
Core Erlang 1.0

language speci�cation

Richard Carlsson Bj�orn Gustavsson Erik Johansson

Thomas Lindgren Sven-Olof Nystr�om Mikael Pettersson

Robert Virding

November 14, 2000

Abstract

We describe a core language for the concurrent functional language Erlang,

aptly named \Core Erlang", presenting its grammar and informal static

and dynamic semantics relative to Erlang. We also discuss built-in func-

tions and other open issues, and sketch a syntax tree representation.

1 Motivation

Core Erlang is an intermediate representation of Erlang, intended to lie
at a level between source code and the intermediate code typically found in
compilers.

During its evolution, the syntax of Erlang has become somewhat compli-
cated, making it diÆcult to develop programs that operate on the source. Such
programs might be new parsers, optimisers that transform source code, and var-
ious instrumentations on the source code, for example pro�lers and debuggers.

Core Erlang should meet the following goals:

� Core Erlang should be as regular as possible, to facilitate the develop-
ment of code-walking tools.

� Core Erlang should have a clear and simple semantics.

� Core Erlang should be straight-forward to translate to every interme-
diate code used in any Erlang implementation; similarly, it should be
straightforward to translate from Erlang programs to equivalent Core
Erlang programs.

� There should exist a well-de�ned textual representation of Core Erlang,
with a simple and preferably unambiguous grammar, making it easy to
construct tools for printing and reading programs. This representation
should be possible to use for communication between tools using di�erent
internal representations of Core Erlang.

1

� The textual representation should be easy for humans to read and edit, in
case the developer wants to check what the Erlang source looks like in
Core Erlang form, inspect { or modify { the results of code transfor-
mations, or maybe write some Core Erlang code by hand.

These goals force Core Erlang to a fairly high level of abstraction. It is not,
for example, possible to break down the receive construct into operations that
operate on the mailbox, since no such (useful) translation would be compatible
with all Erlang implementations.

Section 2 discusses lexical analysis and parsing. Section 3 gives the grammar
for the language and section 4 the static semantics. Section 5 describes eval-
uation of programs and expressions. Section 6 discusses issues that may need
further speci�cation. Appendix A contains a quick reference to the language
and appendix B lists character escape sequences. Appendix C shows a simple
syntax tree representation.

2 Lexical analysis and parsing

We discuss the lexical processing of a Core Erlang program in terms of op-
erations on a sequence of Unicode [4] characters (of which both ASCII and
Latin-1 [3], ISO/IEC 8859-1, are subsets), such that there are no Unicode es-
capes (written \uXXXX, where each X is a hexadecimal digit) in the sequence.
Note, though, that it is not required that tools handling Core Erlang source
programs use Unicode for input and output; like Erlang, no part of the written
language per se requires characters outside the 7-bit ASCII subset. However, in
order to support Standard Erlang [2], tools must be able to handle Unicode
encodings of Core Erlang character, string and atom literals.

We assume that the translation from the sequence of characters into a se-
quence of tokens, suitable for parsing according to the grammar of the following
section, is straightforward, being very similar to that of Erlang. In Core

Erlang, atom literals are always single-quoted, to avoid any possible confu-
sion with keywords. Comments on any source code line in Core Erlang, like
in Erlang, begin with the leftmost percent character `%', (\u0025) on that
line that does not occur as part of an atom, string or character literal, and con-
tinue up to (but not including) the �rst line terminator following that character.
Comments are ignored by the tokenisation, in e�ect only recognising the line
terminator.

A line terminator is de�ned as the longest sequence of input characters con-
sisting of exactly one ASCII CR (\u000d), one ASCII LF (\u000a), or one CR

followed by one LF. Line terminators are generally treated as whitespace, ex-
cept in atom and string literals where line terminators are not allowed. Core
Erlang does not distinguish between periods (`.' characters) that are followed
by whitespace (called FullStop tokens in the Erlang Reference Manual [1]) and
those that are not (i. e., ordinary separator periods).

The tokenisation should concatenate all adjacent string literals (these may
be separated by any number of whitespace characters, line terminators and
comments). Thus, the text \"Hey" "Ho"" denotes the same string literal as
"HeyHo". This allows strings to be split over several lines.

2

3 Grammar

This section describes the basic grammar of Core Erlang programs. An e�ort
has been made to reduce the language as far as it is possible { and practical {
while maintaining readability and preserving most of the lexical conventions of
Erlang. For instance, it can be noted that the syntactic distinction between
variables and function names is not really necessary, but makes the connection
between exported function names and calls to locally bound functions more
obvious to the eye than if \plain" Erlang-style variables were used for all
bindings.

3.1 Notation

Literals are described using ordinary regular expressions, where ? stands for
\zero or one occurrence of", + for \one or more repetitions of", and ellipsis
(: : :) indicates repetition over a range of characters; no other symbols are used
except parentheses and the standard j for alternative choices and � for zero or
more repetitions.

For some widely used grammar rules we use abbreviations, such as i for In-
teger and v for AnnotatedVariable. The abbreviations are given within paren-
theses by the corresponding rules.

To further keep the presentation compact, we use ellipsis notation with in-
dices (\x1 : : : xn") instead of giving explicit recursive rules for (possibly empty)
sequences.

3.2 Lexical de�nitions

sign ::= + j -

digit ::= 0 j 1 j : : : j 9

uppercase ::= A j : : : j Z j \u00c0 j : : : j \u00d6 j \u00d8 j : : : j \u00de

lowercase ::= a j : : : j z j \u00df j : : : j \u00f6 j \u00f8 j : : : j \u00ff

inputchar ::= any character except CR and LF

control ::= \u0000 j : : : j \u001f

space ::= \u0020

namechar ::= uppercase j lowercase j digit j @ j _

escape ::= \ (octal j (^ ctrlchar) j escapechar)

octaldigit ::= 0 j 1 j : : : j 7

octal ::= octaldigit (octaldigit octaldigit?)?

ctrlchar ::= \u0040 j : : : j \u005f

escapechar ::= b j d j e j f j n j r j s j t j v j " j ' j \

An escape sequence \ octal denotes the character whose Unicode value is given
by the octal numeral. An escape sequence \ ^ ctrlchar denotes the character
whose Unicode value is 64 less than that of the ctrlchar . The meanings of escape
sequences \ escapechar are de�ned in appendix B.

3

3.3 Terminals

Integer (i):

sign? digit+

Float :

sign? digit+. digit+ ((E j e) sign? digit+)?

Atom (a):

' ((inputchar except control and \ and ') j escape)� '

Char :

$ ((inputchar except control and space and \) j escape)

String :

" ((inputchar except control and \ and ") j escape)� "

VariableName:

(uppercase j (namechar)) namechar�

Note that a single underscore character ` ' is not a valid VariableName.

3.4 Non-terminals

AnnotatedModule:

Module

(Module -| [c1 , : : : , cn]) (n � 0)

Module:

module a ModuleHeader ModuleBody end

ModuleHeader :

Exports Attributes

Exports :

[FunctionName1 , : : : , FunctionNamen] (n � 0)

FunctionName (a/i):

a / i

where a is called the identi�er, and i the arity.

Attributes :

attributes [ModuleAttribute1 , : : : , ModuleAttributen] (n � 0)

4

ModuleAttribute:

a = c

where a is called the key, and c the value of the attribute.

ModuleBody :

FunctionDe�nition1 � � � FunctionDe�nitionn (n � 0)

FunctionDe�nition:

AnnotatedFunctionName = AnnotatedFun

AnnotatedFunctionName:

FunctionName

(FunctionName -| [c1 , : : : , cn]) (n � 0)

AnnotatedFun:

Fun

(Fun -| [c1 , : : : , cn]) (n � 0)

Constant (c):

AtomicLiteral

f c1 , : : : , cn g (n � 0)

[c1 , : : : , cn] (n � 1)

[c1 , : : : , cn�1 | cn] (n � 2)

AtomicLiteral :

Integer

Float

Atom

Nil

Char

String

Nil :

[]

AnnotatedVariable (v):

VariableName

(VariableName -| [c1 , : : : , cn]) (n � 0)

5

AnnotatedPattern (p):

v1

Pattern

(Pattern -| [c1 , : : : , cn]) (n � 0)

Pattern:

AtomicLiteral

f p1 , : : : , pn g (n � 0)

[p1 , : : : , pn] (n � 1)

[p1 , : : : , pn�1 | pn] (n � 2)

v = p

where the last form v = p is called an alias pattern.

Expression (e):

AnnotatedValueList

AnnotatedSingleExpression

AnnotatedValueList :

ValueList

(ValueList -| [c1 , : : : , cn]) (n � 0)

ValueList :

< AnnotatedSingleExpression1 , : : : ,
AnnotatedSingleExpressionn > (n � 0)

AnnotatedSingleExpression:

SingleExpression

(SingleExpression -| [c1 , : : : , cn]) (n � 0)

SingleExpression:

AtomicLiteral

VariableName

FunctionName

Tuple

List

Let

1The separation of variables from other patterns is necessary to keep the grammar LALR(1)

6

Case

Fun

Letrec

Application

InterModuleCall

PrimOpCall

Try

Receive

Protected

Sequencing

Catch

Tuple:

f e1 , : : : , en g (n � 0)

Note that this includes the 0-tuple f g and 1-tuples fxg.

List :

[e1 , : : : , en] (n � 1)

[e1 , : : : , en�1 | en] (n � 2)

Let :

let Variables = e1 in e2

Variables :

v

< v1 , : : : , vn > (n � 0)

Case:

case e of AnnotatedClause1 � � � AnnotatedClausen end (n � 1)

AnnotatedClause:

Clause

(Clause -| [c1 , : : : , cn]) (n � 0)

Clause:

Patterns Guard -> e

7

Patterns :

p

< p1 , : : : , pn > (n � 0)

Guard :

when e

Fun:

fun (v1 , : : : , vn) -> e (n � 0)

Note that there is no end keyword terminating the expression.

Letrec:

letrec FunctionDe�nition1 � � � FunctionDe�nitionn in e (n � 0)

Application:

apply e0 (e1 , : : : , en) (n � 0)

InterModuleCall :

call e01 : e02 (e1 , : : : , en) (n � 0)

PrimOpCall :

primop a (e1 , : : : , en) (n � 0)

Try :

try e1 catch (v1, v2) -> e2

Receive:

receive AnnotatedClause1 � � � AnnotatedClausen Timeout end (n � 0)

Timeout :

after e1 -> e2

where e1 is called the expiry expression and e2 the expiry body.

Protected :

protected e

Sequencing :

do e1 e2

Catch:

catch e

8

4 Static semantics

4.1 Annotations

An annotation (� -| [c1, : : :, cn]) associates a list of constant literals c1,
. . . , cn with the enclosed phrase �. Annotations are always optional; leaving
out an annotation is equivalent to specifying an empty annotation list. The
interpretation of annotations on program phrases is implementation-dependent.

4.2 Module de�nitions

The general form of a module de�nition is:

module a [FunctionName1, : : :, FunctionNamen]
attributes [ModuleAttribute1, : : :, ModuleAttributen0]

FunctionDe�nition1 � � � FunctionDe�nitionn00

end

(cf. p. 4), where the atom a is the name of the module.
For each FunctionName a/i listed in the Exports declaration, it is a compile-

time error if the function name a/i does not occur on the left-hand side of a
FunctionDe�nition in the corresponding ModuleBody .

For each ModuleAttribute a = c listed in the Attributes declaration, it is a
compile-time error if there exists more than one ModuleAttribute with the same
key a in the list. The interpretation of module attributes is implementation-
dependent.

Each FunctionDe�nition in theModuleBody associates a FunctionName ak/ik
with a Fun fk. It is a compile-time error if the number of parameters of the
right-hand side fk does not equal the left-hand side arity ik. The scope of each
such function de�nition is the whole of the corresponding Module; see evalu-
ation of InterModuleCall expressions (p. 14) for details. It is a compile-time
error if the same function name a/i occurs on the left-hand side of two function
de�nitions Dj , Dk, j 6= k, in a ModuleBody D1 � � �Dn. (Cf. Letrec expressions,
p. 10.) A function name thus de�ned in the module body is said to be exported
by the module if and only if it is also in the Exports declaration of the module.

4.3 Atomic literals

A String (p. 4) is de�ned as shorthand for the corresponding list of Char literals
(cf. List , p. 7). E. g., "Hi!" denotes the list [$H, $i, $!]. Also recall that
the tokenisation process will concatenate all adjacent String literals that are
separated only by whitespace and/or comments.

4.4 Lists

For lists in general, the following equivalences are de�ned:

[x1, : : :, xn] ::= [x1, : : :, xn | []]

for n � 1, and

[x1, : : :, xn�1 | xn] ::= [x1, : : :, xn�2 | [xn�1 | xn]]

9

for n � 3. Thus, every list (p. 7) can be equivalently written on a unique normal
form using only the list constructor primitive2 [� | �], and the constant
literal [] (Nil). This also applies to lists in constants (p. 5) and patterns (p. 6).

4.5 Expressions

� For a VariableName or FunctionName expression, it is a compile-time
error if the occurrence is not within the scope of a corresponding binding.
A VariableName can only be bound in a Let , a Clause, a Fun, or a Try ,
while a FunctionName can only be bound in a FunctionDe�nition of a
Module or a Letrec.

� In Fun (p. 8) expressions fun (v1, : : :, vn) -> e, and in Let (p. 7) ex-
pressions let <v1, : : :, vn> = e1 in e2, no variable name may occur
more than once in v1; : : : ; vn. Likewise, in Try (p. 8) expressions try

e1 catch (v1, v2) -> e2, v1 and v2 must be distinct variables. A Let
expression let <v> = e1 in e2 may equivalently be written let v = e1
in e2.

� In a Letrec (p. 8) expression letrec D1 � � �Dn in e, it is a compile-time
error if the same FunctionName a/i occurs on the left-hand side of two
function de�nitions Dj , Dk, j 6= k, in D1 � � �Dn.

� In a Case (p. 7) expression case e of Clause1 � � � Clausen end, it is
a compile-time error if not all clauses of the expression have the same
number of patterns (cf. section 4.6).

� In a Receive (p. 8) expression, on the general form:

receive Clause1 � � � Clausen after e1 -> e2 end

it is a compile-time error if some clause of the expression does not have
exactly one pattern (cf. section 4.6).

� A Protected (p. 8) expression protected e may only occur as part of a
clause guard (cf. p. 16).

4.6 Clauses and patterns

A Clause (p. 7) has the general form <p1, : : :, pn> when e1 -> e2, where e1
is known as the guard and e2 as the body of the clause. e2 is any expression,
whereas e1 is a restricted expression that must be valid as a Core Erlang

clause guard (see section 5.6 for details). If n is 1, the clause can equivalently
be written p1 when e1 -> e2.

Each pi is a Pattern (p. 6) consisting of variables, atomic literals, tuple and
list constructors, and alias patterns. No variable name may occur more than
once in the patterns p1; : : : ; pn of a clause. Pattern matching is described in
section 5.4.

2Usually called cons.

10

5 Dynamic semantics

Core Erlang is a higher-order functional language operating on the same data
types as Erlang. As in Erlang, functions are identi�ed by the pair of the
identi�er and the arity. However, while in Erlang a function call evaluates
to a single value, in Core Erlang the result of evaluating an expression is
an ordered sequence, written <x1, : : :, xn>, of zero, one or more values xi. A
sequence is not in itself a value; thus it is not possible to create sequences of
sequences. For simplicity we denote any single-value sequence <x> by x where
no confusion can ensue. If an expression e always evaluates to a sequence of
values <x1, : : :, xn>, then we de�ne the degree of e to be the length n of this
sequence.

An environment � is a mapping from names to Erlang values; e. g., � =
[v 7! 'true'] maps the single variable name v to the atom 'true'. We write
�1�2 to denote the extension of �1 by the elements of �2, such that if v 7!
x is in �1 and v 7! y is in �2, then only the latter is in �1�2. To simplify
the presentation, in the context of environments all names are assumed to be
without annotations.

5.1 Programs and processes

A Core Erlang program consists of an unordered set of de�nitions of distinctly
named modules (cf. Module, p. 4). Execution of a program is performed by
evaluating an initial expression call a1:a2(x1, : : :, xn), where a1 and a2 are
atoms and x1; : : : ; xn are any values (cf. InterModuleCall , p. 14), in an empty
environment. The program execution ends when the evaluation of the initial
call is completed, either normally, yielding a �nal result (the interpretation of
which is implementation-dependent), or abruptly, by causing an exception to
be raised that is not caught by a Try expression (cf. p. 15) in the program.

Each particular instance of a program execution is associated with some
speci�c process. We de�ne a process to be an object with a unique identity
and a mutable state. The state of a process is assumed to contain a mailbox
object, but otherwise its details are implementation-dependent. A mailbox is an
ordered sequence of values, such that its contents may be inspected, a value may
be appended to the sequence, and any value (at any position) may be removed
from the sequence; no other operations are allowed. The state of a process,
including the mailbox, may be mutated at any point during its lifetime, as a
side e�ect of program execution or by other causes; this is also implementation-
dependent.

The set of module de�nitions constituting the program is mutable, and at
any time, module de�nitions may be added, removed or replaced,3 maintaining
the invariant that each module de�nition in the set is distinctly named. A
de�nition m with name a in the set at any time, is generally referred to as the
latest version of a at that time.

3Variously known as \dynamic code replacement", \run-time code replacement", and \hot
code loading".

11

5.2 Evaluation of expressions

Argument evaluation in Core Erlang is strict, i. e., all arguments to an op-
erator are completely evaluated before the evaluation of the operator begins;
furthermore, the evaluation order of arguments is always unde�ned, unless oth-
erwise stated (notably in Let expressions, Case expressions, Receive expressions
and Try expressions). The degree of any expression used as argument to another
is unless otherwise stated expected to be 1 (one); if the degree of an expression
does not match its use, the behaviour is unde�ned.

Every expression is assumed to be evaluated in a given environment �, map-
ping all free variables and function names in the expression to Erlang values.

Expression evaluation can either terminate normally, yielding a sequence of
values, or abruptly, by raising an exception. An exception is an object having
two components called the tag and the value; both components must be Erlang
values. Except for Try expressions (see p. 15), Protected expressions (p. 16) and
Catch expressions (p. 17), if the evaluation of an immediate subexpression e0 of
some expression e terminates abruptly with exception x, then evaluation of e
also terminates abruptly with exception x.

ValueList :

<s1, : : :, sn>

where each si is a SingleExpression, which must have degree 1.

This evaluates to the sequence <x1, : : :, xn> where for i 2 [1; n], si
evaluates to xi. The degree of the ValueList expression is thus n.

AtomicLiteral :

This evaluates to the Erlang value denoted by the literal. Nil (p. 5)
denotes the empty list, which is a unique constant whose type is distinct
from all other constants; it is thus not e. g. an atom. Char literals (p. 4)
may be interpreted as denoting integer values representing character codes,
but implementations may instead support a distinct character type.

VariableName:

This evaluates to the value to which the VariableName v is bound in the
environment �, that is, the value of �(v).

FunctionName:

a/i

This evaluates to the closure to which the FunctionName a/i is bound
in the environment �, that is, the value of �(a/i). See also Application
(p. 14) and Fun (p. 13).

Tuple:

fe1, : : :, eng

This evaluates to the Erlang n-tuple fx1, : : :, xng, where for i 2 [1; n],
ei evaluates to xi. Note that a 1-tuple fxg is distinct from the value x,
and that the 0-tuple fg is a unique value.

12

List :

[e1 | e2]

This evaluates to the Erlang list constructor [x1 | x2], where for i 2
[1; 2], ei evaluates to xi. See section 4.4 for details on list notation.

Let :

let <v1, : : :, vn> = e1 in e2

e1 is evaluated in the environment �, yielding a sequence <x1, : : :, xn> of
values. e2 is then evaluated in the environment �[v1 7! x1; : : : ; vn 7! xn].
e1 must be completely evaluated before evaluation of e2 begins, unless
interleaving their evaluation yields no observable di�erence. The result is
that of e2 if evaluation of both expressions completes normally.

Note that if for all i 2 [1; n], vi is not used in e2, the expression is e�ectively
a sequencing operator (cf. Sequencing , p. 17), evaluating e1 before e2 but
discarding its value.

If e1 does not have degree n, the behaviour is unde�ned.

Case:

case e of P1 when g1 -> b1 � � � Pn when gn -> bn end

where each Pi, i 2 [1; n], is a sequence <pi1, : : :, pik> of patterns, for
some �xed k (cf. p. 10).

The switch expression e is �rst evaluated in the environment �. If this
succeeds, yielding a sequence <x1, : : :, xk> of values, that sequence is
then tried against the clauses of the Case in environment � as described
in section 5.5.

If clause selection succeeds with selected clause j and mapping �0 as result,
the body bj is evaluated in the environment ��0, and the result of that
evaluation is the result of the Case expression.

If no clause can be selected, or if e does not have degree k, the behaviour
is unde�ned.

Fun:

fun (v1, : : :, vn) -> e

This evaluates to the closure4 de�ned by abstracting the expression e
with respect to the parameters v1; : : : ; vn in the environment �; see also
Application (p. 14).

Letrec:

letrec a1/i1 = f1 � � � an/in = fn in e

4A closure is de�ned as the pair consisting of: a) the program code of the function, and b)
the environment in which it should be evaluated.

13

where for k 2 [1; n], each ak/ik is a FunctionName and each fk a Fun.

The result of evaluating the Letrec in environment � is the result of evalu-
ating expression e in the environment �0, which is the smallest environment
such that:

� for each x in the domain of �, except x 2 fa1/i1; : : : ; an/ing, �
0(x) is

equal to �(x)

� for each ak/ik 2 fa1/i1; : : : ; an/ing, �
0(ak/ik) is equal to the result of

evaluating the corresponding Fun expression fk in the environment
�0 itself.

(Note that this de�nition of �0 is circular; however, also note that only
Fun expressions can be bound by a Letrec.)

Application:

apply e0(e1, : : :, en)

where e0 evaluates to a closure f (cf. Fun, p. 13).

All of e0; e1; : : : ; en are evaluated in the environment �. Assume that
e1; : : : ; en evaluate to values x1; : : : ; xn, respectively, and that f is the
result of evaluating an expression fun (v1, : : :, vk) -> e0 in an envi-
ronment �0. Evaluation of the application is then performed by evaluating
e0 in the environment �0[v1 7! x1; : : : ; vn 7! xn], if n = k.

If e0 does not evaluate to a closure, or if the number n of arguments
in the application is not equal to the arity k of f , the behaviour is
implementation-dependent.

If the code de�ning the function of the closure is no longer available5 at
the time of evaluation of the application, the behaviour is implementation-
dependent.

InterModuleCall :

call e01:e
0

2(e1, : : :, en)

where e01 and e02 evaluate to atoms a1 and a2, respectively.

All of e01, e
0

2 and e1; : : : ; en are evaluated in the environment �. Let m be
the latest version of the module named by a1 at the time of evaluation
of the InterModuleCall expression. If the ModuleBody D1 � � �Dk of m
(cf. p. 5) contains a FunctionDe�nition de�ning the name a2/n, and
a2/n is also in the Exports declaration of m, then let the closure f be
the result of evaluating the expression letrec D1 � � �Dk in a2/n, in the
empty environment.6 The InterModuleCall expression is then equivalent
to an Application apply f(e1, : : :, en).

5An implementation could use a garbage collection scheme to safely remove unused code.
Another strategy, used by current Erlang implementations, is to force the removal of code
which has been superseded twice by a newer version. This so-called purging of code might
however be unsafe, unless extra runtime checks are done.

6The domain of the environment of such a closure is simply the function names de�ned by
the module, and it is therefore not necessary to represent the closure explicitly.

14

If a2/n is not de�ned and exported by m, the behaviour of the inter-
module call expression is implementation-dependent.

If e01 and e
0

2 do not both evaluate to atoms, the behaviour is implementation-
dependent.

PrimOpCall :

primop a(e1, : : :, en)

e1; : : : ; en are evaluated in the environment � to values x1; : : : ; xn, respec-
tively. The primitive operation to be performed is identi�ed by the name
a and the number n of arguments (its arity).

Evaluation of a PrimOpCall is always implementation-dependent and may
depend on the values x1; : : : ; xn, the state of the associated process (e. g.
the mailbox), or the external state (i. e., the world). The evaluation may
have side e�ects, and may complete abruptly by raising an exception (cf.
Try , below).

Try :

try e1 catch (v1, v2) -> e2

e1 is evaluated in the environment �, and if that evaluation completes
normally, its result is also the result of the Try expression; otherwise, if
evaluation of e1 completes abruptly with exception x, e2 is evaluated in
the environment �[v1 7! t; v2 7! u], where t is the tag and u the value of
x (cf. p. 12), and the result of that evaluation becomes the result of the
Try expression.

Core Erlang de�nes no speci�c way of raising exceptions, but given a
primitive operation named e. g. raise, of arity 2, with the e�ect of always
terminating abruptly by raising an exception whose corresponding tag and
value are the actual parameters to the call, we could de�ne:

erlang:exit(R) ::= primop 'raise'('EXIT', R)

erlang:throw(R) ::= primop 'raise'('THROW', R)

for the Erlang built-in standard functions exit/1 and throw/1.

Receive:

receive <p1> when g1 -> b1 � � � <pn> when gn -> bn
after e1 -> e2 end

Evaluation of a Receive is divided into stages, as follows:

1. First, the expiry expression e1 is evaluated to a value t in the en-
vironment �. t must be either a nonnegative integer or the atom
'infinity', otherwise the behaviour is implementation-dependent.

2. Next, each value in the mailbox (of the associated process), in �rst-
to-last order, is tried one at a time against the clauses <p1> when g1
-> b1 � � � <pn> when gn -> bn in the environment �, as described in
section 5.5, until one of the following occurs:

15

� If for some value Mk at position k in the mailbox and some
i 2 [1; n], clause selection succeeds yielding a selected clause i
and a mapping �0, then the element at position k is �rst deleted
from the mailbox, and expression bi is evaluated in environment
��0 to yield the value of the Receive.

� If there are no remaining values to be tried in the mailbox, then
either if t is the integer 0 (zero), or t is a positive integer and t or
more milliseconds have passed since the transition from stage 1 to
stage 2 was made, the expiry body e2 is evaluated in environment
� to yield the value of the Receive; otherwise stage 3 is entered.

3. The evaluation of the Receive is at this point suspended, and may be
resumed when either or both of the following has occurred:

� One or more values have been appended to the mailbox.

� t or more milliseconds have passed since the transition from stage
1 to stage 2 was made, when t is a positive integer.

The evaluation then again enters stage 2, where this time only those
values in the mailbox (if any) should be tried that have not been
tried since the latest transition from stage 1 to stage 2 was made.
(Note that any subsequent Receive will thus start over from the �rst
value in the mailbox, and not continue where any previous Receive
�nished.)

A Receive may never be evaluated as part of the evaluation of a clause
guard of another Receive. The removal of a message from the mailbox is
a side e�ect, and this is not allowed in a guard. Even more importantly,
two Receive expressions being evaluated in a nested fashion using the
same mailbox could want to select and remove the same message, and it
is not obvious how such con
icts could be resolved in a consistent way
useful to the programmer. Another, lesser complication would be that the
evaluation would have to be able to track nested timeouts to any depth.

Because the timeout limit t (when t is a positive integer) is soft, i. e., a
lower bound only, an implementation is free to allow any number of values
to be appended to the mailbox while evaluation is suspended in stage 3,
even after the timeout limit has expired. However, implementations should
in general attempt to detect timeouts as soon as possible.

It can be noted that it is quite possible for an implementation to signal
timeouts by simply appending a unique value, associated with a particular
active Receive, to the corresponding mailbox, causing the second wake-up
condition of stage 3 to be subsumed by the �rst. However, unselected
timeout messages will then need to be garbage collected from the mail-
boxes in order to prevent cases of unbounded growth.

Protected :

protected e

A Protected expression may only occur as part of a clause guard. e is eval-
uated in the environment �, and if that evaluation completes normally, its

16

result is also the result of the Protected expression; otherwise, if evalu-
ation of e completes abruptly, the Protected expression evaluates to the
constant `false'.

Outside of clause guards, this behaviour can be simulated by the expres-
sion

try e catch (v1, v2) -> 'false'

where v1 and v2 are distinct variables (cf. Try , p. 15).

5.3 Standard syntactic sugar

This section describes Core Erlang expressions that are de�ned in terms of
the primitives that have been described above, but which are nevertheless in-
cluded in the language for convenience (usually referred to as \syntactic sugar".)

Sequencing :

do e1 e2

This is equivalent to let <v1, : : :, vn> = e1 in e2, where n is the de-
gree of e1, and the variables v1; : : : ; vn do not occur free in e2. Thus, e1
is evaluated before e2, but its result is not used (cf. Let , p. 13).

Catch:

catch e

This is equivalent to

try e
catch (v1, v2) ->

case v1 of

'THROW' when 'true' -> v2
v3 when 'true' -> fv1, v2g

end

where v1 and v2 are distinct variables (cf. Try , p. 15), and v3 is not
the same variable as v2. This encodes the behaviour of Erlang catch

expressions.

5.4 Pattern matching

Pattern matching recursively matches the structures of a sequence of values
x1; : : : ; xn against a corresponding sequence of patterns (cf. p. 6) p1; : : : ; pn,
either succeeding, yielding as result a mapping from the variables in p1; : : : ; pn
to subterms of x1; : : : ; xn, or otherwise failing. No variable name may occur
more than once in the sequence of patterns.

� A sequence of patterns p1; : : : ; pn matches a sequence of values x1; : : : ; xn,
yielding the mapping �1 � � � �n, if and only if for all i 2 [1; n], pi matches
xi yielding the mapping �i.

17

� An AtomicLiteral pattern p matches a value x, yielding the empty map-
ping [], if and only if p denotes x.

� A VariableName pattern p always matches a value x, yielding the mapping
[p 7! x].

� A tuple pattern fp1, : : :, png matches a value fx1, : : :, xng, yielding
the mapping �1 � � � �n, if and only if for all i 2 [1; n], pi matches xi yielding
the mapping �i.

� A list constructor pattern [p1 | p2] matches a value [x1 | x2], yielding
the mapping �1�2, if and only if for i 2 [1; 2], pi matches xi yielding the
mapping �i.

� An alias pattern v = p matches a value x, yielding the mapping �[v 7! x],
if and only if p matches x yielding the mapping �.

5.5 Clause selection

First, recall that in Core Erlang, a variable may occur at most once in the
patterns of a single clause, and note that pattern variables are always binding
occurrences; variables cannot be repeated or imported in patterns, as they can
in Erlang.

Given a sequence x1; : : : ; xk of switch values and an environment �, a se-
quence of clauses

P1 when g1 -> b1 � � � Pn when gn -> bn

where each Pi is a sequence <pi1, : : :, pik> of patterns, is tried in left-to-right
order as follows:

If the pattern sequence pi1; : : : ; pik is matched successfully against x1; : : : ; xk,
yielding a mapping �0 = [v1 7! x01; : : : ; vm 7! x0m], where v1; : : : ; vm are exactly
the variables occurring in pi1; : : : ; pik, each bound in �0 to some subterm x0j of
x1; : : : ; xk as the result of the pattern matching (cf. section. 5.4 for details),
then the expression protected gi is evaluated in the environment ��0. If the
result is 'true', clause selection succeeds, yielding the selected clause i and
mapping �0 as result. If the result is 'false', the next clause in order is tried;
if no clause remains, clause selection fails.

5.6 Clause guards

A Core Erlang clause guard must not have observable side e�ects and should
evaluate in bounded (preferably constant or linear) time. Because all guards are
evaluated within a protected expression, if the evaluation of a guard does not
complete normally, the raised exception is implicitly caught and discarded, and
the value 'false' is used for the result, thus failing the clause quietly.7 If a
clause guard evaluates to a value other than 'true' or 'false', the behaviour
is unde�ned.

At present, Core Erlang clause guards and all their subexpressions are
restricted to Protected together with the following subset of expressions:

7It is the explicit intention that a compiler might utilise a more eÆcient error handling
mechanism in the restricted case of guard evaluation.

18

� AtomicLiteral

� VariableName and FunctionName

� Tuple

� List

� Let (and thus also Sequencing)

� PrimOpCall

� InterModuleCall

where for any PrimOpCall primop a(e1, : : :, en), the primitive operation
a=n must not have observable side e�ects, and for any InterModuleCall call
e01:e

0

2(e1, : : :, en), e
0

1 and e02 must be atom literals such that the function
named e02/n in module e01 is trusted to exist and not have observable side ef-
fects.8 The set of trusted functions and primitive operations is implementation-
dependent; in implementations of Erlang, it typically includes those so called
built-in functions (BIFs) that are classi�ed as \guard BIFs", and type tests; see
the Erlang Reference Manual [1] for details.

6 Open issues

This section discusses known issues that may warrant further speci�cation in
future versions of this document.

6.1 Source code portability

Because several details of the semantics of Core Erlang have been de�ned
as implementation-dependent, it is possible for an implementation to expect a
particular behaviour for each of those details. (Typical examples of expected
behaviour could be that an exception on a particular form is raised, or that
an attempt is made to load missing code.) Therefore, Core Erlang code
generated by one implementation (e. g., by translation from Erlang source
code) might not be suitable as input to another implementation that makes
di�erent assumptions.

At present, there is no canonical translation fromErlang toCore Erlang,
which preserves the semantics of the Erlang program while making as few
assumptions as possible about implementation-dependent behaviour in Core

Erlang. Furthermore, the naming conventions for the Erlang operators and
type tests (cf. section 6.3) need to be standardised in order to create a canonical
translation.

8Not all such \remote" functions must have actual implementations in existing modules,
but may instead be aliases for built-in operations known to the compiler.

19

6.2 Syntax for binary objects

The latest addition to the Erlang language, as of this writing, is a compact
syntax for composition and decomposition of binary-type objects. This can
easily be expanded into primitive operations during translation from Erlang

to Core Erlang, but it is not yet clear whether it is actually preferable that
the expansion is performed at that level, or whether a similar syntax should be
added to the Core Erlang language in order to facilitate optimisations on
such expressions.

6.3 Built-in functions

The Erlang language speci�es a large number of so-called built-in functions
(BIFs), together with a set of unary and binary operators, and boolean type
test operations that are recognized only in clause guards. Most BIFs, but not
all, currently belong to the erlang module. Some BIFs may be used in clause
guard expressions. Some BIFs are recognised by the compiler as if implicitly
declared as imported, thus not needing to be quali�ed by their module names.

BIFs are prede�ned functions supplied with the implementation, but do not
have to be implemented in any particular way { they can be inline-expanded
by the compiler, implemented in another language such as C, or be regular
Erlang functions. The only requirement on a BIF is that it \must not be
rede�ned during the lifetime of a node" [1], which makes it possible for an
implementation to \use all information in the description of the BIF to make
execution eÆcient".

All BIFs have a \home module", making it possible to dynamically call also
those BIFs that are not implemented as regular Erlang functions by their
module and function names. The Erlang operators and type tests, however,
do not at present have corresponding documented home module and function
names, but this will be added in future releases.

The Core Erlang representation of an explicit call to an Erlang BIF that
is not a regular Erlang function can therefore be either of call a1:a2(: : :),
where a1 and a2 are atom literals, or primop a(: : :), where a is an atom literal.
In the former case, it is then assumed that the compiler will recognise the call
as an alias for a built-in operation and eventually generate appropriate code for
making the call, possibly by �rst rewriting it as a primop call. The names and
semantics of primop operations are however always implementation-dependent,
and it can be expected that programs operating on Core Erlang code will be
more portable if the form call a1:a2(: : :) is used and retained for as long as
possible in the compilation process.

In order to extend the portability of programs that operate onCore Erlang
code, it will be necessary to parameterise information about built-in functions.
Because the Erlang language keeps evolving, and because di�erent Erlang
implementations may not have the exact same sets of prede�ned functions, it is
generally not a good idea to hard-code assumptions about BIFs. Instead, such
information should in as much as possible be moved to separate modules, so that
when porting a Core Erlang analysis or transformation from one Erlang
implementation to another, only these modules need rewriting. It is then pos-
sible that a set of standard modules for BIF information could be agreed on,
which could be assumed to be supplied by every Erlang implementation.

20

References

[1] J. Barklund, R. Virding, Erlang 4.7.3 Reference Manual, draft ver-
sion 0.7. June 1999.

[2] J. Barklund, R. Virding, Speci�cation of the Standard Erlang program-
ming language, draft version 0.7. June 1999.

[3] ISO/IEC, Information processing { 8-bit single-byte coded graphic character
sets, 1987. Reference number ISO 8879:1987.

[4] The Unicode Consortium, The Unicode Standard, Version 2.0. Addison-
Wesley, Reading, Mass., 1996.

21

A Quick reference

This section gives an informal overview of the elements of the language.

A.1 Comments

Example:

% This is a comment; it ends just before the line break.

A.2 Constant literals

Examples:

Integers: 8, +17, 299792458, -4711

Floating-point numbers: 0.0, 2.7182818, -3.14, +1.2E-6,
-1.23e12, 1.0e+9

Atoms: 'foo', 'Bar', 'foo bar', '', '%#\010@\n!',
'_hello_world'

Character literals: $A, $$, $\n, $\s, $\\, $\12, $\101, $\^A

Strings: "Hello, world!", "Two\nlines", "",
"Ring\^G" "My\7" "Bell\007!"

A.3 Variables

Examples:

X, Bar, Value 2, One2Three, Stay@home, hello world

A.4 Keywords

after apply attributes call case

catch do end fun in

let letrec module of primop

protected receive try when

A.5 Separators

() f g [] < >

, : | / = -> -|

A.6 Annotations

(� -| [const1 , : : :, constn])

22

A.7 Programs and expressions

module ::= module Atom [fname i1, : : :, fname ik]

attributes [Atom1 = const1, : : :, Atomm = constm]

fname1 = fun1 � � � fnamen = funn end

fname ::= Atom / Integer

const ::= lit j [const1 | const2] j f const1, : : :, constn g

lit ::= Integer j Float j Atom

j Char j String j []

fun ::= fun (var1, : : :, varn) -> vals

var ::= VariableName

vals ::= expr j < expr1, : : :, exprn >

expr ::= var j fname j lit j fun

j [vals1 | vals2] j f vals1, : : :, valsn g

j let vars = vals1 in vals2

j case vals of clause1 � � � clausen end

j letrec fname1 = fun1 � � � fnamen = funn in vals

j apply vals0(vals1, : : :, valsn)

j call vals 01:vals
0

2(vals1, : : :, valsn)

j primop Atom(vals1, : : :, valsn)

j try vals1 catch (var 1, var 2) -> vals2

j receive clause1 � � � clausen after vals1 -> vals2 end

j protected vals

j do vals1 vals2

j catch vals

vars ::= var j < var1, : : :, varn >

clause ::= pats when vals1 -> vals2

pats ::= pat j < pat1, : : :, patn >

pat ::= var j lit j [pat1 | pat2] j f pat1, : : :, patn g

j var = pat

23

B Escape sequences

This table shows the Unicode character values for the escape sequences de�ned
by Core Erlang; they are the same as in Erlang.

\ b \u0008 (backspace, BS)
\ d \u007f (delete, DEL)
\ e \u001b (escape, ESC)
\ f \u000c (form feed, FF)
\ n \u000a (linefeed, LF)
\ r \u000d (carriage return, CR)
\ s \u0020 (space, SPA)
\ t \u0009 (horizontal tab, HT)
\ v \u000b (vertical tab, VT)
\ " \u0022 (double quote, ")
\ ' \u0027 (apostrophe/single quote, ')
\ \ \u005c (backslash, \)

24

C Syntax tree representation

The following schema describes a representation of Core Erlang syntax trees,
suitable for most general purposes. For brevity, de�ne xi to mean an ordered
sequence (x1; : : : ; xi), for i � 0, and x� to mean any sequence in

S
1

i=0fx
ig.

module ::= module (atom a) fname� attr� def �

fname ::= fname a i

attr ::= (atom a; const)

const ::= lit const�

lit ::= int i j float f

j atom a j char c

j nil j cons j tuple

def ::= (fname ; fun)

fun ::= fun v� w

v ::= var s

w ::= e j values e�

e ::= v j fname j lit w� j fun

j let v� w w

j case w clause�

j letrec def � w

j apply w w�

j call w w w�

j primop a w�

j try w v� w

j receive clause� w w

j protected w

j do w w

j catch w

clause ::= clause pat� w w

pat ::= v j lit pat� j alias v pat

where a stands for an atom, i for an integer, f for a
oating-point number, c
for a character and s for a string.

Implicitly, each constructor above should also have an additional �eld for an
associated list of annotations (atom a; const).

25

Index

", see strings
$, see character literals
%, see comments
', see atom literals
., see period characters
[], see nil

abrupt termination, 12
alias pattern, 6
annotations, 9, 22
application, see functions, applica-

tion
argument evaluation

order, see evaluation order
strictness, 12

ASCII, 2
atom literals, 4
attributes, see module attributes

BIFs, 20
binary syntax, 20
built-in operations, see primitive op-

eration calls

calling functions
application of functional value,

8, 14
inter-module calls, 8, 14

case expressions, 7, 10, 13
catch expressions, 8, 17
catching errors, see error handling
character literals, 4, 12
clause guards, 8, 10

evaluation, 18
failing, 18
restrictions on, 18
result of evaluation, 18

clauses, 7, 10, 18
annotations on, 7
body, 10
evaluation, 13
guard, see clause guards

closure, 12{14
application of, see functions, ap-

plication
unavailable code, see functions,

calling purged code

code replacement, 11, 14
comments, 2, 22
compile-time error

arity mismatch in function def-
inition, 9

exported name not de�ned, 9
multiply de�ned function, 9, 10
multiply de�ned module attribute,

9
unbound function name, 10
unbound variable, 10
wrong number of patterns in case,

10
wrong number of patterns in

receive, 10
cons, see list constructor
constant literals, 5, 22

data types, 11
degree of expression, 11
do expressions, 8, 17

empty list, see nil
environment, 11
Erlang

BIFs, 20
receive, 2
tokenisation, 2

error handling
general, see try expressions
in guards, see protected ex-

pressions
escape sequences, 3, 24
evaluation order

in case expressions, 13
in let expressions, 13
in protected expressions, 17
in receive expressions, 15
in try expressions, 15
of arguments, 12
of clauses, 18

exceptions, 12
catching, see error handling
raising, 15

execution, see programs
expiry expression, 8
expressions, 6, 10, 23

26

evaluation
Application, 14
AtomicLiteral , 12
Case, 13
Catch, 17
Fun, 13
FunctionName, 12
InterModuleCall , 14
Let , 13
Letrec, 13
List , 13
PrimOpCall , 15
Protected , 16
Receive, 15
Sequencing , 17
Try , 15
Tuple, 12
ValueList , 12
VariableName, 12

guards, 10
result of evaluation, 11
syntax, see grammar

oating-point literals, 4
full stop tokens, 2
functions

abstraction, see fun expressions
application, 8, 14
calling purged code, 14
de�ning
in Letrec expressions, 8, 13
in module de�nitions, 4

exported, 9
function names, 3, 4, 11, 12
inter-module call, 8, 14

fun expressions, 8, 10, 13, 14

grammar, 3
AnnotatedClause, 7
AnnotatedFun, 5
AnnotatedFunctionName, 5
AnnotatedModule, 4
AnnotatedPattern, 6
AnnotatedSingleExpression, 6
AnnotatedValueList , 6
AnnotatedVariable, 5
Application, 8
Atom, 4
AtomicLiteral , 5
Attributes , 4

Case, 7
Catch, 8
Char , 4
Clause, 7
Constant , 5
Exports , 4
Expression, 6
Float , 4
Fun, 8
FunctionDe�nition, 5
FunctionName, 4
Guard , 8
Integer , 4
InterModuleCall , 8
Let , 7
List , 7
Module, 4
ModuleAttribute, 5
ModuleBody , 5
ModuleHeader , 4
Nil , 5
Pattern, 6
Patterns , 8
PrimOpCall , 8
Protected , 8
Receive, 8
Sequencing , 8
SingleExpression, 6
String , 4
Timeout , 8
Try , 8
Tuple, 7
ValueList , 6
VariableName, 4
Variables , 7

guards, see clause guards

hot-code loading, see code replace-
ment

implementation-dependent behaviour
application of non-closure, 14
arity mismatch, 14
calling purged code, 14
improper value of expiry expres-

sion, 15
meaning of module attributes,

9
meaning of program annotations,

9

27

meaning of program result, 11
module or function name in call

not an atom, 15
process state, 11
target of inter-module call not

found, 15
infinity, 15
input encoding, 2
integer literals, 4
inter-module calls, see functions
ISO/IEC 8859-1, see Latin-1

keywords, 22

lambda abstraction, see fun expres-
sions

latest version, see module
Latin-1, 2
let expressions, 7, 10, 13
letrec expressions, 8, 10, 13
line terminators, 2
list constructor, 10
lists, 7, 9, 13

in constant literals, 5
in patterns, 6

literals, 5, 9

mailbox, see processes, 11
module

attributes, 5
de�nition, 4
garbage collecting, 14
latest version, 11
purging, 14

nil, 5, 10, 12

open issues, 19
operations, see primitive operation

calls

pattern matching, 17{18
patterns, 6, 8, 10
period characters, 2
portability of source code, 19
primitive operation calls, 8, 15
processes, 11

identity, 11
mailbox, 11
mutating the state of, 11
state, 11

programs, 11, 23
execution, 11

protected expressions, 8, 10, 16

quick reference, 22

receive expressions, 8, 10, 15

scope of function de�nitions, 9
separators, 2, 22
sequencing of expressions

explicit, 8, 17
implicit, see let expressions

Standard Erlang, 2
strictness, see argument evaluation
strings, 4
switching, see case expressions
syntactic sugar, 17
syntax

grammar, 3
representation, 25

timeout, see expiry expression
tokenisation, 2
try expressions, 8, 10, 15
tuples, 7, 12

in constant literals, 5
in patterns, 6

unde�ned behaviour
degree mismatch, 12, 13
evaluation order, 12
no matching case clause, 13
non-boolean clause guard, 18

Unicode, 2

value sequences, 6, 11
variables, 4, 5, 22

binding by pattern matching, 18
explicit binding, see let expres-

sions
importing, 18
in patterns, 10, 18

versions of code, 14

whitespace, 2

28

