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Abstract

In this paper we address the problem of finding the distribution of eigenvalues and singular
values for matrix sequences. The main focus of this paper is the spectral distribution for
matrix sequences arising in discretization of PDE. In the last two decades the theory of
GLT-sequences aimed at this problem has been developed. We investigate the possibility of
application of GLT-theory to discretization of PDE on non-rectangular domains and show
that in many cases the present GLT-theory is insufficient. We also propose a generalization
of GLT-sequences that enables one to cope with a wide range of PDE discretization problems
defined on polygonal domains.
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1. Introduction

In last decades there was an active research of theory of matrix sequences arising dur-
ing the discretization of PDE and allowing one to describe spectral distribution of such
sequences. Recently it was developed into the machinery of generalized locally Toeplitz se-
quences which solves this problem for PDE defined on rectangular domains. There was as
well a discussion of possibilities to extend the GLT-theory to the non-rectangular case. In
this paper we propose an example with a very simple problem on non-rectangular domain
for which the sequence of discretization matrices is not GLT. However, we have still dis-
covered that this sequences can be transformed to a GLT-sequence by some similarity. The
latter observations led us to a concept of generalization of GLT-sequences, which allow one
to handle the sequences of discretization matrices defined on non-rectangular domains.
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The analysis is carried out in the context of finite elements on triangular and polygonal
domains, with a uniform triangulations. Other approaches can be found in [1][pp. 395–399]
in the case of equispaced finite differences on a general Peano-Jordan measurable domains
and in [2] for finite elements on a L-shaped domain with graded meshes. The present
generalization lies in the same direction of the notion of reduced GLT sequences considered
in [3][Section 3.1.4], where the idea is sketched in great generality, but no technical details
are given. In the current contribution we give a concrete analysis, which can be adapted
for treating polygonal domains and in principle Peano-Jordan measurable sets, as done for
equispaced finite differences in [1].

The rest of the paper is organized as follows: in Section 2 we give some preliminary
notions and results about the spectral distributions. In Section 3 we provide a brief in-
troduction to GLT-theory for self-containedness of the paper. In Section 4 we present our
example, we prove that the matrix sequence does not belong to GLT class and then show
that it is still possible for it to find the distribution of eigenvalues and singular values. Af-
ter that in Section 5 we propose a generalization of GLT-sequences and prove some of its
properties. In Section 6 we show that our generalization can be applied to the discretization
of PDE defined on a broader class of polygonal domains. Next in Section 7 we provide
an application of our theory to preconditioning and in Section 8 we put some concluding
remarks.

2. Preliminaries

The very notion of the distribution of eigenvalues for a matrix sequence {An}n, where
An is of size n, is defined as follows [4].

Definition 1. Let f be a measurable function defined on a domain D of nonzero, finite mea-
sure (µ(D) 6= 0,∞). A matrix sequence {An}n is said to have the distribution of eigenvalues
with symbol f on the domain D if

lim
n→∞

1

n

n∑
j=1

F (λj(An)) =
1

µ(D)

∫
D

F (f(x))dx (1)

for any continuous function F with a compact support (F ∈ CC(C)), where λj(An) are the
eigenvalues of matrix An. We denote this fact by {An}n ∼λ f .

The similar definition can be given for the distribution of singular values of a matrix
sequence.

Definition 2. Let f be a measurable function defined on a domain D of nonzero, finite
measure (µ(D) 6= 0,∞). A matrix sequence {An}n is said to have the distribution of singular
values with symbol f on the domain D if

lim
n→∞

1

n

n∑
j=1

F (σj(An)) =
1

µ(D)

∫
D

F (|f(x)|)dx (2)
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for any continuous function F with a compact support (F ∈ CC(C)), where σj(An) are the
singular values of matrix An. We denote this fact by {An}n ∼σ f .

First results in this area were obtained by G. Szegö [5]. Let f be a function from
L∞(−π, π). One can expand this function in the Fourier series

f(x) =
∞∑

j=−∞

fje
ijx, i

2 = −1 (3)

and define elements of a Toeplitz matrix Tn as (Tn)i,j = fi−j. G. Szegö proved that if f is
real-valued, then Tn are all Hermitian in this case and the eigenvalues of Tn are distributed
with symbol f on [−π, π]. Later F. Avram [6] and S. Parter [7] generalized this result to the
case of distribution of singular values for non-Hermitian matrices corresponding to complex-
valued f . Both results were generalized even more by E. Tyrtyshnikov and N. Zamarashkin
[8, 4] to the case of arbitrary functions f ∈ L1(−π, π) and even to the Radom measures [9].

The techniques developed for Toeplitz matrices turned out to be very useful also for the
study of spectral distributions of some matrices coming from the discretization of PDEs. As
a simple example, we consider the following PDE problem with constant coefficients:{

−u′′(x) = b(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(4)

If the finite element method (FEM) is used on a uniform grid, then we naturally obtain a
Toeplitz matrix equal up to a scaling factor to

Tn =


2 −1

−1
. . . . . .
. . . . . . −1
−1 2

 . (5)

By refining the grid we come to a sequence of Toeplitz matrices whose eigenvalue and singular
value distributions are already given by the above mentioned results. Now consider the case
of variable coefficients {

−(a(x)u′(x))′ = b(x), x ∈ (0, 1),

u(0) = u(1) = 0,
(6)

where a(x) ∈ C1(0, 1). The discretization matrices now look like

An =


a 1

2
+ a 3

2
−a 3

2

−a 3
2

a 3
2

+ a 5
2
−a 5

2

. . . . . . . . .

−an− 1
2

an− 1
2

+ an+ 1
2

 , (7)

where aj = a( j
n

+ 1), j = 1
2
, 3

2
, . . . , n+ 1

2
.
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The first theorems for such sequences were proved by P. Tilly [10] and described the dis-
tributions by the weighted symbol in the form a(x)f(θ) on the domain [0, 1]× [−π, π], where
a(x) is called the weight function, and f(θ) is called the Toeplitz-case symbol. Precisely, the
sequence of matrices {An}n has the distribution of eigenvalues with symbol a(x)f(θ) on the
domain [0, 1]× [−π, π], that is

lim
n→∞

1

n

n∑
j=1

F (λj(An)) =
1

2π

1∫
0

π∫
−π

F (a(x)f(θ))dθdx (8)

for any function F ∈ CC(C). Sequences of matrices arising while solving such problems
were called by P. Tilly locally Toeplitz. But the notion of locality means a bit more general
thing. It is very natural to refer a locally Toeplitz matrix as a matrix that is approximately
Toeplitz in every small subregion of the matrix, up to relatively low-rank corrections which
may hyde the algebraic structure.

Definition 3. Let f be an integrable function and {Tn(f)}n be a sequence of Toeplitz matri-
ces generated by Fourier coefficients of f . Let also a(x, y) be a continuous function defined

on [0, 1]2. Let Dn =
[
a( i

n−1
, j
n−1

)
]n−1

i,j=0
. A matrix sequence {An}n is said to be locally Toeplitz

if it can be represented as An = Tn(f) ◦Dn for some functions f and a, where ◦ denotes the
Hadamard product.

It can be proved (see for example [11]) that if f ∈ L2 in the last defintion, then the
corresponding locally Toeplitz sequence has a distribution of singular values with symbol
a(x, x)f(θ). Further generalizations of P. Tilly’s results inspired S. Serra-Capizzano and his
colleagues to create the theory of generalized locally Toeplitz sequences.

3. Elements of the theory of generalized locally Toeplitz sequences

For the first time the notion of generalized locally Toeplitz sequences (GLT) appeared
in the paper by S. Serra-Capizzano [1]. A systematic presentation of this theory is given,
for example, in [11]. Here we focus only on a few key points of this theory, namely, we give
the algebraic-topological definition of GLT-sequences and some of their basic algebraic and
topological properties.

3.1. Approximating classes of sequences

A fundamental concept in all constructions is the notion of approximating classes of
sequences (a.c.s.). It was explicitly formulated by S. Serra-Capizzano [12], although it was
already used with a somewhat implicit notation in the papers by E. Tyrtyshnikov and
N. Zamarashkin [8, 4, 9, 13] and then by P. Tilly [10].

Definition 4. Let {An}n be a sequence of matrices. An approximating class of sequences
for {An}n is a sequence of matrix sequences {{Bn,m}n}m with the following property: for
each m, there exists nm such that, for n ≥ nm a splitting exists

An = Bn,m +Rn,m +Nn,m (9)
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rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m), (10)

where the quantities nm, c(m), ω(m) depend only on m, and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0. (11)

The latter definition can be interpreted as convergence in the space of matrix sequences,
which in the world of the preconditioning is known as matrix approximation in norm and/or
rank. That is, let E be the set of all matrix sequences. We define the topological space
(E , τa.c.s.) in the following way [14]. A sequence {{Bn,m}n}m ⊂ E converges to {An}n ∈ E if
and only if {{Bn,m}n}m is an approximating class of sequences for {An}n.

The topological space (E , τa.c.s.) can be pseudo-metrized, that is endowed by a function
da.c.s. which satisfies all the properties of the metric function except that da.c.s.(x, y) can be
zero for x 6= y. To begin with, we define a function pn(A) on the set of matrices of size n as
follows:

pn(A) = min
i=0,...,n

( i
n

+ σi+1(A)
)
, A ∈ Cn×n (12)

σn+1(A) = 0 by the definition. Now we define the function

pa.c.s.({An}n) = lim sup
n→∞

pn(An) = lim sup
n→∞

min
i=0,...,n

( i
n

+ σi+1(An)
)

(13)

and then the function

da.c.s.({An}n, {Bn}n) = pa.c.s.({An −Bn}n). (14)

It can be proved that da.c.s. is a pseudometric on the set E and a sequence {{Bn,m}n}m is
an approximating class of sequences for {An}n if and only if

lim
m→∞

da.c.s.({An}n, {{Bn,m}n}m) = 0. (15)

The key role of a.c.s. concept is explained by the following theorems [11].

Theorem 1. Let {An}n be a matrix sequence. Assume that:

1. {{Bn,m}n}m is an approximating class of sequences for {An}n;

2. for every m {Bn,m}n ∼σ fm for some measurable function fm : D ⊂ Rk → C;

3. fm → f in measure over D, where f : D → C is another measurable function.

Then {An}n ∼σ f .

Theorem 2. Let {An}n be a sequence of Hermitian matrices. Assume that:

1. {{Bn,m}n}m is an approximating class of sequences for {An}n with every {{Bn,m}n}m
Hermitian;

2. for every m {Bn,m}n ∼λ fm for some measurable function fm : D ⊂ Rk → C;

3. fm → f in measure over D, where f : D → C is another measurable function.

Then {An}n ∼λ f .
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3.2. Algebraic-topological definition of GLT sequences

Let E be a set of all matrix sequences. We can define elementwise algebraic opera-
tions between two sequences, where we mean elementwise is sence of sequence elements
but not in sence of matrices. For example, if we multiply sequences {A1, A2, A3, . . . } and
{B1, B2, B3, . . . } then we obtain a sequence {A1B1, A2B2, A3B3, . . . }. Obviously, E is an
algebra with such elementwise operations. Moreover, for every matrix sequence in E the se-
quence of conjugate matrices also belongs to E , that is, E is a *-algebra. In addition, E can
be endowed a topology with convergence in the sense of approximating classes of sequences.

Consider a set M of all measurable functions

ζ : [0, 1]d × [−π, π]d → C (16)

with the topology τµ corresponding to convergence in measure. This topology can be gen-
erated by the pseudometric

dµ(ξ, ζ) = q(ξ − ζ), (17)

q(ψ) = inf{µ(|ψ ≥ α|) + α : α > 0}. (18)

Obviously, the set M is also a *-algebra with natural operations between functions.
Now consider the set E ×M endowed by the topology τa.c.s.× τµ. This is the set of pairs

of matrix sequences and measurable functions that is also a *-algebra as a product of two
*-algebras. Consider the set T ⊂ E ×M, where

T =
{(
{Tn(ei(j,θ))}n, ei(j,θ)

)
: j ∈ Zd

}
, (19)

where Tn(f(θ)) is a d-level Toeplitz matrix generated by multidimensional Fourier series for
the function f . Here and further vectors are marked in bold in order to avoid misunder-
standings. Also, consider the set D ⊂ E ×M:

D =
{(
{Dn(a)}n, a(x)

)
: a ∈ C∞([0, 1]d)

}
, (20)

where Dn(a) is a diagonal matrix the with values of the function a on the diagonal, sampled
from the uniform grid over [0, 1]d.

Definition 5. Let {An}n be a matrix sequence and ζ : [0, 1d] × [−π, π]d → C be a mea-
surable function. Let us say that {An}n is a GLT-sequence with symbol ζ(x,θ), and write
{An}n ∼GLT ζ(x,θ), if ({An}n, ζ(x,θ)) belongs to the smallest closed subalgebra of E ×M
containing T ∪ D.

3.3. Basic properties of GLT-sequences

The following is an incomplete list of the properties of GLT-sequences, the proofs can be
found in [15, 3, 1, 16].

• If {An}n ∼GLT κ, then {An}n ∼σ κ. If moreover the matrices {An}n are Hermitian,
then {An}n ∼λ κ;
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• If {An}n ∼GLT κ and {An}n ∼GLT ξ, then κ = ξ almost everywhere in [0, 1]d×[−π, π]d;

• {Tn(f)}n ∼GLT f(θ) for every f ∈ L1([−π, π]d);

• {Dn(a)}n ∼GLT a(x) for every a : [0, 1]d → C which is continuous almost everywhere;

• {Zn}n ∼GLT 0 if and only if {Zn}n ∼σ 0;

• If {An}n ∼GLT κ, then {A∗n}n ∼GLT κ;

• If An =
r∑
i=1

αi
qi∏
j=1

A
(i,j)
n , where r, q1, . . . , qr ∈ N, α1, . . . , αr ∈ C and {A(i,j)

n }n ∼GLT κij,

then {An}n ∼GLT κ =
r∑
i=1

αi
qi∏
j=1

κij;

• If {An}n ∼GLT κ and κ 6= 0 almost everywhere, then {A†n}n ∼GLT κ−1;

• If {An}n ∼GLT κ and each An is Hermitian, then {f(An)}n ∼GLT f(κ) for all contin-
uous functions f : R→ C;

• {An}n ∼GLT κ if and only if there exist GLT-sequences {{Bn,m}n}m for which we
have {Bn,m}n ∼GLT κm, {{Bn,m}n}m is an approximating class of sequences for
{An}n, and κm → κ in measure;

• The GLT class is isometrically equivalent to the algebra of measurable functions and
it is a maximal algebra.

4. Spectral distribution of a sequence of discrete operators defined on a trian-
gular domain

4.1. Problem statement

Consider the following problem. Given a domain Ω and an elliptic differential operator
L, we need to solve {

Lu = f, x ∈ Ω,

+ boundary conditions.
(21)

One of the common numerical methods for solving such problems is FEM. The described
techniques can be applied not only to elliptic differential operators and not only for FEM,
but we consider this particular case for clarity of presentation.

First of all, FEM requires the construction of some grid on the domain Ω. Each grid
generates a system of linear equations to be solved. By refining the grid, we obtain a sequence
of matrices with growing sizes. The theory of GLT-sequences enables to find the distribution
of eigenvalues and singular values when Ω in (21) is a d-dimensional parallelepiped and
the grid is uniform. For more general domains GLT-theory suggests [3, 1], the following
technique: Ω is described by some map G : [0, 1]d → Ω that defines the geometry of the
domain. The function G has to be continuously invertible, its image has to be equal to Ω,
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and it has to map boundary to the boundary: G(∂([0, 1]d)) = ∂Ω. Then the grid on Ω is
obtained by mapping a uniform grid from [0, 1]d, and the basis functions φi for FEM are
obtained as φi(x) = φ̂i(G

−1(x)), where φ̂i are basis functions on [0, 1]d with the uniform
grid. Then by the change of variables, we get the problem defined on [0, 1]d. For example,
using the above approach in [2] it was derived a direct formula for the asymptotic eigenvalue
distribution of stiffness matrices obtained by applying finite elements to the semielliptic
PDE of second order.

However, this technique of grid constructing, which is natural in world of the isogeometric
analysis (see [11, 17] and references therein), has significant drawbacks when considering
more classical approximation techniques. The first of them is that the construction of
effective maps G is extremely challenging [18, 19]. In addition to the above requirements
for the function G, it should also induce a conformal grid on Ω, and also enables to control
the grid coarseness in different regions of Ω, for example, to induce a uniform grid on Ω.
Another drawback is the calculation of integrals for FEM. Complex maps G may not enable
to compute integrals analytically which is necessary for some problems.

Another way to deal with non-rectangular domains is reduced GLT theory. This theory
proposes the following procedure for the constructing of the grid:

1. To choose the affine transformation F which maps the domain Ω to d-dimensional
cube [0, 1]d with uniform square grid and maximizes the measure of the new set;

2. To continue all coefficient functions to the whole cube by zeros;

3. We choose the part of the uniform square grid which lies inside F (Ω) as the grid for
F (Ω). It can be easily proved that if we denote {An}n the sequence of discretization
matrices on the domain F (Ω) and {Bn}n the sequence of discretization matrices on
[0, 1]d then An = ΠnBnΠn, where Πn is a matrix consisting of several columns of
permutation matrix. It remains note that the spectral distribution of {Bn}n can be
obtained from the classical GLT theory.

However this approach allows to use only uniform grid and the construction of the affine
map which maximazes the image measure can be difficult problem for complicated domains.

A more natural and efficient way is to try to find a distribution of eigenvalues and singular
values for a sequence of matrices given by a particular sequence of refining grids and basis
functions.

Now we consider one simple but extremely important particular case when Ω is a triangle.
We assume that the triangle has a uniform grid, and Courant functions (that is functions
which are equal to 1 exactly in one node of the grid, equal to 0 in all other nodes and
piecewise linear on every triangle of the triangulation) are taken as basis functions. The
last condition is not critical for the analysis and is taken only for simplicity. In fact, basis
functions are only required to have compact support. Then for a given sequence of grids
and a set of basis functions we try to find a distribution of eigenvalues and singular values
for the obtained sequence of discretization matrices.
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4.2. Laplace operator case

Consider the following problem:{
−∆u(x) = f(x), x ∈ Ω,

u(x)
∣∣∣
∂Ω

= 0,
(22)

where Ω is a triangle with generator vectors a and b (Figure 1).

b

a

Figure 1: A triangle with generators a and b.

We introduce a uniform grid containing n nodes on a triangle, namely, the grid generated
by splitting the original triangle into small equal triangles that are similar to the original
one. We use a natural node numbering consistent with the generating vectors a and b
(Figure 2) and solve the problem by FEM, taking Courant functions as basis ones.

The weak formulation of (22):∫
Ω

(∇u,∇φ)dΩ =

∫
Ω

(f, φ)dΩ, ∀φ ∈ W̊ 1
2 , (23)

where W̊ 1
2 is a Sobolev space with zero boundaries.

0 1 2 3 4 5

6 7 8 9 10

11 12 13 14

15 16 17

18 19

20

Figure 2: Uniform grid on a triangle and the numbering induced by generators.
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The basis functions are

φi(xj) =

{
0, xi 6= xj

1, xi = xj
, i, j = 0, . . . , n− 1, (24)

and φi(xj) are linear on every triangle of the triangulation, that is it is nonzero on all small
triangles which are incident to the node i and zero on all other triangles.

Write an explicit expression for φi. On all the triangles that are not adjacent to xi the
function φi is equal to zero. Consider a triangle adjacent to the node xi with the generators
c and d. Then, by writing the general form of a linear function (we denote coordinates of
vectors with superscript to avoid the confusion with indices denoted with subscript):

φ(x) = a0x
(1) + a1x

(2) + a2 (25)

and the system of constraints 
φi(xi) = 1

φi(xi + c) = 0

φi(xi + d) = 0

, (26)

we obtain the expression for the coefficients of function φi on this triangle

a0 =
d(2) − c(2)

c(2)d(1) − c(1)d(2)
, (27)

a1 =
c(1) − d(1)

c(2)d(1) − c(1)d(2)
, (28)

a2 = 1 +
x

(1)
i (c(2) − d(2)) + x

(2)
i (c(1) − d(1))

c(2)d(1) − c(1)d(2)
. (29)

Correspondingly
∂φi
∂x(1)

=
d(2) − c(2)

c(2)d(1) − c(1)d(2)
, (30)

∂φi
∂x(2)

=
c(1) − d(1)

c(2)d(1) − c(1)d(2)
. (31)

Calculating the considered integrals, we can write an equation for each node of the grid,
and then the discretization matrix itself. Let us introduce the notation:

t0 = 2
(a(1))2 + (a(2))2 + (b(1))2 + (b(2))2 − a(1)b(1) − a(2)b(2)

|a(2)b(1) − a(1)b(2)|
(32)

t1 =
a(1)b(1) + a(2)b(2) − (b(1))2 − (b(2))2

|a(2)b(1) − a(1)b(2)|
, (33)

t2 =
−(a(1)b(1) + a(2)b(2))

|a(2)b(1) − a(1)b(2)|
, (34)
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t3 =
a(1)b(1) + a(2)b(2) − (a(1))2 − (a(2))2

|a(2)b(1) − a(1)b(2)|
. (35)

For the discretization we introduce the space of piecewise linear functions on Ω, which
are linear on every triangle of the triangulation,

W̊ 1
2h =

{ ∑
i:internal vertices

αiφi(x) : αi ∈ R
}
, (36)

and uh ∈ W̊ 1
2h is determined by the equations∫

Ω

(∇uh,∇φh)dΩ =

∫
Ω

(f, φh)dΩ, ∀φh ∈ W̊ 1
2h, (37)

so the problem reduces to linear algebraic equations. Refining the grid gives us a sequence
of discretization matrices with growing size. In this notations it is easy to write down the
discretization matrix. Firstly, let us imagine that we are solving the problem not in a triangle,
but in a parallelogram spanned on the same generator vectors. Then the discretization
matrix Tn has the following form:

T4 =



t0 t1 t3
t1 t0 t1 t2 t3

t1 t0 t1 t2 t3
t1 t0 t2 t3

t3 t2 t0 t1 t3
t3 t2 t1 t0 t1 t2 t3

t3 t2 t1 t0 t1 t2 t3
t3 t1 t0 t2 t3

t3 t2 t0 t1 t3
t3 t2 t1 t0 t1 t2 t3

t3 t2 t1 t0 t1 t2 t3
t3 t1 t0 t2 t3

t3 t2 t0 t1
t3 t2 t1 t0 t1

t3 t2 t1 t0 t1
t3 t1 t0



, (38)

that is a two-level Toeplitz matrix. Secondly, the discretization matrix T̂ ′n for a trianglular
domain can be obtained from Tn by removing the last column and row from the second
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block, the last two columns and rows from the third block and so on:

T̂ ′4 =



t0 t1 t3
t1 t0 t1 t2 t3

t1 t0 t1 t2 t3
t1 t0 t2

t3 t2 t0 t1 t3
t3 t2 t1 t0 t1 t2 t3

t3 t2 t1 t0 t2
t3 t2 t0 t1 t3

t3 t2 t1 t0 t2
t3 t2 t0


. (39)

We refer such matrices as truncated Toeplitz matrices. We show that the sequence of
matrices T̂ ′n is not a GLT-sequence.

Note that the sequence of matrices composed of only diagonal blocks of T̂ ′n generates a
GLT-sequence. Indeed, consider a matrix composed of diagonal blocks of the matrix T̂ ′n.
This matrix can be transformed to a tridiagonal Toeplitz matrix by symmetric transforma-

tion of rank o(n2), where the matrix T̂ ′n is of size
n(n+ 1)

2
(we need just ”to glue” diagonal

which contains t1. For this we only need to add a matrix containing 2(n− 1) values t1). It
is easy to see that a self-adjoint tridiagonal Toeplitz matrix is a GLT-sequence, therefore,
due to the properties of GLT-sequences (Section 3.3), the diagonal blocks of matrices T̂ ′n
can be put to zero and we can prove the statement for the sequence of matrices T̂n of the
following form:

T̂4 =



t3
t2 t3

t2 t3
t2

t3 t2 t3
t3 t2 t2 t3

t3 t2 t2
t3 t2 t3

t3 t2 t2
t3 t2


. (40)

Assume that {T̂n}n possesses a GLT-distribution on the domain [0, 1]2 × [−π, π]2, i.e.

{T̂n}n ∼GLT f(x1, x2, θ1, θ2).

12



Note that matrix T̂ has the size
n(n+ 1)

2
. We introduce a n× n Jordan block Jn:

Jn =



0 1
0 0 1

0 0 1
. . . . . . . . .

0 0 1
0 0


. (41)

Let Ĵn = J[n/
√

2] ⊗ I[n/
√

2]. It is the two-level Toeplitz matrix and the sequence of such

matrices belongs to the class of GLT-sequences {Ĵn}n ∼GLT e−iθ1 . Note that[
n√
2

]2

− n(n+ 1)

2
= O(n), (42)

which means that we can extend the diagonals in matrix Ĵn to have a matrix of order
n(n+ 1)

2
by transformation of rank o(n2). We denote the obtained matrix by Hn. It has

the same GLT-distribution as Ĵn and the size
n(n+ 1)

2
.

Consider the sequence {T̂nHn −HnT̂n}n. Due to the GLT-theory, the singular values of
the resulting sequence have to be zero-distributed. Our immediate goal is to show that it is
not possible.

Note that the multiplication T̂nHn performs a shift of the elements of the matrix T̂n to
the right. Similarly, HnT̂n shifts the matrix elements upwards. The matrices T̂n have a block
structure. We calculate the numbers of columns where the blocks of the matrix T̂n begin, as
well as the numbers of columns where they move to after the multiplications T̂nHn and HnT̂n.
Initially, the column numbers where the blocks of the matrix T̂n begin are n, n + (n − 1),

etc., the first column of the k-th block has the number
k∑
j=1

n− j + 1 = k(n+ 1)− k(k + 1)

2
.

After the multiplication of T̂n by Hn from the right hand side the numbers of all columns

increase by

[
n√
2

]
, while multiplication of T̂n by Hn from the left hand side does not change

the column numbers. Consider an arbitrary superdiagonal block of T̂n that lies above the
main diagonal and contains the quantities t3. We assume that t3 6= 0, otherwise, the proof
can be done similarly for t2 6= 0. t2 and t3 cannot be equal zero simultaneously, otherwise the
triangle degenerates to a segment or a point. Note that any diagonal after the shift to the
right or upwards by the same number of elements, moves to the one diagonal (in this case

we mean by a diagonal the set of elements of the matrix [T̂n]ij such that the difference i− j
is constant). The order of the k-th superdiagonal block is n− k. Then the diagonal of the

considered block after the upwards shift has the column numbers from k(n+ 1)− k(k + 1)

2
13



to k(n + 1) − k(k + 1)

2
+ n − k. At the same time, after the shift to the right it has the

column numbers from k(n+ 1)− k(k + 1)

2
+

[
n√
2

]
to k(n+ 1)− k(k + 1)

2
+

[
n√
2

]
+ n− k.

So, after the subtraction T̂nHn−HnT̂n the elements equal to t3 remain on the positions with

column numbers from k(n+ 1)− k(k + 1)

2
+n−k+ 1 to k(n+ 1)− k(k + 1)

2
+

[
n√
2

]
+n−k

(i.e.

[
n√
2

]
elements) under the conditions

k(n+ 1)− k(k + 1)

2
+ n− k ≥ k(n+ 1)− k(k + 1)

2
+

[
n√
2

]
, (43)

n−
[
n√
2

]
≥ k. (44)

The latter is true for all blocks whose numbers satisfy the inequality above and whose
elements do not vanish from the matrix shifting upwards and to the right, i.e., such that the
numbers k of these blocks satisfy the inequality

2 ≤ k ≤ n−
[
n√
2

]
. (45)

Then in the matrix T̂nHn −HnT̂n at least(
n−

[
n√
2

]
− 1

)[
n√
2

]
≥ C0

n(n+ 1)

2
(46)

elements remain to be equal to t3, where C0 > 0. It is clear that in the case t3 = 0, the
proof is completely analogous to the elements equal to t2.

Then ‖T̂n‖F ≥ C
n(n+ 1)

2
. In addition, it is obvious that ‖T̂n‖1 ≤ 4(|t2| + |t3|) and

‖T̂n‖∞ ≤ 4(|t2| + |t3|), hence ‖T̂n‖2 ≤ 4(|t2| + |t3|). We have that
∑
k

σ2
k ≥ C

n(n+ 1)

2
, but

σ2
1 ≤ 16(|t2|+ |t3|)2, where σk are singular values of T̂n and σ1 is the largest singular value.

Assume that at least δ
n(n+ 1)

2
singular values are less than ε.

∑
1

σ2
k+
∑

2

σ2
k ≥ C

n(n+ 1)

2
,

where
∑

2

denotes the sum by δ
n(n+ 1)

2
minimal elements and

∑
1

by the others. Then∑
1

σ2
k ≥ (C − δε2)

n(n+ 1)

2
and

σ2
1(1− δ)n(n+ 1)

2
≥
∑

1

σ2
k ≥ (C − δε2)

n(n+ 1)

2
, (47)
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16(|t2|+ |t3|)2(1− δ) ≥ C − δε2, (48)

δ ≤ 16(|t2|+ |t3|)2 − C
16(|t2|+ |t3|)2 − ε2

. (49)

The formulas (34-35) show that t2 and t3 cannot be equal to zero at the same time. Choosing

ε =

√
C

2
, we obtain that there cannot be more than δ

n(n+ 1)

2
(where δ < 1) elements that

are less than ε, therefore, at least (1 − δ)n(n+ 1)

2
singular values are greater than ε and

the sequence is not zero-distributed [11]. It means that our assumption about the GLT-

distribution of {T̂n}n is false. Thus, the following has been proved:

Theorem 3. Let {T̂n}n be a matrix sequence obtained by the discretization of (22) by FEM,
where the domain Ω is a triangle, the grid is uniform and basis functions are Courant
functions. Then {T̂n}n is not a GLT-sequence on the domain [0, 1]2 × [−π, π]2.

4.3. Finding the spectrum distribution

Although the considered sequences are not GLT-sequences, they still possess some dis-
tribution of eigenvalues and singular values. Moreover, it turns out that symbols of a
distribution of eigenvalues and singular values are exactly the same as it is if we consider
the problem with the same operator on a parallelogram, where sequences of discretization
matrices are GLT-sequences.

We extend the triangle with generators a and b to the parallelogram with the same
generators and take it as the domain Ω in the problem (22). Then, as it noted above, the
discretization matrix looks like (38). This is a two-level Toeplitz matrix, which is a GLT-
sequence with symbol t0 +2t3 cos θ1 +2t1 cos θ2 +2t2 cos (θ1 − θ2), where t0, . . . , t3 are defined
in (32–35). Now we slightly change the problem statement by adding the artificial additional
boundary condition which is the equality to zero on the diagonal of the parallelogram which
divides the parallelogram into two triangles generated by (a, b) and (−a, −b). From
the point of view of discretization we split the parallelogram into two independent equal
triangles. Indeed, for our discretization the value in each node depends only on the values
in neighboring nodes, which implies that the values in both triangles are independent due to
they are partitioned by the zero diagonal. From the point of view of discretization matrices
it is equivalent to removing columns and rows with the numbers corresponding to diagonal
nodes. Since the diagonal contains about n nodes, while the matrix is of size n2, we make
only a low-rank transformation which does not change the GLT symbol. We denote the
matrix after the removing corresponding rows and columns as T̃n. Now let us change the
node numbering in the triangulation of the domain. Renumber nodes so that one triangle
is numbered at first and then the another one is numbered and also such that the order of
numbering is the same for both triangles (Figure 3).

Note that exchange of a pair of node numbers is equivalent in the matrix to the exchange
of rows and columns with corresponding numbers, i.e. similarity transformation with per-
mutation matrices. Then after such a renumbering, the sequence of discretization matrices
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Figure 3: The grid on the parallelogram and division of the parallelogram into 2 triangles.

transforms to the form

PnT̃nP
T
n =

[
T̂n 0

0 T̂n

]
, (50)

where T̂n is the discretization matrix for the triangle. Due to the last transformation is
transformation of unitary similarity, it does not change eigenvalues and singular values. It
follows that sequences of matrices {Tn}n and {T̂n}n have the same distributions of eigenvalues
and singular values.

Theorem 4. Let {T̂n}n be a matrix sequence obtained by a discretization of (22) by FEM,
where the domain Ω is a triangle, the grid is uniform and basis functions are Courant
functions. Then the sequence {T̂n}n is not a GLT-sequence, however, it has a distribution
of eigenvalues and singular values with symbol t0 + 2t3 cos θ1 + 2t1 cos θ2 + 2t2 cos (θ1 − θ2)
on the domain [−π, π]2, where t0, . . . , t3 are defined in (32–35).

Note 1. It is easy to see that formulas (32–35) for t0, t1, t2 and t3 depend only on the dot-
product of generators, their lengths and the square of the parallelogram that is spanned on the
generators. Hence, the matrix sequences and the distributions of eigenvalues and singular
values do not change after the isometry.

4.4. Generalization in case of variable coefficients

The statements described and proved above have been stated for the Laplace operator,
however, they are true for a much more general family of operators including operators
depending on the values of some functions defined on the grid nodes. For certainty, consider
the following problem: −∇ · (a(x)∇u(x)) = f(x), x ∈ ΩT ,

u(x)
∣∣∣
∂ΩT

= 0,
(51)

where ΩT is an isosceles rectangular triangle generated by (0, 1)T and (1, 0)T . The described
technique can be directly generalized to solve the problem in this case. We extend the
triangle to the square with generators (0, 1)T and (1, 0)T . The function a(x, y) is defined
on the triangle spanned by these generators. We extend the function a(x, y) to the whole
square, using the central symmetry relative to the center of the square, i.e., we define

a(x, y) = a(1− x, 1− y), y ≥ 1− x (52)
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We add the artificial zero boundary condition on the diagonal x+ y = 1, which corresponds
to self-adjoint low-rank transformation, and then renumber the nodes such that the matrix
has a block-diagonal structure with two equal blocks on the diagonal. As a result, we obtain
that the distribution of eigenvalues in the discretization of the problem (51) coincides with
the distribution of eigenvalues for the same problem on the square, where a(x, y) is extended
using central symmetry to the whole square. The presented technique enables to conclude
the following:

Let us have the problem {
Lu(x) = f(x), x ∈ Ω,

u(x)
∣∣∣
∂Ω

= 0,
(53)

where L is an elliptic differential operator that is possibly depends on some functions defined
on the domain Ω, where Ω is the triangle given by its generator vectors. We construct the
parallelogram spanned by this generators and extend all functions by central symmetry to
the whole parallelogram, that is, we extend L to the whole parallelogram. Then we extend
the uniform grid on Ω and map it by central symmetry to the parallelogram. Then if the
discretization of the new problem has some distribution of eigenvalues or singular values,
then the same discretization of the problem (53) has the same distribution of eigenvalues or
singular values.

In particular, if the problem in a parallelogram leads to a sequence of matrices, which
is a GLT-sequence with the symbol κ(x,θ), then for the sequence of discretization matrices
on a triangle we can map the same symbol κ(x,θ).

Remark. It can be noted that the proposed technique shares similar ideas with reduced
GLT theory [1, 3], but it has the advantage of being more direct, simpler and more intuitive.

5. Generalization of GLT-sequences

It turns out that the constructed symbols have all the same properties as classical GLT-
symbols, despite the fact that the corresponding matrix sequences are not classical GLT-
sequences. To justify this fact, we introduce the following definition.

Definition 6. Let us say that a matrix sequence {An}n belongs to the class GLT kU with
symbol f(x,θ) on a domain D, if there exists a sequence of unitary matrices {Un}n and a
number k such that the matrix sequence U∗nBnUn is a GLT-sequence with symbol f(x,θ) on
the domain D, where Bn is a block-diagonal matrix, containing k blocks on the diagonal that
are equal to An:

Bn =

An 0 0

0
. . . 0

0 0 An

 (54)

In particular, the set of classical GLT-sequences in this notation coincides with GLT 1
I .

Note that the sequence of matrices {An}n obtained by the discretization of the problem
on a triangle can be transformed to a GLT-sequence by the following way. We build the
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sequence

Bn =

[
An 0
0 An

]
(55)

Then we apply to it self-adjoint low-rank transformation and after that similarity trans-
formation with permutation matrices. It is clear that the last two transformations can be
swapped (in the sense that we can firstly apply similarity transformation with permutation
matrices, and then apply other self-adjoint low-rank transformation). But the class of GLT-
sequences is closed in respect to low-rank transformations. It follows that the sequence of
discretization matrices on a triangle belongs to GLT 2

P for some sequence of permutation
matrices {Pn}n.

It turns out that matrix sequences of each class GLT kU have the properties similar to
classical GLT-sequences. We prove some of these properties.

Theorem 5. Let a matrix sequence {An}n belongs to the class GLT kU with symbol f(x,θ) on
the domain D. Then {An}n ∼σ f(x,θ) on the domain D. If every matrix An is Hermitian,
then {An}n ∼λ f(x,θ) on the domain D.

Proof. Obviously from the definition.

Theorem 6. Let a matrix sequence {An}n belong to the class GLT kU with symbols f(x,θ)
and g(x,θ) on the domain D. Then f(x,θ) = g(x,θ) almost everywhere on the domain D.

Proof. Immediately follows from the definition of the class GLT kU and a similar property for
classical GLT-sequences.

Theorem 7. Let {An}n and {Bn}n belong to the class GLT kU for some {Un}n and k with
symbols f(x,θ) and g(x,θ) on a domain D. Then the matrix sequences {An + Bn}n,
{AnBn}n, {αAn}n and {A∗n}n belong to the class GLT kU with symbols f(x,θ) + g(x,θ),
f(x,θ)g(x,θ), αf(x,θ) and f(x,θ) respectively on the domain D.

Proof. We prove this statement, for example, for the case of the product of matrix sequences.
The remaining can be proved similarly. Since {An}n and {Bn}n belong to GLT kU , then the
sequences

Ân = Un

An 0 0

0
. . . 0

0 0 An

U∗n and B̂n = Un

Bn 0 0

0
. . . 0

0 0 Bn

U∗n (56)

are GLT-sequences with symbols f(x,θ) and g(x,θ). Then, on the one hand, the sequence

{ÂnB̂n}n has GLT-distribution f(x,θ)g(x,θ) and, on the other hand, is equal to

Un

AnBn 0 0

0
. . . 0

0 0 AnBn

U∗n. (57)

Hence {AnBn}n belongs to GLT kU with symbol f(x,θ)g(x,θ).
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Theorem 8. Let a matrix sequence {An}n belong to the class GLT kU with symbol f(x,θ) 6= 0
almost everywhere. Then the matrix sequence {A†n}n belongs to the class GLT kU with symbol
f−1(x,θ).

Proof. The sequence Ân = Un

An 0 0

0
. . . 0

0 0 An

U∗n is a GLT-sequence with symbol f(x,θ) 6= 0

almost everywhere, therefore, Un

A
†
n 0 0

0
. . . 0

0 0 A†n

U∗n = Â†n has the GLT-distribution f−1(x,θ).

Theorem 9. Let a matrix sequence {An}n belong to the class GLT kU with symbol f(x,θ)
and every matrix An is Hermitian. Then the matrix sequence {g(An)}n belongs to the class
GLT kU with symbol g(f(x,θ)) for every continuous function g : R→ C.

Proof. The sequence Ân = Un

An 0 0

0
. . . 0

0 0 An

U∗n is a GLT-sequence with symbol f(x,θ),

therefore, g(Â)n = Un

g(An) 0 0

0
. . . 0

0 0 g(An)

U∗n has the GLT-distribution g(f(x,θ)).

Theorem 10. A matrix sequence {An}n belongs to the class GLT kU with symbol f(x,θ) on
the domain D if and only if there is a sequence of matrix sequences {{Bn,m}m}n such that
{Bn,m}n belongs to the class GLT kU with symbol fm(x,θ) on the domain D, {{Bn,m}m}n is
an approximating class of sequences for {An}n and fm → f in measure over D.

Proof. If {An}n belongs to GLT kU , then we can take {An}n as {Bn,m}n for every m and the
statement is obvious. Let there be a sequence of matrix sequences {{Bn,m}m}n, being an
approximating class of sequences for {An}n, and every sequence in {Bn,m}n belongs to the
class GLT kU with symbol fm(x,θ) and fm converges to a measurable function f in measure.
The fact that {{Bn,m}m}n is an approximating class of sequences for {An}n in terms of the
pseudonorm (Section 3.1) writes like:

pa.c.s.({An −Bn,m}n)→ 0, m→∞. (58)

Due to the fact that every sequence {Bn,m}n belongs to the class GLT kU , the matrices

B̂n,m = Un

Bn,m 0 0

0
. . . 0

0 0 Bn,m

U∗n (59)

19



produce GLT-sequences with symbols fm. Consider the matrix

Ân = Un

An 0 0

0
. . . 0

0 0 An

U∗n. (60)

Calculate the singular values of the matrix Ân − B̂n,m. They coincide with the singular
values of the matrix An − Bn,m, where every singular value is repeated k times. From here

it is easy to see that pkn({Ân − B̂n,m}) ≤ kpn(An −Bn,m), hence

pa.c.s.({Ân − B̂n,m})→ 0, m→∞, (61)

therefore, {{B̂n,m}m}n is an approximating class of sequences for {Ân}n. We obtain that
{An}n is a GLT-sequence with symbol f , therefore, by the definition {An}n belongs to the
class GLT kU with symbol f .

Coming back to problems of discretization of differential equations on a triangle, it is
worth noting that the permutation matrices for the implementation of similarity transfor-
mation do not depend on the choice of the triangle generators, nor on the operator, nor on
the triangle itself, but are determined only by the uniformity of the grid. It follows that
sequences of discretization matrices for all problems given on triangles with uniform grids
belong to the same class GLT 2

P for some fixed sequence of permutation matrices {Pn}n.

6. Spectral distribution in case of polygonal domains

Consider a more general problem where the domain Ω in (22) is an arbitrary polygon.
Let the sequence of the grids on Ω be obtained as follows. Some arbitrary (quite coarse)
triangulation on the polygon is constructed. We refer triangles in this triangulation as
base, denote the corresponding discretization matrix as A1. Then every triangle is refined
by several equal small triangles that are similar to the base one, and the number of small
triangles in every base triangle is the same. In such a way we generate the matrix sequence
{An} (Figure 4).

By cutting (i.e., adding additional zero boundary conditions) the original polygon along
the boundaries of the base triangles, and then renumbering the vertices so that inside each
such triangle the numbering is continuous, we obtain that, up to low-rank symmetric trans-
formation and similarity transformation, the sequence of the discretization matrices of the
original polygon is 

B̂
(1)
n 0 . . . 0 0

0 B̂
(2)
n . . . 0 0

...
...

. . .
...

...

0 0 . . . B̂
(k−1)
n 0

0 0 . . . 0 B̂
(k)
n

 , (62)
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Figure 4: The examples of grids on polygonal domains.

where B̂
(j)
n corresponds to the discretization matrices on the triangles, the sequences of

which belong to GLT 2
P with the known distributions. Moreover, all matrices have the same

number of eigenvalues and singular values, so the distributions of spectra of B̂
(j)
n characterize

well the spectrum distribution of the sequence of discretization matrices on the polygon. In
particular, the following is true

Theorem 11. Let {An} be a matrix sequence obtained by the discretization of the problem
(22) by FEM, where the domain Ω is a polygon and the grid is obtained in a way described

above. Let every sequence of matrices {B(j)
n }n correspond to the sequence of discretization

matrices on basic triangles and has the GLT 2
P -distribution with symbol fj(x,θ) on the do-

main [0, 1]2× [−π, π]2 and the basic triangulation consists of k triangles. Then the sequence
of matrices {An}n has the distribution of eigenvalues and singular values with symbol f(x,θ)
on the domain [0, 1]2 × [−π, π]2, where

f(x, θ1, θ2) = fj(x, k(θ1 + π)− 2π(j − 1)− π, θ2), (63)

θ1 ∈
[
− π +

2π(j − 1)

k
,−π +

2πj

k

]
, j = 1, . . . , k. (64)

Proof. We prove this theorem for the case of eigenvalues distribution. From the above
it follows that the distribution of eigenvalues of {An}n coincides with the distribution of
eigenvalues of matrix sequence of the form (62). Let matrix An have the dimension NP (n)×
NP (n), and every matrix B

(j)
n has the dimension NT (n)×NT (n), j = 1, . . . , k. Then
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lim
n→∞

1

NP (n)

NP (n)∑
i=1

F (λi(An)) = lim
n→∞

1

kNT (n)

k∑
j=1

NT (n)∑
i=1

F (λi(B
(j)
n )) =

1

k

k∑
j=1

lim
n→∞

1

NT (n)

NT (n)∑
i=1

F (λi(B
(j)
n )) =

1

k

k∑
j=1

1

µ(D)

∫
D

F (fj(x,θ))dxdθ =

1

k

k∑
j=1

1

µ(D)

∫
[0,1]2

∫
[−π,π]

∫
[−π,π]

F (fj(x, θ1, θ2))dθ1dθ2dx =

1

µ(D)

∫
[0,1]2

∫
[−π,π]

1

k

k∑
j=1

( ∫
[−π,π]

F (fj(x, θ1, θ2))dθ1

)
dθ2dx =

1

µ(D)

∫
[0,1]2

∫
[−π,π]

1

k

k∑
j=1

(
k

∫
[−π+

2π(j−1)
k

,−π+ 2πj
k

]

F (fj(x, k(θ1 +π)−2π(j−1)−π, θ2))dθ1

)
dθ2dx =

1

µ(D)

∫
[0,1]2

∫
[−π,π]

∫
[−π,π]

F (f(x, θ1, θ2))dθ1dθ2dx =
1

µ(D)

∫
D

F (f(x,θ))dxdθ. (65)

Remark. The following question may arise here. Consider a polygon with a given eigen-
value problem on it, for certainty, let it be an eigenvalue problem for the Laplace operator.
We consider two different triangulations on the domain and construct two sequences of the
grids, according to the scheme above, and solve the problem of approximation of eigenvalues
of the Laplace operator on the polygon using FEM. The eigenvalues of the continuous op-
erator are approximated by the eigenvalues of the matrices M−1

n An, where Mn is the mass
matrix and An is the stiffness matrix. However, the eigenvalues of such a sequence will
tend to infinity with the growth of n, therefore, it is impossible to write down the distri-
bution of eigenvalues of this sequence. This problem can be solved by normalizing, i.e., by

studying the distribution of eigenvalues of
1

n2
M−1

n An. This sequence does not have to be

symmetric, which makes it impossible to apply a general theory about the distribution of
eigenvalues. The difficulty can be overcome by moving to a similar sequence of matrices
1

n2
(Mn)−1/2An(Mn)−1/2, for which the presented theory allows us to find the distribution

of eigenvalues of the resulting sequence. The question is whether the distributions of the
eigenvalues of such matrices are the same for different triangulations, since the eigenvalues of
both matrix sequences must approximate the spectrum of the continuous Laplace operator
on a polygon regardless of which triangulation we consider. The answer to this question is:
no, they are not.

Firstly, we can verify this numerically. Consider the following two polygons and triangu-
lations (Figure 5), and let us construct the grids, according to the scheme described above
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(Figure 6). We numerically compute the eigenvalues of the resulting matrices for a large n
and construct a piecewise linear function that takes on the values of the sorted eigenvalues
on a uniform grid (Figure 7). The figure shows that eigenvalues are quite different, so their
distributions are not the same for different triangulations.

Figure 5: Different basic triangulations of the trapezoid.

Figure 6: The grids inducing on the trapezoids.

Secondly, the theoretical explanation can be given. Eigenvalues of M−1
n An converge to

the eigenvalues of the Laplace operator pointwise, with k-th smallest eigenvalue of M−1
n An

approximating the k-th eigenvalue of the Laplace operator. Accordingly, k-th smallest eigen-

value of the matrix
1

n2
M−1

n An approximates
1

n2
λk, where λk is the k-th smallest eigenvalue

of the Laplace operator. For simplicity, we assume that the sequence of matrices
1

n2
M−1

n An

is distributed with non-decreasing symbol f on the domain [0, 2π]. Then the k-th eigenvalue

of the matrix
1

n2
M−1

n An is approximately equal to f

(
2πk

n+ 1

)
, that is the arguments of the
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Figure 7: The distributions of the eigenvalues of the matrices
1

n2
M−1

n An.

function at which its values approximate the eigenvalues of the operator tend to zero with
the increasing dimension of the matrices. As can be seen from Figure 7, the distribution
functions for different triangulations are really very close in the neighborhood of 0, while
far from zero they can differ quite strongly. Hence, the possible intuitive feeling about the
equality of distributions actually has no theoretical basis and is misleading.

7. Application to preconditioning

One of practical applications of the spectral theory of matrix sequences is the construction
of preconditioners for solving systems of linear algebraic equations. The rate of convergence
of conjugate gradient method directly depends on eigenvalue distribution. In particular, if
the eigenvalues are clustered at one point, then the convergence is especially fast. Precon-
ditioners are used to improve the convergence rate of this method. The popular kind of
preconditioners is circulant preconditioners [20, 21, 22] provided by many operations such
as inversion or multiplication by a vector can be implemented very fast. However it is know
that circulant preconditioners cannot provide a proper cluster for multilevel matrices [23].

Consider a system
Ax = f. (66)

A well known method for solving such systems using preconditioning is the preconditioned
conjugate gradient method (PCG). The convergence of PCG with preconditioner C is equiv-
alent to application of the conjugate gradient method without preconditioning to the system

C1/2AC1/2C−1/2x = C1/2f (67)

We further describe the process of constructing the preconditioner C. We will use PCG
method with preconditioner C for numerical computations and formulation (67) for the
theoretical justification of eigenvalue clusterization.
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Let Wn = [wi−j]
n
i,j=1 be a Toeplitz matrix. Then a simple circulant Cn for it is a matrix

Cn =

{
circ (w0, w1, . . . , wm, w−m, . . . , w−1), n = 2m

circ (w0, w1, . . . , wm−1, 0, w−m+1, . . . , w−1), n = 2m− 1
, (68)

where
circ (c0, . . . , cn−1) = [ci−j(modn)]

n
i,j=1. (69)

Similarly, multilevel simple circulants are defined and the same properties are fulfilled for
blocks, as well as within each block. It can be proved [4] that if {Wn}n is a sequence of
Hermitian multilevel Toeplitz matrices, and {Cn}n is a sequence of corresponding simple
circulants, then {Wn}n and {Cn}n have the same distribution of eigenvalues.

Consider the problem (22) again. The discretization matrix of this problem by FEM
has the form (39). We describe the procedure for a possible effective preconditioning in this
case.

1. We construct from the truncated Toeplitz matrix A of the form (39) a full Toeplitz

matrix Â. This can always be done uniquely for sufficiently large matrices due to
the fact the basis functions have compact support. Moreover, a two-level Toeplitz
matrix and a truncated Toeplitz matrix of order N are uniquely determined by O(N)
elements (the first rows and columns in the first row and column of blocks), and one
set of elements can be converted to another in O(N) operations;

2. We construct from the full Toeplitz matrix Â a simple circulant S. It is also easy to
do in O(N) operations (every circulant, in particular multilevel, uniquely given by its
first column) based on formulas (68);

3. In practical tasks a circulant is often singular. In this case it can be replaced with the
so-called improved circulant [24], in which all zero eigenvalues are replaced by δ > 0.
One can build an improved circulant in O(N logN) operations. Let us denote a new

circulant as Ŝ;

4. We invert the circulant Ŝ obtaining Ŝ−1 which takes O(N logN) operations;

5. Below we will show that

Ŝ = P

A−1 0 0
0 A−1 0
0 0 I

P ∗ + L̂n = P

A−1 +R(1) R(2) R(5)

R(3) A−1 +R(4) R(6)

R(7) R(8) R(9)

P ∗, (70)

where R(k) are low-rank matrices. So we take the block A−1 +R(1) as a preconditioner
C. However will not construct and store A−1 + R(1) explicitly. In practice we only
compute Ŝ−1 and later we will show that it is enough for computing the product of
A−1 +R(1) by a vector.

Now we show that the sequence of matrices C
1/2
n AnC

1/2
n , where Cn is obtained from An in the

way described above, has a distribution of eigenvalues with symbol 1. Since the sequence of
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matrices {An}n arises while discretizing the problem (22), it has a GLT 2
P -distribution with

some symbol f . Then Ân looks like

Ân = Pn

An 0 0
0 An 0
0 0 In

P ∗n +Mn, (71)

where Mn is a self-adjoint matrix of small rank. Indeed, here we do not remove the nodes
corresponding to the diagonal of the parallelogram as in Section 4.3, but instead renumber
in such a way to move them to the last positions in the matrix. Then we get

Ân = Pn

 An 0 R̂
(1)
n

0 An R̂
(2)
n

R̂
(3)
n R̂

(4)
n R̂

(5)
n

P ∗n , (72)

where the size of block R̂
(5)
n is small relatively to the size of matrix. Then there is a low-rank

transformation Mn such that (71) holds.
Note that the circulant Sn for a two-level Toeplitz matrix of the form (38) is obtained

from Ân by self-adjoint low-rank transformation, hence,

Sn = Pn

An 0 0
0 An 0
0 0 In

P ∗n + R̃n, (73)

Further, any circulant matrix can be represented as
1

N
F ∗nΛnFn. If the matrix Sn has an

independent of n number of zero eigenvalues, in order to improve the circulant Sn, it is

necessary to add to it a matrix of the form
1

N
F ∗nΛnFn, where Λ is a diagonal matrix and

has an independent of n number of nonzero diagonal elements. Hence, transition from Sn
to Ŝn is again low-rank self-adjoint transformation. As a result, the matrix

Ŝn = Pn

An 0 0
0 An 0
0 0 In

P ∗n + R̂n, (74)

where R̂n is a self-adjoint low-rank matrix, which implies that {Ŝn}n is a GLT-sequence with

the same symbol f . Then, from a general theory, the sequence of matrices {Ŝ−1
n }n belongs

to the GLT class with symbol 1/f . Also applying Woodbury matrix identity we obtain

Ŝ = P

A−1
n 0 0
0 A−1

n 0
0 0 In

P ∗ + L̂n = P

A−1
n +R

(1)
n R

(2)
n R

(5)
n

R
(3)
n A−1

n +R
(4)
n R

(6)
n

R
(7)
n R

(8)
n R

(9)
n

P ∗, (75)

where again L̂n is a low-rank matrix as well as R
(k)
n , k = 1, . . . , 9.
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As it was said above we take Cn = A−1
n + R

(1)
n . From the definition of GLT 2

P we deduce
that {Cn}n belongs to GLT 2

P with symbol 1/f , which implies that the matrix sequence

{C1/2
n AnC

1/2
n }n belongs to GLT 2

P with symbol 1.
So, we have proved that the above preconditioning procedure gives a cluster of eigenvalues

in 1. One more ingredient which we need for efficient preconditioning procedure is the fast
iterations of CG method. For this purpose we need to show how we can efficient multiply
Cn by a vector.

As is was already said we do not construct Cn explicitly. The only matrix we need to
build is Ŝ−1

n , which can be done in O(N logN) operations. We also need the permutation
matrix Pn, but obviously it can be constracted in O(N) operations following the reasonings

presented in Section 4.3. Now let we need to multiply Cn = A−1
n + R

(1)
n by a vector v. We

define v̂ = [v, 0, 0]T . ThenA−1
n +R

(1)
n R

(2)
n R

(5)
n

R
(3)
n A−1

n +R
(4)
n R

(6)
n

R
(7)
n R

(8)
n R

(9)
n


v0

0

 =

 CnvR
(3)
n v

R
(7)
n v

 = P ∗n Ŝ
−1
n Pnv̂. (76)

Multiplication by a permutation matrix requires O(N) operations and multiplication by a
circulant requires O(N logN) operations, so one step of PCG can be done in O(N logN)
operations.

Thus, an efficient preconditioning scheme was constructed, namely, the construction of
the preconditioner requires O(N logN) operations, one iteration of PCG method requires
O(N logN) operations (given that the discretization matrix is highly sparse and multiply-
ing by it takes O(N) operations), and the matrix after preconditioning has a cluster of
eigenvalues in 1.

Numerical computations were carried out, according to the scheme described above.
The matrix A of the dimension 5050 × 5050 obtained by discretizing the problem (22)
in the domain that is an isosceles rectangular triangle was considered. Consequently, the
matrix A exactly has the form of reduced Toeplitz matrix (39). At first we implemented the
preconditioner construction scheme described above and built the precondioner C explicitly.
Then we computed the matrix C1/2AC1/2 as well as numerically computed the eigenvalues
of A and C1/2AC1/2. Figure 8 shows the eigenvalues of the matrix A before and after
preconditioning. At the point k each curve takes on a value equal to the k-th smallest
eigenvalue of the corresponding matrix. This experiment confirms that C1/2AC1/2 has the
cluster of eigenvalues in 1. Then we implemented the conjugate gradient method for solving
the system of linear algebraic equations with matrix A. In this case we do not build matrix
C, but only the circulant Ŝ−1. We generated a random right hand side from standard normal
distribution and applied the CG method and PCG method with preconditioner C. Figure 9
shows the residual norm at various steps of the conjugate gradient method. This log-scale
plot shows extremely superior convergence of PCG with the proposed preconditioner.

Remark. In addition, it is worth noting that the proposed preconditiong procedure
can be directly extended to the case of discretization matrices for polygonal domains. If we
use numeration in which the vertices of one triangle are numbered at first, then the second
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Figure 8: The distribution of eigenvalues with and
without preconditioning.
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Figure 9: The values of the residual norm with and
without preconditioning in the conjugate gradients
method.

triangle is numbered, third, and so on, that is, the numbers of inner nodes of each triangle
correspond to the certain segment of consecutive positive integers, then for such a problem,
the procedure of efficient preconditioning is correct, namely, it is necessary to construct an
appropriate preconditioner for each basic triangle and to use as a preconditioner for the
problem on the polygon a block-diagonal matrix with blocks on the diagonal, corresponding
to the preconditioners for the triangle problem. It is easy to see that such a preconditioner
also guarantees the clustering of eigenvalues as well as enabling efficient construction and
multiplication by a vector.

8. Conclusion

In this paper there was considered a problem of finding the spectral distribution of the
matrix sequences arising in a discretization of differential problems defined on polygonal
domains. It was shown that at least in case of a triangular domain (and more generally for
non rectangular domains) the GLT-theory is insufficient for finding the spectral distributions,
that is, the FEM discretization generates sequences, which do not belong to GLT class. On
the other hand, it was proposed a generalization of GLT-sequences that enables to cope
with wide range of PDE discretization problems defined on polygnal domains. Using the
presented theory, an efficient preconditioning method for systems with truncated Toeplitz
matrices was proposed and numerically justified.
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