MATLAB Software for Nonlinear and Delayed Recursive Identification– Revision 1

Torbjörn Wigren
Division of Systems and Control, Department of Information Technology, Uppsala University, SE-75105 Uppsala, SWEDEN. E-mail: torbjorn.wigren@it.uu.se
April 2017

Abstract
This report is the user’s manual for a package of MATLAB™ scripts and functions, developed for recursive prediction error identification of nonlinear state space systems. The identified state space model incorporates delay, which allows a treatment of general nonlinear networked identification, as well as of general nonlinear systems with delay. The core of the package is an implementation of an output error identification algorithm. The algorithm is based on a continuous time, structured black box state space model of a nonlinear system. The software can only be run off-line, i.e. no true real time operation is possible. The algorithms are however implemented so that true on-line operation can be obtained by extraction of the main algorithmic loop. The user must then provide the real time environment. The software package contains scripts and functions that allow the user to either input live measurements or to generate test data by simulation. The scripts and functions for the setup and execution of the identification algorithms are somewhat more general than what is described in the references. The functionality for display of results include scripts for plotting of e.g. data, parameters, prediction errors, eigenvalues and the condition number of the Hessian. The estimated model obtained at the end of a run can be simulated and the model output plotted, alone or together with the data used for identification. Model validation is supported by two methods apart from the display functionality. First, a calculation of the RPEM loss function can be performed, using parameters obtained at the end of an identification run. Secondly, the accuracy as a function of the output signal amplitude can be assessed.

Keywords: Delay, Identification, MATLAB™, Networked identification, Nonlinear systems, Ordinary differential equation, RPEM, Recursive algorithm, Sampling, Software, State space model.
Prerequisites

This report only describes the parts of [1], [2], [3], [4] and [5] that are required for the description of the software. Hence the user is assumed to have a working knowledge of the algorithms of these publications and of MATLAB™, see e.g. [7]. This, in turn, requires that the user has a working knowledge of system identification and in particular of recursive identification methods as described in e.g. [8].

Revisions

Revision 1: This is the first revision of the software. The SW is derived from the software package [6] that implements the algorithm of [1] – [4], together with some other variants.

Installation

The file SW.zip is copied to the selected directory and unzipped. MATLAB is opened and a path is set up to the selected directory using the path browser. The software is then ready for use.

Note: This report is written with respect to the software, as included in the SW.zip file. It may therefore be advantageous to store the originally supplied software for reference purposes.

Error reports

When errors are found, these may be reported in an e-mail to: torbjorn.wigren@it.uu.se.

1. Introduction

Identification of nonlinear systems is an active field of research today. There are several reasons for this. First, many practical systems show strong nonlinear effects. This is e.g. true for high angle of attack flight dynamics, many chemical reactions and electromechanical machinery of many kinds, see e.g. [1], [2], [3], [4], [5] and the references therein for further examples. Another important reason is perhaps that linear methods for system identification are quite well understood today, hence it is natural to move the focus to more challenging problems.

Today, the wireless internet is being expanded to a new low delay standard, commonly denoted the fifth generation (5G) wireless systems. There, a round trip delay close to 1 ms will be offered to users,
a fact that is expected to lead to a fast expansion into new networked control use cases like the tactile internet and wireless industrial control. However, in many situations non-constant network delays will remain significant, which requires new nonlinear recursive system identification algorithms that are capable of identifying the delay together with the nonlinear dynamics, as in [5]. The present software implements the algorithm proposed in [5], which is also applicable to delayed systems which are not necessarily networked controlled.

This report focuses on software that implements a new nonlinear recursive system identification method, that also incorporates identification of delay, integer as well as fractional [5]. This black box method estimates continuous time parameters in a general state space model, with a known and possibly nonlinear measurement equation. The main identification method belongs to the class of recursive prediction error methods (RPEMs) and the method is of output error type. Advantages include the fact that the stability of the estimated model is checked by a projection algorithm, at each iteration step.

The nonlinear identification algorithm is based on a continuous time black box state space model, with delay modeled by the output equation. This model is structured in that only one right hand side component of the ordinary differential equation (ODE) model is parameterized as an unknown function. As shown in [1] and [2] this avoids over-parametrization. The restriction imposed on the model structure may seem restrictive. However, it is motivated in [1] and [2] that the selected structure can always (locally in the states) model systems with more general right hand sides, a fact that extends the applicability of the method significantly. The selected parameterization of the right hand side function of the ODE is a linear-in-the-parameters multi-variate polynomial in the states and input signals. The covariance matrix of the measurement disturbances is estimated on-line.

Recursive system identification is a software dependent technology. Hence, when publishing new methodology in this field, it is relevant to also provide useful software for application of the presented algorithms. This facilitates a quick practical exploitation of new ideas. The development of the present MATLAB™ software package is motivated by this fact.

The present software package is developed and tested using MATLAB 6.5 and MATLAB 8.2. The software package does not rely on any MATLAB toolboxes. It consists of a number of scripts and functions. Briefly, the software package consists of scripts for setup, scripts for generation or measurement of data, scripts for execution of the RPEM and scripts for generation and plotting of results. There is presently no GUI, the scripts must be run from the command window. Furthermore, input parameters need to be configured in one or several of the setup scripts, as well as when running the scripts. In case of data generation by simulation, the ODE that defines the data generating system must be specified in standard MATLAB style. The software can only be run off-line, i.e. there is no
support for execution in a real time environment. The major parts of the algorithmic loop can however easily be extracted for such purposes.

The report is organized according to the flow of tasks a user encounters when applying the scripts of the package. Before the software is described, some basic facts about the ODE model are reviewed.

2. Model

The nonlinear MIMO model to be defined here is used for estimation of an unknown parameter vector $(\theta^*_T \; \Theta^*_T)^T$ from measured inputs $u(t)$ and outputs $y_m(t)$, given by

$$u(t) = \begin{pmatrix} u_1(t) & \ldots & u_1^{(m_1)}(t) & \ldots & u_k(t) & \ldots & u_k^{(m_k)}(t) \end{pmatrix}^T$$

$$y_m(t) = \begin{pmatrix} y_{m,1}(t) & \ldots & y_{m,p}(t) \end{pmatrix}^T$$

The superscript (k) denotes differentiation k times. The continuous time model is given by the following nth order state space ODE

$$\begin{pmatrix} x_1^{(1)} \\ \vdots \\ x_n^{(1)} \end{pmatrix} = \begin{pmatrix} x_2 \\ \vdots \\ x_n \end{pmatrix} = f(x_1, \ldots, x_n, u_1, \ldots, u_1^{(m_1)}, \ldots, u_k, \ldots, u_k^{(m_k)}, \Theta_S)$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} = \begin{pmatrix} c_{11} & \ldots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{p1} & \ldots & c_{pn} \end{pmatrix} \begin{pmatrix} x_1(t - \theta_T) \\ \vdots \\ x_n(t - \theta_T) \end{pmatrix}$$

where $x = \begin{pmatrix} x_1 & \ldots & x_{n-1} & x_n \end{pmatrix}^T$ is the state vector. The following polynomial parameterization of the right hand side function of (2) is used

$$f(x_1, \ldots, x_n, u_1, \ldots, u_1^{(m_1)}, \ldots, u_k, \ldots, u_k^{(m_k)}, \Theta_S) = \sum_{l_1} \sum_{l_2} \sum_{l_3} \sum_{l_{m_1}} \sum_{l_{m_2}} \sum_{l_{m_3}} \ldots \sum_{l_{m_k}} \Theta_S \sum_{l_{m_1}} \sum_{l_{m_2}} \sum_{l_{m_3}} \ldots \sum_{l_{m_k}} \sum_{l_{m_1}} \sum_{l_{m_2}} \sum_{l_{m_3}} \ldots \sum_{l_{m_k}} (x_1)^{l_1} \ldots (x_n)^{l_n} (u_1)^{l_{m_1}} \ldots (u_k)^{l_{m_k}}$$

$$\ldots (u_1^{(m_1)})^{l_{m_1}} \ldots (u_k^{(m_k)})^{l_{m_k}} = \varphi^T(x, u) \Theta_S.$$
\[\varphi = \begin{pmatrix} 1 & \ldots & \left(u_k^{(n_1)} \right)^{f(s)} & \ldots & u_k^{(n_1-1)} \left(u_k^{(n_1)} \right)^{f(s)} \ldots & u_k^{(n_1-1)} \left(u_k^{(n_1)} \right)^{f(s)} \end{pmatrix} \ldots \begin{pmatrix} \left(u_k^{(n_1)} \right)^{f(s)} & \ldots & \left(u_k^{(n_1)} \right)^{f(s)} \ldots & \left(u_k^{(n_1)} \right)^{f(s)} \end{pmatrix} \ldots \begin{pmatrix} \left(u_k^{(n_1)} \right)^{f(s)} \ldots & \ldots & \left(u_k^{(n_1)} \right)^{f(s)} \ldots & \left(u_k^{(n_1)} \right)^{f(s)} \end{pmatrix} \begin{pmatrix} x_1^{(s)} & \ldots & x_n^{(s)} \end{pmatrix} \begin{pmatrix} u_k^{(n_1)} \ldots u_k^{(n_1)} \end{pmatrix} \begin{pmatrix} x_1^{(s)} & \ldots & x_n^{(s)} \end{pmatrix} \begin{pmatrix} u_k^{(n_1)} \ldots u_k^{(n_1)} \end{pmatrix} \ldots \begin{pmatrix} \left(u_k^{(n_1)} \right)^{f(s)} \ldots & \ldots & \left(u_k^{(n_1)} \right)^{f(s)} \ldots & \left(u_k^{(n_1)} \right)^{f(s)} \end{pmatrix} \begin{pmatrix} x_1^{(s)} & \ldots & x_n^{(s)} \end{pmatrix} \begin{pmatrix} u_k^{(n_1)} \ldots u_k^{(n_1)} \end{pmatrix} \begin{pmatrix} x_1^{(s)} & \ldots & x_n^{(s)} \end{pmatrix} \begin{pmatrix} u_k^{(n_1)} \ldots u_k^{(n_1)} \end{pmatrix} \end{pmatrix}^T. \]

In order to obtain a discrete time model, the Euler integration method is applied to (2). In addition, a multiple model approach together with interpolation is used for discretization of the delay \(\theta_T \). This results in a capability to estimate large integer delays together with a fractional part, which results in a very high modeling precision. The details are quite complicated and discussed at length in [5].

3. Software package overview

The software package is command driven, i.e. no GUI is available. It consists of a number of MATLAB scripts and functions. These are described in the next subsection. They are all marked with a string Delay at the end, a fact which allow them to be stored together with the files of [6] without any ambiguity.

3.1 Scripts, functions and command flow

Roughly, the scripts and functions can be divided into five groups:

- **Live data measurements.** The two scripts of this group set up and perform clocked live data measurements. The scripts are `SetupLive.m` and `MeasurementMain.m`.

- **Simulated data generation.** The four scripts of this group define a dynamic system that is then used for generation of simulated data. The scripts and functions are `SetupDataDelay.m`, `f.m`, `h.m` and `GenerateDataDelay.m`.

- **Recursive identification.** The five scripts of this group perform the actual identification tasks, supporting user interaction. The scripts and functions are `SetupRPEMDelay.m`, `RPEMDelay.m`, `h_m.m` and `dhdx_m.m`.

- **Supporting functions - not called by the user.** The four functions of this group are called by scripts of the previous group. They are all related to the implementation of the RHS model of the identified ODE. The scripts are `GenerateIndices.m`, `f_m.m`, `dfdx_m.m` and `dfdtheta_m.m`.

- **Preparation and display of results.** There are eleven scripts in this group. They all prepare, compute and display results of the identification process. The scripts are `PlotDataDelay.m`, `SimulateModelOutputDelay.m`, `PlotParametersDelay.m`, `PlotPredictionErrorsDelay.m`, `PlotEigenvaluesDelay.m`, `PlotConditionDelay.m`, `ComputeRPEMLossFunctionDelay.m`, `PlotModelOutputDelay.m`, `PlotSystemAndModelOutputDelay.m`, `PlotResidualErrorsDelay.m` and `MeanResidualAnalysisDelay.m`.
These groups of scripts and functions need to be operated in a particular order to make sense. This order of execution between scripts and functions is similar to the one of Figure 1 of [6].

There are three major ways to exploit the five groups of scripts and functions.

1. In case the user has input and output signals available, the first step is to define and run the script `SetupLive.m`. This sets basic parameters like the sampling period. The user can then proceed directly to use the groups Recursive Identification and Preparation and display of results. The data, which can be simulated or live, should be stored in the (row) matrices `u` and `y`.

2. In case the user is to perform live measurements, all the steps of the Live data measurement group should be executed first. The user can then proceed directly to use the groups Recursive Identification and Preparation and display of results.

3. In case the user intends to use simulated data, this data can be generated by execution of the scripts and functions of the group Simulated data generation. The user can then proceed directly to use the groups Recursive Identification and Preparation and display of results.

4. Data input

The generation of data begins the section where the actual software is described. Since the user has access to all source files, the descriptions below do not describe code related issues and internal variables. Only the parts that are required for the use of the software package are covered. When m-files are reproduced, only the relevant parts are included, the reader should be aware that more information can be found in the source code. Note that the setup files are to be treated as templates, the user is hence required to modify right hand sides only - no addition or deletion of code should be used in the normal use of the package.

4.1 Simulated data

The generation of simulated data requires that the user

1. Modifies the underlying ODE model, as given by `f.m` and `h.m`. The function `f.m` implements the RHS of the ODE, using a conventional MATLAB function call. Note that the built in ODE solvers of MATLAB are not used. Instead an Euler algorithm is implemented. The reason is that this allows the generation of simulated data that can be exactly described by the applied model, should this be desired. The function `h.m` implements the (possibly nonlinear) measurement equation. The functions allow for addition of systems noise and measurement noise.

2. Provides further input data in the script `SetupDataDelay.m`. The parameters that define the data generation are directly written into this script. These parameters define the sampling period, the data length, the dimensions of the system, the type and parameters of the input signal, the type and parameters of the disturbances, the delay, as well as the initial value of the ODE.
3. Executes **SetupDataDelay.m**. This loads the necessary parameters into the MATLAB workspace.

4. Generates data by execution of **GenerateDataDelay.m**. After the execution of this script, variables with sampling instances, input signals and output signals are available in the MATLAB workspace.

Example 1: This and the following examples illustrates the use of the software package for identification of the system

\[
\begin{align*}
\dot{x}(t) &= -x(t) + u(t - T) + 0.5u(t - T)x(t) \\
y(t) &= x(t) + e(t)
\end{align*}
\]

(5)

This system is also used in [5]. Note that the delay does not enter exactly as defined in (2). This is intentional since such situations are common in practical situations and the location where the delay is modeled does not matter for time-invariant non-linear systems.

The relevant parts of the files **f.m** and **h.m** become

f.m

```matlab
function [f]=f(t,x,u,w)

f(1,1)=-x(1,1)+u(1,1)+0.5*x(1,1)*u(1,1);
end
```

h.m

```matlab
function [h]=h(t,x,u,e);

h=x(1,1)+e(1,1);
end
```

Data is to be generated by simulation using a sampling period of \(T_s = 0.10 \text{s} \). 3000 input-output samples are to be generated. The input signal is to be selected with a uniform distribution in amplitude, with a mean of 0, a range \([-1,1]\) and a clock period 3.0s. The measurement disturbance is to be white, zero mean with a standard deviation of 0.1. The delay is to be \(T_d = 1.22 \text{s} \).

The setup script that performs this task is **SetupDataDelay.m**

```matlab
% dimensions...

nu=1; % Input signal dimension
nx_0=1; % State dimension
ny=1; % Output dimension, normally 1

% Input signal related...Type may be selected among:
```
% InputType=[
 'PRBS ';
 'Gaussian ';
 'UniformPRBS';
 'SineWave ';
 'Custom '];

InputType=[
 'UniformPRBS'];
uAmplitude=[
 1.0];
uMean=[
 0];
uFrequency=[
 0.2];
ClockPeriod=[
 30];% Clock period vector in terms of sampling time

% System disturbance related...Type may be selected among:
%
% DisturbanceTypeSystem=[
% 'WGN ';
% 'SineWave';
% 'Custom '];

DisturbanceTypeSystem=[
 'WGN '];
wSigma=[
 0.0]; % Gaussian system noise standard deviation (discrete time)
wMean=[
 0];
wSineAmplitude=[
 0];
wSineFrequency=[
 0];

% Measurement disturbance related... Type may be selected among:
%
% DisturbanceTypeMeasuremet=[
% 'WGN ';
% 'SineWave';
% 'Custom '];
DisturbanceTypeMeasurement=[
 'WGN ']

eSigma=0.1; % Gaussian measurement noise standard deviation (discrete time)
eMean=[
 0]
eSineAmplitude=[
 0]
eSineFrequency=[
 0]

% sampling time, data length and delay

Ts=0.1; % Sampling time in seconds
N=3000; % Number of data points
SamplingInstances=(Ts:Ts:N*Ts);
Td=1.22; % Delay in seconds

% ODE related...

x0=[0.5]'; % Initial values

The final step of the data generation is to execute the files SetupDataDelay.m and GenerateDataDelay.m. This is done in the MATLAB command window as follows

» SetupDataDelay
» GenerateDataDelay
...
percentReady =
 100
»

4.2 Live data

The generation of simulated data requires that the user
1. Is connected to the system via MATLAB. The connection must be such that commands to control DA-converters that generate input signals can be issued from within MATLAB. Similarly, commands that read AD-converters that sample output signals must be available from within MATLAB. The script MeasurementMain.m probably needs modification in a few parts in order to interface correctly to the AD- and DA-converters of the system of the user.
2. Generates an input signal, that is stored in the matrix (row vector in the one-dimensional input signal case) \mathbf{u}.

3. Provides further data in the script **SetupLive.m**. The parameters that define the data generation are directly written into this script. These parameters define the sampling period, the data length and the dimensions of the system.

4. Executes **SetupLive.m**. This loads the necessary parameters into the MATLAB workspace.

5. Generates data by execution of **MeasurementMain.m**. After the execution of this file, variables with input signals and output signals are available in the MATLAB workspace. This script operates as a loop that continuously polls the MATLAB real time clock, waiting for the next sampling instance. This means that it may not be possible to use the computer for other tasks during the data collection session. The reason for this solution is that it avoids the need for a real time OS connection. Note also that the calls to AD- and DA-converters may be different on other systems. This script is hence likely to require some modification.

Example 2: The setup script file **SetupLive.m** becomes (empty since simulated data is used here)

```matlab
% dimensions...Note that nx is not really relevant,
% it is however required in the RPEM setup so it is set in this file
nu=[]; % Input signal dimension
nx=[]; % State dimension
ny=[]; % Output dimension, normally 1

% sampling time and data length
Ts=[]; % Sampling time in seconds
N=[]; % Number of data points
SamplingInstances=(Ts:Ts:N*Ts);
```

The measurement process is started by typing

```matlab
» SetupLive
» MeasurementMain
...
```

in the MATLAB command window. During the measurement session, the script continuously displays the time, the inputs as well as the measured outputs, as commanded to DA-converters and read by AD-converters. After termination all data that is needed for identification is available in the MATLAB workspace.
4.3 Display of data

After execution of either one of the chain of actions of section 4.1 or section 4.2, data can be plotted.

1. The **PlotDataDelay.m** script that is executed in the MATLAB command window. This script makes use of the dimensions of the system in order to divide the plot into several sub-windows, and in order to provide the axis text.

 Example 3: The MATLAB command window command is

   ```matlab
   » PlotDataDelay
   »
   ```

 The following plots are generated

 ![Plot of y(t) and u(t) over time](image.png)
5. Recursive Identification

At this point everything is in place for a first identification run.

5.1 RPEM setup

The preparation for the identification run requires that the user

1. Modifies the output equation and the corresponding derivative of underlying ODE model, as given by `h.m.m` and `dhdx.m.m`. The function `h.m.m` implements the output equation of the model. Note that this function is allowed to be a nonlinear function of the state and input. The function is not allowed to be dependent on the estimated parameters, it must be known a priori. Note also that the derivative of the function, with respect to the estimated state, needs to be supplied in the function `dhdx.m.m`.

2. Provides further input data in the script `SetupRPEMDelay.m`. The parameters that define the data generation are directly written into this script. These parameters define the dimension of the system, the initial value used in the ODE model, the gain sequence $\mu(t)/t$, the size of the initial value of the R-recursion, the initial value of the measurement covariance matrix $\mathcal{A}(t)$, the stability limit applied by the projection algorithm, the allowed delay range, as well as the down-
sampling period used to avoid too large logs during long runs with high degree models. The reader is referred to [1] - [5] for details on these parameters, as well as on their use.

3. Executes SetupRPEMDelay.m. This loads the necessary parameters into the MATLAB workspace.

Example 4: The system is to be identified with a delayed first order model. The projection algorithm is to use a stability radius of 0.975 and the allowed delay range is to be [0.0 s, 2.0 s]. The initial value of the measurement covariance matrix is selected equal to 0.1. The initial value of the R - recursion (its inverse affecting the initial algorithmic gain) is selected equal to 10, unless for the component corresponding to the identified delay which is set to 1. The selection of the gain sequence $\mu(i)/i$ is a little more complicated, see [5] for details.

The functions h_m.m and dhdx_m.m become

h_m.m

```matlab
function [h_m]=h_m(x_m,u);
    h_m=x_m(1,1);
end
```

dhdx_m.m

```matlab
function [dhdx_m]=dhdx_m(x,u);
    dhdx_m=[1];
end
```

The setup script SetupRPEMDelay.m becomes

```matlab
nx=1;
x_m_0=[0.5]';
nu_m=nu;
u_m_0=u(:,1);
dudt_m_0=dudt(:,1);

muFactor=300; % To stabilize Gamma and to reduce the gain
if exist('theta_0_new')
    muFactor=1000;
```

13
end
mu_0=10;
mu0=0.9995;
y_m_0=0;
initialNoiseVariance=0.1; % Initial value for the prediction error variance
scaleFactorR=10; % the size of the initial diagonal approximation of the Hessian
scaleFactorRDelay=1; % the size of the initial diagonal approximation of the Hessian
% Parameters
stabilityLimit=0.975; % The linearized pole radius used for stability checking and projection
downSampling=1; % The downsampling factor used when data from the run is saved
scalingTs=1; % The scaling factor with which the sampling period is multiplied during identification
Td_min=0.0; % The minimum delay allowed during identification
Td_max=2.00; % The maximum delay allowed during identification
nd=ceil((Td_max-Td_min)/Ts)+1; % The number of samples covering the allowed delay span

Finally the user executes SetupRPEMDelay.m in the MATLAB command window
» setupRPEMDelay

5.2 RPEM command window control and identified parameters
In order to perform an identification run the user is required to execute and provide input to the script RPEMDelay.m. The execution of this script makes use of four additional functions, implementing the polynomial model applied for modeling of the RHS of the ODE. These functions are f_m.m, dfdx_m.m, dfdtheta_m.m and GenerateIndices.m. The latter function generates the exponents of all factors of all terms of the polynomial expansion. The generation of these indices involves nested loops. They are therefore calculated in advance and used in repetitive calls in the form of a table.
To identify the system, the user is required to
1. Execute the script RPEMDelay.m
2. Provide the degrees of the polynomial model (polynomialOrders) when prompted. The polynomialOrders variable is a column vector with the first element corresponding to the maximal
degree of x_1, the second element corresponding to the maximal degree of x_2 and so on. The last element corresponds to the maximum degree of the derivative of highest degree of the last input signal component. In the present example, polynomialOrders $= [1 3]'$ would mean that the highest degree term of the polynomial expansion is $\theta_{1,3}x_1u^3$.

3. Provide a list of indices that are not to be used (notUsedIndices) by the algorithm. The indices exclude terms in the polynomial expansions. Providing an empty matrix ([]) indicates that no terms shall be excluded. The list of not used indices are to be provided as rows in a matrix , where the number of rows equals the number of terms that are to be excluded from the model. In the present example notUsedIndices $= [0 0; 1 1]$ would mean that the terms θ_{00} and $\theta_{1,1}x_1u$ are to be excluded from the model.

4. Provide the initial parameter vector of the state space model (theta_0). Note that this parameter vector needs to correspond to a linearized system with all poles within the stability radius indicated by the script SetupRPEMDelay.m. If the initial parameter vector does not meet this criterion the user is prompted for theta_0 again.

5. Provide the initial delay parameter (Td_0). If the given value is not within the allowed range a renewed prompt is obtained.

Note: A good strategy is to initialize the algorithm with a model that has time constants and a static gain that are similar to those of the system.

Example 5: The algorithm is in this example initialized with

$$\hat{\theta}_s(0) = \begin{pmatrix} 0.0000 & 1.5000 & -0.5000 & 0.0000 \end{pmatrix}^T$$

$$\theta_f = 0.2000$$

(6)

The command sequence applied in the MATLAB command window is

$$\text{>> RPEMDelay}
\text{ans} =$$

Input polynomialOrders and notUsedIndices

K$$\text{>> polynomialOrders=[1 1]'}
\text{polynomialOrders} =$$

```
1
1
```
K>> notUsedIndices=[];
K>> return

allIndices =

0 0
0 1
1 0
1 1

ans =

Input theta_0

K>> theta_0=[0 1.5 -0.5 0]'

theta_0 =

0
1.5000
-0.5000
-0.5000
0

K>> return

LinearizedPoleRadii =

0.9500

ans =

Input Td_0
K>> Td_0=0.2

Td_0 =

0.2000

K>> return...

percentReady =

100

ans =

1.2206
-0.0023
1.0109
-1.0065
0.4975

Note that the exact result depends on the generated input signal. This may differ between systems and execution occasions since the seed for the random number generator may differ. Hence, slight variations of the estimated parameters are normal.

6. Display of results
The display of results is straightforward. By a study of the source code, users should be able to tailor available scripts and also write own ones when needed.

6.1 Parameters
In order to plot the parameters the user is required to
1. Execute the script PlotParametersDelay.m. The components of the parameter vector are then plotted as a function of time. Note that the time scale is assumed to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or the script needs modification.

Example 6: The command in the MATLAB command window is

» PlotParametersDelay

»
The following plot is then generated

![Plot of data](image)

Figure 3: The result of a PlotParametersDelay command.

6.2 Prediction errors

In order to plot the parameters the user is required to

1. Execute the script `PlotPredictionErrorsDelay.m`. The prediction errors are then plotted as a function of time. Note that the time scale is assumed to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or the script needs modification.

 Example 7: The MATLAB command window command is

   ```matlab
   » PlotPredictionErrorsDelay
   »
   ```

 The following plot is generated
6.3 Eigenvalues

In order to plot the convergence of the eigenvalues over time, the user is required to
1. Execute the script `PlotEigenvaluesDelay.m`. The eigenvalues of the Hessian are then plotted as a function of time. Note that the time scale is assumed to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or the script needs modification.

Example 8: The MATLAB command window command is

```
» PlotEigenvaluesDelay
```

The following plot is generated

Figure 4: The result of a PlotPredictionErrorsDelay command.
6.4 Condition number

In order to plot the convergence of the condition number over time, the user is required to

1. Execute the script `PlotConditionDelay.m`. The condition number is then plotted as a function of
time. Note that the time scale is assumed to be seconds. In case another time scale is required, the
figure needs to be edited after plotting, or the script needs modification.

Example 9: The MATLAB command window command is

```matlab
» PlotConditionDelay
```

The following plot is generated
The above plot commands make use of logged signals, covering the transient part of the identification process. This is not always desired. To compare the identified model to the measured data it is e.g. more appropriate to simulate the model, using the parameters obtained at the end of the identification run.

Hence, to prepare for the remaining plot commands the user is required to

1. Execute the script `SimulateModelOutputDelay.m`.

Example10: The MATLAB command window command is

```matlab
» SimulateModelOutputDelay
```

```
percentReady =
100
```

The remaining plot commands and model validation commands can now be executed.

6.6 Simulated model output

In order to plot the simulated model output signal over time, the user is required to
1. Execute the script `PlotModelOutputDelay.m`. The output signals of the model are then plotted as a function of time. Note that the time scale is assumed to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or the script needs modification.

Example 11: The MATLAB command window command is

```matlab
» PlotModelOutputDelay
```

The following plot is generated

![Graph](image)

Figure 7: The result of a PlotModelOutputDelay command.

6.7 Simulated model output together with data

In order to plot the simulated model output signal over time, together with the corresponding measured data, the user is required to

1. Execute the script `PlotSystemAndModelOutputDelay.m`. The output signals of the model and the system are then plotted as a function of time, in the same plots. Note that the time scale is assumed to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or the script needs modification.

Example 12: The MATLAB command window command is

```matlab
» PlotSystemAndModelOutputDelay
```
The following plot is generated

![Plot image](image-url)

Figure 8: The result of a PlotSystemAndModelOutput command.

6.8 Residual errors

In order to plot the prediction errors, obtained from the simulated model output signal using parameters at the end of the identification run, the user is required to

1. Execute the script `PlotResidualErrorsDelay.m`. The residual errors are then plotted as a function of time. Note that the time scale is assumed to be seconds. In case another time scale is required, the figure needs to be edited after plotting, or the script needs modification.

Example 13: The MATLAB command window command is

```matlab
» PlotResidualErrorsDelay
```

The following plot is generated
7. Model validation

Two scripts are provided for model validation purposes (in addition to the commands of section 6). The first method studies the value of the loss function that is minimized by the RPEM-algorithm. Since the measurement covariance matrix is estimated, the loss function contains an additional term on top of the sample average of the squared prediction errors.

7.1 RPEM loss function

The RPEM loss function that is computed is given by

\[
V(\hat{\theta}(t_0 + NT_s)) = \frac{1}{2N} \sum_{i=1}^{N} \epsilon(t_i, \hat{\theta}(t_i, \check{\theta}(t_i + NT_s))) \epsilon^T(t_i, \hat{\theta}(t_i, \check{\theta}(t_i + NT_s))) + \frac{1}{2} \log \det(\hat{\Lambda}(t_0, NT_s))
\]

(7)

The user is referred to [1], [5] and the references therein for further details. In order to compute the loss function, using parameters at the end of the identification run, the user is required to

1. Execute the script \texttt{ComputRPEMLossFunctionDelay.m}. The loss function is then computed.

\textit{Example 14:} The MATLAB command window command is

```matlab
» ComputeRPEMLossFunctionDelay
...
```

percentReady =
V =

-1.8220

Note: Another relevant measure to use is the sum of the squared prediction errors.

7.2 Mean residual analysis
Mean residual analysis is a method that evaluates the obtained static characteristics of an identified model of any kind. It operates by sorting residual errors into bins, the bin being decided by the value of the measured output signal with the same time index as the residual error. The mean of the residuals are then computed, in each bin, and plotted against the range of the output signal. The number of samples of each bin is also plotted. The user is referred to [9] for further details. In order to perform mean residual analysis, the user is required to

1. Execute the script `MeanResidualAnalysisDelay.m`.
2. Provide the intervals used by the method when prompted for `intervals`.

Example 15: This example performs mean residual analysis using about 40 intervals, each with an output amplitude width of 0.1. The MATLAB command window command is

```matlab
» meanResidualAnalysisDelay
ans =
Input intervals for division into bins
K» intervals=(2:0.1:2);
K» return
```

The following plot results
8. Summary

This report describes a software package for identification of nonlinear systems. Future work in this field, that result in useful MATLAB routines, will be integrated with the presently available functionality. Updated versions of this report will then be made available.

References

