
A staged tag scheme for Erlang�

Mikael Pettersson (mikpe@csd.uu.se)
High-Performance Erlang Group (HiPE)

Computing Science Department
Uppsala University, Sweden

October 26, 2000

Abstract

The runtime systems in Ericsson's implementations of the Erlang pro-

gramming language, up to and including release R6B, use a simple tag

scheme which allows for fast computation of an object's type. However,

the tag scheme also restricts all Erlang objects to a 28- or 30-bit address

space. This is problematic when Erlang is ported to new systems, and

reduces reliability for applications needing large amounts of memory.

This paper describes the development of a new staged tag scheme,

which was designed to not restrict the range of pointers, and thus elimi-

nate the source of the abovementioned problems. Secondary bene�ts also

followed: the staged tag scheme is more 
exible, and, perhaps surprisingly,

is actually more e�cient.

The staged tag scheme has been integrated into Ericsson's Erlang code,

and is a standard feature starting with release R7A.

1 Introduction

Erlang is a dynamically-typed programming language. Instead of associating
types with variables and functions at compile-time, as statically-typed languages
do, dynamically-typed languages associate types with values at runtime. In
addition, each primitive operation, such as +, hd, and tl, checks at runtime
that it is de�ned for the types of its actual arguments. Some operations are
generic, e.g. + which is de�ned for all combinations of integer and 
oating-point
arguments. Other languages having similar properties include Lisp and Prolog.

Since the type of a value is not statically known and must be retrievable
at runtime, the standard solution is to use a uniform data representation with
embedded type information. A common approach is to represent each value by
a machine-word sized handle. A small value can be stored directly in its handle
(a so-called immediate), while a larger value is placed in memory (boxed) and
referenced via a pointer in its handle.

A tag is a runtime meta-value which denotes a type. To enable correct
interpretation of handles, each handle includes a tag which describes its type

�This work was conducted in the context of the High-Performance Erlang project (HiPE)
at Uppsala University, supported by the Advanced Software Technology competence centre
(ASTEC) and Ericsson Utvecklings AB.

1



and physical layout. A handle containing a tag and a pointer to a boxed object
is called a tagged pointer. The acts of attaching and removing tags from data
is called tagging and untagging, respectively, and a tag scheme is the overall
approach taken to represent tags and tagged values in a programming language
implementation.

This paper describes the development of a new, 
exible, and robust tag
scheme for Ericsson's Erlang runtime system.

The existing tag scheme is based on a simple idea: a value is represented by
a 32-bit handle, partitioned into a 4-bit type tag and a 28-bit type-dependent
data �eld. A small value is stored directly in the data �eld, and a large value is
placed in memory and referenced via a 28-bit address. This approach is simple
and makes it very cheap to compute the type of a value. However, this simplicity
comes at a cost: the set of possible types is restricted, and the range of tagged
pointers is limited, which causes portability and reliability problems.

The new tag scheme was primarily designed to remove the limitation to
the range of tagged pointers. It does this by describing types in stages : a
small primary type tag is stored in the handle's low bits, and remaining type
information is stored in the pointed-to object (for boxed values) or in further tag
bits in the handle (for immediate values). This is in fact a standard approach
which is often used to implement dynamically-typed Lisp-like languages.1

Since a staged tag scheme represents some types piecemeal, there is some
concern that type checking operations may incur increased runtime overheads
compared to a non-staged tag scheme. For instance, an additional indirection
is needed for some boxed objects since parts of their types have been moved
from the handles to the objects themselves. Dispatching on type is also more
expensive with a staged tag scheme. This paper will show that a runtime system
may actually gain performance by employing a carefully designed and optimised
staged tag scheme { the Erlang R7 runtime system gained 5{10% in performance
thanks to the new tag scheme. The key is to design a tag scheme in which the
most frequent operations can be optimised, even if this entails overheads in less
frequent operations.

This paper is not a tutorial on the design and implementation of tag schemes
for Erlang or other dynamically-typed languages. The reader is referred to [2]
for a comprehensive introduction to the subject. For an introduction to Erlang,
see [1]. The source code for the Open Source Erlang systems is available at
www.erlang.org.

The rest of this paper is organised as follows. Section 2 �rst describes Erlang
R4B and the original tag schemes used by the JAM and BEAM virtual machines.
Then a new tag scheme is developed to eliminate their shortcomings. Some
problems with the new tag scheme are identi�ed and an improved second version
is developed. Section 3 �rst describes Erlang R6B and the original tag scheme
used by the BEAM virtual machine. Then it describes how the second version
of the new tag scheme for R4B is adapted for R6B. Finally, Section 4 describes
how the new tag scheme was integrated in Erlang R7. The new tag scheme is a
standard feature in Ericsson's Erlang system starting with R7A.

1For instance, the author's Bifrost Scheme system, developed 1989{1993, used a staged tag
scheme similar in spirit to the one developed here.

2



3 2 1

10987654321098765432109876543210

Primary values :
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0000 FRAME, address:28
iiiiiiiiiiiiiiiiiiiiiiiiiiii0001 FIXNUM, int:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0010 BIGNUM, address:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0011 FLONUM, address:28
000000000000################0100 ATOM, num:16
nnnnnnnn##################cc0101 REF, node:8, num:18, creat:2
nnnnnnnn0000000000########cc0110 PORT, node:8 num:8, creat:2
sss###############nnnnnnnncc0111 PID, serial:3, num:15, node:8, creat:2
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1000 TUPLE, address:28
00000000000000000000000000001001 NIL
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1010 CONS, address:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1011 ARITYVAL, arity:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1100 MOVED, address:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1101 CATCH, address:28
0000s0000000aaaaaaaaaaaaaaaa1110 THING, sign:1, arity:16
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1111 BINARY, address:28

Figure 1: OTS4J representation

2 Erlang R4B / 47.4.1

2.1 JAM (OTS4J)

This section describes the data representation used by the JAM virtual machine
in Erlang R4B, a.k.a. Erlang 47.4.1. The representation is detailed in Figure 1.

2.1.1 General comments

An Erlang value is encoded a 32-bit word, containing a 4-bit type tag and 28
bits of type-speci�c data.

A value referring to a memory object is constructed by shifting the address
up 4 bits and inserting a type tag in the low 4 bits. This limits the usable
address space to [0; 228 � 1].

FRAME and CATCH values are tagged pointers into the JAM stack.
A BIGNUM or FLONUM heap object starts with a header, formatted as a

THING value. The header's arity gives the size (number of data words following
the header) of the object. For a BIGNUM object, the header's sign bit indicates
the sign of the number.

A TUPLE heap object starts with a header, formatted as an ARITYVAL
value. The header's arity gives the size of the tuple.

A CONS heap object does not have a header. When the runtime system's
generational copying garbage collector [4] forwards objects, it does not separate
CONS from non-CONS objects. Therefore, when scanning tospace the collector
does not know in advance whether the next object has a header or not. The
THING tag exists to allow the collector to identify objects containing binary
data which should not be scanned. Both THING and ARITYVAL need to exist
as uniquely typed meta-values.

3



3 2 1

10987654321098765432109876543210

Primary values :
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0000 CP0, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0001 CONS, address:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0010 TUPLE, address:28
sss###############nnnnnnnncc0011 PID, serial:3, num:15, node:8, creat:2
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0100 CP4, address:32
nnnnnnnn0000000000########cc0101 PORT, node:8, num:8, creat:2
nnnnnnnn##################cc0110 REF, node:8, num:18, creat:2
000000000000################0111 ATOM, num:16
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1000 CP8, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1001 FLONUM, address:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1010 ARITYVAL, arity:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1011 BIGNUM, address:28
00000000000000000000000000011011 NIL
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1100 CP12, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1100 MOVED, address:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1101 CATCH, address:28
0000s0000000aaaaaaaaaaaaaaaa1101 THING, sign:1, arity:16
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1110 BINARY, address:28
iiiiiiiiiiiiiiiiiiiiiiiiiiii1111 FIXNUM, int:28
BEAM register-operand encoding :
oooooooooooooooooooooooooooo0000 XREG, o�set:28
oooooooooooooooooooooooooooo0001 YREG, o�set:28
00000000000000000000000000000010 RREG

Figure 2: OTS4B representation

When the collector forwards an object, it leaves a forwarding address behind
in the �rst word of the original object. The forwarding address is tagged as
MOVED, permitting the collector to identify already forwarded objects.

BINARY objects are referenced via tagged pointers, but are allocated outside
of the process' heaps. They are mark-sweep collected and have no tagged header
words.

2.2 BEAM (OTS4B)

This section describes the data representation used by the BEAM virtual ma-
chine in Erlang R4B. The representation is similar to OTS4J, but di�ers in
details as described below. The representation is detailed in Figure 2.

2.2.1 Continuation Pointers

BEAM stores untagged continuation pointers (pointers to 32-bit aligned words
containing pointers to machine code) on the stack. These continuation pointers
implicitly use the four CP tags, which are analogues of JAM's FRAME tag.

To make room for the four CP tags, BEAM changes the order of the other
tags, and uses special cases and context-sensitive overlays to compress them to
the 12 remaining values:

4



� NIL is a special case of BIGNUM, with address 1.

� Tag 12 is CP12 on the stack and MOVED on the heap.

� Tag 13 is CATCH on the stack and THING on the heap.

2.2.2 BEAM instruction operand encoding

BEAM allows generic operands to virtual-machine instructions to be either
atomic Erlang values (FIXNUM, ATOM, or NIL) or virtual-machine registers.
In these BEAM instructions, the operand is a single word containing either an
atomic Erlang value or a register descriptor. BEAM encodes these cases by
rede�ning tags 0{2 to denote di�erent register classes when found in generic
instruction operands. The register tags must therefore be disjoint from the tags
of allowable atomic types.

2.2.3 Optimised CONS/TUPLE type tests

BEAM uses certain properties of the tag assignment in order to implement more
e�cient CONS and TUPLE type tests. An ordinary type test is implemented
as follows:

#define is_TYPE(x) ((x & 0xF) == tag_TYPE)

This requires a mask and a compare, often followed by a conditional jump.
BEAM assigns single-bit values to the CONS and TUPLE tags, and no ordinary
value has tag zero. Thus, any value which is not a CONS must have at least
one tag bit set apart from the CONS tag, and similarly for TUPLE. BEAM
therefore implements these type tests as follows:

#define is_not_cons(x) ((x & (0xF - tag_cons)) != 0)

#define is_cons(x) !is_not_cons(x)

This can often be implemented by a mask followed by a conditional jump,
without the need for an explicit compare operation.

2.3 Comments on R4B

2.3.1 Address space problems

The usable address space is limited to the [0; 228�1] range. This causes problems
because portable C code (the Erlang runtime systems are written in C) cannot
make assumptions about where in the virtual address space memory will be
allocated. In Unix-like operating systems, malloc will use either the brk or
the mmap system call to allocate memory. However, mmap often returns memory
\high" in the virtual address space, which is incompatible with the tag scheme.
Workarounds may be possible on a system-by-system basis, but this is clearly
undesirable.2

The Erlang runtime systems contain a function safe_alloc which allocates
\safe" memory. If this function �nds that a new memory block was allocated

2For instance, the port to Windows NT contains initialisation code which pre-allocates the
\high" address range, which forces future allocations to the \safe" range.

5



outside of the permissible address range, it prints an error message and immedi-
ately terminates the runtime system. This can, and in the author's experience
sometimes does, occur even though the total amount of allocated memory is
much less than 228 bytes, perhaps 50{100MB. This is obviously contrary to
Erlang's aspiration as a language for building robust systems.

It is also imperative that all allocation sites in the runtime system use
safe_alloc if tagged pointers to that memory will be constructed, since those
pointers will otherwise be destroyed by the tag and untag operations. Unfortu-
nately, in both Erlang R4 and R6 at least one allocation site is not safe, viz. in
fix_alloc which is an optimised allocator for small �xed-size memory blocks.3

2.3.2 Field access overheads

Accessing a �eld via a tagged pointer requires a separate untagging step, since
general-purpose processors do not have \shift down and add constant" instruc-
tions or addressing modes. Similarly, to construct a tagged pointer from the
object's address requires two operations: an up-shift followed by an add.4

2.3.3 Unoptimised �xnum arithmetic

It would be bene�cial if FIXNUM could be given an all-zero tag, since that would
allow common �xnum operations to be optimised by eliminating the need for
explicit tag manipulations [2]. If the FIXNUM tag could be reduced to just two
bits, then the SPARC's tadd instruction [5] could be used to optimise �xnum
arithmetic even further.

2.4 New tag scheme #1 (NTS4 #1)

In this section a new tag scheme developed for Erlang 47.4.1 by the author is
described. The primary motivation for developing this representation was to
allow the full 32-bit address space to be used, without any limitations imposed
by the Erlang runtime system itself. Some secondary bene�ts also followed, as
mentioned below.

Basics

� The primary objective is to allow Erlang objects to be placed anywhere in
the 32-bit address space. This implies that pointers must not be tagged by
shift operations, since they discard signi�cant address bits. It is reasonable
to require all object addresses to be 32-bit aligned, however.

� Due to the 32-bit alignment property, the low two bits of every object's
address will be zero. It is therefore possible to store a primary tag in the
low two bits, without loss of information.

� A two-bit primary tag can express four di�erent cases, of which at least
one must be left for immediate values, leaving room for at most three
types of tagged pointers. However, JAM has 8 di�erent types of tagged
pointers, and BEAM has 10.

3This problem was found while debugging the port of the HiPE system to R4B [3].
4Alpha and x86 processors can perform this in a single instruction, but only for shifts up

to 3. This is intended for indexing integer and 
oating-point arrays.

6



Reducing the number of pointer types

� A MOVED value can only occur in the �rst word of a forwarded heap
object, while the collector is running. Note that:

{ For objects with a header, the header is either ARITYVAL/THING
or MOVED. Instead of tagging the forwarding pointer as MOVED,
it can be given the same tag as the original reference to the object.
That is, the header of a TUPLE is either ARITYVAL or a forwarding
pointer tagged as TUPLE, and similarly for BIGNUM and FLONUM
objects.

{ A CONS cell has no header. Instead the CAR can be overwritten
with a marker, and the forwarding pointer can be stored in the CDR,
tagged as CONS.

Therefore, the MOVED pointer tag can be eliminated.

� The call and catch frames on the JAM stack are linked together, which
means that they can be identi�ed without looking for words tagged as
FRAME or CATCH. The JAM therefore does not need these two tags.

It is also possible to modify the BEAM interpreter to eliminate its need
for the CP and CATCH tags (see section 2.4.7).

However, there are still �ve types of tagged pointers (CONS, TUPLE,
BIGNUM, FLONUM, BINARY), which will not �t in the primary tag.

� Hence it is necessary to fold some of these �ve cases together, and to add
a secondary type tag in the pointed-to object. It would be awkward and
expensive to add headers to CONS cells, but the other four types already
have header words.

� NTS4 therefore uses two primary tags for tagged pointers, one for CONS
cells without headers, and one for BOXED objects (TUPLE, BIGNUM,
FLONUM, BINARY) who start with tagged header words.5 Headers are
extended with a subtype �eld.

Re-encoding the immediate types

� There are two primary tags left, and eight types of immediate values:
ATOM, FIXNUM, REF, PORT, PID, NIL, ARITYVAL, and THING.
Again, some form of folding is necessary. In NTS4 #1, the all-bits-zero tag
is used for FIXNUM, and the last primary tag is used as a �rst-stage tag
for the seven remaining immediate types. The purpose of this assignment
is to facilitate an optimised implementation of �xnum arithmetic.

� Three bits would be required to distinguish between the seven remaining
immediate types. This would only leave 27 bits for data, although some
types need 28 bits.

5Since BINARY objects are located outside of the collected heaps, their headers do not
contain any type information in OTS4. In NTS4, their headers are changed to start with a
THING word.

7



� A close inspection of Erlang 47.4.1 reveals that some of these seven types
actually have less than 28 bits of data: ATOM, PORT, NIL, and THING
have unused bits, and ARITYVAL could also be shrunk slightly. REF and
PID, however, require all 28 data bits.

� NTS4 #1 therefore uses a new two-bit tag (bits 2 and 3) to distinguish
between REF, PID, THING, and other immediates. A further two-bit tag
(bits 4 and 5) distinguishes between the remaining cases (ATOM, PORT,
NIL, ARITYVAL).

� THING needs a sub-tag to distinguish between BIGNUM, FLONUM, and
BINARY objects. It would be possible to use a two-bit sub-tag for these
cases, and to format the remaining data bits as in the original represen-
tation. However, this would mean that THING and ARITYVAL headers
have di�erent number of bits available for arity, and that THING headers
have a BIGNUM sign bit in the data part which must be masked out.

� Instead, NTS4 moves the BIGNUM sign bit into the THING sub-tag itself.
There are now four cases in a THING sub-tag: FLONUM, BINARY,
BIGNUM, and negative BIGNUM. The THING and ARITYVAL data
portions are now both 26 bits wide, and can be accessed without masking.

The resulting representation is detailed in Figure 3.

2.4.1 The representation of NIL

NIL is all-bits-one, i.e. -1. This choice is deliberate, since it is often cheaper to
create a small-magnitude negative value than a larger-magnitude positive value.

2.4.2 The non-value

The Erlang 47.4.1 runtime system makes an undocumented assumption that
all-bits-zero is a non-value, i.e. that no proper Erlang value has the all-bits-zero
representation. The runtime system frequently uses zero to indicate error or the
absence of a value.

This assumption fails when FIXNUM is given the all-zero tag.6 NTS4 in-
troduces an explicitly named non-value constant, and encodes it as a FLONUM
header with arity 0.

2.4.3 Encoding BEAM instruction operands

As described before, BEAM allows generic instruction operands to be atomic
Erlang values or virtual-machine registers. It encodes these cases by using the
tags of three non-atomic Erlang types to denote registers. This was not very
explicit in the R4B source code, which lead to major di�culties during the
development of the new data representation.7 Once this interdependency had
been discovered, the BEAM register encoding was changed to use the CONS
primary tag, followed by a two-bit register class tag and a 28-bit o�set �eld.

6Identifying and �xing this previously undocumented assumption was a major e�ort.
7In particular, using a non-zero tag for FIXNUM worked, while using the zero tag caused

BEAM to crash.

8



3 2 1

10987654321098765432109876543210

Primary values :
iiiiiiiiiiiiiiiiiiiiiiiiiiiiii00 FIXNUM, int:30
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa01 CONS, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa10 BOXED, address:32
xxxxxxxxxxxxxxxxxxxxxxxxxxxxtt11 IMMED1, data:28, tag:2
First-stage immediate values :
nnnnnnnncc##################0011 REF, node:8, creat:2, num:18
nnnnnnnnccsss###############0111 PID, node:8, creat:2, serial:3, num:15
aaaaaaaaaaaaaaaaaaaaaaaaaatt1011 THING, arity:26, tag:2
xxxxxxxxxxxxxxxxxxxxxxxxxxtt1111 IMMED2, data:26, tag:2
THING header values :
aaaaaaaaaaaaaaaaaaaaaaaaaa001011 FLONUM, arity:26 (always 2)
aaaaaaaaaaaaaaaaaaaaaaaaaa011011 BINARY, arity:26 (always 0)
aaaaaaaaaaaaaaaaaaaaaaaaaa1s1011 BIGNUM, arity:26, sign:1
Second-stage immediate values :
nnnnnnnncc################001111 PORT, node:8, creat:2, num:16
##########################011111 ATOM, num:26
aaaaaaaaaaaaaaaaaaaaaaaaaa101111 ARITYVAL, arity:26
11111111111111111111111111111111 NIL
BEAM register-operand encoding :
oooooooooooooooooooooooooooo0001 XREG, o�set:28
oooooooooooooooooooooooooooo0101 YREG, o�set:28
00000000000000000000000000001001 RREG
The non-value:
00000000000000000000000000001011 THE NON VALUE

Figure 3: NTS4 #1 representation

9



2.4.4 Polymorphic access macros

The property that all values have a type tag in the low four bits is deeply
embedded in the original runtime system. In particular, the runtime system
makes several assumptions based on this:

� A single unsigned_valmacro is used for untagging FIXNUM, ATOM, and
register descriptor values. Although there is a separate arityval macro
for accessing ARITYVAL headers, unsigned_val is sometimes used for
this purpose too.

� A single ptr_val macro is used for untagging all tagged pointer types,
except BEAM continuation pointers.

� A single tag_val_defmacro is used for retrieving the 4-bit type tag from
any value. This is commonly used in places where data is traversed.

A signi�cant part of the implementation of the new data representation was to
replace all uses of the untyped unsigned_val and ptr_val macros with type-
speci�c ones, i.e. atom_val, tuple_val, port_node, etc. The garbage collector
was rewritten to use the new representation directly, which actually simpli�ed it
by eliminating many special cases. To avoid having to rewrite non performance-
critical code, tag_val_def was re-implemented as a compatibility function.

2.4.5 Pointer tag and �eld access operations

In OTS4, two operations are required to tag a pointer (an up-shift followed by
an add). In NTS4, a single operation su�ces (an add).

The cost for untagging a pointer is the same in OTS4 (a down-shift) and
NTS4 (a subtraction). Note, however, that a pointer is usually untagged so that
�elds in the pointed-to object can be read. The read is often implemented by a
load instruction with a \register plus constant" addressing mode. In NTS4, the
tag subtraction can be folded into the addressing mode of the load instruction.

2.4.6 Forwarding pointers

As described before, the MOVED tag is not necessary for representing forwarded
objects. To indicate that a BOXED object has been forwarded, its header is
overwritten with the object's new location, tagged as a BOXED pointer. To
indicate that a CONS cell has been forwarded, its CAR is overwritten with
THE NON VALUE, and its CDR is overwritten with the cell's new location,
tagged as a CONS pointer.

When the collector �nds an already-forwarded object, it uses the forwarding
address as-is. In the original runtime system, the collector had to change the
tag of the forwarding address from MOVED to that of the object's type.

2.4.7 Eliminating the BEAM CP/CATCH tags

NTS4 #1 makes no provisions for the BEAM CP and CATCH tags. BEAM
uses both these tags for its implementation of exception handling. In JAM,
the catch frames are linked together in reverse history order, and the process
control block contains a pointer to the youngest frame. In BEAM, the youngest

10



handler is found by scanning the stack for a word containing a code pointer
tagged CATCH. This word will be a local variable in the stack frame of the
function which implements the handler. The bottom-most word in a stack frame
contains the saved continuation pointer from the caller, so it has one of the CP
tags. After the CATCH word has been found, a reverse scan is performed to
�nd a word tagged CP; the address of this word is the stack pointer to use.

The CP-tagged words are also used by the module-unload check, which needs
to �nd all code pointers embedded in the stack in order to determine if any code
is currently executing in the given module.

The CP and CATCH tags can be eliminated by adding structure to the
stack, or by adding a meta-data table which associates stack layout information
with each return address.8 However, generating the stack layout table would
require non-trivial support from the BEAM compiler or loader.

For simplicity, the implementation instead added structure to the BEAM
stack. The BEAM loader and interpreter were changed to add a size �eld at
the bottom of stack frames. The BEAM compiler and interpreter were changed
to expand catch frames with a pointer �eld to link catch frames together, and
a �eld containing the o�set from the catch frame to the bottom of the stack
frame in which it is located.

2.5 New tag scheme #2 (NTS4 #2)

The NTS4 #1 tag scheme was a success since it eliminated the 28-bit address
space limitation, and its implementation also identi�ed and corrected several
other problems. The �xnum representation permitted some optimisations, al-
though these were not implemented.

However, the elimination of the BEAM CP and CATCH tags caused unde-
sirable incompatibilities (BEAM code generated from OTS4B does not work in
NTS4 #1 due to the catch frame change) and runtime overheads (an additional
�eld must be initialised in each activation record).

This section describes a successor to NTS4 #1, which was designed to elim-
inate the need to change the BEAM compiler. Unfortunately, it also sacri�ces
the ability to optimise �xnum arithmetic since the all-bits-zero tag is no longer
available for �xnums.

The essential idea behind NTS4 #2 is to reintroduce the CATCH, CP, and
FRAME tags. This solves the BEAM-related problems, but requires further
changes to make room for the new tags. The new representation is described in
Figure 4. Important details are discussed in the following subsections.

2.5.1 All-ones FIXNUM tag

In instructions for binary arithmetic operators, the BEAM interpreter uses a
macro is_both_small(x,y) to test if two operands are both �xnums. Either
the all-bits-zero or the all-bits-one �xnum tag can be used to implement this
test e�ciently. In NTS4 #2, the all-bits-zero tag is used for CP values, as in
OTS4B, so the all-bits-one tag was chosen for FIXNUM.

8Only two words are needed: one word containing the size of the stack frame, which allows
the stack to be traversed, and one word containing the address of the currently active exception
handler, or the null pointer.

11



3 2 1

10987654321098765432109876543210

Primary values :
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa00 CP, address:32 (BEAM STACK)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa00 FRAME, address:32 (JAM STACK)
aaaaaaaaaaaaaaaaaaaaaaaaaaattt00 HEADER, arity:27, tag:3 (HEAP)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa01 CONS, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa10 BOXED, address:32
xxxxxxxxxxxxxxxxxxxxxxxxxxxxtt11 IMMED1, data:28, tag:2
First-stage immediate values :
nnnnnnnncc##################0011 REF, node:8, creat:2, num:18
nnnnnnnnccsss###############0111 PID, node:8, creat:2, serial:3, num:15
xxxxxxxxxxxxxxxxxxxxxxxxxxtt1011 IMMED2, data:26, tag:2
iiiiiiiiiiiiiiiiiiiiiiiiiiii1111 FIXNUM, int:28
Second-stage immediate values :
nnnnnnnncc################001011 PORT, node:8, creat:2, num:16
##########################011011 ATOM, num:26
iiiiiiiiiiiiiiiiiiiiiiiiii101011 CATCH, index:26 (BEAM STACK)
oooooooooooooooooooooooooo101011 CATCH, o�set:26 (JAM STACK)
11111111111111111111111111111011 NIL
Header values :
aaaaaaaaaaaaaaaaaaaaaaaaaaa00000 ARITYVAL, arity:27
00000000000000000000000001000100 FLONUM, arity:27 (always 2)
aaaaaaaaaaaaaaaaaaaaaaaaaaa01s00 BIGNUM, arity:27, sign:1
00000000000000000000000000010000 BINARY, arity:27 (always 0)
BEAM register-operand encoding :
oooooooooooooooooooooooooooo0000 XREG, o�set:28
oooooooooooooooooooooooooooo0001 YREG, o�set:28
00000000000000000000000000000010 RREG
The non-value:
00000000000000000000000000000100 THE NON VALUE (DEBUG)
00000000000000000000000000000000 THE NON VALUE

Figure 4: NTS4 #2 representation

12



2.5.2 Immediate CATCH values

NTS4 #2 reintroduces a distinct CATCH tag. However, there is no room among
the four primary tags for another type of tagged pointer. Therefore, catch values
are encoded as non-pointers in NTS4 #2.

In OTS4J, a catch value is a tagged pointer to a catch frame. In NTS4
#2, the value is instead the o�set from the start of the process' stack to the
catch frame. This o�set can be represented in fewer bits than a general pointer.
Thus, NTS4 #2 represents it as an immediate type with a 26-bit data �eld.
This change adds very little to the cost of exception handling in JAM9, and it
actually reduces the cost of stack-relocation (to increase the size of the stack)
since catch frame links no longer need to be adjusted.

In OTS4B, a catch value is a tagged pointer to the code which implements
the exception handler. The key observation here is that there will be many fewer
catch handlers than code addresses. Therefore, each handler can be stored in a
table, and be represented by its table index.10 In NTS4 #2, the BEAM module
loader adds all catch handlers to a table and rewrites each catch instruction to
contain its handler's index. There is no additional runtime overhead for entering
or leaving a catch expression; the only overhead occurs when an exception is
thrown and the CATCH word has been found: an indirection via the table
must be performed. Compared to the stack scan, this cost is negligible. When
a module is unloaded, all its catch handler entries in the table are deallocated
and made available for new modules.

2.5.3 Overlay CP/FRAME and HEADER tags

Previous tag schemes used distinct tags for THING and ARITYVAL. The only
exception is OTS4B, which used tag 13 to denote CATCH when found in the
stack, and THING when found in the heap.

Since NTS4 #2 adds FIXNUM and CATCH as new subtypes under primary
tag 3 (immediate values), a redesign of the representation of the immediate
types is necessary. Instead of increasing the number of tag bits or introducing
new levels of subtyping, NTS4 #2 changes the ARITYVAL and THING tags
to use primary tag 0 instead. The interpretation of tag 0 is now dependent on
the location of the value (on the stack it is a CP or FRAME word, on the heap
it is a header word), but this causes no problems in the runtime system.

This rearrangement permits FIXNUM and CATCH to be new cases under
primary tag 3 with only a minor tag adjustment: since FIXNUM is given the all-
bits-one tag, the second-stage immediate types are moved to the tag previously
used by THING. NIL is no longer the all-bits-one value, but it is still a small
negative value (-5) which should be inexpensive to construct.

2.5.4 HEADER layout

The layout of header words (THING and ARITYVAL) was changed to allow
more e�cient type tests and case analysis than in NTS4 #1. NTS4 #1 made it
easy to implement basic type tests such as is_arity_value, is_thing, is_big,

9An additional pointer subtraction is required when creating a catch frame, to compute its
o�set from the base of the stack.

10Bj�orn Gustavsson at Ericsson Utvecklings AB suggested this solution to me.

13



and is_binary. However, it did not permit e�cient case analysis since the dif-
ferent cases did not have consecutive values (ARITYVAL was special), causing
overheads in the tag_val_def emulation function.

In NTS4 #2, the representation has a single HEADER type with a sub-type
�eld and an arity �eld. The sub-type tags are assigned11 so that:

� The tags use consecutive numbers from 0 to 4, which simpli�es case anal-
ysis in the tag_val_def emulation function.

� A single bit in the header (bit 2) di�erentiates between positive and neg-
ative bignums, which simpli�es is_big.

� ARITYVAL is given tag zero, to make the important is_arity_value

and is_tuple type tests as e�cient as possible. The is_thing type test
becomes slightly more expensive (check that primary tag is zero, then that
the header's sub-tag is non-zero), but this is a reasonable tradeo� since
is_thing is very infrequently used.

2.5.5 BEAM register operand encoding

Since FIXNUM no longer occupies primary tag 0, the BEAM register operand
encoding was changed to use the OTS4B encoding again. (See section 2.2.2.)

2.5.6 Optimised CONS/BOXED type tests

Section 2.2.3 describes how the OTS4B representation permits e�cient tests for
the CONS and TUPLE types, since no ordinary Erlang value has an all-zero
type tag in OTS4B. Since FIXNUM no longer occupies primary tag 0, the same
optimisation can be applied in NTS4 #2, for CONS and BOXED type tests.12

2.5.7 The non-value

Since primary tag 0 is no longer used for ordinary Erlang values, the non-value
object can be given the all-bits-zero representation again. When the runtime
system is compiled for debugging, an illegal form of FLONUM header is used
instead. The purpose of this is to prevent code in the runtime system from
making unwarranted assumptions about the representation of the non-value.

3 Erlang R6B / 4.9.1

3.1 Erlang R6B original tag scheme (OTS6B)

This section describes the data representation used by the BEAM virtual ma-
chine in Erlang R6B / 4.9.1. (The older JAM virtual machine was dropped in
this release.) This representation is a successor to OTS4B (see section 2.2), with
changes to accommodate an enlarged address space, larger `reference' values,
new kinds of binaries, and a new type for function closures. The representation
is detailed in Figure 5.

11The assignment is constrained by an unknown problem in the runtime system which
prevents assigning tag 0 to BINARY.

12It is unfortunate that the CONS/BOXED type test and �xnum arithmetic optimisations
are mutually exclusive.

14



3 2 1

10987654321098765432109876543210

Primary values :
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0000 CP0, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0001 CONS, address:30
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0010 TUPLE, address:30
sss###############nnnnnnnncc0011 PID, serial:3, num:15, node:8, creat:2
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0100 CP4, address:32
nnnnnnnn##################cc0101 PORT, node:8, num:18, creat:2
aaaaaaaaaaaaaaaaaaaaaaaaaaaa0110 REF, address:30
00000000####################0111 ATOM, num:20
00000000000000000000000000000111 NIL
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1000 CP8, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1001 FLONUM, address:30
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1010 ARITYVAL, arity:28
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1011 BIGNUM, address:30
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1100 CP12, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1100 MOVED, address:30
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1101 CATCH, address:30
0aaaaaaaaaaaaaaaaaaatttttttt1101 THING, arity:19, tag:8
aaaaaaaaaaaaaaaaaaaaaaaaaaaa1110 BINARY, address:30
iiiiiiiiiiiiiiiiiiiiiiiiiiii1111 FIXNUM, int:28
THING header values :
0aaaaaaaaaaaaaaaaaaa000000011101 REFC BINARY
0aaaaaaaaaaaaaaaaaaa000000101101 HEAP BINARY (NYI)
0aaaaaaaaaaaaaaaaaaa000000111101 SUB BINARY (NYI)
00000000000000000110000001001101 FUN BINARY (arity 6)
00000000000000000010000001011101 FLONUM (arity 2)
0aaaaaaaaaaaaaaaaaaa000001101101 POSITIVE BIGNUM
0aaaaaaaaaaaaaaaaaaa000001111101 NEGATIVE BIGNUM
0aaaaaaaaaaaaaaaaaaa000010001101 REF
BEAM operand encoding :
oooooooooooooooooooooooooooooo00 XREG, o�set:32
oooooooooooooooooooooooooooooo01 YREG, o�set:32
00000000000000000000000000000010 RREG
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx11 LITERAL

Figure 5: OTS6B representation

15



3.1.1 Addresses widened to 30 bits

The R6B runtime system uses the fact that all objects and BEAM instructions
are 32-bit aligned. Instead of shifting addresses up four bits when creating
tagged pointers, they are shifted only two bits. To untag a tagged pointer, it is
shifted down two bits, and then the low two bits are cleared. This extends the
usable address space from 28 to 30 bits, but also increases the cost for untagging
a tagged pointer.13

3.1.2 New types and THING subtyping

R6B adds two new kinds of binaries, and a new function closure type to replace
the tuple-based implementation used in previous releases. Since there are no
unused primary tags, these new types all use the BINARY primary tag. To
distinguish between the four types which use the BINARY tag, THING header
words were changed to include a subtype �eld. Redundant subtypes were also
added for 
onums, bignums, and references.

Overloading the BINARY tag to also represent function closures unfortu-
nately requires additional tests in the runtime system whenever binaries are
accessed.

3.1.3 Reference values enlarged

In R6B, the `reference' type was widened to incorporate a 96-bit `number' �eld.
Hence, a reference value is now a tagged pointer to a �ve-word record, containing
a header (THING, subtag REF), a head (`node' and `creat' �elds formatted as
an old-style reference), and a 96-bit `number' �eld occupying 3 words.

3.1.4 Port number �eld widened

The `number' �eld in ports is 18 bits, as in OTS4. However, instead of a hard-
coded upper limit of 28 distinct ports at runtime, the limit is set based on the
maximum number of �le descriptors. In practise, the limit will still be much
lower than the 18 bits permitted by the �eld width.

3.1.5 The representation of NIL

In OTS6B, NIL is encoded as an ATOM with index 0. This does not eliminate
the special-casing of NIL in the runtime system (NIL was a special case of
BIGNUM in OTS4B), but it is apparently cheaper to special-case atoms than
bignums.

3.1.6 BEAM operand encoding shortened

In OTS6B the tag used to distinguish registers from literals in BEAM operands
was shortened to 2 bits. This was possible because all the permissible types of
literals (FIXNUM, ATOM, NIL) have type tags whose low 2 bits are 1.

The BEAM interpreter uses this to implement faster access to registers. In
OTS4B, to access an operand which denoted an X- or Y-register required the
following steps: (1) mask out the low 4 bits and do a dispatch, (2) retrieve a

13This change was introduced in R5, an internal version not released as Open Source.

16



byte o�set by shifting the operand down 4 bits, (3) add the byte o�set to the
X- or Y-register array and access the addressed word.

In OTS6B, this becomes: (1) mask out the low 2 bits and do a dispatch, (2)
retrieve a byte o�set by subtracting the speci�c register tag, (3) add the byte
o�set to the register array and access the addressed word. Since step (2) is a
subtraction of a constant instead of a shift, steps (2) and (3) can often be folded
into the addressing mode of the �nal load or store instruction.

3.2 New tag scheme (NTS6B)

NTS6B is a straightforward adaptation of NTS4 #2 for Erlang R6B. The new
representation is detailed in Figure 6.

3.2.1 Header layout

The header layout is similar to the one in NTS4 #2, with minor changes to
accommodate the new types in R6B; in particular, the subtag �eld was widened
from 3 to 4 bits.

Since several types satisfy the is_binary test, the subtags are assigned so
that a single bit (bit 5) in the header distinguishes between binaries and non-
binaries. Since is_binary must inspect the header's subtag in the new tag
scheme, the subtag assignment was made so that function closures no longer
are considered special cases of binaries. This change permitted a cleanup of
the runtime system by removing function closure type tests from places where
binaries are accessed.

3.2.2 The representation of NIL

As in NTS4 #2, NIL is assigned its own type tag and is represented as a small
negative value (-5). This change permitted a cleanup of the runtime system by
removing NIL type tests from places where atoms are accessed.

4 Closing the circle: Erlang R7

The staged tag scheme was initially developed for Erlang R4B, during the sum-
mer of 1999. At a meeting between the HiPE group and members of Ericsson's
Erlang development group in February 2000, the author presented the staged
tag scheme (NTS4 #1). The Ericsson representatives showed great interest in
the new tag scheme, but also expressed concerns about the incompatible changes
made to the BEAM compiler. A solution to the problem was suggested (change
CATCH to use an index instead of a pointer).

After the meeting, the author redesigned NTS4 #1 into NTS4 #2, and then
ported it to Erlang R6B (NTS6B). At this point, a snapshot of the Erlang
R7 development source code was made available to the author, and NTS6B was
ported to R7. The new code was then adopted by Ericsson's Erlang development
group in April 2000.

During the next month a number of adjustments were made to the tag assign-
ment and access macros to improve performance.14 The author then conducted

14These changes were backported to NTS6B and NTS4 #2 and are included in this paper's
description of those tag schemes.

17



3 2 1

10987654321098765432109876543210

Primary values :
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa00 CP, address:32 (BEAM STACK)
aaaaaaaaaaaaaaaaaaaaaaaaaatttt00 HEADER, arity:26, tag:4 (HEAP)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa01 CONS, address:32
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa10 BOXED, address:32
xxxxxxxxxxxxxxxxxxxxxxxxxxxxtt11 IMMED1, data:28, tag:2
First-stage immediate values :
nnnnnnnnccsss###############0011 PID, node:8, creat:2, serial:3, num:15
nnnnnnnncc##################1011 PORT, node:8, creat:2, num:18
xxxxxxxxxxxxxxxxxxxxxxxxxxtt1011 IMMED2, data:26, tag:2
iiiiiiiiiiiiiiiiiiiiiiiiiiii1111 FIXNUM, int:28
Second-stage immediate values :
##########################001011 ATOM, num:26
iiiiiiiiiiiiiiiiiiiiiiiiii011011 CATCH, index:26 (BEAM STACK)
11111111111111111111111111111011 NIL
Header values :
aaaaaaaaaaaaaaaaaaaaaaaaaa000000 ARITYVAL, arity:26
aaaaaaaaaaaaaaaaaaaaaaaaaa000100 FLONUM, arity:26 (always 2)
aaaaaaaaaaaaaaaaaaaaaaaaaa001s00 BIGNUM, arity:26, sign:1
aaaaaaaaaaaaaaaaaaaaaaaaaa010000 REF, arity:26
aaaaaaaaaaaaaaaaaaaaaaaaaa010100 FUN, arity:26 (always 6)
aaaaaaaaaaaaaaaaaaaaaaaaaa100000 REFC BINARY, arity:26
aaaaaaaaaaaaaaaaaaaaaaaaaa100100 HEAP BINARY, arity:26
aaaaaaaaaaaaaaaaaaaaaaaaaa101000 SUB BINARY, arity:26
BEAM operand encoding : (unchanged)
oooooooooooooooooooooooooooooo00 XREG, o�set:32
oooooooooooooooooooooooooooooo01 YREG, o�set:32
00000000000000000000000000000010 RREG
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx11 LITERAL
The non-value:
00000000000000000000000000000100 THE NON VALUE (DEBUG)
00000000000000000000000000000000 THE NON VALUE

Figure 6: NTS6B representation

18



extensive pro�ling on the runtime system, which revealed that the tag_val_def
emulation caused signi�cant overhead in the term comparison operators eq and
cmp. These where rewritten and optimised for the most frequent cases. Bj�orn
Gustavsson at Ericsson Utvecklings AB rewrote the term copy routines to use
the new tag scheme instead of accessing data via the tag_val_def emulation.

The combination of the new tag scheme and the optimisations described
above has actually resulted in a noticeable performance improvement compared
to the original Erlang R6B/R7 runtime system. On the author's machine, the
ESTONE15 result increased from 18000 to 19800, indicating a 10% improvement
to overall system performance. This shows that a staged tag scheme can be
introduced to reduce portability problems and improve 
exibility and reliability,
without sacri�cing performance.

References

[1] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Program-
ming in Erlang. Prentice-Hall, 1993.

[2] David Gudeman. Representing type information in dynamically typed lan-
guages. Technical Report TR 93-27, University of Arizona, Department of
Computer Science, October 1993.

[3] Erik Johansson, Mikael Pettersson, and Konstantinos Sagonas. HiPE: A
High Performance Erlang system. In Proceedings of the ACM SIGPLAN In-

ternational Conference on Principles and Practice of Declarative Program-

ming, pages 32{43. ACM, September 2000.

[4] Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic
memory management. John Wiley & Sons, 1996.

[5] David L. Weaver and Tom Germond, editors. The SPARC Architecture

Manual, Version 9. Prentice-Hall, 1994.

15ESTONE is a synthetic benchmark for Erlang implementations. See www.erlang.org.

19


