
 1 

MATLAB Software for Identification of Nonlinear Autonomous 

Systems – Revision 1 

 

 

Torbjörn Wigren 

Systems and Control, Department of Information Technology, Uppsala University, SE-75105 

Uppsala, SWEDEN. E-mail: torbjorn.wigren@it.uu.se. 

April 2014 

 

 

 

Abstract 

This report is intended as a user’s manual for a package of MATLAB scripts and functions, 

developed for recursive and batch identification of nonlinear autonomous state space models of order 

2. The core of the package consists of implementations of four algorithms for this purpose. There are 

two least squares batch schemes and two recursive algorithms based on Kalman filtering techniques.  

     The algorithms are based on a continuous time, structured black box state space model of a 

nonlinear autonomous system of order 2. The software can only be run off-line, i.e. no true real time 

operation is possible. The recursive algorithms are however implemented so that true on-line 

operation can be obtained by extraction of the main algorithmic loops. The user must then provide the 

real time environment. The software package contains scripts and functions that allow the user to 

either input live measurements or to generate test data by simulation. The functionality for display of 

results include scripts for plotting of data and parameters. The estimated model obtained at the end of 

a run can be simulated and the model output plotted, alone or together with the data used for 

identification.  

 

Keywords:  Identification, Recursive algorithm, Nonlinear systems, Autonomous systems,  Periodic 

signal, State space model, Ordinary differential equation, Software, MATLAB. 

 

Prerequisites 

 

This report only describes the parts of  [ 1 ] , [ 2 ], [ 3 ], [ 4 ] and [5]  that are required for the 

description of the software of this package. Hence the user is assumed to have a working knowledge 



 2 

of the algorithms of these publications and of MATLAB, see e.g. [ 6 ]. This, in turn, requires that 

the user has a working knowledge of system identification and in particular of recursive identification 

methods as described in e.g. [ 7].  

Installation 

 

The file SWAutonomous.zip is copied to the selected directory and unzipped. The software is then 

ready for use. 

Note: This report is written exactly with respect to the software, as included in the 

SWAutonomous.zip file. It may therefore be advantageous to store the originally supplied software 

for reference purposes. 

 

Error reports  

 

When errors are found, these may be reported in an e-mail to: 

torbjorn.wigren@it.uu.se. 

 

1.  Introduction 

 

Identification of nonlinear systems is an active field of research today. There are several reasons for 

this. First, many practical systems show strong nonlinear effects. This is e.g. true for many chemical 

reactions and for biological systems of many kinds. See e.g. [ 1 ], [ 2 ], [ 3 ], [ 4 ], [5] and the 

references therein for further examples. Another important reason is perhaps that linear methods for 

system identification are quite well understood, hence it is natural to move the focus to more 

challenging problems.  Furthermore, while there are many identification methods available for 

identification of nonlinear systems with inputs, there are few identification methods available for 

identification of nonlinear autonomous systems. Examples of the latter include the algorithms of [2], 

[3] that are included in this software package and the algorithm of [8] that is based on convex 

optimization.  

     This report focuses on the software that implements the nonlinear recursive system identification 

methods of [2] and [3]. These black box methods estimate continuous time parameters in a general 

state space model of order two, with a known linear measurement equation. The identification 

methods belong to the classes of least squares - and Bayesian identification methods. The least 

squares and Kalman filter algorithms are both exploiting differentiation of the measured signal. These 

approaches cannot guarantee a resulting model with a stable oscillation - this needs to be checked 

after the identification has been completed. The extended Kalman filter algorithm embeds a simulated 

mailto:torbjorn.wigren@it.uu.se


 3 

model of the autonomous system and adjusts the parameters of the model to resemble the data. 

Therefore, the extended Kalman filter more often results in a model with a stable periodic orbit. On 

the other hand, the extended Kalman filter is strongly nonlinear and may diverge.  

       The nonlinear identification algorithms are based on a continuous time black box state space 

model. This model is structured in that only the second right hand side component of the second order 

ordinary differential equation (ODE) model is parameterized as an unknown function. This avoids 

over-parameterization. The restriction imposed on the model structure may seem restrictive. However, 

it is motivated in [ 9 ]  that the selected structure can always (locally in the states) model systems with 

more general right hand sides, a fact that extends the applicability of the method significantly. The 

selected parameterization of the right hand side function of the ODE is a linear-in-the-parameters 

multi-variate polynomial in the two states.  

      Recursive system identification is a software dependent technology. Hence, when publishing new 

methodology in this field, it is relevant to also provide useful software for application of the presented 

algorithms. This facilitates a quick practical exploitation of new ideas. The development of the 

present MATLAB software package is motivated by this fact. The software package is developed 

and tested using a large variety of MATLAB revisions and it does not require any toolboxes. Briefly, 

the software package consists of scripts for generation or measurement of data, scripts for execution 

of the algorithms and scripts for generation and plotting of results. There is presently no GUI, the 

scripts must be run from the command window. Furthermore, input parameters need to be configured 

in the algorithm scripts and the scripts for data generation and plotting. In case of data generation by 

simulation, the ODE that defines the data generating system must be specified in standard MATLAB 

style. The software can only be run off-line, i.e. there is no support for execution in a real time 

environment. The major parts of the algorithmic loop can however easily be extracted for such 

purposes.  

      The report is organized according to the flow of tasks a user encounters when applying the scripts 

of the package. Before the software is described some basic facts about the ODE model and the 

scaling method are reviewed. 

 

2.  Model  

 

The nonlinear MIMO model to be defined here is used for estimation of an unknown parameter vector 

from the measured signal  

     z t y t e t   

 The starting point for the estimation algorithms is the following second order state space ODE 



 4 

 

      




























2212

2

2

1

,,

)(

txtxf

tx

dt

tdx
dt

tdx

.

 

 

The following polynomial parameterization of the right hand side function is used 

    2212 ,, txtxf    2

00

1 2

22

, ,l m

m

M

l

L

l mx t x t



 . 

In order to obtain a discrete time model that is suitable for scaling, the Euler integration method is 

applied. The result of the discretization is 

     x t T x t T x tS S1 1 2    

       x t T x t T x t x tS S l m
l m

m

M

l

L

2 2 2 1 2

00

22

  



  , , . 

It can be remarked that the Euler method may require fast sampling in order not to introduce 

significant discretization errors. This is fortunately a less important effect in system identification 

applications. The reason is that the minimization algorithm uses the parameters as instruments to fit 

the model output to the measured data, as expressed by the criterion function. Even if an additional 

bias would be introduced in the estimated parameters, the input-output properties of the identified 

model can be expected to describe the data well. Finally, it is noted that above equations can be 

compactly written as  

     x t T x t T x tS S1 1 2    

         221222 ,  txtxtxTtx T

S   

    txtx
TS

212 ,
1
 = 

        TMLLM
txtxtxtx 2222

2112 .........1  

2 = 

 TMLLM 2222 ,,20,,2,0,20,0,2 .........  . 

 

3. Software package overview 

 

The software package is command driven, i.e. no GUI is available. It consists of a number of  

MATLAB scripts and functions. These are described in the next subsection. 

 

3.1 Scripts, functions and command flow 

The scripts and functions can be divided into three groups: 



 5 

 Simulated data generation. The script of this group defines a dynamic system, that is then used for 

generation of simulated data. The script is Generate2DData.m. 

 Identification. The  scripts of this group perform the actual identification tasks. The scripts and 

functions are Scaling.m, LeastSquares2D.m, LeastSquaresDifferentiated2D.m, Kalman2D.m 

and ExtendedKalman2D.m. 

 Preparation and display of results. The scripts in this group prepare, compute and display results 

of the identification process. The scripts are Plot2DData.m, Generate2DModelData.m, 

IdentifiedModel.m, Plot2DModel.m, Plot2DModelAndData.m.  

     These groups of scripts and functions need to be operated in a particular order to make sense. In 

case  the user intends to use simulated data, this data can be generated by execution of the scripts and 

functions of the group Simulated data generation. The user can then proceed directly to use the 

groups Identification and Preparation and display of results. 

 

4. Data input  

 

Since the user has access to all source files, the descriptions below do not describe code related issues 

and internal variables. Only the parts that are required for the use of the software package are covered. 

The description builds on the exact source code of the software package. Note that the setup files are 

to be treated as templates, the user is hence required to modify right hand sides only - no addition or 

deletion of code should be used in the normal use of the package.  

 

4.1 Simulated data 

The generation of simulated data requires that the user:  

1.  Modifies the underlying ODE model, given by VanDerPool.m in the simulator.  

2.  Provides further input data in the script Generate2DData.m. The parameters that define the data 

generation are directly written into this script. These parameters define the sampling period, the 

data length, the dimensions of the system, the type and parameters of the disturbances, as well as 

the initial value of the ODE.  

3.  Generates data by execution of Generate2DData.m. After the execution of this script, variables 

with sampling instances and output signals are available in the MATLAB workspace.  

     Example 1: This and the following examples illustrates the use of the software package for 

identification of the system 

  





























2

2

11

2

2

1

12 xxx

x

dt

dx
dt

dx

. 



 6 

 

The equations describe the Van der Pol oscillator [2]. The MATLAB command window command is 

>> Generate2DData 

>> 

 

4.2 Display of data 

After execution of Generate2Ddata, data can be plotted, by using the Plot2DData.m script.  

Example 2:  The MATLAB command window command is 

>> Plot2DData 

>>  

The following plots are generated: 

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time [s]

O
u
tp

u
t 

s
ig

n
a
l

Data

 

Figure 1: The first result of a Plot2DData command. 

 



 7 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-4

-3

-2

-1

0

1

2

3

4

z1

z
2

Phase plane plot of data

 

Figure 2: The second result of a Plot2DData command. 

 

4.  Identification  

5.   

At this point everything is in place for a first identification run. When describing the procedure the 

Kalman filter and extended Kalman filter algorithms are used. The procedures for the least squares 

algorithms are parallel. 

 

5.1 Scaling - optional 

As a preparation for the identification run, the user may wish to scale the data in amplitude or time. A 

detailed discussion on the need for this appears in  [5] and [9]. Briefly, it is essential to scale signals 

so that the nonlinear effect of the model is focused on amplitudes and frequencies of the measured 

signals. This requires that the user: 

1.  Modifies the values of timeScaleFactor and dataScaleFactor in Scaling.m. 

2.  Executes the script Scaling.m 

Example 3:  The MATLAB command window command is  

>> Scaling 

>> 

With timeScaleFactor set to 0.5 and dataScaleFactor set to 2, re-execution of Plot2DData then 

gives Figure 3 and Figure 4.  



 8 

0 5 10 15 20 25
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time [s]

O
u
tp

u
t 

s
ig

n
a
l

Data

 

Figure 3: The first result of a Plot2DData command, after scaling. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-20

-15

-10

-5

0

5

10

15

20

z1

z
2

Phase plane plot of data

 

Figure 4: The second result of a Plot2DData command, after scaling. Note that the differentiated 

signal z2 is affected by both the amplitude and time scaling. 

 

5.2 Recursive identification 

 

The preparation for the identification run requires that the user sets the parameters for the 

identification algorithm used. This means that one or several of the scripts Kalman2D.m, 

ExtendedKalman2D.m, LeastSquares2D.m or LeastSquaresDifferentiated2D.m need to be 

modified. See [2] and [3] for details. In particular this step requires that the user: 



 9 

1. Provides further parameter data in the scripts above. These parameters define the dimension of the 

system, the initial value used in the ODE model, the initial value of the covariance matrix in case 

of Kalman or extended Kalman filter algorithms, and  the values of the systems and noise 

covariance matrices in case of Kalman or extended Kalman filter algorithms. The reader is 

referred to [ 2 ]  and [ 3 ]  for details on these parameters, as well as on their use. 

2. Executes one of the above scripts. This loads the necessary parameters into the MATLAB 

workspace and performs the system identification task. 

      Example 4:  The Kalman filter algorithm of [2] is assumed to be used here, processing unscaled 

data according to Figure 1 and Figure 2. To execute the simulation the user executes Kalman2D.m in 

the MATLAB command window, to obtain: 

>> Kalman2D 

 

theta = 

 

   -0.0085 

    1.9812 

   -1.0033 

    0.0028 

    0.0037 

   -1.9919 

 

>> 

     The extended Kalman filter algorithm automatically uses theta as initial value, when theta is 

available. To run the extended Kalman filter scheme, the user executes ExtendedKalman2D.m in the 

command window to obtain 

>> ExtendedKalman2D 

 

theta = 

 

   -0.0039 

    2.0060 

   -1.0740 

    0.0010 

    0.0020 

   -2.0812 

 



 10 

>> 

 

6. Simulation and display of results  

 

6.1 Simulation 

First the identified model needs to be simulated using the script Generate2DModelData.m . That 

script in turn, uses the function IdentifiedModel.m , which is based on the model structure outlined 

above and in [2], [3]. 

     Example 5: First unscaled data was re-generated as described in section 4.1. To simulate the 

identified model the user then executes the following command in the MATLAB command window 

>> Generate2DModelData 

>> 

  

6.1 Display of results 

In order to plot the parameters the user is required to execute one of the scripts Plot2DModel.m or 

Plot2DModelAndData.m in the command window. 

     Example 6: The command in the MATLAB command window is 

>> Plot2DModel 

>> 

The following plots are then generated: 

 

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [s]

O
u
tp

u
t 

s
ig

n
a
l

Model

 

Figure 5: The first result of a Plot2DModelData command. 

 



 11 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

y1

y
2

Phase plane plot of model

 

Figure 6: The second result of a Plot2DModelData command. 

 

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time [s]

R
u
n
n
in

g
 p

a
ra

m
e
te

r 
e
s
ti
m

a
te

s

Model

 

Figure 7: The third result of a Plot2DModelData command. 

 

     Example 7: It is also possible to do joint plotting of the data used for identification and the 

simulated model. The user then executes the following command in the MATLAB command window: 

>> Plot2DModelAndData 

>> 

 

This generates the following plots: 



 12 

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time [s]

O
u
tp

u
t 

s
ig

n
a
l

Model and Data

 

Figure 8: The first result of a Plot2DModelAndData command. 

0 5 10 15 20 25 30 35 40 45 50
-4

-3

-2

-1

0

1

2

3

4

Time [s]

S
im

u
la

te
d
 p

re
d
ic

ti
o
n
 e

rr
o
r

Model and Data

 

Figure 9: The second result of a Plot2DModelAndData command. The reason why the simulated 

prediction error is much larger than in Figure 10 is that the Kalman filter is used. That algorithm is 

not exploiting feedback from a simulated model in the identification process, as does the extended 

Kalman filter. 

 



 13 

0 5 10 15 20 25 30 35 40 45 50
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time [s]

R
u
n
n
in

g
 p

re
d
ic

ti
o
n
 e

rr
o
r

Model and Data

 

Figure 10: The third result of a Plot2DModelAndData command. 

 

11.  Summary 

 

This report describes a software package for identification of nonlinear autonomous systems of order 

two. Future work in this field, that result in useful MATLAB routines, will be integrated with the 

presently available functionality. Updated versions of this report will then be made available. 

  

11.  References 

 

[ 1 ] T. Wigren and T. Söderström, "Second order ODEs are sufficient for modeling of many periodic 

signals", Technical Reports from the department of Information Technology 025-2003, Uppsala 

University, Uppsala, Sweden, April, 2003. 

[ 2 ]  T. Wigren, E. Abd-Elrady and T. Söderström, "Harmonic signal analysis with Kalman filters 

using periodic orbits of nonlinear ODEs", in Proc. ICASSP 2003, Hong Kong, China, vol. VI, pp. 

669-672, 2003. 

[ 3 ]  T. Wigren, E. Abd-Elrady and T. Söderström, "Least squares harmonic signal analysis using 

periodic orbits of ODEs", in Prep. 13:th IFAC Symposium on System Identification, Rotterdam, The 

Netherlands, pp.1584-1589, August 27-29, 2003. 

[ 4 ]  T. Wigren and T. Söderström, "A second order ODE is sufficient for modeling of many periodic 

signals", Int. J. Contr. , vol. 78, no. 13, pp. 982-996, Sep., 2005. 



 14 

[5]  T. Wigren, “Model order and identifiability of non-linear biological systems in stable oscillation”, 

submitted to IEEE/ACM Trans. on Computational Biology and Bioinformatics, April, 2014.  

[6]  D. Hanselmann and B. Littlefield.  Mastering Matlab 5 - A Comprehensive Tutorial and 

Reference. Upper Saddle River, NJ: Prentice Hall, 1998. 

[ 7 ]  L. Ljung and T. Söderström. Theory and Practice of Recursive Identification. Cambridge, Ma: 

MIT Press, 1983. 

[ 8 ] I. R. Manchester, M.M. Tobenkin and J. Wang, “Identification of nonlinear systems with stable 

oscillations”, Proc. CDC-ECC, Orlando, FL, pp. 5792-5597, Dec. 12-15, 2011.    

[ 9 ]  T. Wigren, "Recursive prediction error identification and scaling of nonlinear state space models 

using a restricted black box parameterization", Automatica, vol. 42, no. 1, pp. 159-168, 2006. 

        

  

 

 


