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Abstract. We present a black-box active learning algorithm for inferring extended finite state machines
(EFSM)s by dynamic black-box analysis. EFSMs can be used to model both data flow and control behavior
of software and hardware components. Different dialects of EFSMs are widely used in tools for model-
based software development, verification, and testing. Our algorithm infers a class of EFSMs called register
automata. Register automata have a finite control structure, extended with variables (registers), assignments,
and guards. Our algorithm is parameterized on a particular theory, i.e., a set of operations and tests on the
data domain that can be used in guards.

Key to our learning technique is a novel learning model based on so-called tree queries. The learning
algorithm uses tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time
stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the
symbolic constraints provided by a tree query in general must have to be usable in our learning model.
We also show that, under these conditions, our framework induces a generalization of the classical Nerode
equivalence and canonical automata construction to the symbolic setting. We have evaluated our algorithm
in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include
connection establishment in TCP and a priority queue from the Java Class Library.

1. Introduction

The model-based approach to development, verification, and testing of software systems is a key path towards
efficient development of reliable software systems. Models of software components are the basis for model
checking [CGP01], model-based test generation [BJK+04, UL07], for composition of components [Arb04],
for checking correctness of API usage [BBC+06], etc. However, the application of model-based methods is
hampered by the current lack of adequate models and specifications for most actual systems, largely due to
the significant manual effort needed for constructing models.

To address the problem of nonexisting or outdated models of component behavior, techniques for au-
tomatically generating such models are being developed. These techniques can be based on static analysis,
dynamic analysis, or a combination thereof. In this paper, we are interested in a particular dynamic analysis

1 This is an extended version of the conference paper [CHJS14] with a new intuitive introduction to our novel ideas, revised
formal definitions of the paper’s main concepts, a complete proof of our generalization of the Nerode congruence, and an
expanded section on benchmark examples and results.
2 Supported in part by the European FP7 project CONNECT (IST 231167), and by the UPMARC centre of excellence.
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technique, active automata learning [Ang87, RS93], using which we can infer automata models that represent
the dynamic behavior of a software or hardware component. Active automata learning can be deployed in a
black-box setting, i.e., where we only have access to a component’s interface, and where information about
a component’s behavior is obtained by sending input to it and observing what output it produces.

Mature techniques, based on active automata learning, are available for generating finite-state mod-
els that describe control flow, i.e., possible orderings of interactions between a component and its en-
vironment [HHNS02, HNS03, ABL02, SL07]. Their usefulness has been demonstrated, e.g., for mining
APIs [ABL02], supporting model-based testing [HHNS02, WBDP10] and conformance testing [AKT+12],
and for analyzing security protocols [SL07, GIO12]. Perhaps the most well-known algorithm for inferring
finite automata is L∗ [Ang87], which has been implemented in the LearnLib framework [IHS15]. However,
in many situations it is crucial for models to also be able to describe data flow, i.e., constraints on data
parameters that are passed when the component interacts with its environment, as well as the mutual in-
fluence between control flow and data flow. For instance, models of protocol components must describe how
different parameter values in sequence numbers, identifiers, etc. influence the control flow, and vice versa.

In order to capture both control flow and data flow aspects of component behavior (as well as their
mutual influence), finite state machines can be, and commonly are, equipped with variables. Variables can
store the values of data parameters; they can influence control flow by means of guards, and the control
flow can cause variable updates. Finite state machines with variables are often called extended finite state
machines (EFSMs). Different dialects of EFSMs are successfully used in tools for model-based testing (such
as ConformiQ Qtronic [Hui07], which produces high-quality test suites), web service composition [BPT10],
model-based development [GHP02], and by software model checkers to formally verify properties of all
program behaviors [JM09]. However, there is still no general dynamic analysis technique for inferring EFSM
models with guards and assignments to variables. Existing techniques have restrictions: some limit the
available operations on data to comparisons for equality, while others require significant manual effort (e.g.,
[AJUV14]), and/or rely on access to source code (e.g., [BB13]).

Contribution. In this paper, we present a framework for generating EFSM models of black-box components
using dynamic analysis. Using active automata learning, we can infer concise models of components with, e.g.,
sequence numbers, time stamps, or other variables that are manipulated using moderately complex arithmetic
operations and relations. We infer a class of behavioral models called register automata (RAs)–essentially,
a restricted form of EFSMs. An RA has a finite control structure, extended with variables (registers) that
can store values from a potentially infinite domain, and transition guards that compare data parameters to
registers. Our contribution is an active automata learning algorithm for RAs. The algorithm is parameterized
on a particular theory, i.e., a set of operations and tests on the data domain that can be used in guards. It
is the first fully automated technique that can, in principle, be combined with any theory and generate full
RA models with variables, guards, and operations.

Our framework can be used to generate informative models of the dynamic behavior of software compo-
nents. As described above, such models are an essential basis for model-based test generation, service com-
position, protocol analysis, and several other activites in model-based development Our framework assumes
knowledge about a component’s static interface (e.g., the names of method calls and types of parameters),
and a theory which captures the relations between data parameters that influence the component’s control
flow.

Technically, we generate RAs using active automata learning, following the general principles of the L∗
algorithm [Ang87] for inferring finite state machines. We call our algorithm SL∗ (for Symbolic L* ), because
it generalizes the L∗ algorithm to the symbolic level.

The L∗algorithm is based on the Nerode equivalence. It views words as concatenations of prefixes and
suffixes. Prefixes constitute equivalence classes of the Nerode equivalence, and suffixes distinguish words in
different equivalence classes. The L∗algorithm maintains an increasing set of prefixes and an increasing set
of suffixes until there is at least one prefix in each equivalence class of the language, and enough suffixes to
distinguish all inequivalent prefixes. A final automaton that accepts the language is then constructed with
each state corresponding to a Nerode-equivalence class.

As the basis for the SL∗ algorithm, we define a novel symbolic version of the Nerode equivalence. In a
generated register automaton, locations are still identified by prefixes, but distinguished by symbolic decision
trees. A symbolic decision tree summarizes the relations between data parameter(s) in a given set of suffixes
and a given prefix. It models how such relations affect whether continuations of the prefix should be accepted
by the automaton or not. Constructing a symbolic decision tree for a prefix is called making a tree query.
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Tree queries are used in place of membership queries: if two prefixes have isomorphic symbolic decision trees,
they lead to the same location in the automaton. Thus, prefixes are compared at a symbolic level in our
algorithm.

The concept of organizing prefixes and suffixes in a tree and use this tree a basis for constructing an
EFSM that models relations between data parameters is entirely novel. We describe sufficient conditions for
the properties that the symbolic constraints provided by a tree query in general must have to be usable in
our learning model. We also show that, under these conditions, our framework induces a generalization of
the classical Nerode equivalence and canonical automata construction to the symbolic setting.

We have implemented our algorithm and equipped it with a range of theories for different types of data
values and relations between them. We consider integers with addition (+), equalities (=), and inequalities (<
,>). We use our implementation to demonstrate the application of SL∗ in a series of experiments, comprising
time-stamps, sequence numbers, simple integer arithmetic, the connection establishment in TCP, and the
priority queue from the Java Class Library. We discuss the results, including possible ways to optimize them
in the future.

Related work. The problem of inferring behavioral models from implementations has been addressed in
a number of different ways. Dynamic analysis approaches that combine automata learning techniques with
methods for inferring constraints on data are the most closely related to our work. The pattern they follow is
typically similar to CEGAR (counterexample-guided abstraction refinement): a sequence of models is refined
in a process that is usually monotonic and converges to a fixpoint. All the approaches, however, suffer from
limitations with respect to capturing the mutual influence of data flow and control flow on each other, and/or
in what relations can be expressed between data parameters.

In white-box scenarios, access to the source code is presumed, so domain knowledge, manual abstractions,
and/or symbolic execution can be used. White-box inference based on active automata learning (AAL) has
been explored in several works. AAL has been combined with predicate abstraction [ACMN05] to infer
interface specifications of Java classes, and with CEGAR [HJM05] to infer interface specifications as finite-
state automata without data parameters. In [XSL+13], AAL is combined with support vector machines
to infer constraints on data parameters; in [GRR12], AAL is combined with symbolic execution to recover
guards from the analyzed system, producing DFA models where labels are guards over parameters of alphabet
symbols. The authors of [BB13], also use AAL with symbolic execution, to infer transducers with memory.
The memory of the transducers is, however, limited to a bounded-size window over past inputs.

In black-box scenarios, an early method for inferring EFSM-like models is [LMP08], where models are
generated from execution traces by combining passive automata learning with the Daikon tool [EPG+07].
Since constraints on data parameters are only created for individual traces, there is no way to model the
influence of data values on subsequent control flow.

Other approaches use AAL to infer data constraints from tests: In [AJUV14], a manually supplied ab-
straction on the data domain makes it possible to apply finite-state active automata learning techniques
to the test cases. The approach has been successfully used in practical applications [ASV10, AdRP13], but
a drawback is that a priori insight into the target component’s behavior is required, making it not quite
black-box. In [HSM11], automated (alphabet) refinement is used. Since the presented approach works at
the level of concrete representative inputs, the resulting models have no symbolic interpretation but are
rather minimal concrete representative systems. In [MM14], AAL is used to learn symbolic automata, and
counterexamples used to refine transitions (representing equivalence classes in the language of the symbolic
automata). The goal is to handle very large alphabets without having to store values in registers.

[IHS14] provides an overview of the extension of active automata learning from DFAs to register automata
with tests for equality. For example, in [AHK+12, BHLM13] and our own previous work [HSJC12], EFSM
models are inferred where equality tests are the only allowed operations on data. In our earlier work [BJR08],
we generated a symbolic automaton from a finite automaton over a large data domain, potentially causing
scalability problems for implementations. The authors of [BHLM13] infer EFSMs that they claim to be
incomparable with register automata, and that can represent components where data parameters are ‘globally
fresh’, i.e., never before seen or stored since the last reset of the component.

We have previously developed black-box techniques for generating (register automaton) models that com-
bine control-flow and data, where the only operation on data is comparison for equality [HSJC12, HIS+12].
This approach does not need a priori supplied abstractions and can capture the interplay between control
and data accurately. We have successfully applied it to generate models of container-like interfaces (such
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as sets, stacks, queues, etc. [HIS+12], but the approach can not handle models with arbitrary relations or
operations on the data values. In this paper, we generalize this approach and present - for the first time -
a framework that can be parameterized by a number of different theories (operations on a data domain) to
infer canonical models of components.

Outline. We introduce and illustrate the main ideas of our work, by means of a small example, in Section 2.
In Section 3, we introduce theories and data languages, followed by register automata in Section 4. In
Section 5, we define symbolic decision trees and canonical tree oracles. In Section 6, we introduce our version
of the Nerode equivalence, and show how it can be used to construct canonical automata. In Section 7, we
define canonical tree oracles for some common theories. We present the details of our learning algorithm in
Section 8, and Section 9 presents the results of applying it to a series of small components. a small series
of experiments. Here, we also briefly describe the implementation of a teacher for our learning framework.
Conclusions then follow in Section 10.

2. Main Ideas

In this section, we introduce the main ideas behind our extension to the L∗ algorithm. First, we briefly
discuss the general problem of inferring an automaton model of a component from test cases. We describe
the classic active automata learning approach to solving the problem. Then, we introduce a particular class
of components that cannot be adequately modeled as finite automata but instead require more expressive
formalisms, such as EFSMs. We use an example to illustrate particular issues that arise when modeling these
components. Finally, we describe our active learning framework, and how it generalizes active automata
learning to the symbolic setting.

We are interested in the problem of generating automata models of components from test cases. This
problem can be formulated in terms of language inference. To generate finite-state models of components,
we can use existing active automata learning algorithms for inference of regular languages. Active automata
learning is often represented as a series of interactions between a Teacher and a Learner, where the Learner
makes queries that the Teacher answers. In active automata learning (e.g. L∗ [Ang87]), an automaton model
of a black-box component is inferred by making a set of membership queries. By making a membership
query, the Learner asks whether a particular sequence of input symbols should be accepted or rejected. It
corresponds to executing a test case on the component. When the Learner has built a hypothesis automaton,
it is submitted for an equivalence query, which consists in asking whether the hypothesis is equivalent
to the language of the black-box component. If the reply is negative, a counterexample word is returned
that highlights a difference between the target component and the hypothesis, prompting another round of
membership queries. If the reply is positive, the algorithm terminates.

In order to build a DFA from the information obtained in membership queries, the L∗ algorithm exploits
the Nerode equivalence. Given a language and two words u and u′, a distinguishing suffix for u and u′ is
a word v such that either uv or u′v is in the language, but not both. Two words are Nerode equivalent if
there is no distinguishing suffix for them. The Nerode equivalence can be used to build a minimal DFA,
where each state corresponds to an equivalence class. The L∗ algorithm exploits this fact by maintaining
an increasing set U of words, called prefixes, that correspond to states, and an increasing set V of words,
called suffixes, that are used to distinguish between states. The sets U and V are gradually increased while
performing membership queries for words of form uv, with u ∈ U and v ∈ V , until U covers all states, and
each pair of states is distinguished by some suffix in V .

For languages where symbols carry data from a large or unbounded domain, the solution to our language
inference problem is less straightforward, which the following example illustrates.

Example (Water pump). Consider a simple component: a water pump that controls the level of water in
a tank. In order to lower or raise the water level, the pump accepts input of the form level(p), where p is a
data parameter that can be instantiated with a real number to represent the desired water level. To ensure
a minimum amount of water in the tank, the water level can always be raised, but it can never be lowered
twice in a row. We define the water pump language as a set of sequences of commands, by stating that a
sequence level(p1) . . . level(pm) is in the language ("valid") if whenever pi > pi+1 for some 1 ≤ i ≤ m − 2,
then pi+1 ≤ pi+2. For example, the sequences level(1)level(2) and level(3)level(4)level(4) are both in the water
pump language. ut
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Prefix Suffix Relations between
(of form level(x1)level(x2)) (of form level(p)) data parameters Response

level(3)level(1)

level(0) p < x2 invalid
level(1) p = x2 valid
level(2) x2 < p < x1 valid
level(3) p = x1 valid
level(4) x1 < p valid

level(5)level(3)

level(2) p < x2 invalid
level(3) p = x2 valid
level(4) x2 < p < x1 valid
level(5) p = x1 valid
level(6) x1 < p valid

Fig. 1. Results of executing test sequences on the water pump example

{ }

level(p)
true

(a) after ε or level(1)

{x2}

level(p)
x2 ≤ p

level(p)
p < x2

(b) after level(3)level(1) or
level(5)level(3)

{x3}

level(p)
x3 ≤ p

level(p)
p < x3

(c) after level(4)level(5)level(2)

Fig. 2. Decision trees of depth 1 for the water pump example

The symbols in the water pump language (i.e., its commands) carry data values from an unbounded
domain (real numbers). To build an automaton model that recognizes the water pump language, we cannot
identify locations by the same standard Nerode equivalence used by L∗ to infer regular languages. For
example, the prefixes level(3)level(1) and level(5)level(3) would then not be equivalent. They are distinguished
by the suffix level(2) (since level(3)level(1)level(2) is in the water pump language, but level(5)level(3)level(2)
is not). In fact, it can be seen that almost all prefixes would be inequivalent under this approach. Looking
at the definition of the water pump language, the natural solution to this problem is to redefine the Nerode
equivalence so that it is based not on actual data values in suffixes, but rather on how the relations between
data parameters in the suffix and the prefix determine whether a word is accepted or rejected.

Symbolic decision trees. We introduce symbolic decision trees (SDTs) as a means of symbolically repre-
senting relations between data values in a suffix and a prefix. An SDT is generated for a given prefix (with

{ }

level(p1)
true

level(p2)
true

(a) after ε

{x1}

level(p1)
p1 < x1
x2 := p1

level(p1)
x1 ≤ p1

level(p2)
true

level(p2)
x2 ≤ p2

level(p2)
p2 < x2

(b) after level(1)

Fig. 3. Decision trees of depth 2 for the water pump example
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concrete data values, e.g. level(1)) and a symbolic suffix, i.e., a sequence of symbols with uninstantiated data
parameters (called parameterized symbols)3. It represents relations between different instantiations of the
data parameters in the suffix, as well as relations between these instantiations and the data values in the
prefix. The SDT also shows how these relations determine whether a particular word is in the target language
or not. For example, in the water pump example, an SDT after a prefix level(3)level(1) expresses that words
of the form level(3)level(1)level(p) are accepted whenever p at least as big as 1 and rejected otherwise. Fig-
ure 2(b) shows this particular SDT. We depict trees with the root location at the top and annotate locations
with registers. By convention, a register named xi holds the i-th data value of the corresponding prefix.
Locations are either accepting (double circles) or rejecting. Transitions (branches) are labeled with guarded
symbols. An SDT accepts a suffix if that suffix can reach an accepting location from the root location, by
satisfying the appropriate guards. In Figure 2, Tree (a) accepts the suffix level(p) regardless of the concrete
value of p, while Trees (b) and (c) require p to be at least as big as a data parameter in the prefix (the
second one in (b) and the third one in (c)).

An SDT for a prefix and a symbolic suffix is generated by instantiating the parameters in the suffix
according to a given theory, i.e., a set of operations and tests on the data domain. For example, in the
water pump, the theory consists of the relations < and = over integers. The SDTs in Figure 2 are generated
from the symbolic suffix level(p) after different prefixes. Tree (b) is generated after either of the prefixes
level(3)level(1) or level(5)level(3), by checking language membership for the sequences in the corresponding
part of the table in Figure 1 and summarizing the results:

• The first sequence in each part of the table (with suffixes level(0) and level(2), respectively) corresponds
to the right branch in the tree. It is not in the water pump language ("invalid"), so the branch is rejecting.
The relation p < x2 is used as a guard for the branch.

• The remaining four suffixes in each part of the table correspond to the left branch in the tree. They are
all in the water pump language ("valid"), so they can be grouped together to form an accepting branch.
We use the guard x2 ≤ p to collectively represent the relations in all of the sequences, and to distinguish
this branch from the rejecting branch.

We use symbolic decision trees to separate different prefixes, i.e., in place of distinguishing suffixes in a
symbolic version of the Nerode equivalence. We define this equivalence in Section 6. The symbolic Nerode
equivalence forms the basis of our learning algorithm, SL∗. In the following, we describe the main features
of SL∗.

Learning framework. We follow the pattern of classic active learning, i.e., our learning algorithm can be
described as a series of interactions between a Teacher and a Learner. In our framework, the Teacher answers
equivalence queries and tree queries. Tree queries are used in place of membership queries.

Tree query: The Learner submits a prefix and a symbolic suffix to the Teacher. The Teacher generates an
SDT for the prefix and symbolic suffix, and returns it to the Learner. When learning a model of a target
component, the SDT is generated by executing test cases on the component and observing its responses
(whether each sequence is valid or not). The suffixes and corresponding responses are then organized to
form an SDT.

Equivalence query: The Learner submits an automaton to the Teacher and asks whether it correctly models
the target component. In theory, the Teacher replies ok if it does, and otherwise supplies a counterexam-
ple, i.e., a sequence that is valid but not accepted by the automaton, or vice versa. In practice, however,
we do not have access to an implementation of a Teacher with complete information about the com-
ponent’s behavior. In these cases, equivalence queries can be approximated, e.g., by using conformance
testing or monitoring of the component in order to find counterexamples.

The Learner infers a register automaton (see Section 4) that recognizes the target language, i.e., models
the behavior of the target component. First, the Learner makes a set of tree queries to determine locations
and transitions in the automaton. When certain stability criteria have been met, the Learner submits the
automaton to the Teacher in an equivalence query. If the equivalence query is successful, the algorithm
terminates; otherwise, a counterexample is returned. Counterexamples guide the Learner to make tree queries

3 This is a simplified presentation: in actuality, we generate an SDT for a set of symbolic suffixes, each of which is a sequence
of actions. We describe the generation of SDTs in more detail in Section 5.
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l0 l1 l2
level(p)|true
x1 := p

level(p) | x1 ≤ p
x1 := p

level(p) | p < x1
x1 := p

level(p) | x1 ≤ p
x1 := p

Fig. 4. A very simple water pump component

for more and/or longer suffixes after a given prefix. This will lead to refinements in the automaton: previously
unified prefixes may be separated, new registers may be introduced, and transitions may be refined or new
ones introduced.

Example (Water pump acceptor). Figure 4 shows an inferred model that accepts the water pump lan-
guage. The automaton has three locations: l0 (which is initial), l1, and l2, all of which are accepting; there is
also a sink location not shown in the figure. There is one register (or variable) x1 that stores the current water
level. Transitions are denoted by arrows; each transition is labeled with a parameterized symbol level(p), a
guard that compares p to the register x1, and possibly an assignment to x1. The register x1 is initialized
by the transition from l0 to l1. Symbols that do not match any transition lead to the sink location and are
omitted in the figure. During operation, the pump moves between location l1 (where the water level is above
minimum) and location l2 (where the water level has just been lowered and cannot immediately be lowered
again). ut

When SL∗ infers a model of a component, such as the water pump, the Learner (at a very abstract
level) builds a prefix-closed set of prefixes, i.e., words with concrete data values that reach locations in the
inferred register automaton. To determine when prefixes should lead to the same location in the automaton,
the learner makes tree queries and compares resulting SDTs to each other:

• Prefixes with isomorphic SDTs can be unified, and lead to the same location. SDTs can be made isomor-
phic by renaming their registers. For example, the trees in Figure 2 (b) and (c) are isomorphic if we rename
x3 to x2. This in turn means that the corresponding prefixes level(5)level(3) and level(4)level(5)level(2)
lead to the same location (cf. Figure 4).

• Prefixes with SDTs that cannot be made isomorphic (under any renaming) lead to different locations.
For example, the SDTs in Figure 2 (a) and (b) cannot be made isomorphic, so the prefix level(5)level(3)
reaches a different location than the prefixes ε and level(1).

The transitions of SDTs are used to create registers, guards, and assignments in the automaton. For example,
in Figure 2, the second data value of level(5)level(3) must be stored in a register, to enable comparison with
data parameters in a suffix.

3. Theories and Data Languages

In this and the following section, we introduce the central concepts of our framework: theories, data languages,
and register automata.

Theories. Our framework is parameterized by a theory, i.e., a pair 〈D,R〉 where D is an unbounded domain
of data values, and R is a set of relations on D. The relations in R can have arbitrary arity. Some notable
theories in this paper are:

equality: We consider equality over natural numbers, i.e., the theory 〈N, {=}〉, but also equality over other
infinite domains, such as session identifiers, or password/username strings.

inequality and equality: We consider theories with inequality and equality, over, e.g., real numbers or
rational numbers. In Example 2, we use the theory 〈R, {<,=}〉.

equality and increments: We consider sequence numbers that increase in steps of 1, and introduce a
relation inc(m,n) to model the operation m+ 1 = n for two sequence numbers m,n. Then, we can use
the theory 〈N, {=, inc}〉 to model increasing sequence numbers.
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equality and inequality with sums: We model the operation m + n = o as a relation sum(m,n, o).
Then, we can use the theory 〈R+, {<,=, sum}〉 to model inequality, equality, and sums over positive real
numbers.

The above theories can all be extended with constants (allowing, e.g., theories of sums with constants).
In Section 7, we provide an in-depth discussion of how to implement tree queries for different theories; in
Section 9, we show practical examples and benchmarks. In the following, we assume that some theory has
been fixed.

Data languages. We assume a set Σ of actions, each with an arity that determines how many parameters
it takes from the domain D. In this paper, we assume that all actions have arity 1, but it is straightforward
to extend our results to the case where actions have arbitrary arity.

A data symbol is a term of form α(d), where α is an action and d ∈ D is a data value. A data word is a
sequence of data symbols. The concatenation of two data words w and w′ is denoted ww′. In this context, we
often refer to w as a prefix and w′ as a suffix. For a data word w = α1(d1) . . . αn(dn), let Acts(w) denote its
sequence of actions α1 . . . αn, and V als(w) its sequence of data values d1 . . . dn. We often refer to a sequence
of actions in Σ∗ as a symbolic suffix. We write V for a set of symbolic suffixes, and [[V ]] for the set of words
v with Acts(v) ∈ V Consequently, u[[V ]] is the set of words of the form uv with Acts(v) ∈ V . If V is a set of
symbolic suffixes, then α−1V is the set of subsequences of suffixes in V such that v = α1α2 . . . αn is in V iff
v′ = α2 . . . αn is in α−1V .

Definition 3.1 (R-indistinguishable data words). Two data words w = α1(d1) . . . αn(dn) and w′ =
α1(d′1) . . . αn(d′n) are R-indistinguishable, denoted w ≈R w′, if

• Acts(w) = Acts(w′), and
• R(di1 , . . . , dij ) if and only if R(d′i1 , . . . , d

′
ij

), whenever R ∈ R and i1, . . . , ij are indices between 1 and n.
ut

Intuitively, w and w′ are R-indistinguishable if they have the same sequences of actions and cannot be
distinguished by the relations in R. We use [w]R to denote the equivalence class of R-indistinguishable data
words that w belongs to. In the water pump example, where R = {<,=}, the data words level(2)level(1)
and level(4)level(0) are R-indistinguishable: 2 is greater than (and not equal to) 1; 4 is greater than (and not
equal to) 0.

A data language L is a set of data words that respects R in the sense that w ≈R w′ implies w ∈ L ↔
w′ ∈ L. A data language can be represented as a mapping from the set of data words to {+,−}, where +
stands for accept and − for reject.

4. Register Automata

We assume a set of registers (or variables), x1, x2, . . .. A parameterized symbol is a term of form α(p), where
α is an action and p a formal parameter. A guard is a conjunction of negated and unnegated relations (from
R) over the formal parameter p and registers. An assignment is a simple parallel update of registers with
values from registers or the formal parameter p. An assignment which updates the registers xi1 , . . . , xim
with values from the registers xj1 , . . . , xjn or p can be represented as a mapping π from {xi1 , . . . , xim} to
{xj1 , . . . , xjn} ∪ {p}, meaning that the value of the register or formal parameter π(xik) is assigned to the
register xik for k = 1, . . . ,m.

Definition 4.1 (Register automaton). A register automaton (RA) is a tuple A = (L, l0,X ,Γ, λ), where

• L is a finite set of locations, with l0 ∈ L as the initial location,
• λ maps each l ∈ L to {+,−},
• X maps each location l ∈ L to a finite set X (l) of registers, and
• Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

– l ∈ L is a source location,
– l′ ∈ L is a target location,
– α(p) is a parameterized symbol,
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– g is a guard over p and X (l), and
– π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}. ut

We require register automata to be completely specified in the sense that whenever there is an α-transition
from some location l ∈ L, then the disjunction of the guards on the α-transitions from l is true.

Let us now describe the semantics of an RA. A state of an RA A = (L, l0,X ,Γ, λ) is a pair 〈l, ν〉 where
l ∈ L and ν is a valuation over X (l), i.e., a mapping from X (l) to D. The state is initial if l = l0. A step of

A, denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉, transfers A from 〈l, ν〉 to 〈l′, ν′〉 on input of the data symbol α(d) if there is
a transition 〈l, α(p), g, π, l′〉 ∈ Γ with

• ν |= g[d/p], i.e., d satisfies the guard g under the valuation ν, and
• ν′ is the updated valuation with ν′(xi) = ν(xj) if π(xi) = xj , otherwise ν′(xi) = d if π(xi) = p.

A run of A over a data word w = α(d1) . . . α(dn) is a sequence of steps

〈l0, ν0〉
α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn)−−−−→ 〈ln, νn〉
for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if λ(ln) = −. The word w is
accepted (rejected) by A under ν0 if A has an accepting (rejecting) run over w which starts in 〈l0, ν0〉.

Example 4.2. We describe a run of the water pump automaton in Figure 4 over the word
w = level(2)level(1)level(4). The run is a sequence of three steps

〈l0, ν0〉
level(2)−−−−→ 〈l1, ν1〉

level(1)−−−−→ 〈l2, ν2〉
level(4)−−−−→ 〈l1, ν3〉

starting in the initial location l0 and ending in location l1. We show each step below.

Step 1: 〈l0, ν0〉
level(2)−−−−→ 〈l1, ν1〉 transfers the automaton from the initial location to l1 by following the tran-

sition 〈l0, level(p), true, π, l1〉 where π(x1) = p. The parameter p represents the value 2, which satisfies
the guard true under the empty valuation. ν1 is the updated valuation where ν1(x1) = 2.

Step 2: 〈l1, ν1〉
level(1)−−−−→ 〈l2, ν2〉 transfers the automaton from location l1 to l2 by following the transition

〈l1, level(p), p < x1, π, l2〉 where π(x1) = p. The parameter p represents the value 1, which satisfies the
guard p < x1 under the valuation ν1(x1) = 2. ν2 is the updated valuation with ν2(x1) = 1.

Step 3: 〈l2, ν2〉
level(4)−−−−→ 〈l1, ν3〉 transfers the automaton from location l2 to l1 by following the transition

〈l2, level(p), x1 ≤ p, π, l1〉 where π(x1) = p. The parameter p represents the value 4, which satisfies the
guard x1 ≤ p under the valuation ν2(x1) = 1. ν3 is the updated valuation with ν3(x1) = 4.

The run is accepting, since it ends in the accepting location l1. ut

An RA is determinate if there is no data word over which it has both accepting and rejecting runs. Note
that an RA defined as above does not necessarily have runs over all data words, since a location need not
have outgoing transitions for all actions in Σ. The RAs in this paper are determinate.

Definition 4.3 (Simple register automaton). A simple register automaton (SRA) is a determinate reg-
ister automaton A = (L, l0,X ,Γ, λ) with X (l0) = ∅, which has runs over all data words. ut

We use SRAs as acceptors for data languages. The language accepted by A, denoted L(A), is the set of data
words that it accepts. Figure 4 shows an example of an SRA.

5. Symbolic Decision Trees and Tree Oracles

In this section, we define symbolic decision trees (SDTs), which are essentially RAs in the form of trees. An
SDT for a particular set of data words describes which words are accepted and which are rejected, based
on relations between data parameters. It can thus be said to describe (a fragment of) a data language at a
symbolic level. We use SDTs to identify and separate locations in an inferred RA; two locations are separated
if their SDTs for some particular set of data words cannot be made isomorphic by remapping registers.

In our learning framework, SDTs are constructed by a tree oracle. A special class of tree oracles, called
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canonical tree oracles, satisfy properties needed by our SL∗ algorithm. We give the properties here, and
describe in more detail in Sections 7 how canonical tree oracles can be realized for different theories.

Definition 5.1 (Symbolic decision tree). A symbolic decision tree (SDT) is an RA T = (L, l0,X ,Γ, λ)
where L and Γ form a tree rooted at l0. ut
In general, an SDT has registers in the initial location; we use X (T ) to denote these registers X (l0). Thus,
an SDT has well-defined semantics only wrt. a given valuation of X (T ). If l is a location of T , let T [l] denote
the subtree of T rooted at l. The transitions from a root location of an SDT are its initial transitions. The
initial α-transitions of an SDT are the transitions for action α from the root location. They form a subset
of the initial transitions for an SDT. Initial α-transitions are guarded by initial α-guards. For example, the
SDT in Figure 2 (b) has two initial level-transitions with initial level-guards x2 ≤ p and p < x2.

Definition 5.2 (SDT isomorphism). Let T = (L, l0,X ,Γ, λ) and T ′ = (L′, l′0,X ′,Γ′, λ′) be SDTs. T and
T ′ are isomorphic, denoted T ' T ′, if there is a bijection φ : L 7→ L′ between the locations of T and those
of T ′ such that

• φ(l0) = l′0,
• X (l) = X ′(φ(l)) for all l ∈ L,
• λ(l) = λ′(φ(l) for all l ∈ L, and
• 〈l1, α(p), g, π, l2〉 ∈ Γ precisely when 〈φ(l1), α(p), g′, π, φ(l2)〉 ∈ Γ′ for some g′ with g′ ↔ g. ut

Let γ : X (T ) 7→ X (T ′) be a bijection from the initial registers of T to the initial registers of T . We say that
T and T ′ are isomorphic under γ, denoted T 'γ T ′, if γ can be extended to a bijection from all registers of
T to all registers of T ′, under which T ' T ′.
Example 5.3. Let T denote the SDT in Figure 2 (b) and let T ′ denote the SDT in Figure 2 (c). For T , T ′,
let l0, l′0 denote the root locations, l1, l′1 the left-hand leaves, and l2, l′2 the right-hand leaves. Let γ be the
bijection from the registers of T to the registers of T ′ defined by γ(x2) = x3. T and T ′ are isomorphic under
γ if there is a bijection from the locations of T to the locations of T ′, with the properties in Def. 5.2. In the
following, we show that the bijection φ, defined as φ(l0) = l′0, φ(ll) = l′l, and φ(l2) = l′2, has these properties:

• φ(l0) = l′0.
• Since X (l0) = {x2}, X (φ(l0)) = {x3}, and γ(x2) = x3, we get that X (l0) = γ(X ′(φ(l0))). For all other

locations, X (l1), X (l2), γ(X ′(φ(l1))), and γ(X ′(φ(l2))) are empty sets, i.e., there are only registers in the
initial locations. Thus, X (l) = γ(X ′(φ(l))) for all locations in T .

• λ(l) = λ′(φ(l)) for all locations in T , i.e., l0, l′0 are both accepting, l1, l′1 are also both accepting, and l2,
l′2 are both rejecting.

• Let g′, h′ be guards with g′ = x3 ≤ p and h′ = p < x3. Let g, h be guards with g = x2 ≤ p and h = p < x2.
Since γ(x2) = x3, we get that g ↔ g′ and h↔ h′ under γ. Then the transition 〈l0, level(p), g, π, l1〉 is in Γ
precisely when 〈l′0, level(p), g′, π, l′1〉 is in Γ′, and the transition 〈l0, level(p), h, π, l2〉 is in Γ precisely when
〈l′0, level(p), h′, π, l′2〉 is in Γ′. ut
We now describe how a tree oracle can be used to obtain symbolic decision trees. First we need some

preliminary definitions.
Let u be a data word with V als(u) = d1, . . . , dk. The potential of u, denoted pot(u), is the set of indices

i among 1, . . . , k for which there is no j with i < j ≤ k such that dj = di. For example, the potential of
the data word level(4)level(9)level(4) is {2, 3}. Intuitively, pot(u) contains the indices i for which the variable
xi can occur in a guard that is constructed by a tree oracle. Potentials provide a consistent way to refer
to parameters in a data words, even when some data value occurs more than once. We make the design
decision to always use the last occurrence of any duplicate data value, in order to solve the problem of which
variable (xj or xi) to use in guards whenever dj = di. For example, when constructing an SDT for the prefix
u = level(4)level(9)level(4), the variables x2 and x3 can be used in guards, but not x1.

Let νu be the valuation of the set of registers {x1, . . . , xk}, defined by νu(xi) = di (recall that V als(u) =
d1, . . . , dk). A u-guard is a guard g over the formal parameter p and the variables {xi : i ∈ pot(u)} such
that there is some data value d with νu |= g[d/p], i.e., d satisfies g after the sequence u.

We require that for each data word u and each u-guard g, there is a data value dgu in D that we can use
as a representative for all data values in D that satisfy the guard g. We call such a data value representative.
A representative data value obeys the following rules:
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• νu |= g[dgu/p] (i.e., dgu satisfies p after u), and such that
• whenever g′ is a stronger u-guard satisfied by dgu (i.e., νu |= g′[dgu/p]) then dg

′

u = dgu.

The representative data value for a guard g is determined the first time it is needed. Whenever g is replaced
by a stronger guard g′, we define dg

′

u to be dgu if possible without violating any of the rules for representative
data values.

Example 5.4. Consider again the water pump example, and the word u = level(4)level(9)level(4). The
valuation νu of the set {x1, x2, x3} of registers is defined by νu(x1) = 4, νu(x2) = 9 and νu(x3) = 4. The
potential of u is {2, 3}. The guard x2 < p < x3 is not a u-guard, since it cannot be satisfied by any data
value under the valuation νu. The guard g = p < x2 is a u-guard, since it can be satisfied by a data value
under the valuation νu and 2 is in the potential of u. The representative value dgu for g can be any value that
is less than 9 (since g is g = p < x2 and νu maps x2 to 9). For example, dgu can be 6. Representative values
are used to extend the prefix by some symbol level(d) where d satisfies the guard g. The last requirement for
representative data values implies that we can still use the same symbol when g is refined, if possible. For
instance, if g is strengthened to g′, defined as x3 < p < x2, then we keep dg

′

u as 6. ut
Definition 5.5 ((u, V )-tree). For a data word u with V als(u) = d1, . . . , dk, and a set V of symbolic
suffixes, a (u, V )-tree is an SDT T , which has runs over all data words v ∈ [[V ]], and which satisfies the
technical restriction that whenever 〈l, α(p), g, π, l′〉 is the jth transition on some path from l0, then for each
xi ∈ X (l′) we have either

(i) i < k + j and π(xi) = xi, or
(ii) i = k + j and π(xi) = p (recall that k is the length of u). ut

Intuitively, a (u, V )-tree is an SDT for a set V of symbolic suffixes and where, in any run over a data word
v ∈ V , the register xi may contain only the value of the ith data value in uv. This restriction is introduced
to make it easier to compare (u, V )-trees.

Definition 5.6 (Tree oracle). Let 〈D,R〉 be a theory. A tree oracle for 〈D,R〉 is a function O, which for a
language L, data word u and a set V of symbolic suffixes returns a (u, V )-tree O(L, u, V ), such that for any
data word uv ∈ u[[V ]] it holds that v is accepted by O(L, u, V ) under νu iff uv ∈ L, and rejected iff uv 6∈ L.

ut
In the following, we will mostly omit mentioning the theory when talking about tree oracles, since it is

mostly given by context. We will mostly use the notation OL(u, V ) for O(L, u, V ).

Definition 5.7 (Canonical tree oracle). Let L be a data language. The tree oracle O is canonical if it
satisfies the following conditions for any language L, prefix u, and set of symbolic suffixes V :

1. for each initial transition 〈l0, α(p), g, π, l〉 of OL(u, V ) we have OL(u, V )[l] ' OL(uα(dgu), α−1V ),
2. whenever V ⊆ V ′, then OL(u, V ′) 'γ OL(u′, V ′) implies OL(u, V ) 'γ OL(u′, V ) for all u, u′ and γ, and
3. whenever V ⊆ V ′, then

(i) for each initial α-guard g of OL(u, V ) there is an initial α-guard h of OL(u, V ′) with νu |= h[dgu/p]
and νu |= h −→ g, and

(ii) X (OL(u, V )) ⊆ X (OL(u, V ′)). ut
Intuitively, the first condition states that the trees returned by the tree oracle are constructed recursively,
using the definition of representative data values. The second condition states that extending V can only
preserve or introduce inequivalence between trees of different prefixes. The third condition states that ex-
tending V can only refine the initial transitions and increase the set of registers. Together, these conditions
ensure monotonicity when V is extended.

Example 5.8. Figure 2 (a) shows a (u, V )-tree for u = level(1) and V = {level}. The SDT has one initial
transition, 〈l0, level(p), true, π, l1〉. It is refined by either of the SDTs in Figure 3. The SDT in Figure 3 (a)
has only one initial transition, guarded by true, which refines the initial transition in Figure 2 (a). The SDT
in Figure 3 (b) has two initial transitions with the guards x1 ≤ p1 and p1 < x1, respectively. They also refine
the initial transition in Figure 2 (a).

The reason for the refinements in Figure 3 (b) is that when we extend the tree to length 2, we test words of



12 S. Cassel, F. Howar, B. Jonsson, and B. Steffen

the form level(4)level(d1)level(d2), using different data values for d1 and d2. Since, e.g. level(4)level(3)level(2)
is rejected, but, e.g., level(4)level(5)level(2) is accepted, the initial guard true is no longer valid and must
be refined into x1 ≤ p1 and p1 < x1. The assignment x2 := p1 is induced by the two guards in the lower
right-hand side of the tree, where acceptance (the middle leaf) and rejection (the rightmost leaf) depend on
the relation between p2 and p1. ut

6. Nerode Equivalence and Automata

In this section, we show how a canonical tree oracle can be used to define a generalization of the classical
Nerode equivalence to the symbolic setting, and how such an equivalence induces a definition of canonical
register automata. In our version of the Nerode equivalence, we require that each equivalence class has at
least one representative data word that can emulate the behavior of any other data word in the class. To
ensure that such a word exists, we make a technical requirement on theories we consider in this paper.

Definition 6.1 (k-extendable). Assume a theory 〈D,R〉. Let k ≥ 0. A data word u is k-extendable (wrp.
to 〈D,R〉) if either
• k = 0, or
• for any data word u′ with u′ ≈R u and symbol α(d′), there is a symbol α(d) such that uα(d) ≈R u′α(d′),

and such that uα(d) is (k−1)-extendable.

The set of ∞-extendable data words is the largest set W of data words such that if u ∈W is in the set, then
for any data word u′ with u′ ≈R u and symbol α(d′), there is a symbol α(d) such that uα(d) ≈R u′α(d′)
and uα(d) ∈W . ut
If u is k-extendable, this implies that for any u′ with u′ ≈R u and any suffix v′ of length k, there is a
suffix v such that u′v′ ≈R uv. As an example, the word α(1)α(2) in the theory 〈N, {<,=}〉 of equality and
inequality over natural numbers is 0-extendable but not 1-extendable, since it cannot be extended by any
suffix to form a word that is equivalent to α(1)α(3)α(2). On the other hand, α(2)α(4) is 1-extendable (but
not 2-extendable).

A theory is said to be strongly extendable if all data words are ∞-extendable. A theory is said to be
weakly extendable if for all k and all u there is a u′ with u′ ≈R u which is k-extendable. It can be seen that a
theory is weakly extendable if the empty word is k-extendable for all k. The theory 〈N, {<,=}〉 of equality
and inequality over natural numbers is weakly extendable. For example, if k = 3, α(2)α(6) is a k-extendable
word that is R-equivalent to α(2)α(4). The theory 〈R, {<,=}〉 of equality and inequality over real numbers
is strongly extendable. In this theory, any word, such as α(2)α(4), is ∞-extendable since there is an infinite
number of real numbers between 2 and 4.

Let us now define our generalization of the Nerode equivalence. For this exposition, we assume that the
theory is strongly extendable. At the end of this section, we indicate how to modify the results to the case
that the theory is weakly extendable.

For data words u and u′ with V als(u) = d1, . . . , dk and V als(u′) = d′1, . . . , d
′
k′ ,

Definition 6.2 (Nerode equivalence). Assume a strongly extendable theory. Let u and u′ be data words
with V als(u) = d1, . . . , dk and V als(u′) = d′1, . . . , d

′
k′ , and let O be a canonical tree oracle for our theory. Let

u ≡γOL u
′ denote that there is a bijection γ between a subset of x1, . . . , xk and a subset of x1, . . . , xk′ such

that OL(u, V ) 'γ OL(u′, V ) for all sets V of symbolic suffixes. The words u and u′ are L-equivalent, denoted
u ≡OL u

′, if u ≡γOL u
′ for some bijection γ between a subset of x1, . . . , xk and a subset of x1, . . . , xk′ . ut

In the remainder of this section, we assume that u and u′ are data words with V als(u) = d1, . . . , dk and
V als(u′) = d′1, . . . , d

′
k′ , and that O is a canonical tree oracle. For any γ between a subset of x1, . . . , xk and

a subset of x1, . . . , xk′ , let γ̂ be the extension of γ obtained by extending the domain of γ with xk+1 and
defining γ̂(xk+1) = xk′+1.

Define a data language L to be regular with respect to O if ≡OL has finite index. Note that the regularity
of L is relative to the particular tree oracle O that is used. We can now state and prove an analogue of the
classical Myhill-Nerode theorem. This theorem provides the basis for convergence of our SL∗ algorithm.

Theorem 6.3 (Myhill-Nerode). Assume a strongly extendable theory. Let L be a data language, and let
O be a canonical tree oracle for the theory. If L is regular wrp. to O, then there is an SRA that accepts L.
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Proof. Let k be big enough so that for any u, u′ we have OL(u,Σk) 'γ OL(u′,Σk) if and only if u ≡γOL u
′

and so that the initial guards of OL(u,Σk) are the same as the initial guards of OL(u, V ′) for any V ′ with
Σk ⊆ V ′, and so that X (OL(u,Σk)) includes X (OL(u, V ′)) for any V ′ with Σk ⊆ V ′. Such a k must exist
by the regularity of L, and by the observation that, using Condition 3 of 5.7, initial guards can be refined
only finitely many times.

In the proof, we will first construct an SRA A, and thereafter establish that A accepts L. First, we define
the set L of locations with transitions between them, using a spanning tree construction. Then, we define
λ for all locations. Locations in L can be either marked or unmarked. Initially, L contains only the single
unmarked location lε, which is also the initial location. The set L is then extended and modified as follows:
The set L is then extended and modified by the following procedure.

• Repeatedly choose an arbitrary unmarked location lu ∈ L and do the following:

1. for each initial transition 〈l0, α(p), g, π, l〉 of OL(u,Σk+1),

– if there is no lu′ in L with uα(dgu) ≡OL u
′, then add luα(dgu) (unmarked) to L,

and add 〈lu, α(p), g, π, luα(dgu)〉 to Γ,

– if there is already some lu′ in L with uα(dgu) ≡γOL u
′, then add 〈lu, α(p), g, (π ◦ γ−1), lu′〉 to Γ,

2. mark lu,

until all locations in L are marked. The set L is now taken as the set of locations of A.
The procedure is guaranteed to terminate since there is a finite number of equivalence classes of ≡OL .
Note that in general, L may contain fewer locations than there are equivalence classes of ≡OL , since not
all equivalence classes need to have their own location. This can happen if some equivalence classes are
“covered” by other ones. For instance, using the theory of equality, assume that L accepts only words of
form α(d1)α(d2)α(d3)α(d4) with d1 = d3 and d2 = d4. Then the equivalence class u = α(1)α(2) is sufficient
to cover the behavior for all prefixe of length 2. In particular, u covers the behavior of the prefix u(1)u(1),
which is not equivalent to u.

To complete the definition of A, for each lu ∈ L define X (lu) = X (OL(u,Σk)) and define λ(lu) = + if
and only if u ∈ L.

We must now check that A indeed accepts L. Consider OL(ε,Σ(n+k)) and an arbitrary word w =
α(d1) . . . α(dn). Since O is a tree oracle, OL(ε,Σ(n+k)) classifies w correctly. We will establish a corre-
spondence between runs over w in A and runs over w in OL(ε,Σ(n+k)), showing that also A classifies w
correctly. To establish this correspondence, we first generate a representative data word u′m for each location
m of OL(ε,Σ(n+k)), as follows. Let u′m0

be the empty word ε, for the initial location m0. If u′m has been
generated, and 〈m,α(p), g, π,m1〉 is a transition, then let u′m1

be u′mα(dgu′m).
We thereafter establish that there is a run of A over w of form

〈lε, ν0〉
α1(d1)−−−−→ 〈lu1

, ν1〉 . . . 〈lun−1
, νn−1〉

αn(dn)−−−−→ 〈lun , νn〉

precisely if there is a run of OL(ε,Σ(n+k)) over w of form

〈m0, µ0〉
α1(d1)−−−−→ 〈m1, µ1〉 . . . 〈mn−1, µn−1〉

αn(dn)−−−−→ 〈mn, µn〉
where for each i = 0, . . . , n there is a bijection γi from the registers of li to the registers of mi, such that
ui ≡γiOL u

′
mi and νi = (µi ◦ γi).

We establish the correspondence between the above two runs by induction over the position i = 0, . . . , n
in the run. For the base case i = 0, we trivially establish u0 ≡γiOL u

′
m0

since u0 = u′m0
= ε, and ν0 = (µ0 ◦ γ0)

since there are no registers in the initial locations. For the inductive step, assume that the correspondence
holds for some i, i.e., ui ≡γiOL u

′
mi and νi = (µi ◦ γi). By ui ≡γiOL u

′
mi and the construction of A, there is a

transition 〈lui , α(p), g, π, lui+1
〉 iff there is a transition 〈mi, α(p), γi(g), π′,mi+1〉 with π′ = γi ◦ π ◦ γ̂i−1, i.e.,

π′ maps registers in mi + 1 to registers in mi and the parameter p. Using the valuation νi = (µi ◦ γi), this
implies that νi |= g[d/p] iff µi |= γi(g)[d/p].

We must also show that the correspondence holds for the updated valuations νi+1 and µi+1. By the
construction of A, there are two cases: either ui+1 is the representative data word uiα(dgui) or ui+1 is
equivalent to uiα(dgui) under some remapping ρ between registers.
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• If ui+1 = uiα(dgui), we have ui+1 ≡γ̂iOL u′mi+1
. The valuation νi+1 is νi+1 = µi+1 ◦ γ̂i. Since γ̂i maps

registers in lui+1
to registers in mi+1, we see that µi+1 ◦ γ̂i maps registers in lui+1

to data values, i.e., we
can take γ̂i as γi+1.

• Otherwise, uiα(dgui) ≡
ρ
OL ui+1 for some bijection ρ between registers. This implies that ui+1 ≡γ̂i◦ρ

−1

OL
u′mi+1

. The valuation νi+1 is νi+1 = µi+1 ◦ (γ̂i ◦ ρ−1). Since γ̂i ◦ ρ−1 maps registers in lui+1 to registers
in mi+1, we see that µi+1 ◦ (γ̂i ◦ ρ−1) maps registers in lui+1

to data values, i.e., we can take γ̂i ◦ ρ−1 as
γi+1.

From the above correspondence between runs, we use un ≡γnOL u′mn to conclude that A accepts w iff
OL(ε,Σ(n+k)) does. We have thus established that A accepts L, and the proof is concluded. ut
Extension to weakly extendable theories. We here briefly outline how the definition of Nerode equiva-
lence and Theorem 6.3 can be adapted to the setting of a weakly extendable theory. In a weakly extendable
theory, we let u ≡γOL u

′ denote that there is a bijection γ between a subset of x1, . . . , xk and a subset of
x1, . . . , xk′ such that OL(u, V ) 'γ OL(u′, V ) for all sets V of symbolic suffixes of length ≤ k, where k is the
largest integer such that u and u′ are both k-extendable. The consecutive definitions are as before. In the
proof of Theorem 6.3, care must be taken when constructing the locations of A from data words: these must
be k-extendable for a sufficiently big k.

7. Canonical Tree Oracles for Some Common Theories

In this section, we describe how canonical tree oracles can be realized for some commonly occurring theories:
the theory of equalities, the theory of equality and inequality over rational (or real) numbers, and the theory
of equality and inequality over integers.

Throughout this section, we let u be a data word with V als(u) = d1, . . . , dk, and V be a set of symbolic
suffixes. For an action α, we will use Vα for α−1V (i.e., the set of sequenes α2 . . . αn with α1α2 . . . αn ∈ V ).

In order to simplify the notation involved in defining (u, V )-trees, we will in this section only define
(u, V )-trees for which some elements, as defined in Definition 5.5, are redundant and can be inferred from
the context. We will therefore omit these elements in definitions of (u, V )-trees. The redundant elements are
the following.

• The set X (l) of registers in a location l can be directly obtained as the set of registers that occur in T [l],
i.e., the subtree of T rooted at l.

• The assignment π in a transition 〈l, α(p), g, π, l′〉 of a (u, V )-tree maps each xi ∈ X (l′) to an element
which is uniquely defined by i and l′ (namely, by Definition 5.5, if 〈l, α(p), g, π, l′〉 is the jth transition
on some path from l0, then π(xi) = xi whenever i < k + j, and π(xi) = p whenever i = k + j).

Therefore, we will in what follows define (u, V )-trees as tuples of form T = (L, l0,Γ, λ), in which each
transition has the form 〈l, α(p), g, l′〉 with the assignment removed.

7.1. Canonical Tree Oracle for the Theory of Equalities

In this section, we present a realization of a canonical tree oracle for the theory of equalities over an infinite
domain, such as the set of natural numbers. Our tree oracle O will generate (u, V )-trees in which each guard
is either an equality of form p = xi or a conjunction of negated equalities of form

∧
j∈I p 6= xj for some set

I of indexes. For guards of the above form, we choose representative data values as follows:

• when g is of form p = xi, we let dgu be di, and
• when g is of form

∧
j∈I p 6= xj , we let dgu be some data value not in V als(u) which is uniquely determined

by u (this ensures that we can use the same data value as dg
′

u for any u-guard g′ of form
∧
j∈I′ p 6= xj).

In the following, we let d0u denote this chosen data value.

Let us more precisely describe the trees constructed by our tree oracle.

Definition 7.1 (Equality tree). An equality tree for (u, V ) is a (u, V )-tree T such that
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{x1, x2}

α(p)
p 6= x1 ∧ p 6= x2

α(p)
p = x1

α(p)
p = x2

(a) OL(uα(0), {α})

{x2}

α(p)
p 6= x2

α(p)
p = x2

(b) OL(uα(1), {α})

Fig. 5. Two canonical subtrees

• for each action α, there is a set I ⊆ pot(u) of indices, such that the initial α-guards consist of the equalities
of form p = xi for i ∈ I, and one conjunction of inequalities of form

∧
j∈I p 6= xj ,

• for each initial transition 〈l0, α(p), g, l〉 of T , the tree T [l] is an equality tree for (uα(dgu), α−1V ). ut
Recall that pot(u) is the set of indices i among 1, . . . , k for which there is no j > i with dj = di.

Definition 7.1 suggests that the oracle O should construct OL(u, V ) recursively from its subtrees, con-
structed as trees of form OL(uα(dgu), α−1V ), once the set I has been determined. Thus, the key step in
the construction is to determine the set I. We will let I contain an index i ∈ pot(u) precisely when this is
necessary, i.e., if some suffix of form α(di)v with v ∈ [[α−1V ]] would be incorrectly classified when i 6∈ I.
Looking more closely at this, we see that when i 6∈ I, then α(di)v is classified by the branch reached via the
guard g defined as

∧
j∈I p 6= xj , i.e., v is classified by OL(uα(d0u), α−1V ). Since, by the recursive nature of

the construction, we can assume that OL(uα(di), α
−1V ) correctly classifies suffixes v ∈ [[α−1V ]] when they

occur after the prefix uα(di), it seems that one could check whether OL(uα(d0u), α−1V ) classifies suffixes after
uα(di) in the same way as OL(uα(di), α

−1V ) by checking whether these two trees are isomorphic. However,
one must then first take into consideration that OL(uα(di), α

−1V ) is “specialized” to the case where the ith
and k + 1st data values in the prefix uα(di) are equal (implying that it never contains an occurrence of xi
since i 6∈ pot(uα(di))), which is not the case for OL(uα(d0u), α−1V ). We illustrate this observation by the
following example.

Let L contain all words of form α(d1)α(d2), and let L contain a word of form α(d1)α(d2)α(d3) precisely
when d1 = d3 or d2 = d3. Let u be α(1), let V be {αα}, and choose d0u as 0. The subtree correspond-
ing to OL(uα(d0u), α−1V ) is then OL(uα(0), {α}), and the subtree corresponding to OL(uα(di), α

−1V ) is
OL(uα(1), {α}). These trees are shown in Figure 5. We see that before comparing them, we must first spe-
cialize OL(uα(0), {α}) to the case when x1 and x2 are equal, and that such a specialization will replace x1 by
x2, thereby making the two right subtrees isomorphic, one of which can be removed, thereby transforming
OL(uα(0), {α}) into a tree which is isomorphic to OL(uα(1), {α}).

Thus, before defining our oracle, we must first define how to specialize a subtree OL(uα(d0u), α−1V ) to
classify suffixes after the prefix uα(di) (in which the last symbol in the prefix is equal to the ith). We will
define such a specialization, which specializes an equality tree for (u, V ) to the situation where some subset
{dj : j ∈ J} of values in u are equal. For a set J of indices, let max(J) be the largest index in J . For two
indices i, j, let J [j/i] denote (J \ {i}) ∪ {j}.
Definition 7.2 (Specialization of Equality Tree). Let T be an equality tree for (u, V ), and let J ⊆
pot(u) be a set of indices. Then T 〈J〉 denotes the equality tree for (u, V ) obtained from T by performing
the following transformation for each α:

• whenever T has several initial α-transitions of form 〈l0, α(p), (p = xj), lj〉 with j ∈ J , then all subtrees
of form (T [lj ])〈J [k + 1/j]〉 for j ∈ J must be defined and isomorphic, otherwise T 〈J〉 is undefined. If all
such subtrees are defined and isomorphic, then T 〈J〉 is obtained from T by

1. replacing all initial α-transitions of form 〈l0, α(p), (p = xj), lj〉 for j ∈ J by the single transition
〈l0, α(p), (p = xm), lm〉, where m is max(J),

2. replacing T [lm] by (T [lm])〈J [k + 1/m]〉, and
3. replacing all other subtrees T [l′] reached by initial α-transitions (which have not been replaced in the

Step 1) by (T [l′])〈J〉.
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If, for some α, any of the subtrees generated in Step 2 or 3 are undefined, then T 〈J〉 is also undefined,
otherwise T 〈J〉 is as obtained after performing Steps 1 - 3 for each α. ut

We can now describe how our tree oracle O generates an equality tree OL(u, V ) for any prefix u and set
of symbolic suffixes V .

Definition 7.3 (Tree oracle for equality). For a language L, a prefix u and set of symbolic suffixes V ,
the equality tree OL(u, V ) is constructed as follows.

• If V = {ε}, then OL(u, {ε}) is the trivial tree with one location l0 and no registers. It accepts (i.e.,
λ(l0) = +) if u ∈ L, otherwise λ(l0) = −. To find out whether u ∈ L, the tree oracle performs a
membership query for u.

• If V 6= {ε}, then for each α such that Vα = α−1V is nonempty,

– let I be the subset of indices i in pot(u) such that OL(uα(d0u), Vα)〈{i, k + 1}〉 is undefined or
OL(uα(d0u), Vα)〈{i, k + 1}〉 6' OL(uα(di), Vα) (i.e., I is the set of indices such that OL(uα(d0u), Vα)
classifies suffixes after uα(di) incorrectly),

– OL(u, V ) is constructed as OL(u, V ) = (L, l0,Γ, λ), where, letting OL(uα(di), Vα) be the tuple
(Lαi , l

α
0i,Γ

α
i , λ

α
i ) for i ∈ (I ∪ {0}),

· L is the disjoint union of all Lαi plus an additional initial location l0,

· Γ is the union of all Γαi for i ∈ (I ∪ {0}), and in addition the transitions of form 〈l0, α(p), gi, l
α
0i〉

with i ∈ (I ∪ {0}), where gi is
∧
j∈I p 6= xj for i = 0, and gi is p = xi for i 6= 0, and

· λ agrees with each λαi on Lαi . Moreoever, if ε ∈ V , then λ(l0) = + if u ∈ L, and λ(l0) = − if
u 6∈ L. Again, to find out whether u ∈ L, the tree oracle performs a membership query for u.

Intuitively, OL(u, V ) is constructed by joining the trees OL(uα(di), Vα) with guard p = xi for i ∈ I,
and the tree OL(uα(d0u), Vα) with guard

∧
j∈I p 6= xj as children of a new root. ut

Definition 7.3 suggests that the tree oracle O can construct the equality tree OL(u, V ) recursively as follows.
For each equivalence class induced by ≈R on the set u[[V ]], choose a representative data word uv in that
class, determine whether uv ∈ L by performing a membership query, and construct the trivial equality tree
OL(uv, {ε}) Each such OL(uv, {ε}) is a trivial tree with a single location labeled by + (accept) or − (reject).
Thereafter, recursively construct OL(uv′, V ′) for increasingly shorter uv′ and V ′s with increasingly longer
symbolic suffixes following the rules in Definition 7.3.

Having defined the tree oracle O, we must now prove that it is indeed canonical, i.e., that it satisfies the
conditions in Definition 5.7. Before we do that, we establish some auxiliary properties. For a word u with
V als(u) = d1, . . . , dk and a set J ⊆ pot(u), let σJu denote a substitution operation on data words, which
replaces all di with i ∈ J by dm, where m = max(J). Thus, σJu (v) is the data word obtained from v by
replacing all di with i ∈ J by dm, where m = max(J).

Proposition 7.4. Let L be a language, let u be a prefix, and V , V ′ be sets of symbolic suffixes with V ⊆ V ′.
If OL(u, V ′)〈J〉 is defined, then there is a data language K such that

1. OL(u, V ′)〈J〉 ' OK(σJu (u), V ′), and
2. OL(u, V )〈J〉 is defined and OL(u, V )〈J〉 ' OK(σJu (u), V ).

Proof. We first observe that for any L, u, V ′, and J we have that OL(u, V ′)〈J〉 is defined if and only if
uv ∈ L ↔ uv′ ∈ L whenever v, v′ ∈ [[V ′]] are such that σJu (v) = σJu (v′); intuitively, this states that L does not
distinguish between data values in {dj : j ∈ J} when they occur in a suffix v ∈ [[V ′]] after u. The property
can be established by induction over the depth of V ′, following the construction in Definition 7.3.

We then let the language K be defined in such a way that σJu (u)σJu (v) ∈ K ↔ uv ∈ L for any v ∈ [[V ′]].
Intuitively, K is classifies words obtained by the replacement σJu in the same way as L classifies the original
words. Note that for suffixes v′ which cannot be obtained as σJu (v) for any v, one may have to determine
whether σJu (u)v′ ∈ K from information about whether σJu (u)v′′ ∈ K for some suffix v′′ such that σJu (u)v′′ is
equivalent to σJu (u)v′. For instance, if L is the languague used for the example in Figure 5, and u is α(1)α(0)
and J is {1, 2}, then we infer that α(0)α(0)α(1) 6∈ K by observing that the equivalent word α(0)α(0)α(42)
is not in K.
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We can then establish Property 1, i.e., that OL(u, V ′)〈J〉 ' OK(σJu (u), V ′), again by induction over the
depth of V ′.

To establish Property 2, we infer that OL(u, V )〈J〉 is defined by noting that it is equivalent to the
property that uv ∈ L ↔ uv′ ∈ L whenever v, v′ ∈ [[V ]] are such that σJu (v) = σJu (v′), which follows from the
just established same property for V ′ and V ⊆ V ′. We similarly infer OL(u, V )〈J〉 ' OK(σJu (u), V ), from
the same property for V ′ and V ⊆ V ′. ut

In order to prove that the tree oracle O defined by Definition 7.3 is canonical (as Theorem 7.6), we also
need the following lemma.

Lemma 7.5. Let V ⊆ V ′. Then for any prefix u, ũ, data languages L, K, and any bijection
γ : X (OL(u, V ′)) 7→ X (OK(ũ, V ′)) we have that OL(u, V ′) 'γ OK(ũ, V ′) implies OL(u, V ) 'γ OK(ũ, V ).

Intuitively, Lemma 7.5 states that any equality tree for (u, V ), generated by our canonical tree oracle is
uniquely determined by the corresponding (u, V ′)-tree. This will essentially imply Condition 2 of Defini-
tion 5.7. Condition 3 also follows implicitly by the constructions in the following proof.

Proof. We prove the lemma by induction on the depth of V . The base case, V = {ε}, follows immediately.
In the inductive step, we assume that the property is true for any V ′′, V ′ u, ũ, L, and K, where where
V ′′ replaces V in the property to be proven, and has strictly smaller depth than V . We can assume that
V contains some non-empty word. For each action α such that Vα = α−1V is nonempty, let V ′α = α−1V ′,
implying Vα ⊆ V ′α. Let V als(u) be d1, . . . , dk and let V als(ũ) be d̃1, . . . , d̃k̃. For g being

∧
j∈pot(ũ) p 6= xj , let

dgũ be d̃0. For i ∈ pot(u) such that xi ∈ X (OL(u, V ′)), let γ(i) be defined by xγ(i) = γ(xi). For a bijection γ
between a subset of x1, . . . , xk and a subset of x1, . . . , xk̃, let γ̂ be the extension of γ obtained by extending
the domain of γ with xk+1, and defining γ̂(xk+1) = xk̃+1.

In this inductive step, we assume OL(u, V ′) 'γ OK(ũ, V ′) and must prove OL(u, V ) 'γ OK(ũ, V ). The
assumption OL(u, V ′) 'γ OK(ũ, V ′) means that for each α such that Vα = α−1V is nonempty,

(i’) OL(uα(d0u), V ′α) 'γ̂ OK(ũα(d̃0), V ′α)

(ii’) OL(u, V ′) has an initial α-guard p = xi iff OK(ũ, V ′) has an initial α-guard p = γ(xi), and
OL(uα(di), V

′
α) 'γ̂ OK(ũα(d̃γ(i)), V

′
α).

We must establish that OL(u, V ) 'γ OK(ũ, V ), i.e., that the corresponding properties hold also when V ′ is
replaced by V . These corresponding properties are:

(i) OL(uα(d0u), Vα) 'γ̂ OK(ũα(d̃0), Vα)

(ii) OL(u, V ) has an initial α-guard p = xi iff OK(ũ, V ) has an initial α-guard p = γ(xi), and
OL(uα(di), Vα) 'γ̂ OK(ũα(d̃γ(i)), Vα).

For this, we may as inductive hypothesis use thatOL(uα(d), V ′α) 'γ̂ OK(ũα(d̃), V ′α) impliesOL(uα(d), Vα) 'γ̂
OK(ũα(d̃), Vα) for any d, L, and K (since Vα has strictly smaller depth than V ). Let us prove properties (i)
and (ii) separately.

(i) The property OL(uα(d0u), Vα) 'γ̂ OK(ũα(d̃0), Vα) trivially follows by the inductive hypothesis.
(ii) Assume first that OL(u, V ) has an initial α-guard p = xi. We first establish that OL(u, V ′) has an

initial α-guard p = xi. For this, we note that the assumption that OL(u, V ) has an initial α-guard
p = xi implies that either

• OL(uα(d0u), Vα)〈{i, k + 1}〉 is undefined, in which case OL(uα(d0u), V ′α)〈{i, k + 1}〉 is undefined by
Proposition 7.4, implying that OL(u, V ′) has an initial α-guard p = xi, or

• OL(uα(d0u), Vα)〈{i, k + 1}〉 6' OL(uα(di), Vα), in which case we infer by the inductive hypothesis
and Proposition 7.4 that either

– OL(uα(d0u), V ′α)〈{i, k + 1}〉 is undefined, again implying that OL(u, V ′) has an initial α-guard
p = xi, or

– there is a data language L̂ such that both OL(uα(d0u), V ′α)〈{i, k+1}〉 ' OL̂(uα(d0u), [){i, k+1}]V ′α
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and OL(uα(d0u), Vα)〈{i, k+ 1}〉 ' OL̂(uα(d0u), [){i, k+ 1}]Vα. In this case, we can instantiate the
inductive hypothesis as

OL̂(uα(d0u), V ′α) ' OL(uα(di), V
′
α) implies OL̂(uα(d0u), Vα) ' OL(uα(di), Vα) ,

which by Proposition 7.4 means that

OL(uα(d0u), V ′α)〈{i, k + 1}〉 ' OL(uα(di), V
′
α) implies OL(uα(d0u), Vα)〈{i, k + 1}〉 ' OL(uα(di), Vα)

from which we conclude that OL(uα(d0u), V ′α)〈{i, k + 1}〉 6' OL(uα(di), V
′
α).

Having established that OL(u, V ′) has an initial α-guard p = xi, we infer from the assumption
OL(u, V ′) 'γ OK(ũ, V ′) that OK(ũ, V ′) has an initial α-guard p = xγ(i) and that OL(uα(di), V

′
α) 'γ̂

OK(ũα(d̃γ(i)), V
′
α), implying by the inductive hypothesis that OL(uα(di), Vα) 'γ̂ OK(ũα(d̃γ(i)), Vα).

From the previously established condition (i), we obtain that either

• OL(uα(d0u), Vα)〈{i, k + 1}〉 and OK(ũα(d̃0), Vα)〈{γ(i), k̃ + 1}〉 are both undefined, or
• OL(uα(d0u), Vα)〈{i, k + 1}〉 'γ̂ OK(ũα(d̃0), Vα)〈{γ(i), k̃ + 1}〉.

From this, the initial assumption about OL(uα(d0u), Vα)〈{i, k + 1}〉 and OL(uα(di), Vα), and the just
established OL(uα(di), Vα) 'γ̂ OK(ũα(d̃γ(i)), Vα), we infer that either OK(ũα(d̃0), Vα)〈{γ(i), k̃+ 1}〉 is
undefined or that OK(ũα(d̃γ(i)), Vα) 6' OK(ũα(d̃0), Vα)〈{γ(i), k̃ + 1}〉, implying that OK(ũ, V ) has an
initial α-guard p = xγ(i). From the inductive hypothesis, we immediately get that OL(uα(di), Vα) 'γ̂
OK(ũα(d̃γ(i)), Vα).
The proof in the other direction, where we assume OK(ũ, V ) has an initial α-guard p = xγ(i), follows
by a symmetric argument. ut

Theorem 7.6. The tree oracle O defined by Definition 7.3 is canonical.

Proof. The property that O is indeed a tree oracle for L follows from the construction in Definition 7.3,
using Proposition 7.4. To prove that O is canonical, we must prove that it satisfies the three conditions in
Definition 5.7. Condition 1 follows directly from the construction in Definition 7.3. Condition 2 follows as
a special case of Lemma 7.5, by taking K to be L. Finally, Condition 3 follows by noting that if p = xi is
an initial guard of OL(u, V ), then p = γ(xi) is an initial guard of OL(u, V ′), implying that the “inequality
guard” of OL(u, V ) includes fewer conjuncts than that of OL(u, V ′), and hence is weaker. This observation
also implies that X (OL(u, V )) ⊆ X (OL(u, V ′)). ut

7.2. Tree Construction for the Theory of Inequalities

In this section, we present a realization of a tree oracle for the theory of equalities and inequalities over
rational or real numbers. Our tree oracle generates (u, V )-trees of a special form, called interval trees, in
which guards are open, closed, or half-open intervals. We will consider a u-guard to be of form xi ∼ p ∼′ xj ,
of form p ∼′ xj , or of form xi ∼ p, such that ∼,∼′∈ {<,≤} and i, j ∈ pot(u), which is satisfiable under νu.
We write p = xi for xi ≤ p ≤ xi. As representative value for p = xi, we take di. As representative value for
an interval of form xi ∼ p ∼′ xj with i 6= j, we take a data value d 6∈ V als(u) with di < d < dj . Let us now
define interval trees.

Definition 7.7 (Interval tree). Let u be a data word with V als(u) = d1, . . . , dk, and let V be a set of
symbolic suffixes. An interval tree (for (u, V ) is a (u, V )-tree T such that

• For each action α, the set of initial α-guards is a set of intervals of form

p ∼ xi1 xi1 ∼ p ∼ xi2 . . . xim−1
∼ p ∼ xim xim ∼ p ,

where each ∼ is in {<,≤} and i1, . . . , im are indices in pot(u) with di1 ≤ . . . ≤ dim , such that for each
j = 1, . . . ,m the guards contain at least one non-strict comparison with xij ,
• for each initial transition 〈l0, α(p), g, l〉 of T , the tree T [l] is an interval tree for (uα(dgu), α−1V ). ut
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Our tree oracle will construct interval trees by a procedure which is similar in structure to that used
for constructing equality trees, with some natural differences. In analogy with the case for the theory of
equalities, we need to specialize interval trees to the case when several data values in u are made equal. We
therefore include a definition analogous to Definition 7.2. In the setting of intervals, such a definition makes
sense only when the values made equal are adjacent to each other in V als(u).

Let u be a prefix with V als(u) = d1, . . . , dk. A subset J of pot(u) is adjacent in u if di < dn < dj for
n ∈ pot(u) and i, j ∈ J implies n ∈ J .
Definition 7.8 (Specialization of interval tree). Let T be an interval tree for 〈u, V 〉, and let J be a
subset of pot(u) which is adjacent in u. Then T 〈J〉 denotes the equality tree for (u, V ) obtained from T by
performing the following transformation for each α:

• whenever T has several initial α-transitions of form 〈l0, α(p), (xi ∼ p ∼′ xi′), li〉 with ∼,∼′ in {<,≤} and
i, i′ ∈ J , then all subtrees of form (T [li])〈J ∪ {k + 1}〉 must be defined and isomorphic, otherwise T 〈J〉
is undefined. If all such subtrees are defined and isomorphic, then T 〈J〉 is obtained from T by

1. replacing all initial α-transitions of form 〈l0, α(p), (xi ∼ p ∼′ xi′), li〉 of T , where ∼,∼′ in {<,≤} and
i, i′ ∈ J , by the single transition 〈l0, α(p), (p = xm), li〉 where m is max(J), and i is some index in J
for which T has an initial α-transition of form 〈l0, α(p), (xi ∼ p ∼′ xi′), li〉,

2. replacing T [li] by (T [li])〈J ∪ {k + 1}〉, and
3. replacing all other initial subtrees T [l′] by (T [l′])〈J〉.
If, for some α, any of the subtrees generated in Step 2 or 3 are undefined, then T 〈J〉 is also undefined,
otherwise T 〈J〉 is as obtained after Steps 1 - 3 for each α. ut
We can now describe how our tree oracle O generates an interval tree OL(u, V ) for any prefix u and set

of symbolic suffixes V .

Definition 7.9 (Tree oracle for inequalities). For a language L, a prefix u and set of symbolic suffixes
V , the interval tree OL(u, V ) is constructed as follows.

• If V = {ε}, then OL(u, {ε}) is the trivial tree with one location l0 and no registers. It accepts (i.e.,
λ(l0) = +) if u ∈ L, otherwise λ(l0) = −. To find out whether u ∈ L, the tree oracle performs a
membership query for u.

• If V contains some non-empty word, then for each α such that Vα = α−1V is nonempty, let gα1 , . . . , gαn
be the maximal u-guards such that either

– gαi is of form p = xi, or
– gαi is a non-trivial interval, and for any d′ ∈ D with νu |= gαi [d′/p], which is a representative data

value some u-guard, we have, letting T αi denote OL(uα(dg
α
i
u ), Vα),

· OL(uα(d′), Vα) ' T αi , whenever d′ 6∈ V als(u), and

· T αi 〈{xj , xk+1}〉 is defined and OL(uα(d′), Vα) ' T αi 〈{xj , xk+1}〉 whenever d′ = dj for some j ∈
pot(u).

Now OL(u, V ) is constructed by joining the trees T α1 , . . . , T αn as children of a new root, using the
guards gα1 , . . . , gαn in the natural way. More precisely, if we let T αi be the tuple (Lαi , l

α
0i,Γ

α
i , λ

α
i ), then

OL(u, V ) = (L, l0,Γ, λ), where

· L is the disjoint union of all Lαi plus an additional initial location l0,

· Γ is the union of all Γαi and for each i = 1, . . . , n the transition 〈l0, α(p), gαi , l
α
0i〉,

· λ agrees with each λαi on Lαi , and if ε ∈ V , then λ(l0) = + if u ∈ L, and λ(l0) = − if u 6∈ L.
Again, to find out whether u ∈ L, the tree oracle performs a membership query for u. ut

Definition 7.9 suggests that the tree oracle O can be realized as follows. Given u and V , we first construct a
trivial interval tree OL(uv, {ε}) for a representative data word uv in each equivalence class of words in u[[V ]].
Each such OL(uv, {ε}) is a trivial tree with a single location labeled by + (accept) or − (reject). We then
recursively construct OL(uv′, V ′) for increasingly shorter uv′ and appropriate V ′, following the construction
in the definition.
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We will next prove that the tree oracle for inequalities is canonical, i.e., that it satisfies the conditions in
Definition 5.7. Before we can do that, we need to establish some properties.

Proposition 7.10. Let L be a language, let u be a prefix, and V , V ′ be sets of symbolic suffixes with
V ⊆ V ′. Let J ⊆ pot(u) be adjacent in u. If OL(u, V ′)〈J〉 is defined, then there is a data language K such
that

1. OL(u, V ′)〈J〉 ' OK(σJu (u), V ′), and
2. OL(u, V )〈J〉 is defined, and OL(u, V )〈J〉 ' OK(σJu (u), V ).

Proof. The proof follows the same lines as the proof of Proposition 7.4. The language K is defined in such a
way that σJu (u)σJu (v) ∈ K ↔ uv ∈ L for any v ∈ [[V ′]]. ut

In order to prove that the tree oracle O defined by Definition 7.9 is canonical (as Theorem 7.12), we also
need the following lemma.

Lemma 7.11. Let V ⊆ V ′. Then for any prefixes u, ũ, data languages L, K, and any bijection
γ : X (OL(u, V ′)) 7→ X (OK(ũ, V ′)) we have OL(u, V ′) 'γ OK(ũ, V ′) implies OL(u, V ) 'γ OK(ũ, V ).

Proof. We prove the lemma by induction on the depth of V . The base case, V = {ε}, follows immediately. For
the inductive step, we assume that the property is true for any V ′′, V ′ u, ũ, L, and K, where where V ′′ replaces
V in the property to be proven, and has strictly smaller depth than V . We can assume that V contains some
non-empty word. For each action α such that Vα = α−1V is nonempty, let V ′α = α−1V ′, implying Vα ⊆ V ′α.
Let V als(u) be d1, . . . , dk and let V als(ũ) be d̃1, . . . , d̃k̃. For i ∈ pot(u) such that xi ∈ X (OL(u, V ′)), let γ(i)
be defined by xγ(i) = γ(xi). We extend γ to guards and trees in the natural way. For a bijection γ between a
subset of x1, . . . , xk and a subset of x1, . . . , xk̃, let γ̂ be the extension of γ obtained by extending the domain
of γ with xk+1, and defining γ̂(xk+1) = xk̃+1.

For the inductive step, we assume OL(u, V ′) 'γ OK(ũ, V ′), which means that for each α such that
Vα = α−1V is nonempty,

(i’) OL(u, V ′) has an initial α-guard g iff OK(ũ, V ′) has an initial α-guard γ(g),
and then OL(uα(dgu), V ′α) 'γ̂ OK(ũα(dγ(g)ũ ), V ′α).

We shall establish that this property holds also when V ′ is replaced by V , i.e.,

(i) OL(u, V ) has an initial α-guard g iff OK(ũ, V ) has an initial α-guard γ(g),
and then OL(uα(dgu), Vα) 'γ̂ OK(ũα(dγ(g)ũ ), Vα).

For this, we may as inductive hypothesis use that for any d, d̃, L, and K, we have that OL(uα(d), V ′α) 'γ̂
OK(ũα(d̃), V ′α) implies OL(uα(d), Vα) 'γ̂ OK(ũα(d̃), Vα). Let us move to the proof of (i). From the inductive
hypothesis and the construction of guards in Definition 7.9, it follows that each initial α-guard of OL(u, V )
includes some initial α-guard of OL(u, V ′), and that each initial α-guard of OL(u, V ′) is included in some
initial α-guard of OL(u, V ). The analogous property holds for OK(ũ, V ).

Consider some initial α-guard g of OL(u, V ). By properties of representative data values, dgu is the same
as dhu for some initial α-guard h of OL(u, V ′), with νu |= h → g. The corresponding property holds for
representative data values of form dgũ. From this observation, and the property that for all initial α-guards
h of OL(u, V ′) we have OL(uα(dhu), Vα) 'γ OK(ũα(dγ(h)ũ ), Vα), which follows from the inductive hypothesis,
we conclude OL(uα(dgu), Vα) 'γ OK(ũα(dγ(g)ũ ), Vα). It remains to prove that the initial α-guards of OL(u, V )
and OK(ũ, V ) are the same (modulo γ). This follows from an argument analogous to that in the proof of
Lemma 7.5, by establishing the properties that

1. for all initial α-guards g of OL(u, V ), and all initial act-guards h of OL(u, V ′) we have OL(uα(dgu), Vα) '
OL(uα(dhu), Vα) if and only if OK(ũα(dγ(g)ũ ), Vα) ' OK(ũα(dγ(h)ũ ), Vα), and that

2. OL(uα(dgu), Vα)〈{i, k + 1}〉 ' OL(uα(dhu), Vα)

if and only if OK(ũα(dγ(g)ũ ), Vα)〈{γ(i), k̃ + 1}〉 ' OK(ũα(dγ(h)ũ ), Vα).

These properties imply that there is a bijection between the initial α-guards g of OL(u, V ) and those of
OK(ũ, V ) such that OL(uα(dgu), Vα) 'γ OK(ũα(dγ(g)ũ ), Vα). Moreover, an initial α-guard g of OL(u, V )
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includes an initial α-guard h of OK(u, V ′) if and only if the initial α-guard γ(g) of OK(ũ, V ) includes the
initial α-guard γ(h) of OK(ũ, V ′). (There is also an additional case, where g includes an additional guard
of form p = xi, which can be handled analogously). This establishes property (i), and hence proves that
OL(u, V ) 'γ OK(ũ, V ). ut
Theorem 7.12. The tree oracle O defined by Definition 7.9 is canonical.

Proof. The property that O is indeed a tree oracle for L follows from the construction in Definition 7.9,
using Proposition 7.10. To prove that O is canonical, we must prove that it satisfies the three conditions in
Definition 5.7. Condition 1 follows directly from the construction in Definition 7.9. Condition 2 follows as a
special case of Lemma 7.11, by taking K to be L. Finally, Condition 3 follows as a by-product of the proof
of Lemma 7.11. ut

7.3. Extensions of Tree Oracles

We now discuss two extensions of the tree oracles presented in this section: constants, and increments over
integers. As a consequence of the extensions, tree construction and the arguments for canonicity provided in
Section 7.1 can be adapted.

Constants. A constant c is a particular value from the data domain. In our framework, constants can be
represented by a unary relation eqc ⊆ D containing only c, i.e. with eqc = {c}. In a (u, V )-tree with a
constant c, guards are equalities or conjunctions of inequalities, as in the theory of equality, but we also
enable comparisons with c, e.g., of the form p = c, or p < c, . To avoid unnecessary storing of constants in
registers, the oracle will prefer the guard p = c over any comparison to a register, whenever the value in some
register is equal to c. The extension also does not affect tree construction and canonicity: We can imagine
constants during tree construction as extending the potential of any data word to contain the constants.

An example for the theory of inequalities with constants is the model of the prepaid card shown in
the bottom right of Figure 8. On several transitions the updated balance p is compared to constants (e.g.,
200 < p). We could also, for example, modify the model of the pump shown in Fig. 4 to test p against some
constant threshold level.

Increments. An increment can be described as a binary relation: inc(m,n) iff m+ 1 = n. The tree oracle
adds some restrictions in order to be able to construct canonical (u, V )-trees when theories are extended
with increments. These restrictions are necessary since theories with increments are not, in general, weakly
extendable. First, the guards in a (u, V )-tree for the theory of increments over integers will either be of the
form xi + 1 = p or p = xi (a guard of the form p+ 1 = xi is thus not allowed). Second, sometimes there will
be a choice between two guards (xi + 1 = p and p = xj are both true at the same time). To avoid this, the
tree oracle first tries to replace the prefix u with another R-equivalent prefix in which the two guards are
not both true at the same time. If there is such a prefix, the problem is solved. If there is no such prefix,
the tree oracle uses the equality guard p = xj as the default guard (but in general, either guard would work
since, in this case, there is no data word for which only one of the guards is satisfied). An example for the
theory of increments is the sequence number counter shown in the top middle of Figure 8.

8. The SL∗ Algorithm

This section presents our active automata learning algorithm SL∗. The algorithm constructs an automaton
(specifically, an SRA) for an unknown data language L by inferring locations, registers, and transitions.

8.1. Preliminaries

A central data structure in the algorithm is the observation table. It stores data words and corresponding
SDTs, organizing this information so as to be able to distinguish locations from each other.

Definition 8.1 (Observation table). An observation table is a tuple 〈U,U+, V, Z〉, where
• U is a prefix-closed set of data words, called short prefixes,
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Prefixes Symbolic suffixes
U ∪ U+ V = {ε, level, level level}

(l0) ε
level(p)
true

level(p)
true

(l1) level(1)
{x1} level(p)

p < x1
x2 := p

level(p)
x1 ≤ p

level(p)
true

level(p)
x2 ≤ p

level(p)
p < x2

(l2) level(2)level(1)
{x2} level(p)

p < x2

level(p)
x2 ≤ p

level(p)
true

level(p)
true

(lsink) level(2)level(1)level(0)
level(p)
true

level(p)
true

level(1)level(2) same as l1 (x2 renamed x1)
level(2)level(3)level(1) same as l2 (x3 renamed x2)
level(2)level(1)level(3) same as l1 (x3 renamed x1)
level(3)level(1)level(2) same as l1 (x3 renamed x1)
level(3)level(2)level(1)level(0) same as lsink
level(1)level(2)level(4)level(3) same as lsink
· · · · · ·

Fig. 6. Part of a closed and register-consistent observation table for the water pump example.

• U+ is a set of extended prefixes, each of the form uα(d) for some u ∈ U (and, in general, not disjoint
from U),

• V is a set of symbolic suffixes, and
• Z maps each element u in U ∪ U+ to a (u, V )-tree. ut

The set U+ of extended prefixes contains exactly those data words of the form uα(d) where d is the repre-
sentative data value dgu of some initial α-guard of Z(u).

An observation table 〈U,U+, V, Z〉 is closed, if for every uα(d) ∈ U+ there is a short prefix u′ ∈ U and a
γ such that Z(uα(d)) 'γ Z(u′). It is register-consistent if, for each uα(d) ∈ U+, whenever xi ∈ X (Z(uα(d)))
for i ≤ |V als(u)|, then there is a register xi ∈ X (Z(u)). Closedness ensures that all transitions in the
automaton have a target location. Register-consistency ensures that whenever a data value in u is needed to
construct the SDT after uα(d), then that data value also can be stored in a register in the SDT after u.

Definition 8.2 (Hypothesis automaton). A closed and register-consistent observation table 〈U,U+, V, Z〉
can be used to construct a hypothesis automaton Hyp(〈U,U+, V, Z〉) = (L, l0,X ,Γ, λ), where

• L = U and l0 = ε,
• X maps each location u ∈ U to X (Z(u)) (note that X (l0) is the empty set),
• λ(u) = + if u ∈ L, otherwise λ(u) = −, and
• each initial α-transition 〈l0, α(p), g, π, l′〉 of Z(u) generates a transition 〈u, α(p), g, π′, u′〉 in Γ, where

– u′ is the (unique) short prefix in U with Z(uα(dgu)) 'γ Z(u′),
– π′ is an assignment X (Z(u′)) 7→ (X (Z(u)) ∪ {p}). For xi ∈ X (Z(u′)), we define π′(xi) = γ−1(xi) if
γ−1(xi) stores a data value of u in Z(uα(dgu)), and π′(xi) = p otherwise. ut

Example 8.3. Fig. 6 shows a closed and register-consistent observation table for the water pump example
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in Section 2. A set of symbolic suffixes V labels the column; rows are labeled with short prefixes from U
(marked with locations) and with extended prefixes from U+. Each table cell (referred to by row label u
and column label V ) stores the SDT Z(u). The observation table can be used to generate the automaton
in Fig. 4, with locations obtained from the short prefixes. The assignment x1 := p on the transition from l1
to l2 is derived from the SDT for the prefix level(2)level(1). All other assignments (on transitions to l1) are
derived from the SDT for the prefix level(1). ut

Algorithm 1 SL∗

Require: A set Σ of actions, a data language L, a tree oracle O for the theory.
Ensure: An SRA H with L(H) = L . Initialization
1: U ← {ε}, V ← ({ε} ∪ Σ), Z(ε)← OL(ε, V )
2: loop
3: repeat . Hypothesis construction
4: U+ ← {uα(dgu) : u ∈ U , α ∈ Σ, and g initial α-guard of Z(u)}
5: for each u ∈ (U ∪ U+) do Z(u)← OL(u, V )
6: if ∃uα(d) ∈ U+ s.t. Z(uα(d)) 6'γ Z(u′) for any γ and u′ ∈ U then Check for closedness
7: U ← U ∪ {uα(d)}
8: end if
9: if ∃uα(d) ∈ U+, ∃di ∈ V als(u), and ∃xi ∈ X (Z(uα(d))) Check for register-consistency

s.t. νu(xi) = di, but xi /∈ X (Z(u)) then
10: V ← V ∪ {α(d) · v} for v ∈ V with xi ∈ X (OL(uα(d), {v}))
11: end if
12: end for
13: until 〈U,U+, V, Z〉 is closed and register-consistent

14: H ← Hyp(〈U,U+, V, Z〉) . Hypothesis validation
15: if eq(H) then
16: return H
17: else . Counterexample processing
18: let σ = α1(d1) . . . αn(dn) be the returned counterexample
19: for 〈ui−1, αi(p), gi, πi, ui〉 in run of H over σ do
20: if gi does not refine an initial transition of OL(ui−1, Vi−1) then Case 1 : New transition
21: V ← V ∪ Vi−1

22: end if
23: if OL(ui−1αi(di), Vi) 6'γ OL(ui, Vi) for γ used to construct H then Case 2 : New location / wrong remapping
24: V ← V ∪ Vi
25: end if
26: end for
27: end if
28: end loop

8.2. Algorithm description

Algorithm 1 shows a pseudocode description of SL∗. The algorithm is initialized (line 1) with U containing the
empty word, the set of symbolic suffixes V being the empty sequence together with the set of all actions, and
Z(ε) being the SDT OL(ε, V ). The algorithm then iterates three phases: hypothesis construction, hypothesis
validation, and counterexample processing until no more counterexamples are found, monotonically adding
locations and transitions to hypothesis automata. We detail these phases below, referring to the corresponding
lines in Algorithm 1.

Hypothesis construction (lines 3-13). The algorithm constructs a hypothesis automaton by making tree
queries. The result of a tree query for a prefix u and a set V of symbolic suffixes is the (u, V )-tree OL(u, V ),
which is stored in the observation table as as Z(u). The algorithm continues to make tree queries as long as
the observation table is not closed or not register-consistent:

• If the table is not closed, then there is an extended prefix uα(d) ∈ U+ that leads to a location that is not
identified by any of the short prefixes in U , i.e., Z(uα(d)) is not equivalent to Z(u′) for any short prefix
u′. This is remedied by making uα(d) a short prefix, i.e., adding it to U .
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• If the table is not register-consistent, then Z(uα(d)) has a register xi that expects a value from u but Z(u)
does not have a register for storing this value. This is remedied by extending V : for the particular symbolic
suffix v ∈ V that uses the register xi in Z(uα(d)), we add the symbolic suffix αv to V . Subsequent tree
queries will then ensure that xi is added to Z(u).

Hypothesis validation (lines 14-16). The hypothesis automaton H is submitted for an equivalence query.
The teacher either replies “yes”, or returns a counterexample (a word that is accepted by H but rejected by
the target system, or vice versa). If it replies “yes”, the algorithm terminates and returns H. Otherwise, the
counterexample has to be analyzed.

In a black-box scenario, of course, equivalence queries cannot be implemented: since the teacher does
not have access to the internals of system under learning, it cannot compare the system to the inferred
model directly. Thus, in practice, equivalence queries are usually approximated by some form of search for
a counterexample. Search strategies can help establishing additional properties on conjectures and coun-
terexamples: We use exhaustive exploration of the the set of data words up to some fix time limit in the
experiments presented in Section 9. While this is a very expensive search strategy, it provides two guarantees:
(1) we only find shortest counterexamples, and (2) we know that at every time the current hypothesis is
definitely correct for words up to some specific length.

Random walks, on the other hand, have proven to be a simple yet very effective strategy for finding
counterexamples fast [AHKV14, CHJ15]. While finding counterexamples very efficiently, they do not yield
obvious guarantees on the inferred models and can produce fairly long counterexamples. This is not a problem
in principle, but it can lead to adding long suffixes to the observation table. Long suffixes can have a dramatic
influence on the efficiency (number of tree queries and cost of individual tree queries). Removing loops from
counterexamples [AHKV14, CHJ15] has proven to be a very effective heuristic for controlling the effect of
long counterexamples on the performance of the learning algorithm.

Counterexample analysis (lines 17-27). A counterexample indicates either that a location is missing,
(i.e., that U has to be extended), or that a transition is missing, (i.e., that the initial transitions of SDTs
need to be refined), or that we used an incorrect renaming γ between some SDTs when constructing the
hypothesis. All three cases can be remedied by adding an abstract suffix of the counterexample to the set
V of symbolic suffixes of the observation table. The challenge here is determining which abstract suffix to
add to V . For a counterexample σ of length m, we denote by σi its prefix of length i, and by vi its suffix of
length m− i. Moreover, let Vi be the singleton set {Acts(vi)}.

In a run of H over σ, the i-th step 〈ui−1, νi−1〉
αi(di)−−−−→ 〈ui, νi〉 traverses transition 〈ui−1, αi(p), gi, πi, ui〉,

i.e., prefix σi leads to the location corresponding to short prefix ui from U . Since σ is a counterexample, we
know that at some point, the run of H over σ diverges from the behavior of the component we are trying
to learn. In order to determine where this happens, we analyze the sequence u0 = ε, . . . , um of short prefixes
and the corresponding (ui, Vi)-trees for 0 ≤ i ≤ m computed by OL(ui, Vi), using an argument similar to
the one presented in [RS93].

For the first tree OL(u0, V0), the prefix u0 is the empty word ε, and V0 contains all actions of σ. The tree’s
run over σ conflicts with the run of H (one is accepting while the other is not). The last tree in the sequence,
OL(um, Vm), on the other hand, is not in conflict with H. Since Vm = {ε}, the tree OL(um, Vm) contains
only one node, stating whether um is accepted or not. This tree was originally supplied as the result of a
tree query for the word um, so it must be correct. Hence, there is at least one index j of the counterexample
for which the following holds:

• The short prefix uj−1 and OL(uj−1, Vj−1) contain a counterexample to H in the subtree(s) that are
within the scope of gj , the corresponding guard in H.

• The short prefix uj and OL(uj , Vj) do not contain a counterexample.

The index j can be found in a binary search. We can then distinguish two cases.

Case 1: New transition. The guard gj in the step of H from uj−1 to uj does not refine an initial transition of
OL(uj−1, Vj−1), i.e., gi intersects with two guards of OL(uj−1, Vj−1). In this case the SDT distinguishes cases
that H does not distinguish. Adding the one element in Vj−1 to V will result in new and refined transitions
from uj−1 in the hypothesis. This is guaranteed by the monotonicity requirement on tree oracles in Def. 5.7.

Case 2: New location / wrong remapping. The tree OL(uj , Vj) is not isomorphic to the corresponding subtree
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after α(dgjuj−1) of OL(uj−1, Vj−1) under the renaming of registers γ that was used in the hypothesis: the
subtree of OL(uj−1, Vj−1) contains a counterexample to H, but OL(uj , Vj) does not. By adding the one
element in Vj to V , either γ will be refined, or OL(uj , V ) and OL(uj−1α(dgjuj−1), V ) will be found inequivalent,
making uj−1α(dgjuj−1) a separate location.

Example 8.4. Suppose we are learning the water pump component, shown in Fig. 4. The first hypothesis has
only one state and accepts all data words. A counterexample for this hypothesis is, e.g., level(3)level(2)level(1),
which is accepted by the hypothesis but not valid on the target component. The counterexample is processed
using binary search between index 0 and index 3 to find the index where its behavior diverges from that of
the hypothesis, and thus, what symbolic suffix to add to the observation table. Instead of tracing the binary
search, we discuss the results for all indices of the counterexample.

• At index 3, we have σ = level(3)level(2)level(1) and, in the hypothesis, σ corresponds to the short prefix
u3 = ε. We are at the end of the counterexample, so – by construction – there is no counterexample in
the SDT OL(u3, {ε}): this SDT has been used to determine the acceptance of the location for u3 in the
hypothesis.

• At index 2, we have σ2 = level(3)level(2) and V2 = {level(p)}. In the hypothesis, σ2 corresponds to the
short prefix u2 = ε. The hypothesis and the SDT OL(u2, V2) = OL(ε, {level(p)}) have the same behavior
(everything is accepted).

• At index 1, we have σ1 = level(3) and V1 = {level(p1)level(p2)}. In the hypothesis, σ1 corresponds to the
short prefix u1 = ε. The hypothesis and the SDT OL(u1, V1) also have the same behavior (everything is
accepted).

• At index 0, we have σ0 = ε and V0 = {level(p1)level(p2)level(p3)} In the hypothesis, σ0 corresponds to
the short prefix u0 = ε. The behavior of the SDT OL(u0, V0) diverges from that of the hypothesis within
the scope of g1 (which is true), e.g., in the case of σ.

A binary search could, e.g., start at index 2, move to the left since there is no counterexample in the SDT,
continue at index 1 which still has no counterexample, and end between index 0 and index 1 with j = 1.
Then, either Case 1 or Case 2 applies.

• Case 1 does not apply: In both the SDT for index 0 and the hypothesis, there is an initial level(p)-transition
guarded by true, so the guard in the hypothesis can be said to refine the guard in the SDT.

• Case 2 applies: Let α(dg1u0
) = level(1). The SDT OL(u1, V1) (see Fig. 3 (a)) is not equivalent to the subtree

of OL(u0, V0) after level(1) (see Fig. 3 (b)). The symbolic suffix V0 = level(p1)level(p2) is added to the
observation table. ut

8.3. Correctness and termination

That SL∗ returns a correct SRA upon termination follows by the properties of equivalence queries. For
regular data languages, termination follows from the properties of SDTs in Section 5, from Theorem 6.3,
and from the algorithm itself: SDTs will only be refined when adding symbolic suffixes, and this can happen
only finitely often. Each added symbolic suffix will either lead to a new transition, a refined transition, a
new register assignment or a new location. By adapting arguments from other contexts [Ang87, HSJC12],
Theorem 6.3 can be used to show that SL∗ converges to a minimal (in terms of locations and registers) SRA
for L. Note that this minimal number of locations and transitions also depends on the particular tree oracle
that is used.
Complexity. We estimate the worst case number of counterexamples and show how they lead to a correct
model with n locations, t transitions, and at most r registers per location. Since each location has one
access sequence, n ≤ t, and thus we estimate the costs in t and r only. Each counterexample results in one
additional suffix in the observation table, leading to a new transition or to discarding a bijection between
two prefixes in U . The former can happen t times before all transitions are identified. The latter can happen
at most tr times, since it corresponds to breaking a symmetry between two of at most r registers at one of
n ≤ t locations (cf. [How12]). The algorithm terminates after O(tr) equivalence queries. The number of tree
queries depends on the length m of the longest counterexample and on the size of the observation table. The
algorithm uses a maximum of m calls per counterexample, and the size of U ∪ U+ in the final observation
table is t+ 1. This leads to O(t2r + trm) tree queries and yields the following theorem.
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Theorem 8.5. The algorithm SL∗ infers a data language L with O(tr) equivalence queries and O(t2r+trm)
tree queries. ut

9. Evaluation

In this section, we evaluate our learning framework on a number of example components. The example com-
ponents are small, but represent a set of different theories. The purpose of this evaluation is demonstrating
the feasibility of the conceptual framework i.e., using different theories in a generic automata learning al-
gorithm). To this end, we have implemented theories from the different classes discussed in Section 5 that
generate SDTs from tests. The SL∗ algorithm has been implemented prototypically using LearnLib4 [IHS15],
an automata learning framework developed by some of the authors. We conduct experiments in a simulation
environment. The behavior of black-box components is emulated using register automata as “ground truth”.

The development and evaluation of a tool for inferring register automaton models of software compo-
nents is an ongoing effort. We are working on a proper extension to LearnLib (namely RaLib). It is based
on the conceptual architecture presented in this paper and on the prototypical implementation used in this
evaluation. We evaluate performance and practicality of RaLib in [CHJ15] where we also compare its per-
formance against other tools that infer register automata models with the theory allows only equalities over
positive integers — namely Tomte [AHK+12] and the implementation of our own algorithm from [HSJC12].
Experiments show that RaLib is competitive: It outperforms the other tools on most of the benchmarks.
Tomte has an edge on benchmarks with many registers (e.g., big data structures with a capacity of more
than 10 elements). Detailed comparisons of all three tools can be found in [AHKV14] and [CHJ15] but are
not presented here since these tools use a number of optimizations that are beyond the scope of this work.

In the remainder of the section, we first discuss the theories and technical details of the implementation,
before describing each of the example components and our experimental results.

9.1. Implementation

We have implemented the SL∗ algorithm together with a teacher for a select set of theories, and an approx-
imate equivalence oracle for a black-box scenario. Technically, the theories are implemented in a modular
fashion, such that compatible relations (i.e., sums, equalities, or inequalities) can be combined into theo-
ries. For the scope of this paper, we used four dedicated basic theories (augmented by constants for some
examples).

• 〈N, {=}〉: The most basic theory allows only equalities over positive integers. This is essentially a new
implementation of the theory of equality used in [HSJC12] (but allowing the use of constants).

• 〈N, {=, inc}〉: The second theory for equalities additionally supports increments on positive integers (cf.
Section 7.3). We use this theory for modeling and inferring the behavior of sequence numbers.

• 〈R+, {<,=}〉: The theory of equalities and inequalities over positive real numbers makes it possible to
model systems such as, e.g., a priority queue.

• 〈R+, {<,=, sum}〉: We extended the theory of equalities and inequalities of positive reals to also support
binary sums of data values (i.e., guards of form xi + xj = p), where di and dj are values in a data word.
We also implemented a restricted version (denoted by sumc) that only supports guards of form xi+c = p
where c is a constant. The implementation uses the same ideas that have been discussed in Section 7.3:
we augment the potential of a data word to contain also sums of data.

The implementation of tree queries OL(u, V ) is based on the ideas presented in Section 7: We create
SDTs from the tests using the relations from R as guards and merge equivalent subtrees from the leaves to
the root, joining guards as necessary.

The teacher uses a constraint solver for two operations: (1) to generate concrete (i.e., representative) data
values for test cases from symbolic constraints on these values, and (2) to find differences between multiple
symbolic decision trees (i.e., acceptance vs. rejection for certain data values). These differences are computed
when processing counterexamples (cf. Section 8). The input for the constraint solver is provided by the

4 http://www.learnlib.de



Active Learning for Extended Finite State Machines 27

l0 l1 l2

l3l4 l5l6

offer(p) | true
x1:=p

poll(p) | p=x1
−
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,
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x2:=p

poll(p) | p=x1
x1:=x2
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,
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x3:=p
,

offer(p) | x2<p
x3:=x2;x2:=p

poll(p) | p=x1
x1:=x3

offer(p) | p=x1
−

poll(p) | p=x1
−

offer(p) | p>x1
x2:=p

poll(p) | p=x1
−

offer(p) | p≤x1
x2:=p

poll(p) | p=x2
−

Fig. 7. Priority queue from the Java Class Library.

l0

l1

α(p) | p=0
−

α(p) | p=1
−

Alternating-bit

l0 l1

α(p) | true
x:=p

α(p) | x+1=p
x:=p

Sequence number counter

l0 l1

l2

α(p) | true
x1:=p

α(p) | true
x2:=p

α(p) | x1+x2=p
x1:=x2; x2:=p

Relaxed Fibonacci sequence

l0 l1

l2

α(p) | true
x:=p

α(p) | p<x+24
−

Timeout

l0 l1

α(p) | (200<p) ∧ (p<500)
−

α(p) | p≤200
x:=p

α(p) | (200<p) ∧ (p<x+300)
−

α(p) | p≤200
x:=p

Prepaid card

Fig. 8. Small models combining control flow and data.

learning algorithm, without requiring white-box access to the system under learning. We use Z35 [dMB08])
as a constraint solver.

Equivalence queries have been implemented to search for counterexamples by exhaustive exploration up
to some fix time limit. We use tree queries (similar to the approach in [GRR12]) and generate OL(ε, w)
for all w ∈ Σk up to some depth k and compare the SDTs to the hypothesis. We start with k = 3 and
increase k until the fixed time limit of 10 minutes is reached or until a counterexample is found. This ensures
that upon termination we can guarantee the correctness of the inferred model up to some depth k. In other
works [AHKV14, CHJ15] randomized generation of data words and random walks have proved successful
and efficient, especially when investigating counterexamples for loops before submitting the counterexamples
to the learning algorithm.

9.2. Benchmarks

We have inferred a simplified version of the connection establishment phase of TCP, a bounded priority
queue from the Java Class Library, and a set of five smaller benchmark systems (Alternating-bit protocol,
Sequence number, Timeout, a prepaid card, and a Fibonacci counter). Models for the smaller examples are
shown in Fig. 8. Rejecting states are omitted in the figures, and we assume a single action α(p).

Alternating-bit. This example is an abstract version of the alternating bit protocol (shown in the top left

5 http://z3.codeplex.com
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l0

l1 l2

l3 l4

l5

init(p) | p=x
x:=p

syn−ack(p) | p=x+1
x:=p

,
fin−ack(p) | p=x

− , ack(p) | p=x−

syn(p) | p=x+1
x:=p

syn−ack(p) | p=x+1
x:=p

ack(p) | p=x
− fin−ack(p) | p=x

−

syn−ack(p) | p=x+1
x:=p

fin−ack(p) | p=x
−

syn−ack(p) | p=x+1
x:=p

,
fin−ack(p) | p=x

−

ack(p) | p=x
−

syn(p) | p=x+1
x:=p

, fin−ack(p) | p=x− ,
syn−ack(p) | p=x+1

x:=p
, ack(p) | p=x−

Fig. 9. Connection establishment of TCP.

of Fig. 8). It alternates two states; on each transition, a data parameter is tested for equality against two
constants 0 and 1. This example uses the theory of integers with equalities, i..e, 〈N, {=}〉, with constants.
We write p = 0 and p = 1 in the figure instead of using unary relations eq0(p) and eq1(p).

Sequence number counter. The example in the center of the top row in Fig. 8) implements the behavior
of a sequence number. The parameter value of the initial α(p) is stored in register x. All numbers in
subsequent transitions then have to equal the previous sequence number plus one. This example uses the
〈N, {=, inc}〉 theory of integers with equalities and increments. In the figure, we write x+ 1 = p instead
of inc(x, p).

Relaxed Fibonacci sequence. The system in the top right of Fig. 8 accepts a relaxed version of the Fi-
bonacci sequence, i.e., with no constraint on the first two numbers in the sequence. We have implemented
it using the theory of equalities, inequalities and binary sums of reals, i.e., 〈R+, {<,=, sum}〉.

Timeout. The example (bottom left in Fig. 8) specifies a timeout. We use the parameters in actions to
encode time stamps. In the first transition of this model, a data parameter (time stamp) is stored. A
second transition is only available if performed within less than 24 time units (e.g., hours) after the first
step. The model uses the theory of reals, equalities, inequalities, and binary sums of parameters and
constants, i.e., 〈R+, {<,=, sumc}〉. The only used constant is 24. This example system would also accept
a sequence of actions where the second time stamp is earlier (smaller) than the first time stamp. This
could be avoided by introducing an additional constraint on the set of valid data words, similar to, e.g.,
timed languages.

Prepaid Card. The example in the bottom right of Fig. 8 models a prepaid card. The card’s balance is
limited to USD 500, and no more than USD 300 can be topped up in a single transaction. This example
uses the 〈R+, {<,=, sumc}〉 theory of equalities, inequalities and binary sums of reals (of parameters
and constants). The example needs three constants: 300, 500, and 200. The locations l0 and l1 encode
whether the account balance is above USD 200 (l0) or below USD 200 (l1). The example shows that we
do not infer a model of the prepaid card as such, but only of its interface behavior: the model does store
the current balance only in case it is less than USD 200, when depositing more than USD 300 does not
violate the general limit on the balance.

TCP. Fig. 9 shows the connection establishment phase of TCP. The example uses a set of five actions: init,
syn, syn−ack, ack, and fin−ack. The transition init(p) was added in order to generate an initial sequence
number. After the initialization, each synchronizing message increases the set sequence number; all other
messages use the current sequence number. Location l5 represents a successfully established connection.
The model uses the theory of equalities and increments of Integers 〈N, {=, inc}〉. Studying the model
carefully, we see that it obeys the restriction presented in Section 7.3: There is only one guarded special
case for every action from every location.

Priority Queue. The inferred model of the Java class java.util.PriorityQueue is shown in Fig. 7. The
capacity of the queue was limited manually to three elements in the test driver. The output of poll
operations is modeled as extra input parameter, describing constraints on data values in traces of the
queue. The learned model distinguishes between states with two different elements (l2) and two identical
elements (l4) in the queue, since the learning algorithm does not consider subsumption between locations.
This example illustrates the theory of reals with equalities and inequalities, i.e., 〈R+, {<,=}〉.
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No. of model Theory No. of Depth Time [s]
parameters queries of EQs

locs vars trans const (domain, relations) TQs EQs k1 k2 TQs EQs

ABP 3 0 5 2 〈N, {=}〉 9 1 - 11 0.1 599.9
Sequence Number 3 1 4 0 〈N, {=, inc}〉 8 1 - 10 0.1 599.9
TCP 7 1 51 0 〈N, {=, inc}〉 187 2 6 7 0.6 599.4
PriorityQueue 8 2 33 0 〈R+, {<,=}〉 113 5 6 7 4.3 595.7
Timeout 4 1 5 1 〈R+, {<,=, sumc}〉 9 1 - ∞ 0.2 0.1
Prepaid Card 3 1 7 3 〈R+, {<,=, sumc}〉 16 2 3 4 1.3 598.7
Fibonacci counter 4 2 6 0 〈R+, {<,=, sum}〉 19 2 3 5 0.2 599.8

Table 1. Experimental results obtained on a 2GHz Intel Core i7 with 8GB of memory running Linux kernel
3.8.0.

9.3. Experiments

We have tested our implementation of SL∗ on the set of examples presented above. Common optimizations
for saving tests were used: a cache and a prefix-closure filter. Table 1 shows the results.

All experiments were conducted in a simulation environment provided by LearnLib for the evaluation
of learning algorithms. In this simulation environment the behavior of components is specified using regis-
ter automaton models. As described above, we implemented teachers for four theories. The teachers offer
tree queries and equivalence queries to the SL∗ algorithm. The teachers we implemented were faithful to
the assumed black-box scenario and could only execute test cases on the target components. Tree queries
were broken down into tests. Equivalence queries were approximated (as discussed above) by exhaustive
exploration with a fixed limit on the overall runtime of each experiment.

We report the number of locations, variables, and transitions for all inferred models. For each case, we
state the theory (number of constants, domain and relations). We also report the number of tree queries
(TQs) and equivalence queries (EQs) made. For equivalence queries, we state the depth k1 at which the last
counterexample was found and the greatest explored depth k2 (up to which inferred models are guaranteed
to be correct). Finally, we show execution times.

Time consumption for learning is below one second for most of the examples; the only “real” Java class,
the priority queue, takes a little more time (4.3 seconds). The difference between k1 and k2 gives an idea of
how likely to be correct the final hypothesis is: If k2 is bigger than k1, then the depth was increased by k2−k1
without finding a new counterexample. A large difference suggests that the learning algorithm has converged
to the correct RA. For some examples no counterexamples where found and for the Timeout example k2 =∞,
i.e., the equivalence query terminated successfully. This was possible because all sequences of length greater
than two are not in the language of this example. For the theories with multiple relations (〈R+, {<,=}〉,
and 〈R+, {<,=,SUMc}〉 or 〈R+, {<,=,SUM}〉) the reached depth k2 is smaller, regardless of the number
of locations and transitions in the final model. This is due to the exploding number of R-distinguishable
classes of data words in such cases. One way of addressing this challenge in practice is introducing typed
parameters and using multiple simpler disjoint domains.

Another optimization that we have used in previous work [HIS+12] (for the restricted case with only
equality tests) is extending the models with component output. This drastically reduces the effort needed
for inference and allows to infer significantly larger models. Another rather straight-forward optimization
is to allow a more selective refinement of decision trees, so that they grow only along paths where this is
necessary.

We are implementing these optimizations in RaLib [CHJ15]. Documenting and evaluating these optimiza-
tions is beyond the scope of this work. The purpose of this evaluation was to demonstrate that interesting
theories can be implemented and combined in a modular fashion with a generic automata learning algo-
rithm. This was done successfully and the resulting software architecture and generic learning algorithm now
actually serve as the basis of RaLib.
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10. Conclusions

We have presented a symbolic active learning algorithm for generating EFSM models of black-box compo-
nents using dynamic analysis. Our algorithm generalizes the classical L∗ algorithm to the symbolic setting,
so that it can generate register automata. The algorithm is parameterized on a particular theory (i.e., a
set of operations and tests on the data domain that can be used in guards). It is the first fully automated
technique that can, in principle, be combined with any theory and generate full RA models with variables,
guards, and operations. with, e.g., sequence numbers, time stamps, or other variables that are manipulated
using modestly complex arithmetic operations and relations. Our preliminary implementation demonstrates
that the approach can infer protocols comprising sequence numbers, time stamps, and variables that are
manipulated using simple arithmetic operations or compared for inequality even in a black-box scenario.

A particularly promising direction for future research will be the combination with white-box methods
like symbolic execution, both for searching counterexamples as well as for supporting construction of decision
trees. We also plan to investigate decidability of tree queries and equivalence queries in our learning model
for different data domains.
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