
Uppsala Universitet
Computing Science Department, Institute of Technology

Course: Patterns and Frameworks (Spring 1999)
Instructor: Amnon H. Eden
Authors: Andreas Gustavsson

Mattias Ersson

2nd submission July 2nd, 1999

Formalizing the Intent of Design Patterns
An Approach Towards a Solution to The Indexing Problem

Abstract
The intent section of a pattern description is written in easily understood, natural language, which
unfortunately has the drawback of being too imprecise and unstructured for certain applications of the
intent section.

We will in this essay try to formalize the intent section of a pattern description. Our aim will
be to find a structure within the intent description that will reduce ambiguities and at the same time
make the classification of patterns easier. The classification of patterns addresses the problem of
“labeling” patterns into one of the following categories: Creational, Structural or Behavioral.
Succeeding in classifying patterns by the intent does require that enough information for doing so is
contained in the one to two sentences that make up the intent. Whether this is the case or not will be
discussed in the essay.

A formalized intent section of a pattern description can not replace the understandability of
the natural language description but can be thought of as a complement to the standard structure to
patterns today.

2

INDEXING DESIGN PATTERNS BY FORMALIZING THE INTENT 1

Abstract 1

Background 3

Proposals 3

Sentence structure of the intent 3
Creational patterns 4
Structural patterns 5
Behavioral patterns 7

Discussion 11
Sentence structure of the intent 11

Conclusions 11

Graphical representation of the intent 12

Discussion 17

Conclusions 18

3

Background
Our main goal with the formalization of the intent section in the pattern description is to make the task
of finding an appropriate pattern, when looking to solve a problem, easier. This is often referred to as
the indexing problem. If you are familiar with patterns and work with them a lot, you will probably
know most of, for example the [GoF] patterns by heart and will have no trouble picking the correct one
when you are searching for a design solution. If you on the other hand are not familiar with the
patterns, you will have to read through all of the patterns in the book before you will be able to make
your pick. The best index in the [GoF] book is the listing of the patterns with the intent descriptions.

Since a pattern catalogue is basically a catalogue of reusable design ideas it will become really
usable when it contains a large number of patterns that are indexed in a way the provides for the
catalogue to be used as almost any other reference. The cost of finding a reusable component or design
solution has to be relatively low. Otherwise the developer will not use it, but come up with a solution of
her own, that has not been tested and proved effective in the same way as an existing design pattern.
[ISSE]
A problem with indexing patterns is however that the name of the pattern, which otherwise would be
an intuitive, primary candidate to index on, does not convey enough information about the pattern. The
name is perfectly fine to use in an index or table if the reader is already well acquainted with the
patterns. If not, an ever so well-chosen name for a pattern is (in most cases) not sufficient to help the
reader to determine if the pattern provides a solution to a particular problem. This leads us too look for
another way of indexing patterns so that a developer that is searching a solution to a problem in a
patterns catalogue can find a such in reasonable time, without having to read the whole catalogue.

Our appreciation is that the intent section provided in the way that the Gang of Four presents
patterns drastically narrows down the search space of patterns that are applicable to the solution for a
particular problem. As of today the intent part is not appropriate for indexing though. It consists of a
couple of sentences in natural language, describing the essence of a pattern. How does one index on
sentences though? Alphabetically on the first word of the sentence (several words if necessary of
course), is probably the only feasible answer. If there was a way to index on the meaning, or semantics
of the sentences this would be a much better way, since the alphabetical order has very little to do with
finding a good solution to a problem. What different patterns really achieve does.

The index of intent that is presented in the GoF book, listed in three different groups, ordered
alphabetically on the name of the pattern, is perhaps good enough for finding a pattern solving a
problem, since there are relatively few patterns presented in the book. If a larger number of patterns
were listed, the effort of finding a pattern would be too high.

Proposals
In this paper we present two heuristics that are possible steps on the way of finding a solution to the
indexing problem. Even if the pattern community today is somewhat reluctant to formalize pattern
material, since this would decrease creativity, this is necessary to a certain extent in order to be able to
compose an index without ambiguities. When you are looking to solve a problem, you’ll probably want
to find a solution that does help you with the problem rather than a solution that could be applicable.

Therefore, we will first present a technique for rewriting the intent descriptions of the [GoF]
book, in order to further increase the structure in the intent-index compared to what the case is in the
book today. This will be achieved by formalizing the structure of the sentences that makes up the intent
description.

Secondly we will present a graphical representation of the intent description. This is made of a
modular system, presenting different entities, common to object oriented design, in combinations that
will make it possible to group and list these combinations in a way that provides for indexing on them.

Sentence structure of the intent
The patterns in [GoF] have a fairly coarse classification into groups of creational, structural and
behavioral patterns. Within these groups they are listed in alphabetical order, based on the name of the
pattern. The intent itself does not give us any clue as to where it belongs, in any other way than being
related to a pattern that conforms to this particular classification.

4

If the intent description itself could convey such information, it would be easier for a reader of
the intent to immediately see what type of pattern it belongs to. And by that, also what kind of problem
the author or authors of the pattern were addressing when they wrote down the intent.

The above is not entirely true though, it is possible to extract some semantic information from
the description when taking a closer look at them. The trick is to extract this information and transfer it
to the grammatical or syntactic structure, which is easier to get a feel for intuitively, without having to
actually grasp the meaning of the sentence. This of course has to be done in a way that does not destroy
or alter any of the semantic information presented in the intents, before rewriting them.

Creational patterns
For the creational patterns we can see that all but one (the Singleton pattern) directly talk about creating
some entity with some behavior by performing some action or actions to provide for the result. In some
cases supplementary information on the outcome or result of use of the pattern is also provided.

The Singleton pattern does this indirectly. In this pattern, instances can not be created, so it is
a simple negation of the creation of some entity.

The structure of the intent descriptions for creational patterns could therefore be built in the
following way:

Negation Create Entity Action Force Supplementary information

Applying this to the [GoF] descriptions gives us the following rewritten intents:

Abstract factory
Provide an interface for creating families of related or dependent objects without
specifying their concrete classes. [GoF p.87]

New structure:
Create Entity Action Force
Create Families of related or

dependent objects
By providing an interface
for doing so

Without specifying their concrete
class

New description:
Create families of related or dependent objects by providing an interface for doing so, without
specifying their concrete class.

Builder
Separate the construction of a complex object from its representation so that the same
construction process can create different representations. [GoF p.97]

New structure:
Create Entity Action Supplementary information
Create Complex objects By separating the

construction from its
representation

So that the same construction
process can create different
representations.

New description:
Create complex objects by separating the construction from its representation so that the same
construction process can create different representations.

Factory method
Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses. [GoF p.107]

New structure:
Create Entity Action Supplementary information
Create Objects By defining an interface that lets

subclasses decide which objects to
instantiate.

Factory Method lets a class defer
instantiation to subclasses.

5

New description:
Create objects by defining an interface that lets subclasses decide which objects to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Prototype
Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype. [GoF p.117]

New structure:
Create Entity Action Force
Create Objects By copying a prototype. Specify the kinds of objects to create using this

prototypical instance.

New description:
Create objects by copying a prototype. Specify the kinds of objects to create using this prototypical
instance.

Singleton
Ensure a class only has one instance, and provide a global point of access to it.
[GoF p.127]

New structure:
Negation Create Entity Action
Do not Create More than one instance of

a class.
Provide a global point of access to it.

New description:
Do not create more than one instance of a class. Provide a global point of access to it.

Structural patterns
The structural patterns, that deal with the composition of objects or classes all talk about some action
that will be applied to an entity and what result or effects that will be achieved for doing so. In some of
the patterns the outcome of the action is some form of transformation of the entity. In those cases the
intent specifies this outcome. The common semantic structures of the intents are as follows:

Action to apply Entity Outcome Result

Some of the intents described among the structural patterns fits perfectly fine into this model
in their original form. However, if not all of them do so, we can not get any help with the indexing
problem by looking at the structure of the sentences.

The intent description can, using this scheme be rewritten as follows:

Adapter
Convert the interface of a class into another interface clients expect. Adapter lets classes
work together that couldn’t otherwise because of incompatible interfaces. [GoF p.139]

New structure:
Action to apply Entity Outcome Result
Convert The interface of a class Into another

interface clients
expect.

Adapter lets classes work together
that couldn’t otherwise because of
incompatible interfaces.

New description:
Convert the interface of a class into another interface clients expect. Adapter lets classes work together
that couldn’t otherwise because of incompatible interfaces.

Bridge
Decouple an abstraction from its implementation so that the two can vary independently.
[GoF p.151]

6

New structure:
Action to apply Entity Result
Decouple from each
other

An abstraction and its implementation So that the two can vary
independently

New description:
Decouple from each other, an abstraction and its implementation, so that the two can vary
independently.

Composite
Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly. [GoF p.163]

New structure:
Action to apply Entity Outcome Result
Compose Objects Into tree structures to represent

part-whole hierarchies
Composite lets clients treat
individual objects and compositions
of objects uniformly

New structure:
Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.

Decorator
Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality. [GoF p.175]

New structure:
Action to apply Entity Result
Dynamically attach additional
responsibilities to

An object Decorators deliver a flexible extending
mechanism.

New description:
Dynamically attach additional responsibilities to an object. Decorators deliver a flexible extending
mechanism.

Façade
Provide a unified interface to a set of interfaces in a subsystem. Façade defines a higher-
level interface that makes the subsystem easier to use. [GoF p.185]

New structure:
Action to apply Entity Result
Provide a unified interface to A set of interfaces

in a subsystem
Façade defines a higher-level interface that
makes the subsystem easier to use.

New description:
Provide a unified interface to a set of interfaces in a subsystem. Façade defines a higher-level interface
that makes the subsystem easier to use.

Flyweight
Use sharing to support large numbers of fine-grained objects efficiently. [GoF p.195]

New structure:
Action to apply Entity Result
Use sharing on Objects Flyweight allows for large numbers of fine-grained objects to be

handled efficiently

7

New description:
Use sharing on objects. Flyweight allows for large numbers of fine-grained objects to be handled
efficiently.

Proxy
Provide a surrogate or placeholder for another object to control access to it. [GoF p.207]

New structure:
Action to apply Entity Result
Provide a surrogate or placeholder for another Object To control access to it

New description:
Provide a surrogate or placeholder for another object to control access to it.

Behavioral patterns
For the behavioral patterns the important issue is the (run time) behavior of a certain entity or construct
in the program. This is achieved by performing some action in the program, and the intents descriptions
sometimes provides information on what the results of using the patterns are. This leads to the
following structure of the behavioral descriptions:

Objective Course of action / proceedings Result

The central part of this structure is the behavior, and using this heuristic with the model as
above does give us a conflict with the classification as they are presented in [GoF]. The Visitor pattern
only handles behavior in an indirect way and does not easily resolve to just a rephrasing of the
sentences. The action performed is the central part in this pattern. It is still left in this section here
though, in order to conform with the classification in [GoF].
The intents are rewritten as follows:

Chain of responsibility
Avoid coupling the sender of a request to its receiver by giving more than one object a
chance to handle the request. Chain the receiving objects and pass the request along the
chain until an object handles it.[GoF p.223]

New structure:
Objective Course of action / proceedings
Avoid coupling the sender of a
request to its receiver

By giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the chain
until an object handles it.

New description:
Avoid coupling the sender of a request to its receiver by giving more than one object a chance to
handle the request. Chain the receiving objects and pass the request along the chain until an object
handles it.

Command
Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations. [GoF p.233]

New structure:
Objective Course of action /

proceedings
Result

Parameterize clients with
different requests

By encapsulating a
request as an object.

Command lets you queue or log requests and
support undoable operations.

8

New description:
Parameterize clients with different requests, by encapsulating requests as an object. Command lets you
queue or log requests and support undoable operations.

Interpreter
Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the language. [GoF p.243]

New structure:
Objective Course of action / proceedings
Interpret sentences in a given
language

By using a representation that is defined along with the grammar
for the language.

New description:
Interpret sentences in a given language, by using a representation that is defined along with the
grammar for the language.

Iterator
Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation. [GoF p.257]

New structure:
Objective Result
Access elements of an aggregate
object sequentially

Iterator provides a way to access the elements so that underlying
representation is not exposed.

New description:
Access elements of an aggregate object sequentially. Iterator provides a way to access the elements so
that underlying representation is not exposed.

Mediator
Define an object that encapsulates how a set of objects interact. Mediator promotes loose
coupling by keeping objects from referring from each other explicitly, and lets you vary
their interaction independently. [GoF p.273]

New structure:
Objective Course of action /

proceedings
Result

Encapsulate the
interaction of a set of
objects

By defining an
object for this

Mediator promotes loose coupling by keeping objects
from referring to each other explicitly, and lets you
vary their interaction independently

New description:
Encapsulate the interaction of a set of objects, by defining an object for this. Mediator promotes loose
coupling by keeping objects from referring from each other explicitly, and lets you vary their
interaction independently.

Memento
Without violating encapsulation, capture and externalize an object’s internal state so that
the object can be restored to this state later. [GoF p.283]

New structure:
Objective Result
Capture and externalize an object’s internal
state so that this state can be restored later

Memento does so without violating encapsulation.

New description:
Capture and externalize an object’s internal state so that this state can be restored later. Memento does
so without violating encapsulation.

9

Observer
Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically. [GoF p.293]

New structure:
Objective Course of action / proceedings
All dependencies are notified and updated
automatically when one object changes state

By defining a one-to-many relationship between
objects.

New description:
All dependencies are notified and updated automatically when one object changes state, by defining a
one-to-many relationship between objects.

State
Allow an object to alter its behavior when its internal state changes. The object will
appear to change its class. [GoF p.305]

New structure:
Objective Result
Allow an object to alter its behavior when its
internal state changes

The object will appear to change its class

New description:
Allow an object to alter its behavior when its internal state changes. The object will appear to change
its class.

Strategy
Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it. [GoF p.315]

New structure:
Objective Course of action / proceedings Result
Make algorithms in a family of
algorithms interchangeable

By encapsulating each one Strategy lets the algorithm vary
independently from clients that
use it

New description:
Make algorithms in a family of algorithms interchangeable by encapsulating each one. Strategy lets the
algorithm vary independently from clients that use it.

Template method
Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without changing
the algorithm’s structure. [GoF p.325]

New structure:
Objective Course of action /

proceedings
Result

Defer steps of
algorithms to subclasses

By defining the skeleton of
an algorithm in one
operation

Template Method lets subclasses redefine
certain steps of an algorithm without
changing the algorithm’s structure

New description:
Defer steps of algorithms to subclasses, by defining the skeleton of an algorithm in an operation.
Template Method lets subclasses redefine certain steps of an algorithm without changing the
algorithm’s structure.

10

Visitor
Represent an operation to be performed on the elements of object structure. Visitor lets
you define a new operation without changing the classes of the elements on which it
operates. [GoF p.331]

New Structure
Objective Course of action / proceedings Result
_ Represent an operation to be

performed on the elements of an
object structure

Visitor lets you define a new operation without
changing the classes of the elements on which it
operates.

New description:
No rewriting has been performed, since the description is difficult to fit into the model used. This will
be disputed further in the discussion.

11

Discussion

Sentence structure of the intent
What is important when looking at the proposed restructuring of the intent descriptions, is not primarily
the results achieved here, but the technique used for achieving them. A language researcher would
certainly do a lot better work at deciding in what parts to divide the sentence structure. What is
interesting though, is that it is possible to use such a heuristic in order to satisfy the same structure
requirements on the sentences of the intent descriptions within the same group. In only one case was
this not fully applicable, in the case of the Visitor pattern. It can actually be argued that the Visitor
pattern is not a behavioral pattern. It does talk about how to represent something in order to perform
operations on elements, rather than a specific behavior.

With this in mind, it is possible to see that not only is a structuring like this a help for the
reader of a intent, but also for the author of a pattern, or the person that is classifying the pattern. If it is
hard to write an intent according to the structure, or rewrite it to fit the model, it is maybe the case that
the pattern should belong to a class whose structure fits the intent better.

The heuristic does however not bring in any new or better information in the intent, but simply
reorganizes the words in order to simplify classification and thereby indexing on the intent section of a
pattern description.

Conclusions
With simple means it is possible to reorganize the natural language used in the intent descriptions,
without changing the semantics of the sentences, so that classification and thereby indexing on the
intent will be easier. It is also a helpful heuristic, when writing or rewriting the description, to see that
the pattern really belongs to the class that it was originally intended for.

12

Graphical representation of the intent
In this section of this paper we try to interpret words and sentences of the intent part of all patterns in
the [GoF] as graphical symbols. To compile and systematize a natural language into symbols is in fact
hard. When every word which we use has a meaning to us, how is it possible to give definitions of
common words as ”object” and ”class”. In this paper the scope is the ”natural language” of OOP which
gives us a smaller domain of words and definitions then ordinary languages as English and Swedish.
With this domain in mind we will try to illustrate the intent part of the patterns in simple symbols and
entities so when looking at them understand the ”intent” of the pattern easily.

Because of the relation between natural language and graphical symbols it is inevitable that
the making of these symbols and graphs are based on a more thorough knowledge of the pattern than
just the intent section. The symbols sometimes give away more information than the intent itself.
Especially when the intent does not speak about any object oriented terms. The purpose however is not
to be a exact representation of the intent sections as they are written in [GoF] today, but rather extend
them in a formalized way in order to make indexing easier.

We begin with very simple concept, definitions, and so forth, and step by step build up a graphical
representation of the intent part of all patterns in the [GoF].

Entities of the graphical representation:

When representing an object of a certain class, a pattern fill will show the relation between the object
and its class.

Two objects can have the same interface but different behaviors and states.

O b ject in ter face/ty p e

O b ject b eh av io r

O b ject d ata

C o n crete clas s

A b s tract clas s

A n o b ject

ObjectClass

13

When objects or classes have an arrow line between them, they have some sort of interactions. The
arrow line, have some sort of meaning depending of what symbol that is placed beside.
When the symbol ”%” appears it means change. The right entity describes what is changed in the left
entity.

This picture represents the intent of the Adapter pattern.
To the left is a class or object that is changed and to the right is the
symbol representing what is changed i.e. the interface. Note that the
pattern does not imply that classes and objects have to be used in this
way simultaneously, it is rather an or situation.

This picture represents the intent of the Bridge pattern.
The abstraction (the interface) is decoupled from the implementation,
(behavior and data) so that the two can vary independently.

When the symbol ”+=” appears it means add, however not commutative. The right entity describes
what is added to the left entity.

This picture represents the intent of the Decorator pattern.
To the left is an object that gets additional functionality.

This picture represents the intent of the Visitor pattern.
To the left is an object that gets additional behaviors.

When the symbol ”=>” appears it means save and revert. The right entity describes what is saved and
reverted to the left entity.

This picture represents the intent of the Memento pattern.
To the left is an object that saves(the ”=” symbol) the state of the right
object. The light grey arrow means that the action can be reverted.

This picture represents the intent of the Command pattern.
To the left is an object that saves(the ”=” symbol) the message. The
light gray arrow means that the action can be reverted.

%

%

+=

+=

=

=
M

14

When a dashed line appears it means that it is the real change but the appearing result is the change of
the non dashed line.

This picture represents the intent of the State pattern.
It is actually the internal state that changes (of the object to the left) but
the object change its class.

So far we have looked into changes of one object. Objects can also interact with each other using their
interface. When using an object the client sends and the object reacts accordingly. So the symbol ”M”
stands for a message that is send to the object

This picture represents the intent of the Flyweight pattern.
Several messages are send to the objects from different angles. This
means that several clients share the same object since there is arrow
lines from different clients.

This picture represents the intent of the Strategy pattern.
Several messages are send to the objects but through the same way.
The line split into many arrow lines means that there is an option of
which path to choose; one of the paths can be chosen by the message.

This picture represents the intent of the Composite pattern.
All nodes and leaves hava a uniform interface but different behaviors
and states.

This picture represents the intent of the Facade pattern.
Messages are handled in the same way as the Strategy pattern.
Intersecting objects means that they have combined their interfaces and
the client sees them as one object.

%

%

M M M MM

M

M

M

M

15

When a client send a message indirectly to an object (i.e. the client send a message to representative
that decides what to do with it) it is represented by a bullet line.

This picture represents the intent of the Chain of Responsibility
pattern. The client (optionally) sends the message to a
representative that send the message to the next object in the
chain. The intent part does not mention anything about the type of
the objects in the chain. Therefor the objects are represented
without any pattern fill.

When an object has an access control to it, it's represented with an @-filled object.
This object handles the access to the object and works as an access point to it.

This picture represents the intent of the Proxy pattern.
The client sends the message to a representative handles the access to the object.

This picture represents the intent of the Iterator pattern.
The client sends the message to a representative that handles the access to the data of
the object.

This picture represents the intent of the Mediator pattern.
The client sends the message to a representative (the bullet line to
the access object) that handles the access for the interaction to the
other objects(the arrow lines). The access can be changed.

This picture represents the intent of the Observer pattern.
When the objects state change it send messages to all the dependent
objects. Note that the message arrow line starts at the end of the
change arrow line. This means that when the change occurs the
message is sent.

M M M M

@

M

M

@

M

M

M

@ % @

%

M MM

16

When deferring instantiations to subclasses the ” ¿” symbol is used.

This picture represents the intent of the Template Method pattern.
Subclasses are hooked (i.e. ”¿” symbol) to an abstract class (the
subclass redefine the abstract class). The picture represents some
related (steps) of an algorithm with conditional choices of
subclasses i.e. let the subclass decide what to do in the specific part
of the algorithm.

When creating an object the ”*” symbol is used.

This picture represents the intent of the Builder pattern.
The construction process (i.e. the ”*” symbol) can create objects with
different representations. Therefor the conditional arrow line.

This picture represents the intent of the Prototype pattern.
One object(the prototype) is used to create another by copying it.

This picture represents the intent of the Abstract Factory pattern.

¿

¿

M

M

*

*

* **

17

An interface is provided to create related objects without specifying
their concrete classes.

This picture represents the intent of the Factory Method pattern.
An interface is provided to create an object.
Instantiation is deferred to subclasses.

This picture represents the intent of the Singleton pattern.
When creating an object of the class the conditional creation arrow
line ensure that only one instance of the class exists. The ”empty
set” symbol illustrated that no object is created.
Access control is provided for the object.

This picture represents the intent of the Interpreter
pattern.
Related classes are used to create a structure of related
objects.

Discussion

*
¿

Ø

@

M

M

18

Graphical representation of the intent
When trying to illustrate the intent part we ran across many difficulties.
What is the key issue of the pattern according to the intent?
What is the best symbol for an object?
And so forth...

By using simple symbols as ”*” for creation to the more exotic ” ¿” to illustrate a hook we try
to minimize the learning of the symbolic language we used. But this will also reduce the power to
express the intent sentences.

In the quest for indexing the patterns we discovered that looking at similarities between the
pictures one can see structures that repeatedly will be visible in several patterns. But this is both due to
the small formalized symbol language used and hopefully similarities in the patterns.

Evidently the notation used resembles existing algebraic notations, and it most possibly would
be a good idea to examine such for even better, and more widely used symbols. To do this in a good
way would however require a substantial work in order to find the best existing symbols for this
problem, and is out of scope for this paper.

Conclusions

With this simple graphical representation of the intent part of the [GoF] it is possible to fast and easy
find a pattern that can help solving a problem. It will not replace the intent part but maybe be a good
complement to the pattern catalog.

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides “Design Patterns Elements of
Reusable Object-Oriented Software”, Addison-Wesley, 1998
[ISSE] Ian Sommerville “Software Engineering”, 5th ed., Addison-Wesley, 1997

