Effective slip over partially filled microcavities and its possible failure
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Abstract Microscale roughness on an otherwise smooth hydrophobic surface can significantly
reduce the resistance to an external liquid flow. We study static drag reduction over a lubricant-
infused surface by looking at an array of two-dimensional transverse grooves partially filled with a
second immiscible fluid. Numerical simulations at separate length scales are used to probe the static
drag reduction property and the dynamic wetting behavior. Nano-scale phase field simulations are
used to extract the characteristic contact line velocities. Micron-scale two-phase simulations using
the level set method are used to model the interface deformation and the flow in and above the
cavities. We study the dependence of the effective slip by varying viscosity ratios, capillary numbers,
the static contact angle and the filling rate of the cavity (meaning the amount of lubricant fluid).
We observe an increase of the effective slip with the cavity filling and identify a potentially new

failure mode.

I. INTRODUCTION

Advances in microfluidics and nanotech-
nology have boosted a rapid development of
surface engineering in the last two decades.
Among the different effects of micro- and
nano-patterned surfaces, often inspired by ob-
servation in nature, one remarkable finding is
that the introduction of micro- or nanoscale
roughness on an otherwise smooth hydropho-
bic surface can significantly reduce the resis-
tance to an external liquid flow. This slip-
pery effect, due to entrapment of gas or vapor
pockets under the surface asperities (super-
hydrophobic Cassie state), was first observed
in the experiment of a water flow through
a water-repellent pipe [1]. Subsequently, a
number of studies have demonstrated vari-
ous levels of drag reduction [2-5], but also in
some cases drag enhancement [6, 7]. Despite
the discrepancies in the literature, a common
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technological challenge for the application of
superhydrophobic materials is their fragility
[8]. Under high pressures or certain external
forces, such as turbulent fluctuation or phase
change, the surface texture can be partially or
fully impregnated by the outer fluid (Cassie-
to-Wenzel transition), causing the system to
lose the features it was designed for [9, 10].

Lubricant-infused surfaces are an alterna-
tive when aiming to drag reduction. These,
on the other hand, are more robust against
pressure-induced failure, while displaying the
same useful properties as conventional gas-
cushioned superhydrophobic surfaces [25].
Two recent experiments have demonstrated,
using microfabricated oil-impregnated pillars
and grooves, separately, up to 16% drag re-
duction in laminar flow [11] and up to 14%
drag reduction in turbulent flow [12]. In the
case of the turbulent flow, the authors also
tested superhydrophobic surfaces and mea-
sured approximately 10% drag reduction [12].
The amount of skin friction, depending on the
viscosity ratio between the external fluid and
the lubricant, typically increases as the lubri-
cant becomes more viscous. However, there
is also a proof-of-concept study showing im-
proved drag reduction at less viscosity ratios



with a hybrid surface design [13].

Analytically, the slippage over a superhy-
drophobic or liquid-infused surface is often
characterized by an effective slip length. Anal-
ogous to the definition of the Navier slip,
the effective slip length is an averaged quan-
tity equal to the distance below the surface
at which the velocity field would extrapo-
late to zero (to be distinguished from the
intrinsic slip of molecular nature [9]). Ex-
tensive studies have been devoted to obtain-
ing analytical expressions of the effective slip
for two-dimensional longitudinal or transverse
grooves, see e.g. [14-18]. The effect of the
cavity geometry on the slip length, considered
as the primary effect, has been predicted for
different configurations, though the solutions
typically rest on assumptions of either perfect
slip or small deformation of the liquid-liquid
interface, or non-wettability of the substrate
by one fluid.

Understanding the dependence of the slip
length on the imposed shear and contact an-
gles in more realistic conditions may require
a numerical approach, able to solve the de-
tails of the flow reducing the underlying as-
sumptions. Due to the small dimension at
the surface patterns, fluid inertia is negligible
so that Stokes’ equation holds for each fluid,
and the problem can be solved numerically
using methods such as the lattice Boltzmann
method [19, 20] and the phase field method
[21], or alternatively through molecular dy-
namics simulations [24]. Physically, most pre-
vious studies focus on complete wetting of
the surface asperities, corroborating the the-
oretical predictions. Interestingly, it was also
found that a tiny depression of the meniscus
into the cavity can result in a non-negligible
decrease in the slip length, especially in the
transverse case [17, 19, 21]. A recessed inter-
face under external flow is often accompanied
by unsteady motions, sometimes the contact
line can even depin from the edge of a cavity
[21]. When such depinning occurs, depend-
ing on the problem geometry, the authors of
[21] predicted order-of-magnitude increases of
the effective slip using a phase field simula-
tion. We note however that the result was ob-

tained assuming no loss of the gas phase and a
periodic computational domain. In practical
applications, the surface patterns are open-
ended and the lubricating gas or liquid is sub-
ject to drainage and evaporation/absorption
by the liquid [25-27].

Considering the complex physics near a
moving contact line, we propose a more de-
tailed treatment for the modeling of partially
filled cavities including the dynamics of the
contact lines. The small-scale dynamics of
moving contact lines represents a significant
numerical difficulty, as it is several orders of
magnitude smaller than global flow features
[49]. At a global scale the flow and interface
shape is governed by gravity and/or capillary
forces [31], while at the molecular length scale
the conventional hydrodynamic model break
down and other models are necessary [31, 32].
Modeling contact line dynamics using stan-
dard two-phase models and the conventional
no-slip boundary condition leads to a non-
integrable stress singularity at the contact line
[29, 33].

Various models have been proposed to
model the dynamics of contact lines. One
method is to replace the no-slip condition with
a Navier slip condition [32, 34, 35] and pre-
scribe the contact angle to the static angle , al-
though the dynamic contact angle often differs
from the static one [36, 37]. Another approach
is to prescribe the contact angle according to
an empirical law [38] or hydrodynamics the-
ories [39-42]. In [34, 43-45] for example the
Cox theory [39], based on the special case of
lubrication, is used. A different approach is
to use the phase field method where molec-
ular processes are taken into account at the
interface (including the contact line) by diffu-
sion via the Cahn-Hilliard equation [30]. For
more detailed reviews of different moving con-
tact line models we refer to [28, 31, 35, 36].

Here, the multiscale model for dynamic con-
tact lines presented in [50] is used. The idea
is based on coupling a continuum-based two-
phase flow model for the global flow to a lo-
cal model for contact line dynamics. The lo-
cal simulations are here on a scale of tens to
hundreds of nano-meters, i.e. still at the con-



tinuum scale. These simulation are used to
extract the characteristic contact line veloc-
ity, whereas micron-scale simulations model
the interface deformation and the flow in and
above the cavities. The phase field approach
is used to obtain the contact line dynamics at
the local scale, however other approaches can
be used as well, e.g. molecular dynamics [47].
The coupling of the two models is here via the
apparent contact angle and the local contact
line velocity.

In the present work, we study the flow over
microrough walls impregnated with a second
lubricant fluid. We use the numerical simula-
tions to probe the static drag reduction prop-
erty and the dynamic wetting behavior. A po-
tentially new failure mode is identified for par-
tially filled transverse grooves under large ex-
ternal shear. Understanding of this drainage
failure is instructive for improved robustness
in surface design.

II. MICROCAVITIES PARTIALLY
FILLED WITH LUBRICANTS

We consider the transverse flow over an ar-
ray of regularly spaced square cavities illus-
trated in Fig. 1. The working fluid of viscos-
ity p1 is driven by a constant shear 7 in the
x direction, imposed at a distance H above
the floor. The cavities of length L/2 and
depth H/2 are partially filled with a lubri-
cant fluid of viscosity pe. When the num-
ber of the microcavities is large, the system
is equivalent to a single cavity with periodic
boundary conditions. The solution at the
steady state is determined from the incom-
pressible Stokes equations, written in the non-
dimensional form

Vou=0, —Vp+V-[u(Vu+Vu")] =0, (1)

where u = (u,v) is the velocity, p = p(z,y)
the pressure, and p; = f;/fi1 (i = 1 or 2)
the dimensionless viscosity (dimensional val-
ues are denoted with a tilde henceforth). For
viscous flows, the velocity and its tangential
derivatives are continuous along the interface
[48]. The normal stress is discontinuous due
to the surface tension ¢ and the viscosity dif-
ference, giving the pressure jump (denoted as

Ou/dy = 1,00/0x = dv/dy = 0
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FIG. 1: Cross-section of a unit cavity and
setup for the two-dimensional computational
domain. The cavity of length L/2 and depth
H/2 is partially filled with a lubricant fluid
of viscosity ps. The working fluid above with

viscosity 1 is driven by a constant shear,

du/0y = 1. We also require zero normal
stress on the top boundary to represent the
far flow from the patterned surface. At
steady state, this laminar flow is fully
developed and periodic in the streamwise
direction.

[Alr = As — A1)

K

[pr Ca + 2[plrn” - Vu - n, (2)

where m is the outward-pointing normal at
the interface I', x its curvature, and Ca =
f1YH /G the capillary number.

As we neglect the effect of inertia, Eqgs. (1-
2) are determined, fixing the geometry, by the
following governing non-dimensional parame-
ters: the viscosity ratio fia/fi1, the static con-
tact angle 05 and contact line velocity (func-
tion of the liquid and solid surface energies),
the capillary number based on the imposed
shear Cla, and the filling rate of the cavity
=1 = H/(2ly|) (where |y| is the distance from
the top of the cavity to the initial contact
point positions). Note that the filling rate de-
fined here does not take the curvature of the
interface into account, why it only makes sense
to compare initial filling rates for cases where
the initial interface shapes are the same. The



effect of the presence of the cavity and the cor-
responding apparent slip can be readily quan-
tified by an effective slip length A., defined as

_ u(H)
Ae = 77 -1, (3)
where
a(:’/) = ’Y(Q + /\eH)’ (4)

is the average velocity above the floor, assum-
ing a linear flow profile with an additional slip
AH.

As we neither assume nor impose the shape
of the lubricant surface in the cavity, but
rather allow it to relax to its equilibrium un-
der the external shear, one can introduce a
second capillary number based on the contact
line velocity, Ca. = fieU./G, where U, is the
characteristic contact line velocity (discussed
later in Sec. IIT). The ratio between this ve-
locity and the shear, y = U./5H, defines the
relative variations of local slip with the im-
posed shear.

III. CONTACT LINE MODEL

This section presents the main ideas of the
models in [50] and [49], and we refer to the
respective references for further details. The
main assumption is that there is a temporal
and spatial scale separation between the local
dynamics at the contact line and the global
flow. This implies the local dynamics is in
equilibrium for each apparent contact angle
and no additional information from the global
model is required, i.e. the contact line velocity
U, is only a function of the apparent contact
angle 6, [49]. The multiscale model consists
of coupling a continuum-based two-phase flow
model to a local model where the coupling is
done via the apparent contact angle and the
local contact line velocity.

The contact line velocity U, is obtained
from a local model in the are close to the con-
tact line. Just as in [50] we use the model de-
veloped by Kronbichler and Kreiss in [49] for
the local contact line dynamics. The model is

fixed interface, no curvature, wy = UctUsim

phase field open
boundary with p1,
Um = UcUsim

phase field open
boundary with pao,
Um = UcUsim

Hine

oy =
phase field wall boundary

nd? = cos(0)(1 — ¢2)
um = (Uc, 0)

Lime

FIG. 2: Setup of the local phase field
simulation domain according to [49].

based on solving an equilibrium scenario with
the Cahn—Hilliard/Stokes system. The equi-
librium is sought between the forces originat-
ing from the phase field model for an inter-
face at the outer angle 6, touching a wall of
static contact angle 6, [30] on the one hand
and the motion U, of the contact line on the
other hand. In other words, the local simula-
tions seeks an equilibrium of the viscous forces
by the Stokes equations with the contact line
diffusion in the Cahn—Hilliard equation.

The local simulation is performed in a box
of height Hp,. and length L. according to
Fig. 2. The length Ly, is chosen as Ly, =

Hye (m + 0.5) to fit an initially straight

interface of angle 6, within the domain plus
some additional space to allow the flow to de-
velop. In this box, the contact point veloc-
ity U, is applied in terms of a moving frame
of reference where the interface is kept fixed
at the outer boundary but may move at the
wall. For the correct contact point velocity Ue,
the interface at the wall reaches a fixed posi-
tion in the moving frame of reference, i.e. ,
it moves with constant speed relative to the
wall, exactly balancing the force originating
from the deviation in the contact angle with
viscous dissipation in the flow field. The outer
velocity boundary conditions are set accord-
ing to the Huh—Scriven [29] similarity velocity
Usim scaled by the contact point velocity U..

Finding the contact point velocity U, that
hits the steady state is an inverse problem.



The algorithm starts with a tentative veloc-

ity Ul? as the speed of the contact line and
records the deviation from the steady state af-
ter an initial transient as a function f(U,) [49].
The final velocity U, is the limit of a sequence

C(O) generated by a root finding algorithm to
make f(U.) zero using a variant of inverse cu-
bic interpolation.

The local contact line velocity U, obtained
from the phase field simulation is commu-
nicated to the global simulation via special
boundary conditions at the global scale. The
matching between the outer and inner solu-
tions is done at an intermediate scale: close
to the contact line at the outer scale but far
from the contact line at the inner scale [49].
At this scale it is assumed the interface be-
comes asymptotically planar far from the con-
tact line as seen from the inner scale [49],
see Fig. 2. With this motivation the analytic
Huh-Scriven similarity velocity [29] is used to
formulate the global velocity boundary condi-
tions. This analytic velocity depends on the
local contact line velocity U, obtained from
the phase field model and in this way U, is
taken into account at the global level.

The Huh-Scriven velocity is not valid ex-
actly at the contact line; there the phase
field model describes the dynamics. Fur-
ther, the analytic velocity has a singularity
exactly at the contact line. With these mo-
tivations, parts of the intermediate matching
region close to the contact line is excluded
from the global simulation. The length scale
of the excluded region should correspond to
the length scale of the intermediate matching
region. Along the new artificial boundary, the
analytical velocity from the Huh-Scriven solu-
tion is applied as a velocity Dirichlet bound-
ary condition for the global simulation. In this
way the information about the contact point
velocity U, from the phase field model, i.e. the
information about the movement of one sin-
gle point, is transformed into a global velocity
boundary condition along the whole modified
boundary.

Remark: Our model implicitly assumes a
perfectly smooth solid surface. In practice, a
real surface may have random roughness or

defects which are smaller than the scale of the
cavity, causing the interface to be pinned (i.e.
contact angle hysteresis). There are several
possibilities to take this effect into account in
our model. One approach is to directly in-
clude the surface roughness in the local phase
field domain by modifying the boundary (if
the length scales of the roughness can be re-
solved by the local domain). Alternatively,
contact angle hysteresis can be taken into
account by extracting contact line velocities
from molecular dynamics simulations where
the surface chemistry and roughness is mod-
eled at a nanoscale. A third option is to model
hysteresis by modifying the relations in Fig. 3
to be u. = 0 for a range of 6 according to em-
pirical values. However, to focus on the con-
trolled physical effects, we assume our cavity
has an ideal surface.

IV. NUMERICAL METHOD

A. The conservative level set method

The conservative level set method from [51]
is used to keep track of the fluid-fluid inter-
face and the moving contact line. The indi-
cator function ¢ is a smoothed color function;
the function smoothly switches value form +1
to -1 in a transition region around the inter-
face. At the initial time, ¢ is computed from
a signed distance function d(x) around the in-

terface by
¢(-,0) = tanh (‘“f) : (5)

where ¢ is a parameter that controls the thick-
ness of the transition region.

The level set function is advected in time
by the underlying fluid velocity according to
the Hamilton—-Jacobi equation

9¢
— Vo =0. 6
5 T Vo (6)
After advecting the fluid interface, the sur-
face tension force Fy; = oxndr is calculated,
we refer to [52] for a detailed description.



Over time the level set function will lose
its shape due to discretization errors and non-
uniform velocity fields. To smooth the level
set function and prevent the formation of very
large gradients, ¢ has to be reinitialized with a
regular interval. For the conservative level set
method, this is done by solving the following
equation to steady state

% +V-(n(1—-¢?))=V-(neVe-n) =0, (7)
where 7 is a pseudo time step and n is the
interface normal. This equation calculates a
smoothed color function by balancing diffu-
sion in direction normal to the interface by
a compressive flux. To fix the contact point
position during the reinitialization we use a
Dirichlet boundary condition at the bound-
aries with contact lines, see [50] for more de-
tails.

B. Artificial boundary

Just as in [50] the modified boundary (Sec.
III) is parametrised using a so called bump
function f(x):

fa) = {‘SBXPQ‘[L(ZTS”)QT) if o~ zep| < %

0 otherwise,

(®)

where § and w is the height and width of the
part of the domain that is excluded, and z, is
the z-coordinate of the contact point position.
Further, the simple approach to implement
the global boundary conditions in [50] is also
used here: the values of the velocity bound-
ary function along the modified boundary are
directly projected to the physical boundary.

C. Discretization and implementation

The governing equations are solved numeri-
cally using the two-phase flow solver described
in [52], with suitable modifications to account
for moving contact lines. The equations are
discretized in space using the finite element

method and the solver is implemented in the
C++ based finite element open source library
deal.ii [53, 54]. For the level set function
piecewise continuous linear shape functions on
quadrilaterals, i.e. Q1 elements, are used. For
the Stokes equations we use the Taylor—-Hood
elements @2Q)1, i.e. shape functions of degree
two for each component of the velocity and of
degree one for the pressure. With these ele-
ments the Babuska—Brezzi (inf-sup) condition
[55] is fulfilled in order to guarantee the exis-
tence of a discrete solution.

For time stepping, each of the level set
equation and Navier—Stokes equations are dis-
cretized using the second order accurate, im-
plicit BDF-2 scheme. In order to avoid an
expensive coupling between the Stokes part
and the level set part (via the variables u and
¢) a temporal splitting scheme is introduced.
In order to maintain second oder accuracy in
time, at each time step n an estimate of the
level set function is extrapolated from the val-
ues at time steps n — 1 and n — 2. This es-
timate is used to evaluate an approximation
of the surface tension force. With this sur-
face tension force, the BDF-2 time step for
the Stokes equations is then performed. Fi-
nally, the level set function is propagated in
time, according to the velocity u™ obtained
from the Stokes step, again using the BDF-2
method. For more details about the discriti-
zations see [52]. The resulting linear systems
are solved by an iterative BiCGStab solver
for the level set equation and by an iterative
GMRES solver with block-triangular precon-
ditioner according to [52].

V. RESULTS

We study the dependence of the effective
slip over a microcavity partially filled with
a second fluid by varying the viscosity ratio
fia/ i1, the capillary number Ca = 17H /&,
the static contact angle 6, and the filling rate
of the cavity ! = H/(2|y|) (where |y| is the
distance from the top of the cavity to the ini-
tial contact point positions). The contact line
velocity is obtained from the local phase field



model, using the physical properties of the two
fluids as summarized in Tab. I. Here, only the
working fluid viscosity is changing, as in the
experiment [11], leading to a range of fis/fi;
from 3.17 to 3.83 x 1073. Note that, in our
model, the velocity ratio x = U./(YH) is also
constant at a given shear as we do not vary
the surface tension. This is done to reduce
the number of parameters and focus on the
single physical effects mentioned above. This
implies that the Capillary number is varied by
changing the applied shear. As an example,
for a shear rate of 4 = 800 s~ and a dimen-
sion of H = 20 pum (see estimates in [56]), the
corresponding Ca increases from 1.92 x 1073
to 1.59 for the different viscosities considered.
We further modify Ca at a fixed x to study
the effect of interface deformation. Finally,
the effect of 85 on the effective slip is investi-
gated artificially keeping the same contact line
velocity.

TABLE I: Parameters for the working fluid
(subscript 1) and lubricant fluid (subscript 2)
in the present study.

f[k9/ms] fiz[¥9/ms] P2/, G[F9/s?] Os[deg]

0.0024  0.0076  3.17 0.02 80
0.1504 0.0076  0.0505 0.02 80
0.8942  0.0076  0.00850 0.02 80
1.9850 0.0076  0.00383 0.02 80

A. Local phase field results

The local phase field model described in
Sec. III was used to precompute relations be-
tween contact angles and contact point veloc-
ities for the different viscosity ratios in Tab.
I, for a static contact angle of 8, = 80°. The
non-dimensional height of the local box was
Hpne = 36, the grid size h = 36/128 and time
step dt = 0.5. Steady state was reached at a
time of 2000, i.e. after 4000 time steps. The
results are presented in Fig. 3. For the simu-
lations in proceeding subsections we have also
used static contact angles of 8, = 105°. To

— fiz/fn =317

] p— fia/fn = 0.5 B
— jiz/fin = 5.05 x 1072

_gL— A2/ =850x107" i

——— jia/ji1 =383 %x 107
— — [iz/fn = 3.17, 6, = 105°
! . .

. . .
50 60 70 80 90 100 110 120

FIG. 3: (color online) Precomputed relations
between contact angles and contact point
velocities using the local phase field model.

obtain these relations (between contact angles
and velocities) we have artificially shifted the
corresponding curves to correspond to an an-
gle of 6, = 105° instead, see the dashed line
in Fig. 3 for an example.

The results for 2/, = 3.17 are significantly
different from the other viscosity ratios. The
main reason for the different behavior is the
differences in the viscosities and the subse-
quent flow patterns. For the higher viscosity
ratio, the working fluid is less viscous than
the lubricant and the velocity gradients, sup-
porting for the interface motion, are to a sig-
nificant extent created in the working fluid.
For the other viscosity ratios the working fluid
is significantly more viscous and the velocity
gradients, leading to shear forces, are mostly
confined to the lubricant. This slows down the
interface motion as a function of the angle, as
seen in the region of contact angles between
40° and 110°. If the apparent contact angle
deviates a lot from the static angle of 80° to-
wards the lubricant, i.e. large apparent con-
tact angles above 120°, the local model does
not sufficiently represent the flow features of
the large contrast any more, leading to large
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FIG. 4: (color online) Effective slip as
function of viscosity ratio under various
capillary numbers and filling rates. The

dashed line represents a fixed flat interface
filling the cavity. The filled symbols, upper
blue and lower green triangles, stand for
convex (80°) or concave (105°) interfaces
pinned at the cavity corners in the zero
capillary limit (i.e. fixed interface). The
open symbols are the steady state solutions
at filling rate =1 = 16.7 for different Ca for
convex (blue) and concave (green) interfaces.

unphysical values of the contact line velocity.
In the numerical simulations presented here
the computed contact angles never reach these
large angles.

B. Static property: effective slip length

Numerical simulations for the set-up in Fig.
1 are performed using a grid with a spatial
mesh size of h = 0.00625 and time steps in the
range of dt = 0.0001 - 0.0125 (depending on
the parameters). The height and width of the
bump function (Sec. III) are § = 2h and w =
4h and the contact angle is calculated using
fluid interface data at four grid cells inside the
wall (see parameter D in [50]).

The effective slip length A, defined in Eq.

(3), is plotted against the viscosity ratio un-
der various capillary numbers and filling rates
in Fig. 4. The results show steady state or
fixed interface solutions. The dashed line is
obtained by imposing a flat interface fully cov-
ering the cavity; this shows a continuous in-
crease of the effective slip as the viscosity ra-
tio reduces. The variation is nearly linear for
fia/fi1 = 0.1—5, while it begins to saturate for
fia/fn < 0.1. Analytical results showing sim-
ilar trends in more general geometry can be
found in [18]. The filled symbols in the figure
indicate interfaces with the shape of a circular
arc with a given contact angle (80° and 105°)
in the zero capillary limit. When the inter-
face is no longer flat, but still pinned at the
two corners, A, differs appreciably depending
on whether the lubricant protrudes outwards
from the cavity (convex) or into the cavity
(concave). Consistent with previous studies
[7, 16], we found a larger slip length when the
interface is convex (but below a critical angle
over which high friction may occur [16]) for
fi2/fi1 < 1. In our case, the slip of a convex
shape can be over 30% larger than of a con-
cave one. We also note that the trend becomes
opposite when the lubricant is more viscous,
a result that does not seem to have been re-
ported before. The qualitative argument for
such an asymmetry is rather straightforward.
Similar to the reasoning in [15], the nonzero
shear stress modified by a more viscous fluid
will reduce the slip, hence a smaller slip length
A when the interface bows into the channel.

Finally, the non-filled symbols in the Fig. 4
report the results obtained with the contact-
line model for different capillary numbers.
The data pertain the steady state configura-
tion, reached for shorter at higher C'a and
verified to be independent of the size of the
computational domain. Surprisingly, we find
virtually no influence of the viscosity ratio or
capillary number on the effective slip length
for fia/fi1 < 0.1. This independence from the
viscosity ratio is peculiar, as one would ex-
pect more slip if the viscous dissipation is rel-
atively low. However, as demonstrated in a
recent analytical model for flat interfaces [18],
the shear stress is constant along a fluid-fluid
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FIG. 5: Effective slip versus the filling rate of
the cavity (defined with the height of the
contact point) for a convex (80°) and a
concave interface (105°) at fiz/fi; = 0.05 in
the zero capillary limit (minimum-energy
interface). Dashed lines are the linear least
squares fit for 7! > 5, with slopes written
beside. Inset: linear plot showing the sharp
reduction of the slip length as the cavity
becomes unfilled.

interface and the local slip length distribution
depends only on the geometry of the patterned
substrate. Considering that the interface pro-
trudes only slightly, we can assume the ar-
gument above for flat interfaces to still apply
and Eq. (2.19) in [18] indeed yields a nearly
constant effective slip length for small fis/f11.

The results also indicate that the effective
slip is rather insensitive to the capillary num-
ber. This can be explained by the fact that
the deformation of the interface is rather small
under the shear rate considered. Different ex-
perimental or numerical studies have reported
conflicting effects of the shear (proportional
to Ca), but typically the variation of the slip
length is little below a critical Ca [20, 21]. Fur-
ther increasing the capillary number and/or
the shear can result in drainage of the lubri-
cant from the cavity as will be discussed in
more details later.

(b)jiz/fi1 = 0.05,0, =
80° 105°

(a)pz/fi1 = 0.004,05 =

FIG. 6: (color online) Snapshots of typical
shapes of the interface and of the
instantaneous velocity field.

The above analysis implies that the filling
rate may be the most important factor deter-
mining the effective slip length. We there-
fore consider in Fig. 5 the effective slip ver-
sus the filling rate of the cavity (defined with
the height of the contact point) for a con-
vex (80°) and a concave interface (105°) at
fiz/fi1 = 0.05 in the zero capillary limit. Here,
y is the vertical coordinate for the contact
point position (see Fig. 1). Clearly, we see a
strong dependence of A\, on the depression of
the liquid interface. The linear plot showing
the rapid reduction of the slip length for both
convex and concave surfaces is in good agree-
ment with previous analytical and numerical
studies [17, 19]. For the two interface curva-
tures considered, there seems to be a power
law relation as illustrated in the log-log plot.
Specifically, we find A\, ~ 6938 for the con-
vex interface at static contact angle 80°, and
Ae ~ 67919 for the concave interface at 105°.
Our result confirms therefore the pronounced
dependence of the interface depression, espe-
cially when it is small, for transverse grooves.

C. Dynamic behavior: lubricant drainage

The effective slip discussed above, induced
by the imposed shear at the upper boundary
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reports the same data as function of the
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of the computational domain, is a steady state
result. Fig. 6 depicts two snapshots of the
shear flow over a wetted cavity for two differ-
ent viscosity ratios and static contact angles
as the liquid interface tries to relax to its equi-
librium position (starting from the solution in
the zero capillary limit). The important dif-
ference between the behavior in Fig. 6(a) and
(b) is that, in the first case the free surface
remains stable beneath the cavity tip, while
in the second case the upstream contact line
has reached the corner. Since in both cases
the contact lines are initially placed at a dis-
tance y = —0.03, the uprising motion in Fig.
6(b) implies a possible drainage of the lubri-
cant from the cavity. We note that the de-
pinning of a contact line from a sharp corner
(i.e. drainage in our case) is a complex pro-
cess, depending on the metastability of the
wetting condition and the geometry of the cor-
ner [10]. Here, we simply stop the simulation
when the contact line hits a corner, indicating
the risk of a potential drainage (due to shear,
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surface defeat, fluctuations, etc.).

To investigate the trigger for the cross-flow
drainage, we run a series of simulations vary-
ing the capillary number and the viscosity ra-
tio, at a fixed filling rate = = 16.7 and a
fixed contact angle of 80°. As illustrated in
Fig. 7, increasing Ca for fia/fi1 < 1 eventually
leads to drainage. The result can be better
interpreted using a cavity capillary number,
based on the lubricant viscosity, fia/fi1Ca.
Mapping the results on the (fiz/fi1Ca, fiz/fi1)
plane indicates a critical capillary number
above which the cavity can be fully wetted
by the outer fluid. For the specific configu-
ration investigated here, this critical capillary
number fia/fi1Ca =0.0125. It is worth not-
ing that such a transition disappears for more
viscous lubricants, as the contact line for the
case [ip/fi1 = 3.17 stays inside the cavity, even
when the lubricant capillary number is fur-
ther increased by two orders of magnitude.
Recalling that the effective slip is rather in-
sensitive to the viscosity ratio at low filling
rates, one can conclude that a more viscous
lubricant might be preferable as more robust
against shear-induced failures.

VI. CONCLUSIONS

In this paper, motivated by applications in
nanoengineered patterned surfaces for robust
drag reduction, we study the effective slip over
an array of two-dimensional tranverse grooves
partially filled with a second immiscible fluid.

We use a hybrid multiscale approach to
model the dynamics of the contact line be-
tween the two fluids at the cavity walls. In
particular, we combine two separate simu-
lation methods at different scales: we pre-
compute the nanoscale contact line dynamics
with a phase field method and use this as a
modified boundary condition when solving the
zero Reynolds number flow; we use the infor-
mation from the contact line model in a finite
element code to accurately evaluate the effec-
tive slip length of the microtextured surface.
Our coupling assumes self-similarity of the ve-
locity field in the vicinity of the moving con-



tact line. The approach is very general and
it can be extended to include e.g. contact an-
gle hysteresis according to the remark in Sec.
III. Contact line friction can also be included
by modifying the boundary condition in the
phase field model [37].

We examine the effective slip in order to
quantify the steady-state drag-reducing prop-
erty of the surface with transverse cavities of
micron size. Here, we fix the geometry and
vary the cavity-to-outer viscosity ratio, cap-
illary number, static contact angle, and cav-
ity filling rate. Our results confirm the pre-
viously observed increase of the effective slip
with the cavity filling, as the shear stress near
a cavity strongly depends on the meniscus po-
sition in transverse cases. In addition, we find
the influence of the viscosity ratio or capil-
lary number to be rather weak, a result that
appears counter-intuitive at first. This dimin-
ished effect is partly due to the moderate fill-
ing configuration, partly due to the relatively
low shear applied.

Further increasing the capillary number, we
observe a transition from stable lubricant in-
fusion to lubricant depletion, identified here
as the contact line reaches the cavity tip. For
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lubricant impregnated surfaces, this can po-
tentially lead to drainage induced by the ex-
treme external shear. We show that there ex-
ists a critical capillary number, based on the
lubricant viscosity, above which drainage can
occur and which is almost constant for low
viscosity ratios. However, differently from the
shear-driven drainage observed in longitudinal
grooves, this new cross-flow failure mode ap-
pears to be suppressed by a high lubricant vis-
cosity. Our prediction therefore suggests that
a less viscous lubricant may not necessarily
be the most robust, also given that the per-
formance is weakly sensitive to the viscosity
ratio.
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