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Abstract

Mesh-free methods based on radial basis function (RBF) approximation
are widely used for solving PDE problems. They are flexible with respect to
the problem geometry and highly accurate. A disadvantage of these methods
is that the linear system to be solved becomes dense for globally supported
RBFs. A remedy is to introduce localisation techniques such as partition of
unity (PU). RBF-PU methods allow for significant sparsification of the linear
system and lower the computational effort. In this work we apply a global
RBF method as well as an RBF-PU method to problems in option pricing. We
consider one- and two-dimensional vanilla options. In order to price American
options we employ a penalty approach. The RBF-PU method is competitive
with already existing methods and the results are promising for extension to
higher-dimensional problems.

1 Introduction

Option contracts have been used for many centuries, but trading of options, as well
as academic research on option pricing, increased dramatically in volume after 1973,
when Black and Scholes published their market model [2]. Nowadays a variety of
options are traded at the world exchanges, starting with simple vanilla options and
continuing to multi-dimensional index options. Therefore, there is a high demand
for correct option prices. Moreover, option prices play an important role in risk
management, hedging and parameter estimation.

In this paper we consider the problem of pricing so called vanilla basket op-
tions, i.e., European and American options, with several underlying assets. A Euro-
pean option is a contract with a fixed exercise date, while an American option can be
exercised at any time before maturity. Among the different available models of the



underlying behaviour, such as the Heston model with stochastic volatility or the Mer-
ton model with jump diffusion, we select the standard Black-Scholes model, since it
is a basic test case. Under the Black-Scholes model the price of European and Amer-
ican options can be determined by solving either a partial differential equation or a
stochastic differential equation [10]. In the case of a single-asset European option
the price is known analytically, while for multi-assets options the prices have to be
computed numerically. The American option is more difficult due to the opportunity
to exercise the option at any time. Such an opportunity introduces a free exercise
boundary, which complicates the problem. The price for an American option needs
to be computed numerically even in the single-asset case.

There are several techniques to handle the free exercise boundary. The most
commonly used technique consists in rewriting the free boundary problem as a linear
complementarity problem (LCP) and then solving it by one of the standard methods,
such as projected successive over-relaxation (PSOR) [24]. The drawback of this
method is that it is relatively slow. Another method, that is used in industry, is
the operator splitting (OS) method [11]. It is fast and effective for one-dimensional
problems. In this paper we are going to focus on a penalty approach [17], which, by
adding a small penalty term, allows for removing the free boundary and solving the
problem on a fixed domain.

There are various numerical methods, which are used in option pricing for in-
dustry as well as in academia. Perhaps the most popular methods are Monte-Carlo
(MC) methods [8] and finite difference (FD) methods [24]. Both of them have their
own strengths and weaknesses. MC methods converge slowly but are effective for
pricing high-dimensional options, because the computational cost scales linearly with
the number of underlying assets. On the other hand, FD methods have a better con-
vergence rate, while the computational cost grows exponentially with the number of
underlying assets.

We aim to construct a method for option pricing, based on radial basis function
approximation, that can be competitive for low-dimensional to moderately high-
dimensional problems. RBF methods can achieve high order algebraic, or for some
problems even exponential, convergence rates [21, 22]. It means that in order to get
the same accuracy the problem size will be smaller than with FD, which is crucial if
we work in a many-dimensional space. A global RBF method was shown to compare
favourably with an adaptive FD method in [20] in one and two dimensions.

A drawback of global RBF methods is that the linear system that needs to be
solved is dense and often ill-conditioned. The situation can be improved by intro-
ducing localisation techniques. One way to introduce locality is to employ a parti-
tion of unity framework, which was proposed by Babuska and Melenk in 1997 [1].



A partition based formulation is also well suited for a parallel implementation. The
ill-conditioning can be addressed by the RBF-QR technique [6, 7, 15].

In this paper we consider the problem of pricing dividend paying vanilla bas-
ket call options. In order to solve the problem we use RBF and RBF partition
of unity (RBF-PU) methods and employ the RBF-QR technique to deal with the
ill-conditioning. We show that RBF based methods provide a good alternative to
already existing methods. All comparisons of the solutions are made against the
standard FD solution for European options and FD-OS solution for American op-
tions.

The outline of the paper is as follows. In Section 2, we introduce the Black-
Scholes model for European and American basket call options. In Section 3, we
discuss the penalty approach for American options and its form in the case of call
options. Then in Section 4, we give an overview of RBF and RBF-PU methods,
as well as the RBF-QR technique. Section 5 contains numerical experiments and
comparisons. Finally, Section 6 concludes the paper.

2 The Black-Scholes model

The multi-dimensional Black-Scholes equation takes the form

ov
E—EV , XEQ{E,A}, te (O,T], (21)
0? 0
JZI Ezj.%zl']a axj + ZZ a—xl -, (22)
where V' is the value of the option, x = (x1,...,x4) defines the spot prices of the

d underlying assets, d is the number of assets in the portfolio, D; is the continuous
dividend yield paid out by the ith asset, o is the volatility matrix, ¥ = [oo*], 7 is
the risk-free interest rate, t is the backward time, i.e., time to maturity, and 7T is the
maturity time of the option. The domain (g 4y is defined below. The subscripts £
and A indicate European and American options, respectively.

The payoft function for the call option is given by:

d
®(x) = max (Z o — K, 0) , (2.3)

where K is the strike price and «; is the weight of the 7th asset in the portfolio. This
is the value of the option at the time of maturity, but since we use backward time
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the initial condition becomes

V(X, O) = (I)(X), X € Q{E,A}- (2.4)

2.1 The European case

In the case of the European option, Qp = R%, and equation (2.1) is subject to
the following boundary conditions. The near-field boundary can be seen as the
single point x = 0, and there we have

V(0,t)=0, tel0,T]. (2.5)

An asymptotic solution can be defined for large values of x
d
V(x,t) = Y oqme P — Ke ™™, [|x]| = oc. (2.6)
i=1

For computational purposes, the infinite domain needs to be truncated for large ||x]|.
The asymptotic solution (2.6) is used as a boundary condition at the truncation
(far-field) boundary. We do not impose any boundary conditions on the boundaries
of the type I'; = {x|x € Qg,x # 0,z; = 0}, since it was shown in [12] that as long
as the growth at infinity is restricted, the problem is well posed without boundary
conditions.

2.2 The American case

In the case of the American option, {24 is a subdomain of Ri, which falls inside the
free early exercise boundary I'(x,t). Thus, equation (2.1) is subject to the following
boundary conditions. For the same reason as for the European option [12] the near-
field boundary can be represented by just the point x = 0, and we enforce the
following condition there:

V(0,t)=0, tel0,T]. (2.7)

At the free-boundary we have

V(x,t)=®(x), xel(x,t),tel0,7T], (2.8)
%(x, t) = a, x € I(x,t),t €[0,7T]. (2.9)

Outside the free boundary the solution is given by V(x,t) = ®(x).
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3 Penalty method

Using a penalty method is a well-known technique for solving boundary value prob-
lems. An early reference to the penalty method appears in 1943 in Courant’s work
on motion in a bounded domain [3]. In relation to option pricing, the penalty
method was introduced by Zvan et al. in [28], where a penalty approach for a
Black-Scholes model with stochastic volatility for American options is discussed.
Then, Nielsen et al. [17] proposed a new form of the penalty term for American put
options, which has subsequently been used by several authors, combined with finite
differences [18] and radial basis functions [5, 22].

In this paper we consider a penalty method for pricing American basket call op-
tions. In the case of call options, dividends must be present, otherwise the Amer-
ican call is equivalent to the European call [13], while in the case of put options
dividends may be zero. Hence, we propose a penalty term for the American basket
option with dividends.

e (TK - Z?Zl aiDixi)
V+e—gq

where e is the penalty parameter, which has to be chosen sufficiently small, and ¢(x)
is the non-zero part of the payoff function,

P e

: (3.1)

d
q(x) = Zaiazi - K.
i=1

Adding the penalty term to the Black-Scholes equation allows us to convert the
free boundary problem to a fixed domain problem. The error introduced by the
penalty is expected to be O(e). The modified equation takes the form

oV

E-ﬁV—FP(V):O, XEQE,tG[O,T], (32)
where (2 is the same domain as for the European option, since the free boundary
has been removed. The equation is subject to the following initial and boundary
conditions

V(x,0) = ®(x), x€Qp, (3.3)
V(0,t) =0, te 0,77, :
V(x,t) = ®(x), |x]] — o0, t€][0,T]. (3.5)



3.1 Substantiation of the form of the penalty term

In this subsection, we will show why our choice of the form of the penalty term for
the American basket call option is motivated.

The value of an American call option has to be greater than or equal to the
value of the payoff. We need to design the penalty term in such a way that it is
negligible when we are “far” from the payoff, and it increases in magnitude as we
approach the payoff function, to prevent the solution from falling below the payoff.
The current form of the penalty implies this property. When V(x,t) > ¢(x), the
penalty is roughly of size e, and it increases towards rK as V(x,t) — ¢q(z).

Consider the one-dimensional case. The equation takes the form

o1, ,0*°V oV e(rkK —dx)

= —0o“x —I—(T—D)]?——’FV—

ot 2 0z (3.6)

We assume that the solution V is close to the payoff function, i.e., V =~ z — K. Now,
for some x we have that V' = 2 — K + 4, for some 6 > 0, inserting this representation
for V' into the right part of (3.6), we obtain

ov
ot
and if V =2 — K — §, then

= —Dzd+rKS§ —ré*+rKe —red — erkK,

ov
i Dz6 — K5 —r6* +rKe +red — erK.
We use the fact that Dz > rK when z is above the free boundary [13] and take into

account that ¢ and e are small, we end up with

%—Z:—(DQ?—TK)é—T(Sz—T€(5<O,
8_V: Dz —rK)§ —ré* 4+ red > 0.
ot

This shows that if the solution is positively perturbed (above the payoff), the time
derivative becomes negative, and the solution starts decreasing, and wvice versa for
negative perturbations. This meta-proof confirms that our choice of the form for the
penalty term is consistent with attraction to the payoff for large x.



4 Radial basis function methods

RBF methods are mesh-free and based on scattered nodes; therefore they are very
flexible in terms of the geometry of the computational domain. Given N scat-

tered nodes x1,...,xy €  C RY the RBF interpolant of a function with values
u(x1),...,u(xy) defined at those points takes the form
N
Tux) =Y Nollx —xll), xeQ (4.1)
j=1
where \; is an unknown coefficient, |- || is the Euclidian norm and ¢(r) is a real-valued

radial basis function, such as the Gaussian ¢(rr) = e~)” or the multiquadric ¢(r) =

1 + (er)?, which we use for our numerical experiments. In order to determine \;,
=1,..., N, we enforce the interpolation conditions J,(x;) = u(x;) and as a result
we obtain a linear system

AN = a, (4.2)

where A;; = o(||x; — %51), A= [A1, -, AT, @ = [u(x1), - . ., u(xy)]?.
When we approximate a time dependent function u(x,t), we let A\; be time-
dependent, such that

N

Jux 1) =Y Ne(lx—x), xeQt>0. (4.3)

J=1

4.1 RBF partition of unity methods

In spite of the many advantages of RBF methods, there is one computationally
expensive disadvantage. The interpolation matrix A becomes dense when globally
supported RBFs are used. Employing a partition of unity method (PUM) is one
way to introduce locality and sparsity. A collocation RBF-PUM is introduced in
the forthcoming paper [14] for elliptic PDEs, and applied to option pricing prob-
lems in [22]. The main idea is to subdivide a larger domain into smaller overlapping
subdomains. Then a local RBF approximation is used within each subdomain. Lo-
cal approximations in neighbouring subdomains are coupled, but the overall matrix
structure is sparse and the computational complexity is reduced. Furthermore, there
is an opportunity for parallel implementation.

We define a partition of unity {w;}¥,, subordinated to the open cover {£2;}, of Q,



ie., QC Uf\il Q;, such that

dwilx)=1, xeq. (4.4)

Now, for each subdomain we construct a local RBF interpolant 7!, and then
form the global interpolant for the entire domain €2:

0 = S wit0Ti0 = Y w0 3 Mok - xil), xe . (45)

The partition of unity functions w; can be constructed using Shepard’s method [23]
as follows:
w;(x) = Afzi, i=1,...,M, (4.6)
D k=1 Pr(X)
where ;(x) is a function that is compactly supported on €;, which we choose to be
a C? compactly supported Wendland function [26]

Ja=-mtdr+1), fo<r<1
Plr) = {0, if 7> 1. (4.7)

The elements of the open cover of €2 will be chosen as circular patches. Therefore,
the Wendland functions will be scaled to get

gpi(x):go(u), i=1,...,M, (4.8)

Ty

where r; is the radius of the patch €2; and c; is its center point.

5 Time discretization and space approximations

When we solve the option pricing problem numerically, we collocate the different
RBF approximations in space as described below in sections 5.2 and 5.3. In time
we use a standard ODE solver. We define the discrete times t", n = 0,..., N; and
denote the approximate solution at time t" by V"(x) ~ V (¢, x).



5.1 The BDF-2 time stepping scheme

For the time discretisation we choose the second order backward differential scheme
(BDF-2). That is, for the European option the time discretisation is entirely implicit.
A fully implicit time discretisation for the American option will lead to unconditional
stability, but we will need to solve a non-linear system of equations at each time
step, and the total computational cost may become high. Another option is to use
either an explicit scheme or a semi-implicit scheme with the penalty term evaluated
explicitly at the middle time level, see equations (5.1)-(5.2). We have chosen to use
the semi-implicit scheme. We show the discretisation for the American option only,
as the scheme for the European option is identical, except for the presence of the
penalty term.

We divide the time interval [0,7] into N; steps of length k" = " — "~ n =
1,..., N;y. The BDF-2 scheme has the form [9, p. 401]

(E-BLV = V.
(E=BOVE = BIVi™ = BV~ = PV, n=2... N,

where V" is the solution in the interior, £ is an identity operator and

1+ wy, (1 + wp)? w2
n — n n — n — n 5‘3
& 1+ 2w,’ b 1+ 2w, ’ & 1+ 2w,’ (5:3)
where w,, = k"/k"', n = 2,...,N;. In [16] it is shown how the time steps can be

chosen in such a way that 3} = fy. Then the coefficient matrix is the same in all
time steps and only one matrix factorization is needed.
The boundary conditions are enforced at each new time level through

VE=f1 n=1,...,N. (5.4)

This leads to a linear system for each time step of the form
Er—BoLir  —bBoLrm Vi _ I (5.5)
0 Ep Ve fs )’ .

fl=/Vi =BV = PV (5.6)

The semi-implicit scheme will put a restriction on the time step size of the fol-
lowing form:

where

At < Ce , (5.7)

- d
rK =3 i aiDiri




where At = max{k"} . ;. is the point, at which we truncate the domain in the
direction of i-th asset and C' is some constant. This condition is obtained empiri-
cally, but performing a simple linearisation of the penalty term and some heuristic
calculations we can obtain a similar result with C' = k"/g} = 3/2 for the BDF-2
scheme on a uniform time grid. This is in line with the condition At < -2, which
can be found in [17] for the case when finite differences are used to price an American
put without dividends. Condition (5.7) does not depend on the grid, therefore for
some choices of e it is less severe than the condition imposed by the explicit scheme.

Further down in section 6.4 we will see that condition (5.7) holds numerically

with an observed constant that is larger than 3/2.

5.2 Approximation in space using RBF

When using a collocation approach, we work with the nodal solution values v}’ =
V(x;) = V(t,,x;). We build the approximation at time ¢,, according to (4.3)

Vi (x) = Z/\?¢(€!\X—Xj!|)- (5-8)

The nodal values v} and the coefficients A fulfil the following relation:
AN' =", (5.9)
where the interpolation matrix A has elements a,, = ¢(c||x, — x,||) and
A=A, ot =y o]

For RBFs such as Gaussians, multiquadrics, and inverse multiquadrics, A is non-
singular as long as the node points are distinct. Hence, we can invert the relation to
get

A= AN, (5.10)

This allows us to construct differentiation matrices to evaluate derivatives of the
RBF approximation in terms of the nodal values

o - 02p™ _
— =AW = AW A = gl — g (km) g-1gn 11
Oxy, v 011,02, v (5.11)

where A® and A®™) are matrices of derivatives of radial basis functions with ele-

ments alf) = b (€l1%p — Xg][) and alkm) = e (E]1%p — Xg||) respectively.

10



Thus,

d d
1
Lo" = 5 kz_l kakamA(km) + ;(T — Dk)l‘kA(k) — TA

A", (5.12)

where L is a matrix representation of the spatial operator £ and

e (TK o Oékal‘k)

1) — 5.13
J vl +e—q ( )

These expressions are then used for populating the blocks in the system of form (5.5).

5.3 Approximation in space using RBF-PUM

We define the nodal solution values v} = V(x;) ~ V/(t,,%;). For the RBF partition
of unity method we build an 1nterpolant as described in (4.5)

V?(X)ZZ wi (%) Vi (x) —Z ZAZ” ellx — x]))- (5.14)

Now as in the global case we can enforce interpolation conditions and obtain a linear
system

M

i=1
where R; : Z — 7 is a permutation projection operator which maps the local index
set Z; = {1, ..., N;} corresponding to the nodes in the i-th partition into the global
index set Z = {1,..., N}, W, is a diagonal matrix with element w;(x;) on it, and A,
is a local RBF matrix.

By requiring the local nodal values v;" to coincide with the global nodal values
v7, we simplify the coupling together of the local solutions (otherwise, there would
be more unknown values than equations, requiring extra conditions). Through the
local interpolation property we have

n

I e (5.16)

Then we construct approximations for the derivatives
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N M M
% :ZRi Wi(k)Az‘ + VViAEk)} N — ZRi [V[/i(k)Ai + VVz‘AEk)] A;I@i’n,

8$k =1 =1
PU oy [ lhm) (K) 4(m) | 1rlm) A(R) (km)] 34
= "R (WA, + WA 4w Al +WiAim]>\“”:
021L0% — L
M -
Z R; Wi(km)Ai + I/Vi(k)Al(-m) + VVi(m)Al(-k) + VVZAEkm)] Ai_lfji’n,
=1

where Wi(k), Wi(km) are diagonal matrices containing the derivatives of w; and Agk),
A% are local derivative RBF matrices. Note that the partition of unity {w;}¥,
must be at least two times differentiable.

Thus,

M

Li"=) R

i=1

d
1 - i . )
LS S (WA, 4 WA D 4 A0

k,m=1

+ 30 = D (WP 4+ Wd®) = rwia; | A7t

d
k=1

and
e (TK — ZZ:1 akamk)
Vi e —q '

6 Numerical results

In order to solve the option pricing problems numerically, we truncate the domain
where the problem is defined. A common choice for call options is to truncate at
Tioo = 4dK in each direction, where d is the dimension of the problem and K is the
strike price. Therefore we will carry out numerical experiments on Q = [0, 4dK]%.

For the numerical experiments we use the semi-implicit discretisation described
in the previous section. The type of basis functions we select is multiquadric. We
use the following set of parameters: K =1,T =1, r =0.1, 0 = 0.3, D; = 0.05 for
0.3 0.05
0.05 0.3

Figure 1 displays typical solutions for European and American options on one
and two underlying assets.

one underlying asset and o = for two underlying assets.
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Figure 1: Left: Price of an option on 1 underlying asset. Right: Price of a basket
option on 2 underlying assets.

6.1 Choice of shape parameter ¢

The accuracy of RBF methods highly depends upon the shape parameter € of the
basis functions, which is responsible for the flatness of the functions. For smooth
functions, the best accuracy is typically achieved when ¢ is small, but then the
condition number of the linear system becomes too large. In this section we try to
find the best compromise for the size of € for our problem. Figure 2 displays the
dependence of the error on the size of the shape parameter for European options
issued on one and two assets. In 1D the error is measured against the analytical
solution, while in 2D a finite difference solution on a fine grid is used as the reference.

For the rest of the experiments in this paper, for each method, we use the e that
was optimal for the finest grid that was used. For example to study the convergence
of the global RBF method for the European option on two underlying assets we
choose ¢ = 1, because our finest grid in that experiment is 40 x 40 nodes, and it
turns out that ¢ = 1 is the optimal choice for that grid.

Error bounds in terms of the number of nodes and the number of partitions for
RBF and RBF-PU methods were derived in [22] based on the results in [21]. These
are valid in the case of constant €. That is, if for the global RBF method we refine
the grid and keep € = g then we can expect exponential convergence; if we seek the
optimal ¢ for each grid then the convergence behaviour is unknown.
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Figure 2: Left: Error in the price of the European option on 1 underlying asset
against the shape parameter of RBFs. Right: Error in the price of the European
option on 2 underlying assets against the shape parameter of RBFs.

We use ¢ = 1 for all European option experiments, ¢ = 1.4 for the American
option on one asset with the global RBF method, ¢ = 1.7 for the American option
on one asset with the RBF-PUM, and € = 1 for the American option on two assets
with both methods.

6.2 Refinement RBF-PUM

For the global RBF method exponential convergence in space with respect to the
number of nodes can be expected [21, 22]. For the RBF-PU method there are two
general methods of refinement: the number of partitions is kept fixed, this means that
the number of nodes per partition is increasing under refinement, or the number of
points per partition is kept fixed, this means that the number of partitions is growing
under refinement. Error estimates were found in [22] of the form:

_d_
IE@®)loo < CH™ 272 max max [|u(7)|Lvq,), (6.1)
|E@)]loe < O™ max max|fu(7) v, (6.2)

where d is the dimension of €2, H is the distance between partition centers, h is
the distance between nodes, m is the maximal polynomial degree which can be

14



supported by the number of nodes located in each partition and determines the
algebraic convergence order, and v determines the exponential convergence order.
Inequality (6.2) identifies an exponential convergence rate for the case when the
number of partitions is fixed, while inequality (6.1) identifies an algebraic convergence
rate when the number of points per partition is fixed.

: 10° ‘
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Figure 3: Left: Error in the price of the European option on 2 underlying assets
against the problem size with respect to the number of partitions. Right: Error in
the price of the European option on 2 underlying assets against the problem size
with respect to the number of points per partition.

In figure 3 we test the above estimates for the basket European option on two
underlying assets. In the right plot we can see the convergence rate h' for nearly
16 points in each partition and h3® for nearly 33 points per partition; expected
convergence rates are h? and h* respectively. In the left plot we see an exponential
convergence with v = 2 for 36 partitions over the domain, and v = 2.1 for 64
partitions.

This leads us to a reasonable question of what number of partitions (points per
partition) is optimal in the sense of computational efficiency? From figure3 we can
conclude that the fewer the number of partitions (points per partition) the lower
(higher) the error becomes. However, the linear system becomes denser (sparser)
and requires more (less) time to solve. This trade-off we study in the following
subsection.
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6.3 Number of partitions

In the case of the RBF-PU method there is a freedom to choose the number of
partitions that will cover the domain. A cover with smaller partitions will lead to
worse approximation results, but will on the other hand be computationally cheaper,
because the linear system will be more sparse.

In Figure 4 the error in the price of the European option on two underlying
assets versus the number of partitions in one spatial dimension is shown on the left,
the corresponding computational time is shown in the center, and computational
efficiency as a product of the two on the right. The efficiency gives us a flavour of
which number of partitions is optimal in terms of error—time.

From the figure we see for example that for 100 partitions the computational
time is low while the error is large. Then the product will be moderately large.
For four partitions it is the other way around, the time is high and the error is
low. The optimum is found at 36 partitions, where the error is the lowest and
the computational time is average. Based on this we select vVM = 6 for our two-
dimensional experiments. This leads to about 100 nodes in each partition for the
finest grid (40 x 40 nodes) and about 10% non-zero elements in the linear system.
For the one-dimensional experiments we choose M = 4.

6.4 Penalty parameter

In this section we study the dependence of the solution and the numerical scheme
on the penalty parameter e. We have already mentioned that the error is expected
to decay linearly with the penalty size. Figure 5 confirms our expectations. The
dependence is roughly linear in both the one-dimensional and two-dimensional case.

When we designed the numerical scheme we mentioned that the semi-implicit
scheme may impose a less severe condition on the time step size than a fully explicit
scheme. This is true for some choices of e. In the right part of Figure 5, we show
the dependence of the time step size on the penalty parameter size together with the
level of the time step for the explicit scheme. Here we should not forget that there is
no sense in using a small penalty parameter for coarse grids and wvice versa, because
the two types of errors should be balanced.

The experiment shows that the use of the semi-implicit scheme does not have any
advantage in terms of time step size for the RBF methods, because the condition
imposed by treating only the penalty explicitly is more severe than the condition
in the fully explicit scheme, which depends on the space discretisation. As RBF
methods have high convergence rates, few points are needed in space and hence a
relatively large time step can be used also in the explicit scheme.
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Figure 4: Left: Error in the price of the European option on 2 underlying assets
against the number of partitions in one spatial dimension. Center: Computational
time against the number of partitions in one spatial dimension. Right: Efficiency
computed as product between the error and CPU time.

The right part of Figure 5 also displays that the time step should be chosen
according to condition (5.7). The purple line indicates the analytical time step limit
obtained from (5.7) with C' = 3/2, and the turquoise line indicates the largest time
step for which a stable numerical result was computed.

6.5 Convergence study: European option

Here we study the convergence rates of the RBF and RBF-PU methods and compare
them with a standard second order central finite difference (FD) method on a uniform
grid. In one dimension a closed-form solution for the European option exists, whilst
in two dimensions it does not, and we have to use a reference solution obtained by
the FD method on a fine enough grid to compare with.

As expected, in Figure 6, we observe a second order algebraic convergence rate
for the FD method and exponential convergence for both RBF methods with v = 1.5
for the global method, and v = 1.5 in 1D and v = 2 in 2D for the RBF-PUM.

For the European option pricing problem, the initial condition is only C°. Hence
exponential approximation accuracy at the initial time is not possible as this re-
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Figure 5: Left: Error measured in [ -norm against the penalty parameter size for
the one asset and two asset cases. Right: Stable time step size for different sizes of
the penalty parameter. Analytical - obtained from inequality (5.7) with C' = 3/2,
Experimental - experimentally obtained maximal time step for which stability holds.
The three black lines show the time step size required for stability with the fully
explicit scheme.

quires smoothness of the solution [21]. However, due to the smoothing properties of
parabolic problems, the solution can be approximated with high accuracy at larger
times [22]. It has been proved in [25], that solutions of parabolic problems with
non-smooth initial condition can be approximated with optimal order when time is
positive.

For financial applications an error of the size 10~* is considered to be precise
enough, and it is clear that to reach the desired accuracy the FD method requires a
larger number of node points. In order to reach this error level, the RBF and RBF-
PU methods require 40 nodes (40 in each direction in 2D), while the FD method
needs 100 nodes (112 in each direction in 2D). However the computational cost per
time-step is very different for the three methods and a time-comparison is therefore
performed in section 6.7.

A property of RBF and RBF-PU methods is that they can easily reach error
levels of 10™* — 107°, but then the system becomes ill-conditioned and lower error
levels cannot be reached [15]. To overcome this problem the RBF-QR method was
invented. It allows stable computations when the shape parameter ¢ — 0 and it
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allows for achieving higher accuracy. We do not employ the RBF-QR technique
because our error target can be attained without it, but it can be useful when a low
price of an option is expected and higher precision in the result is required. More
details about RBF-QR can be found in [7, 6, 15].
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Figure 6: Left: Error convergence in [,,-norm for a Furopean option on 1 underlying
asset. Right: Error convergence in [,-norm for a basket Kuropean option on 2
underlying asset.

6.6 Convergence study: American option

Here we study the convergence rates of the RBF and RBF-PU penalty methods
and compare them with the FD penalty method. Since no closed-form solution
exists in the case of American options, as a reference to measure the error we use
a solution obtained by second order central finite differences combined with the
operator splitting (OS) method [11] on a fine enough grid. Note that the OS method
approximates the original PDE, and therefore the error introduced by the penalty
term is not present.

In the case of American options, the second derivative of the solution has a
discontinuity at the free boundary. This will limit the order of convergence.

As we said before, we aim for error of the order 10~* which is sufficient for financial
applications. The error introduced by the penalty term is O(e). Therefore we have
to choose the penalty parameter e smaller than 1074,
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Figure 7: Left: Error convergence in [,.-norm for an American option on 1 underlying
asset. Right: Error convergence in [,-norm for a basket American option on 2
underlying asset. All the three methods use the penalty approach.

In Figure 7 we see that all the three methods reach the specified error limit, but
the FD-penalty method requires a smaller penalty parameter (which leads to a larger
number of time steps to fulfil the stability condition) as well as a higher number of
computational nodes in space.

As expected, the discontinuity in the second derivative of the solution does not
allow for exponential convergence, but instead we get a high order algebraic conver-

gence rate both for the global RBF method and RBF-PUM.

6.7 Computational efficiency

As we mentioned previously, RBF methods require fewer computational nodes than
standard FD methods, but the cost of each time step is higher. Figure 8 shows com-
putational times needed to achieve a certain level of accuracy for the FD, RBF and
RBF-PU method for pricing a basket European option. We can see that in order to
get to error level 107, the RBF-PU method requires approximately 5 times less time
than the standard FD method, while the global RBF method needs the same time
even though the number of computational nodes is almost 8 times less. This clearly
reflects the advantage of the partition of unity technique over the global method. It
essentially reduces the computational time while remaining highly accurate.
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Figure 8: CPU time against error for the FD, RBF and RBF-PU methods for a
basket European option.

We should notice that for the experiment we measured only the time of solving
the linear system. Preparation procedures for RBF-PUM, such as computation of
local matrices and assembling them into a big matrix, may take a little while, but
this part can easily be parallelised. Therefore we do not take it into account. The
number time steps used was the same in each case.

7 Summary

RBF methods provide an alternative to already existing methods for solving prob-
lems in financial applications. The RBF-PU method allows to overcome the high
computational cost associated with the global RBF method, while maintaining high
accuracy. The RBF-PU method allows to reach a given level of accuracy with less
computational effort than the standard FD method. One way to reduce the com-
putational time even more is to use the geometrical flexibility of RBF method. For
example, for the European option the problem can be solved on a triangular domain
instead of a square domain, thus, halving the problem size.

The fact that RBF methods are mesh-free allows easy implementation of adaptive
grids, which can be clustered around critical regions such as the strike area or the
free boundary, in order to improve accuracy or reduce overall computational cost. In
the case of RBF-PUM, refinements can be made independently within the partitions,
increasing the flexibility.
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With either of the RBF methods, solutions with errors of the order 10™* can be
stably computed with the direct RBF evaluation method described here. However,
if lower errors are required, a different evaluation method, such as for example the
RBF-QR method, is needed. Then convergence can be maintained almost down to
machine precision [6, 14].

The penalty method combined with RBFs is a good approach for pricing Ameri-
can options. It allows for removing the free boundary and transforming the problem
to a fixed boundary problem. It facilitates the computations, in the sense that we
do not have to track the free boundary location. It can be used in high dimensions
and the introduced error can easily be adjusted to the desirable level.
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