
7HFKQLFDO�UHSRUW���������
Department of Information Technology January 2000
Uppsala University ISSN 1404-3203

([WHQGLQJ�(UODQJ�ZLWK
6WUXFWXUHG�0RGXOH

3DFNDJHV

5LFKDUG�&DUOVVRQ



Extending Erlang with structured

module packages

Richard Carlsson

Computing Science Department

Uppsala University

Box 311, S-751 05 Uppsala, Sweden

richardc@csd.uu.se

December 2, 1999

Abstract

This article describes a way to extend Erlang with structured program

module packages, in a simple, straightforward and useful way.

1 Introduction

When Erlang was conceived, it inherited a lot of its 
avour from languages
like Strand, Prolog and Parlog, which (at least in many implementations) have
a similar concept of program modules: these are program �les (\compilation
units"), each assigned a globally unique name (in the system), and each declaring
some or all of its functions as exported. Non-exported functions can only be
referred to from within the same module, while exported functions are also
accessible from any other module in the system. In Erlang, �les containing
source or object code for a module must be given the same name as the module,
plus a su�x which is \.erl" for source �les, and e. g. \.jam" for object �les for
the JAM abstract machine.

The name space for modules in these languages is 
at, i. e., when a partic-
ular module is referred to, this is always done by its full name, regardless of
the context in which the reference is made: there is no way to express a refer-
ence to another module in relation to the current module. Furthermore, since
programmers like to keep names short, names such as \lists", \math", \queue",
\shell", \random", etc., quickly become used (these examples all taken from
the standard library). When code from di�erent vendors is combined in the
same system, each distribution possibly consisting of several hundred modules,
the likelihood of one or more name clashes becomes large. Also, because of the
meta-calls often used in Erlang, it is not always an easy task in such cases to
rename the clashing modules uniquely without introducing errors, even if the
source code is available. To keep the risk of clashes down, some programmers
resort to giving modules abbreviated names such as \gb", \rb" \dbg", etc.,
which is uninformative and could be considered bad programming style, or us-
ing pre�xed names such as \snmp supervisor", \snmp error", \snmp generic",

1



etc., which more or less solves the problem, but in a way that is clumsy and
limited by the maximum length of �le names on the host operating system.

Section 2 of this article describes the package system of Java and introduces
the basic workings of a similar system for Erlang. Section 3 describes exten-
sions to the Erlang language in order to make life easier for the programmer
using packages. Section 4 discusses possible pitfalls, and section 5 is a summary
of the system and the necessary changes.

2 A package system

To solve this situation and bring order to the present chaos, I suggest a system
of packages whose basic structure is shamelessly borrowed from that of Java [2].

In Java, each compilation unit is a publicly available class, which is similar to
a module in Erlang, the main di�erence being that Erlang modules cannot
have distinct instances and do not support inheritance. Java source and object
�les are, like Erlang modules, given the name of the public class they contain
plus the extensions \.java" and \.class", respectively.

In Java, however, classes can belong to a package: this is a way of structuring
the �les, and is orthogonal to the class hierarchy of Java. The same concept
can therefore be applied to Erlang, even though it is not an object-oriented
language.

2.1 The structure of packages in Java

If a Java class �le (having the su�x \.java") contains a package declaration

stating a package name, then that class �le belongs to the named package.
Furthermore, the package name also indicates to the Java implementation where
the object �le is located.

A Java package name consists of a sequence of names separated by period
characters, such as

java.rmi.server

The full name of the class RemoteObject in this package, then, is

java.rmi.server.RemoteObject

When the Java implementation tries to load the object �le for a class by
its full name, it uses its CLASSPATH setting. This is simply a sequence of �le
system paths in the host operating system, which are to be used for the search
in the order they are given. The package name is then subdivided at each period
character into a sequence of one or more names. This is interpreted as a relative
path in the host operating system, in a way that is system-dependent: in a
Unix-like system, the relative path corresponding to the above package name
would be

./java/rmi/server/

An attempt is then made to, for each path ROOT listed in CLASSPATH, load the
�le whose name is the concatenation of ROOT, the relative path for the package,
the class name, and the object �le su�x (\.class"); in this example:

ROOT/java/rmi/server/RemoteObject.class

2



until such a �le is found for some ROOT, or all paths in CLASSPATH have been
tried. With this approach, object �les are thus located in a set of directory
trees, rather than in a set of 
at directories.

When a Java program refers to a class that is not de�ned in the same �le, and
by its class name only, the Java compiler will assume that the class is de�ned in
the same package as that of the current �le, and will not confuse it with classes
of the same name in other packages. In this way, a package declaration creates
a distinct name space for classes.

For simplicity, and often useful for testing or writing simple applets, if a Java
source �le does not contain a package declaration, it is automatically placed in
the \unnamed default package", which is a 
at name space just like the current
Erlang module system.

2.2 Packages in Erlang

Today, Erlang module names seldom or never contain period characters; one
reason for this is that since the module name declaration of an Erlang module
has the form

-module(<A>).

where <A> is an Erlang atom,1 such a module would have to be declared as
e. g.

-module('foo.bar').

stating the module name within single-quotes. Therefore, it can be expected
that the use of the period character as separator in module names can be adopted
with few (if any) existing Erlang programs needing rewriting.

My suggestion, then, is that Erlang modules in packages be named sim-
ilarly to full class names in Java: for instance, the full name of a module m

in a package a.b.c should be a.b.c.m, while its object �le would be named
\m.jam" (we assume for simplicity from now on that all object �les are for the
JAM abstract machine) and reside in a directory ROOT/a/b/c/ for some ROOT

in the search path of the Erlang code server. The object �le for a module
whose full name does not contain any period characters, such as e. g. io lib, is
thus assumed to be located in some directory ROOT/, exactly as in the Erlang
implementations of today; for this example, the �le would be ROOT/io lib.jam.

To handle this �rst step, only the code server needs to be modi�ed, and
only when the name of a requested module does contain period characters will
the behaviour di�er from that of today. It should also be apparent that this
convention is compatible with existing code: packaged code could pass a full
module name (generally as an atom) to old-style code, which could use the
name obliviously, even for making meta-calls, without errors; to the old code, a
module name does not have structure.

Existing standard modules could easily be moved into packages without dis-
turbing old code, by simply creating \stub" replacement modules in which all
exported functions make a direct jump to the function of the same name in the
corresponding packaged module; such stub modules will be small, and the extra

1Atoms are a primitive datatype in Erlang; they can be seen as nullary constructors,
and are identi�ed by their print names. Unless surrounded by single-quotes, their names
must begin with a lowercase letter, and not contain other characters than letters, digits, or
underscore (` '). Examples of atoms are foo, mad hatter and 'foo@bar'.

3



call is a relatively small cost. In particular, the package erlang and all its sub-
packages should be reserved for standard library functions. A library module
such as lists could e. g. be renamed erlang.list { thus note that this would
present a very good opportunity to restructure (by renaming, splitting, moving
individual functions, etc.) the existing standard modules, preferably according
to the suggestion for a new set of standard modules made by Jonas Barklund [1].
However, details of such a structuring of existing code into packages is outside
the scope of this article.

3 Extensions to the Erlang language

So far, I have only described a structured way of storing object �les in relation
to module names. If the Erlang language itself remained unchanged, this
convention would force the programmer to write the full module names, always
within single quotes, in all situations. This would be cumbersome and ugly, and
miss one of the main points with a structured name space: to be able to make
references relative to the current package.

3.1 A new form of module declarations

It is a simple task to extend the Erlang grammar to not only accept module
name declarations on the form

-module(<A1>).

where <A1> is an atom, but also more generally on the form

-module(<A1>.<A2>� � �.<An>).

for n � 2, where all <Ai>, i 2 [1; n], are atoms. Each such atom could of course
be individually stated within single-quotes, and it is therefore necessary to check
that the atoms do not themselves contain period characters, and that they are
not the empty string (`'''). It is also recommended that some other characters,
such as e. g. `$' be reserved for future use in module names, for example for
auto-generated object �les for sub-modules, if such a concept would be shown
to be useful.

We introduce a little terminology:

� The full module name is the concatenation of the print names of the atoms
<A1>� � �<An> and the separating period characters. A full module name
should not contain two adjacent period characters.

� The module name is the atom <An>.

� The package name is the concatenation of the atoms <A1>� � �<An�1> and
the separating period characters.

for instance, in a declaration -module(fee.fie.foe fum)., the full module
name is given by the atom 'fee.fie.foe fum', the package name by the atom
'fee.fie' and the module name by 'foe fum'. For a module whose full name
contains no period characters, such as io lib, the package name is the empty
string, and the module name is the same as the full module name; thus, the
meaning of old-style declarations does not change.

4



3.2 Package-relative compilation

The main advantage with the extended form of module name declarations, how-
ever, is not to relieve the programmer from writing single-quotes: it is to signal

that the source �le is part of a package, and that module references within it
may therefore be interpreted as relative to the same package.

Note that it is still legal to use a declaration such as -module('foo.bar.baz')
to give a full module name, but that this does not enable package-relative com-
pilation. Compilation of modules with such old-style name declarations is not
a�ected by the transformations described in this section.

3.2.1 Explicit remote calls

When a remote call on the form

<A>:<F>(: : :)

is encountered in a packaged module, where <F> is any expression and <A> is an
atom whose print name does not contain period characters, then that atom is
interpreted as the name of a module in the same package as the current module.

In this case, the compiler will automatically replace <A> with the correspond-
ing full module name, by prepending the package name to <A>, separated by a
period character. For example, if the call fred:f() occurs in a module whose
package name is foo.bar, it will be replaced by the call 'foo.bar.fred':f().

This allows the programmer to e. g. create a module named lists in a
package, and refer to that module directly by that name without confusion with
the standard module of the same name.

To simplify calling modules in speci�c packages, it is easy to extend the
Erlang grammar to allow remote calls on the form

<A1>.<A2>.� � �<An>:<F>(: : :)

for atoms <Ai>, i 2 [1; n], n � 2, and an expression <F> (with the same restric-
tions on the atoms as in a module name declaration). Thus, a programmer is
not forced to write a full module name within single quotes, but still has the
possibility. For example, the calls

foo.bar.baz:f()

and
'foo.bar.baz':f()

are equivalent. Thus note that if the module speci�er is a single atom, then
that atom may contain period characters, but not otherwise.

3.2.2 Imported functions

Import declarations in packaged modules should be handled analogously to re-
mote calls. If an import statement

-import(<A>, [: : :]).

is encountered in such a module, and <A> is an atom whose print name does

not contain period characters, then that atom is interpreted as the name of a

5



module in the same package as the current module, and the full module name
is substituted by the compiler.

The Erlang grammar should also be extended analogously to allow period-
separated full module names to be written without surrounding single quotes in
import declarations; i. e., both

-import('foo.bar.baz', [: : :]).

and
-import(foo.bar.baz, [: : :]).

should be allowed, and be equivalent.

3.2.3 Forcing absolute module references

It is quite possible that a packaged module could need to refer to a module
that is not packaged (i. e., whose package name is the empty string). For this
purpose, it is necessary to be able to refer to a full module name using a leading
period character, as in the call

.lists:reverse(X)

This form (more generally described as .<A1>� � �.<An>, for atoms <Ai>, i 2
[1; n], n � 1), should therefore be included in the Erlang grammar for remote
calls and import declarations.

The same e�ect could be achieved by giving the module name with a prepended
period character within single quotes:

'.lists':reverse(X)

however, this is not recommended in general, since two atoms 'm' and '.m' do
not compare equal, but can be interpreted as references to the same object �le.

3.3 Meta-call support

Meta-calls are often used in Erlang, either for direct function calls as in the
following examples:

<M>:<F>(: : :)

and
apply(<M>, <F>, [: : :])

where <M> and <F> are any expressions evaluating to atoms, or for the evaluation
of a function call by a new process, as in:

spawn(<M>, <F>, [: : :])

spawn link(<M>, <F>, [: : :])

or
spawn(<N>, <M>, <F>, [: : :])

where in addition, <N> is an expression evaluating to an atom that is taken to
represent the name of an Erlang node.

6



It must then be remembered that the atoms yielded by evaluating expressions
<M> above must be full module names ; the built-in functions apply and spawn

(and their variants) can and should not be modi�ed to interpret module names
relative to the current module. As a simple example, consider a function

f(X) -> spawn(X, start, [: : :]).

de�ned in a packaged module foo.m, and a call

foo.m:f('my server')

in some other module. It would then be impossible for the spawn in function
foo.m:f/1 to know if the module name my server should be interpreted relative
to package foo or if it is a full module name whose package name is the empty
string. Thus, the apply and spawn functions should remain unchanged, always
interpreting the given module name as a full module name.

3.3.1 Getting the module name

Since it is generally a source of errors to be forced to write things more than once,
I suggest a new prede�ned (but not exported) function this module/0 which
returns the full module name of the module in which it occurs. For instance, to
ensure correct behaviour when spawning a process to execute a function run in
the current module, one could write

spawn(this module(), run, [: : :])

Another typical example is to pass the full name of the current module to
some other function, for general use including making meta-calls, as in

gen server:start(this module(), : : :)

The call this module() could be de�ned as synonymous to

module info(module)

using the already prede�ned function module info/1.
It would also be possible to use the automatically de�ned preprocessor macro

MODULE for the same purpose, but the use of the preprocessor for any purpose
is strongly discouraged by this author.

3.3.2 Getting package-relative names

Where, in a situation similar to those above, it is necessary to refer to a module
other than the current, but in the same package, it would be convenient to not
have to specify the full package name. This could be accomplished by another
prede�ned (not exported) function this package/1. For example, assume that
in a module m in package foo.bar, we are to spawn a function start/3 in a
module server in the same package. We could then write

spawn(this package(server), start, [: : :]

which would be equivalent to

spawn('foo.bar.server', start, [: : :]

7



but not dependent on the actual name of the current package.
The call this package(<A>) could be de�ned as a substitution of the print

name of <A> for the last component of the value of this module(), if <A> does
not contain period characters and is not the empty string `'''.

3.3.3 No other prede�ned functions!

There should be no other additions to the set of prede�ned functions or Erlang.
It might for some purposes be necessary to �nd the package name (the full
module name without the last segment) or the module name (the last segment
of the full module name) of the current module or of another module, or to
perform other operations on module names, such as concatenating a package
and a module name, or to map a full module name or a package name onto
a relative �le path, but such functions would more suitably be placed in some
separate support module.

It could also be argued that special versions of call and spawn should be
added to handle this kind of name expansion automatically, but this is the wrong
way to go. It would add extra prede�ned functions without solving the general
problem when full module names need to be passed between functions, and is
not even a big advantage. It is no doubt easier (but more opaque) to write, say

spawn(start, [: : :])

instead of
spawn(this module(), start, [: : :])

but e. g.
spawn this package(server, start, [: : :])

is not really simpler than

spawn(this package(server), start, [: : :])

Furthermore it can be argued that, in particular for spawn, local functions
should if possible never be called via a meta-call, since this requires the target
function to be exported from the module, even if it is not part of the o�cial
interface. A version of spawnwhich could initiate the evaluation of a named local
function, e. g. fun start/3, or an anonymous local function (a so-called \fun
expression") fun (: : :) -> : : : end, by a new process, would be much cleaner.2

3.3.4 Passing names of modules in other packages

When the full name of a module that is not part of the same package as the
current module is to be passed to some function for purposes as those described
above, it should be given explicitly as an atom, within single-quotes if neces-
sary. E. g., if we were to give the full name of module a.b.c as argument to
gen server:start/3, from a module x.y.z, we would write

gen server('a.b.c', : : :)

2It has been hinted that this form of spawn will be included in a coming release of Erlang.

8



The alternative would be to extend the syntax of period-separated atom
sequences to be allowed as general expressions, so we simply could write

gen server(a.b.c, : : :)

That, however, is taking the idea too far; we would then have introduced a
general kind of atom-concatenating operator in the language, which could be
used regardless of context, but there is no really good reason for being able to
write something like

f'R2'.'D2'g

where the period character could easily be mistaken for a comma, or what is
worse, be mistakenly inserted instead of an intended comma.

3.4 Imported module names

The currently existing import declarations in Erlang allow the programmer
to use functions in other modules than the current by their function names
only; e. g., a declaration -import(lists, [reverse/1]). allows a function call
lists:reverse(X) to be written more brie
y reverse(X), where the imported
name overrides any locally de�ned function of the same name.

A more general form of such declarations would allow the de�nition of a local

alias for a remote function, where also the actual name used locally for making
a call could be individually selected by the programmer.

When a packaged module needs to refer to several modules that are not in
the same package, it would then either have to specify the full module name
in each call to those modules, or use import statements so that the individual
functions can be called directly by name. However, there is then the possibility
that the same function name exists in two distinct modules, where both modules
have long full names, or that for some module, many functions are used but we
do not wish to import them all, perhaps because of the risk of clashes with
locally de�ned names.

3.4.1 Importing packaged modules

To support easier access to particular modules in cases such as the above, I
suggest a new form of import declaration, on the following form:

-import(<M>).

where <M> is a full module name.
The occurrence of such a declaration in a module would allow the use of

the module name alone, i. e., without a package name, in calls to the imported
module. For example, a declaration

-import(foo.bar.baz).

in module a.b.c would make a call

baz:f(: : :)

in the same module be synonymous to

foo.bar.baz:f(: : :)

9



However, the behaviour of this package(baz) would not be a�ected, as its
name suggests, yielding 'a.b.baz'.

In particular, note that since the imported module name is always a full
module name, a declaration -import(lists). would make a call lists:f(: : :)
in the same module be synonymous to .lists:f(: : :) thus correctly referring
to the module whose package name is the empty string.

It is important that all occurrences of this kind of import statement are pro-
cessed before any function-importing declarations are expanded, since the latter
should be interpreted relative to the former, as well as to the current pack-
age. Thus, the two declarations -import(foo.bar.baz). and -import(baz,

[fred/1]). (given in any order) in a module a.b.c together make a call
fred(X) synonymous to foo.bar.baz:fred(X), and not to a.b.baz:fred(X).

3.4.2 Similarity to imported packages in Java

Java has a similar form of import declaration, on the two forms

package.class;

package.*;

where the former imports a particular class, and the latter all classes in a par-
ticular package. This allows the programmer to refer directly to any imported
class without its package name; however, if two classes with the same name are
imported, then neither can be used without giving its package name.

Java is a statically typed language, and needs information about the types
of all external classes referenced in a program �le in order to compile that �le.
The Java compiler therefore searches for object �les for such classes, recursively
compiling source �les where possible in order to produce any object �les that
are missing. This makes importing of all classes in a package possible, because
the search order is well-de�ned, and all referenced classes must be present.

Erlang, however, is dynamically typed, and the compiler never actually
needs to examine other source �les in order to compile a particular �le. It
would not be in line with Erlang programming conventions to let the sets of
existing object �les in two distinct packages decide from which of these packages
a particular module is imported; e. g., if we would import all modules from
packages foo and bar, then a reference to a module m would be resolved to
either foo.m or bar.m depending on which package actually de�nes a module m.
Therefore, a full module name must be given in the -import(<M>). declaration
described above, and not just a package name.

3.5 Why no package-relative package references?

The reader may wonder why, in a \structured" package system, there are no
language constructs that allow the programmer to refer to a module in a sub-
package of the current package by a relative name, instead of by its full name.

For example, in a module a.b.m1, it would certainly be possible to let a call

c.m2:f()

be interpreted as equivalent to

'a.b.c.m2':f()

10



There are however several problems with this approach. Most importantly,
it adds to the complexity of the package system, making programs di�cult to
understand and being prone to errors. For instance, all calls to functions in
packaged modules that are not in subpackages of the current package would
have to be written as

.x.y.z:f()

with a leading period character. This is annoying and could often result in
mistakes.

When there is a need to refer to modules in subpackages by a short name,
the general mechanism for importing packaged modules suggested above should
be su�cient, and results in perspicuous programs. The same design decision
was apparently made in Java.

4 Caveats

4.1 Program transformations

If a source code transformation should want to rewrite a meta-call expression
such as

<M>:<F>(: : :)

if it can show that <M> will evaluate to a speci�c atom <A>, to

<A>:<F>(: : :)

(doing a so-called constant propagation), then it is important to keep in mind
that the result of <M> should be interpreted as a full module name, and never
relative to the package of the module containing the code.

In this case, either the resulting program must not be compiled in a package-
relative way (this can be done by expanding all package-relative references and
substituting an old-style module name declaration, which states the full module
name within single quotes), or the program performing the transformation must
be aware of this interpretation and instead substitute the expression

.<A'1>.<A'2>� � �<A'n>:<F>(: : :)

where the <A'i>, i 2 [1; n], are the period-separated (nonempty) segments of
<A>. Note the leading period character, which explicitly indicates a full module
name.

4.2 Other possible problems

There exist some modules in the Erlang distribution which make assumptions
about the present way of storing object �les in the �le system, notably the
module filename. Such modules may need to be updated to handle the tree
substructure of the new object �le storage.

11



5 Summary

I have described a system of structured module packages for Erlang, which
is conceptually simple and easy to implement, and which should be backwards
compatible with practically all existing code. I have suggested straightforward
extensions to the Erlang language for easier programming with packages, all
of which could be removed by a preprocessor pass if so desired. I have also
discussed why no further extensions should be necessary, or even motivated.

In brief, the following things need to be implemented in order to support
the package system as described:

� Extend the code server to analyse module names in order to �nd the search
path substructure for an object �le.

� Add the new, package-relative compilation enabling form of module dec-
larations to the grammar.

� Allow period-separated full module names in remote calls and in import
declarations, including names with a leading period. (Note that this is not
dependent on package-relative compilation, and thus should be allowed
regardless of the form of module name declaration being used.)

� Extend the compiler to, for packaged modules, expand package-relative
remote calls to full module names.

� Add the prede�ned functions this module/0 and this package/1.

� The preprocessor epp must be extended to handle the new form of module
name declarations, in order to correctly support the automatically de�ned
macro MODULE.

� Add -import(<M>). declarations for full function names <M>, and make
the compiler expand these before ordinary function imports are processed.

� The stdlib function filename:find src will probably also need to be
made aware of the new structure of object �le search paths.

References

[1] Jonas Barklund et al., Proposal 15: Built-in functions of Erlang. Erlang
speci�cation project, June 1998,
http://www.ericsson.se/cslab/~rv/Erlang-spec/index.shtml.

[2] David Flanagan, Java in a Nutshell. O'Reilly & Associates, Inc., 1997.

12


