths to solving their problems, and groups may
progress differently within a cycle of planning, building,
programming, and testing. A robotics classroom might have 30 to
40 students divided into groups of 2 to 4 students. The
unpredictable problem solving strategies and multiple student
groups quite often cause the teacher to face difficulties in
identifying the appropriate points for intervention. We are
addressing this problem by utilising a system based on a multi-
agent architecture [4] to support a teacher’s observation process in
the classroom. The agents can observe, for example, the students’
construction and programming processes, as well as the teamwork
and dynamics within and between the groups.

In this paper, we present an application for supporting a
teacher in an educational robotics class. Based on the concept of
conflative learning environment [4], we have built an environment
for modelling the learning processes. The modelling is done with
Empirical Modelling (EM) tools that allow open and transparent
modelling of the learning process. The EM environment
encourages role conflation, where a teacher can adopt a software
developer’s tasks in his or her own work and build in this way a
support environment to match the current learning situation. The
application allows the teacher and learners to build a model of the
learning and group processes in a gradual way, based on the
empirical data collected from the empirical observations arising
from the current classroom setting.

Compared with traditional intelligent tutoring systems (ITS),
the conflative learning environment framework provides a novel
approach for the teacher to adapt the rules which form a base for
modelling the students and learning processes. Instead of having
predefined and static sets of rules, the teacher can construct the
required rules from scratch by making use of logical operations to
combine the atomic observations produced by the agents.
Furthermore, the teacher can define what data should be collected,
and how the data should be reflected to the model.

This paper is organised as follows. We first compare our
approach to the previous work in the fields of ITS and adaptive
systems. We then briefly describe Empirical Modelling. In section
4 we describe the conflative learning environment and a prototype
application that we have built for deployment in educational
robotics classes. Finally, we conclude the paper and sketch
directions for future work in section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '09, October 29 – November 1, 2009, Koli, Finland.
Copyright 2009 ACM 978-1-60558-952-7/09/11…$10.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

51

2. BACKGROUND
Educational robotics has become a recognised tool in many
disciplines and school levels, including computer science
education. In CS curricula, educational robotics has been used to
teach both the basics of robotics as such and other computing
concepts. Examples of the integration of robotics into the CS
curriculum include for example teaching the Java byte code with
the Lego robotics [3] and teaching systems-level programming
topics by using the Lego robotics as a target platform [5].

Monitoring student groups’ activities in the educational
robotics classroom is difficult. Traditional intelligent tutoring
systems have been applied also in this context [2]. However, as
these systems are traditional programs with predefined
specifications, they only offer the teacher a set of predefined
options for interaction. The application based on the conflative
learning environment framework provides support for open-ended
exploration while having as its starting point the empirical
observations of student activity. It is possible to support this kind
of teaching process with traditional programming techniques and
languages. However, where there are unpredictable scenarios, a
single initial specification of a program is not enough to cater for
all needs; the teacher also needs to have some degree of control
over the development of the learning environment.

The traditional division of the roles in ITS and educational
technology development processes usually strictly separates the
roles of developer, teacher, and learner from each other.
Moreover, the tasks undertaken by these process participants
usually follow each other in a cycle with predefined steps. Beynon
and Roe [1] argue that constructionist computer-assisted learning
approaches can be seen as unifying the roles of the student, the
teacher, and the developer. Following this line of argument, and
invoking the concept of conflative learning environment described
in [4], we can compare how the student and learning modelling
process within the conflative learning environment framework
differs from that associated with traditional ITS tools (Table 1).
The main difference is that, whereas traditional ITS applications
use a theory-based approach for building the learning model, the
conflative approach starts from the empirical observations arising
from the current learning situation. Another important aspect is
that the EM based approach allows role conflation, and the tools
are easier to adapt to different contexts and application areas.

Table 1. Comparison between the conflative and traditional
tutoring approaches

 Conflative (EM-
based) approach

Traditional ITS
approach

Modelling
approach Empirical Theory-based

Learning
model Constructed Given

Adaptation Transparent Black box
Roles in the
learning
community

Flexible Fixed

Direction of
modelling Bottom-up Top-down

Modifications
to the tools

On demand in the
actual learning

situation

Through the software
development process

In the robotics classroom, the open-ended nature of robot
building and programming typically leads to students taking
completely different approaches to the activity. Accordingly, the
teacher might not be satisfied with the existing sets of agents and
rules for them, so that the system needs to be modified. In the
traditional educational technology development process, the
software developer does this. The developer can also make major
modifications to the environment – for example, adding new data
representations to the environment to create alternative views to
record the students’ progress. However, traditional software
development methods are not flexible enough to support the
teaching process within modern learning environments, where
students explore solutions to problems independently.

3. ABOUT EMPIRICAL MODELLING
Empirical Modelling (EM) is a collection of principles and tools
developed by Beynon, Russ and their students at the University of
Warwick, UK. EM can be used to construct computer-based
models that are based on the modeller’s empirical observations
about the phenomenon that is the subject of the modelling
process. The modelling is done in the tkeden environment with
several different notations.

The EM model is constructed by defining observables and
dependencies with the notations mentioned above. An observable
is a “computational” entity (such as a line, window, string or list
of scalar values) that represents an element of the modelling
subject. A dependency is a relationship between two or more
observables. A key feature of the EM approach is that, after an
initial definition, the EM environment automatically keeps the
model updated according to the dependencies. This is similar to
spreadsheet applications where values of the cells are updated
automatically according to formulas that might contain references
to other cells. In the next section we present through an example
how the EM can be applied in the conflative learning
environment.

4. A CONFLATIVE LEARNING
ENVIRONMENT
To support the teacher’s working process in a learning
environment, such as an educational robotics class, where
unpredictable learning activities often take place, we have
proposed a concept of conflative learning environment (CLE) [4].
By exploiting the EM principles described earlier, the CLE gives
full freedom for the teacher to modify the environment and
support system to match the current situation.

The CLE framework consists of two parts. First, a number of
agents work in the background of the learning process collecting
observations about students’ activity. Second, the teacher has a
model constructed with the EM tools that reflects the current
situation in the classroom, and the model-building is an ongoing
process that accompanies the learning activities themselves. Each
agent in the system has a dedicated task to which it has been
appointed during the modelling process. For example, an agent
might observe the use of a button in the graphical user interface of
the robots’ programming environment. This agent sends a
message to the teacher’s modelling environment over the network.
The message can take the form of an EM definition so that the
message redefines parts of the model. Alternatively, the message
can be a natural language string that will be presented to the
teacher as text. All types of messages contain a timestamp, and
the messages are recorded in a database for later use.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

52

The general idea is that agents do not process data by
themselves, but collect data and deliver the data to the teacher’s
model and database for further observation. Even so, two different
levels of “intelligence” can be distinguished within the agent
population. The simplest form of agent works as a data collector.
For example, an agent can observe a button in the robot’s
programming environment and send a message to the teacher’s
classroom model when students press that particular button. A
more sophisticated agent possesses limited computing capabilities
that enable it to do simple reasoning. For example, an agent can
observe the existence of keywords or certain structures in the
students’ program code.

The working process in the educational robotic class usually
takes a cyclic form. It is thus crucial that the teacher’s tools also
support cyclic working methods where the teacher can redefine
the tool as needed when unpredictable events occur in the
classroom. According to Empirical Modelling principles, the
model is built up gradually by making redefinitions. The current
state of the model is at all times captured by the set of definitions
that have been introduced to date. Redefinitions can originate
from both human participants and the automated agents, and these
definitions then affect the model according to the current
dependencies. The CLE periodically includes new definitions
produced by the agents, and in this way the agents can
automatically update the model according to the current situation.

It is obvious that there are technical challenges in using the
EM tools to construct a learning environment. However, the
teacher does not have to have expertise comparable to that of a
technical developer. The most important thing is that the teacher
utilises his or her expertise in the learning domain, and that the
teacher has a clear understanding of the observables that mediate
the learning activity. To make the EM-based conflative learning
environment more accessible for the teacher, we propose that the
modelling of the learning process should be divided into two
parts. The first part, technical modelling, consists of setting up the
basic modules of the environment. This part of the modelling
process can take place before and even between the robotics
classes, when the model can be redefined to meet the new
requirements. The second part, pedagogical modelling, is the
process that takes place during the classes. In this part of the
modelling process, the teacher defines contextually meaningful
observables and visualisations for the data that the agents collect.
It is possible that these observables are usable in context-specific
settings, for instance, for a particular class, or dependent on the
phase where the students are in their project (building,
programming, or testing).

4.1 A prototype application
By following the principles of constructing the conflative learning
environment described in the previous sections, we have built a
prototype environment to support teachers’ intervention in the
robotics classroom. The environment has been built gradually by
following the cyclic process of EM model-building. As a starting
point for the model building process, we conducted two
experiments in which we collected data and analysed students’
activities with a simple EM model as described in [4]. Based on
the results and technical lessons learned from these experiments,
we have constructed a model that can be used as a starting point
for building a contextualised observation environment for
different kinds of robotics classroom settings (Figure 1).

It is crucial to note that the application is an example, and
most likely does not fulfil all the requirements of a teacher

working in an educational robotics class. This is due to the fact
that each teacher may want to observe different issues from the
classroom and the learning process. We have built the application
in such a way as to give a good overall impression about the use
of the conflative learning environment framework and the
potential of the EM tools in this kind of model building process.

With the application, a teacher can observe the progress of
the student groups through various modules with graphical user
interfaces. The modules are updated automatically as the agents
make new observations and deliver them to the EM modelling
environment. Furthermore, the teacher can simulate the students’
progress subsequently based on the data that the agents have
automatically collected and stored in a database. This post-
processing can be also done with rules different from those used
in modelling in the real-time situation. In this way, the teacher can
potentially learn new things about students’ actions and progress.

Figure 6. The prototype of the observation environment.

The current model consists of three modules. The first

module (Figure 1, topmost window) shows a simplified map view
for the classroom. The teacher can use this module to observe the
overall progress of the student groups. In this prototype
implementation, the student groups are shown as rectangles with
the name of the group in it. These group markers can be moved

Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

53

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

53

around on the screen to reflect the disposition of groups in the
classroom. In the screenshot, one table has been modelled in the
view and the student groups have been placed at the
corresponding places around the table. The colour or size of the
group marker can be bound by dependency to observables of
interest – for example to the length of the program code that the
student group has constructed so far. The model building is
automated so that, besides automatically reflecting the agents’
observations in the model, the groups are also appended or
removed automatically from the model when they start or close
the programming environment in the classroom. In this way, the
model can readily be maintained to be consistent with the current
situation in the learning setting. The second module (window in
the middle, Figure 1) visualises the overall progress of the student
groups as measured by a cumulative sum of clicks for the four
most important buttons in the programming environment. The
third module (lowermost window in Figure 1) implements
replaying functionalities for the observation environment. By
using the controls in the graphical user interface, the teacher can
for example return to a certain moment in the learning process.
All other modules are bound to this control module so that they
will be updated to show the situation in the learning process in
that particular moment of time. This module can also be used to
process the data that has been automatically collected by the
agents after the activity has finished, as opposed to in real time,
and new rules and dependencies may be added for this purpose to
give alternative views to the learning process. Reconstructing the
live states of students’ interactions so that the teacher can in
principle experiment within these states in a fresh way is
definitely one advantage of using the Empirical Modelling tools,
and we argue that reconstructing the learning process like this is
more difficult with traditional ITS tools.

This prototype application of three modules can be extended
toward a more complete presentation of the classroom setting. As
mentioned earlier, all visual elements can be redefined, and
completely new views can be built to support the teacher as
required in the current classroom situation.

4.2 Extending the application
An important aspect of the Empirical Modelling approach is the
process of constant refinement of the model and the re-use of
existing models. The EM repository1 provides a catalogue of pre-
existing models which can be modified to suit the new contexts.
The adaptation of the existing models obviously requires a certain
amount of work, and a technically oriented person should do this
as part of the technical modelling process.

The conflative learning environment framework and the
applications built on it can be also applied in other contexts. The
data collection methods and learning process reconstruction tools
are especially well-suited for deployment in other application
areas. While building our robotics application, we applied the
replaying module to an HIV/AIDS educational game. The new
module allowed the teacher to replay students’ actions in the game
and analyse their thinking during the learning process. The
adaptation of the existing module to a new context required very
few changes to the original definitions, and the experience
confirmed our view that Empirical Modelling can be used as an
effective approach for constructing conflative learning
environments.

1 http://www.dcs.warwick.ac.uk/modelling

5. DISCUSSION
Recently, low-cost and highly accessible educational robot kits
have gained popularity in hands-on learning environments,
especially in technical fields, including Computer Science.
However, the effective use of educational robotics in the
classroom requires new kinds of classroom settings and teachers
have to change their teaching methods according to the needs of
the new environment. The open-ended nature of robot building
can lead to students taking completely different approaches to an
activity, and the teacher’s needs for information about the learning
process are difficult, if not impossible, to predict.

In this paper, we have presented a learning environment that
allows the teacher to get and process information about the
learning process through the empirical observations arising from
the process itself. The application utilise the Empirical Modelling
environment and model-building process to allow the teacher to
modify the environment to meet the requirements of a particular
learning process. Unlike most adaptive learning systems, the
model and the modelling process are transparent and open to the
teacher. The prototype application for monitoring robotics classes
in its current form has been built through a cyclic process which
took as its starting point empirical data collected from real
classroom settings [4]. As the Empirical Modelling process
characteristically involves a gradual open-ended development of
the environment, we shall also develop the model further to
provide the teacher better support in the classroom. In addition,
we shall bring the modelling environment to students’ screens, so
that even the students are able to assess their own learning based
on the derived models. This is a step towards a fully open and
equal tutoring system where all participants in the learning
community can participate in the modelling of the learning
process by bringing to the model their own view of the activities.

6. REFERENCES
[1] Beynon, W. M. and Roe, C.P. 2004. Computer Support for

Constructionism in Context. In Proceeding of the 4th IEEE
International Conference on Advanced Learning
Technologies, 216-220.

[2] George, S., and Despres, C. 1999. A multi-agent system for
distance support in educational robotic. In the proceedings of
the International Conference on Telecommunication for
Education and Training, 344–353.

[3] Jipping, M. J., Calka, C., O'Neill, B., and Padilla, C. R. 2007.
Teaching Students Java Bytecode Using Lego Mindstorms
Robots. In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education SIGCSE '07.
ACM, New York, NY, 170-174.

[4] Jormanainen, I., Harfield, A., and Sutinen, E. 2009.
Supporting Teacher Intervention in Unpredictable Learning
Environments. In Proceedings of the 9th IEEE International
Conference on Advanced Learning Technologies, 584 – 588.

[5] Klassner, F. and Continanza, C. 2007. Mindstorms Without
Robotics: an Alternative to Simulations in Systems Courses.
In Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education SIGCSE '07. ACM, New
York, NY, 175-179.

[6] Sklar, E., Parsons, S., and Stone, P. 2004. Using RoboCup in
University-Level Computer Science Education. Journal on
Educational Resources in Computing 4 (2), 1–21

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

54

Mental Models of Data

Leigh Ann Sudol
Computer Science

Department
Carnegie Mellon University

Pittsburgh, PA
lsudol@andrew.cmu.edu

Mark Stehlik
Computer Science

Department
Carnegie Mellon University

Pittsburgh, PA
mjs@cs.cmu.edu

Sharon Carver
Psychology Department

Carnegie Mellon University
Pittsburgh, PA

sc0e@andrew.cmu.edu

ABSTRACT
This discussion paper describes the results of a pilot study
into the mental models of data and data structures held by
people based upon the software applications that they use
frequently. Computers and data intensive software like email
and iTunes have become a large part of our daily lives. The
results are provided to motivate discussion about prevalent
models of data and potential impact that they may have on
introductory curriculum design. Results suggest that people
tend to hold abstract models of the data types and regardless
of gender or application being discussed there is a common
structure applied by people.

Keywords
Mental Models, Introductory Programming, Computer Sci-
ence Education

1. INTRODUCTION
Over the past 40 years introductory computer science ed-

ucation has favored making curriculum changes based on ex-
ternal demands such as popular programming languages or
paradigms. This has introduced additional complexity into
our courses, especially early on. In this time students have
come to computer science class with increasing experience
in using computers and computer software. The Common
Sense Computing series of papers have sought to explore the
naive concepts that students come to class with [8, 7].

As students have changed in their pre-existing knowledge
over the last 40 years, so has the software that they work
with on a daily basis. With an increase in social network-
ing, communication and data storage and organization on
the computer, the software applications in these domains
have also become more sophisticated. Through repeated
use of these applications, the current generation of students
have developed sophisticated models of the information that
drives the software as well as the interaction with this infor-
mation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

In this paper I explore the results of a pilot study aimed
at assessing the way that people express the models that
they have for working with this information. I discuss the
methodology of data collection, the coding of the interviews,
and the results. While not generalizable because of the small
sample size, the results do point to a pre-existing model
of data that is consistent across many applications and is
based more in abstract representations and the interaction
provided by the software application to the data. Finally,
open questions prompted by this research are proposed for
discussion.

2. MENTAL MODELS IN EDUCATION
The process of learning involves the connection between

existing knowledge and new material. Without providing
that connection, meaningful learning does not occur [5].
These two particular components of learning are equally im-
portant to be addressed, and yet often prior knowledge is not
activated or assumed not to exist when instruction is going
on. Many studies in cognitive science and conceptual change
have shown us that attention must be paid to the knowledge
and beliefs that students have prior to instruction[2].

A mental model is an internal representation of external
objects or events[3]. They deal with both the form or struc-
ture of the item as well as the rules for interaction with the
item[12]. Today’s students have formed mental models for
the data intensive applications that they work with on a
daily or weekly basis. It is up to us as educators to take
advantage of these models in our instruction.

With current instructional practices, students are not ex-
iting introductory courses with appropriate models for com-
puter science[4]. Without correctly identifying the models
that students already hold before trying to impose new mod-
els, it is difficult to know if information is being lost in trans-
lation.

Cognitive science tells us that utilizing pre-existing models
can help reduce cognitive load of students and help teach-
ers find the zone of proximal development that is appro-
priate for their students[2, 10, 11]. Studies of conceptual
change show that if students hold misconceptions of con-
flicting models with new information, their ability to apply
and transfer that information correctly will be impaired[9].
While much of the research has addressed situations where
the conflicting models are incorrect[1], the existance of com-
peting models interferring in problem solving domains is well
documented[6].

This pilot study asks the question of whether prevalent
mental models exist for data intensive software applications,

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

55

and if so, can those models be aligned with data structures
introduced in early computer science classes.

3. RESEARCH DESIGN
Information was gathered from subjects through in-depth

interviews. There were 8 subjects interviewed from a private
research university(7) and a public university(1), varying in
computer science experience and gender. The categories of
computer science experience were:

• No Programming:the person had never taken a pro-
gramming class.

• Programming/Non Major:the person had taken 1 or
more computer science classes but was not a computer
science major.

• CS Major:The person was an upperclassman pursuing
a computer science degree.

• Faculty: the person was a faculty member in either CS
or Engineering at the university and had an extensive
programming background.

Subjects answered questions about the data intensive pro-
grams that they used on a regular basis. Prior to being inter-
viewed participants completed an intake survey that asked
how often they used programs such as email, iTunes, map-
ping software (like Google Maps), a cell phone address book,
instant messenger, Facebook, and You Tube.

Participants were asked the same four questions about
each application they used frequently (more than once a
week). The questions were designed to find out about both
the structure and relevant operations on teh data held within
the mental models. The questions were:

1. How do you normally interact with the program?

2. How do you keep your information organized? If you
had to imagine how the computer saves or stores your
information what would that look like?

3. If you want to get to one particular piece of informa-
tion, how do you get there?

4. Imagine i want to change the way you interact with the
software program so that you can see only one piece
of data at a time. Which of the following four buttons
do you think would be the most used? Get First, Get
Last, Get Item Number , or Search? Which of the
buttons do you think would be the easiest to make?

The questions were always asked in this order for all sub-
jects and applications. As participants answered the ques-
tions, the interviewer may have asked for clarification if the
answer was vague.

4. CODING
The data was coded at the utterance level from each sub-

ject. For the purposes of this analysis an utterance was de-
fined as an idea that was expressed either in a statement or
series of statements. A total of 228 utterances were recorded
and coded. For each utterance, the application they were
discussing, the question they were answering, and the time
on the video was recorded. Each statement was coded as a
reference to one or more data types based upon a table of

structures and important behaviors of common data types.
Data types included in the coding were Array, List, Map,
Set, Matrix, Stack/Queue, and Graph.

For example the following student statement was coded
as a Set because it referred to the unordered nature of the
data in her perception. ”Its like a big amorphous cloud and
you as the user get to choose the way that you organize
it.” The utterance ”I think its an actual list - most recently
added, and from that list other lists are referenceable, like
categories” was coded as both a list and also stack/queue.
It made a reference to the word list (which implies a linear
structure), as well as most recently added, which implies a
time sequence.

The data was also coded based upon the interactions you
could have with the information. A table of important be-
haviors for each data structure was created and used to code
the utterances which dealt with data interactions. The java
api was used as a reference for the kind of operations at-
tached to each data structure. The concept of search, for
example, was coded as both a List and a Set operation be-
cause both of those data structures contain a built in search
feature. For example, the student utterance ”Normally IŠm
looking for a specific friend, I donŠt browse around too of-
ten, I just use the search bar” was coded as List and Set for
this reason.

The table of structure vs. behavior is available at the
author’s web site in the appendix of this paper at

http://www.cs.cmu.edu/~lsudol.

5. RESULTS
Although the small subject size makes it hard to gen-

eralize, the consistency across very different subjects in a
variety of domains offers strong suggestions of underlying
structures.

5.1 Application Data
The 8 subjects were asked about applications they used

more than once a week. There were 8 different applications
that were covered, with an average of 4.6 applications per
person. The four questions were asked about each applica-
tion that participants indicated they used frequently on an
intake survey. For each application the number of relevant
utterances range from 2 to 12 per person.

5.2 Data Type Difference
There were several patterns that emerged across people

and applications. The common language for List and Set
included reference to the operation of searching, the ability
to see if an item was contained within the data, or to look
at all the items at once. Statements coded as stack/queue
frequently involved the mention of a ”first”or ”last” item and
the idea that order was preserved was very strong. State-
ments coded for arrays indicated rigidity (in terms of size or
ordering) and indexes for each item.

5.3 Overall Utterance Count
As you can see in Figure 1; List and Set had the most

utterances of all the data structures. The graph shows by
data type the count of the utterance across all subjects and
applications. Remember that one utterance may be coded
in different categories.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

56

Figure 1: Utterance count by data type

5.4 Subject Background
The results can also be looked at by subject background.

Presented here are the percentages since there were different
numbers of utterances total per subject.

You will notice in the data from Table 1, that although
arrays are often the first way that students are taught to
store multiple records within a program, there is little evi-
dence from this pilot that people have prevalent models for
arrays. Even after taking a computer science course, people
still tend to refer to abstract, dynamic models of data.

Table 1: Table 1:Data Structures by Subject Back-
ground

No Prog. Non Major Major Faculty
Array 3% 5% 2% 0%
List 38% 28% 34% 45%
Map 6% 5% 7% 17%
Set 33% 17% 26% 20%

Matrix 0% 3% 2% 2%
Graph 0% 3% 5% 1%

Stack/Queue 10% 20% 12% 9%

Although these results should not be considered general-
izable, faculty members showed a strong bias towards List
based data structures, while students who had never taken
computer science were much higher for set or unordered
structures. While these two results would be difficult to
generalize to a larger population, it does motivate further
study into what types of models people hold of data, and
how that can be mapped to the type of data storage that
students could encounter in an early programming course.

5.5 Gender Results
Table 2 shows the results by gender. While the numbers

vary slightly the same overall pattern of in increase in the
List and Set categories holds across both genders. While we
often encounter discussion the gender differences between
students studying computer science, there seems to be little
evidence at this time for the idea that men and women per-
ceive the information in the computer differently. However,
in future studies gender will be recorded to validate this on
a larger, more diverse population.

5.6 Results by Application
One question that needs to be explored is whether it was

the applications discussed that prompted the pattern ob-
served, or whether common models exist across all applica-

Table 2: Table 2: Results by Gender
Male Female

Array 2% 4%
List 30% 36%
Map 9% 3%
Set 24% 27%

Matrix 2% 1%
Graph 2% 2%

Stack/Queue 15% 14%

tions that get used on a regular basis. Table 3 shows the
breakdown by utterance count across all of the applications.

Table 3: Table 3: Utterances by Application
Array List Map Set Matrix Graph S/Q

Torent 1 12 2 4 0 0 3
CellPhone 1 21 6 12 0 0 7

Email 3 34 4 29 1 0 19
Facebook 1 23 6 15 1 2 9
Google 2 15 1 8 4 4 2
Maps
IM 1 4 4 5 0 0 3

iTunes 0 17 3 14 0 0 2
YouTube 0 7 1 2 0 1 3
Totals 9 133 27 89 6 7 48

Despite both the differences in the visual and interactive
aspects of the data contained throughout the different ap-
plication, the pattern of responses remain the same. A ma-
jority of the utterances code as either List or Set based data
structures. This consistency, despite the different software
applications that were discussed implies a commonality to
the models that the students hold.

6. OPEN QUESTIONS
This pilot study opens several questions for discussion.

• Does taking a computer science course (or many courses)
change the way which we percieve data storage and in-
teractions?

• Are there mental models that are prevalent in the stu-
dent population before they take a computer science
course?

• Should introductory education focus on utilizing pre-
existing models to sequence our instruction, or should
we teach our standard curriculum because it is the
standard curriculum?

• What other features of the mental models should be
explored in future studies?

• If these results are replicated in a larger study, what
implications does that have for computer science edu-
cation and computer science education research?

7. ACKNOWLEDGMENTS
The research reported here was supported by the Insti-

tute of Education Sciences, US Department of Education,
through Grant R305B040063 to Carnegie Mellon University.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

57

The opinions expressed are those of the authors and do not
represent the views of the Institute or the US Department
of Education

8. REFERENCES
[1] M. T. H. Chi, J. D. Slotta, and N de Leeuw. From

things to processes: A theory of conceptual change for
learning science concepts. Learning and Instruction,
4:27–43, 1994.

[2] National Research Council. How People Learn: Brain,
Mind, Experience and School. National Academy
Press, 2000.

[3] Kenneth Craik. The comprehension of the everyday
physical environment. Journal of the American
Planning Association, 34:29–37, 1939.

[4] Linxiao Ma, John Ferguson, Marc Roper, and Murray
Wood. Investigating the viability of mental models
held by novice programmrs. SIGCSE 2007:
Proceedings of the 38th SIGCSE technical symposium
on computer science education, pages 499–503, 2007.

[5] Richard E. Mayer. The psychology of how novices
learn computer programming. ACM Comput. Surv.,
13(1):121–141, 1981.

[6] George J. Posner, Kenneth Strike, Peter Hweson, and
William Gertzog. Accommodation of a scientific

conception: Toward a theory of conceptual change.
Science Education, 66:211–227, 1982.

[7] Beth Simon, Dennis Bouvier, Tzu-Yi Chen, Gary
Lewandowski, Robert McCartney, and Kate Sanders.
Common sense computing(episode 4): Debugging.
Computer Science Education, 18:117–133, 2008.

[8] Beth Simon, Tzu-Yi Chen, Gary Lewandowski, Robert
McCartney, and Kate Sanders. Commonsense
computing: what students know before we teach
(episode 1: sorting). In ICER ’06: Proceedings of the
second international workshop on Computing
education research, pages 29–40, New York, NY, USA,
2006. ACM.

[9] S. Vosniadou. The cognitive-situative divide and the
problem of conceptual change. Educational
Psychologist, 42:55–66, 2007.

[10] Stella Vosniadou. Mental models in conceptual
development. Model Based Reasoning: Science,
Technology, Values, 1, 2002.

[11] L. S. Vygotsky. Mind in Society: The development of
higher psychological processes. Harvard University
Press, 1978.

[12] R. M. Young. Mental Models, chapter Surrogates and
Mappings: Two Kinds of Conceptual Models for
Interactive Devices, pages 32–52. Erlbaum, 1983.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

58

Quick Introduction to Programming with an Integrated
Code Editor, Automatic Assessment and Visual Debugging

Tool – Work in Progress

Juha Helminen
∗

, Lauri Malmi, Ari Korhonen
Department of Computer Science and Engineering

Helsinki University of Technology
P.O. Box 5400, 02015 TKK, Finland

{juha.helminen, lma, archie}@cs.hut.fi

ABSTRACT
Research into programming education has led to the de-
velopment of a multitude of tools to support teaching and
learning programming. The tools typically focus on a cer-
tain aspect of learning. Visualization tools support building
conceptual level understanding of how programs work. Au-
tomatic assessment tools give feedback on submitted tasks.
Specialized learning environments, such as microworlds re-
strict the number of concepts to be mastered or simplify
writing programs by providing a limited set of operations
and simplified syntax. In this paper we present a novel tool
Jype that integrates a number of essential activities into
one programming environment, and thus partially solves the
problem of using many different tools on the first program-
ming course. Design of Jype is based on knowledge that
research has revealed about challenges in learning program-
ming. Jype integrates program visualization features, visual
debugging facilities including reverse execution, and auto-
matic assessment on programming assignments. Moreover,
Jype is designed for teaching Python, when most research
in programming education support tools is based on Java.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI), Distance learning; K.3.2 [Computer and
Information Science Education]: Computer science ed-
ucation

General Terms
Human Factors

Keywords
computer science education, automatic assessment, visual

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

debugging, jype

1. INTRODUCTION
Programming is a core competence in computer science

(CS) and is usually the first step in a CS curriculum. How-
ever, students cannot program at the expected level of com-
petency after having completed their introductory program-
ming courses. This has been shown time and again in multi-
national and multi-institutional studies [15, 21, 23]. A com-
monly suggested explanation for the weak performance is
that they lack adequate skills in problem-solving [19]. How-
ever, a significant source of the difficulties actually appears
to be students’ overall fragile knowledge of elementary pro-
gramming and insufficient understanding of control flow and
program state [13]. Fragile knowledge means that while
one might possess the knowledge to answer direct questions
about a particular subject they still might not be able to
apply that knowledge in solving a problem on their own. In
the programming context, this means that while students
might be able to answer correctly to isolated questions on
specific programming items they still are not able to com-
bine this knowledge in order to write and understand the
execution of a complete functional program.

The introductory programming courses are often tightly
paced and students are expected to learn a new way of think-
ing about problems and a set of skills for working with pro-
grams in a relatively short period of time. Indeed, students
are easily discouraged at the start of their first programming
course as they are faced with the overwhelming complexity
of programming tools combined with learning the many ab-
stract concepts and notations. Not surprisingly, high drop-
out rates are common on first programming courses. In a
recent study on the reasons behind this problem among CS
minors at their institution, Kinnunen and Malmi [9] reported
a rate of 26 percent, and in general the rate at many insti-
tutions is estimated to be at 20–40 percent. In the study,
the students viewed finding run-time errors as the most dif-
ficult programming-related issue. They even went as far as
to name the difficulty of tracking down even simple errors
as one of the reasons behind their decisions to drop out [8].
As programming dominates the beginning of any CS cur-
riculum, this difficulty may even discourage learners from
continuing in this field.

At the heart of programming is the concept of program
comprehension, which refers to the process of understanding
programs and software. In essence, a programmer constructs

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

59

a mental model, an internal representation of their under-
standing about a program’s intent, its data and execution,
and this cognitive process is the focus of program compre-
hension research [22]. Indeed, what beginning programmers
above all must develop, is a conceptual understanding of the
computer’s execution model, the notional machine, that is
implied by the programming language’s constructs. Con-
sequently, many kinds of software tools have been built to
aid in developing this understanding. Most of these incor-
porate some form of visualization in an attempt to better
communicate the abstract concepts. Ultimately, however,
learning to program simply requires practice. Learners must
first gain an understanding of the basic mechanics and then
practice logical reasoning by combining and applying their
mental models to solve problems in a variety of contexts. In
other words, a programming course must have many pro-
gramming assignments to drill the students and let them
properly evolve viable mental models. The models are vi-
able if they allow the learner to accurately and consistently
explain the mechanics of the constructs.

The practical goal of an introductory programming course
is to learn to read and write programs. As discussed, in ad-
dition to adequate practice, the key to learning to program is
having an accurate understanding of what constitutes a pro-
gram’s state and how a program is executed. Like with any
abstract constructs, we can use illustrations to try to con-
vey information about them. Thus, a widely-used method
of supporting the learning process is to provide a visual rep-
resentation of program state. There exist many program vi-
sualization tools and integrated development environments
(IDE) aimed towards beginners that employ software visu-
alization. Jeliot 3 [16] and jGRASP [1] are state-of-the-art
examples of these. When students are given the ability to
visually explore programs and algorithms we expect them
to be able to better make sense of program executions and
programming concepts. However, there is some controversy
and conflicting research on whether visualizations by itself,
such as animations of program executions, actually improve
learning. Studies indicate that the level of interactivity is
a significant factor in the learning outcome [4, 6, 17]. As
opposed to passive animations, more engaging visualizations
that activate the students appear to be more beneficial. This
result has inspired researchers to create systems that inte-
grate software visualization and automatic assessment : stu-
dents are given tasks related to a visualization and their
answers are automatically evaluated for correctness to give
them immediate feedback. The assignments can, for exam-
ple, be pop-up questions based on a code animation [11]. A
typical question would ask the student to predict the value
of a variable after the current statement has been executed.

Automatic assessment of coding exercises makes it possi-
ble to keep the teachers’ workload manageable even on large
courses, while still providing students with a reasonable level
of guidance in developing their skills through hands-on expe-
rience with practical programming tasks. The systems can
be broadly categorized into two classes. On the one hand,
there are many systems that primarily provide a server for
submitting solutions to get automatic feedback and provide
no means of devising the solutions in the system itself and
thus require the use of a separate editor. On the other
hand, there are systems that, in an attempt to lower the
barrier-to-entry, provide an integrated facility to write the
code for the solution. In these systems the focus is on el-

ementary programming. Some examples of the first cate-
gory are BOSS [7] and Web-CAT [3] and the second Jav-
aBat [18], WebTasks [20] and Javala [12]. None, however,
provide more than a mere text editor for writing the solu-
tions and they must be debugged elsewhere. VIP [24] is the
one tool that closely integrates C++ programming exercises,
in the sense of writing code to solve automatically assessed
programming problems, with visualizations of program state
so as to provide a built-in facility for visually debugging the
solutions. However, our introductory programming course
is built around Python. Overall, not many supporting tools
have yet been developed for teaching Python programming.
There are many professional IDEs and some microworld pro-
gramming environments, such as rur-ple1, Guido van Robot2

and Turtlet3. ViLLE [11] also provides some support for vi-
sualizing Python execution with functionality for translating
a Java code animation to an equivalent animation in Python.

2. DESIGN AND IMPLEMENTATION
In light of the problems presented, we designed a new

education-oriented tool [5] for our newly established intro-
ductory programming course built around Python. We set
five primary goals for our tool.

1. Facilitate program comprehension and aid in forming
an accurate mental model of program state and exe-
cution through consistent automatically generated vi-
sualizations.

2. Aid in tracking down the causes of programming er-
rors with integrated visual source code level debugging
functionality that supports backstepping.

3. Engage students with automatically assessed program-
ming assignments to enable and support the learning
of programming, in the sense of actually writing code,
by practice and repetition.

4. In achieving goals 1-3, add as little overhead as possible
to the actual process of writing program code.

5. Minimize the barrier to entry by implementing the sys-
tem as an easy-to-use web application, which also al-
lows it to fully support independent distance learning.

Goals 1 and 3 are a response to the students’ apparent
fragile knowledge of elementary programming. The students
are given meaningful coding tasks, which they are expected
to solve by utilizing the integrated visual debugging func-
tionality that provides a viable representation of the notional
machine and is thus intended to guide them towards pro-
gram comprehension. Goal 2 tries to address the problem of
locating errors in a program, which students can easily get
stuck on. The purpose of Goals 4 and 5 is to let students
gradually build confidence in programming in a streamlined
environment before moving on to more professional tools
with steeper learning curves. That is, the intent is to soften
the start of the course and give students a sense of what is
fun about programming with a simplified easy-to-use inter-
face, integrated functionality and an immediate initial focus
on accomplishing actual programming tasks. We think this
will provide students with a sense of achievement early on
and then better motivate them to put the effort into learn-
ing to use the programming tools, and thus even possibly

1http://sourceforge.net/projects/rur-ple/
2http://gvr.sourceforge.net/
3http://www2.lut.fi/̃jukasuri/Kilppari/

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

60

reduce the number of dropouts.
The tool, known as Jype, provides functionality for visual

debugging with integrated coding exercises that are auto-
matically assessed. Figure 1 shows a screenshot of Jype.

Figure 1: The basic view of Jype.

The visualizations are designed to facilitate the under-
standing of basic data flow and procedural control flow. A
program can be executed step-by-step in a typical source
level debugger line-by-line manner. Additionally, the execu-
tion can be stepped backwards. Program state is visualized
at each step. The progress of control flow is shown by high-
lighting the line that is currently being executed and the line
that was previously executed. Additionally, Jype provides
a representation of the execution stack to illustrate scoping
and the chain of function calls and returns. Program data is
shown with a table-like view where changes are highlighted.

In contrast to a traditional debugger, the easy controls
for stepping through the execution without inserting break-
points allow quick and easy transitions between writing and
visually tracing code. There are no compilation or build
steps. Furthermore, execution can be stepped in reverse.
Because the automatic feedback received from the automatic
assessment is integrated to the coding environment, the stu-
dent can fluidly move on to visually debugging the solution.
Our hypothesis is that the easy controls and the integration
of these functionalities would lower the threshold for visu-
ally tracing the program to find out problems. This way,
students should locate errors more efficiently compared to
more ad hoc approaches, such as adding print-commands
and many forms of trial-and-error strategies.

Jype is implemented as a Java application that can be run
as an Applet, as a Java Web Start application or as a local
stand-alone application. It is built on top of existing open
source libraries Jython4, Matrix [10] and jEdit5. Jython is
a Java implementation of Python used to run the Python
code in Jype. Matrix is a data structure (DS) visualization
library which in Jype is used to provide abstract visualiza-
tions of some DSs and to store visualizations as an animation
sequence to allow for backstepping. Finally, Jype includes
the code editor from the jEdit open source project.

The automatic assessment in Jype is implemented by us-
ing the standard Python unit test library. Tests, scoring and
feedback is defined in terms of tests that exercise the stu-
dent’s program. Jype also includes a testing framework for
defining output-based assessment where the output of the
student’s program is compared to that of a model solution

4http://www.jython.org/
5http://www.jedit.org/

with the same input. Jype provides only the environment
for solving programming exercises and it is meant to be used
with a course management system that is used to store and
manage submissions and points. Currently, Jype exercises
can be deployed on a TRAKLA2 [14] server.

3. DISCUSSION
Jype is currently being used on a course for the first time

and there are yet no results on the students’ experiences
with it. The question that immediately comes to mind
with the development of a tool such as Jype is how much
there is a real need for this type of specialized tool
for an easy introduction to programming on univer-
sity level CS1 courses? That is, should we—instead of
scaffolding—simply provide more guidance and step into uti-
lizing a real programming environment right from the start?
This would most probably require to put more effort into
teaching how to use these tools correctly and efficiently in
order to cushion the start of programming. However, they
must learn to use these tools at some point of their pro-
gramming curriculum anyway. On the other hand, while ex-
tremely simple, Jype is yet another tool to learn and “grow
out off”, which leads to the idea of combining these two.
The scaffolding could be integrated into a professional tool.
For example, the functionality of Jype could be built into
an Eclipse perspective. This could perhaps allow a more
fluid transition into the real programming environment, but
still necessitates setting up a programming environment as
opposed to simply starting up a web application. The bot-
tom line is, should the focus of future efforts in programming
education tools be on extending and modifying existing pro-
fessional environments or to continue creating one-off tools?

There is also the question whether or not this kind of in-
tegration of assessment with the programming environment
is a good goal to strive for? How is it going to to af-
fect students’ working strategies? We would like to
think that tight integration of easy-to-use visual debugging
features with the assignments lowers the threshold of vi-
sually tracking errors expressed in the feedback. Thus, it
would promote more successful debugging strategies. How-
ever, this may very well not be true. We have seen in
other systems—allowing automatic assessment of program-
ming assignments—that students might become reliant upon
the scaffolding and never learn to program on their own.
Without any restrictions on the use of the automatic as-
sessment, the tendency could be to edit the code in a trial-
and-error manner based on the automatic feedback until the
tests pass. Simple solution is to limit the number of allowed
submissions. Still, some students might more easily resort
to trial-and-error strategies if they can get too immediate
feedback on the correctness of their solutions. The bottom
line is, how to diminish scaffolding during the course in or-
der to push students towards evaluating the correctness of
their solution more carefully before submitting it?

Finally, a point worth of discussion is whether it is the stu-
dents’ lack of adequate practice in elementary programming
that is the underlying reason of their weak performance. In
other words, is it all about a need for more repeti-
tion on the basics? That is, instead of having one or two
programming assignments on branching and loops, why not
have 3 or 6? Of course, having many simple programming
exercises is laborious both for the instructor who designs
them and for the student who has to solve them. However,

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

61

this is one of the problems that Jype and similar web-based
systems try to address. By providing a streamlined envi-
ronment that does not require the students to create a file
for every few lines of code, and to upload the file to the as-
sessment system, we can allow more repetition with short
exercises. In her doctoral thesis [2], Eckerdal discusses pro-
gramming assignments that incorporate too many different
concepts simultaneously. Instead, to properly build an un-
derstanding of the concepts, they should first be singled out
in individual exercises, and there should be enough varia-
tions of the same idea to solidify the understanding. The
bottom line is, can we achieve this by developing learning
environments that can deliver exercises with enough varia-
tion and repetition for students to master programming?

4. REFERENCES
[1] J. Cross, T. Hendrix, and L. Barowski. Integrating

Multiple Approaches for Interacting with Dynamic
Data Structure Visualizations. Proceedings of the 5th
Program Visualization Workshop, pages 3–10, 2008.

[2] A. Eckerdal. Novice Programming Students’ Learning
of Concepts and Practise. Doctoral dissertation,
Department of Information technology, Uppsala
University, Sweden, 2009.

[3] S. Edwards. Using Test-Driven Development in the
Classroom: Providing Students with Automatic,
Concrete Feedback on Performance. In Proceedings of
the International Conference on Education and
Information Systems: Technologies and Applications,
volume 3, 2003.

[4] S. Grissom, M. McNally, and T. Naps. Algorithm
Visualization in CS Education: Comparing Levels of
Student Engagement. Proceedings of the 2003 ACM
symposium on Software visualization, pages 87–94,
2003.

[5] J. Helminen. Jype – an education-oriented integrated
program visualization, visual debugging, and
programming exercise tool for python. Master’s thesis,
Department of Computer Science and Engineering,
Helsinki University of Technology, March 2009.

[6] C. Hundhausen, S. Douglas, and J. Stasko. A
Meta-Study of Algorithm Visualization Effectiveness.
Journal of Visual Languages and Computing,
13(3):259–290, 2002.

[7] M. Joy, N. Griffiths, and R. Boyatt. The BOSS Online
Submission and Assessment System. Journal on
Educational Resources in Computing, 5(3), 2005.

[8] P. Kinnunen and L. Malmi. Why students drop out
CS1 course? Proceedings of the 2006 International
Workshop on Computing Education Research, pages
97–108, 2006.

[9] P. Kinnunen and L. Malmi. CS Minors’ CS1 course?
Proceedings of the 2008 International Workshop on
Computing Education Research, 2008.

[10] A. Korhonen, L. Malmi, P. Silvasti, V. Karavirta,
J. Lönnberg, J. Nikander, K. St̊alnacke, and
P. Ihantola. Matrix – a framework for interactive
software visualization. Research Report TKO-B
154/04, Laboratory of Information Processing Science,
Department of Computer Science and Engineering,
Helsinki University of Technology, Finland, 2004.

[11] M. Laakso, E. Kaila, T. Rajala, and T. Salakoski.

Define and Visualize Your First Programming
Language. In 8th IEEE International Conference on
Advanced Learning Technologies, pages 324–326, 2008.

[12] T. Lehtonen. Javala – Addictive E-Learning of the
Java Programming Language. In Proceedings of The
5th Koli Calling Conference on Computer Science
Education, pages 41–48, November 2005.

[13] R. Lister, O. Seppälä, B. Simon, L. Thomas,
E. Adams, S. Fitzgerald, W. Fone, J. Hamer,
M. Lindholm, and R. McCartney. A Multi-National
Study of Reading and Tracing Skills in Novice
Programmers. SIGCSE Bulletin, 36(4):119–150, 2004.

[14] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual Algorithm
Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education,
3(2):267–288, 2004.

[15] M. McCracken, T. Wilusz, V. Almstrum, D. Diaz,
M. Guzdial, D. Hagan, Y. Kolikant, C. Laxer,
L. Thomas, and I. Utting. A Multi-National,
Multi-Institutional Study of Assessment of
Programming Skills of First-Year CS Students.
SIGCSE Bulletin, 33(4):125–180, 2001.

[16] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing Programs with Jeliot 3. Proceedings of the
working conference on Advanced visual interfaces,
pages 373–376, 2004.

[17] T. Naps, G. Rößling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, and S. Rodger. Exploring the Role of
Visualization and Engagement in Computer Science
Education. SIGCSE Bulletin, 35(2):131–152, 2003.

[18] N. Parlante. Nifty reflections. SIGCSE Bulletin,
39(2):25–26, 2007.

[19] A. Robins, J. Rountree, and N. Rountree. Learning
and Teaching Programming: A Review and
Discussion. Computer Science Education,
13(2):137–172, 2003.

[20] G. Rößling and S. Hartte. Webtasks: Online
programming exercises made easy. In Proceedings of
the 13th annual conference on Innovation and
technology in computer science education, pages
363–363, 2008.

[21] B. Simon, R. Lister, and S. Fincher.
Multi-Institutional Computer Science Education
Research: A Review of Recent Studies of Novice
Understanding. Frontiers in Education Conference,
36th Annual, pages 12–17, 2006.

[22] M. Storey. Theories, Methods and Tools in Program
Comprehension: Past, Present and Future. In
Proceedings of the 13th International Workshop on
Program Comprehension, pages 181–191, 2005.

[23] J. Tenenberg, S. Fincher, K. Blaha, D. Bouvier,
D. Chinn, S. Cooper, A. Eckerdal, H. Johnson, and
R. McCartney. Students Designing Software: A
Multi-National, Multi-Institutional Study. Informatics
in Education, 4(1):143–162, 2005.

[24] A. Virtanen, E. Lahtinen, and H. Järvinen. VIP, A
Visual Interpreter for Learning Introductory
Programming with C++. Proceedings of The 5th Koli
Calling Conference on Computer Science Education,
pages 125–130, 2005.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

62

Diagnostic Web-based Monitoring in CS1
Olle Bälter

KTH CSC
100 44 STOCKHOLM

SWEDEN
+46 8 790 6341
balter@kth.se

ABSTRACT
Students that fall behind during a course are a concern in any
teaching situation. Falling behind has negative effects both for
students, teachers and the university. Close monitoring of the
learning and development can be effective, but is in general time-
consuming and expensive. The use of a web-based diagnostic
system that can generate a large (infinite) number of questions
could make monitoring both time and cost effective.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, learning.

General Terms
Experimentation.

Keywords
Computer Science Education, Pedagogy, Generic questions.

1. INTRODUCTION
Science teachers too often experience how a student approach
them towards the end of a course and reveal that they did not
understand the topic of the 2nd week of the course and therefore
have been unable to understand the rest. Teachers are of course
aware of this problem and therefore introduce various minor tests
and/or lab assignments before the final to promote continuous
learning. However, as s a natural part of laboratory assignments
there are also lot of support available from teachers and assistants.
While this support is essential to help some students forward it
can also be unintentionally misleading for some that can produce
lab results (reports or in computer science: source code), but
without understanding exactly why.

In some cases teachers blame the students that do not study or
seek help early enough, but after spending a semester at an
American top college with excellent students and still observing
the same phenomena, it is clear that this happens even among very
talented students. In general, an experienced teacher get a sense

rather quickly which students are in danger of failing, but without
hard evidence of the case it is difficult to initiate a discussion with
the student. The teacher may be wrong, and the student may be in
denial.

If we take the idea of assessment during the course to an extreme,
we would constantly be assessing the students. This might have
benefits, but takes time from teaching and interaction with the
students and also feels a lot like baby-sitting.

One alternative that adds only a little workload to the teacher is to
ask the students to hand in reflections over their learning.
However, although beneficial in many ways, it adds to the
workload for the students, and students with authoring skills may
hand in reflections that seems right, but still has misunderstood
some concepts, in similar ways that a verbally skilled student may
slip through an oral examination of a lab assignment.

The solution should therefore minimize the time spent both for the
teacher and the students and contain precise questions that can be
assessed automatically. This way, the teacher only have to read a
summary of the results and does not have to spend any time
reading answers that are correct, which normally should be the
vast majority.

2. RELATED RESEARCH
Introductory courses in computer science is a constant topic of
discussion among academics and the hurdles to learn
programming have been lowered by various tools, such as
narratives, visual programming, robots, Lego [15] and
visualizations of programs [14, 16]. One of the criticisms is that
many students do not know how to program after an introductory
course [13] and that programming assignments are subject to
plagiarism [5]. Students report that it is acceptable to copy the
majority of an assignment from a friend [19] and in one study,
40% of students plagiarized at least one assignment [3]. There are
reports of 20% of the students failing the course [12].
Computer Assisted Assessment (CAA) is often presented as THE
solution for education of the future. The opinions on Computer
Aided Assessment (CAA) is split among academics, but there are
claims that this is mostly due to experience with CAA[3]. There
are several systems for CAA [11, 12] and there are studies that
report no significant difference in examination between online
exercising and classroom exercising [8]. Among the advantages
with CAA is the possibility to personalize assignments and to
resubmit answers (which is important from a constructivist
perspective), which improved grades greatly, but the share of
failing students remain approximately the same (slightly under
20% in [12]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling’09, October 29–November 1, 2009, Koli, Finland.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

63

However, there are also disadvantages with CAA [24]. If CAA is
used on the web, the problem of knowing who is answering the
questions and also whether this person is receiving help or not [3]
becomes difficult. One negative aspects of CAA not mentioned in
the literature (maybe because it is too obvious) is that constructing
problems and evaluations that are correct becomes even more
essential, as slips, mistakes and errors cannot be handled as
smoothly as on a written exam or a lab assignment where that
teacher simply can admit the mistake and correct it immediately.
In order to improve learning, counter plagiarism and reduce the
number of failing students (regardless whether they fail the course
or not), we also need to improve assessment.
Lecturers often do not know how well students are doing until
after the first assessment. At this point, it may be too late to
prevent struggling students from falling [1]. We therefore need to
assess students early and with problems suitable for their learning.
We know that deep approach to learning not surprisingly leads to
higher grades [20], but also that students’ expectation of their own
grade on the introductory course is the most important indicator of
performance [18] and the students’ comfort level is the best
predictor of success [21], and the strongest relationship between
fifteen factors and performance on a programming module was a
student’s perception of their understanding of the module [1]. One
study suggest that weaker students should only be required to gain
the ability to read and understand programs, and thereby
demonstrating knowledge and comprehension (using Bloom’s
taxonomy) [9]. The initial assessment on these levels should be a
part of the early identification of struggling students. Passing
these simpler problems could strengthen their self-confidence and
perception of the subject and thereby improve learning in the
entire course.
There is at least one report of weekly tests [23], but this was made
in labs, which of course reduce time for interaction. However,
these weekly quizzes dramatically reduced failure rates [23] and
lab exams are better assessors of programming ability than
traditional methods such as written exams and programming
assignments [5] but an examination of novice programmers and
the SOLO (Structure of the Observed Learning Outcome)
taxonomy ends with a recommendation to mix training and
assessment of reading and writing tasks [10].
There are already online programming assessment tools [11, 17],
but unlike the proposal in [17], we are only suggesting a
pedagogical methodology, not a technical system. There is also an
argument against combined development and assessment systems:
the students are not learning to use the tools used in “real”
development. Self-assessment has also been used successfully for
terminology quizzes as a way to encourage reading lecture
material before class [22], our proposal goes a little further.

3. PROPOSAL
A web-based system for small diagnostic tests would liberate
students from coordinating assessments in time and place and the
teacher could automatically be sent a summary by email.
However, creating sufficient number of questions in such a system
would be a very time-consuming endeavor, and if the number of
questions is too few, there is always a risk that some students will
copy answers from others.

A remedy to this problem is to use generic questions. A generic
question is a question formulated in a way that makes it possible
to construct a large (even infinite) number of questions from it.

For example, as a first problem in CS1, the following code is
provided:

a = 17

b = a

a = 42

and the question follows: what is the value of b? Depending on
whether a and b are primitive or reference variables, the answer
will be 17 or 42, respectively. Examining the question we can
realize that a can be replaced with any valid variable name, as can
b; and 17 and 42 can be replaced with any variable value.

Similar constructions can easily be transferred to mathematics
(and are in use in web courses at our university) and possible to
other science subjects as well. The foundation is that the question
is determinable (that is, all answers can be classified as 100%
right or 100% wrong) and input dependent (that is, there is input
to the question and this input can be varied and effect output).

The web technology makes it possible to give students a small test
every day (or before or after a lecture, a lab etc.). A student that
fail the test may, thanks to the generic formula, be given a new
test immediately in the spirit of constructivism (this idea was
proposed by Keller in 1968 [6, 7]). This monitoring could
improve the situation for students, teachers and the university.

From a student perspective this system could improve
· learning, as the tests will inspire some students to study first,
· clarifying whether the student has understood or not (it is

easy to think you can because everything seems so simple when
the teacher explains),

· teacher support, as failing the test repeatedly will give a clear
signal that the student needs assistance, both to the student and
the teacher.

From a teacher perspective the system can give information in
several ways:
· Individual level: which students failed (more than once on a

question) this can be used to approach these students to give
them support

· Group level: Reports on how many (percentage) have failed
(the first time) on each question and use that to repeat
instructions during the course and improve the explanation to
the next course

· With test results stored in a database it could also be used to
detect negative trends (students that never use to fail suddenly
fails)

From a university perspective the system could improve:
· Throughput of students as failures can be detected and

corrected much earlier.
· Results in general as study habits improve.
· If the system is used in several courses, it could also be used

to identify students that struggle in several subjects (many
failures in several courses).

We have experience of similar attempts from the test system in a
previous project [2]. A minor part of that project is still in use in

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

64

on-campus courses in programming for the mid-term. The main
difference between this project and previous is

· We now have an infrastructure for development and
maintenance of the system.

· The focus on generic questions that has undisputedly right or
wrong answers.

· The technical solution is far more evolved with a complete
database, logging of web activities, etc.

Initially we will start with courses in computer science where we
have most knowledge and experience, but we clearly see how
these ideas can be extended into other sciences and for parts of
social science and humanities.

4. STUDY DESIGN
There is a web-based system in use at our university, but today it
is only used for distance education. This system will be a stable
foundation for the experiments we intend to perform. There are
generic questions on math and programming in the system, but
these are ad hoc and there is no general way to introduce new
questions, and no teacher interface for this.

In order to add functionality for generic questions and student
monitoring we intend to:
· Observe how the ad-hoc solution to generic exam questions

that are in use today can be used for diagnostic purposes, as
proposed.

· Based on these observations, propose a design for the system
so that any teacher can add new generic questions and use the
system.

· Develop a model for organization and continuous
improvement of a database with generic questions that all
teachers have access to.

We will do this in two simultaneous pilot studies, one at an
American college, and one at a Swedish university. At both sites
the pilot will be run in an introductory course in computer science
using Java or Python.
An example of output from the system to the teacher can be found
in Figure 1. This could be sent via email to the teacher or be
shown on a secure web page. The amount of information
presented should be limited and the thresholds should be possible
to configure. The information is divided in three sections. The
general section is to get a sense for how the entire class has done
on the test. The student section lists names of students with more
than two attempts. The purpose is that the teacher should get
information on which students that may need extra support. In this
mock example, Britney Spears does not seem to need any
assistance but Adam Sandler definitely does. The section with
questions is not interesting at all in this example, but in case there
is something wrong with one of the questions it will be clear
which from this information. This may be attributed to a failure in
formulating the question or if the question is correct, there might
be something overseen in the teaching and course material.

5. DISCUSSION QUESTIONS
· Is this a good idea from a teacher’s perspective?
· Is this a good idea from a student’s perspective?
· How should the pilots be evaluated?
· Are there more efficient ways to achieve the same goals?

6. ACKNOWLEDGMENTS
Thanks to the project Virtual Campus at Resource Centre for Net-
based Education, KTH Royal Institute of Technology for
financing and STINT, Swedish Foundation for International
Cooperation in Research and Higher Education for additional
travel grants.

7. REFERENCES
[1] Bergin, S. and Reilly, R. 2005. Programming: factors that

influence success. In Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education (St.
Louis, Missouri, USA, February 23 - 27, 2005). SIGCSE '05.
ACM, New York, NY, 411-415.

[2] Bälter, O. 2004. WIKKED (in Swedish) URL:
www.nada.kth.se/utbildning/projekt/wikked Last Visited
June 8, 2009.

[3] Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English, J.,
Fone, W., and Sheard, J. 2003. How shall we assess this?. In
Working Group Reports From ITiCSE on innovation and
Technology in Computer Science Education (Thessaloniki,
Greece, June 30 - July 02, 2003). D. Finkel, Ed. ITiCSE-
WGR '03. ACM, New York, NY, 107-123.

[4] Daly, C. and Horgan, J.M., (2001), Automatic Plagiarism
Detection, Proceedings of the IASTED International

Introduction to Computer Science

Summary of test 1 September 9 2009

General

85% passed on their first attempt

10% passed on their second attempt

5% needed more than two attempts

Students with none or more than two
attempts

Adam Sandler: 7 Failed

Britney Spears: 3 Passed

Questions

Attempts: 1 2 3 3+

Q1 45 3 2

Q2 48 2

Q3 45 3 1 1

Figure 1. Example of output from the system to the
teacher.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

65

Conference Applied Informatics, pp.255-259. Innsbruck,
Austria, Feb 2001.

[5] Daly, C. and Waldron, J. 2004. Assessing the assessment of
programming ability. In Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education
(Norfolk, Virginia, USA, March 03 - 07, 2004). SIGCSE '04.
ACM, New York, NY, 210-213.

[6] Herzberg P. 2001. The Keller Plan: 25 Years of Personal
Experience. In Positive Pedagogy – Successful and
Innivative Strategies in Higher Education, vol. 1, #1. ISSN:
1496-8126.

[7] Keller F S. 1968. “Goodbye, teacher...” J. Appl. Behavioral
Analysis. Vol 1(1), pp 79-89.

[8] Korhonen, A., Malmi, L., Myllyselkä, P., and Scheinin, P.
2002. Does it make a difference if students exercise on the
web or in the classroom?. In Proceedings of the 7th Annual
Conference on innovation and Technology in Computer
Science Education (Aarhus, Denmark, June 24 - 28, 2002).
ITiCSE '02. ACM, New York, NY, 121-124.

[9] Lister, R. and Leaney, J. 2003. Introductory programming,
criterion-referencing, and bloom. In Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science
Education (Reno, Navada, USA, February 19 - 23, 2003).
SIGCSE '03. ACM, New York, NY, 143-147.

[10] Lister, R., Simon, Thompson, E., Whalley, J. L., and Prasad,
C. 2006. Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. In Proceedings of
the 11th Annual SIGCSE Conference on innovation and
Technology in Computer Science Education (Bologna, Italy,
June 26 - 28, 2006). ITICSE '06. ACM, New York, NY, 118-
122.

[11] Malmi, L., Karavirta, V., Korhonen, A. and Nikander, J.
(2005): Experiences on automatically assessed algorithm
simulation exercises with different resubmission policies. In
ACM Journal of Educational Resources in Computing, 5 (3)

[12] Malmi, L., Korhonen, A., and Saikkonen, R. 2002.
Experiences in automatic assessment on mass courses and
issues for designing virtual courses. In Proceedings of the 7th
Annual Conference on innovation and Technology in
Computer Science Education (Aarhus, Denmark, June 24 -
28, 2002). ITiCSE '02. ACM, New York, NY, 55-59.

[13] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I.,
and Wilusz, T. 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS
students. In Working Group Reports From ITiCSE on
innovation and Technology in Computer Science Education
(Canterbury, UK). ITiCSE-WGR '01. ACM, New York, NY,
125-180.

[14] Naps, T. L., Eagan, J. R., and Norton, L. L. 2000. JHAVÉ—
an environment to actively engage students in Web-based
algorithm visualizations. In Proceedings of the Thirty-First
SIGCSE Technical Symposium on Computer Science
Education (Austin, Texas, United States, March 07 - 12,
2000). S. Haller, Ed. SIGCSE '00. ACM, New York, NY,
109-113. DOI= http://doi.acm.org/10.1145/330908.331829

[15] Powers, K., Gross, P., Cooper, S., McNally, M., Goldman,
K. J., Proulx, V., and Carlisle, M. 2006. Tools for teaching
introductory programming: what works? In Proceedings of
the 37th SIGCSE Technical Symposium on Computer Science
Education (Houston, Texas, USA, March 03 - 05, 2006).
SIGCSE '06. ACM, New York, NY, 560-561.

[16] Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. (2007).
VILLE - a language-independent program visualization tool.
In Proc. Seventh Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), Koli National Park,
Finland. CRPIT, 88. Lister, R. and Simon, Eds. ACS. 151-
159.

[17] Roberts, G. H. and Verbyla, J. L. 2003. An online
programming assessment tool. In Proceedings of the Fifth
Australasian Conference on Computing Education - Volume
20 (Adelaide, Australia). T. Greening and R. Lister, Eds.
Conferences in Research and Practice in Information
Technology Series, vol. 140. Australian Computer Society,
Darlinghurst, Australia, 69-75.

[18] Rountree, N., Rountree, J., and Robins, A. 2002. Predictors
of success and failure in a CS1 course. SIGCSE Bull. 34, 4
(Dec. 2002), 121-124.

[19] Sheard, J., Dick, M., Markham, S., Macdonald, I., and
Walsh, M. 2002. Cheating and plagiarism: perceptions and
practices of first year IT students. In Proceedings of the 7th
Annual Conference on innovation and Technology in
Computer Science Education (Aarhus, Denmark, June 24 -
28, 2002). ITiCSE '02. ACM, New York, NY, 183-187.

[20] Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q.,
de Raadt, M., Haden, P., Hamer, J., Hamilton, M., Lister, R.,
Petre, M., Sutton, K., Tolhurst, D., and Tutty, J. 2006.
Predictors of success in a first programming course. In
Proceedings of the 8th Austalian Conference on Computing
Education - Volume 52 (Hobart, Australia, January 16 - 19,
2006). D. Tolhurst and S. Mann, Eds. ACM International
Conference Proceeding Series, vol. 165. Australian
Computer Society, Darlinghurst, Australia, 189-196.

[21] Wilson, B. C. and Shrock, S. 2001. Contributing to success
in an introductory computer science course: a study of twelve
factors. In Proceedings of the Thirty-Second SIGCSE
Technical Symposium on Computer Science Education
(Charlotte, North Carolina, United States). SIGCSE '01.
ACM, New York, NY, 184-188.

[22] Williams, G. C., Bialac, R., and Liu, Y. 2006. Using online
self-assessment in introductory programming classes. J.
Comput. Small Coll. 22, 2 (Dec. 2006), 115-122.

[23] Woit, D. and Mason, D. 2003. Effectiveness of online
assessment. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education (Reno, Navada,
USA, February 19 - 23, 2003). SIGCSE '03. ACM, New
York, NY, 137-141.

[24] Zhang, D., Zhao, J. L., Zhou, L., and Nunamaker, J. F. 2004.
Can e-learning replace classroom learning?. Commun. ACM
47, 5 (May. 2004), 75-79.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

66

Implementing a Contextualized IT Curriculum:
Changes Through Challenges

Matti Tedre1,2

1University of Joensuu
Department of Computer Science and Statistics

Joensuu, Finland
firstname.lastname@acm.org

Nicholas Bangu2

2Tumaini University
Iringa University College

Iringa, Tanzania
firstname.lastname@tumaini.ac.tz

ABSTRACT
In this article we analyze the challenges that face IT edu-
cation in a private university in rural Africa. Our analysis
is based on a two-year ethnographic field study and action
research project in a higher education institution. Our anal-
ysis reveals that student selection is contingent upon nation-
wide government decisions. We present that IT manufac-
turers’ pricing policies are one reason for the digital divide
between universities of the Global North and Global South.
We consider aspects of collaboration between universities.
We analyze the effect of organizational structure to the im-
plementation of an IT program. We discuss students’ pre-
conceptions about IT as a field of study. We examine the
difficulties concerning university-level staffing in developing
countries. Finally, we summarize our analysis into seven
normative lessons-learned, which we hope to be useful for
other people undertaking similar projects in the developing
world.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education,
curriculum

1. INTRODUCTION
In 2007 Tumaini University started a new kind of an in-

formation technology (IT) program—a contextualized one—
that was tailored to meet the needs of Iringa region in Tan-
zania yet at the same time resonate with the curricula rec-
ommendations of the Association for Computing Machinery
(ACM) and Institute of Electrical and Electronics Engineers’
Computer Society (IEEE-CS) [14]. The first year of running
Tumaini’s B.Sc. Program in IT (BSC-IT) was spent resolv-
ing uncertain and unclear issues concerning the goals and
objectives of contextualized IT education, and those steps
have been documented earlier [16].

The second year of running the program saw a number of
issues and threats that, with hindsight, are probably typi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29–November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-385-3/08/11 ...$5.00.

cal of a new academic program in a private university in a
developing country. There are various reasons for the chal-
lenges we faced. Some issues derived from political decisions
that affected the entire Tanzanian educational sector. Some
were given rise by the global market economy, which often
treats developing countries harshly, and which allows unfair
treatment of developing countries by multinational corpora-
tions. Some challenges arose from differences in academic,
communication, and bureaucratic cultures between partner
universities. Some issues were home-grown, and can be at-
tributed to the program being in an early, formative stage.
Some tension derived from students’ uncertainty about IT as
a field and from difficulties in studying on university level.
And some conflicts happened due to some staff members’
lack of experience on university-level teaching as well as their
unfamiliarity with standards of quality education.

In this article we outline some of the challenges we faced
during our program development as well as some of our so-
lutions. We detail some common hardships of IT education
in a developing country context. Finally, we propose sug-
gestions for coping with some issues in development of IT
education in developing countries.

2. RESEARCH METHOD
This paper reports an investigation and analysis of the ed-

ucational, social, and cultural environment of a new educa-
tional program. As a combination of ethnographic research
and participatory action research [4], this research focuses
on exploring challenges and prospects that the Tanzanian
context brings into the development of an IT program. Nu-
ances of sociocultural interactions as well as many ethno-
graphic observations are largely excluded due to the limited
length of the paper, but a richer description and analysis of
pedagogical issues in IT education in Tanzania can be found
in authors’ previous work [14]. Typical of ethnographic re-
search [3], we aim at exploring local particulars, emphasize
adaptability in the course of study, develop new concepts
over the course of the study, and represent data mostly in
natural language.

Reports of interpretive research are easily biased by per-
sonal opinions and positions [7]. Therefore, it is important
to bracket our positions in the organization we study. This
paper was written from the viewpoint of two people associ-
ated with the program: we write this paper qua Associate
Professor (Head of the Program) and Provost (CEO) of the
college—both doctoral degree holders. The Head of BSC-
IT program was hired from outside the organization to run
the program and to launch a continuous improvement pro-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

67

cess within the program, and although he coordinates the
BSC-IT program’s development, he is currently working for
a European university. The second author is the Provost
of Tumaini: he initiated the BSC-IT program, chaired the
design and implementation process of the program, and he
continues to oversee the program’s development. Through
the experiences of these two key administrative people, we
wish to bring forth a thick description of phenomena sur-
rounding the program’s formative years.

Our views about the program’s development are neces-
sarily biased by our positions and history with the program.
In this paper we present the challenges and prospects as we
see them, and our views surely differ from those of other
stakeholders. To complement our lived experiences we use
data collected from various sources: e-mails, student feed-
back, internal memos, seminar presentations, notes on dis-
cussions, and field notes. Those data sources are indicated in
footnotes where appropriate. The data analysis was a basic
qualitative data analysis where emerging themes, patterns,
and signals were analyzed for resonance—or dissonance—
with research literature [11].

3. IT PROGRAM AT TUMAINI
The B.Sc. program in IT is the newest Bachelor’s level pro-

gram at Tumaini University, Iringa University College. The
program was started in September 2007. The IT program is
based on six principles that have from the beginning steered
the development of the program curriculum [14, 19]. The
first principle, context-sensitivity, refers to the idea that each
society, climate, environment, economy, and culture pose
some unique challenges for IT professionals, and that local
IT curricula should respond to those challenges [14]. The
second principle, problem-orientation, refers to the typical
constructivist approach of problem-based and project-based
learning—that is, students work on authentic problems and
reflect on the experiences they gain while working on those
projects [9].

The third principle, practicality, refers to the idea that
without practical training the graduates may not be able
to work with the various hands-on tasks that are expected
of them. The fourth principle, interdisciplinarity, refers to
the combination of different computing curricula, as well
as other subject areas, in the curriculum [16]. The fifth
principle, international recognition, refers to the fact that in
order for graduates to work in countries other than Tanzania
and to continue their studies in international master’s level
programs, the program must resonate with the international
standards of IEEE and ACM [1, 2]. The sixth principle, basis
on research, refers to the need to base any revisions of the
curriculum on rigorous research on-site.

Originally the IT program was an independent unit that
responded directly to the university’s top administration.
After the program had been run only for half a year it was,
however, accommodated within a newly formed ICT direc-
torate (an independent unit of a smaller size than faculty)
[16]. No more than half a year later, the IT program was
re-allocated to newly formed Faculty of Science and Educa-
tion.

During the academic year 2008–2009, BSC-IT program’s
teaching staff consisted of two tutorial assistants, assistant
lecturer, ICT director, and one associate professor. The
associate professor held a doctoral degree in computer sci-
ence, the assistant lecturer finished his online M.Sc. studies

in early 2009, and the other teaching staff members held
B.Sc. or B.Tech. degrees in computing. In the end of the
academic year 2008–2009 there were 27 second-year students
and 30 first-year students—48 men and 9 women altogether.

4. CHALLENGES AND CHANGES
The challenges of the first year of operation were mostly

about finding a fit between the ambitious but ambiguous
plans for Tumaini’s IT program and the actual implemen-
tation of the program [14, 16]. Practicality, problem-based
orientation, context-sensitivity, interdisciplinarity, interna-
tional recognition, and research-based program development
are nice keywords but unclear and not easily implementable.
Organizational matters were unclear during the first year of
operation, and a lot of curriculum design was still needed
[16]. In this section we outline seven most challenging issues
we faced during the second year of operation.

4.1 Surprises in Student Selection
Student selection at Tumaini University is a complicated

and long process, and although the rules and criteria are well
established and rigid, the outcomes are, for external reasons,
eventually unpredictable. In July 1st, 2008, after receiving
the first list of entrance applications, Tumaini’s Academic
Board convened for student selection. That meeting took
together the whole administration, deans, and department
heads, and it lasted nearly eight hours. BSC-IT program
was able to select 19 students from the first call. Those
students had, generally speaking, impressive records in their
high school A-level (advanced level) studies.

However, very soon after the selections to Tumaini were
made and were submitted to Tanzania Commission for Uni-
versities (TCU) for processing, TCU’s officials replied that
they had assigned each and every one of those 19 students to
a new national University in Dodoma1. UDOM was founded
in 2007 by a governmental fiat, it hosted 7.000 students in
2008–2009 and is projected to have 16.000 students in 2009–
2010 and 40.000 students in 2010–20112. The current gov-
ernment tries to guarantee the success of their founded in-
stitution by channeling the best students and considerable
academic resources there. The ambitious growth plans of
the new national university pose a serious threat to other
universities’ academic programs in terms of staffing, stu-
dent intake, and resource allocation. What is more, as we
write this article, due to difficulties in TCU’s joint applica-
tion process and due to constant late announcement of the
national loans board’s decisions, the start of academic year
2009–2010 has been postponed by one month.

Government’s decision on the student selection lead Tu-
maini University to have a second call for IT students, which
attracted some 40 applications, out of which 25 met univer-
sity’s stringent admission requirements [18]. Because the
quota of 30 students was still not fulfilled, the program ad-
ministration announced an internal transfer call: Those stu-
dents who had been accepted to Tumaini’s other programs,
but who met the admission requirements to the IT program,
could transfer to IT. As students were aware that the na-
tional student loans board—which is the main sponsor of

1Announcement on Tumaini University web pages, retrieved
November 11, 2008.
2Interview of Prof. Casmir Rubagumya, acting Vice Chan-
cellor of the University of Dodoma. The Citizen, Special
Education Issue, June 2, 2009:p.7.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

68

most students—has a preference on science and technology
fields, the remaining 5 student posts were quickly filled3.

4.2 Trouble with Equipment
When the IT program was about to procure equipment for

a new computer lab for the incoming group of students, the
procurement staff ended up in a situation that is very famil-
iar to Tanzanian ICT professionals. The price of equipment
for the IT program’s new computer lab was almost double
the price that U.S.-based educational institutions would pay
for the same equipment. And if hardware is expensive, orig-
inal software is often even more expensive. One of the few
exceptions to the rule is Microsoft, which, under its “unlim-
ited potential” campaign sells operating system and office
products for schools in developing countries for a few dol-
lars per copy.

The Tanzanian government wants to encourage informa-
tion society development by having a 0% import tax on
computing equipment that comes for educational purposes.
Regardless of that, computers are still more expensive in
Tanzania than in Europe or the United States. The sit-
uation is the same throughout East Africa: In his closing
speech of IST-Africa Conference 2009, the ICT minister of
Uganda noted that East Africa will continue to increase com-
puter equipment trade with Chinese manufacturers because
in comparison to European and U.S.-based computer man-
ufacturers, Chinese manufacturers can sell the same quality
products for much lower prices. As mainstream computer
manufacturers—such as Dell, Toshiba, HP, and Apple—do
not offer the same level of support in developing countries
as they do in Global North, it is hard to understand the
differences between equipment prices.

The BSC-IT program already had a computer lab with
Intel-PC / Microsoft + Linux computers, so it was decided
that the second lab should contain Apple Macintosh com-
puters. The idea was to teach the students to move flex-
ibly between different brands and types of computer sys-
tems. That lab would also probably be most utilized, due
to chronic virus problems on Windows-based computers in
Africa. However, the prices stunned even Tumaini’s sea-
soned IT technicians. Table 1 portrays some example prices
of hardware and software from five vendors4: Apple web
stores in the U.S. and Europe, and three major Apple re-
sellers in Tanzania (Tan1–Tan3).

Table 1: Examples of Hardware and Software Prices
on Selected Products

U.S. Europe Tan1 Tan2 Tan3

iMac 20” $1199 $1556 $1650 - $1700
iMac 24” $1499 $1980 $2250 $2565 $2890
iWork ’09 $49 $84 $245 $130 -

FinalCut 4.0 $199 $282 $595 $500 -
Aperture 2 $199 $282 $550 - -
AppleCare $169 $253 - - -

The first setup in Table 1 is a minimum setup (iMac 20”
/ 2GB / 320 GB) without extra software pre-installed. The

3Transfer applications, September 23–October 6, 2008.
41e= $1.4144. Examples are from March-June 2009. Apple
web stores are store.apple.com and store.apple.com/fi

second setup is suitable for video editing (iMac 24” 2.66GHz
/ 4GB / 640 GB, which was the highest performance model
available in Tanzania). In the U.S. and Europe, one can pur-
chase iWork and FinalCut Express as pre-installed options,
but in Tanzania none of the vendors offered that option.
When queried about the cost of AppleCare warranty, one
of the Tanzanian resellers wrote, “Unfortunately we are not
permitted to sell Apple care in Tanzania and so we cannot
extend the warranty beyond the standard one year.”5 Apple-
Care three-year warranty is available for additional $169 in
the U.S. and for $253 in Europe. Simply put, in the poorest
countries in the world, hardware vendors (Dell, Toshiba, Ap-
ple, and apparently all others) sell their products for higher
price and poorer terms than anywhere else in the world.

What is more, when products bought from outside fail,
“global” warranty contracts cease to apply in Tanzania: One
IT staff member’s Apple laptop broke, but even though the
laptop was registered to the current owner in Apple’s global
database, Tanzanian Apple service did not offer warranty
service because the owner did not have with him the origi-
nal purchase receipts on paper. The happy Apple owner—
with an 8-month old MacBook Pro laptop and a 3-year Ap-
pleCare warranty—had to pay the repair himself with no
possibility for refund later. This interpretation of warranty
terms was then confirmed, by the Nordic Apple service in
Europe, to be correct6. The Apple service in Tanzania told
that they require a written proof of purchase because “How
would we know it’s not imported through gray markets”7—
whatever ‘gray markets’ mean in a global economy for vis-
iting researchers who bring their laptops from their home
countries. It seems a bit old-fashioned to ask today’s cos-
mopolitan IT workers to carry paper receipts of computer
purchase in their computer bags for three years.

When the Head of IT program contacted Apple headquar-
ters, in April 2008, to query about the reasons for the high
prices, his queries were directed to a high level Apple man-
ager in Europe. Over a phone call the Apple representative
explained that among other reasons, the higher prices are an
outcome of small markets, remote location, and high risks
(in, e.g., shipping and transportation—for instance, ships
that sail past the Horn of Africa have high insurance costs
due to frequent piracy incidents). Although the Apple rep-
resentative sympathized with the plight of the BSC-IT pro-
gram and took great effort to significantly bring the prices
down, the prices still remained too high compared to other
solutions. Although the Head of BSC-IT program recom-
mended getting Apple computers, the ICT Director and top
management ended up obtaining generic Intel-PCs running
Windows XP and Office solutions, parallel with Ubuntu
Linux8. Later, however, regardless of the high price, the
BSC-IT program purchased one 24” top-end iMac computer
with video editing software for multimedia editing purposes.
That single Macintosh computer has been in constant use—
often from five in the morning to midnight.

4.3 Vital Collaboration
International and national collaboration is even more im-

portant in developing countries than in industrialized coun-

5Personal e-mail from Apple reseller in Dar es Salaam, April
16, 2008.
6Personal e-mail from Nordic AppleCare, March 16, 2009.
7Personal Communication, January 29, 2009.
8Personal e-mail from ICT Director, September 16, 2009.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

69

tries. Tanzania’s acute lack of funds and substance exper-
tise can be countered by creative use of staff and student
exchanges, by e-learning co-operation, and by joint project
work with partner institutions. In the following subsection
we describe three aspects of collaboration that we feel are
crucial for a program’s success: Extent and variety of col-
laboration, learning each other’s standards, and developing
commonly agreed channels and ways of communication.

4.3.1 Collaboration
Tight collaboration with other universities has shown to

be the most important success factor for Tumaini’s IT pro-
gram. That is due to three main reasons: Firstly, student
and staff exchanges offer Tumaini and the partner univer-
sities new chances for research and collaboration. Indeed,
one of Tumaini’s great strengths is in how we can offer vis-
itors unique possibilities for research in the region. Sec-
ondly, Tumaini gets recognized experts to teach IT students
short courses and Tumaini’s staff members get international
exposure and experience. Thirdly, Tumaini’s students get
the chance for one-semester exchanges, for short intensive
courses in Iringa and abroad, and for continuing to M.Sc.-
level studies abroad.

During the second year of running, the BSC-IT program
joined three major projects. The first one, an EU-funded
project coordinated by University of Joensuu in Finland,
is a joint project between four European and five African
universities, and it focuses on development of a joint ICT
for Development (ICT4D) curriculum and learning material.
The second one, also coordinated by University of Joensuu
in Finland and funded by the Academy of Finland, is fo-
cused on improving the contextual impact of IT Education
in Tanzania. The third one, funded by the OLPC (One Lap-
top Per Child) Foundation in the U.S. and coordinated by a
group of Tumaini’s IT students, aims at developing IT skills
and independent learning skills of primary school children in
Ukombozi village in Iringa—that project will take 100 XO-
1 laptop computers to be used for educational purposes in
poor Ukombozi Primary School.

In terms of distance learning, some of Tumaini’s IT courses
are fully online. For instance, a course on Cyber Law was
given on-line, from Europe, by Mr. Andrew Mollel, who is an
expert on Tanzania’s electronic legislature. But Tumaini’s
slow network connection made it slightly cumbersome for the
law lecturer to organize his own timetable for the course. In
that course Mr. Mollel had to access Tumaini’s Moodle in
the night between 22:00 and 08:00 when Tumaini’s computer
laboratories are empty and the college’s satellite connection
has a light load. Mr. Mollel reported that during daytime the
satellite link could not sustain a connection stable enough
and fast enough for productively working with Moodle.

But international projects are not that easy to set up in
a small unknown university in rural Tanzania. Some appli-
cations to major funding agencies were returned without re-
view, and some agencies stated, among other notions, that
in Tanzania they work exclusively with the University of
Dar es Salaam9. This focus of foundations is understand-
able, as University of Dar es Salaam (UDSM) is the largest
university in Tanzania. However, the size and complexity of
UDSM has also made it notorious for frequent involvement
in corruption scandals.

9Personal e-mails, July 2008.

4.3.2 Bureaucracy
Although inter-university collaboration has been essential

for success, it has also brought upon us new kinds of burdens.
In January 2009, the college hosted the kick-off meeting of a
large EU-funded educational project, where the BSC-IT pro-
gram plays a significant role. However, neither the IT pro-
gram administration nor the Northern partners were fully
familiar with the EU procedures and standards of account-
ability, which caused significant trouble to both partners
of the collaboration. After the Northern partner promised
Tumaini that the funds for organizing the meeting will be
transfered to college in one week’s time, the administration
agreed to use college’s (very limited) funds for organizing the
workshop, paying transportation, paying hotel fees, and so
forth. However, very soon both sides of collaboration ended
up mired in overly rigid EU bureaucracy, which delayed the
payments to the extent that the IT program administration
and professors in Tanzania had to use significant amounts
of their own money to pay off some of the debtors while
waiting for the EU funds to arrive. That also severed some
personal relationships with local collaborators.

The main cause for friction was that all kinds of EU regu-
lations were discovered one after another, so that new doc-
uments were requested from Tumaini every other day. For
instance, Tumaini’s employees are paid a monthly salary and
they are not required to keep track of their working hours;
the college’s employees are given pre-paid vouchers for their
work phones but they are not requested to keep track of their
phone calls; the college does not have fixed rates for rental
of facilities; and it is not a part of the college’s standard
practices to record the room numbers when one is accom-
modated in a hotel. All these, and many other checks and
proofs were requested, in accordance with EU regulations,
after the workshop. Eventually the administration had to
tell the Northern partner that the administration refuses to
fabricate phone call lists, hotel room occupancy lists, and
other required evidence10. The aftermath of the workshop
took Tumaini’s administration numerous work days and un-
necessarily strained the relationship between the two part-
ners.

Developing countries are often criticized for overly bureau-
cratic procedures [10], but our experience is that EU has
a similar level of bureaucracy—and unlike the African fea-
tures of bureaucracy, the EU ones cannot be bypassed. For
instance, the application process for EU visa for one of Tu-
maini’s lecturers in December 2008 was a Kafkaesque expe-
rience for everyone involved. Whereas the African partners
should indeed improve some standards of accountability, the
European and U.S.-based partners should understand that
accountability is not a one-way street: Ian Smillie wrote
aptly that ‘accountability’ is a word that “rolls easily off
Northern tongues, as though it were a one-way concept. It
could, and perhaps should be asked who holds [the Northern
partner] accountable for inexplicable delays, for rigid report-
ing requirements and sudden changes of policy” [12, 62]. It
is very important that all the policies, procedures, regula-
tions, and standards are made clear from the beginning of
collaboration.

4.3.3 Communication
Tumaini University has, for several years, aspired to im-

10Personal letter to the partner, January 27, 2009.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

70

prove the flow of information within, from, and to the uni-
versity. An evaluation of the University as a high perform-
ing organization, conducted in 2007 by Maastricht School of
Management, found that communication glitches constitute
one of the major weaknesses of the university. The glitches
have been a source of frustration to staff, visiting researchers
and to collaborative links of the university. It was consid-
ered imperative that this weakness be effectively addressed
in the shortest possible time, and a number of improvements
are being implemented.

Firstly, we want to channel information flows from infor-
mal “coffee-room” channels and unorganized bulletin board
announcements into an e-bulletin board system. We hope
that this change will ensure that public announcements will
reach the whole university effectively and in a centralized
manner. Secondly, by establishing a position of an inter-
national coordinator, we want to centralize communication
with our incoming visitors, visiting researchers, and exchange
students. We hope that this change will reduce the amount
of overlapping work between coordinating staff, reduce gaps
between responsibilities, ensure quick and reliable communi-
cation, and enable quick flow of information from the univer-
sity to our visitors. Third, we want to improve our internal
communication from a mixture of email, letters, and memos
to e-mail only. Meeting that goal, however, requires a very
reliable e-mail system which is able to keep a “paper” track;
and it also requires a shift in attitudes of users in terms of
trust towards a paperless system.

4.4 Organizational Adjustments
As we noted before, within about a year the BSC-IT pro-

gram at Tumaini saw three very different positions in the
university’s organizational structure. Originally the pro-
gram enjoyed a high degree of independence and shallow
bureaucracy, which were slightly changed at the forming
of the ICT Directorate. In September 2008 the BSC-IT
program was located, with the Department of Mathemat-
ics Education, under a newly formed Faculty of Science and
Education. See Figure 1 for an illustration of the three orga-
nizational situations where the BSC-IT program was located
during 2007–2009.

Throughout the organizational changes, the BSC-IT pro-
gram sustained significant freedom in terms of program de-
velopment, program implementation, and course design and
implementation. In the course of time, the increasingly
tight conformance to university’s organizational structure
affected flexibility, decision-making, and accountability. In
the beginning the program enjoyed considerable flexibility
in terms of fast decision-making, quick and working com-
munication, and light organizational structure—the further
developments, however, significantly increased red tape, lev-
els of bureaucracy, and rigid procedures to follow. On the
other hand, those developments also enabled better evalua-
tion and control mechanisms on the program. Those changes
also lessened the burden the BSC-IT program caused to the
top administration.

When a new Faculty of Science and Education was formed,
the new faculty structure introduced a new Dean of Faculty,
who holds a Master’s degree in education, and who is very
well connected with all stakeholders in the educational sector
in Iringa region and in Tanzania. The effects of this orga-
nizational change on BSC-IT staff’s workload were mixed.
On one hand, changes in hierarchy brought in another level

of bureaucracy—the faculty level—which made procedures
more rigid and which complicated decision-making. On the
other hand, many departmental duties as well as human re-
source management tasks were moved to faculty level, which
eased the administrative burden. In addition, the Dean of
Faculty delegated to the Head of IT program considerable
freedom and responsibility on IT program administration on
matters of IT teaching, which enabled quite some flexibility
in decision making. All in all the organizational shifts did
not change much the amount of work done in the program.
See Table 2 for a summary of changes that organizational
changes brought about.

However beneficial or disadvantageous the organizational
changes will be in the long run, the frequent changes in or-
ganization made it difficult for the BSC-IT program staff to
know their place in the university organization, to under-
stand and follow the management and reporting chain, and
to handle information flows properly. More often than not
it was unclear to whom different requests, forms, reports, or
memos should be addressed. With hindsight, many of the
organizational difficulties and communication glitches could
have been avoided if more departmental meetings had been
held. But difficulties and clashes between people in the first
departmental meetings had led to abandoning that practice.
Later, though, on administration’s request monthly depart-
mental meetings were started again.

4.5 Conflicting Conceptions of IT Studies
The students’ determination concerning the quality of their

education, combined with their simultaneous, significant lack
of technological literacy, has caused quite some friction in
the program [15]. Students have their own ideas about what
they need, and they can sometimes quite vehemently advo-
cate those ideas. It has taken quite some effort to explain to
students some basic facts about computing education in gen-
eral, and IT education in particular. Below we list a number
of ideas, questions, or complaints that students have posed,
and our responses to those.

1) “Our program is not theoretical enough.” Or, in one
student’s words, the program is “like an advanced secondary
school”. A number of students who have talked with com-
puter science students at University of Dar-es-Salaam and
Ruaha University College have admired the theoretical ori-
entation of those programs, and wished for more theoreti-
cally oriented perspective to the BSC-IT program too. We
have found that it is helpful to thoroughly explain the dif-
ferences and characteristics of computing fields—electrical
engineering, computer engineering, computer science, soft-
ware engineering, information technology, and information
systems [2]. It is fruitless to compare the field of theoretical
computer science with the field of information technology
[13, 17].

2) “Our program does not prepare us to work in IT fields.”
In that statement students use the phrase “IT fields” to im-
plicitly refer to some specialized computing field, such as fin-
gerprint recognition, color research, or artificial intelligence.
We have countered this comment by illustrating students the
width of the field, the vast number of fundamental technolo-
gies of computing, and the variety of branches in computing
[5, 6]. In the field of IT a degree does not make one “ready”.
A degree in IT prepares one for learning their job quickly
and for keeping up with the constant changes in the field.

3) “Our course on topic x differs from the same course in

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

71

B.Sc Program
in IT

Top
administration

Top
administration

B.Sc Program
in IT

ICT Director

ICT Directorate

Top
administration

Faculty boardFaculty Dean

Faculty of S&E

Situation 1:
Independent Unit

Situation 2:
Part of ICT Directorate

Situation 3:
Part of Faculty of Science and Education

B.Sc Program
in IT

Dept. of Math
Education

Figure 1: Three Succeeding Organizational Situations of BSC-IT Program

institution y.” These objections sometimes arise when Tu-
maini’s students compare what they have studied with what
students in other institutions have studied. For some reason,
there is a feeling that all students in computing fields should
have the same set of courses with the same content. We
respond to this by explaining that there are neither world-
wide adopted IT / computing syllabi, nor are there standard
contents for specific courses. The ACM/IEEE curriculum
guidelines, such as CC2001 and IT2005, offer good direc-
tions, but intentionally leave a lot of room for local consid-
erations ([1, 12–13], [2], [14]).

4) “An IT specialist should know x, y, and z, but those
topics are not taught in our program.” This argument of-
ten arises when students have been reading job advertise-
ment and see the highly specialized skills that job applicants
should possess. Substitute x, y, and z with any implementa-
tion-specific terms such as “Oracle”, “C++”, and “Cisco net-
works”, and someone in our IT program has probably raised
a question about their lack in the syllabus. Firstly, in our IT
program we explain that a B.Sc. degree is not supposed to
produce specialists but generalists. Master’s-level programs
and doctoral programs are meant for specializing students.
Second, we stress that life-long learning and self-learning
are quintessential in the field of computing. New technolo-
gies and techniques require constant attention to learning
new things. We try to introduce and instill in our students
the idea that learning about IT begins at the university and
continues as the students leave the place.

4.6 Difficulties with Staffing
Like other rural universities in Africa, Tumaini has a per-

sistent problem with attracting formally qualified staff. How-
ever, having formal qualifications is only one criterion of
competence—other criteria include things like work expe-
rience, deep knowledge about IT topics, commitment, and
pedagogical deftness. In the beginning, Tumaini’s IT pro-
gram was able to hire three B.Sc./B.Tech. degree holders
who had 3-6 years of work experience from the field of IT
[18]. In addition, the university got one Ph.D. holder to head
the new program. The second year’s staff hiring, however,
did not go as smoothly as the first round did.

4.6.1 Recruitment
The original plan for academic year 2008–2009 was to hire

three more staff members, preferably M.Sc. degree holders11.
There were a number of qualified applicants, and preliminar-
ily the idea was to hire one dual degree (M.Sc. and M.Eng.)
holder from India (a wife of a current Tumaini employee)
and a Tanzanian M.Eng. degree holder who had received
his degree from Europe. However, visa problems caused the
Indian applicant to cancel her coming, and after that finan-
cial concerns at Tumaini led to the college freezing all new
staff hiring12. That action caused a conflict between the
program administration and the Tanzanian applicant, who
had already turned down some other offers in favor of Tu-
maini’s offer. Furthermore, one IT teacher’s return from
study leave was mired in an argument over work contract
terms. And finally, one of the key people in the program,
the ICT Director, left for a two-year study leave in a Euro-
pean institution. Suddenly the situation was that instead of
three more teachers, the IT program had double the number
of courses to teach, but one less teacher. Even further, one
of the original teachers moved from IT education to ICT
support department13. The situation was slightly helped by
a long-time IT staff member of Tumaini who was still finaliz-
ing his continuing studies, but who took part-time teaching
in the program.

The quite dire situation with staff eased temporarily in
Spring 2009. Two of Tumaini’s IT staff members, who had
been with Tumaini University almost from the founding of
the university, returned from their study leaves—now hold-
ing B.Sc.(Hons.) and M.Sc. degrees in IT. They were able
to undertake a good portion of the program’s teaching, and
they were able to teach courses according to their own spe-
cializations. In mid-semester, though, the situation changed
drastically when one of the IT teachers ended in a clash with
IT students and with program management, and after a se-
ries of fierce conflicts abruptly resigned from teaching any of
the four IT courses he was giving14. After almost a month of
resolving the situation and reorganizing teaching, two part-
time teachers were called in, and one course was undertaken
by program management—which froze down many other vi-
tal activities, such as outreach project work and research ac-
tivities. The crisis took nearly two months to fully resolve,

11Minutes of BSC-IT Planning Meeting, April 8, 2008.
12Personal e-mails, September 2008.
13Personal e-mail, July 30, 2008.
14Letter to management, April 18, 2009.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

72

Table 2: Effects of Organizational Situation to BSC-IT Program
Independent Unit ICT Directorate Part of a Faculty

Bureaucracy Light; Only inter-department
functions require paperwork

Intermediate; Frequent commu-
nication required between BSC-
IT Program and ICT Direc-
torate

Burdensome; Delays due to pa-
perwork, rigid procedures, and
difficult access to key people

Decision-
making

Flexible / Three levels: BSC-IT
program, top management, and
academic board meeting

Flexible / Four, partly overlap-
ping levels: BSC-IT program,
ICT Director, top management,
and academic board meeting

Rigid / Four levels: BSC-IT pro-
gram, Faculty meeting or Dean,
top management, and academic
board meeting

Clarity Some ambiguity about responsi-
bility and procedures

Some ambiguity about responsi-
bility and procedures

Clear location in the organiza-
tion; clear responsibilities and
procedures

Accountability Low; Decision-making happens
within the unit with few checks

Low; Decisions are made among
ICT staff

High; Decisions have to be justi-
fied and defended on several lev-
els

Vulnerabilities High dependency on key people,
lack of accountability, human re-
lationships, lack of insight into
the big picture

Dependency on key people, re-
source competition, narrow view
of development

Resource competition, conflict-
ing interests, conflicting views
on development, communication
breakdowns

Support Very strong, but dependent on
management’s will and commit-
ment

Strong, but vulnerable to con-
flicting interests of ICT support
and IT department

Strong, but dependent on Fac-
ulty Dean’s commitment and
qualities

Administration Burdensome, all administration,
technical development, and hu-
man resource management are
done within the program

Burdensome, administration is
distributed between two small
units

Intermediate, some administra-
tive duties are delegated to fac-
ulty level. Some centralized sup-
port functions.

and seriously impeded all activities in the IT program.

4.6.2 Varying Perspectives to Teaching
There is a variety of perspectives among staff members

concerning quality of teaching. Many teachers at Tumaini,
including the IT program, share the constructionist view
of the teacher as a “guide on the side”, as well as the cen-
tral ideas of practical and problem-based learning. However,
in a departmental meeting three teachers noted that the
principles concerning teaching at Tumaini’s IT program are
very different from those in the University of Dar-es-Salaam
(UDSM)15. Those teachers specifically mentioned three dif-
ferences between UDSM’s Computer Science program and
Tumaini’s IT program.

Firstly, they argued that at UDSM professors and lec-
turers can sometimes be absent for extended periods of time
without repercussions. Secondly, they argued that at UDSM
students have to take responsibility of their own studies in-
stead of the “spoon-feeding” practices at Tumaini’s IT pro-
gram. Third, they argued that at UDSM students are not
encouraged to visit—or are even prohibited from visiting—
their lecturers’ offices or asking questions about course con-
tents. One teacher proposed that a suitable mode of edu-
cation is one where the lecturer comes to the lecture hall,
presents the lecture, and leaves. After some discussion he
conceded that “maybe we can allow five questions at the
end of the class”16. At the end of the second year another
teacher insisted that giving only five lectures out of thirty
projected lectures constituted quality teaching, and refused

15Departmental meeting, June 24, 2008, 14:00.
16Direct quote: Ethnographic field notes / personal commu-
nication, September 18, 2008.

to consider arrangements for delivering the remaining course
contents to students in the following semester17. That crisis
too led to a severe clash between IT students, the teacher,
and administration; at one point students issued a strike
notice unless the problem with the course is resolved.

Discussions with teachers revealed that some of them re-
garded the UDSM modus operandi to be more desirable than
the strict rules currently at place at Tumaini. In addition,
some have found it undesirable that they have to show up
at the college also outside lecture hours; one of the teachers
asked sarcastically, “so are we expected to stay on campus
even when we don’t have anything to do?”18, which led to a
rather unpopular reassessment and reassignment of depart-
mental duties19. In a workload evaluation it was found out
that departmental duties were distributed very unevenly, yet
some staff members were reluctant to assume any responsi-
bilities that were not directly teaching-related. Some teach-
ers did not consider technical and administrative tasks, such
as IT program’s website management or coordination of in-
ternships, to be a part of their work contract. Again, the is-
sue ensued in a conflict that went all the way to the college’s
personnel administration officer, who ended up distributing
clear instructions for work-related duties.

Finally, we learned that feedback from students to teach-
ers must be thought very carefully before implementing it.
At the end of the first year students returned their annual
feedback, where they commented on what is good in the pro-

17Ethnographic field notes / personal communication, June
17, 2009.

18Ethnographic field notes / personal communication,
September 18, 2008.

19Internal memo, September 19, 2008.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

73

gram and what could be developed. In addition, students
evaluated the courses, and those evaluations were submitted
anonymously and privately to the teachers of each course.
In many occasions the program administration emphasized
that the student feedback is for teachers’ own personal devel-
opment only, and that this kind of feedback is not meant to
be any kind of a professional evaluation. However, the feed-
back caused one of the teachers lashing out, calling this kind
of feedback mere “rumors” and calling the students lazy20.
The idea of basing professional development on student feed-
back has to be grounded and marketed in a culturally suit-
able way.

Students’ attitudes towards quality of education have been
critical, yet mixed. We see a clear trend that those teach-
ers who utilize problem-based learning, who are not afraid
to work on the level of students, and whose pedagogical
views are at least implicitly constructivist are highly re-
spected and liked among students. However, despite the
alleged “high power-distance” culture in Tanzania [8], stu-
dents have openly opposed teachers who elevate themselves
or disrespect students, who stick to a simple lectures–and–
rote memorization pedagogy, or who otherwise cannot at-
tain a satisfying level of quality in education. We presume
that during their own studies each of the teachers have ac-
quired an idea about how quality education should be done,
and they let those ideas guide them in their own teaching.
Modernizing outmoded pedagogical views is a difficult but
necessary task in our college.

5. LESSONS LEARNED
We have collected here lessons that we learned during two

years of program implementation, as well as our suggestions
for coping with some difficult situations when developing
a new IT program in a developing country. Although the
lessons seem intuitively appealing, one ought to keep in mind
that the recommendations we make are probably not gener-
alizable to all developing countries.

Lesson 1: Prepare for Flexibility in Student Selections
In Tanzania, creating a good public image for IT program is
vital for attracting applicants—but that might not always be
enough. Political motivations and changes in government’s
regional and educational policies may have significant influ-
ence on student intake. It happens every year at Tumaini
that at the beginning of the semester only a fraction of in-
coming student quota is filled, and additional calls have to
be made. Around two or three weeks after the beginning
of the semester, the final list of new students is formed and
first-year classes may begin.

Lesson 2: Do Budgeting Locally
When planning an IT budget in a developing country, bud-
geting must be done locally, in local terms, and using local
knowledge on prices, procedures, constraints, and quirks of
procurement. Prices for equipment in developing countries
are higher than prices for the same equipment in the Global
North. From our perspective, developing countries need
much less stripped-down “poor-country versions” of equip-
ment than they need fair pricing, fair terms of trade, and
fair terms of warranty. However, as long as the current situ-
ation prevails, budgets must be based on good local knowl-

20Group e-mail, June 23, 2008.

edge about prices, as well as on knowledge about what can
be procured or manufactured in the region, what must be
bought from Dar es Salaam, and what has to be imported.

Lesson 3: Make Rules of Collaboration Clear
The procedures for managing a project throughout its life-
span—planning, implementing, monitoring, evaluation, and
reporting—differ between many developing countries and in-
dustrialized countries. Procedures for monitoring, auditing,
and reporting are often different, and sometimes there may
not be qualified people to do those activities. Although those
procedures often vary between grant agencies and funders,
the differences are pronounced in international collabora-
tion projects. In order to save time, money, and frustration,
it is important to make the rules of collaboration crystal-
clear from the very beginning. Unless it is absolutely neces-
sary, the developing country partner should not be required
to function as a provisory funder. If that is necessary, the
timetables for remuneration as well as the procedures and
format for expense claims must be made clear before any
money is used.

Lesson 4: Start Flexibly
In the case of Tumaini’s BSC-IT program, organizational
rigidity and bureaucracy grew gradually over time. The free
and flexible environment during the first year of the BSC-IT
program contributed greatly to early shaping of the BSC-IT
program. That light organization, however, lacked clear ac-
countability, bypassed established procedures, and caused
friction and stress with the rest of the university organiza-
tion. Although it is a good idea to start flexibly, too much
flexibility in one function or department of the university
causes burden in other functions or departments.

Lesson 5: Educate Students About the Goals of Their
Studies
IT is a broad field, and already when students apply to the
program, they should understand the focus of the program.
If students associate the term ‘IT’ with software engineering
or with theoretical computer science, an information tech-
nology program will not meet their expectations. However,
when students apply to university, they rarely have enough
knowledge about computing to do an informed choice be-
tween computing fields. Therefore, at Tumaini, we begin
very early to educate students about computing fields and
their foci[14]. We are also underway making an information
package for our website about the different computing fields.

Lesson 6: Recruit Staff Early, Don’t Underestimate
Staff recruitment is hard, and a rural university might not
be the first choice of job seekers. Therefore, it is impor-
tant to be very active in recruitment and recruit interna-
tionally. But uncertainty about the college’s finances means
that promises should not be made before the final budgets
are set, which easily deters the best applicants from choosing
Tumaini among their job offers. When recruitment needs are
being evaluated, it is important that the projected number
of staff members is not set too low. If the number of hired
staff members is kept to the minimum, then quality of the
program’s education, research, and outreach are jeopardized
if even one staff member leaves the college.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

74

Lesson 7: Make Short-Term Practical Plans
Financial, political, and socio-economic contingencies make
long-term planning nigh impossible at Tumaini. Staff turn-
over is high due to continuous education of staff as well as to
natural turnover of employees. Recruitment of new staff is
complicated. University’s finances are scarce and somewhat
volatile, an the finances depend on the national loans board’s
payment schedule to students. The project-based nature of
foreign grants and funding also hampers long-term planning.
It seems that in order to accommodate the difficulties in
practical long-term planning, East African organizations ea-
gerly introduce policies, visions, and strategies—which may
or may not be used to guide actions in the future.

6. ACKNOWLEDGMENTS
This research was partly funded by the Academy of Fin-

land grant 128577, “Improving the Contextual Impact of ICT
Education in Southern Tanzania: Engaging Stakeholders To-
wards Innovation,” led by Prof. Erkki Sutinen, University of
Joensuu, Finland (2009–2012). We wish to thank Mr. Lotti
Chuma, who is the procurement officer at Tumaini Univer-
sity, for his relentless search for price data. We also wish to
thank Mr. Deodatus Mogella for his help with data collec-
tion.

7. REFERENCES
[1] ACM Computer Science Curriculum Committee.

Computing curricula 2001: Computer science, 2001.

[2] ACM Information Technology Curriculum Committee.
Computing curricula: Information technology volume,
2005.

[3] M. Agar. Ethnography. In N. J. Smelser and P. B.
Baltes, editors, International Encyclopedia of the
Social & Behavioral Sciences, volume 7, pages
4857–4862. Elsevier, Oxford, UK, 2001.

[4] P. Atkinson and M. Hammersley. Ethnography and
participant observation. In N. K. Denzin and Y. S.
Lincoln, editors, Handbook of Qualitative Research,
pages 248–261. SAGE, London, UK, 2nd edition, 1994.

[5] P. J. Denning. Great principles of computing.
Communications of the ACM, 46(11):15–20, 2003.

[6] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder,
A. Tucker, A. J. Turner, and P. R. Young. Computing
as a discipline. Communications of the ACM,
32(1):9–23, 1989.

[7] C. Ellis and A. P. Bochner. Introduction: Talking over
ethnography. In C. Ellis and A. P. Bochner, editors,
Composing Ethnography: Alternative Forms of
Qualitative Writing, pages 13–48. AltaMira Press,
Walnut Creek, CA, USA, 1996.

[8] G. Hofstede. Cultures and Organizations: Software of
the Mind. McGraw-Hill, New York, NY, USA, 1997.

[9] D. H. Jonassen. Toward a design theory of problem
solving. Educational Technology Research and
Development, 48(4):63–85, 2000.

[10] E. Paloheimo. Tämä on Afrikka. WSOY, Helsinki,
Finland, 2007.

[11] G. W. Ryan and H. R. Bernard. Data management
and analysis methods. In N. K. Denzin and Y. S.
Lincoln, editors, Handbook of Qualitative Research,

pages 769–802. SAGE, Thousand Oaks, CA, USA, 2nd
edition, 2000.

[12] I. Smillie. Mastering the Machine Revisited: Poverty,
Aid and Technology. Practical Action Publishing,
Warwickshire, UK, 2000.

[13] M. Tedre. Computing as engineering. Journal of
Universal Computer Science, 15(8):1642–1658, 2009.

[14] M. Tedre, N. Bangu, and S. I. Nyagava.
Contextualized IT education in Tanzania: Beyond
standard IT curricula. Journal of Information
Technology Education, 8(1):101–124, 2009.

[15] M. Tedre and M. Kamppuri. Students’ perspectives on
challenges of IT education in rural Tanzania. In
P. Cunningham and M. Cunningham, editors,
Proceedings of IST-Africa 2009 Conference, Kampala,
Uganda, May 6th–8th 2009.

[16] M. Tedre, F. D. Ngumbuke, N. Bangu, and
E. Sutinen. Implementing a contextualized IT
curriculum: Ambitions and ambiguities. In A. Pears
and L. Malmi, editors, Proceedings of the 8th Koli
Calling International Conference on Computing
Education Research, pages 51–61, Lieksa, Finland,
November 13th-16th 2008 2009.

[17] M. Tedre and E. Sutinen. Three traditions of
computing: What educators should know. Computer
Science Education, 18(3):153–170, 2008.

[18] Tumaini University, Iringa University College.
Academic prospectus. Prospectus Series, 2007–2008
and 2008–2009, Iringa, Tanzania, 2007.

[19] M. Vesisenaho. Developing University-Level
Introductory ICT Education in Tanzania: A
Contextualized Approach. PhD thesis, University of
Joensuu, Department of Computer Science and
Statistics, Joensuu, Finland, 2007.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

75

Communicating with Customers in Student Projects:
Experimenting with Grounded Theory

Ville Isomöttönen
∗

Department of Mathematical Information
Technology, University of Jyväskylä, Finland

ville.isomottonen@jyu.fi

Tommi Kärkkäinen
Department of Mathematical Information

Technology, University of Jyväskylä, Finland
tommi.karkkainen@jyu.fi

ABSTRACT
The study provides a grounded theory based conceptualiza-
tion on students’ communication with customers in the con-
text of a software engineering capstone course. The course in
question is the one-semester capstone project course (Soft-
ware project TIES405) at the Department of Mathematical
Information Technology, University of Jyväskylä (JYU/MIT).
The results indicate that the students — novices at soft-
ware projects — demonstrate a communication barrier to-
wards customers as they enter a realistic software develop-
ment context. Underlying causes of this main theme are
presented and discussed, while the work also dissects the
use of grounded theory.

Categories and Subject Descriptors
K.3.2. [Computers and education]: Computers and In-
formation Science Education—Computer Science Education

General Terms
Human Factors, Theory

Keywords
Software Engineering Education, Capstone project, Com-
munication skills, Grounded Theory

1. INTRODUCTION
Today’s engineering education pays more and more at-

tention to communication skills [19]. Good communication
skills contribute to career development [22] and are expected
from a professional [14]. The importance of communication
skills has also been recognized in software engineering edu-
cation (SEE) community. Freeman et al. [6] included the
subject in essential elements of SEE in 1976 and the subject
is found in SE2004 recommendation [23], under the knowl-
edge area of professional practice, titled as communications

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$5.00.

skills (specific to SE). Recently, courses in software engineer-
ing programs are being devoted to people issues that address
communication skills, e.g. [25].

While the need to enhance students’ communication skills
is recognized in SEE community, questions arise: What are
the dimensions in students’ communication difficulties that
should be known and addressed by teachers? What are these
dimensions with regard to various course contexts and lev-
els of computing education? To answer these questions the
research needs to move from general observations to develop-
ing of analytic and explanatory knowledge — to uncovering
the essential underlying mechanisms of a studied social ob-
ject. The article aims to characterize students’ communica-
tion skills in a precise and an analytic way — by systematic
conceptualization. The research motivation is to achieve ex-
plicit knowledge of the students’ communication difficulties.
This knowledge is assumed to benefit the teaching in the
course, cf. the use of phenomenography in computing edu-
cation research [2].

A considerable communication challenge for the TIES405

students is communication with real customers, which is the
focus of this article. The work started based on the obser-
vation that the students demonstrate a communication bar-
rier towards customers as they undertake the project work,
and the need to support students’ communication with cus-
tomers is a constant concern in the teaching. While the
teachers had lots of word-of-mouth knowledge on the stu-
dents’ communication challenges, the aim here was to sys-
tematize this knowledge by tracking the most important
teacher observations and by analyzing the students’ written
course experiences.

The conceptualization is based on Grounded Theory (GT),
a theory generation process originated by Glaser and Strauss
in Discovery of Grounded Theory [10]. GT has found its way
to SE research, e.g. [11] [4], as well to computing education
research, e.g. [17] [12]. As noted in [1], it is important to
tell which approach of GT is followed. This work is based on
Discovery of Grounded Theory and Glaser’s ensuing elabo-
ration on the method [8] [9]. The aim of this study is to
generate theory instead of using GT procedures merely for
data analysis.

2. RESEARCH METHODOLOGY

2.1 Research context
The project course at JYU/MIT has a twenty-year his-

tory1. The course is taken after finishing most of the major
subject courses in the bachelor studies. The students have

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

76

teacher

student team

customer

computer support

tech. superv.

Figure 1: Interactions between project stakeholders

typically taken programming courses, algorithms and data
structures, basics of databases, basics of web technologies,
object-oriented analysis and design, an introductory course
on software engineering, and some courses on math. Major-
ity of the students do not have or have little previous soft-
ware project experience. Staff members select the project
groups of four students in each. They avoid assigning friends
to the groups to create a communication challenge, and to
avoid the emergence of the groups of two pairs or 1+3 com-
positions. The aim is also to have diversity in the project
groups based on the students’ study history and hobbies.

Interactions between project stakeholders are illustrated
in Figure 1. A teacher (a staff member) is in charge of
project supervision, focusing on process issues, whereas a
senior student is responsible for technical supervision. The
senior student is paid for the job (hourly wages) and ex-
pected to know the programming languages and develop-
ment tools used in the project he/she is assigned to. The
department’s computer support is available for the student
group who is responsible for contacting the support when
necessary. All the stakeholders except the computer support
meet in the project meetings which are arranged at least ev-
ery other week. Meetings are not the only communication
medium but informal communication takes place should the
need arise (face to face, email, phone). As noted, in this
work the research interest is in the interaction between the
student group and the customer. The students do not take
(consciously) part in the research that is reported here.

The students are expected to take lots of responsibility of
their own work. In order to support the students’ autonomy,
each group is provided with a workroom. The course work
with real project issues and real expectations on the project
outcome mean a high work load for the students whether the
customer is an external organization (which is preferred) or
a university unit. With the one-semester period and real
customers, the main learning objective is not the learning of
particular by-the-book software process or engineering prac-
tices per se. Instead, the project groups start producing
software with the competence they have and learn how to
manage and finish the project.

2.2 Research method
At JYU/MIT, the project course research has been an on-

going process closely related to the first author’s course de-
velopment work during 2005-2008. The course development
work aimed to notice the key areas enabling the student
project course with real customers in one semester. Several
issues entered the focus of this exploratory research, the stu-
dents’ communication with customers being one of those.

1Over 160 projects since 1995: http://www.mit.jyu.fi/
palvelut/sovellusprojektit/toteutetut.html.

As noted, this study is based on Glaser’s and Strauss’ Dis-
covery of Grounded Theory (DGT) [10] and Glaser’s elabo-
ration on the method [8] [9]. DGT defined a theory as a pro-
cess. It suggested that a theory is generated from data and
is then assumed to suit its supposed uses. DGT conceptual-
ized a theory generation approach that differed from those
using deduction and verification. It is a rigorous method
with a systematic coding and analysis, but the rigor is here
not what quantitative methods accomplish. The emphasis
remains on thinking and creativity of an analyst. As noted
in DGT, following GT does not guarantee a same result from
two analysts [10, p. 103].

GT’s on-going nature was considered suitable for the pro-
ject course context where comparison groups follow one an-
other. Instead of a fixed conceptualization, the research here
provides snapshots of the process and reports on theoriz-
ing the researchers are confident with. The GT process was
based on the constant comparative method outlined in DGT
[10, pp. 101–115]. The use of the method is presented in
Section 4, being better illustrated after providing the results.

The heart of an emergent grounded theory is the core
category, a concept which provides context for other inter-
relating categories. An example of how the work followed
Glaser’s GT approach concerns the role of the core cate-
gory. According to Glaser, the core category is a finding
that is “relevant and problematic for those involved” [8, p.
93]. The core category has to emerge, and the analyst must
become sufficiently confident with it, and then elaborate it
to generate an analytic theory, see for example [9, p. 75].

2.2.1 Data sources and schedule
The data sources consist of teachers’ observations and

documented data. The former consists of word-of-mouth
knowledge on communication issues that could be tracked
to specific discussions among the teachers, and the teachers’
direct observations that could be tracked to specific cases
(projects).

The documented data encompasses three sources: 1) The
course development plan which is based on the authors’ and
project teachers’ experiences. The document theorizes the
course context at a practical level focusing on guidelines for
the teachers and the students, including notes on communi-
cation issues. The document was written during the first half
of the course development work mentioned above. 2) The
course evaluation statements the teachers write for projects
(this is detailed when introducing the core category in Sec-
tion 3). 3) The students’ personal course experiences found
in the project reports that the students write at the end of
the projects.

The student project reports were sampled from years 2000-
2007. The reports contain experiences of 121 students. The
length of a student’s written course experience in a project
report ranges approximately from a third of a page (A4)
to two and half pages of text. The projects were selected
with the aim of providing a rich view on the projects. They
involved both in-house and external customers as well as
participation of seven different teachers.

The project reports are public documents. They are in-
spected by the project stakeholders and available for subse-
quent project course attendees as a reference material. In
all cases the documents are checked by the customer to not
include any confidential information. The projects with ex-
ternal customers involve an agreement to use project out-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

77

spring 08 summer 08 autumn 08

evaluation statements

student data

2009

teachers’ observations

course development document

Figure 2: Research schedule

comes in research. Also, at the time of writing this article,
the university research policy accepted the use of the project
reports for a research purpose. The data was made anony-
mous for any reporting during the work.

The course context is often quite different for each project
group. For example, the size of a project organization varies
due to the varying number of customer representatives and
end users involved, software domains and problem domains
vary because the customers represent a variety of areas in
life. Such temporary nature of a single project2 is further
emphasized in that the students undertaking the course do
not share previous projects. Often, they do not know the
people of the project beforehand. The work is thus not
merely about applying grounded theory on a single case
but the data represents many meaningful comparison groups
(variance) in a single substantive area (a variety of capstone
project instances in software engineering education).

Figure 2 depicts the schedule of the research process. The
research interest started from the teachers’ observations which
are far reaching. The course has a twenty-year history and
the teachers’ word-of-mouth knowledge thus originates from
a very long period. The actual analysis took place by re-
turning to the documented course development data from
the viewpoint of this study and by starting to track the
most relevant observations in the teachers’ word-of-mouth
knowledge (observations) at the end of the spring 2008.
This was complemented by analyzing the course evaluation
statements and the documented student data during three
months in the summer 2008. The findings were further ex-
plicated and re-analyzed in the autumn 2008. The beginning
of the year 2009 was about writing and minor re-analysis.
The long period is explained in two ways: firstly, the work
was done irregularly besides teaching, and secondly, gener-
ating GT turned out to be a slow and difficult process. This
was not due to amount of coding but the efforts to make
sense of the data (analyzing and theorizing).

2.2.2 Analysis techniques
In this section, the analysis is described from a technical

point of view whereas Section 4 is meant for illustrating it
from a methodical point of view. The coding with the course
development document was done by underlining the areas of
interest and writing concepts down to the document’s mar-
gins. Most important points in the teachers’ word-of-mouth
knowledge were tracked to specific discussions among the
supervisors, or project instances which they related to. It
was first felt that it is sufficient to keep this tracking in-
formation in memory. The analysis on documented student
data was conducted by reading through the data while pick-
ing up all the relevant “something is being said here” points.
Because this was the most extensive data source, the coding

2A project has been characterized as a temporary organiza-
tion [20].

was managed by writing the key points down to a separate
booklet with references to the original data. The concepts
were identified and highlighted in the booklet notes.

Integration of the concepts emerged from the teachers’
word-of-mouth knowledge. It was also allowed to continue
as soon as the documented data was first skimmed through.
The notes written down during the coding of the student
data included integrative statements that took account of
the other data as well. Hence, the observations (word-of-
mouth knowledge that was tracked) and the concepts from
the course development work were transferred to these notes.
When starting to analyze the student data, drafting of the
emergent theory, a consistent overall conceptualization, start-
ed also. All the data sources provided input here. A white-
board and text documents were used for the drafting which
in a technical sense was about preparing textual formula-
tions and drawing diagrams.

In the re-analysis phase (autumn 2008), the emerging the-
ory was textually formulated several times. At this point,
the teachers’ observations were yet extracted from the notes
and textual drafts to a separate text file with the tracking
information. It was felt necessary to explicitly maintain the
origins of each observation; As the work was not a contin-
uous process due to the analyst’s (first author) other activ-
ities, some of the tracking information, that was first kept
only in memory, had to be reworked here.

Overall, the above techniques highly overlapped. The
writing and drawing proved to be the most important tech-
niques as the analysis proceeded.

3. COMMUNICATION BARRIER TOWARDS
CUSTOMERS

Generally speaking, the problem presented in this sec-
tion is a demonstration of what happens when inexperienced
computing students encounter occupational reality. The sec-
tion elaborates the core category whereby inexperienced stu-
dents’ entry into a realistic software development context
discloses a communication barrier the students potentially
have towards customers. Particularly, this problem relates
to the project start-ups as the students are able to improve
their communication towards customers during the projects.

How this core category, shortly labeled as“communication
barrier disclosed”, was discovered and selected (cf. selective
coding according to Glaser)? It originates from the teach-
ers’ far reaching observations. For example, a teacher with a
nine-project experience identified students’ communication
towards other project stakeholders and problems in inter-
personal relationships as the most critical factors that can
potentially ruin a project. Since the first author has a close
relation (teacher in the course) to such observation data,
the course evaluation statements the teachers write for each
project were also shortly examined. This sampling was re-
garded as a conscious act of “taking account of subjectivity”
while it is not clear that one can and even should avoid sub-
jectivity with a strategic act when using grounded theory,
see [21, p. 336]. The aim here was to investigate whether
and how communication issues had been paid attention to.

First, ten statements assessing the projects in the high
end of the grading scale were sampled. They covered a 6-
year period (2001–2006) and six different teachers. In one of
the ten statements, a teacher expected more communication
towards other stakeholders. The rest described communica-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

78

tion with the terms good, active, and excellent, and often
associated communication with the project progress. The
statements assessing projects in the middle (six statements
2002-2008, seven teachers) and the low end (three state-
ments 2001, 2002, 2004, one teacher) of the scale were also
(randomly) sampled. Interestingly, the description of the
communication performance followed the grading from the
high end to the middle area of the scale. At the low end
there had been serious intra-group problems in addition to
or instead of communication problems towards other stake-
holders. Based on this sampling, the relevance of students’
communication towards other stakeholders was in line with
the teachers’ observations (word-of-mouth knowledge). The
following data examples are from the teachers’ evaluation
statements.
[CT]3 From the high grade statements:

-Overall, the attitude to work was positive, which was demon-
strated by unprompted communication towards teachers and
customers...
-Communication towards customers and teachers was excel-
lent during the whole project.
[CT]From the mid grade statements:

- Even though the group clearly had ideas, they did not ac-
tively bring them out for the attention of the whole project
organization. The performance was improved during the
project.
-The project tracking and team’s outward communication
faltered during the project, which caused some unawareness
for the teacher and most probably for the team also.
[CT]From the low end:

-Regarding many of the solutions the team made, the team
did not inform the teachers and the customers.

The above highlights students’ communication towards
other stakeholders, not particularly towards customers. In-
deed, at the beginning of the projects, a communication bar-
rier appears not only towards customers. However, the stu-
dents are better able to communicate within their group and
with the teachers. The teachers can take initiatives, thus
gently force the students into dialog. Also, majority of the
students are at least somehow used to communicating with
other students. This is basically why this study focuses on
students’ communication towards customers. Also, as the
first author has used “teaching as coaching” during the last
three years, hence able to closely monitor the students’ per-
formance, further confidence was obtained concerning the
relevance of this communication direction.

This problem (core category) has thus been identified in
the course and it is relevant for those involved (teachers, stu-
dents, and customers) — because it has consequences. This
communication barrier means that a necessary feedback loop
between the students and the customers does not emerge and
misunderstandings appear. As a consequence, the students
develop wrong software and a project may considerably slow
down. The problem affects the project outcome and de-
creases students’ satisfaction in their own performance, as
illustrated with the following student experience.
[CS] At the end, a doubt emerged whether we had in-

terpreted the priorities correctly. The project focused on
telecommunication and encryption modules, but was the cus-
tomer actually more interested in database modules? Too

3In the data examples, the marking CT refers to an example
from the teacher data and CS to an example from the student
data.

INEXPERIENCE

"awareness"

"timidity"

"how to"

"initial confusion"

"communication
 barrier"relatedness

Figure 3: How inexperience creates the barrier

often we made decision by ourselves and did not utilize the
teachers’ and the customers’ opinions and expertize.

3.1 Inexperience
Students’ inexperience was discovered to be the common

explanation for the barrier. In general, the students express
their inexperience as they tell about the doubts they had
before the course concerning their skills. Many of them also
explicitly tell that they did not have earlier software project
experiences. This section explicates the ways how the stu-
dents’ inexperience creates the barrier. These “ways” are
referred to as dimensions of inexperience, and are depicted
in Figure 3.

First, the students are not aware of the importance of
communication with a customer (awareness). They are not
sufficiently aware of this kind of key areas in software devel-
opment work. They just don’t know they have a problem.
This problem of awareness is evident as the students are
better able to reflect on the project areas which are “close”
to their course work, including group work and technical
learning. In the students’ course experiences, such “close
issues” have more volume compared to the issue of commu-
nicating with the customer. This problem of awareness is
also illustrated as there is a difference in the students’ and
the teachers’ preferences. Whereas the students focus on
the “close issues” other than customer communication, the
teachers have regarded communication as a critical success
factor in the projects. The following example illustrates the
problem of awareness.
[CS] It was not always clear, at least to me, what the cus-

tomer wanted. When discussing resourcing questions [re-
source module in the software] I should have listened better
in the first meetings, as I did not expect that I’m the one
who had to deal with it [implement it]. Fortunately, I got
answers to important questions later.

Second, the students are timid to communicate with the
customers (timidity). As they lack project experiences they
are unconfident when starting to collaborate with the cus-
tomer. They, for example, seem timid to communicate un-
certain topics and remain silent in the situations where the
teachers notice that the topic discussed with the customer
is far from clear at that point. This dimension is a sensi-
tive issue for the students. For example, whereas a teacher
observes timidity, the students demonstrating it do not men-
tion such issue in their course feedback. The following data
examples illustrate the students’ timidity.
[CS] I could have been a bit more active and trust my skills

more. Towards the end, I became more active and I dared
to state my opinions more.
[CT] A teacher observation comes from the case were a

student group was made aware of the importance of com-
munication and encouraged to communicate. The group,
however, demonstrated considerable timidity to communicate

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

79

with the customer and started to talk to teachers (the super-
visor in charge and the student supervisor) in the meetings
while it should have talked to the customer sitting in the
same table. It then happened that also the customer started
to communicate with the students through the teachers. The
team was not able to make progress when the teacher en-
couraged the team outside the meetings. The solution was
that the teachers came early to the meetings and took seats
so that the customer and the student group had to always
sit opposite to each other. In addition, the teachers started
to channel the communication out of themselves with small
polite expressions. These helped. The students did not know
about this effort. The group started to develop autonomy in
communication with the customer.
Comment: this case illustrates the sensitivity of the timidity
dimension.

Third, the students do not know how to communicate
(how-to). They do not have means to tackle a new problem
domain, which slows down the project and leads to misun-
derstandings. The students do not know, for example, that
concretization (using drawings, managing open questions,
and drafting user interfaces) would help their communica-
tion with the customer. At the end of the project, in their
course feedback, they have sometimes a blaming tone con-
cerning customer’s activity while they do not see their own
part in the problem, i.e., that they can and should take
initiatives. In short, they are not aware of the means nor
the roles or responsibilities when communicating with a cus-
tomer in a variety of situations. The following two examples
illustrate the how-to dimension.
[CS] What proved to be problematic, was that, at times,

the customer did not understand the challenge of the require-
ments from a technical point of view. Communication with
the customer was surprisingly difficult.
Comment: Here the student does not know how to manage a
collision of technical and non-technical world when commu-
nicating with the customer. From another perspective, how
to manage customer’s expectations.
[CS] On the other hand, a very difficult issue in the project

was that three computer science students tried to figure out
what kind of system the library needs for book supply.
Comment: This illustrates the unawareness of the importance
of communicating with the customer, but also the challenge
the new domains create for the students (how to communi-
cate to efficiently learn the domain).

Fourth, the inexperienced students suffer from initial con-
fusion at the beginning of the projects, which is due to
new people, new problem domain, inexperience in software
processes and project management etc. (initial confusion).
This complicates the students’ chances to focus on single key
areas of project work, such as communication with a cus-
tomer. This is thus a specific dimension that indirectly has
effect on the students’ communication with the customers.
A student comment that explicitly brings this up is found.
[CS] Communication within the group and with other stake-

holders was difficult at the beginning but was considerably
improved as the project drew to a close. I suppose this hap-
pened because the stakeholders knew each other better, and
we got rid or the general confusion of the start-up.

The above dimensions of students’ inexperience are re-
lated with each other (relatedness). The fourth item is ac-
tually one explanation for the first item: initial confusion
makes it difficult for the students to notice the importance

AWARENESS TIMIDITY HOW-TO INITIAL CONF.

PRIOR EXPERIENCE

occupational
knowledge

amount of
experience

technical social
capability

ORIENTATION

Figure 4: Individuality influenced by personal back-

ground factors

of communication. Another identified form of relatedness is
demonstrated when insufficient knowledge on how to com-
municate, for example, not knowing what is the appropriate
style in communication, appears as timidity.

3.2 Individuality
The communication barrier is individual to each student.

Which dimensions of inexperience a student demonstrates,
and how strongly the dimensions appear, depending on the
student’s personal background factors, defines how the com-
munication barrier appears in the student’s performance.

Thus, the dimensions of inexperience the students demon-
strate vary. For example, within a single group, some of
the students point to their timidity whereas others to the
problem of awareness. Second, there is also lots of vari-
ance within a single dimension, for example, in that of how
timid a student is to communicate with the customer. Some
students are first able to communicate only when it’s their
duty, for example, when it’s their turn to be the chairman
of the meeting. On the other hand, one student started
to actively communicate with the customer before the first
meeting, without any supervision, hence taking a leadership
in communicating with the customer right away.

This individuality is explained by students’ personal back-
ground factors: personal orientation and prior experience.
Figure 4 depicts the relationships that will be explained in
the following.

Consider first the personal orientation of a student. Some
of the students demonstrate a strong personal interest in
technical issues. This hinders the students from seeing how
important it would be to actively communicate with the cus-
tomer. Another aspect to personal orientation is social ca-
pability having effect on whether and how strongly timidity
appears.

The effect of prior experience is illustrated with the finding
that a socially capable student, the active student referred
to above, knew that the group work should be quickly orga-
nized. Here, the good performance was not only based on
social capability but also to some kind of understanding of
what would hinder the team’s progress (here the “what”was
initial confusion causing unorganized thus inefficient work).
Thus, as is obvious, also students’ experience background

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

80

explains the individuality. The experience background en-
compasses two viewpoints here. The first viewpoint is the
experience in the form of prior occupational knowledge that
mitigates the problems of awareness, how-to, and initial
confusion. The second is the amount of experience, i.e.,
whether the students have previously been exposed to cus-
tomer projects at all having effect on how timidity appears.

3.3 Progress
The students demonstrate the barrier at the beginning

of the projects but are able to make progress during the
project. The term “progress” thus means here that the stu-
dents start getting rid of the barrier. The progress takes
place due to 1) course arrangements, 2) general progress of
the project, and 3) instruction. In the following, these three
properties are discussed in relation to the dimensions of in-
experience.

Awareness. Course arrangements increase the students’
awareness on customer communication in that the students
are exposed to real life problems and real customer expec-
tations. As the students struggle with the new problem
domain, and see the consequences of misunderstandings on
the domain knowledge they become better aware of the im-
portance of customer communication. Additional challenge
in the arrangements further increases the students’ aware-
ness. For example, when the problem domain is considerably
challenging or the customer is from another city (geograph-
ically long distance between the university and customer),
the importance of communication with the customer is bet-
ter noticed. As the students make general progress in how
to manage their work, i.e., they start to organize their work
and get rid of initial confusion, they are better able to no-
tice the importance of this kind of key areas of a customer
project. The students need to be repeatedly instructed to
help those that are technically oriented, and, in general, to
change/extend the students’ prevailing conceptions of the
contents of software development work.

Timidity. The course arrangements decrease timidity as
each group meets their customer regularly and is hence ex-
posed to situations that require communication with the
customer. The students are expected (not forced by instruc-
tion) to share tasks that require customer communication,
meaning that each student is exposed to customer commu-
nication. They get to know the customer and get rid of
initial confusion caused by the work with many new people.
General progress of a project (contributed by the course ar-
rangements) also reduces timidity. As the students notice
that they are able to advance the project, they become more
confident and their communication with the customer is im-
proved. Instruction reduces timidity, but as the timidity is a
very sensitive subject for the students, it must also be han-
dled in a sensitive manner. The students must be patiently
and repeatedly supported. Actually, the progress regarding
timidity can be accelerated only to a certain point4.

How-to. The students do not consider concrete “how-to”
guidelines in their course feedback. Some students demon-

4Even though a teacher asks the “stupid questions” from the
customer to mitigate the tension and to get the students in-
volved (cf. peripheral participation [15]), the progress per-
taining to timidity remains slow with some students. This
may be a cultural issue. Gibbs [7] has noted that students
need to be provided with the space where they can process
a problem with their own language. This may also explain
the slow progress.

progress

-prevailing conceptions,
 sensitivity regarding timidity,
 relatedness

-instruction (help)
-general progress of a project
-course arrangements

complicates

Figure 5: Students’ progress

strate how-to skills but by comparing such observation with
the students’ feedback not including any explicit reflection
on this, it seems that the students have tacit implicit knowl-
edge due to prior experience. Without help they probably
learn something regarding the how-to dimension, but it re-
mains implicit. The students can be instructed how to com-
municate and given concrete practices, and this results in
improved performance. However, because the dimensions of
the students’ inexperience are related to each other, know-
ing how to communicate does not lead to a straightforward
success. For example, insufficient awareness on the impor-
tance of communication has to be managed to make use of
“how-to” -knowledge. Some students do not make use of
communication tips as they do not see the importance of
communication. This form of relatedness was thus found by
observing the students’ progress from the instruction view-
point.

Initial confusion. Both the student data and the teachers’
observations indicate that a slow project start-up due to the
initial confusion is a frequently identified problem in the
course. The students are able to organize their work if they
are coached to adopt a process (roles, practices etc.). Course
arrangements also contribute to the adoption of a process as
the students are, for example, expected to plan a project
(write a project plan).

In short, the progress is often slow without help. Some
students notice the communication issues late, at the time
of their course feedback, and it seems that the slow per-
formance decreases their satisfaction on their own project
performance. The students’ performance can be enhanced
by instruction which does not however lead to a straight-
forward success. The difficulty of instruction is explained
by the students’ prevailing conceptions, sensitivity regarding
timidity, and relatedness of the dimensions of inexperience
— as discussed above. The students’ progress is illustrated
in Figure 5.

4. ILLUSTRATING THE USE OF GT
DGT [10, pp. 101–115] introduced a constant compara-

tive method for qualitative analysis which was followed in
this research. The method encompasses four overlapping
stages which are 1) the comparing incidents applicable to
each category, 2) integrating categories and their properties,
3) delimiting the theory, and 4) writing theory.

The basic idea of comparison (stage 1) is that, as coding
an incident, the analyst compares the incident with the pre-
vious incidents coded in the same category. This takes place
both within the same and different comparison groups. The
second rule of comparison is that analyst should at times
stop coding and record a memo on his/her ideas. Integration

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

81

(stage 2) means the discovery of how concepts and their sub-
concepts interrelate, and hence, result in a unified whole.
As the coding proceeds, the analyst compares, not only in-
cidents with some other incidents, but with the properties
of the category that resulted from initial comparison of inci-
dents. This leads to integration. The constant comparison
is said to naturally lead to the discovery of integration.

The comparison and integration are illustrated in the fol-
lowing. As the communication barrier was studied, the first
explanation was that the students do not sufficiently know
the importance of communicating with the customer. Then,
when analyzing another incident where the student group
seemed to have problems in communicating with the cus-
tomer, it was noticed that this group was made aware of
the importance of communicating, but they still did not
communicate sufficiently. Here the incident was compared
with previous incident coded in the same (main) category
and this disclosed that there has to be another explanation.
The property discovered was the students’ timidity which
also seemed to significantly explain the students’ difficul-
ties. Codes on the students’ inexperience in general were
also found. In these the students brought out that they did
not have project experience prior the course, and spoke of
their doubts they had prior to the project concerning their
skills to succeed in the project. A hypothesis was generated
that timidity is probably at least partly due to the lack of
experiences in customer projects.

Then, as the analysis proceeded, it was discovered that
some students who had difficulties in noticing the impor-
tance of customer communication, demonstrated a clear tech-
nical orientation. These students keep focusing on design
and implementation, not noticing that communicating with
the customer is a necessity to get feedback on the project
outcomes. Integration was here very straightforward: the in-
dividual background factor explains the students’ difficulty
to notice the importance of communicating with the cus-
tomer.

According to DGT, delimiting the theory (stage 3) is forced
with the constant comparison. Theory becomes solidified,
modifications become fewer and the emphasis turns to clar-
ification and reduction. DGT says that the analyst starts
to achieve two major requirements of a theory: parsimony
of formulations needed and applicability to a wide range of
situations, while keeping the theory close to data. In this
study, delimiting of the theory started from writing notes.
The second rule of comparison (stop coding and write notes)
was thus important from the delimiting perspective. Glaser
later emphasizes the thinking process needed and writing of
memos [8, pp. 7, 83].

Delimiting the theory is illustrated in the following. An in-
complete theoretical framework that emerged form the stu-
dent data is depicted in Figure 6. It originates from the
point where the coding was terminated and time was spent
on sketching the relations between the concepts. The draw-
ing is a note copied exactly as was handwritten in the coding
booklet. The important issue here is reduction. The fig-
ure presents yet an unclear view of the findings as a whole.
As the analysis proceeded, an overlap of the properties in
the figure’s framework was noticed, and reduction could be
made. It was noticed that actually both timidity and un-
awareness of importance of communicating can be explained
in terms of inexperience. The outline of the conceptualiza-
tion being generated could hence be stated more clearly and

Communication Barrier

Ingredients

Inexperience

Timidity

General confusion

New domain

Lack of self-confidence

working with new people

Communication skills

Collision between technical and non-technical world

"we should have communicated more
in the beginning"

teacher’s abstraction

Developing of skills

Difficult
in the beginning

Figure 6: An incomplete theoretical framework from

the analysis on the student data

Figure 7: A draft of overall conceptualization

with fewer main categories. In this figure, the problem of
awareness is only illustrated by a student cite “we should
have communicated more in the beginning”.

Figure 7 illustrates another attempt to make reduction
and explicate the logic of the findings. The contents of the
drawing are very close to what was finally the output of
this research thread. Here, the inexperience of the students
is a central category to which the other categories and their
properties seem to interrelate. The category of how students
make progress regarding the barrier has now been identified.
The third category, that of how this problem (barrier) is in-
dividual to each student, is emerging as the figure includes
notes on students’ personal orientation. These two draw-
ings are just a few of the attempts to make reduction and
explicate the findings during the research. Again, the sec-
ond rule of the comparison is in the key position: lots of
time is needed to make sense of the data in order to discover
integration and delimit the theory being generated.

In DGT, writing of a grounded theory (stage 4) is sug-
gested to be started from the core category that puts for-
ward the theory. This is followed by going through the main
themes of the theory. Glaser points out that when writing
an outline of the theory, the analyst may notice that inte-
gration falls apart. He suggests that the writing should be
started anyway, as it potentially leads to reintegration of
what has fallen apart [8, p. 132]. Writing from this method-
ical perspective was considered very useful in this work. The
following cite well characterizes the challenge that was en-
countered [8, pp. 128–129]: Rather, writing must capture it.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

82

It must put into relief the conceptual work and its integration
into a theoretical explanation. So very often in qualitative
research, the theory is left implicit in the write-up, as the
analyst gets caught up in the richness of the data.

Indeed, the writing was about reduction and explication,
about making implicit knowledge sufficiently explicit. Draw-
ings were used in parallel with the writing. Figure 7 was
actually sketched to support writing. The writing forced to
think of sufficiently explicit conceptualization at a high level
of abstraction. Writing of small textual fragments and out-
lining the unified whole was very difficult. The difficulty was
actually surprising as it sometimes took hours to formulate
a fragment of the outcomes in a consistent textual form that
carried the correct idea. These formulations had yet to be
reworked several times. This was not deduction and forcing
but reduction and explication.

5. DISCUSSION
Based on an initial literature comparison, it seems that re-

sults in line with this study exists. If one considers the con-
siderable realism provided by the project course at JYU/-
MIT, a comparison can be made to experiences of employed
graduates who have been found to encounter a variety of
communication challenges after employment. For example,
in [18], many data extracts reflect the variety of working life
situations where one needs to know how to communicate.
This is in line with the third dimension of inexperience found
in this study and suggests that one possible way to further
the how-to dimension would be to recognize and characterize
the variety of project situations involving customer commu-
nication. On the other hand, one can consider Williams’s
et al. [26] results which indicate that students’ performance
depends on how students develop confidence. This is in line
with the finding that students are better able to communi-
cate with customers as they become more confident, after
noticing some progress in their course work.

The study indicates the problem that all the students are
not able to identify the variety of software engineering key
areas without help. Consequently, communication should
be an issue already in the early curriculum to provide stu-
dents with relevant expectations of the contents of software
engineering work. Lethbridge et al. discuss the wrong be-
liefs and expectations young people may have on software
engineering, hindering their entry to the field [16]. Obvi-
ously, the beliefs may live during the course of university
studies if the curriculum does not provide the students with
proper learning contexts so that the issues other than tech-
nical ones are not given sufficiently attention. The results
of this study indicate that changing students’ conceptions
through instruction is likely a slow process.

Importantly, this study illustrates how teachers gain knowl-
edge and explicate their existing tacit knowledge through
conceptualization. The dimensions of the students’ inexpe-
rience provide a sufficiently easy-to-remember framework by
which teaching practices can be designed and evaluated. In
line with Glaser [8, p. 14], a teacher possessing a relevant
substantive theory, can “work with familiar occasions pur-
posefully”.

5.1 Use of Grounded Theory
In this work, DGT and Glaser’s approach on GT was fol-

lowed. Many others have taken the approach of Strauss and
Corbin [24]. For example, Coleman and O’Connor [4] fol-

lowed Strauss and Corbin and their study differs from this
study in several ways. In their study, it is difficult to identify
such a core category that would provide a point of reference
to the results. The other difference is that the study first de-
velops hypotheses and then tests them, and one must here
notice that Strauss and Corbin suggest that the analysis
is a continuous interplay between inductive and deductive
thinking [24, p. 111]. The hypotheses are deduced and then
verified.

In computing education studies using GT, the research
process has often been pre-designed and the use of GT is
about data analysis in the process of collect data → ana-
lyze main themes, and sometimes → verify the themes with
the data, e.g. [12]. Also, authors report partial results from
on-going studies [13], which indicates that GT is time con-
suming. GT is taken as a set of analysis techniques in case
studies [5] and it is referred to when there is an inductive
part in the research process [3]. There seems to be variance
in the method usage which motivates further experimenting
with GT in the context of computing education research.

Grounded theory process was not perceived as a mechan-
ical process, and this made it difficult to explicate the re-
search schedule and data usage in Section 2.2.1. In line
with this, Piantanida et al. [21, p. 341] concluded that a
traditional scientific report that is expected to reflect pro-
cedural rigor is atheoretical and problematic for a grounded
theory. Another viewpoint is, as noted in [1], that the me-
chanical approach tends to result in a product of content
analysis, not a theory. Too much focus on rigorous coding
in a technical sense may hinder the analysis thus not allow-
ing theoretical sensitivity. From a more practical viewpoint,
explication and reduction of the emerging overall concep-
tualization were considered the most difficult tasks of the
study. The concepts were found as well their partial inte-
gration. But to be able to see the rough skeleton, the essence
of the conceptualization, required serious efforts. Writing of
consistent textual formulations accompanied with drawings
was experienced very helpful in this effort.

The data of the work was relatively small5, but it enabled
carrying out a GT process and evaluating the method us-
age. Using both the students’ experiences and the teachers’
observations was necessary here. While the communication
issues had not much volume in the student data compared
to other issues (e.g. group work), it was considered one of
the most central success factors among the teachers. This
was possible to notice using both the data. Furthermore,
without the student data, all of the viewpoints would not
have been included in the conceptualization, for example,
how initial confusion complicates the students’ chances to
become aware of issues such as communicating with a cus-
tomer. Here the point is that the systematic method using
both teachers’ observations and the perceptions of actual
study subjects helps to identify all the relevant aspects even
though they would already exist as tacit knowledge, in an
implicit form. As Glaser notes, we (observers) do not know
better than they (observees) [9, p. 49]. Altogether, using
GT in this kind of educational study, which aims to know
what is going on in students’ performance, having also rela-
tion to teaching, necessitates use of data from both students
and teachers.

5Notice the “teacher as a researcher” setting which implies
that the researcher is surrounded by the data.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

83

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this article, students’ communication with customers at
a capstone project course context was studied using Ground-
ed Theory. A framework manifesting students’ inexperience
was found, the framework to which the students’ individ-
ual factors and the progress they make, were found to in-
terrelate. The study yielded explicit knowledge useful for
teaching, and from this perspective, the chosen research
method suited the research interest. Based on this expe-
rience, it is argued that conceptualizations are needed in
educational research, and in this effort, grounded theory
provides a means to bring out sufficiently analytic knowl-
edge that has real value for improving teaching. A general
implication to teaching is that communication skills should
be gradually developed throughout the curriculum in order
to develop students’ confidence and awareness on the com-
munication issues.

The work gives rise to a number of future directions. The
found dimensions of inexperience could be studied in the
context of a whole curriculum and furthered by a system-
atic comparison to literature (literature as data). An in-
teresting question would also be that what kind of project
issues prompt students’ awareness of customer communica-
tion. The results of this paper indicate that projects start-
ing from the scratch with a new problem domain for the
students might have a best value in this respect. In order
to develop a more formal theory [10, pp. 32–33], the results
of the work provide a starting point to study a potential
existence of the communication barrier in other educational
contexts, where the occupational reality is first encountered.
A more formal theory would be achieved by comparing the
results to other fields, for example, the fields with an estab-
lished culture regarding the importance of communication
in a service provider–customer -relationship.

7. REFERENCES
[1] S. Adolph, W. Hall, and P. Kruchten. A

methodological leg to stand on: lessons learned using
grounded theory to study software development. In
CASCON ’08: Proceedings of the 2008 conference of
the center for advanced studies on collaborative
research, pages 166–178, New York, NY, USA, 2008.
ACM.

[2] A. Berglund. What is good teaching of computer
networks? Frontiers in Education, 2003. FIE 2003.
33rd Annual, 3:S2D–13–18 vol.3, Nov. 2003.

[3] D. Chinn, C. Spencer, and K. Martin. Problem solving
and student performance in data structures and
algorithms. In ITiCSE ’07: Proceedings of the 12th
annual SIGCSE conference on Innovation and
technology in computer science education, pages
241–245, New York, NY, USA, 2007. ACM.

[4] G. Coleman and R. O’Connor. Investigating software
process in practice: A grounded theory perspective.
Journal of Systems and Software, 81(5):772 – 784,
2008.

[5] K. Deibel. Studying our inclusive practices: Course
experiences of students with disabilities. SIGCSE
Bull., 39(3):266–270, 2007.

[6] P. Freeman, A. I. Wasserman, and R. E. Fairley.
Essential elements of software engineering education.

In ICSE ’76: Proceedings of the 2nd international
conference on Software engineering, pages 116–122,
Los Alamitos, CA, USA, 1976. IEEE Computer
Society.

[7] G. Gibbs. Teaching students to learn: A
Student-Centred Approach. The Open University
Press, Milton Keynes, England, 1981.

[8] B. G. Glaser. Theoretical Sensitivity: Advances in the
Methodology of Grounded Theory. Sociology Press,
San Francisco, CA, 1978.

[9] B. G. Glaser. Emergence vs. Forcing: Basics of
Grounded Theory Analysis. Sociology Press, Mill
Valley, USA, 1992.

[10] B. G. Glaser and A. L. Strauss. The Discovery of
Grounded Theory: Strategies for Qualitative Research.
Aldine de Gruyter, New York, 1967.

[11] B. H. Hansen and K. Kautz. Grounded theory applied
- studying information systems development
methodologies in practice. In HICSS ’05: Proceedings
of the Proceedings of the 38th Annual Hawaii
International Conference on System Sciences
(HICSS’05) - Track 8, page 264.2, Washington, DC,
USA, 2005. IEEE Computer Society.

[12] M. Hewner and M. Guzdial. Attitudes about
computing in postsecondary graduates. In ICER ’08:
Proceeding of the fourth international workshop on
Computing education research, pages 71–78, New
York, NY, USA, 2008. ACM.

[13] C. Ho, K. Slaten, L. Williams, and S. Berenson. Work
in progress-unexpected student outcome from
collaborative agile software development practices and
paired programming in a software engineering course.
In Frontiers in Education, 2004. FIE 2004. 34th
Annual, pages F2C–15–16 Vol. 2, Oct. 2004.

[14] S. Hornik, H.-G. Chen, G. Klein, and J. Jiang.
Communication skills of IS providers: an expectation
gap analysis from three stakeholder perspectives.
Professional Communication, IEEE Transactions on,
46(1):17–34, Mar. 2003.

[15] J. Lave and E. Wenger. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press,
New York, 1991.

[16] T. C. Lethbridge, J. Diaz-Herrera, R. J. J. LeBlanc,
and J. B. Thompson. Improving software practice
through education: Challenges and future trends.
Future of Software Engineering, 2007. FOSE ’07,
pages 12–28, May 2007.

[17] U. Melin and S. Cronholm. Project oriented student
work: Learning & examination. SIGCSE Bull.,
36(3):87–91, 2004.

[18] S. Nagarajan and J. Edwards. Towards understanding
the non-technical work experiences of recent australian
information technology graduates. In ACE ’08:
Proceedings of the tenth conference on Australasian
computing education, pages 103–112, Darlinghurst,
Australia, Australia, 2008. Australian Computer
Society.

[19] J. Norback and J. Hardin. Integrating workforce
communication into senior design. Professional
Communication, IEEE Transactions on,
48(4):413–426, Dec. 2005.

[20] J. Packendorff. Inquiring into the temporary

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

84

organization: New directions for project management
research. Scandinavian Journal of Management,
11(4):319 – 333, 1995.

[21] M. Piantanida, C. A. Tananis, and R. E. Grubs.
Generating grounded theory of/for educational
practice: The journey of three epistemorphs.
International Journal of Qualitative Studies in
Education, 17(3):325–346, 2004.

[22] J. Polack-Wahl. It is time to stand up and
communicate [computer science courses]. Frontiers in
Education Conference, 2000. FIE 2000. 30th Annual,
1:F1G/16–F1G/21 vol.1, 2000.

[23] I. C. S. Press and A. Press. IEEE/ACM joint task
force on computing curricula. Software Engineering
2004, curriculun guidelines for undergraduate degree
programs in software engineering. Retrieved May,
2007, from http://sites.computer.org/ccse/, 2004.

[24] A. Strauss and J. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques. Sage Publications, Newbury Park,
California, 1990.

[25] G. Taran. Managing technical people: Creatively
teaching the skills of human interaction in today’s
diverse classrooms. Software Engineering Education
and Training, 2008. CSEET ’08. IEEE 21st
Conference on, pages 93–100, April 2008.

[26] L. Williams, L. Layman, K. Slaten, S. Berenson, and
C. Seaman. On the impact of a collaborative pedagogy
on african american millennial students in software
engineering. In Software Engineering, 2007. ICSE
2007. 29th International Conference on, pages
677–687, May 2007.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

85

Recalling Programming Competence

Jens Bennedsen
Engineering College of Aarhus

Dalgas Avenue 2
DK-8000 Aarhus C, Denmark

jbb@iha.dk

Michael E. Caspersen
Department of Computer Science

Aarhus University
DK-8000 Aarhus C, Denmark

mec@cs.au.dk

ABSTRACT
Programming is recognised as one of seven grand challenges
in computing education and attracts much attention in com-
puting education research. Most research in the area con-
cerns teaching methods, educational technology, and stu-
dent understanding/misconceptions. Typically, evaluation
of learning outcome takes place during or immediately fol-
lowing the educational activity. In this research, we con-
duct a qualitative investigation of sustainability of program-
ming competence by studying the effect of recalling pro-
gramming competence long time after the educational activ-
ity has taken place. Our population consists of ten students
who have taken an introductory object-oriented program-
ming course 3, 15, or 27 months prior to our study. None
of the students have been exposed to programming in the
intervening period. As expected, our research shows that
syntactical issues in general hinder immediate programming
productivity, but more interestingly it also indicate that a
tiny retraining activity and simple guidelines is enough to
recall programming competence and overcome syntactical
issues.

Categories and Subject Descriptors
K3.2 [Computers&Education]: Computer and Informa-
tion Science Education—computer science education, infor-
mation systems education

General Terms
Experimentation, Human Factors

Keywords
CS1, object-oriented programming, remembering

1. INTRODUCTION
For many years there have been a massive interest in pro-

gram education research and development. Teaching meth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

ods, materials, and educational technology have been devel-
oped to help students better learn how to program. Some
of these innovations have been systematically evaluated for
their impact, but in general the measurement of success is
defined by how well the students perform at the final exam
or at tests during the course. The quest for success indica-
tors is an example of such studies (see e.g. [8, 42, 7]), and
so are studies that evaluate educational technology (see e.g.
[38, 24, 21]). Evaluating the impact immediately after the
course, is of course both interesting and relevant, but in gen-
eral the goals of our teaching is not only that the students
perform well at the final exam, but that the students achieve
relevant and lasting programming competences.

Computing competences are becoming relevant in many
fields; consequently, many students who will not major in
computer science will be required to take an introductory
computing course [18]. Many introductory computing course
has programming as a core activity and learning goal, and
for good reasons since programmability is the defining char-
acteristics of the (digital) computer. This is also echoed in
the ACM/IEEE curriculum recommendations. Currently,
a revision and enlargement of the curriculum recommen-
dations is under way, broadening the scope from traditional
computer science to the broader field of computing [35], from
Information Systems [16] to Computer Engineering [37].In
e.g. “the model curriculum and guidelines for graduate de-
gree programs in information systems” [17] it is noted that
Students entering the MSIS program need the content of the
following courses ... programming (p.138).

We forget things. The cognitive structures that store facts
and schemes typically become less accessible over time, and
forgetting is more likely to take place when memory ele-
ments are not accessed and used [9]. By fitting data from
several experiments in cognitive psychology, Woodworth [45]
created the so-called forgetting curve, see figure 1. Accord-
ingly, it should be expected that students do not have the
same competences say one year after an exam as they had
right after the exam.

In our current research, we are particularly interested in
studying the durability of programming competences achieved
in an introductory object-oriented programming course for
non-CS majors. We have conducted a qualitative investiga-
tion of sustainability of programming competence by study-
ing the effect of recalling programming competence long
time after the educational activity has taken place. Our
population consists of ten students who have taken an in-
troductory object-oriented programming course 3, 15, or 27
months previous to our test. None of the students, who are

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

86

Figure 1: Classic shape of the forgetting curve
(Woodworth, 1938).

majors in bio-technology, have been exposed to program-
ming in the intervening period.

The remaining part of the article is organised as follows:
Section two describes related work primarily in cognitive
psychology. In section three and four we describe the in-
structional design of the introductory programming course.
Section five presents our hypotheses and research questions,
and section six presents our research design. In section seven
we describe and analyse our observations. Potential future
work is described in section eight, and section nine is the
conclusion.

2. RELATED WORK
This section describes the related work. It focuses on two

things, work in the area for forgetting and work in the area
of remembering programming competences.

2.1 Memory
The memory is fallible. The fact that we gradually forgets

was first documented by Ebbinghaus [14] in a study where
he first tried to learn nonsense syllables and then tried to
remember as much as possible at various delays after the
learning. His conclusion was, that there was a rapid drop-
off in retention in the beginning and then a more gradual
drop-off later. As he wrote: One hour after the end of the
learning, the forgetting had already progressed so far that
one half the amount of the original work had to be expended
before the series could be reproduced again; after 8 hours the
work to be made up amounted to two thirds of the first ef-
fort. Gradually, however, the process became slower so that
even for rather long periods the additional loss could be as-
certained only with difficulty. After 24 hours about one third
was always remembered; after 6 days about one fourth, and
after a whole month fully one fifth of the first work persisted
in effect (section 29, [15]). Ebbinghaus found that a complex
logarithmic function described his data. Later it has been
shown [43] that a power function y = αtβ better describes
the relation between time and remembering. The values of
α and β relies upon the actual person and the “thing” to
remember.

Apart from an interest in forgetting, Ebbinghaus was also
interested in the effect of repeated learning. He found that
The relation is quite similar to that described in Chapter VI
[the relation between time and forgetting] as existing between

the surety of the series and the number of its repetitions
(section 31, [15]).

Relearning affects forgetting. As Schacter [33] notice it
is known, for instance, that retrieving and rehearsing expe-
riences play an important role in determining whether those
experiences will be remembered or forgotten (p. 184). The
current memory model is actually more complex than a sim-
ple correlation between recall and remembering. Loftus [25]
have found four major reasons why people forget: retrieval
failure (memory traces decay over time), interference (mem-
ory may compete and interfere with other memory) , failure
to store (e.g. details may be filtered out) and motivated
forgetting (we want to forget e.g. traumatic things). As
Anderson, Bjork and Bjork [2] notice a striking implication
of current memory theory is that the very act of remember-
ing may cause forgetting. It is not that the remembered item
itself becomes more susceptible to forgetting; in fact, recall-
ing an item increases the likelihood that it will be recallable
again at a later time. Rather, it is other items — items that
are associated to the same cue or cues guiding retrieval —
that may be put in greater jeopardy of being forgotten. (p.
1063). According to Anderson, Bjork and Bjork the reason
for this is three assumptions on how the memory work

the competition assumption Memories associated to a
common cue compete for access to conscious recall
when that cue is presented,

strength dependence assumption a cued recall of a mem-
ory will decrease as a function of increases in the strength
of its competitors,

retrieval-based learning assumption Recall of a mem-
ory enhances subsequent recall of that memory.

The knowledge of forgetting have inspired many (primary)
schools to evaluate their school calendar [13]. In general
there seems to be an impact of a calendar model with many
small breaks as opposed to one long summer break since
students tend to perform better on tests with many small
breaks rather than one large break. The effect of forget-
ting was notable particularly with respect to math facts and
spelling. Findings in cognitive psychology suggest that with-
out practise, facts and procedural skills are most susceptible
to forgetting [12]. The categories of facts and procedural
skills most likely encompass the idiosyncrasy of program-
ming language syntax and programming skills which is the
focus of our research.

2.2 Learning to Program
Many approaches to introductory programming educa-

tion have been proposed including a procedures early ap-
proach [29], a top-down approach [19, 30], a graphics ap-
proach [26]. Even within introductory object-oriented pro-
gramming, many different approaches exist: objects early
[1], interfaces early [34], GUIs early [44], concurrency early
[31], events early [39], components early [20], etc.

All of these articles about introductory programming ed-
ucation describe different (groups of) people’s approaches.
However, many are in the “Marco Polo” style of reporting
research in introductory programming [41]; or, to be more
precise, they argue that a certain approach is better than
others based on the assumption that certain learning out-
comes should be promoted.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

87

To properly evaluate the long-time learning effect of a pro-
gram course, we must take as starting point the intended
learning outcomes (ILO) of the course. Whether the ILO
focus on special features of the programming language, the
process of program development, or something else, has an
impact on how we must test and recall programming compe-
tences. In the following section we will describe the ILO for
the introductory object-oriented programming course taken
by our population of students.

3. TEACHING PROGRAMING USING A MO-
DEL-BASED APPROACH

In [22] three perspectives on the role of a programming
language are described:

Instructing the computer The programming language is
viewed as a high-level machine language. The focus is
on aspects of program execution such as storage layout,
control flow and persistence. In the following we refer
to this perspective as coding.

Managing the program description The programming
language is used for an overview and understanding of
the entire program. The focus is on aspects such as
visibility, encapsulation, modularity, separate compi-
lation.

Conceptual modelling The programming language is used
for expressing concepts and structures. The focus is on
constructs for describing concepts and phenomena.

When designing a programming course, one must bal-
ance the three perspectives; in a model-based programming
course, by definition, conceptual modelling plays the most
important role. In the course under consideration, the pro-
gression in the course is defined not by the syntactical struc-
ture of the programming language, as is usually the case
[32], but by the complexity of specification models, i.e. class
models and functional specifications of methods. Early in
the course, examples, exercises and assignments address pro-
gramming tasks described by simple specification models
(one class only or two classes with a simple relationship and
simple functional specifications); later in the course the pro-
gramming activities are defined by more complex specifica-
tion models (more classes with more advanced relations and
more complex functional specifications).

The official ILO for the course is phrased as follows: After
the course, the students must be able to apply fundamen-
tal constructs of a common programming language, identify
and explain the architecture of simple programs, identify
and explain the semantics of simple specification models,
implement simple specification models in a common pro-
gramming language, and apply standard classes for imple-
mentation tasks.

The evaluation of programming competences in this course
is done by a 30 minute practical exam. For a description of
how we measure the students‘ programming competences,
see [6].

For a more detailed description of the model-based pro-
gramming course design, see e.g. [4, 10, 5].

4. THE PROGRAMMING COURSE
The programming course under consideration spans the

first half of CS1 at Aarhus University. The course runs for

Content
Getting started: Overview of fundamental concepts.
Learning the IDE and other tools.
Learning the basics: Class, object, state, behaviour,
control structures.
Conceptual framework and coding patterns: Con-
trol structures, data structures (collections), class rela-
tionship, patterns for implementing structure (class rela-
tionship)
Programming method: Stepwise improvement,
schemes for implementing functionality.
Subject specific assignment: Practise on harder prob-
lems.
Practise: achieve routine in solving standard tasks.

Table 1: Course phases

seven weeks, and after the course there is a practical lab
examination with a binary pass/fail grading. The grading
is based solely upon the behaviour in and result of the final
examination; acceptable performance in weekly mandatory
assignments during the course is a prerequisite for the fi-
nal exam but does not count as part of the grading. There
are approximately 350 students per year from a variety of
study programmes, e.g. bio-technology, chemistry, computer
science, mathematics, geology, nano science, economy, and
multimedia. 40% of the students are majors in computer sci-
ence; of course they continue with many more programming
or programming related courses. For most of the remaining
students, this is the only mandatory programming course in
their curriculum, but some choose follow up courses as elec-
tives and some do have special follow up courses related to
their field (e.g. multimedia programming or scientific com-
puting).

The students are grouped in classes of approximately 20
students; typically there are 17-18 teams per year. Each
class has its own teaching assistant (TA) who is typically a
PhD student in computer science.

We adopt an incremental approach to programming edu-
cation in which novices are provided with worked examples
[40] and initially do very simple tasks and then gradually do
more and more complex tasks, including design-in-the-small
by adding new classes and methods to an already existing
design. Table 1 gives an overview of the phases and content
of the course.

For a more detailed discussion of the design of the course
from a learning theoretic perspective, see [11].

5. RESEARCH QUESTIONS
As described in section 2, we forget things, and forgetting

is more likely to take place when memory elements are not
accessed and used. Programming fluency involves a lot of
specific skills related to the programming language (syntax,
semantics, and pragmatics), the development environment
(editor, compiler, interpretation of error messages, and de-
bugging), use of API, etc. The first category of skills, which
we denote concrete programming competences, implies that
programmers possess a great deal of fingertip knowledge
about many specific, technical details and is therefore par-
ticular vulnerable with respect to being forgotten when not
practised and applied,. Another category of programming
skills and competences relate to problem solving and appli-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

88

cation of patterns to solve recurring (types of) problems; we
denote this abstract programming competences. The exami-
nation form ensures that these programing skills and compe-
tences have been present, but how long and how well do they
last, and how easy is it to recall them? Our two hypotheses,
which forms the basis for this research, are:

Forgetting The students have forgotten the concrete pro-
gramming competences quickly after they have passed
the course.

Learning It does not take much effort for the students to
recall the concrete as well as more abstract program-
ming competences.

The two hypotheses are operationalised into the following
research questions:

RQ1: Forgetting Have the students forgotten their con-
crete programming competences?

RQ2: Learning Can the students with a limited effort re-
call their programming competences? And what are
the challenges for recalling once learnt skills and com-
petences?

6. RESEARCH DESIGN
This section describes the design of the research.

6.1 Participants
From the general cognitive theory, we expect that the stu-

dents‘ programming competences are forgotten if not prac-
tised and applied. Thus, in order to test our hypotheses and
answer our research questions, we need to identify a group
of students who have not programmed since they passed the
introductory programming course. This naturally rules out
computer science students. As described in the introduction,
many other students take programming classes, but this is
not the case for students majoring in bio-technology.

Students from bio-technology take the introductory pro-
gramming course in the third quarter of the first year. They
have no other mandatory programming courses, and they
do not practise programming as part of their studies. These
students fulfil the overall requirement (they have not been
programming for X months) and they are a group that can
be addressed, since most of them still follow the same study
program. There are currently 45 students in the bachelor
program of bio-technology (14 in the first year, 17 in the sec-
ond year, and 14 in the third year). This makes it difficult
to do quantitative analyses (the number of students are too
small in each group). Consequently, we have designed the
research not with the focus of giving general, generalisable
answers but rather as providing new insight and pointers to
factors it might be interesting to investigate further.

Based on the research questions and the group of students
that are accessible, we observe the students performing pro-
gramming with a focus on the problems they encounter as
they go along. We do this twice: A pre-test before the stu-
dents get a chance to brush-up of their programming com-
petences, and a post-test after the students have received
a brush-up. Finally we interview the students in a semi-
structured focus group interview.

Year Months since
prog. course

Male Female Programming
since course

2007 27 1 0 course using
MathLab

2008 15 0 4 none
2009 3 2 3 none

Table 2: The students participating in the experi-
ment

6.2 Evaluation of Programming Competences
A key question is how we can evaluate the students pro-

gramming competences? The exam of the course evaluates
the learning goals of the course and consequently the pro-
gramming competences the students should possess. We
evaluate the students using two programming tests similar
to the one used in the final exam of the introductory pro-
gramming course. In [6] we argue that the exam actually
measures the goals of the course. The pre-test can be seen
in the appendix; the post-test is similar to the pre-test ex-
cept for another cover story.

6.3 Rehearsing Programming Competences
The next question is what “limited effort” mean (RQ2)?

Shall the try to recall the students‘ programming compe-
tences through practise or through a general presentation
of key concepts, techniques, and examples? And shall we
provide some kind of assistance to recall their programming
competences during the post-test?

Ideally we would like to “measure” the learning effort it
takes a given student to be able to solve the task in the pre-
and post-test. This is in practice impossible! As a com-
promise, we offer the students an overview of the central
programming language constructs (basic statements, con-
trol structures, method, attribute, class, etc.) and central
concepts such as association (one-to-many) and collections
and how these are realised in the programming language
(Java). Furthermore, we give the students one of two kinds
of help when solving the post-test. In the final focus group
interview we specifically address how the learning aids have
helped the students.

6.4 Concrete experiment design
We invited all bio-technology students from the first, sec-

ond, and third year to participate in the experiment (45 in
total). 12 responded positively to our invitation, and 10 ac-
tually participated in the experiment. The students were
not paid (apart from a dinner at the end), nor did they
get course-credit for the experiment. The students had the
characteristics described in table 2.

The experiment was conducted a late afternoon in a computer-
lab (the same that was used for the lab-sessions during the
course) and lasted 3 hours. The agenda for the experiment
was as follows:

1. Welcome and introduction

2. Short repetition of use of the development environment
(BlueJ [23])

3. Pre-test

4. Brush-up of programming competences

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

89

5. Post-test

6. Focus group interview

The welcome and introduction motivated the study and
gave a general overview of the content of the afternoon. This
part took 15 minutes.

The repetition of the development environment helped the
students to remember how the IDE was designed and how
to edit and compile programs. This was done via a few
exercises the students had to solve — exercises from the
textbook used when the students had the course [3]. This
was done in order to have programming in focus, not the
tool used for programming. The exercises included a small
amount of actual programming (the students typed in some
code that was provided, they did not develop the solution
themselves). The students had therefore seen some Java
code just before the pre-test. This part took 15–20 minutes
(some students finished before others).

The pre-test was a standard assignment from a final exam.
Four researchers observed the students (2-3 students per
researcher). When the students got stuck, we noticed the
problem and evaluated how the students tried to solve the
problem. If the students had been stuck for a long period of
time, we helped the students to move on and noted this help.
The test lasted 30 minutes; same duration as the ordinary
exam.

The brush-up of programming competences was done us-
ing some general slides from the introductory programming
course. The slides describe general concepts (object, class,
attribute, method, constructor, parameter, type, statement,
selection, iteration, association and collection) and how these
look in Java. The students could ask questions and discuss
during the brush-up session. Nearly all of the students‘ ques-
tions were about specific details in Java. The students did
not do practical programming during the brush-up session.
This part of the experiment lasted one hour.

Also the post-test was a standard assignment from a fi-
nal exam. In order to evaluate different aids, we divided
the students into two groups: One group received a model
solution for the pre-test, the other group received a gen-
eral description of how to implement classes, associations
and two algorithmic patterns (that typically occur in exam
assignments): (1) in a collection of objects, find one that
matches a given criteria, and (2) in a collection of objects,
find all that matches a given criteria. The first help was
very concrete; the second incorporated the idea of pattern-
oriented instruction [28] which was emphasised in the ordi-
nary course. As for the pre-test, four researchers observed
the students and noted their difficulties. The post-test was
also time-boxed to 30 minutes.

The focus group interview lasted 35 minutes and focused
on the students difficulties, the difference between concrete
programming competences and general competences, the ef-
fect of the intermediate learning task (the brush-up of pro-
gramming competences), the influence of the aids provided,
and general comments.

7. OBSERVATIONS AND ANALYSIS
This section describes and analyses the observations made

during the experiment and the final focus group interview
in order to answer the two research questions.

Month
since
prog.
course

Last com-
pleted ex-
ercise

Problems

3 8 Did extremely well. Used
compareTo instead of
equals for checking if
strings are equal.

3 6 Many problems with syn-
tax like forgetting a method
name.

3 5 Many syntactical problems.
3 none Declared attributes in the

constructor.
15 none Methods without a signa-

ture. Confused about the
value of a name-attribute
and a reference to the given
object.

15 none Parameters for the values
of the attributes in the
toString() method.

27 none Many syntactical problems.
The toString() method
was implemented by return-
ing a string literal instead
of values of variables.

3 4 Did fairly well. Wrote
statements directly in the
class without a surrounding
method, but worked it out
by himself.

15 3 Called a non-existing
method (gettoString()).

15 none Declared an attribute called
toString. Declared at-
tributes in the constructor.

Table 3: Each student‘s performance in the initial
test

7.1 Forgetting
In this subsection we will look at RQ1.
As expected, the concrete syntax was a major problem for

almost all of the students. As one of the students noticed in
the interview: You quickly forget when to type a parenthesis
or a semicolon - you can remember that it is important that
they are put in the right place, but where that is An-
other student expressed it the following way: I had many
problems in the first test. I could not remember how to write
it — the class and the other stuff — I could remember that
this class was a class and you can create objects from it, but
in the code, I could not remember what to write and how
to call. I could remember that you had to return something
... but how it should be written and worked, I had totally
forgotten .

There was a difference between the students who took
the course three month ago and the other students. All
of the students had problems with the specific syntax, but
the “younger” students (measured in time since they had the
introductory course) had significantly less problems than the
“older” students as can be seen from table 3. One of the

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

90

students (number 1) would actually have passed the test if
it had been a real exam.

If we look more closely at the problems many students
encountered in the pre-test, they include the following:

Attributes Many declared the attributes in the construc-
tor and found it very difficult to initialise them.

Parameters Many found it difficult to declare parameters.
It seemed like they had the idea of passing informa-
tion through parameters but the concrete syntax was
a problem.

Screen output vs. return value Many implemented the
toString() method using a System.out.println(...),
and could not understand the error “missing return
statement”.

Programming process Many students gave up on a given
question and left it unsolved even though it was re-
quired to solve the next question.

In general we conclude that the students had forgotten
their specific programming competences. Only one student
(who took the course three months ago) could solve more
than very basic programming tasks. This student would
have passed, had it been a real exam.

7.2 Learning
In this subsection we will look at RQ2.
After the students had refreshed their programming com-

petences, they performed significantly better as can be seen
from table 4. If the post-test had been a real exam, seven
of the ten students would have passed it!

In general, the aid that was provided helped the students.
All of the students who had the model solution from the
pre-test, performed well. In fact, they would all have passed
had it been a real exam.

The students used the model solution in different ways.
Some students started out on their own and just used the
solution when they encountered a problem they could not
solve by themselves. As one student said: I did not use
it for the first six questions ... there were something about
ArrayList, how to write it, otherwise it was only in the end
where you have to write a for-loop, I could not remember
how to write that. I do understand the meaning and what
it is, but I cannot remember how to write it. Others used
it more systematically: I become a little stubborn when I
get such one [a solution]. I want to do it by myself ... but
I used it anyhow [for most of the test] because there were
many things I could not remember .

The performance of the students who got the general de-
scription was somewhat more diffuse. In general, they per-
formed significantly better than in the pre-test, but not all
would have passed had it been a real exam. Some students
found it difficult to put the general solution to practice.

In general the Refreshment of programming competences
phase in the experiment helped the students. As one student
said I think it helped me a lot — the PowerPoint show —
because I had completely forgotten all. I actually think I had
forgot that there should be a list if it wasn’t told.

In the Refreshment of programming competences phase,
many students had good and in-depth questions using cor-
rect terminology for programming concepts. We see this as

Month
since
prog.
course

Last
com-
pleted
exercise

type of
help

Problems

3 9 G None.
3 9 S Forgot to include

statements in { }.
3 9 G None.
3 2 G Wrote literals instead

of identifiers in the
parameter list of the
constructor.

15 7 S None.
15 8 S None.
27 5 G Forgot to import

java.util.*.
3 9 S None.
15 8 S None.
15 4 G Instead of type-

identifier pairs in
the parameter list,
she wrote identifier-
identifier pairs where
the first identifier
was the attribute
and the second was
the parameter.

Table 4: Each student‘s performance in the second
test. S referees to a solution of the initial test, G to
a general description of how to implement different
structures.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

91

Figure 2: Number of completed exercises in the pre-
and post test

an additional indicator that the students may have forgot-
ten the syntax but the more conceptual content and general
competences and skills are more easy to recall.

The design of this study was to use a qualitative research
approach, where we observed what the students did, what
problems they encountered and abstracted these findings.
An alternative way to address the research question (RQ2)
could be to statistically check if the students performed bet-
ter after the intervention. Figure 2 plots the students num-
ber of completed exercises in the pre- and post-test. If we
analyse the data using linear regression [27], we can observe
that there is a reasonably strog correlation between the ob-
servations (R2 = 0.52), and that the line is well above the
diagonal. This supports the conclusion that the intervention
indeed helped the students recall their programming compe-
tences. However, as noted initially, the number of students
in this study was only ten.

In general, we conclude that the students with the help
they got (one hour of lecturing plus help during the test)
could recall their programming competences. Consequently,
we conclude that it is possible with a limited effort for most
of the students in this study to recall general as well as more
specific programming competences and skills.

The other part of RQ2 “What are the challenges for re-
calling once learnt skills and competences?” is more difficult
to answer.

8. FUTURE WORK
In this study only ten students from one study program

participated. It will be interesting to expand the findings
from this research by involving more students from more
study programs. Fortunately, students from several other
study programs who do not receive further programming
instruction, have taken the course.

Programming is being taught in many different ways, and
there are many different ways of phrasing the intended learn-
ing outcome of introductory programming courses. In order
to obtain more reliable and generalisable results, it would be

interesting to include more universities and colleges in the
research and thus aim for a multi-institutional (and multi-
national) study. As [36] argues, a multi-national, multi-
institutional context, defines a new interface between com-
puter science education research and computer science edu-
cation practice — hopefully bringing them closer together (p.
S4E-16).

9. CONCLUSION
We have conducted a qualitative investigation of sustain-

ability of programming competence by studying the effect
of recalling programming competence long time after the
educational activity has taken place.

In the pre-test, all students struggled with syntax issues,
but the younger students (measured in time since they had
the introductory course) had significantly less problems than
the older students.

Our qualitative study indicates, not surprisingly, that syn-
tactical issues in general hinder immediate programming
productivity, but more interestingly it also indicate that a
tiny retraining activity and simple guidelines is enough to
recall general as well as more specific programming compe-
tences and overcome syntactical issues.

10. REFERENCES
[1] C. Alphonce and P. Ventura. Object orientation in

cs1-cs2 by design. In ITiCSE ’02: Proceedings of the
7th annual conference on Innovation and technology in
computer science education, pages 70–74. ACM Press,
2002.

[2] M. Anderson, R. Bjork, and E. Bjork. Remembering
can cause forgetting: Retrieval dynamics in long-term
memory. Journal of Experimental Psychology:
Learning, Memory and Cognition, 20(5):1063–1087,
1994.

[3] D. J. Barnes and M. Kı̈£¡lling. Objects First With
Java: A Practical Introduction Using Bluej. Pearson,
Essex, United Kingdom, 3rd edition, 2006.

[4] J. Bennedsen. Teaching and learning introductory
programming - a model-based approach. PhD thesis,
University of Oslo, Norway, department of Computer
Science, 2008. accessed May, 2009.

[5] J. Bennedsen and M. Capersen. Model-driven
programming. In J. Bennedsen, M. Caspersen, and
M. Kı̈£¡lling, editors, Reflections on the Teaching of
Programming, pages 116–129. Springer-Verlag, Berlin,
Germany, 2008.

[6] J. Bennedsen and M. E. Caspersen. Assessing process
and product ı̈£¡ a practical lab exam for an
introductory programming course. ITALICS,
Innovation in Teaching and Learning in Information
and Computer Sciences, 6(4):183–202, 2007.

[7] J. Bennedsen and M. E. Caspersen. Optimists have
more fun, but do they learn better? ı̈£¡ on the
influence of emotional and social factors on learning
introductory computer science. Journal of Computer
Science Education, 18(1):1–16, 2008.

[8] A. J. Biamonte. Predicting success in programmer
training. In SIGCPR ’64: Proceedings of the second
SIGCPR conference on Computer personnel research,
pages 9–12, New York, NY, USA, 1964. ACM Press.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

92

[9] R. Bjork. Retrieval practice and the maintenance of
knowledge. In M. Gruneberg, P. Morris, and R. Sykes,
editors, Practical aspects of memory: Current research
and issues, volume 1, pages 396–401. Chichester,
England, 1988.

[10] M. E. Caspersen. Educating Novices in the Skills of
Programming. PhD thesis, Aarhus University,
Department of Computer Science, 2007. accessed May
2009.

[11] M. E. Caspersen and J. Bennedsen. Instructional
design of a programming course: a learning theoretic
approach. In ICER ’07: Proceedings of the third
international workshop on Computing education
research, pages 111–122, New York, NY, USA, 2007.
ACM.

[12] G. Cooper and J. Sweller. Effects of schema
acquisition and rule automation on mathematical
problem-solving transfer. Journal of Educational
Psychology, 79(4):347–362, 1987.

[13] H. Cooper, J. C. Valentine, K. Charlton, and
A. Melson. The Effects of Modified School Calendars
on Student Achievement and on School and
Community Attitudes. Review of Educational
Research, 73(1):1–52, 2003.

[14] H. Ebbinghaus. ı̈£¡ber das Ged̈ı£¡chtnis. Teachers
College, Columbia University, New York, New York,
United States, 1885.

[15] H. Ebbinghaus. Memory: A contribution to
experimental psychology. http:
//psychclassics.yorku.ca/Ebbinghaus/index.htm,
1885. Translated from German by Henry A. Ruger
and Clara E. Bussenius (1913). Last accessed May 14,
2009.

[16] J. T. Gorgone, G. B. Davis, J. S. Valacich, H. Topi,
D. L. Feinstein, and J. Herbert E. Longenecker. Is
2002 - model curriculum and guidelines for
undergraduate degree programs in information
systems. Retrieved June 2009, 2002.

[17] J. T. Gorgone, P. Gray, E. A. Stohr, J. S. Valacich,
and R. T. Wigand. Msis 2006: model curriculum and
guidelines for graduate degree programs in information
systems. SIGCSE Bull., 38(2):121–196, 2006.

[18] M. Guzdial and A. Forte. Design process for a
non-majors computing course. In SIGCSE ’05:
Proceedings of the 36th SIGCSE technical symposium
on Computer science education, pages 361–365, New
York, NY, USA, 2005. ACM.

[19] T. B. Hilburn. A top-down approach to teaching an
introductory computer science course. SIGCSE
Bulletin (Association for Computing Machinery,
Special Interest Group on Computer Science
Education), 25(1):58–62, 1993.

[20] E. Howe, M. Thornton, and B. W. Weide.
Components-first approaches to cs1/cs2: principles
and practice. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 291–295. ACM Press, 2004.

[21] J. Jain, I. James H. Cross, and D. Hendrix.
Qualitative comparison of systems facilitating data
structure visualization. In ACM-SE 43: Proceedings of
the fourty-third annual Southeast regional conference,
pages 309–314, Kennesaw, Georgia, 2005. ACM Press.

[22] J. L. Knudsen and O. L. Madsen. Teaching
object-oriented programming is more than teaching
object-oriented programming languages. In S. Gjessing
and K. Nygaard, editors, ECOOP ’88 European
Conference on Object-Oriented Programming, pages
21–40, Berlin, Germany, August 15-17, 1988 1988.
Springer-Verlag.

[23] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Computer
Science Education, 13(4):249–268, 2003.

[24] R. B.-B. Levy, M. Ben-Ari, and P. A. Uronen. The
jeliot 2000 program animation system. Computers &
Education, 40(1):1 – 15, 2003.

[25] E. Loftus. Memory: surprising new insights into how
we remember and why we forget. Addison-Wesley,
Reading, Massachusetts, United States, 1980.

[26] S. Matzko and T. A. Davis. Teaching cs1 with
graphics and c. In ITICSE ’06: Proceedings of the
11th annual SIGCSE conference on Innovation and
technology in computer science education, pages
168–172, New York, NY, USA, 2006. ACM Press.

[27] D. C. Montgomery and E. A. Peck. Introduction to
linear regression analysis. John Wiley, New York, NY,
USA, 1982.

[28] O. Muller, D. Ginat, and B. Haberman.
Pattern-oriented instruction and its influence on
problem decomposition and solution construction.
SIGCSE Bull., 39(3):151–155, 2007.

[29] R. E. Pattis. The ı̈£¡procedures earlÿı£¡ approach in
cs 1: a heresy. In SIGCSE ’93: Proceedings of the
twenty-fourth SIGCSE technical symposium on
Computer science education, pages 122–126. ACM
Press, 1993.

[30] M. M. Reek. A top-down approach to teaching
programming. In SIGCSE ’95: Proceedings of the
twenty-sixth SIGCSE technical symposium on
Computer science education, pages 6–9, New York,
NY, USA, 1995. ACM Press.

[31] S. Reges. Conservatively radical java in cs1. In
SIGCSE ’00: Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education,
pages 85–89. ACM Press, 2000.

[32] A. Robins, J. Rountree, and N. Rountree. Learning
and Teaching Programming: A Review and
Discussion. Computer Science Education,
13(2):137–172, 2003.

[33] D. Schacter. The seven sins of memory: Insights from
psychology and cognitive neuroscience. American
Psychologist, 54:182–203, 1999.

[34] A. Schmolitzky. ”objects first, interfaces next” or
interfaces before inheritance. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 64–67. ACM Press,
2004.

[35] R. Shackelford, J. H. C. II, G. Davies, J. Impagliazzo,
R. Kamali, R. LeBlanc, B. Lunt, A. McGettrick,
R. Sloan, and H. Topi. The overview report. Accessed
June 2009, 2006.

[36] B. Simon, R. Lister, and S. Fincher.
Multi-institutional computer science educational
research: A review of recent studies of novice

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

93

understanding. In in Proceedings of the 36th Annual
Frontiers in Education Conference, pages SE412–17,
October 2006.

[37] D. Soldan, J. L. Hughes, J. Impagliazzo,
A. McGettrick, V. P. Nelson, P. K. Srimani, and
M. D. Theys. Computer engineering 2004 - curriculum
guidelines for undergraduate degree programs in
computer engineering. Accessed June 2009, 2004.

[38] J. Stasko, A. Badre, and C. Lewis. Do algorithm
animations assist learning?: an empirical study and
analysis. In CHI ’93: Proceedings of the INTERACT
’93 and CHI ’93 conference on Human factors in
computing systems, pages 61–66, Amsterdam, The
Netherlands, 1993. ACM.

[39] L. A. Stein. What we swept under the rug: Radically
rethinking cs1. Computer Science Education,
8(2):118–129, 1998.

[40] J. Sweller and G. Cooper. The use of worked examples
as a substitute for problem solving in learning algebra.
Cognition and Instruction, 2(1):59–89, 1985.

[41] D. W. Valentine. Cs educational research: a
meta-analysis of sigcse technical symposium
proceedings. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 255–259, New York, NY, USA, 2004.
ACM.

[42] S. Wiedenbeck. Factors affecting the success of
non-majors in learning to program. In ICER ’05:
Proceedings of the 2005 international workshop on
Computing education research, pages 13–24, New
York, NY, USA, 2005. ACM Press.

[43] J. Wixted and E. Ebbesen. Genuine power curves in
forgetting: A quantitative analysis of individual
subject forgetting functions. Memory and Cognition,
25:731–739, 1997.

[44] U. Wolz and E. Koffman. Interactivity in cs1 & cs2:
bringing back the fun stuff with java. In CCSC ’00:
Proceedings of the fifth Annual Consortium for
Computing Sciences in Colleges CCSC: Northeastern
conference, pages 1–3. Consortium for Computing
Sciences in Colleges, 2000.

[45] R. Woodworth. Experimental Psychology. Henry Holt,
New York, United States, 1938.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

94

Aarhus University Pre-test
Dept of computer science June 3rd 2009

File

String name
int size
String owner

String toString()

Directory

String name

void add(File f)
void remove(File f)
File largestFile()
List<File> filesOwnedBy(String s)
void printFiles()

File

String name
int size
String owner

String toString()

*

Experiment 1, (Pre-test)

1. Create a class, File, representing a file; the class File is specified

in the UML-diagram to the right. The three attributes must be
initialized in a constructor (using parameters of appropriate type).
The method toString returns a string-representation of a file, e.g.

 ”testexercises.doc, 267 kb, mec”

2. Create a Driver-class containing an exam-method. The method

must be static, have return type void and no parameters.

3. Create three File-objects, using object references f1, f2 and f3, in the exam-method and print out

these using the toString-method.

Call the observer and demonstrate what you have made so far.

4. Create a new class, Directory, representing a directory in a file-system. The class Directory, and

its relation to the File class, is specified in the following UML-diagram:

5. Program the methods add and remove who respectively adds and removes the File-object f to/from
the Directory-object.

6. Create an object of type Directory in the exam-method in the Driver-class and associate the

already created File-objects to this object.

7. Program the method largestFile. The method returns the larges file in the directory (it can be

assumed that the directory is not empty; if two or more files have the same size it is subordinate
which file thet is returned). Extend the File-class with the necessary get-methods.

8. Use the method largestFile in the exam-method in the Driver-class tio print out information on the

largest file in a directory.

Call the observer and demonstrate what you have made so far.

9. Program the method filesOwnedBy. The method must return a list of files owned by s. Extend the

File-class with the necessary get-methods.

10. Program the method printFiles. The method prints out a list of all files in a directory arranged by

size.

Call the observer and demonstrate your final solution.

APPENDIX

Post-test is similar except that another domain and
slightly modified methods are used

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

95

Implementation of Computer Science in Context - a
research perspective regarding teacher-training

Ira Diethelm, Claudia Hildebrandt and Larissa Krekeler
Carl von Ossietzky University
Computer Science Education
26111 Oldenburg, Germany

firstname.lastname@uni-oldenburg.de

ABSTRACT
In order to increase the number of students and professionals
in computer science a context-oriented approach for teaching
is often suggested, e.g. in [7]. But there is no structured
approach to transfer the concept of computer science to its
implementation at schools or universities, yet. This aspect is
also not mentioned in current research. This paper aims to
open a discussion by shifting the focus from the concept to
its realization which requires teacher-training and teaching
material. We present our initial steps for investigating the
transfer of the symbiotic implementation strategy and how
it was established for chemistry in context to the field of
computer science.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science
Education, Teacher Training

1. INTRODUCTION
Innovative teaching approaches have one problem in com-

mon: How to put them into practice. New approaches of-
ten sound very promising and helpful for students to learn
more CS or motivate them for it. But studies like [6], al-
ready made in 1971, showed that top-down strategies are not
enough to implement a new approach which aims to change
the teaching practice of teachers.

In the case of CS in context this would be to motivate the
teachers to rearrange their teaching concepts to a much more
student centered approach. It points out the relevance of the
regarded contents in the context of their every day life. It
also aims to enhance teaching methodology. Implementation
of this concept appears to be a big amount of work. But
we can learn from similar projects of natural sciences such
as chemistry in context – ChiK. Therefore we start with a
report on ChiK and its symbiotic implementation strategy
in the following section. We also try to explain why we have
so few students in our CS studies at universities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

In section 3 we discuss the special conditions of CS teach-
ers that may influence the success of an implementation of
CS in context. There we elaborate several factors which
should be considered during a research project for the im-
plementation of CS in context. The aspects discussed are
also reasons why teacher training in CS is urgently required.

In section 4 we present our first ideas for research ques-
tions and research methodology including first items for a
survey. We also report on our activities preparing for the
survey and some expected results. We hope that our results
will help to overcome the gap between theory and practice
in teaching CS in context.

2. RELATED WORK

2.1 Computer Science in Context
The phrase CS in context is used in differing ways: CS

in context is used for a courses at university that focuses on
more practical aspects of computer science like information
and application. Also, a context oriented approach often
means to use project oriented teaching methodology.

Context-oriented approaches for schools like ChiK, see e.g.
[11], are a bit different: They aim at the change of teaching
practice for more “authentic science” in class and hence to
make it more interesting for students. Therefore, teaching
units have to be based on relevant contexts. These contexts
should not only be used as a motivation at the beginning
but also be present in all following parts of the teaching
unit. ChiK -units aim to rise the variation of teaching meth-
ods and to point out basic concepts (like the relationship
between behavior and structure). ChiK provides a pattern
with 4 phases per unit [11]: 1. phase of contact (e.g. a
question or debate): personal relevance, interest; 2. phase
of curiosity and planning (e.g. a mind map): identify im-
portant questions; 3. phase of elaboration: inquiry, results,
presentation; 4. phase of deepening and connecting: reflec-
tion, understanding, personal relevance.

We think that this pattern also might fit for CS courses.
Koubek et al. [8] suggested an approach of CS in context
called in German “Informatik im Kontext - IniK” that de-
rives from the other context projects. IniK also has three
aims: 1. orientation on relevant contexts; 2. variety of
teaching methods and 3. principles and standards. Some
usable teaching units for this approach can already be found
in [9].

2.2 Teachers’ perspective
Implementing a concept often means to modify the teach-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

96

ers’ beliefs and behavior. Therefore, we have to focus on the
concept and on the teachers.

Publications in CS research dealing with the teachers’ per-
spective are less common: As one of the later ones Lister et
al. analyzed in [10] the understanding of teaching of comput-
ing academics and found differing ways that CS academics
understand teaching. They suggest “that academics who are
aware of the range of understandings will be better able to
decide how to design a revision or a new offering.” Results of
[13] show that “a Conceptual Change/Student-focused ap-
proach to teaching is more likely to lead to high quality stu-
dent learning and to greater teaching satisfaction”. And for
a context oriented approach one needs to empathize with the
students’ position, a student-centered belief of teaching. But
Pears et al. [12] conclude with: “While much effort has been
spent on raising academics’ awareness of student-centric ap-
proaches to teaching and learning in computer science over
the last ten years, it appears that teacher attitudes lag be-
hind. Teachers experience disempowerment in the conduct
of their day-to-day teaching practice and there is a risk that
this can lead to passivity and disengagement, to the detri-
ment of learning.” So, how to bridge this gap?

The first thought to get a teaching approach into practice
often is to give a short workshop of a few hours in hope
that the attendees will perform in the right way afterwards.
Maybe they need another workshop a few weeks later and
then the attendees, so the idea, are able to transfer their
knowledge to other teachers. But research has shown that
an unreflected participation at isolated events is not leading
to changes in the teaching behavior in classes. It leads to
isolated knowledge only. It is shown already in 1971 by [6]
that this relies on a misbelief: “It was assumed [...] that any
professional teacher ’worth his salt’ could read a document
describing the innovation and then, on his own, radically
change his behavior in ways that are congruent with the
new role model.”

One main reason why this top-down strategies fail is that
concept level and application level are regarded separately.
As a result not enough attention is paid to the special needs
of practice like those of the single teacher, see [1].

The fact that teachers’ attitudes in CS still lag behind and
are difficult to change can be explained as follows: Teachers
not only need knowledge of the subject they teach. They
need knowledge about the complex activities in class and
they need so called subjective theories about their work, see
[2]. Most publications about teachers’ cognitions use some
general assumptions that characterize the underlying con-
ception of man. One of them is that teachers not only use
knowledge from their formal studies, but from their own
time when they went to school and knowledge that comes
from their unreflected every-day work at school as a teacher.

According to Dann, [2], p. 166, it takes three steps to
change the cognition and subjective theories effectively: The
”already existing knowledge and problem-solving capacity
has to be activated, ... [then, the] individual subjective theo-
ries have to be confronted with new knowledge, [and, finally,
to] guarantee that the newly generated knowledge becomes
better than the old one, it has to be used.”

2.3 Symbiotic implementation
The symbiotic implementation strategy of ChiK, see [11],

is characterized by the foundation of learning communities,
consisting of 2 teachers from each school, one researcher and

one school administrator. Every person in this group of 8-
14 persons is regarded as an expert. This communities meet
every 6 to 8 weeks. They aim to develop teaching material,
try it in their own school and reflect their experiences. So,
together they develop a solution that can be shared and fits
with the specific conditions and needs of the participating
teachers. The personal beliefs and attitudes of the teachers
regarding the innovation are crucial.

Most of the groups started from teaching units or mate-
rials they already had and began to modify them so that
they made an context-oriented unit of it (activation and
confrontation according to Dann, above). Then some or
all members of the groups tried this material on their own
in their classes and evaluated it. In group they reflected on
their experiences (to realize that the new teaching method
is better than the old one).

Fey et al. evaluated the success of ChiK and summarized
their results in [4] after the first year regarding the aims of
the project: The perceived variety of teaching and learning
methods increased. Co-operation with teachers of other
subjects was enhanced within the participation schools. The
perceived relevance of the group meetings correlates signif-
icantly with the enhancement of the feasibility of ChiK.
The higher the perceived relevance of co-operation within
these learning communities is, the higher is the perception
of a teacher’s own growth of competence.

In general we can claim that their strategy was quite suc-
cessful. In the meantime it became a common teaching ap-
proach for chemistry in Germany and it is implemented at
school, in school books and embedded in the official curricu-
lum. So we think this setting might produce similar results
in CS.

3. CONDITIONS OF CS TEACHERS
For a successful transfer and design of an symbiotic imple-

mentation strategy for CS in context there are some factors
which have to be discussed. Some conditions of CS teachers
differ from those of chemistry teachers. But there are no
publications known that focus on research of this conditions
in CS teacher education or in CS teacher training. So we
only can sum up some observations and statistics:

Comparing the number of chemistry or physics teachers
we can only find a few CS teachers. There are many schools
with only one CS teacher. As a consequence the co-operation
and exchange of teaching material, new ideas and feedback
among CS teachers is very restricted just because of the
distance. This makes co-operation a very important aspect
for a strategy for implementing CS in context.

Because CS is a quite young discipline the teaching mate-
rial and curricula for CS at schools are not as uniformized
as they are for the natural sciences. The consolidation, tra-
dition in educational research and self-image of CS lags far
behind those of natural sciences. Most CS teachers haven’t
had CS as a subject at school when they were young. This
is relevant for the subjective theories of CS of the teachers.
So the perception of teachers for CS or CS teaching
may be an interesting factor as well. We think that these
perceptions differ a lot.

There are very different ways to become a CS teacher in
Germany: a few studied CS education, some only CS and
took no studies in pedagogy, some have been teachers for
other subjects, mostly maths, and decided to take additional
courses in CS when they were already working at school or

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

97

are self-taught. Knobelsdorf and Schulte showed in [7] that
some of their students want to become a CS teacher because
their own teacher was incompetent and that they had to
learn CS on their own. This uncovers another requirement
for the design of our implementation strategy: It has to deal
with the differently qualified teachers and the resulting
competences in CS.

An enhancement of teaching competency is shown when
teachers try new teaching techniques and methods. And
it is shown in the ability to cope with frequently changing
conditions, see [5], p. 106. With respect to the fact that CS
teachers have to deal very often with changing conditions
– a change of tools and of computers they work with at
least every 5 years – a perceived low competence becomes
plausible.

As a first summary we can say that there are at least 3
important factors for CS teachers that may influence the im-
plementation of new teaching concepts. For the implemen-
tation of CS in context we have to focus on these factors:

• missing communication and co-operation,

• perception of CS or CS teaching,

• perceived competences and qualification history.

Nevertheless it is another field of research to identify this
influencing factors. So we use them as an assumption for
our research project.

4. RESEARCH PERSPECTIVE
A transfer of the symbiotic implementation strategy from

chemistry to CS seems worth trying and promising.

4.1 Research questions
We assume that the above mentioned factors influence the

quality and the success of a symbiotic implementation of CS
in context and CS teacher training in general. To prove this
our research has to answer the following questions regarding
teachers:

• What are the initial states of teachers for each fac-
tor and how do these values change during a testing
period?

• How do teachers perceive the success and quality of
the implementation itself?

Additional research questions are similar to those from
ChiK [11]:

• Did the teaching behavior change in the designated
way?

• What changes are reported by teachers and students
as compared with prior teaching and learning experi-
ences regarding context orientation and the variety of
teaching methodologies?

• Did the motivation of the students for CS increase?

4.2 Research Methods
To answer these questions we are developing question-

naires for teachers and students. We decided to use online
questionnaires that will be used at the beginning of next
school year and at the end of each school year for the next
3 years.

To analyze the isolated factors for the teachers from sec-
tion 3 we will have to find items regarding the following
questions:

• How do they describe their exchange with colleagues
of CS and other subjects?

• What is their history of qualification for CS teaching?

• How do they perceive their competences?

• What’s their teaching practice like?

• How do they deal with the frequent change of condi-
tions of teaching CS?

• Is CS an established subject at their school?

• How many CS teacher colleagues do they have at their
school?

• Do teachers perceive an enhancement of their teaching
methodologies during the project and do their students
perceive this also?

For the research questions regarding the variety of teach-
ing methods and the co-operation in the groups we will use
similar tools like ChiK used. Some sample items could be:

In my CS lessons I use a wide variety of teaching
methods
My CS lessons is based on questions of topical interest
or questions from social or private life.
My CS lessons pass like planned
I am able to identify the problems in my lessons.
I am able to cope with them.

The questionnaires will be followed up by an interview
study and one study with repertory grids of Kelly to confirm
the outcome of the survey more in detail and to be able to
get a closer view to the teachers’ personality.

For the students’ perspective we’ll try to evaluate if the
interest in CS is increasing and if students want to choose
a profession in CS related fields. Sample items for this may
be:

I enjoy my CS lessons.
When I find something about CS in newspapers or
books I read it through.
I hope to find a job where I have to do with CS every
day.

We’ll question the students that belong to the teachers of
our study and comparable classes that have no CS lessons.
We also like to ask students with CS but no CS in context
in addition to that.

4.3 Sets of teachers
We already set up groups of teachers that take part in

our research, so called teacher sets. Now, we will introduce
them shortly.

First, we formed a set of 8 teachers of different schools
and different school types (from secondary and vocational
schools) who want to develop new teaching material and
teaching units for the context “energy” in CS classes, see [3].
They meet every 8 weeks and currently they have decided to
start with the objective of energy consumption of hardware
systems. Their students are 16 years or older.

A second initiative focuses on the technical aspects of
CS. Here there are about 20 teachers from 13 schools co-
operating to create teaching materials and units for the 7th

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

98

grade (13 years old). Most of the teachers want to start
planning their units with the context “robotics” and with
Lego Mindstorms.

For these two sets the bigger context (energy or technical
aspects) was given because they also belong to other research
projects regarding these topics. The teachers have just met a
few times to organize themselves in the group and to decide
which topics to work on first. The third initiative will start
in November when secondary school teachers will meet and
create teaching units in context of a free choice.

All teachers that we met where asked for their motivation
to join our projects and all answered that they want to co-
operate and exchange material with other colleagues.

4.4 Expected results
We regard this research project as an initial shot in a set

of projects. Due to the fact that we use similar settings
and similar research questions like ChiK to some points the
results may be similar in those questions. But regarding
the factors that separate teachers of chemistry from those
in CS, we hope to be able to explain differing data with
these factors. And we might find a correlation of the co-
operation and the perceived competences of the teachers.
Besides that we are curious about a connection between the
perceived competences and the qualification history.

Altogether, we expect to show that teachers of the sets
describe their co-coperation with teachers from other schools
as helpful. We think that the co-operation of CS teachers
relate to the perceived quality of the work in the set and the
implementation of new teaching methods. We also expect
to find that students in context-oriented CS classes are a bit
more motivated for studying CS or related topics than in the
comparing groups of students who had no context-oriented
lessons in CS.

5. CONCLUSIONS
The results of research to this questions will effect the

design of teacher training units for CS in context and the
design of the practical phase of teacher education as well.
The results may be also helpful for the design of school cur-
ricula and study programs at school or universities. If we
use the results maybe we can manage to reduce the obsta-
cles and rise the motivation level to study CS or CS related
topics. And teachers may be able to handle the different
pre-knowledge level of students much better and use them
for the work on a certain context.

On the long run we hope to initiate some more effects:
We hope to support teacher training in CS in general and to
support the development of basic concepts for CS that can
be used to augment CS lessons in the future like it did in
chemistry or physics. Teachers who have joined the teacher
sets of a symbiotic implementation could create new sets on
their own.

We also think that the symbiotic implementation strat-
egy can help to give CS more weight at school just because
teachers teach interesting things that help students to un-
derstand the phenomena of their every day life.

6. REFERENCES
[1] P. Blumenfeld, B. Fishman, J. Krajcik, and R. Marx.

Creating usable innovations in systemic reform:
Scaling-up technology embedded project-based science

in urban schools. Educational Psychologist,
35:149–164, 2000.

[2] H.-D. Dann. Subjective theories and their social
foundation in education. In Social Representations and
the Social Bases of Knowledge. Hogrefe & Huber,
1992.

[3] I. Diethelm and S. Moll. Energy education and
computer science. In WCCE 2009: 9th World
Conference on Computers in Education, 2009.

[4] A. Fey, C. Gräsel, T. Puhl, and I. Parchmann.
Implementation einer kontextorientierten
Unterrichtskonzeption für den Chemieunterricht.
Unterrichtswissenschaft, 32:238–256, 2004.

[5] K. Fussangel. Subjektive Theorien von Lehrkräften zur
Kooperation – Eine Analyse der Zusammenarbeit von
Lehrerinnen und Lehrern in Lerngemeinschaften.
Dissertation, University of Wuppertal, 2008.

[6] N. Gross, J. B. Giacquinta, and M. Bernstein.
Implementing organizational innovations: A
sociological analysis of planned educational change.
Basic Books, New York, 1971.

[7] M. Knobelsdorf and C. Schulte. Computer science in
context - pathways to computer science. In Koli
Calling 2007: Proceedings of the 7th Baltic Sea
conference on Computing education research, 2008.

[8] J. Koubek, C. Schulte, P. Schulze, and H. Witten.
Informatik im Kontext (IniK) - ein integratives
Unterrichtskonzpt für den Informatikunterricht. In
INFOS 2009: Informatik und Schule, 2009.

[9] J. Koubek and the IniK-Group of Königstein. IniK -
Informatik im Kontext,
www.informatik-im-kontext.de, 2008.

[10] R. Lister, A. Berglund, I. Box, C. Cope, A. Pears,
C. Avram, M. Bower, A. Carbone, B. Davey,
M. de Raadt, B. Doyle, S. Fitzgerald, L. Mannila,
C. Kutay, M. Peltomäki, J. Sheard, Simon, K. Sutton,
D. Traynor, J. Tutty, and A. Venables. Differing ways
that computing academics understand teaching. In
ACE ’07: Proceedings of the ninth Australasian
conference on Computing education, pages 97–106,
Darlinghurst, Australia, Australia, 2007. Australian
Computer Society, Inc.

[11] I. Parchmann, C. Gräsel, A. Baer, P. Nentwig,
R. Demuth, B. Ralle, and the ChiK Project Group.
”Chemie im Kontext”: a symbiotic implementation of
a context-based teaching and learning approach.
International Jounal of Science Education,
28(9):1041–1062, 2006.

[12] A. Pears, A. Berglund, A. Eckerdal, P. East,
P. Kinnunen, L. Malmi, R. McCartney, J.-E.
Moström, L. Murphy, M. B. Ratcliffe, C. Schulte,
B. Simon, I. Stamouli, and L. Thomas. What’s the
problem? teachers’ experience of student learning
successes and failures. In Koli Calling 2007:
Proceedings of the 7th Baltic Sea conference on
Computing education research, 2008.

[13] K. Trigwell and M. Prosser. Development and use of
the approaches to teaching inventory. Educational
Psychology Review, 16(4):409–424, 2004.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

99

Levels of Awareness of Professional Ethics used as a
Sensitizing Method in Project-Based Learning

Tero Vartiainen
Turku School of Economics, Pori Unit

P.O. Box 170
FI-28101 PORI, FINLAND

Tel +358505200794

tero.vartiainen@tse.fi

Ian Stoodley
Queensland University of

Technology, GPO Box 2434
Brisbane, QLD 4001, Australia

Tel 61 7 31382445

i.stoodley@qut.edu.au

ABSTRACT
There is a need for educational frameworks for computer ethics
education. This discussion paper presents an approach to
developing students’ moral sensitivity, an awareness of morally
relevant issues, in project-based learning (PjBL). The proposed
approach is based on a study of IT professionals’ levels of
awareness of ethics. These levels are labeled My world, The
corporate world, A shared world, The client’s world and The
wider world. We give recommendations for how instructors may
stimulate students’ thinking with the levels and how the levels
may be taken into account in managing a project course and in an
IS department. Limitations of the recommendations are assessed
and issues for discussion are raised.

Keywords
project-based learning, ethics integration, phenomenography,
variation theory, awareness

1. INTRODUCTION
Ethics teaching in computing is recognized as a vital part of
computing education, for example professional ethics have been
incorporated into curricula in the computing disciplines [e.g., 2],
frameworks for ethics teaching in computing have been proposed
[e.g., 5], text books on ethics education have been published [e.g.,
4] and techniques for teaching computer ethics have been
proposed [e.g., 1]. In this paper we present a new approach to be
used in project based learning (PjBL). We propose that through
this approach instructors of a project course would be able to
support students’ growth in moral sensitivity, that is, their
recognition of morally significant issues, and orient the students
appropriately towards ethical action. Moral sensitivity is,
according to James Rest’s [7] Four Component Model (FCM), the
first step in developing moral behavior. The FCM describes four
simplified and overlapping processes, according to which an
individual may fail to act morally. These processes are capabilities
which can be focused on in educational interventions. The first

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Koli Calling '09, October 29 – November 1, 2009, Koli, Finland.
Copyright 2008 ACM 978-1-60558-952-7/09/11…$5.00.

process, moral sensitivity, involves awareness of how our actions
affect other people. It includes the capability to construct different
possible scenarios for moral conflicts and how different actions
have an influence over others. After recognizing a moral conflict,
one has to solve it, i.e., make a decision concerning what to do.
The second process, moral judgment, is about judging which
courses of action are the most justified. As moral judgment
develops, a person's problem-solving strategies become more
directed towards others and more principled in nature. The third
process, moral motivation, refers to the importance people place
on moral values. Moral motivation is about prioritizing moral
action. This speaks of having the will to carry through to action
the choices made in the preceding (second) process. A clear
example is if someone chooses to lie to maximize profit, although
he or she understands that being honest is the moral choice to
make, this is a failure in terms of moral motivation. The fourth
process, moral character, refers to the psychological strength to
carry out a line of action. Courage, perseverance and
implementation skills are needed to carry out what a person
perceives to be morally right to do. FCM describes four types of
failures in moral behavior but also four abilities which develop as
an individual matures morally and which can be reinforced by
education.

In this paper, we focus on the first aspect of FCM,
developing moral sensitivity in students. To do this, we introduce
facets of awareness of professional moral behavior into the PjBL
environment. We describe five cumulative facets of awareness,
called ‘citizenships’ [10]. We argue that it is possible to support
students’ development to more comprehensive levels of awareness
in the PjBL context, that is to say, to support the development of
moral sensitivity in students on the issues relevant to information
systems development (ISD). Towards this goal, we discuss the
implications of such an approach for various people in project
based learning.

2. PROJECT-BASED LEARNING (PjBL)
The project-based learning theory is based on constructivism
which espouses the following guiding principles: 1) learning is a
search for meaning and meaning is derived from experience; 2)
meaning requires understanding wholes and their constituent
parts; and 3) meaning that is derived from experience is powerful
because it is fundamentally self-referent, it is rooted in personal
identity and it views life from the inside in the context of social
systems. In constructivism, the situational nature of learning is
taken into account and therefore authentic or simulated
environments are preferred [e.g., 3]. A study by Tynjälä [12]

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

100

showed that students studying in accordance with constructivism,
writing assignments and discussing them in groups, showed more
development in thinking skills (classifying, comparing, evaluating
and generalizing issues) than students reading books and
attending lectures. There are five significant features that
distinguish the constructivist approach of project-based learning
from other forms of learning [3]:

• a problem or question serves to drive learning
objectives;

• constructing a concrete artifact (cf. problem-based
learning in which students work on paper cases without
a concrete end product);

• learner control of the learning process (pacing,
sequencing, actual content);

• contextualization of learning (what we learn in a
particular context we recall in similar contexts); and

• projects are complex enough to induce students to
generate questions of their own.

PjBL does not inherently require real-world tasks, but at
university level such tasks are often utilized to provide students
with as authentic an experience as possible. Developing generic
skills such as teamwork is an essential element in many models of
PjBL. The characteristics of project-based learning and the
existence of project courses in IS curricula [e.g., 9] make it a
promising possibility to advance students’ moral development in
terms of FCM [7]. When students construct an artifact, an
information system or other IS related development project, it
should be natural to consider the production process and the end
result from a moral viewpoint. To prompt in-depth reflection,
students need to be guided to critically evaluate their own
thinking processes.

We now introduce a study which we consider to be a suitable
framework for developing students’ moral sensitivity in the PjBL
environment in computing.

3. COMPUTING PROFESSIONALS’
AWARENESS OF ETHICS
An empirical study of 30 IT professionals in Australia revealed
that they experienced ethics in terms of their relation to other
people [10]. The professionals acknowledged the rights of an ever
broadening circle of other people and this influenced how
professionals thought about their own rights. The professionals
also acknowledged their responsibility for an ever widening circle
of other people. Thus, professionals’ rights and responsibilities
were increasingly defined in terms of others. This expanding
awareness of ethics is represented in five ‘citizenships’:
Citizenship of my world, Citizenship of the corporate world,
Citizenship of a shared world, Citizenship of the client’s world
and Citizenship of the wider world. Table 1 summarizes these
citizenships. In the table the beneficiary is what is directly in view
when the professional is acting ethically. In other words, it is the
intended recipient of the professional's moral act. The act is how
the professional expresses their morality. In other words, it is the
way the professional works out concretely their ethical
convictions. The intention is the outcome the professional desires
from their actions. In other words, it is the professional's goal in
engaging in the act. The citizenships are described in more detail
below.

Table 1: The citizenship categories of IT professionals’
experience of ethics [10]

Citizenship
category

Beneficiary Act Intention

1. My world Inner circle Guarding Self-
preservation

2. The corporate
world

Corporation Devolving Corporation
success

3. A shared
world

Client and
professional

Sharing Win-win

4. The client’s
world

Client Bearing Client Success

5. The wider
world

Humanity Serving Do the ‘right
thing’

Category 1: Citizenship of my world

When experiencing ethics as Citizenship of my world, the
professional focuses on themselves and their close circle of
friends and associates. They see themselves as defensively
guarding their existing rights, with the intention of self-
preservation.

in this particular industry there are two things that get you jobs -
your security clearance and your reputation. If your reputation is
bad you are not going to get jobs… So, I’m not going to sabotage
my career for a company that I work for and I’ve always had that
philosophy. (Participant 11)

Category 2: Citizenship of the corporate world

When experiencing ethics as Citizenship of the corporate world,
the professional focuses on their employing organization. They
see themselves as loyal employees who devolve the responsibility
for decisions to their superiors, with the intention of enabling the
corporation to succeed.

if you identify risks to the organisation or to a process then you
have a duty of care... to your managers to... bring it to their
attention... Provided that you have done your job in identifying
that risk, addressing possible recommendations. If they choose to
ignore those recommendations then you have devolved your duty
of care to them (Participant 28)

Category 3: Citizenship of a shared world

When experiencing ethics as Citizenship of a shared world, the
professional focuses on themselves and their clients. They see
themselves as sharing equally with the client so both of them
benefit and neither are unduly disadvantaged, with the intention of
achieving a win-win result.

I’d say that’s my clearest picture of ethics in IT and again it’s
more of the win-win. I think we have an obligation to let the
customer win and you win. Don’t harm yourself but don’t harm
the customer. (Participant 6)

Category 4: Citizenship of the client’s world

When experiencing ethics as Citizenship of the client’s world, the
professional focuses on their client. They see themselves as
bearing responsibility for the client’s welfare, with the intention
of enabling the client to succeed.

I still think it goes beyond that and it’s this ethical obligation to
do what is necessary to meet that client’s expectations. It’s no
good building a system that might meet what was specified to the

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

101

letter but if it still doesn’t work for them or if it’s still going to
cause them problems, then you’ve got an obligation to address
those. (Participant 2)

Category 5: Citizenship of the wider world

When experiencing ethics as Citizenship of the wider world, the
professional focuses on the needs of humanity in general. They
see themselves as generously serving others, even those they may
not know personally and even to personal disadvantage, with the
intention of doing the right thing.

My ethics have caused me at times to pursue certain paths in my
career, so they’ve been an influence on my choices… particularly
of who to work for and what to work on, for example I... once
responded to a job ad and I found out... that the job was with a
company making gaming machines and I decided to decline to
even go for an interview because I… didn’t feel it’d be ethical…
(Participant 9)

These experiences of ethics build on each other. For example, a
professional who experiences the client’s world does not loose
sight of their own world, however the client’s world influences
how they see their own world. Thus, these are not developmental
stages in the sense that the earlier perspectives are left behind as
professionals adopt the later perspectives. Rather, they are facets
of awareness which are built on and broadened as the professional
experiences ethics in an increasingly comprehensive way.

4. INTEGRATING AWARENESS LEVELS
INTO PjBL
In this Section we reflect on the application of the insights offered
by the Stoodley’s study to the PjBL. In PjBL the relation between
instructor and students may be very sensitive [13]. To become
better aware of such relations, five levels of instructor intervention
were defined towards a student group: 1. outsider; 2. observer; 3.
inspirer; 4. participant; and 5. decision maker [11]. Ideally, an
instructor should stay at observer and inspirer levels to guarantee
independent functioning of a project group and to give students
the whole responsibility of their own project [13, p. 703]. At the
inspirer level an instructor may be able to direct students’
attention towards what the students perceive to be ethical aspects
of project work and to the wider Citizenship experiences that
students could be expected to experience in the client context and
engage in dialogue with the students about the implications of
those experiences. To avoid indoctrination, imposing a body of
doctrines held by the teacher on the student [e.g., 14], the
instructor should avoid becoming a participant of the group. This
means that the instructor could suggest wider ways of perceiving
ethics as represented in the Citizenships, however he or she
should not prescribe those wider perspectives. In more concrete
terms, the instructor could reflect back to the students the way
they seem to be approaching the PjBL situation, then offer an
alternative point of view, for example, "It seems to me that you
are looking at this situation from the viewpoint of your group, but
what about the client's point of view. Can you think of how they
may see this?" This question offers inspiration to move from The
corporate world to A shared world point of view. For another
typical example, in a situation in which an instructor perceives
ego-centric behavior among students [13], he or she could say, “It
seems to me that you may not all be committed to the project task
and its implementation. If your group belonged to a software
house, how would your attitude be tolerated by your supervisor?”

This question stimulates the students to consider moving from the
My world to The corporate world point of view. Given the partial
alignment of students’ perceptions with professionals’
perceptions, it would appear that open discussion of moral issues
amongst students in an open forum would bring students into
contact with a breadth of viewpoints. Inclusion of the client in
such discussion would serve to enhance the possibility of
alternative viewpoints to be expressed. It remains for the
instructor to offer a supportive environment in which such
discussion may take place and to be alert to perspectives which
are not being represented, with a view to ensuring these are heard.
The Citizenships offer a framework upon which such intervention
may be based.

From the viewpoint of managing a project course, there are
several ways that the Citizenships can be used. When negotiating
with prospective clients the question needs to be asked, “Does the
client maximize the likelihood that students will be exposed to the
widest possible range of ethical views?” Some clients, for
example, may only operate within Citizenships 1 to 3, whereas
other clients will also embrace Citizenship 4 or even Citizenship
5. Engagement in a project that had benefits to the wider
community would be likely to introduce Wider world perspectives
and if this project was being supported by a corporation then it
would also quite possibly introduce Corporate world
perspectives. Also, to expose students to a full range of
Citizenship views may not require the direct involvement of every
student with every client, but in a project course community the
students could be encouraged to talk with students from the other
student groups as well as get to know the clients of the other
student groups. Thus, the ideal project chosen as a stimulus for
instruction would be one which has the highest likelihood of
students confronting their own views of ethics, views which differ
from their own and views which represent the widest possible
perspectives. For example, a project which would help provide
such a stimulus would impact a wide range of people, and require
the students to communicate between each other and other
stakeholders in order to find solutions.

From the viewpoint of an IS department and the curricula, the
department could define a strategy to collaborate with industry in
such a way that, as a whole, students were exposed to the full
range of Citizenship views over the course of their IS studies.
However, the exposure of students to moral argumentation and
moral conflict solving skills [8] should not be neglected, in order
for all the processes of Rest’s FCM to be drawn on. Instructors
involved with the project course could be educated to recognize
the Citizenship levels in students’ deliberation and to react
appropriately. In instructor recruiting the capabilities of university
teachers for this kind of ethics integration could be assessed.

This approach may be applied immediately in instructor-student
interactions. However, it also suggests the possible need for a
comprehensive review of the entire educational setting. Our
approach may challenge existing educational objectives, since as
we understand it what is typically expected in IS curricula is that
students adopt the Shared world or Client’s world perspectives.
We propose that from an ethical viewpoint, curricula should
include The wider world perspective

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

102

5. EVALUATION
Given the contextualization feature of PjBL (what we learn in a
particular context we recall in similar contexts) [3], it is
noteworthy that the PjBL environment does not necessarily
resemble the business environment and therefore presents a
challenging goal for the educational institute which aims to
prepare students to confront moral conflicts in the business
environment. Given the control exerted by the learner in PjBL [3],
it is noteworthy that our proposal aims to take into account the
avoidance of indoctrination by giving students the opportunity to
make their own decisions (the instructor adopting the role of
inspirer). In addition, in PjBL environments the projects should
be complex enough to induce students to generate questions of
their own [3]. Our proposal is in line with this feature as morality
as such is considered complex [e.g., 6]. Therefore, according to
our proposal, students are exposed to discussions and thinking
which will require them to take into account the complexities of
practical morality.

6. DISCUSSION
We propose the following issues for discussion:

1. How may we enable students to appreciate the views of
other stakeholders in the PjBL environment?

2. How may we structure the teaching in a computing
department to include ethical aspects?

3. How important is it that students gain a 'wider world'
perspective during their university studies?

4. How else could the experience categories be used to
prompt students to consider alternative viewpoints to
their own?

7. REFERENCES
[1] Applin A.G. 2006. A learner-centered approach to teaching

ethics in computing. SIGCSE’06, March 1-5, Houston,
Texas, USA. Pp. 530-534.

[2] Gorgone, J. T., Davis G. B., Valacich, J. S., Topi, H.,
Feinstein, D. L. & Longenecker, H. E. Jr. 2002. IS 2002:
model curriculum and guidelines for undergraduate degree
programs in information systems. Communications of the
AIS 11 (Article 1).

[3] Helle, L., P. Tynjälä, and E. Olkinuora. 2006. “Project-Based
Learning in Post-Secondary Education: Theory, Practice and
Rubber Sling Shots,” Higher Education (51)2, pp. 287–314.

[4] Johnson D.G. 2001. Computer ethics. Upper Saddle River
(NJ): Prentice Hall.

[5] Martin C.D., Huff, C., Gotterbarn, D., & Miller, K. 1996.
Implementing A Tenth Strand in the CS Curriculum.
Communications of the ACM, December, Vol 39. No. 12. pp
75-84.

[6] Packer, M.J. 1985. The Structure of Moral Action: A
Hermeneutic Study of Moral Conflict. Basel: Karger.

[7] Rest, J. 1984. The Major Components of Morality. In W.M.
Kurtines, J.L. Gewirtz (Eds.) Morality, Moral Behavior, and
Moral Development. New York: A Wiley-Interscience
Publication. 24-38.

[8] Ruggiero V.R. 1997. Thinking Critically About Ethical
Issues, Mountain View, CA: Mayfield Publishing Company.

[9] Scott, T.J., Tichenor, L.H., Bisland, R.B.Jr., & Cross J.H.
1994. Team dynamics in student programing projects.
SIGSCE 26 (1), 111-115.

[10] Stoodley, I. 2009. IT professionals’ experience of ethics and
its implications for IT education. Professional ethics: The IT
experience. Saarbrucken: VDM Verlag Dr Muller.

[11] Tourunen, E. and T. Vartiainen. 2002. ”Ethical Issues in
Project Learning,” Presented: International Conference on
Experiential Learning, ICEL 2002 Cultural and Ethical
Dilemmas, 1-5 July, Llubjana, Slovakia. (abstract-based
acceptance of articles)

[12] Tynjälä, P. 1998. Traditional Studying for Examination vs.
Constructivist Learning Tasks: Do Learning Outcomes
Differ? Studies in Higher Education 23 (2), 173-189.

[13] Vartiainen T. 2007. Moral Conflicts in Teaching Project
Work: A Job Burdened by Role Strains. Communications of
the Association for Information Systems Vol. 20 (article 43)
pp. 681-711. ISSN 1529-3181.

[14] Warnock M. 1975. ”The Neutral Teacher” in M. taylor (ed.)
Progress & Problems in Moral Education, Windsor: NFER
Publishing Company, pp. 103-112.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

103

Visual Program Simulation Exercises

Juha Sorva
Department of Computer Science and Engineering

Helsinki University of Technology
Espoo, Finland
jsorva@cs.hut.fi

ABSTRACT
In this paper, I propose a new kind of assignment for CS1 courses,
the visual program simulation exercise, which engages beginner
programmers to learn about fundamental programming concepts
and the dynamics of program execution. I discuss the software
support that such exercises require, and list some key points on the
design and evaluation of a visual program simulator system. The
paper provides as a basis for further discussions on the use of visual
simulation for learning about program execution.

Keywords: program visualization, program simulation, simulation
exercises, engagement, automatic assessment, CS1

1. INTRODUCTION
In this paper, I propose a new kind of assignment, the visual

program simulation exercise, meant for teaching beginners about
fundamental programming concepts and the dynamics of program
execution in an engaging and automatically assessable way.

The paper is structured as follows. In the next section, I estab-
lish the pedagogical problem that I am working on. Section 3 de-
scribes some related work on visualization systems for CS1. In
Section 4, I explore the potential of visual program simulation as
an assignment for introductory programming students, Section 5
debates the software support needed to facilitate program simula-
tion exercises. In Section 6, I describe current and future work on
building and evaluating a program simulation system. Section 7
briefly concludes the paper.

2. THE CHALLENGE
Some of the difficulties that students have with learning basic

programming have to do with their understandings of the notional
machine, “the general properties of the machine that one is learn-
ing to control” [4]. Many students fail to understand the execution
model of programs and the relationship between static program
code and dynamic execution. In Du Boulay’s words, “a running
program is a kind of mechanism, and it takes quite a long time to
learn the relation between a program on the page and the mecha-
nism it describes” [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

Numerous studies have shown that students have non-viable men-
tal models of many fundamental programming concepts. Refer-
ences and pointers, classes, objects, and constructors are some of
the interrelated concepts that have been reported as problematic
(see e.g. [16, 17, 18], and references therein).

Constructivism suggests that teachers must take great care to
ensure CS1 students have a viable mental model of the computer
on a level of abstraction lower than the one primarily used in the
course [2]. To really understand what a command in code does,
a learner also needs to understand something about how the com-
puter goes about dealing with the execution of the command. There
is a need for teaching methods and tools that help us teach the ex-
ecution model and program state at a suitable level of abstraction,
neither hiding important concepts nor getting bogged down in tech-
nical minutiae.

In some large introductory courses, an additional challenge is
the need for automated feedback and grading. There is a dearth of
systems that would provide automatically assessable exercises for
teaching beginners about the notional machine.

Visualization software is one of the techniques that has been used
to address this challenge. The next section describes some work on
visualization systems relevant to this paper.

3. RELATED WORK

3.1 Visualization Tools and Engagement
Naps et al. [13] proposed an engagement taxonomy (ET), which

consists of levels of increasing student engagement with a visual-
ization. Myller et al. [12] suggest that the ET applies best to algo-
rithm visualizations in single-learner environments. Myller et al.
present an extended engagement taxonomy (EET), which applies
better to program visualization contexts and collaborative learning.
I have summarized the EET below.

NO VIEWING: There is no visualization but only material in tex-
tual format.

VIEWING: The visualization is viewed with no interaction.

CONTROLLED VIEWING: The visualization is viewed interactively.
Students can control its speed, for instance.

ENTERING INPUT: Students enter input to a program or subpro-
gram before or during execution.

RESPONDING: The visualization is accompanied by questions.

CHANGING: Students directly manipulate or otherwise change the
visualization.

MODIFYING: The visualization is modified before viewing, for

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

104

example, by changing source code.

CONSTRUCTING: The visualization is created interactively by stu-
dents from components.

PRESENTING: Students present the visualization to others for feed-
back and discussion.

REVIEWING: Visualizations are viewed for the purpose of provid-
ing comments, suggestions and feedback on either the visualiza-
tion or the CS content.

A meta-study Hundhausen et al. [6] found that visual representa-
tion matters less than what students do with a visualization. Along
these lines, Naps et al. hypothesized that the higher up in the ET
students engage with a visualization, the better the visualization
aids learning [13]. A learner can perform different tasks with the
same visualization; it has also been suggested that engaging with
a visualization on multiple levels of the taxonomy is beneficial.
At least so far, there is only limited support for these hypotheses.
(See [19] for a survey of successful experiences with higher levels
of engagement.)

3.2 A Couple of Existing Visualization Systems
Jeliot [10] is a program visualization system that visualizes the

execution of Java programs. It displays control flow, expression
evaluation, the call stack, objects and assignment as an animation
that the learner can view at a selected speed or manually step by
step. Students may interact with Jeliot visualizations on various
levels of engagement. They can for instance look at the execution
of a given program (CONTROLLED VIEWING in the EET) or they
can use Jeliot to visualize programs they wrote themselves (MOD-
IFYING). Results suggest that Jeliot improves programming skills
acquisition [3], directs the students’ attention to relevant issues [5],
and encourages interaction between collaborating students [11].

There are various algorithm visualization systems for visualizing
algorithms and data structures that operate on a higher abstraction
level than the typical program visualization system. The Trakla2 [7]
system is characterized by its visual algorithm simulation exercises.
To complete an exercise in Trakla2, a student starts out with a de-
scription of an algorithm and some data. He uses GUI operations
to directly manipulate the visual representation of data structures to
which the algorithm is applied, with the goal of following the same
steps as the the given algorithm. For instance, an exercise presents
each student with a pseudocode algorithm for adding values to an
AVL tree, and the student uses the GUI to show where and when
nodes are added and rotated.

Trakla2 enables students to interact with algorithm visualizations
on a relatively high level of engagement1 while keeping the exer-
cises compact. (No coding required.) Trakla2 has been shown to
improve learning (see e.g. [7]) and is popular with students in a
number of institutions. Visual algorithm simulation exercises also
have various practical benefits. To reduce cheating, the exercises
can be tailored to be different (i.e., to have different data values) for
each student or group. Students can be allowed to see a model so-
lution on request to help them learn, after which they can no longer
submit a solution to the exact same problem, but can simulate and
submit using a new, automatically generated data set. Checking
student submissions against the model solution enables quick auto-
mated feedback and grading.
1Trakla2 exercises involve direct manipulation of visualizations,
which has been classified as CONSTRUCTING in the ET [13] and
alternatively as CHANGING in the EET [12]. For the purposes of
this paper, it is only relevant that Trakla2 facilitates engagement
levels above VIEWING and CONTROLLED VIEWING.

4. HOW ABOUT PROGRAM SIMULATION
EXERCISES?

The Jeliot system has shown that visualization can help learn
about program execution and fundamental programming concepts.
Potentially even better results could be achieved through assign-
ments where students engage more deeply and in different ways
with a program visualization. Mere CONTROLLED VIEWING of
a visualization is perhaps not enough. What kind of new visual-
izations or exercises could help students learn about the dynamics
of program execution? What kind of assignments could we give
to students that would help them, even require them, to engage
with program visualizations on higher levels of the EET, prefer-
ably on multiple different levels? Could we give students pro-
gram visualization-based assignments that could be automatically
assessed for quick feedback and automatic grading in large courses
and in online education?

Embedding multiple choice questions into animations of pro-
gram execution is one approach for deepening student engagement,
and some work on this has been done in Jeliot [11]. I propose an
alternative approach, suggested by the visual simulation exercises
in Trakla2.2 In a visual program simulation exercise, a student (or
pair of students) would directly manipulate a visualization of the
program’s execution. The student would be given a small piece
of code, and a visualization of computer memory, particularly the
stack and the heap and their contents. Given this visualization, and
a set of operations they can use, the student would be required
not only to figure out how the given program works, but also to
demonstrate this knowledge by indicating step-by-step how it hap-
pens. For instance, assuming software support, the student could
be required to use mouse clicks, drags and drops, or other GUI op-
erations, to indicate where and when some or all of the following
simulation steps happen:

• variable creation

• assigning values to variables,
including references and/or pointers

• expression evaluation

• object creation in the heap
(and other dynamic memory allocation)

• adding frames on the stack

• storing data in a stack frame
(including parameter passing)

• returning values from functions or methods

• the flow of control from one instruction to the next

• removal of data from memory (e.g. end of variable lifetime,
ignored return values, garbage collection, object deletion)

• class loading

In this type of simulation exercise, the program and a visualiza-
tion or a set of visual components are given to the students, but
‘making the visualization work’ is left to the students. The stu-
dent is encouraged and required to engage with the visualization as
they change it by adding variables, assigning values, creating stack
2In his 2009 doctoral thesis, Myller also briefly mentions “visual
program simulation” as an interesting avenue to pursue in the future
when developing Jeliot. [11, p. 50]

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

105

frames, and so forth. This places the exercise in the CHANGING or
CONSTRUCTING bracket in the EET. (Which bracket depends on
interpretation and how much of the visualization the student has
to construct and how much is given.) Successfully completing a
well-designed program simulation exercise requires the student to
understand in a some detail how program execution proceeds and
about how the program’s data and state are stored in memory. As
the program does not run by itself, ‘just looking at the graphics’
will not work.

Even though the relationship between engagement with a visual-
ization and learning remains unclear, there is clearly one practical
benefit from the activities that are higher up in the EET compared to
the first few ones. The activities described by the levels NO VIEW-
ING, VIEWING, CONTROLLED VIEWING, and ENTERING INPUT
do not translate very well into assessable exercises. Irrespective
of what future research reveals about engagement, simulation ex-
ercises have the practical benefit of being readily assessable, also
by a computer. Given an executable program, a trace of program
execution steps can be determined to gain the correct answer to the
simulation exercise. With software support, automatic feedback
can be given during or after a simulation, and the solution can be
graded automatically against the correct answer.

A point about task authenticity needs to be made. A task given
to a programming student should be reasonably authentic, that is, it
should resemble the activities of programming professionals. Though
visual program simulation in the sense outlined above is not some-
thing professional programmers do, mental tracing of program cer-
tainly is. Visual program simulation exercises can be viewed as a
tool-aided, systematic way of tracing programs.

Visual program simulation exercises probably require software
support to be practical. This is the topic of the next section.

5. SIMULATOR TOOL DESIGN ISSUES
A good software system for visual program simulation exercises

is correct, clear, relaxed, capable of giving feedback, research-
based, easy to use, capable of automation, easy to deploy, and
highly configurable.

A correct program simulator system features no in-built factual
errors in the visualization (although, in a simulation exercise, the
learner can create erroneous visualizations). Correctness does not
imply high precision; abstracting away of detail is quite acceptable.

A simulator must be capable of creating clear visualizations that
a user familiar with the system can take in quickly, leaving them
free to concentrate on the content. This is a significant challenge,
particularly in a general-purpose program simulation system. (See
Ma et al.’s evaluation of Jeliot compared to a bespoke visualization
tool for reference assignment [9].) A program simulator needs to
display a number of memory areas and a significant amount of code
and data, as well as offering a selection of GUI operations to the
user. It is all too easy to create a cluttered visualization that is little
more than a tangle of references or pointers.

A good simulation exercise system is relaxed in the sense that it
allows students to make mistakes rather than preventing incorrect
simulation steps. This gives the students a sense of freedom, and
prevents the simulation exercise from turning into a meaningless
activity where only one (or very few) operations are possible at any
given time, and the exercise is solvable through mechanical trial
and error. Likewise, the system – even if it does automatic grading
– should not punish students immediately for errors made during
the learning process. A key aspect of any CS1 course is student
motivation (see e.g. [1]), and a relaxed, secure environment can
contribute to that as well.

A pedagogically sound program simulator gives feedback to the

student at an appropriate time and at an appropriate level of detail.
For examples of types of feedback in a visual simulation system,
see [8].

A research-based simulator is designed to draw on results from
computer science education research. For instance, research can
help by identifying particularly challenging concepts and those as-
pects of the concepts that have been found to be critical for learning.
The system could be designed to allow students to make specific
kinds of common mistakes (e.g. allow simulating object assign-
ment by copying each instance variable’s value from one object to
another) and give feedback that is tailored to correct the miscon-
ceptions that these mistakes originate from.

Making a visual program simulator easy to use is a major chal-
lenge key to the success of a program simulator tool. As discussed
above, simulation steps come in many varieties. They need to be
mapped to GUI operations in a consistent and intuitive way. The
number of different kinds of simulation steps that are needed and
the complexity of the visualization are of some significant concern
here. Earlier work on visualizing spatial algorithms [15] suggests
that it can be feasible to give students simulation exercises that in-
volve fairly complex visualizations and GUI operation semantics.

Simulation exercises becoming too laborsome to complete is a
very real concern. To combat this, it must be possible to perform
each individual step in a simulation sequence with minimal effort.
This means, for instance, that typing names of identifiers during a
simulation should be kept to a minimum or eliminated altogether.
Ideally, a core set of simple GUI operations are used consistently
during a simulation so that a particular GUI action (say, dragging a
value) always has the same semantics. Nielsen’s popular usability
heuristics [14] provide succinct pointers. For example, undoing
and redoing must be supported to allow students to experiment with
program execution and add to their sense of freedom as they engage
with the visualization and inevitably make mistakes.

A program simulator must be capable of automation in the sense
that once a particular aspect of program execution has been mas-
tered, that aspect can be ignored in later simulation exercises. For
instance, once the evaluation of arithmetic and boolean operators
has been covered in a simple early exercise, later exercises could
be configured so that any occurrences of these operations in the
given program are dealt with automatically, and the students need
only concern themselves with the learning goals of the later exer-
cise (say, stack frame allocation and return values in a recursive
program). If the simulated program is any longer than just a few
lines, such elimination of detail is crucial to prevent the simulation
task from degenerating into an exercise in tedium.

To aid dissemination to other institutions, a program simulator
should be easy to deploy. Web technologies as well as integration
with other systems (such as Trakla2, Jeliot and IDEs) make the
system more convenient to adopt.

A program simulator tool should be highly configurable to suit
different learning goals, different teachers, and different learners.
Examples of settings that teachers and/or students could adjust in-
clude the type of feedback given, the programming language used,
and the way references are visualized (say, as 2D arrows, as abstract
memory addresses, or with a visual metaphor).

6. CURRENT AND FUTURE WORK
At the time of writing, a visual program simulation system is

being designed and built, drawing on the guidelines set out in the
previous section. A prototype with a large feature set already exists.
We will use the prototype to test whether visual program simulation
exercises are a practical way for engaging students with a notional
machine in an effective and automatically assessable way. In par-

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

106

ticular, we would like to find answers to several subquestions:

• Can we make a visual program simulation system easy enough
to use to be practical?

• What are students’ attitudes towards the exercises and the
system?

• How do students perceive what visual program simulation is
and what they are doing as they complete a visual program
simulation exercise?

• Does visual program simulation help students gain program
comprehension skills?

• Which kinds of non-viable understandings of programming
concepts can be addressed through visual program simula-
tion exercises?

• How do CS1 teachers react to the concept of visual program
simulation exercises and the system prototype?

We are planning to test the system on CS1 students in spring 2010.

7. CONCLUSION
In this paper, I have sketched out a potentially useful kind of

exercise for CS1 courses. This paper provides a foundation for dis-
cussions of visual program simulation exercises. More specifically,
the paper serves as a basis for the discussion questions:

• Is visual program simulation a practical type of exercise for
CS1 courses?

• What kind of software support should be used for program
simulation exercises?

• How should a visual program simulation system be evalu-
ated?

8. REFERENCES
[1] T. Ahoniemi, E. Lahtinen, and K. Valaskala. Why should we

bore students when teaching CS? In R. Lister and Simon,
editors, Seventh Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), CRPIT, pages
139–140, 2007.

[2] M. Ben-Ari. Constructivism in computer science education.
Journal of Computers in Mathematics and Science Teaching,
20(1):45–73, 2001.

[3] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen. The
Jeliot 2000 program animation system. Computers &
Education, 40(1):1–15, 2003.

[4] B. Du Boulay. Some difficulties of learning to program.
Journal of Educational Computing Research, 2(1):57–73,
1986.

[5] G. Ebel and M. Ben-Ari. Affective effects of program
visualization. In ICER ’06: Proceedings of the second
international workshop on Computing education research,
pages 1–5, New York, NY, USA, 2006. ACM.

[6] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness. Journal
of Visual Languages and Computing, 13(3):259–290, June
2002.

[7] A. Korhonen. Visual Algorithm Simulation. Doctoral
dissertation (tech rep. no. tko-a40/03), Helsinki University of
Technology, 2003.

[8] M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch.
Student-built algorithm visualizations for assessment:
flexible generation, feedback and grading. In ITiCSE ’05:
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education,
pages 281–285, New York, NY, USA, 2005. ACM Press.

[9] L. Ma, J. D. Ferguson, M. Roper, I. Ross, and M. Wood.
Using cognitive conflict and Jeliot visualisations to improve
mental models. In ITiCSE ’09: Proceedings of the 14th
annual SIGCSE conference on Innovation and technology in
Computer Science Education, [to be presented].

[10] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing programs with Jeliot 3. In Proceedings of the
International Working Conference on Advanced Visual
Interfaces, pages 373 – 376, Gallipoli (Lecce), Italy, May
2004. ACM.

[11] N. Myller. Collaborative Software Visualization for
Learning: Theory and Applications. Doctoral dissertation,
University of Joensuu, 2009.

[12] N. Myller, R. Bednarik, E. Sutinen, and M. Ben-Ari.
Extending the engagement taxonomy: Software visualization
and collaborative learning. Trans. Comput. Educ., 9(1):1–27,
2009.

[13] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer,
C. Hundhausen, A. Korhonen, L. Malmi, M. McNally,
S. Rodger, and J. Ángel Velázquez-Iturbide. Exploring the
role of visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, June 2003.

[14] J. Nielsen. Heuristic evaluation. In Usability Inspection
Methods. John Wiley & Sons, 1994.

[15] J. Nikander, J. Helminen, and A. Korhonen. Experiences on
using TRAKLA2 to teach spatial data algorithms. Electron.
Notes Theor. Comput. Sci., 224:77–88, 2009.

[16] N. Ragonis and M. Ben-Ari. A long-term investigation of the
comprehension of OOP concepts by novices. Computer
Science Education, 15(3):203 – 221, 2005.

[17] J. Sajaniemi, M. Kuittinen, and T. Tikansalo. A study of the
development of students’ visualizations of program state
during an elementary object-oriented programming course. J.
Educ. Resour. Comput., 7(4):1–31, 2008.

[18] J. Sorva. Students’ understandings of storing objects. In
R. Lister and Simon, editors, Proceedings of the Seventh
Baltic Sea Conference on Computing Education Research
(Koli Calling 2007), volume 88 of Conferences in Research
and Practice in Information Technology, pages 127–135,
Koli, Finland, 2008. Australian Computer Society.

[19] J. Urquiza-Fuentes and J. A. Velázquez-Iturbide.
Pedagogical effectiveness of engagement levels – a survey of
successful experiences. Electron. Notes Theor. Comput. Sci.,
224:169–178, 2009.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

107

Benefits and Arrangements of Bachelor’s Thesis

Teemu Tokola
Oulu University Secure

Programming Group
Department of Electrical and

Information Engineering
P.O. BOX 4500

90014 University of Oulu
ouspg@ee.oulu.fi

Kimmo Halunen
Oulu University Secure

Programming Group
Department of Electrical and

Information Engineering
P.O. BOX 4500

90014 University of Oulu
ouspg@ee.oulu.fi

Juha Röning
Oulu University Secure

Programming Group
Department of Electrical and

Information Engineering
P.O. BOX 4500

90014 University of Oulu
ouspg@ee.oulu.fi

ABSTRACT
The Bachelor’s degree and the Bachelor’s thesis have been
recently introduced to the diploma engineer programmes in
Finnish universities. This adoption has led to a number
of different practices within Finnish technical faculties, with
some notable inter-departmental differences. The Bachelor’s
thesis presents several practical problems, which are related
to advisory arrangements, resources, scope, subject and stu-
dent motivation. To overcome these problems the thesis for
Information Engineering students in the University of Oulu
is made in groups and all the groups in a given year have
the same subject. The introduction of the Bachelor’s thesis
presents a significant opportunity for improving the Master’s
thesis process and avoiding associated problems. Thus, the
arrangements of the Bachelor’s thesis should help students
learn the scientific process necessary for the completion of
a Master’s thesis. The paper discusses the significance and
justifications of this arrangement and possible future devel-
opments.

1. INTRODUCTION
In the new degree program introduced with the Bologna

process [1], the Bachelor’s thesis is the culmination of at
least three years of work and results in the completion of
a first step in the 3-cycle structure (Bachelor-Master-PhD)
of higher education. Previously, Finnish universities’ tech-
nical faculties have offered only the Master’s degree before
the Licenciate and Doctoral degrees. Even today, the Bach-
elor’s degree is considered a middle-point in completing the
Master’s-level studies instead of an actual degree.

To answer the demands for speed and quality of high-
est education, large singular efforts, such as Bachelor’s or
Master’s thesis, should be both demanding and rewarding
learning experiences, but should not become an obstacle
for timely graduation. Many students feel that the stud-
ies prepare them inadequately for the scope and the chal-
lenge of the Master’s thesis, and that a gap separates it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’09 October 29 - November 1, 2009, Koli, Finland
Copyright 2009 ACM 978-1-60558-952-7/09/11 ...$10.00.

from other studies [12, p.14-17]. Therefore, the Bachelor’s
thesis presents a significant opportunity for improving study
results on Master’s -degree level: instead of creating new sci-
entific results, the Bachelor’s thesis should train and prepare
the student for the Master’s thesis and the process to create
it.

2. APPROACHES
The arrangements of the Bachelor’s thesis are naturally

crucial in ensuring that students derive benefit from it to
their Master’s theses. Yet, no strict guidelines were given
on how the Bachelor’s thesis should be organised in the uni-
versities. In Finnish universities with technical faculties, a
number of practices have been adopted, and they are out-
lined below. This survey is by no means comprehensive, as
considerable differences exist also between departments and
between individual laboratories. The information for this
study was collected mainly from online materials of the uni-
versities’ websites and by conducting short telephone inter-
views with the staff responsible for the organisation of the-
sis studies. Some information was easily accessible whereas
other information required quite extensive searches in the
websites and study guides.

The University of Vaasa has adopted a seminar and thesis
approach to the thesis writing. The students choose topics
from their respective fields and there is an adviser from the
department. The work is individual, but it may be a part of
a project on which a group of students make their theses. In
the study guide it is stated that the thesis should be done
within one year after beginning the work. Both practical
and purely theoretical works have been accepted.

The Tampere University of Technology (TUT) has a sim-
ilar approach, but the departments have differing practices
on the individuality of the work. Some departments have
only individual theses whereas some allow groups to work to-
gether for the thesis. There is also a seminar which consists
of lectures that contain information on the thesis process.
The theses are mainly theoretical literature reviews.

Helsinki University of Technology (HUT) and the Lappeen-
ranta University of Technology (LUT) have decided to give
more credit points for the Bachelor’s thesis than the others
(10 ECTS vs. 8 ECTS). In HUT the thesis consists of in-
dividual work together with a seminar. The students select
their thesis topics and advisers from a list that the depart-
ment sets up and the thesis is individual work. In LUT the
individuality of the thesis work is emphasised, but groups
are allowed. Also the thesis writing time is restricted to one

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

108

semester. There is also group advising, where an adviser
advises a number of students at the same time and there
are two mandatory intermediary milestones for the thesis.

The required length of the thesis also varies: in Vaasa the
preferred length is 30-40 pages, in Tampere 20-30, while oth-
ers do not provide that information on their websites. Sim-
ilarly, whether a practical part was required was not always
clear. In this respect, practices varied also within depart-
ments: in HUT under the information engineering depart-
ment 2 disciplines out of 3 did not require practical work.

The main observation is that despite some common in-
structions at faculty and department levels, the arrange-
ments and requirements for the Bachelor’s thesis are very
varied. It is fair to ask, whether such variation is suitable
if and when the Bologna process leads to increased mobility
between the technical faculties in Finnish universities.

3. BENEFITS AND PROBLEMS
The process of writing a Master’s thesis is very important

for the timely and successful completion of the thesis work,
and several guidebooks [3, 4, 2] for Finnish students and
advisers are available. Still, the experience of many students
is, that only after completing the thesis, they know how it
should have been done. Offering the possibility to practice
it would therefore be most beneficial, and this should be the
basis of the Bachelor’s thesis.

As a second benefit, the Bachelor’s thesis could be useful
to research and research groups. If the students are pre-
sented with an actual research project with both practical
and theoretical work, it prepares them for their Master’s
thesis and increases the time they spend on research before
finishing their Master’s thesis. This research ”try-out” [10,
p.206], could help laboratories recruit the most promising
students into a research career, as the students will then
have a clearer view of what research is about [11]. The un-
dergraduate students can also contribute to the research in
a substantial way as noted in [7].

The Bachelor’s thesis process presents a number of prob-
lems and challenges for the organiser. Ideally, the process
should be challenging but still straightforward to complete
and it should be beneficial for the future. The authors have
identified the following themes, which may be problematic:
Guidance, resources, scope, subject, student motivation and
arrangements.

Guidance provided by the adviser of the thesis is crucial
in helping the student learn and develop during the writing
process and making it an encouraging experience. Bachelor’s
thesis is the first such thesis assignment, and the amount
of guidance should be higher than in the subsequent the-
ses even if the thesis itself is not very extensive [9, p.89].
However, many Finnish universities have a low teacher per
student ratio and finding the time and motivation for a task
considered less important than advising higher level thesis
students, less time-critical than lecturing and other teaching
tasks and far less important than own research is a challenge
for the adviser. Also, motivation for advising a scientifically
very limited work is bound to be limited too - a problem also
related to the scope of the work. In one of the interviews,
it was stated that finding motivated advisers for Bachelor’s
theses is very difficult.

As the amount of students is typically high, the total re-
quirement for resources may be very high. Additionally, as
the Bachelor’s thesis is a new requirement to an established

degree program, it often means additional work for the fac-
ulty without any additional financial resources. If the Bach-
elor’s thesis includes any practical part, access to laboratory
resources and guidance is necessary. Doing the thesis in a
research group can be difficult, as the number of research
groups is typically much smaller than the amount of under-
graduate thesis workers per year. Finding an alternate venue
for thesis work can be very hard as the thesis opportunities
in the industry or other places outside the academia are not
always available.

The scope of the Bachelor’s thesis presents problems in a
number of different areas. In many universities, the amount
of credits given for the Bachelor’s thesis is 8 or 10. This
translates into about 200-300 hours of work on the thesis.
As it is the first major exercise in scientific writing for most
students, a lot of time is spent learning the necessary skills
and best practices, leaving less time for core thesis work (re-
search, writing and implementation). As no significant sci-
entific contribution should be expected at this level, a single
Bachelor’s thesis is bound to be very limited, making it less
applicable to a research group setting and less appealing for
advisers.

If students can freely choose their subject, it means addi-
tional strain on the advisory resources, as the subject may
not be within the core expertise of the adviser. Due to the
large amount of Bachelor’s theses and the humble scope of
the work, there is a temptation to dismiss rigorous checking
of the background literature, thus opening room for pla-
giarism and failing to provide the student with appropriate
advice on selecting and using references. Additionally, the
students might choose poor topics, that require too much
from them and/or the adviser. Thesis subjects given by the
faculty on the other hand present a resource problem, as
many different thesis subjects need to be devised.

Student motivation is an important part of any thesis, as
they are usually done alone and often without set deadlines
contrary to most other studies. Most faculties seem to have
proposed hard deadlines, but none admitted strict enforce-
ment of the deadlines in the interview. As a result, stu-
dents own motivation and ability to work without the social
context that has characterised former studies is very impor-
tant for a successful thesis completion process [12, p.22-26].
Hopefully, encouraging the students to continuous working
and learning in the Bachelor’s thesis process helps them com-
plete the Master’s thesis in a similar fashion.

The Bachelor’s thesis process should reflect the Master’s
thesis process: if it does not, it will not be very useful for
the Master’s thesis process. For example, if the Master’s
thesis contains seminars as in some universities, seminars are
good learning experiences [12, p.26-34]. Similary, because
engineering Master’s theses invariably include a practical
part, and literature surveys are typically not accepted, the
Bachelor’s thesis should contain a practical part.

4. COMMON SUBJECT AND GROUP WORK
As noted in the previous section, there are several prob-

lems with introducing a Bachelor’s thesis. These problems
can largely be avoided by two arrangements. These arrange-
ments can only be accepted on the premise that the Bach-
elor’s thesis is an educational tool more than a scientific
contribution. The two main ideas are thus common subject
for all students and group work.

A common subject for all students meant a number of

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

109

benefits with regards to problems in subject, advising and
resources. When selecting only one subject for the students,
more effort can be made in selecting a challenging and suit-
able subject for an undergraduate thesis. In essence, the
benefits of a faculty-chosen subject can be achieved without
much resource strain. Also sufficient practical resources can
be acquired for the student laboratories, as all students can
use the same equipment. More benefits can be found in the
advising, as a single subject limits the background work that
advisers need to do.

Even with these benefits, the large number of Bachelor’s
theses each year is likely to strip resources from other areas.
Additionally, the scope of the work is still bound to be very
limited. These problems can be dealt with by introducing
group work into the thesis writing process. When working
in groups of 3 students, advisers will have more time to
guide each individual group. With 8-10 ECTS credits each,
600-900 hours of work for the Bachelor’s thesis provides the
opportunity to make the thesis subject more challenging and
consequently more motivating for the students. As noted in
[10, p.206], group work can be significantly more complex
than individual projects, and an appropriate project pushes
the knowledge level of the students. It is therefore possible
to introduce a sufficiently challenging practical part into the
work, while increasing the size of the textual work into what
equals an average Master’s thesis. These merits are quite
significant even without mentioning the well-known benefits
of group work to learning [6].

Subject selected for a group Bachelor’s thesis should have
the qualities listed by Hamelink [5] for a cooperative group
task: multiple possible solutions, interesting problem which
is non-trivial and challenging, all group members can con-
tribute and a variety of skills are required for completion.

Undergraduate research is considered very valuable for ex-
ample in the United States [7], and if the topic allows multi-
ple possible solutions, the research part allows the students
to choose their solution based on their own skills. Addition-
ally, having multiple possible solutions is very important
with a common subject to allow students to exhibit their
skills and separate themselves from other groups.

When students are presented with an interesting problem
that is challenging but still possible to solve, they are keen
to apply the skills they already possess, and motivated to
acquire the skills that may be insufficient for solving the
problem. Learning through this kind of a setup has been
studied under the concept of problem-based learning [8].

Computer science and engineering are ubiquitous in mod-
ern society and implementations are needed in practically
everywhere. This provides ample opportunities for requir-
ing a variety of skills and interdisciplinarity [6] in Bachelor’s
thesis projects. This in turn promotes group work in a fash-
ion in which all group members can contribute.

Assessing individuals part in project work is a difficult
task [9, p.87-88], and groups could malfunction due to lack
of commitment from some group members [10, p.172-173],
but as Bachelor’s theses are hardly used when assessing in-
dividual applicants for academic positions (at least in Fin-
land), it is sufficient to ensure that each individual student
has participated in all parts of the work. Groups should be
encouraged to tackle problems immediately, lest the teach-
ers have to take action. Making clear that the groups can
fire members as in the Roskilde University [6], encourages
student groups to perform appropriately.

Mid-course evaluations can help students avoid problems
in their chosen way of implementing the program, and the
advisers expertise helps them to a path that will result in
a reasonable project conclusion [6]. However, evaluations
during the course should not affect the final grade - the
grade should be based on the final product. This encourages
students to seek advice without fear of having their grade
affected by initial bad design or poor implementation.

With the Master’s thesis, students on one hand are in need
of guidance, but on the other hand feel that a too strictly
guided thesis becomes more a work of the adviser than that
of the student [12, p.34-35] [9, p.28]. As the Bachelor’s the-
sis does not have similar status as the Master’s thesis, it
provides an opportunity for higher amount of guidance, al-
lowing the students to learn good practices and to see which
parts of the work should be developed. This is in line with
opinions that there should be more guidance in the lower
academic thesis levels [9, p.89]. Additionally, as the stu-
dents may not be well-aware of the advisory process [12,
p.38], the Bachelor’s thesis could serve as an introduction to
what is the advisers role, allowing students to benefit more
from their advisers in the Master’s thesis process.

5. CASE STUDY AND EXPERIENCES
The Bachelor’s thesis in Information Engineering at the

University of Oulu is done during an 8 ECTS credit course
Embedded systems project. The work is done in groups of
three, using embedded systems that were made available in a
laboratory room, all groups having the same topic. In 2008
students implemented a speech synthesiser and in 2009 a
speech recognition system. Both assignments had a manda-
tory network functionality part, and the students had to
implement their own user interface. The subject thus de-
manded a variety of skills, as groups had to program an em-
bedded system, perform the background research and write
the thesis.

To make sure that the students worked all the time, there
were several deadlines set for the course: 4 deadlines for
returning draft versions of the thesis and three deadlines for
demonstrating progress in the implementation. The total
time for the course was from January to end of May, but
extra time of one month was allowed for groups that failed
to reach the target functionality in that time. Additionally
it was mandatory for the students to keep track of time
spent using an online tool. Students generally completed
the work within the given timeframe, although insufficient
starting skills could mean as much as 300 hours of work
for the course. The timetrack also allowed the teachers to
monitor the difficulty and progress, and if necessary, react
by providing additional help. This option was used in 2009
when one additional software library was provided for the
students after it seemed that the groups are falling behind
the schedule.

Although no control group was used, it seems that working
in groups has had a positive effect on student performance.
Out of the 64 groups in the two years, 58 passed the course
and most received very good grades on their work. Previ-
ously, even though it was substantially smaller (5 ECTS),
the course had a clearly smaller passing percentage. This
was quite surprising as the thesis requirements and the chal-
lenging task was expected to make the course even harder
to pass than the previous one.

Even though the course was a lot of work for the advisers,

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

110

it seems obvious that with the number of advisers available
(3), we were able to provide significantly better guidance
with less resources spent than what would have been possible
if there had been approximately 90 individual theses with
varying topics.

6. DISCUSSION
The experience from these two courses has shown that this

is at the moment a good way to conduct the Bachelor’s thesis
work on our department. However, some areas of further
improvement have already been identified. In the future
we will experiment with the group advisement method of
LUT, enabling the advisers to give more frequent feedback
to the groups and guiding the groups to discuss about their
challenges with their peers.

A common subject for all groups is an arrangement that
has its benefits, but is mainly done because of resource con-
cerns. However, group work with individual topics related
to research group interests could present an excellent oppor-
tunity for research groups to find new recruits. Experiences
in HUT show that finding topics and advisers is one of the
most problematic aspects of their Bachelor’s thesis process.
Perhaps the demand could be matched with the supply bet-
ter, if the work is done in groups. Also, the motivation of
the researchers offering topics could improve, as groups can
invest much more time on a given subject, and therefore
could provide concrete benefits to researchers.

As more and more students that have taken this new type
of Bachelor’s thesis also advance to the Master’s thesis level
we plan to gather information on their success at that level
and compare that with the level of achievement of those
students that have had their Bachelor’s thesis in other de-
partments of our faculty. It would also be interesting to
gather information on the views of the students on whether
this type of thesis work has helped them on their Master’s
thesis or not. This would also provide valuable feedback
and development ideas for the arrangement of the Bache-
lor’s thesis.

In order to derive more benefits from the current Bache-
lor’s thesis process, its relationship with the Master’s thesis
process should be made more obvious to the students in our
course. Making students more aware of the significance of
an appropriate process and of the significance and the possi-
bilities provided by the adviser should give them even better
capabilities for succesfully completing their Master’s thesis.

7. CONCLUSIONS
In this paper we have described an efficient and effective

way of organising Bachelor’s thesis work for a large number
of students simultaneously with scarce teaching resources.
The outcome of the thesis work has been higher than ex-
pected. The two main features that set the arrangement
apart from other Bachelor’s thesis arrangements were com-
pulsory working in groups and the same topic for all groups
in a given year. These arrangements have made it possible
to arrange a highly motivating course despite the scarcity of
teaching resources.

It is our opinion that both the structured guidance of the
advisers and peer support have helped students to achieve
the goals set forth in the new course. In some of the theses,
students express their thanks to both advisers and fellow
students alike for helping them through the thesis work. It

has also been very encouraging to see both poor and good
programmers enjoy their project and have successes in the
practical part of the thesis work.

8. REFERENCES
[1] Bologna declaration, 1999.

[2] K. Ekholm. Tee gradu! Graduntekijän selviytymisopas.
Teknolit Oy, 1997.

[3] J. T. Hakala. Opinnäyte ja sen ohjaaminen.
Gaudeamus, 1996.

[4] J. T. Hakala. Graduopas. Gaudeamus, 2005.

[5] J. Hamelink, M. Groper, and L. Olson. Cooperation
not competition [engineering education]. Proceedings
of the Frontiers in Education Conference, pages
177–179, Oct 1989.

[6] J. V. Mallow. Student group project work: A
pioneering experiment in interactive engagement.
Journal of Science Education and Technology,
10(2):105–113, 2001.

[7] P. Pratap and J. E. Salah. Radio astronomy: A strong
link between undergraduate education and research.
Journal of Science Education and Technology,
10(2):127–136, 2001.

[8] H. Schmidt. Problem-based learning: rationale and
description. Medical Education, 17(1):11–16, 1983.

[9] E. Viljanen. Tutkielman tekeminen. Otava, 1986.

[10] P. C. Wankat and F. S. Oreovicz. Teaching
engineering. McGraw-Hill, 1993.

[11] K. Ward. The fifty-four day thesis proposal: first
experiences with a research course. J. Comput. Small
Coll., 20(2):94–109, 2004.

[12] O.-H. Ylijoki and L. Ahrio. Gradu lähikuvassa.
Tampereen yliopisto, 1995.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

111

Constructive Alignment: How?
Neena Thota

University of Saint Joseph
Nape, Rua de Londres 16, Macau

+853 66814445

neenathota@usj.edu.mo

Richard Whitfield
University of Saint Joseph

Nape, Rua de Londres 16, Macau
+853 66825994

rcw@usj.edu.mo

ABSTRACT

This paper considers how to design an introductory computer

programming course using the principle of constructive

alignment. We give an overview of the pedagogic foundation of

a theoretical model that aligns assessment tasks with cognitive

and affective learning outcomes. We then extend the principle

of constructive alignment to factor in students’ ways of learning

to program, to plan learning and teaching activities and to

choose learning media. Finally, we adapt the design for an

object-oriented introductory programming course.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education – Computer science education

Keywords

CS1, object-oriented programming, constructive alignment

1. INTRODUCTION
Constructive alignment [2] involves the explicit formulation of

the intended learning outcomes and choosing teaching/learning

activities likely to lead to attaining the outcomes. Assessment

tasks are also designed to ascertain students’ learning outcomes

to see how well they match what was intended and for deriving

a final grade. Existing research on the constructive alignment of

outcomes, assessments and teaching in programming courses is

limited to the mapping of outcomes to content and assessment

[4]. An explicit cognizance of ways of learning to program, or

alignment of programming related educational media with

teaching and learning tasks is absent in the literature.

2. DESIGN
We give an overview of the pedagogic foundation of a

theoretical model adapted for an introductory objects-first java

programming course (Figure 1). Our theoretical model has its

roots in constructivism which emphasizes that learners

construct knowledge based on their activities. As a learning

theory, constructivism has profoundly influenced the teaching

of computer science [1]. We draw learning outcomes from a

computer science-specific taxonomy [6] that provides a

mapping from a set of computer programming activities to the

competencies listed in a matrix. The taxonomy differentiates

between the ability to understand and interpret code, from the

ability to design and build a new product. To maintain the

holistic approach to constructive alignment, we also draw on

the taxonomy of the affective domain [7] to determine

outcomes for programming related affective values.

Programming activities are assessed with grade descriptors

drawn from the SOLO [3] taxonomy that was devised to match

the evolving structural complexity of learning outcomes and

learner responses. The taxonomy is therefore applicable to

assessment in the cognitive and affective domains.

Phenomenographic research studies that focus on how students

learn object-oriented programming [5] have uncovered a

complex relationship between the students’ learning, the

learning environment and the learning approaches. Research

also shows that the teaching environment should take into

account the variation in approaches and learning [9]. Therefore,

we provide for a variety of learning experiences to help students

deal specifically with object-oriented concepts.

Computer science education, by necessity, relies on software for

teaching and learning. Introductory programming courses now

have a gamut of interactive, visualization and collaborative

learning media to meet the learning demands of novice

programmers. We provide the learning media to give

opportunities for discussion, interaction, adaptation and

reflection which are crucial elements in the learning process [8].

Assessment

Tasks

Quizzes
Examination
Assignments

Project
Journal

Learning

Outcomes

Cognitive
Affective Learning Media

Narrative - non-interactive presentation
Interactive - user controlled
Adaptive - respond to user
Communicative - informing, discussing
Productive - create models,
descriptions

Learning & Teaching Activities

Peer managed – pair programming,
team project, tutoring
Self managed – coding, reflecting
Teacher managed – lecturers, labs,
demonstrations, scaffolding, motivating

Pedagogic

Foundation

 Constructivism

Student Factors

Ways of learning to
program
Prior knowledge
Preferred
approaches to
learning
Learning styles

OBJECT-ORIENTED PROGRAMMING

Grading

Taxonomy

SOLO

Figure 1. Implementation of constructive alignment.

.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Koli Calling ‘09, October 29-November 1, 2009, Koli, Finland.

Copyright 2008 ACM 978-1-60558-952-7/09/11…$5.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

112

3. IMPLEMENTATION
Table 1 depicts the specific learning outcomes (cognitive and

affective) for an object-oriented programming course and the

alignment with the assessment tasks. We then list some teaching

and learning activities that are matched with media suitable for

students’ ways of learning to program, approaches to learning

and learning styles.

Table 1. Alignment of outcomes and assessments

Intended Learning

Outcome

Programming

activities &

affective values

Assessment

activities

1. Demonstrate knowledge

and understanding of

essential facts and

concepts, relating to object

oriented programming

Recognize,

trace,

implement,

translate code

Quizzes &

Examination

2. Deploy appropriate

theory, practices and tools

for problem definition,

specification, design,

implementation,

maintenance and

evaluation of programs

Analyze a

problem, apply,

adapt, relate,

present, debug

code

Programming

assignments &

Group project

3. Use object-oriented

design as a mechanism for

problem solving as well as

facilitating modularity and

software reuse

Model, design

and refactor

Group project

4. Work productively as

part of a pair/team

Receiving,

responding,

valuing

Programming

assignments &

Group project

5. Demonstrate ability for

organization and

internalization of values

Organisation,

characterization

Journals

In the course design, best practices in object-oriented design,

style, documentation and testing are given due importance and

misconceptions related to object oriented concepts are explicitly

addressed in the learning material and through learning media.

Prior knowledge of programming is acknowledged by

presenting a range of material suitable for novices and to

challenge the more experienced students. Active learning

through use of demonstrations and role plays is encouraged.

Specific attention is paid to create relevance and increase

motivation through the use of constructive feedback.

Scaffolding and tutoring are provided for progressive skills

development. We interweave the development of affective

values in pair programming, team projects and other activities

to encourage constructive alignment between the values we

want to instill and programming specific attributes.

The design of a programming course using the university

specified learning management system augmented by object-

oriented content and associated media is reported in a related

paper [10]. The use of narrative, interactive, adaptive,

communicative and productive media is designed to appeal to

different learning styles and to provide a range of learning

opportunities. The resources and activities in the learning

environment are geared to help students to discern the aspects

of variation related to understanding object oriented concepts.

4. CONCLUSIONS AND FUTURE WORK
We have reported on a project to apply the principle of

constructive alignment to design an introductory programming

course. We have provided an overview of the pedagogic

foundation, student learning theories and taxonomies for

learning and assessment that underpin the design. We have

listed the learning and teaching activities and the use of

learning media within the context of an introductory object

oriented programming course. We have not reported any formal

evaluation of the outcomes. We hope to refine the model and

widen the scope to other computer science related courses.

5. REFERENCES
[1] Ben-Ari, M. 1998. Constructivism in computer science

education. SIGCSE Bull. 30, 1, 257-261. DOI=

http://doi.acm.org/10.1145/274790.274308

[2] Biggs, J. 2003. Teaching for Quality Learning at

University: What the Student Does (3 ed.). SRHE and

Open University Press, Philadelphia.

[3] Biggs, J., and Collis, K. F. 1982. Evaluating the Quality of

Learning: The SOLO Taxonomy (Structure of the

Observed Learning Outcome). Academic Press, New

York.

[4] Brabrand, C. 2008. Constructive alignment for teaching

model-based design for concurrency. In Transactions on

Petri Nets and Other Models of Concurrency I, K. Jensen,

W. M. Aalst, and J. Billington, Eds. Lecture Notes In

Computer Science, Springer-Verlag, Berlin, Heidelberg, 1-

18. DOI= http://dx.doi.org/10.1007/978-3-540-89287-8_1

[5] Eckerdal, A. and Thuné, M. 2005. Novice Java

programmers' conceptions of "object" and "class", and

variation theory. SIGCSE Bull. 37, 3, 89-93. DOI=

http://doi.acm.org/10.1145/1151954.1067473

[6] Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.,

Hernán-Losada, I., Jackova, J., Lahtinen, E., Lewis, T. L.,

Thompson, D. M., Riedesel, C., and Thompson, E. 2007.

Developing a computer science-specific learning

taxonomy. SIGCSE Bull. 39, 4, 152-170. DOI=

http://doi.acm.org/10.1145/1345375.1345438

[7] Krathwohl, D. R., Bloom, B. S., and Masia, B. B. 1964.

Taxonomy of Educational Objectives: The Classification

of Educational Goals. Handbook II: Affective domain.

David McKay Company, New York.

[8] Laurillard, D. 2002. Rethinking University Teaching: A

Framework for the Effective Use of Educational

Technology. (2 ed.). RoutledgeFalmer Press, London.

[9] Suhonen, J., Thompson, E., Davies, J., and Kinshuk. 2007.

Applications of variation theory in computing education.

In Proceedings of the Seventh Baltic Sea Conference on

Computing Education Research (Koli National Park,

Finland, Nov. 15 - 18, 2007) 88, 217-220.

[10] Thota, N. and Whitfield, R. 2009. Use of CALMS to

enrich learning in introductory programming courses. In

Proceedings of the 17th International Conference on

Computers in Education [CDROM] (Hong Kong, Nov. 30

– Dec. 4, 2009). Asia-Pacific Society for Computers in

Education, Hong Kong.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

113

He[d]uristics
- Object-oriented Qualities in Examples for Novices

 Marie Nordström
Computing Science

Umeå University
S-901 87 Umeå, Sweden

+4690786 77 08
marie@cs.umu.se

ABSTRACT
The use of examples is known to be important in learning; they
should be “exemplary” and function as role models. Teaching and
learning problem solving and programming in the object-oriented
paradigm is recognised as difficult. Examples should be chosen
with care. The object-oriented paradigm is particularly well-suited
for the handling of complexity in large systems. This makes the
design of pedagogic examples critical, since it is difficult to define
concise examples that are still truly object-oriented. There has
been no discussion on the quality of examples for novices from an
object-oriented point of view, until the recently suggested
He[d]uristics. Based on these educational heuristics, a survey of
educators’ view of object-orientation is planned. A structure for
identifying aspects of teaching object-orientation is suggested.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education

General Terms
Design

Keywords
Heuristics, examples, object-orientation

1. INTRODUCTION
Though largely debated, object-orientation is commonly used for
introducing problem solving and programming to novices. How to
do this is not straightforward. As educators we have little
scientific theory and evidence to support us in deciding on how to
introduce object-orientation. The strength of object-orientation
lies in the handling of complexity in the design of large-scale
system, with high demands on maintenance, efficiency and
reusability. The educational situation however, is rather different.
Introductory examples are small; the design space is restrained
because of the limited frame of reference of the novice, the
limited number of syntactical elements available, and the fact that
the number of lines of code preferably should be kept to a
minimum. To develop examples for novices that will serve as role
models for object-orientation, we must rely on established object-
oriented principles and practices, such as metrics, heuristics,

patterns, code smells and similar concepts proposed by the
software community. The difficulty is to design examples that
show the strength of object-orientation, and at the same time to
avoid overly complex examples that leave the novice behind. If
the example fails to, at least, indicate the strength, then novices
may conclude that the object-oriented approach introduces
complexity rather than contributing to problem-solving, whereas
when the example is too complex, students fail to understand the
overall big picture. The research-efforts so far, has been to collect
empirical data on students misconceptions, common compiling
errors etc. An interesting example of discussions, often replacing
theoretical approaches, is the discussion on common examples,
the ‘HelloWorld’-type, that was initiated in Communications
of the ACM [6]. Instead of discussing the object-oriented quality
of the example, lots of suggestions were made as how to force this
example to be “more object-oriented” [2,3,4]. To address the
problem of designing the object-oriented examples for novices we
surveyed the literature to establish a set of characteristics for
object-orientation in general. Based on these characteristics, a
number of heuristics has been suggested for the educational
situation to aid educators in designing examples for introducing
novices to object-oriented problem solving and programming [5].
The proposed heuristics are called He[d]uristics to emphasize the
educational focus.

2. He[d]uristics
The He[d]uristics are targeted towards general design
characteristics, which means that more detailed practices, like
keeping all attributes private, are not stated explicitly. The
particular line of presentation (objects first/late, order of concepts,
etc.) or environment used should not affect the object-oriented
quality of examples and is not critical to the He[d]uristics. Below
the He[d]uristics are presented and described through some of
their practical implications.

1. Model Reasonable Abstractions
• Plausible both from a software perspective and also

from a novice perspective.
• Do not make main into the entire program.
• Real objects (with identity, state and behaviour), e.g. no

stateless or behaviourless classes (containers).
• Small is beautiful (in terms of classes, methods and

parameters), e.g. no God classes.
• Model classes not roles.

2. Model Reasonable Behaviour
• Separate the model from the modelled.
• Avoid setter/getters, particularly for attributes.
• No snippets.
• No printing for tracing.

3. Emphasize Client View

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling '09, October 29 – November 1, 2009, Koli, Finland.
Copyright 2008 ACM 978-1-60558-952-7/09/11…$5.00.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

114

• Promote thinking in outside expectations.
• Separate the internal representation from the external

functionality.
4. Favour Composition over Inheritance

• How to know which to choose, to avoid the overuse of
inheritance.

• Emphasize the idea of collaborating objects.
• Delay the introduction of inheritance.

5. Use Exemplary Objects Only
• Always promote the idea of many objects.
• No one-of–a-kind classes.
• Be explicit, do not use static, anonymous classes, and

keep the Law of Demeter in mind.
• Separate main from abstractions.

6. Make Inheritance Reflect Structural Relationships
• Important to distinguish between external and internal

is-a relationships.
• Behaviour must guide the design of hierarchies.
• Inheritance should separate behaviour.

Some of these characteristics/qualities could be placed under more
than one heading. The use of real objects (with identity, state and
behaviour) is on one hand a question of abstraction, and on the
other the promotion of exemplary objects. In this work Use
Exemplary Objects Only is more intended to focus on the actual
presentation of small-scale examples while Model Reasonable
Abstractions is aiming at a proper mindset for object-oriented
design. Based on these He[d]uristics an example-evaluating tool
has been designed and evaluated [1].

3. EMPIRICAL WORK
The He[d]uristics are formulated to support the object-oriented
qualities in an example. To find out how well they match the
issues perceived by intended users, educators at different level of
teaching, a series of empirical studies are planned.

• Surveys and interviews with educators, both at
universities and in upper secondary schools, to
investigate their descriptions of what they consider most
critical in object-orientation, their view of students’
difficulties with the paradigm and important concepts,
and how they teach it.

• Testing the He[d]uristics on groups of educators to get
feedback on usability.

Making an inventory of teaching practices and examples is
necessary to know how to be able to aid educators in their work.
How can such a survey be structured? Asking the teacher for
his/her personal views of concepts and how he/she addresses
problematic issues of learning object-orientation would contribute
to the formulation of the He[d]uristics. Figure 1 shows the
suggested structure of areas of interest for the first paper/web-
administered survey. The results of this survey will be used to
fine-tune question-areas and questions for the subsequent survey
and interviews. Once the data from these surveys and interviews
have been collected and analysed, the He[d]uristics will, if
necessary, be adjusted and an empirical study will be submitted
to educators to evaluate their usability.

Figure 1. Areas of interest structured for survey

4. REFERENCES
[1] Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H.,

Sanders, K., Schulte, C., and Thomas, L. (2009). An
evaluation of object-oriented example programs in
introductory programming textbooks. To appear in: Rößling,
G. and Cunningham, S., editors, ITiCSE-WGR ’09: Working
group reports on ITiCSE on Innovation and technology in
computer science education, New York, NY, USA. ACM.

[2] CACM (2002). Hello, world gets mixed greetings.
Communications of the ACM, 45(2):11–15

[3] CACM (2005). For programmers, objects are not the only
tools. Communications of the ACM, 48(4):11–12.

[4] Dodani, M. H. (2003). Hello world! goodbye skills! Journal
of Object Technology, 2(1):23–28.

[5] Nordström M. (2009). He[d]uristics—Heuristics for
designing object-oriented examples for novices. Lic. thesis,
Umeå University, Umeå, Sweden, Mars 2009.

[6] Westfall, R. (2001). ’hello, world’ considered harmful.
Communications of the ACM, 44(10):129–130.

KoliCalling'09 2009-09-29

Marie Nordström

Teachers personal view on concept Teachers view of students difficulties Choice of methodology

[C]

Characteristical

[P]

Problematic

[M]

Teaching-practice

Paradigm

(OO)

What are the characteristics of OO?

What is most important to stress?

What about OO is most difficult to

internalise?
How is OO presented, as paradigm?

Concept

(Object)
Ideal objects, how are they defined? What is perceived as difficult about objects? How does a displayed object typically look?

Examples What is typical of a good example?
Does OO-examples differ from examples in

other paradigms, to the students?

How are examples chosen and/or designed?

What characteristics are prioritised?

Process

(OOA&D)

What is characteristic for the problem-

solving approach?
What do students find difficult in OOA&D? How is OOA&D introduced and practised?

Purpose of the study: Finding out how educators view and present object-orientation.

An inventory of views, teaching practicies and examples.

9th Koli Calling International Conference on Computing Education Research Koli National Park, Finland, November 2009

115

Recent technical reports from the Department of Information Technology
2010-026 Xin He, Maya Neytcheva, and Stefano Serra Capizzano: On an Augmented

Lagrangian-Based Preconditioning of Oseen Type Problems
2010-025 Soma Tayamon and Torbjörn Wigren: Recursive Identification and Scaling of Non-

linear Systems using Midpoint Numerical Integration
2010-024 Elias Rudberg and Emanuel H. Rubensson: Assessment of Density Matrix Methods

for Electronic Structure Calculations
2010-023 Ken Mattsson: Summation by Parts Operators for Finite Difference Approximations of

Second-Derivatives with Variable Coefficients
2010-022 Torbjörn Wigren, Linda Brus, and Soma Tayamon: MATLAB Software for Recursive

Identification and Scaling Using a Structured Nonlinear Black-box Model - Revision 6
2010-021 Michael Thuné and Anna Eckerdal: Students’ Conceptions of Computer Programming
2010-020 Torbjörn Wigren: Input-Output Data Sets for Development and Benchmarking in Non-

linear Identification
2010-019 David Eklöv, David Black-Schaffer, and Erik Hagersten: StatCC: Design and Evalua-

tion
2010-018 Jeremy E. Kozdon, Eric M. Dunham, and Jan Nordström: Interaction of Waves with

Frictional Interfaces Using Summation-By-Parts Difference Operators, 2. Extension to
Full Elastodynamics

2010-017 Jeremy E. Kozdon, Eric M. Dunham, and Jan Nordström: Interaction of Waves with
Frictional Interfaces Using Summation-By-Parts Difference Operators, 1. Weak En-
forcement of Nonlinear Boundary Conditions

2010-016 A. Rensfelt and T. Söderström: Parametric Identification of Complex Modulus
2010-015 Parosh Aziz Abdulla, Yu-Fang Chen, Giorgio Delzanno, Frédéric Haziza, Chih-Duo

Hong, and Ahmed Rezine: Constrained Monotonic Abstraction: a CEGAR for Param-
eterized Verification

2010-014 Stefan Hellander and Per Lötstedt: Flexible Single Molecule Simulation of Reaction-
Diffusion Processes

2010-013 Jonas Boustedt: Ways to Understand Class Diagrams
2010-012 Jonas Boustedt: A Student Perspective on Software Development and Maintenance
2010-011 Soma Tayamon and Torbjörn Wigren: Recursive Prediction Error Identification and

Scaling of Non-linear Systems with Midpoint Numerical Integration
2010-010 Maya Neytcheva, Erik Bängtsson, and Elisabeth Linnér: Finite-Element Based Sparse

Approximate Inverses for Block-Factorized Preconditioners
2010-009 Salman Toor, Bjarte Mohn, David Cameron, and Sverker Holmgren: Case-Study for

Different Models of Resource Brokering in Grid Systems
2010-008 Margarida Martins da Silva, Teresa Mendonça, and Torbjörn Wigren: Online Nonlinear

Identification of the Effect of Drugs in Anaesthesia Using a Minimal Parameterization
and BIS Measurements

November 2010
ISSN 1404-3203

http://www.it.uu.se/

	foreword
	table_of_contents
	paper_17
	paper_20
	Introduction
	Related Work
	Defects in Software
	Students' Programming Errors and Misconceptions

	Applications
	Teaching and Assignments
	Code Reviews and Manual Assessment
	Verification and Automatic Assessment
	Testing and Debugging Tools and Methods

	Setting
	Trains
	Reactor
	Tuple Space

	Methodology
	Data Collection
	Defect Classification
	Classifying Defects by Error
	Classifying Defects by Failure

	Results
	Trains
	Requirement-related Errors
	Programming Environment-related Errors
	Assignment Environment-related Errors
	Incorrect Algorithm or Implementation

	Reactor
	Requirement-related Errors
	Programming Environment-related Errors
	Incorrect Algorithm or Implementation

	Tuple Space
	Requirement-related Errors
	Assignment Environment-related Errors
	Incorrect Algorithm or Implementation

	Discussion
	Understanding Program Execution
	Verification
	Communicating Goals

	Conclusions
	Acknowledgements

	paper_13
	paper_7
	paper_5
	paper_2
	paper_18
	Introduction
	Description of the Tool
	Related Tools
	Dissemination
	Evaluations of the Tool
	Future Work and Website
	Acknowledgments
	References

	paper_29
	paper_23
	paper_28
	paper_11
	Introduction
	Design and Implementation
	Discussion
	References

	paper_12
	paper_15
	paper_10
	paper_24
	paper_4
	paper_6
	paper_9
	paper_31
	paper_32

