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Abstract
One of the most important issues regarding real-time software performance is the worst case execution
time (WCET). There are several methods for deducing the WCET statically; one such analysis system
is currently under development by WCET researchers from Uppsala University in co-operation with C-
lab in Panderborn. The system uses a CPU simulator for calculating the execution time of selected
parts of the target program, which creates a demand for a very cycle-accurate simulator.

In this thesis, we give a method for validating a CPU simulator against real hardware CPU. The
proposed test method is a black-box test method that relies on hardware analysis for test-case
generation. The validation method aims at both determining the accuracy of the simulator and to
pinpoint simulator errors for improving the accuracy.

We have tested this validation method on a NEC V850 CPU core simulator, and the results show that
the average error-rate drops from 11,2 % to 1,3 % for a set of benchmark programs.
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1. Introduction and Background

1.1. WCET Analysis Tools
One of the most crucial aspects of real-time software programming and testing is the determine ration
of software performance. One of the most important issues regarding software performance is the
estimated worst case execution time (WCET). The WCET is required for system modelling and
verification, scheduling analysis, hardware dimensioning, etc.

Real-time software developers currently have few options for investigating performance issues such as
the WCET. The industrial standard of today is to spend substantial time, perhaps hundreds of hours,
running software on real hardware and measuring execution times. This problem becomes even more
obvious for embedded system developers, since the applications sometimes must be burned into ROM
before performance can be tested.

An estimated WCET must be safe, i.e. it must never underestimate the real value of the WCET. Using
measurements for estimating the WCET can never produce a safe WCET since there is no guarantees
that the real worst case scenario as been captured by the measurements. A safe estimated WCET can
only be produced be formal static analysis.

The need for tools performing static WCET analysis is evident, but still very few such tools have been
developed and deployed. However, one research tool for WCET analysis is the Uppsala/Paderborn
Generic WCET Analysis Tool [1] currently under development by WCET researchers from Uppsala
University in co-operation with C-lab in Panderborn, Germany. This analysis tool performs both
advanced high-level and low-level program flow analyses to deduce the worst-case execution time
scenario for a given target program. The selected parts of the target program are then run in a cycle-
correct CPU simulator and the final execution timing is obtained. This means that the analysis tool is
critically dependent on a correct simulator to generate safe times.

1.2. Making a Cycle-accurate CPU Simulator
Designing and implementing a cycle correct CPU simulator is a very difficult task. The main obstacle
is probably to obtain correct and detailed CPU specifications. Such specifications are often derived
directly from the CPU hardware documentation, written by the CPU manufacturer. There are several
sources of errors in such a process:

• Documentation is too superficial. The simulator programmer is then forced to make assumptions
about the CPU internal functionality and design.

• Real CPU implementation does not correspond to the documentation on some significant details.
Such divergences can arise from inconsistent documentation during CPU development or even
simple typing errors.

The simulator specifications then become very unreliable, possibly leading to a bad simulator design.
Important internal states and functions of the CPU may be modelled incorrectly or even completely
omitted due to a poor abstraction.

A CPU simulator is also a complex piece of software, hence the presence of implementation bugs are
probably unavoidable. Such bugs may cause the simulator to render a significantly wrong execution
time result for some target programs (while others may be totally unaffected by the bugs).

These issues are only some of the problem simulator vendors must face and they clearly illustrate the
need for systematic methods of simulator debugging and validation.
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1.3. Why Formal Proofs is not an Option
A CPU simulator can be viewed as just another software program. The target hardware architecture,
which the simulator is supposed to imitate, may be specified and documented using a formal hardware
description language such as VHDL or Verilog. This might indicate that formal proofs could be used as
validation method framework. However, we consider validation by formal proofs as an infeasible
strategy. Some problems of using formal proofs in this case are:

• Insufficient specifications
• High complexity of the software, beyond current technologies

Lack of knowledge of how the architecture is implemented inside the actual hardware will certainly
cause CPU simulator vendors to design and implement incorrect performance models without violating
any formal specification. Formal proofs may very well be used to validate other parts of a WCET
analysis tool, but in the case of simulators the gap between theoretical models and reality (physical
target chip) would remain unexplored.

We believe that simulator validation by comparing the simulator to real hardware is probably the only
solution to achieve an adequate validation, at least in the foreseeable future.

1.4. Our Method of Validation
In this thesis we present our work on finding a systematic method for CPU simulator validation.
The fundamental idea is to perform black-box testing in which performance results from running tests
on the CPU simulator are compared to the results of the same tests on real hardware.

Each single test is a simple micro-benchmark program, which includes a short hand-written test code
pattern, which is timed. The set of code patterns is derived from characteristics of the simulation target
hardware architecture and aims at covering as many execution scenarios as possible.
Every test code is run on real hardware and the execution times are measured. These results act as
validation references and are compared to execution times calculated by the CPU simulator.
Divergences indicate simulator errors and the need to correct the simulator.

The basic ideas behind this method of validation are not new. They have been proposed and tested
earlier in the work by Black and Shen [2]. Their method aimed at validation of a performance model,
using comparison tests between the model and the real hardware. The test suite contained unbiased test
cases, as well as random and hand-written test codes. Nevertheless, some key assumptions let us take a
slightly different approach, especially on test code pattern generation:

• Our method aims at CPU simulators for microcontroller chips with fairly simple architectures.
• We limit our performance parameters to only include execution time with respect to pipeline

execution.
• We do not invoke other performance issues such as cache miss rates, speed of memory accesses

etc. This also let us use a simplified memory interface model, letting us assume static and well-
known timing for every single memory access.

With these restrictions on hardware complexity we believe that systematic and careful static analysis of
hardware architecture can reveal the information needed to generate a complete test suite. This means
that no random test cases or other unbiased tests with “ultimate covering” ambitions are necessary to
establish an adequate validation test suite.

1.5. Case Study on NEC V850E CPU Core Simulator
We have performed a case study to investigate if such a validation method works in practice.
The NEC V850E 32-bit microcontroller CPU core [6] has been used as hardware target and validation
reference. The V850E CPU architecture features simple RISC instructions together with more complex
instructions that are specially adapted to embedded system requirements, making it a fairly typical
embedded microcontroller.
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The V850E pipeline model is rather straightforward but not trivial, since it offers parallel execution of
two instructions under certain conditions. The presence of on-board internal ROM and RAM and the
absence of caches correspond well with our limitations on memory access.

Our subject to validation test case, the Uppsala/Paderborn V850E CPU Simulator prototype, has
originally been based only on written documentation from NEC. Earlier tests [3] of this simulator have
shown that the simulator may miscalculate execution time with up to 25 % for some benchmark
programs and 11,2 % in average.

Ideally, we would like a perfect correspondence, which is probably not feasible for any non-trivial
architecture. For use in static WCET analysis, the CPU simulator must be very close to the hardware
but a small divergence can be tolerated if it is bounded. A safety margin may then be added to the
WCET to account for such divergence, yielding a safe estimate that is slightly loose.

1.6. Method Evaluation and Results
By comparing results for some benchmark programs before and after debugging the simulator, we are
able to estimate how well our method expose simulator incorrectness. The relative improvements of
simulator accuracy for these benchmarks act as a measurement on effectiveness of our method.

The results from these benchmark comparison tests show that the average simulator error has dropped
from 11,2 to 1,3 % after applying our method to the simulator. These results indicate that our method
may be a feasible strategy for debugging and validation of a CPU simulator.

1.7. Paper
Our work is presented as following:
• Related works are presented in chapter 2.
• In chapter 3 we give an overview of our method. Since we invoke testing, we discuss and define

test data adequacy criteria. A method cookbook is also presented in this chapter.
• The analysis and test tools used in our case study are introduced in chapter 4.
• Chapter 5 covers the analysis of the V50E CPU pipeline, while the instruction set is analysed in

chapter 6
• The structure and design of our test suite is given in chapter 7, and the validation test results are

presented in chapter 8. This chapter also includes the results from the method evaluation.
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2. Related Work

2.1. Micro-benchmarking
While larger benchmarks are often used with the intention of testing computer system performance
under real workloads, micro benchmark aims at measuring specific features of a system. This use of
micro benchmark is introduced by Saavedra, Gaines, and Carlton [4], which use micro benchmarks to
extensively analyse memory performance of the KSR1 parallel computer.

2.2. Testing WCET Analysis Results
An interesting method of testing the correctness of the result calculated by static WCET analysis is
presented by Puschner and Nossal [5]. This method is based on comparison between the result
produced by the WCET analysis tool and the result from measuring execution time on real hardware.
The test programs are generated automatically using a generic algorithm (GA). The generated
programs are based on the results of previous test results.

This method shares the property of using comparison tests as main framework with our method. On the
other hand, Pushner and Nossal test the entire WCET analyse tool, while our method narrows on
testing a CPU simulator. Their main interest is in testing the dependence of input data and associated
variances in program flow, and not on low-level CPU issues.

2.3. Performance Model Calibration
Black and Shen propose a method of Performance Model Calibration [2], very closely related to our
method. In this method a set of test code patterns are generated, each test code is run on real hardware
and the execution times are measured. The performance model also calculates execution times for
every test code and the results are compared. After analysing the comparison outcome, the model is
debugged and the tests and comparisons are repeated.

The test code set is divided into five test suites; Alpha, Beta and Gamma test suites contains unbiased
tests where each and every assembler instruction is executed individually and in combination with both
the same instruction and all other instructions. Several randomised code sequences form the Random
test suite. Finally, hand-written code patterns are used to trigger special hardware functionality and to
check model boundary conditions.

By running a similar comparison test with large benchmarks after every debugging phase, the
effectiveness at improving model accuracy can be verified.
Since the results presented on effectiveness show a much lower degree of accuracy improvement than
expected by the authors, this may indicate that the proposed method is insufficient. However, Black
and Shen claim in their final analysis that a larger and more advanced test suite would render an
acceptable validation.

One principal point in Black and Shen’s method is of course how the test suites are compiled. The
Alpha, Beta and Gamma tests together with random test suite are generated automatically, using only
basic information on target instruction set. We assume that no prior analysis is needed for this work.
However, the special hand-written patterns require an thorough analysis of hardware, instruction set
etc, in order to find as many interesting cases as possible.

In our work we have used an approach very similar to the method proposed by Black and Shen. We
have adopted the basic idea of a comparison test, invoking a proper test suite, between a simulator and
real hardware as the validation method framework. We have also used comparison tests on larger
benchmark for evaluating the effectiveness and correctness of our method.
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The main difference between Black and Shen’s method and ours is the test suite generation. Our test
code patterns are all hand-written based on prior analysis of the hardware architecture. No unbiased
tests such as Alpha, Beta, Gamma or random tests are included in our test suite.
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3. Method Overview
In this chapter, we discuss CPU simulator validation in terms of white-box and black-box testing.

We discuss method restrictions on hardware complexity, and a method cookbook is presented. We
conclude by defining some problems regarding comparison of measured execution times.

3.1. Software Testing vs. CPU Simulator Validation
CPU simulator validation based on testing against real hardware share many properties with general
software testing. Software testing normally involves careful analysis of the software implementation.
This includes analysis of the code statements and search for possible execution paths. To reach the best
possible test coverage, test criteria such as “execute each statement at least once” or “evaluate each
branching structure with all possible values” is stated. This is known as structural or white-box testing,
since tests primary derive from knowledge of the software’s structure and how the program is
implemented.

Another form of software testing is functional or black-box testing. Functional testing means that the
test cases are derived only from software specifications and the test results are given by analysing input
and corresponding output. Only input and output domains are analysed and classified in order to find
the best test data adequacy criteria.

CPU simulator validation by testing against real hardware is very similar to software black-box testing.
The simulator program is not analysed in any way and the validation result only depends on simulator
input and output. In this case, the input is some assembler instruction sequence and output is the total
execution time of this instruction sequence.

Since validation is based on comparison, we consider there to be only one fundamental definition of
simulator correctness - the simulator should always agree on execution times (output) with real
hardware for any arbitrary instruction sequence (input).

To be able to handle this infinite input set, demands for CPU hardware analysis are more or less
unavoidable. Strive for optimal test coverage may also require that every relevant internal state of the
simulated CPU be reached during some execution scenario. This implies a profound hardware analysis
not unlike the analyses performed in white-box testing. However, if the hardware architecture is too
complex, the analysis will certainly fail and other test coverage strategies are required (e.g. unbiased
tests may be used).

Our method of simulator validation adopts the idea of black-box testing as the fundamental testing
discipline, augmented with a white-box analysis of the hardware. We define test data adequacy criteria
to quantify our goal of test coverage. These criteria are derived from the simulator-input domain, i.e.
sequences of assembler instructions.

The final test suite composition is solely based on results from structured analyses of the real hardware
architecture. Hence no unbiased or random test cases are required in our method.

3.2. Method Restrictions on Hardware Complexity
Constraints on hardware complexity are crucial for our method to work in practice. Hence, we have
been forced to make some initial restrictions and assumptions before we started our investigation of the
V850E hardware.

The memory interface model has been limited to only concern V850E on-chip RAM and ROM. These
memories are accessed on independent memory buses and thus no conflicts between data and
instruction accesses should ever occur.
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The internal ROM holds all instructions and all memory access are completed within a single clock
cycle during instruction fetch. Data memory accessing instructions normally access internal RAM only.
Such accesses are also completed in a single clock cycle. The V850E instruction set includes two
instructions that read data from internal ROM. This exceptional behaviour and its impact on execution
timing is explored and analysed as a special case.

The above constraints narrow our analyses and tests to only include the instruction set and the
execution environment, i.e. the CPU pipeline.

3.2.1 Case Study Validation Reference Machine
Our method requires the ability to measure execution time on real hardware. Due to limitations in time
and available equipment, we have not been able to perform such measurement on a real V850E
microcontroller chip. Instead we have used a NEC V850E CPU core emulator as validation reference.
The use of an emulator is of course a potential source of error since we depend on the timing accuracy
of this emulator. Nevertheless, we do not believe that this has any major effects upon our proposed
method. The emulator is developed by real chip manufacture NEC, and they claim to use the same core
logic in the microcontroller and the emulator. This also means that even if we have used an emulator in
our case study we do not believe that our method is restricted by this fact.

Overall performance monitoring has been limited to a cycle clock counter, due to lack of dedicated
hardware counters. This has been quite sufficient since our method disregards performance impacts of
the external memory interface, cache etc.

3.3. Execution Parameters
Instead of considering single instructions to be atomic units, we are interested in invoking instructions
based on their execution characteristics, e.g. what pipeline resources they use and how they utilise
these resources. By analysing the instruction set, we can find these execution parameters (EP), and we
can also, for each instruction assign values to all execution parameters. This means that each
instruction can be associated with a set of tuples (EP, value). We will use these sets to find a reduced
instruction set, which will be the set of instructions we use in our test cases.

The execution environment, i.e. the pipeline and instruction fetch mechanisms, may also have specific
execution parameters. An example of scenarios where such execution parameter have impact on overall
execution times may be situations where the instruction fetch mechanism fail to fetch an entire
instruction due to some memory alignment constraint. These execution parameters must of course be
identified in order to reach adequate test coverage.

3.4. Method Cookbook
We have tried to formalise our basic ideas into a validation method cookbook. Each step is described in
more details below.

3.4.1 Hardware Analysis
The purpose of hardware architecture analysis is to:
• Identify and classify as many significant execution parameters of the architecture as possible.
• For each instruction, determine the values of the execution parameters of instructions.
• Examine how and under which condition instructions interfere with each other during execution.

This analysis includes examining if (and under which conditions) instructions can interfere directly
with the third or the forth succeeding instruction without interfering with the intervening
instructions.
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This requires a deep and structured investigation of the instruction set and pipeline design. It is very
hard to give details on what to examine before the actual analysis is commenced, since it is extremely
hardware-specific.

The first step will be to analyse the pipeline design, identifying pipeline stages and possible datapaths.
Attention must also be paid to how instructions are fetched from instruction memory and under which
conditions this may cause pipeline delays.

The next step is to analyse the instruction set, and for each instruction and instruction variant:
• Determine which actions the instruction performs during its execution.
• Match these actions to execution resources, i.e. pipeline stages.
• Analyse any potentially instruction interference scenarios.

Any action that may be suspected to have impact on execution timing is denoted as an execution
parameter, and the execution parameter value is determined for each instruction. Note that this is also
necessary when designing a cycle-accurate simulator.

3.4.2 Reducing the Instruction Set
To reduce the number of instructions, each instruction or instruction variant is classified regarding its
associated set of (EP, value)-tuples. Instructions with the same sets are grouped together into an
equivalence class.

As a final step, a representative instruction from each equivalence class is selected. These instructions
constitute a reduced instruction set, which is used for test code generation.

3.4.3 Test Data Adequacy Criteria
After reduction of the instruction set, each remaining instruction will have a unique set of (EP, value) -
tuples. From the instruction set analysis, we know the conditions for instruction interference. From the
execution environment (pipeline) analysis, we know the conditions for execution delays caused by the
execution environment EP’s.

We can now define the test data adequacy criteria for our method as following:
1) Each instruction of the reduced instruction set should be tested when:

a) The instruction interferes with succeeding instructions (interference conditions satisfied).
b) The instruction does not interfere with succeeding instructions (interference conditions not

satisfied).

2) The test suite should also include test cases where:
a) Execution environment EP has impact on the execution time of the test case (condition

satisfied).
b) Execution environment EP has no impact on the execution time of the test case (condition not

satisfied).

3.4.4 Test Suite Structure
The test suite is divided into several specialised test case families, where each family is targeting
closely related instructions. Individual test suite families may be derived from:
• “Natural” instruction relations, e.g. a family focusing solely on division instructions.
• Instructions with closely similar sets of (EP, value)-tuples, e.g. “simple” arithmetic instructions.
• Special execution paths such as parallel execution etc.

3.4.5 Test Code Patterns
A test case family consists of a set of short hand-written code patterns. The intention is that each
pattern will exercise and reveal the impact of a single or at most a few execution parameters of a target
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instruction. Thus, each test case should act as a precise error indicator when it comes to debugging the
CPU simulator.

The results from the analysis phase will serve as general guidelines for code pattern generation. We
assume that each target instruction has some kind of “basic” execution behaviour inside the pipeline,
e.g. a simple arithmetic instruction is pipelined perfectly, while a jump instruction cause a static
pipeline delay of two clock cycles. Such execution scenarios are easy to find since they are common
and also probably well documented. We must, however, write patterns where every unique scenario
win which target instructions interfere with adjacent instruction in such a way that additional execution
delays may occur. Patterns where no instruction interference is expected, and hence not triggering
abnormal execution behaviours, must of course also be included. This improves coverage and helps
interpreting test results with respect to simulator debugging.

The code patterns are very short instruction sequences. To be able to measure the execution times
distinctly, each pattern must be repeated at least a couple of hundreds of times within each test run.
Hence, execution behaviour when a pattern is repeated must be taken into account when designing the
code patterns. In most cases, a “neutral” transition between repetitions is desired. In other cases, e.g.
patterns with only a single instruction, pattern transition will be most significant to overall execution
time.

Another important issue to address, especially with respect to pattern repetition and transition, is that
every code pattern must be fully executable on real hardware. Instructions can’t be allowed manipulate
the contents of registers in such way that succeeding instructions may fail or cause undesired events,
e.g. division by zero or overflow.

3.4.6 Test Program Execution
Each test code pattern is repeated and transformed into two equal test programs, one for the CPU
simulator and one for the reference machine (real CPU hardware). Some kind of code generation tool
should be used to avoid small but devastating divergences between corresponding test programs, e.g.
input to simulator is a sequence of one thousand ADD instructions, while real hardware code only
incorporates 998 ADD’s.

Every test program is executed on the reference machine and the execution time is measured. These
values act as validation references; thus these programs need only be executed and measured once.
Corresponding test programs are then given to the CPU simulator and the execution times, calculated
by the simulator, are compared to the validation reference values. If any divergences are detected, the
simulator must be corrected and the tests repeated until all divergences are eliminated.

3.5. Measuring Execution Time
Measuring execution time on real hardware is often very difficult. Interference of unknown or non-
deterministic factors may cause large variances on test code execution time. Arriving at accuracy of a
few clock cycles require a stable, deterministic and predictable test bed.

In our case study, we have used a V850E emulator as hardware reference machine. This means that we
have not been forced to face the more practical difficulties arising when measuring execution time
directly on the real CPU chip, and no such problems will be discussed in this thesis.

We have assumed the emulator to be stable and deterministic. All our experience with the emulator
supports this assumption. Even though some emulator results have been most surprising, they always
have been repeatable. The emulator is presented and discussed in more detail in the next chapter.

3.5.1 Problems when Comparing Measured Execution Times.
There are some important issues regarding measuring and comparing execution time that need to be
addressed. Since we want to compare the execution time result given by the simulator to the result
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given by the emulator, we must ensure that the simulator and the emulator agree on what to measure, in
other words:
• When should the measuring start?
• When should it be stopped?

Since we assume that the simulator and emulator are deterministic, measuring must start when the
simulator and the emulator are in some equivalent, initial state. Such a “zero” -state could, as an
example, be defined as a cold pipeline i.e. every resource inside the pipeline is free and empty,
including instruction prefetch mechanisms and prefetch instruction queue. This is probably the most
natural initial state for the simulator.

Unfortunately, a cold pipeline state is most likely unreachable for the emulator, and definitely
unreachable if we should measure on real CPU chip. This requires us to use a warm pipeline as initial
state i.e. there are already some instructions executing inside the pipeline when first instruction of the
test code is fetched and measuring is started. This means those internal states of the emulator and the
simulator must be well controlled before the test code initiate execution. In our case, we must be sure
that no instructions with “nasty” execution behaviours immediately precede our test code and thereby
cause unexpected or uncontrolled execution delays.

Defining the point where measuring should stop is even more difficult. It is very hard to determine at
which point in time the last instruction of the test code terminates, especially if this instruction has very
long individual execution time e.g. loops in some pipeline stage. The problem is to “synchronise” this
point in time, if we decide to stop the emulator measuring clock when the final instruction is being
fetched from instruction memory, will the simulator do the same?

Our solution to these problems is presented in chapter 7: Our Test Cases.
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4. Analysis and Testing Tools
Our analyses have been performed through studying and interpreting the hardware documentation, and
through testing and verifying this information on a hardware emulator. This chapter describes and
discusses the documentation used. It also includes a brief description of the emulator and its interface.
We conclude with a discussion on emulator versus real hardware chip.

4.1. The V850E User’s Manual
All V850E documentation used and referred in the following chapters is taken from the NEC
V850/MS1 Preliminary User’s Manual (UM)[6]. The essential information has been taken from
following sections:
• 5.3 Instruction Set. This section includes syntactic and semantic descriptions of each instruction.
• 5.4 Number of Instruction Execution Clock Cycles. Includes Table 5-10, which gives some

interesting information on instruction interference.
• 8, 8.1, 8.2 Pipeline. Include figures of general pipeline configuration and dual issue scenario.
• 8.3 Pipeline Flow during Execution of Instructions. Includes Execution Flow Diagrams (EFD) for

each type of instruction. Also includes table of memory access timings.

Relying solely on hardware documentation may not be sufficient in order to find all relevant facts
about the hardware architecture. Even documentation that can be considered unusually detailed, such as
the V850E documentation, may be confusing and easy to misinterpret. During our work we have
encountered ambiguous information and even some completely wrong specifications in the User’s
Manual. All such cases are described in this paper.

4.2. The Emulator
In order to get a better understanding of the CPU, we have used a V850E Core Emulator for testing and
clarifying execution behaviours whenever needed.

The emulator is programmed and monitored via the IAR V850 C-Spy debugging software [7]. This
application includes monitoring of CPU registers, as well as clock cycle counter and execution trace
logs. Trace logs show each executed instruction marked with a clock cycle timestamp, indicating
execution time in relation to adjacent instructions.

Example: A sequence of instructions with “perfect” pipeline behaviour, e.g. unrelated addition
instructions, will render timestamps C, C+1, C+2 and so on. C is the timestamp value for first
instruction in the sequence.

It is not always clear how the timestamps should be interpreted. We do not know which execution
event sets the value of a timestamp, e.g. execution in some specific pipeline stage, or if timestamps are
deduced in some other way. Hence, timestamps only show if a delay has occurred but not why or in
which pipeline stage. Whenever the trace log indicates such a delay or other unusual execution timings,
documentation has been consulted for clarification, and vice versa.

Figure 4-1 shows the user interface of C-Spy, running an emulator session.

To some extent, the emulator has also been used for verification of rather trivial information, gathered
from V850E User’s Manual. This has been very enlightening and helped us to reason about the pipeline
design and implementation. In general, having an emulator with good control software is a very
valuable tool for simulator validation.
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Figure 4-1: User interface of IAR C-Spy[7].

4.2.1 Discussion on Emulator vs. Real Chip
Considering that we used the emulator for verifying and clarifying information found in the chip
documentation, questions on emulator accuracy are inevitable. We have not been able to experiment
with real hardware chip during our work, thus we have no way to measure or quantify any potential
incorrectness of the emulator. To handle the gap between emulator and real hardware chip, we have
made the following assumption: The emulator is always accurate and corresponds correctly to the real
hardware.

This means that whenever we encountered divergence between documentation and emulator, we have
considered the information given by the emulator as correct.

Nevertheless, some test scenarios have been found in which execution results presented by the
emulator are very strange and inexplicable. We have denoted these cases as “remarkable” throughout
this paper. In order to maintain consistency on our emulator assumption, we have chosen to include
them as relevant criteria for our final test code generation. We do not know if these exceptions indicate
an incorrect emulator or an accurate emulator, emulating a real chip with odd design and
undocumented features (or even bugs, which is quite common even in hardware design and
implementations).

4.3. Test Program Generator
Each test code pattern has been derived and specified manually but the pattern specifications were
translated into final test programs by a simple code-generating program (written in SML).

Since emulator programs must be fully executable, they include instruction sequences for initiating
data memory and registers. Execution time for this overhead is avoided by letting dedicated
instructions trigger the clock-cycle counters. The memory address of every instruction must be kept
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synchronised with the corresponding simulator program so that no uncontrolled misalignment scenarios
occur during execution, and thus the emulator code is loaded to the same address as the simulator uses.

Due to the design of the simulator, simulator test programs must be structured into basic block. Within
a basic block, each individual instruction is encoded together with its memory address [8].
Each code pattern instance is translated into a basic block when the pattern ends with a branching
instruction. Otherwise, all pattern instances can be aggregated into one large basic block.
Test code wrapping sequences are always encoded into separate start and end blocks.
The simulator also needs a description of the basic block execution order. This file is also produced by
the code generator.

An example of equivalent emulator and simulator programs is in Appendix A: Test Programs of Test
Case F0_1.

Most patterns have been designed so that the total execution time for the final test programs can be
expected as multiples of the number of pattern instances when executed on the emulator i.e. we can
ascribe a certain number of cycles to each iteration of the pattern.
Exceptions are misalignment test programs, which are designed to trigger a misalignment scenario
every other pattern instances. This design is chosen since it allows start address 0x2000 to be used for
all test programs.
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5. V850E Pipeline Analysis
The first step in our analyses involves a closer look at the instruction execution environment and its
characteristics. All information is gathered from the V850E User’s Manual.
This chapter gives a brief overview of the NEC V850E pipeline configuration. This also includes
descriptions and discussion on parallel execution, so called dual issue scenarios.

5.1. V850E Pipeline Configuration
Unlike earlier models of V850 family, the V850E CPU core features both a five-stage Master Pipeline
and a special four-stage pipeline dedicated for short load (short address mode) and branch instructions.
In this Additional Pipeline, address calculation is performed during instruction decode stage (ID), thus
no executing stage (EX) is required.

The normal data path of the Master Pipeline is split after EX. Instructions that do not access memory,
such as arithmetic and logic instructions, utilise the “original” data path. Execution is then transferred
by a data forwarding stage (DF) to final write back stage (WB).

Memory accessing instructions use the memory stage (MEM) and WB of the Additional Pipeline. Thus
a non-blocking behaviour of memory accessing instruction is achieved. We will however not be able to
investigate and test this option since data memory accesses are completed in a single clock cycle in all
our test configurations.

The instruction fetch stage (IF) is shared by the Master and the Additional Pipeline. IF is designed to
process at most 32 bits of instruction data per clock cycle. This implies that instructions longer than 32
bits should always cause some pipeline delay.

ID EX DF WB “Master Pipeline”

IF

ID MEM WB “Additional Pipeline”

Figure 5-1. The V850E Pipeline Configuration [6]

5.2. Instruction Prefetch
Before instructions are processed in IF they have to be fetched from instruction memory. This is
performed by a dedicated Prefetch Unit, which reads four consecutive bytes from instruction memory,
always from a 32-bit aligned address. If only the first 16 bits can be processed by IF, e.g. first two
bytes are a 16-bit instruction and remaining two bytes are first half of a following 32-bit instruction,
then remaining two bytes are stored in an instruction buffer queue.

5.3. Parallel Instruction Execution (Dual issue)
Dual pipelines with independent data paths also bring the possibility of two instructions executing
simultaneously. Assuming that IF holds two 16-bit instructions which together constitute a possible
dual issue pair, and that preceding instructions have not caused the pipelines to stall, then both
instructions can be issued together during next clock cycle.

Dual issue scenarios may have a significant impact on the execution time of programs and instruction
sequences. Typically, a suitable sequence of dual-issued 16 bit instructions have a CPI as low as 0.5,



21

while a sequence of 32-bit instruction never can reach below 1.0 CPI. This improvement raises the
performance of the CPU by at least 10 %, sometimes as high as up to 30 %.

5.4. In-order Issue and Execution
The older members of the V850 family implemented a strict in-order issuing policy for instruction
execution. This regulates the order in which instructions are allowed to access resources of the pipeline.
Interlock mechanisms allows instructions with very long execution times or “messy” pipeline
behaviour, e.g. divide or bit manipulation instructions, to stall the pipeline while they execute.
Succeeding instructions are never allowed to overtake executing instructions at any point.

The V850E core has inherited this pipeline policy but the introduction of parallel pipelines with dual
issue has made several execution scenarios more complex and harder to predict. For instance, a dual
issue scenario implies that the logical issuing order between two instructions is arbitrary. Consecutive
instructions can also utilise different pipelines during execution. This may require other types of
interlocking and control mechanisms than found in the V850 core.

5.5. Pipeline Analysis Results
Instruction length is clearly significant for instruction fetch timing as well as the possibility for 16-bit
instructions to participate in dual issue scenarios. This is an indication of an individual instruction
parameter and we investigate this in more detail during instruction set analysis, presented in the next
chapter.

However, we have one execution parameter that depends on the execution environment itself.
Assume a branch instruction is causing the instruction buffer queue to be invalidated and that branch
destination instruction is 32 bits and misaligned, i.e. least significant address byte: 0x02, 0x06, 0x0A or
0x0E. Since the prefetch unit follows a strict word alignment policy when reading instruction data,
prefetch will then need an extra read-cycle since only first half of the instruction is read during the first
clock cycle. This will then cause an execution delay of one clock cycle.

A similar delay will occur when a branch destination instruction, also misaligned, constitutes the first
16-bit instruction of a dual issue pair. These two 16-bit instructions will not be issued together since
they do not execute in IF during the one and same clock cycle.

This discovered execution parameter is denoted EP0. Since it is not a parameter of individual
instruction, we can not use it for instruction classification. However, our test suite must include
misalignment scenarios where this behaviour is triggered and tested.

� EP0: Instruction prefetch misalignment after changed program execution flow.
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6. V850E Instruction Set Analysis
This chapter gives our execution analysis of the V850E instruction set. The analysis aims at finding:
• Execution parameters (EP) of instructions and instruction variant. Execution parameters with

assigned values are later used for equivalence classification and instruction set reduction.
Discovered execution parameter are shown as:

� EP<no>: <description> (<value range>)
• Interesting execution scenarios. We are especially interested in finding scenarios where instruction

interference may cause additional execution delays. We also want to find all possible dual issue
scenarios. This is not trivial since the V850E documentation does not specify such scenarios at all.

• The “propagation” of instruction interference, i.e. assuming an instruction sequence of instructions
A, B, and C, can there be scenarios where instruction A does not interfere directly with its
successor B, but instead interfere directly with next instruction C? This is important to investigate
since we want our test code patterns to be as short and as few as possible, yet including all kinds of
instruction interference scenarios.

The instructions are already grouped in the V850E User’s Manual [6], regarding their type and
execution behaviour. We have used this basic classification for structuring our analyses.

During pipeline configuration analysis, we already found that instruction length is a significant
execution parameter. The V850E instruction set includes instruction of length: 16, 32, 48, and 64 bits.
The majority is 16 and 32 bits, the only exceptions are 48-bit MOVimm32 together with the 48 and 64
bit PREPARE variants.

� EP1: Instruction length. (16/32/48/64)

6.1. Analysis of individual instructions
Our basic strategy has been to begin by analysing the simplest instructions, how they execute in the
pipeline and how they interfere with each other. With “simplest” we mean an instruction with relatively
well-known and easily understood executing behaviour, for example the 32-bit “addition with
immediate” instruction (ADDI). We then move on to load/store instructions, branch/jump instructions,
instructions with pipeline loops, and so on.

6.1.1 No operation instruction
Analysed instruction: NOP

The simplest instruction is NOP. NOP does not do anything, and thus no execution parameters are
found. The Execution Flow Diagram (EFD) of the User’s Manual shows execution only in the IF and
the ID stage. These are probably the stages of Master Pipeline; the EFD’s are not always clear on
which pipeline is used.

6.1.2 Arithmetic and logical instructions
Analysed instructions: MOV, MOVEA, MOVHI, ADD, ADDI, CMP, SUB, SUBR, SETF, SASF, CMOV,

ZXB, ZXH, SXB, SXH, BSH, BSW, HSW, NOT, OR, ORI, XOR, XORI, AND,
ANDI, TST, SHR, SAR, SHL, SATADD, SATSUB, SATSUBI, and
SATSUBR

Includes 16 and 32-bit arithmetic, logical and saturating arithmetic instructions with simple and easily
analysed pipeline execution behaviours. Multiply and divide instructions are not included in this group.
Documentation indicates the following:
• Execution in Master Pipeline only.
• Read at most two general registers (GR) during ID stage
• CMOV, SASF and SETF read Program Status Word (PSW) during ID stage
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• Most instructions write to PSW, presumably during EX stage
• Execution in EX stage during one clock cycle.
• Write back to at most one register in WB

Reading and writing general registers or PSW is a potential source of pipeline execution delays, due to
data hazards [9]. We must consider both data hazards and structural hazards. Structural hazards will
result if the register file has too few read or write ports. Delays due to read-after-write hazards (RAW)
are usually avoided since the V850E pipeline architecture includes forwarding techniques (an example
shown in Figure 6-1), but there are cases when they occur.

ADD _,R1 IF ID EX DF WB

ADD R1,_ IF ID EX DF WB

Figure 6-1: Forwarding (arrow) eliminates RAW hazard delay.

Emulator tests verify that the type of operand (immediate or register) show no impact on execution
times. This indicates that at least two registers can be read in ID during a single clock cycle.
Tests also verify that in any case of RAW hazards among this group of instructions, forwarding
eliminates delay cycles. We expect however RAW hazards on GR or PSW to cause delays in cases
such as a load instruction followed by an arithmetic instruction.

� EP2: Instruction reading one or two GR during ID stage. (Yes/No)
� EP3: Instruction writing to GR in WB stage. (Yes/No)*

*Value range of EP3 will be redefined in section 6.1.8

� EP4: Instruction reading PSW during ID stage. (Yes/No)
� EP5: Instruction writing PSW during EX stage. (Yes/No)

6.1.3 Enable and disable interrupt instructions
Analysed instructions: EI and DI

Sets or resets bit in Program Status Word. The EFD shows execution terminates after EX stage. This is
also an indication that PSW writing occurs during EX stage. Emulator tests show no extra delays at any
time due to RAW hazards on PSW.

6.1.4 System Register load and store instructions
Analysed instructions: LDSR and STSR

Uses the Master Pipeline. The EFD shows normal execution in five clock cycles without causing any
pipeline delays for the next instruction. Moving system registers (SR) to and from general registers
may cause delay cycles. The User’s Manual claims that such delays occur if system registers EIPC or
FEPC are loaded by Load System Register (LDSR) and then immediate stored to a GR by Store
System Register (STSR). However, our emulator tests do not show these exceptions to cause any
delays at all.

� EP6: Instruction reading SR, other than PSW. (Yes/No)
� EP7: Instruction writing SR, other than PSW. (Yes/No)

6.1.5 Store and load instructions
Analysed instructions: LD, ST, SLD, and SST
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32-bit Store (ST), 16-bit Short format Store (SST) and 32-bit Load (LD) all execute their first three
stages in the Master Pipeline. The memory address is probably calculated in the EX stage. Memory
access is then performed in the MEM stage of the Additional Pipeline. Total execution time is expected
to be five clock cycles in isolation since we have assumed that data memory accesses take a single
clock cycle. Executing flow of LD, ST, and SST is shown in Figure 6-2a.
We also assume that the size of accessed data does not impact access times, as long as data alignment
is respected. Tests in emulator confirm these assumptions.

The EFD indicates that a RAW hazard between LD and succeeding instruction will cause a single clock
cycle delay. This is also verified by emulator tests.

16-bit Short format Load (SLD) executes in the four-stage Additional Pipeline. Address calculation is
performed instantly during the ID stage. Total execution time in isolation is thereby only four clock
cycles. Executing flow of SLD is shown in Figure 6-2b.

IF ID EX MEM WB

Figure 6-2a: Execution flow of LD, ST, and SST.

IF ID MEM WB

Figure 6-2b: Execution flow of SLD.

Since SLD uses the MEM stage one cycle “in advance”, forwarding normally takes care of any RAW
hazard, eliminating extra delays. However, if the preceding instruction also executes in the MEM stage,
a structural hazard can occur and delay SLD memory access. This has impact on total execution time if
a RAW hazard occurs between SLD and it’s succeeding instruction. Such scenario is shown in Figure
6-3.

SST _,_ IF ID EX MEM WB

SLD _,R1 IF ID - MEM WB

ADD R1,_ IF ID - EX DF WB

Figure 6-3: SST and SLD conflict in MEM stage (block arrow). ADD becomes one cycle delayed.

Emulator experiments verify the normal SLD execution time given by the User’s Manual. Testing also
confirm the SLD/ADD RAW delay shown in picture.

� EP8: Instruction accessing memory in MEM stage. (Yes/No)*

*Value range of EP8 will be redefined in section 6.1.10

6.1.6 Unconditional jump/branch instructions
Analysed instructions: JR, JARL, JMP, and BR

Jumps and branches change instruction flow by overwriting Program Counter (PC) unconditionally.
This behaviour always causes a pipeline execution delay.

The EFD shows the instructions as terminated after the ID stage, implying that the PC is changed
during execution of this stage. The succeeding instruction is also invalidated in its IF stage during this
clock cycle and the branch destination instruction is fetched and executed in the IF stage during the
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next cycle. A static branch delay of a single clock cycle is thereby derived from the EFD, and emulator
tests verify this for JR, JARL and BR.

However, emulator tests show the static branch delay of JMP to be two clock cycles. This corresponds
well to Table 5-10 of the User’s Manual while the Execution Flow Diagram shows only a single delay
cycle, i.e. the documentation is inconsistent. We assume that JMP modifies PC during execution of the
EX stage, which is not shown in the EFD. This may also indicate that JMP execute in the Master
Pipeline while JR, JARL and BR use the Additional Pipeline.

� EP9: Instruction modifying PC. (Uncond. with 1 cycle static delay/
Uncond. with 2 cycle static delay)*

*Value range of EP9 will be augmented in section 6.1.7

6.1.7 Conditional branch instructions
Analysed instructions: all variants of Bcond

Conditional branch instructions (Bcond) read PSW and PC. If the PSW satisfies the branch condition,
then the displacement given by the operand is added to PC value and written back to the PC. All these
operations are performed in the ID stage in a single clock cycle and the Bcond instruction terminates
after this. During this cycle, the succeeding instruction in the instruction memory executes in the IF
stage. All Bcond execute in the Additional Pipeline according to the User’s Manual.

The EFD shows two types of execution scenarios: branch not taken and branch taken.

Branch not taken: Since the branch condition is not satisfied, the succeeding instruction is valid and can
continue execution. No branch delays occur. The Bcond simply becomes a NOP, except for reading
PSW.

Branch taken: Similar to unconditional branch. The succeeding instruction is invalidated and the
change of PC causes a branch delay of a single clock cycle.

If an instruction immediate preceding Bcond writes to PSW (e.g. an addition instruction), Bcond is
delayed in the IF stage for one extra clock cycle due to a RAW hazard on PSW. This happens only
when Bcond eventually decides branch taken. This scenario is shown in Figure 6-4. When branch not
is taken, correct instruction is already executing and no pipeline delays occur.

We believe this execution behaviour to be reasonable, but it is not correctly documented in the User’s
Manual. Table 5-10 of the User’s Manual indicates no delay for the PSW RAW-delay scenario, which
is completely wrong.

Emulator tests verify one and two cycle delays for branch taken (depending on PSW read/write) and no
delays for branch not taken scenarios, regardless of PSW read.

ADDI _,_,_ IF ID EX MEM WB

Bcond taken IF - ID

Branch dest. IF ID EX .....

Figure 6-4: ADDI writes PSW in EX stage. The branch destination instruction becomes delayed one
extra cycle. The example assumes that the branch destination instruction is a 16-bit instruction or a
word-aligned 32-bit instruction.
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We augment the value range of EP9:

� EP9: Instruction modifying PC. (Uncond. with 1 cycle static delay/
Uncond. with 2 cycle static delay/
Cond. )

6.1.8 Multiply instructions
Analysed instructions: MULH, MULHI, MUL, and MULU

All multiply instructions execute in two consecutive and fully pipelined EX stages. These stages are
not shown in the general pipeline configuration figure in the User’s Manual, but we assume that the
second EX stage can be viewed as corresponding to the DF stage of Master Pipeline.
Emulator tests confirm that RAW hazards between multiply instructions and their succeeding
instructions cause a delay of a single clock cycle. An example is shown in Figure 6-5.

MULH _,R1 IF ID EX EX2 WB

ADD R1,_ IF ID - EX DF WB

Figure 6-5: Execution of MULH with special EX2 stage. RAW hazard on R1 causes a single cycle delay
of ADD. (Arrow shows forwarding)

32-bit MUL and MULU potentially write to two GR. Emulator tests show that these instructions always
cause a delay clock cycle, independent of any data hazard. This delay is not shown in the Execution
Flow Diagram but indicated in Table 5-10 of the User’s Manual.

� EP10: Instruction execution in EX stage more than once. (Number of EX stage cycles)

Redefinition of EP3 value range:

� EP3: Instruction writing to GR in WB stage. (Number of GR’s)

6.1.9 Divide instructions
Analysed instructions: DIVH, DIV, and DIVU

Like other arithmetic instructions, divide instructions execute in the Master Pipeline. The execution
loops in the EX stage, 33 loops for unsigned divide instructions and 34 for signed. All documentation
claims a static pipeline delay of 33 and 34 clock cycles for next executing instruction. This is
confirmed by emulator tests.

6.1.10 Bit manipulation instructions
Analysed instructions: SET1, CLR1, and TST1

This set of instructions is typical for microcontroller chips, but not present on desktop RISC designs.
Their purpose is set or reset specific bits in data memory. The operation requires the instructions to
loop from MEM stage back to EX stage during execution.

EFD shows that SET1, CLR1 and NOT1 perform two rounds in EX and MEM stage and then
terminate, while TST1 terminates immediately after executing the second EX stage since it does not
have to write back to memory.

The succeeding instruction is always delayed for two clock cycles due to the extra execution round.
SET1, CLR1 and NOT1 will cause



27

The second execution in MEM stage for SET1, CLR1 and NOT1 will also cause a structural hazard if
the next instruction is a SLD. This will have impact on total execution time if a RAW hazard occur
between the SLD and its succeeding instruction. (Similar to the scenario described in section 6.1.6)
This is not a fact for TST1 since it do not execute twice in MEM stage.

Emulator tests verify timings including delays for all scenarios above.

SET1 _,_ IF ID EX MEM EX MEM WB

SLD _,_ IF - - ID - MEM WB

Figure 6-6: Execution of SET1 followed by SLD. The two first cycle delays of SLD are statically delays,
i.e. independent of type of instruction following SET1, but the third cycle delay is caused by a
structural conflict on MEM stage (block arrow).

� EP11: Instruction executes EX stage after MEM stage (Yes/No)

Redefinition of EP8 value range:

� EP8: Instruction accessing memory in MEM stage. (Number of clock cycles)

6.1.11 TRAP and RETI
Analysed instructions: TRAP and RETI

The execution of the TRAP instruction is shown in the Execution Flow Diagram as a six-stage pipeline
with two successive ID stages. The shown usage of two ID stages is hard to interpret. It could mean
that the ID stage of the Master Pipeline is used twice, but also that execution is performed in the ID
stages of both Master and Additional Pipeline.

The EFD also shows execution termination after WB stage. This is strange since TRAP only read and
write system registers, ending by writing PC, and the documentation indicates that all other instructions
performing system register access does this in ID or EX stage.

RETI works as a return instruction and restores PC and PSW from two system registers. Execution is
described in the EFD with a similar six-stage pipeline as TRAP. Execution is terminated after EX stage,
however.

Both TRAP and RETI cause a two-cycle delay to the target instruction according to all documentation.
This is confirmed by emulator tests. Emulator tests where adjacent instructions manipulate the system
registers render no additional delays.

6.1.12 CALLT and CTRET
Analysed instructions: CALLT and CTRET

CALLT is a table indirect branch instruction. Its execution behaviour, as given by the EFD, is very hard
to interpret. Execution is most likely initiated in the Additional Pipeline since a memory address is
first calculated and then used in the MEM stage, which follows directly after the ID stage. Address
calculation can be done in the ID stage of the Additional Pipeline even though the User’s Manual
generally claims that this pipeline is dedicated for SLD and branch instructions. After MEM stage,
execution continues back to the EX stage of the Master Pipeline and then terminates.

All documentation in the User’s Manual states a static delay of four clock cycles. Emulator tests render
however a static delay of six cycles. Readings from emulator log-files indicate that CALLT suspends
itself for two extra cycles. This may be related to MEM stage where internal ROM is accessed and not
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data memory (internal RAM). The User’s Manual states internal ROM access time in the MEM stage
to three clock cycles, which correspond well to this assumption. Similar additional delay also occurs
when testing SWITCH (see below), which also access internal ROM in the MEM stage.

Since the MEM stage is used immediately after the ID stage, a structural hazard in the MEM stage will
occur if, for example, a ST instruction precedes CALLT. The emulator confirms an extra delay cycle
for CALLT in this scenario.

CALLT _ IF ID MEM MEM MEM EX MEM WB

Next in mem IF

Branch dest IF …

Figure 6-7: Execution of CALLT. Internal ROM is accessed in MEM stage (three clock cycles).

The indirect-branch instruction CTRET is used for returning from a CALLT call. CTRET reads the
return address and PSW value from the system registers CTPC and CTPSW. It is not clear when these
registers are read. Emulator tests show no delays if system registers CTPC or CTPSW are written by
LDSR directly before CTRET executes.

CTRET itself always causes a static two-cycle delay, similar to JMP. As for JMP, this is correctly
documented in Table 5-10 of the User’s Manual, but not in the Execution Flow Diagram.

6.1.13 SWITCH
Analysed instruction: SWITCH

The table indirect branch instruction SWITCH executes an additional EX stage after MEM stage,
similar to instruction TST1. SWITCH ends its operations by writing PC in this second EX stage and
then terminates. This causes a static delay of four clock cycles according to all documentation in the
UM. Since internal ROM is accessed in MEM stage, an additional pipeline delay of two clock cycles
occurs when testing SWITCH execution time in the emulator.

6.1.14 Move Word instruction
Analysed instruction: MOV (imm32)

The MOV imm32 instruction transfers a 32-bit immediate value, given by its operand, to a GR.
Since this instruction is 48 bits long and the IF stage only handles 32 bits during a single clock cycle, a
pipeline delay must occur. The EFD describes execution as taking two cycles in EX stage, thereby
causing the next instruction to be delayed for one cycle. We can not interpret this diagram any further
but the execution times, including delay cycle, given by the EFD and Table 5-10 of the User’s Manual
are confirmed by emulator tests. Assuming a delay in both IF and EX stage gives one delay cycle too
much. No other delays, caused by adjacent instructions or data hazards, are found in emulator tests.

6.1.15 PREPARE and DISPOSE
Analysed instructions: all variants of PREPARE and DISPOSE

These are another example of complex instructions typical for microcontroller architectures. They are
normally used when entering or returning from sub-routine calls, for saving and restoring register
contents on a memory stack.

The instruction length for PREPARE varies from 32 to 64 bits depending on instruction operands.



29

The isolated execution times for PREPARE and DISPOSE is always dependent upon the operands,
typically the numbers of GR to be saved or restored.

PREPARE reads the contents of up to 12 GR and writes this to memory. Other registers, such as Stack
and Element Pointer (sp, ep) are also manipulated. For all these operations, the EFD shows only a
looping behaviour in MEM stage during execution. We can not analyse this execution behaviour any
further since the documentation and the emulator test traces do not provide us with enough detailed
information. This also embraces the execution behaviour of DISPOSE.

Emulator tests confirm execution times given in the User’s Manual for all PREPARE and DISPOSE
flavours. These tests also show no indications for additional pipeline delays due to adjacent
instructions.

6.1.16 HALT
NOT analysed instruction: HALT

The HALT instruction is not a subject of analysis since its “execution time” is completely arbitrary.

6.2. Analysis of Parallel Execution Scenarios (Dual
Issue)

A dual issue scenario may occur when two adjacent 16-bit instructions are available to be processed in
the IF stage simultaneous, e.g. fetched together by the 32-bit prefetch unit. The instructions must also
execute separately in the Master and Additional Pipeline.

Dual issue is not well documented in the User’s Manual. There are no clear specifications of possible
dual issue pairs or under which circumstances they are valid and can execute in parallel. Only a single
Execution Flow Diagram in the User’s manual shows an example of a dual issue scenario, with an ADD
and an unspecified ”branch” instruction as dual issue pair. Our analysis, including emulator tests,
indicates that this EFD is only partially correct and only if the “branch” instruction is the instruction
BR. Furthermore, the “branch destination instruction” will in this case be delayed one more clock cycle
than indicated in the EFD.

The given pipeline configuration in the User’s Manual (reproduced in Figure 5-1) indicates SLD,
Bcond instructions and BR as candidates for second instruction in dual issue pairs. We used emulator
tests to search for possible companions, and we found four cases of dual issue scenarios.

6.2.1 Dual issue case 1: * / SLD
By testing each 16-bit instruction together with SLD we found that all arithmetic and logical operation
instruction trigger a dual issue scenario. This includes 16-bit multiply instruction MULH and also NOP.
Divide instruction DIVH is not qualified, probably due to the in-order issue/execution requirement of
V850 family (see chapter 5: Pipeline Analysis), and neither are any branch/jump instructions or
memory accessing instructions (i.e. SST and SLD).

We also discovered some very strange execution behaviours when valid dual issue pairs are repeated in
our test codes. The instructions of the second pair and all subsequent pairs become separately issued
one instruction per each clock cycle. By experimenting, we found that some instructions enable a new
pair to be dual issued if such an instruction executes before the dual issue pair. Another group of
instructions shares the property of disabling an already enabled dual issue scenario if executed after
enabling instruction but before the dual issue pair.

These two instruction groups are very heterogeneous, i.e. instructions with very different semantics and
normal execution properties. Thus we have not discovered the common factors that cause these
behaviours. Instead, we strongly suspect this to be symptoms of emulator incorrectness, or plain bugs
in the core pipeline.
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To be consistent, we have added enabling and disabling */SLD dual issue to our list of execution
parameters.

� EP12: Instruction enables */SLD dual issue. (Yes/No)
� EP13: Instruction disables */SLD dual issue. (Yes/No)

6.2.2 Dual issue case 2: * / Bcond
Bcond instructions often become delayed due to PSW RAW hazards, which was found earlier.
Emulator tests show clearly that instructions writing PSW can never be dual issued with Bcond. This
holds even if branch is not taken. Dual issue may also be disabled if the immediately preceding
instruction writes PSW. This invalidates the ADD/Bcond example given in the User’s Manual.

Emulator experiments also show that SST and SLD are valid dual issue instruction together with
Bcond. This is not expected for SLD since the User’s Manual claims that SLD share the ID stage of
the Additional Pipeline with Bcond.

6.2.3 Dual issue case 3: * / BR
BR is not sensitive to PSW accesses. Emulator tests show that all other 16-bit instructions can be dual
issued together with BR. Exceptions are DIVH and branch/jump instructions. SLD is once again valid,
which is remarkable.

6.2.4 Dual issue case 4: MOV / *
When examining the assembler code from several benchmark programs and real world applications, all
compiled with the IAR compiler, we noticed a quite common instruction sequence:

MOV <reg1>, <reg3>
ADD <reg2>, <reg3>

The V850 family lacks a three-address addition instruction, i.e. that adds content from register #1 and
register #2 and writes result to register #3 without corrupting registers #1 and #2. The sequence above
mimics the behaviour of such a three-address ADD.

Running this sequence in the emulator render a surprising dual issue scenario. The ADD simply
disappears from the instruction trace. We can not tell if this is a totally undocumented chip feature
where the two instructions perhaps are translated into a “virtual” three-address ADD, or if it just is a
very odd emulator bug.

Emulator tests show that operand relations must be as in the sequence above. This dual issue scenario
also holds for all other 16-bit arithmetic and logical instruction variants with register read and write-
semantic identical to ADD reg, reg.

This concludes the dual issue analysis. The result is presented in Appendix B: Table B-1. In this table,
each 16-bit instruction is classified according to how they participate in valid dual issue scenarios. The
dual issue classification is also added to the list of execution parameters.

� EP14: Dual issue classification. (Classification number)

6.3. Analysis of Instruction Execution Interference.
Execution scenarios where an executing instruction interferes directly with a third or even fourth
instruction without interfering with the intervening instruction are not described or clearly indicated in
the V850E documentation. If such a scenario exists, then it probably must be included in our test suite,
rendering more complex test code patterns. Otherwise, test code patterns can be simplified and
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shortened, since they only have to be designed with regard to instruction interference between adjacent
instructions.

6.3.1 Single Issue Scenarios
We first analyse scenarios where each instruction is issued individually.

We make the following fundamental assumptions:
• We have a sequence of three arbitrary, consecutively execution instructions.
• Data memory access time in MEM stage is one clock cycle.
• Instruction memory access time in MEM stage (reading data from instruction memory) is three

clock cycles.
• Static pipeline delay caused by JMP and CALLT is three clock cycles.
• All other static pipeline delays shown in the Execution Flow Diagrams (EFD) of the User’s

Manual are correct, as confirmed by our emulator tests.
• Reading/writing PSW or other SR does never cause RAW hazard delays. Exception: Bcond

reading PSW.

6.3.1.1 Structural Conflict Interference
Assume that the second instruction finishes its ID stage at time T, the EFD’s shows that all instructions
with long execution times always will cause the second instruction to be delayed, presumably in IF
stage. Hence, the first instruction has at most two stages left to execute at time T:
• DF and WB stages of Master Pipeline.
• MEM and WB stages of Additional Pipeline.
• A second EX stage (EX2) and probably WB stage of Master Pipeline. (Multiply instructions only).

First instruction will then always enter WB at T+1 and terminate at T+2. Since we assume single issue,
third instruction can not finish ID stage before T+1 and never enter DF, MEM or EX2 before T+2.
Only exception is SLD, which will enter MEM at T+1 and WB at T+2.

T T+1 T+2

Instr #1 * * *
DF/

MEM/
EX2

WB

Instr #2 * * ID * * *

Instr #3 * * ID * * *

Figure 6-8. Instruction #2 finish ID stage at time T. Instruction #3 finish ID stage at earliest possible
time, T+1.

CALLT and SWITCH access instruction memory and may require several MEM stage cycles.
Assuming CALLT or SWITCH as first instruction, the EFD indicates that such MEM stage loops are
executed during the pipeline delay of second instruction when it is in IF stage. Thus CALLT or
SWITCH never directly delays a third instruction.

TRAP and RETI have an extra ID stage. Assuming TRAP or RETI as the second instruction, they
always cause the third instruction to stall rendering the third instruction to enter DF, MEM or EX2 no
earlier than at T+4. Exception is SLD, which enters MEM at T+3 in this scenario. Since the first
instruction terminates at T+2, it can not interfere directly with the third instruction.
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6.3.1.2 Data Conflict Interference
Figure 6-8 shows that the first instruction has finished its data calculation no later then at time T+1. It
is also clear that the third instruction never requires this data before time T+1. Hereby, forwarding can
eliminate data conflict interference.

We know that Bcond can be delayed if preceding instruction write PSW. However, assuming Bcond
as the third instruction, Bcond will never read PSW until after time T when it enters the ID stage.
There are also no scenarios where the first instruction writes PSW after time T. Thus, the first
instruction can never interfere directly with Bcond in this scenario.

Conclusion: There are no single-issue scenarios where data or structural conflicts cause the first
instruction interfere directly with a third instruction without interfering without intervening
instructions. This means that test code patterns with single-issue scenarios only have to be
designed with regard to instruction interference between adjacent instructions.

6.3.2 Dual Issue Scenarios
We now look at the dual issue scenarios identified above. In these cases, the second or third instruction
is issued together with preceding instruction, rendering an earlier execution of each pipeline stage.
As mentioned before (chapter 5: Pipeline Analysis), dual issue scenarios imply that the logical issue
order between two instructions is arbitrary. Thus, the impacts of structural or data conflicts will become
equal to scenarios where the third instruction is issued and executed immediately after the first
instruction, with no intervening instruction.

Analysing the dual issue cases gives some typical scenarios where the first instruction interferes
directly with third instruction.

Interference delay is measured for each scenario by emulator tests. Emulator results are presented as
trace logs. Timestamps indicate that dual issue pairs are sometimes broken up. Other examples show
that the dual issue pair is delayed as a pair.

From Dual issue case 1:

Assembler code:

LD.W 0[ep], R10
ADD
SLD.W

R11, R12
R13, 4[ep] (Dual issue pair)

Manual analysis: Emulator trace: Conclusion:
Instr. Timestamp
LD C
ADD C+1

Structural hazard in
MEM stage between LD
and SLD.

SLD C+2

ADD and SLD are issued
separately.
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Assembler code:

MULH
SLD.W

R10, R11
0[ep], R12 (Dual issue pair)

ADDI 1, R11, R13

Manual analysis: Emulator trace: Conclusion:
Instr. Timestamp
MULH/SLD C
ADDI C+2

RAW hazard on R11
between MULH and
ADDI.

MULH/SLD are issued together
and delays ADDI by one cycle
(from MULH write).

From Dual issue case 2:

Assembler code:

SST.W
BV

R10, 4[ep]
<label> ;Bcond not taken (Dual issue pair)

SLD.W 0[ep], R11
ADD R11, R12

Manual analysis: Emulator trace: Conclusion:
Instr. Timestamp
SST/BV C
SLD C+1
ADD C+3

Structural hazard in
MEM stage between
SST and SLD.
RAW hazard on R11
between SLD and ADD is
normally not causing
execution of ADD to be
delayed.

SST is causing SLD to access
memory one cycle later than usual.
ADD becomes one cycle delayed.

Assembler code:

ADDI 1, R10, R11
SST.W
BV

R12, 0[ep]
<label> ;Bcond not taken (Dual issue pair)

Manual analysis: Emulator trace: Conclusion:
Instr. Timestamp
ADDI C
SST C+1
BV C+2

RAW hazard on PSW
between ADDI and
Bcond. This scenario
was mentioned in
unconditional branch
analysis.

SST and BV are issued separately.

From Dual issue case 3:
No scenarios can be found since BR always causes an additional single cycle delay. Hence, the
presence of BR will not be completely overlapped, and the instruction preceding BR will not interfere
with the instruction succeeding BR.

From Dual issue case 4:
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Assembler code:

LD.W 0[sp], R10
MOV
ADD

R11, R12
R10, R12 (Dual issue pair)

Manual analysis: Emulator trace: Conclusion:
Instr. Timestamp
LD C
MOV/ADD C+2

RAW hazard on R10
between LD and ADD

MOV/ADD are issued together but
delayed one cycle. Seems like
MOV/ADD cannot be separated.

This is an even more extreme scenario invoking two consecutive dual issue pair. First instruction
interfere now directly with forth instruction:

Assembler code:

MULH
SLD.W

R11, R10
0[ep], R12 (Dual issue pair)

MOV
ADD

R13, R14
R10, R14 (Dual issue pair)

Manual analysis: Emulator trace: Conclusion:
Instr. Timestamp
MULH/SLD C
MOV/ADD C+2

RAW hazard on R10
between MUL and ADD.

MULH/SLD are issued together.
MOV/ADD are also issued together
but delayed one cycle.

Conclusion: The examples above show that there are several dual issue scenario where data or
structural conflicts cause a first instruction to interfere directly with the third or forth
instruction, without interfering with the intervening instructions. Test code patterns including
dual issue scenarios must be designed with regard to such instruction interference.

6.4. The Equivalence Classes
Each instruction and instruction variant is applied to all found instruction execution parameters and
instructions with equal set of (EP, value)-tuples are classified together. This classification is in
Appendix B: Tables B-2, B-3, and B-4.

An instruction is selected arbitrary from each equivalence class and included in the reduced instruction
set, which holds all instruction used in our test cases. The selected instructions are in Appendix B:
Table B-5.
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7. Our Test Cases
This chapter describes the structure and design of our test suite. All individual test code patterns are in
Appendix A: Test Case Specifications.

A simple solution to improve the measurement and comparison accuracy is also given.
We conclude by briefly describing the framework and requirements regarding emulator and simulator
test program generation.

7.1. Test Case Families
We used the instruction grouping of the Execution Flow Diagrams of the User’s Manual as the main
structure of our instruction set analysis. This grouping is also used for deriving the basic test case
families and structure of the final test suite.

An exception is CMOV, which was given a dedicated family. Even though analysis and emulator tests
showed CMOV not to be sensitive to adjacent instructions, CMOV performs many complex operations
during very few clock cycles. It is not trivial for the simulator to model all these operations correctly.
We need several test cases to verify the simulator model of CMOV; hence it is given a dedicated test
case family. Test case families for each dual issue case were also inserted.

The following test case families were derived:

Name: Targeting:
F0 NOP
F1 Arithmetic, logical etc. instructions with well-behaving Master Pipeline execution
F2 Load/Store instructions
F3 Multiply instructions
F4 Divide instructions
F5 MOV imm32
F6 CMOV
F7 Bit manipulation instructions
F8 System Register Load/Store instructions
F9 Simple Jump/Branch instructions including Bcond
F10 Dual Issue, Case 1
F11 Dual Issue, Case 2
F12 Dual Issue, Case 3
F13 Dual Issue, Case 4
F14 PREPARE and DISPOSE
F15 SWITCH
F16 CALLT and CTRET
F17 TRAP and RETI

7.2. Test Code Patterns
The derivation of test case patterns has mostly been based on the results from the preceding hardware
analyses. The test patterns can roughly be divided into two scenario types.
• Possible instruction interference scenarios. Includes RAW and structural hazards and also

misalignment scenarios.
• “Nice” scenarios. No hazards. Only static pipeline delays are expected or no delays at all.

The simulator should be tested with as little bias as possible, and thus patterns with possible instruction
interference scenarios are included, even if all documentation and emulator tests show that no delays
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are expected to occur (due to data forwarding). Such test case scenarios can indicate whether
forwarding etc. is modelled correctly in the simulator

In “nice” scenarios, data hazards such as RAW hazards are avoided. These tests act as a complement to
the interference scenario test cases. The “nice” scenarios may show that the “basic” execution
modelling for each instruction is correct while, interference scenarios give the exceptions to the fluent-
flow of instructions. “Nice” scenario test cases also indicate that the simulator correctly models the
static pipeline delays.

Figure 7-1 shows an example of a test case with a possible instruction interference scenario and the
complementary “nice” scenario.

{ {
DIVH R15, R16 DIVH R15, R16
ADD R16, R17 ADD R17, R18
) }
Figure 7-1. Test code patterns F4_1 (RAW hazard on register R16) and F4_2 (no hazards).

The test code patterns are typically two or three instructions long and repeated 500 or 1000 times in the
final test code programs. All pattern instances are executed consecutively, even for patterns including
branch instructions. Hence, branching instructions are allowed only at the end of a pattern.

To control execution flow when testing Bcond, we use BNV (“branch if no overflow”) for branch
taken and BV (“branch if overflow”) for branch not taken. Figure 7-2 shows a Bcond code pattern
where branch is taken. “Overflow” is chosen since it is easy to control. To guarantee these conditions
when executing code on the emulator, registers are initialised and used in such manner that overflow
never occur during execution.

{
NOP
ADDI 1, R15, R16
BNV Label<I>
Label<I>:
}
Figure 7-2. Test code pattern F9_4. A NOP is inserted to eliminate misalignment scenarios after
branch is taken. <I> is translated to current pattern sequence number in final test program.

7.3. Improving Measurement and Comparison
Accuracy

In chapter 3: Method Overview, we specified some problems concerning measuring and comparing
execution time on the simulator and the emulator.

We solve the problem of uncertain initial state of the emulator and the simulator by inserting a
sequence of six NOP instructions in the beginning of each test code. We assume that flushing the
pipeline with this number of NOP’s is sufficient to ensure a stable and “clean” initial execution
environment, i.e. a warm pipeline with a known state.

As for the problem of finding the state of test code termination, our solution benefits from the V850 in-
order issue constrains. Our analyses on dual issue scenarios have shown that in-order issue may not be
strictly implemented in the V850E CPU core. However, by also ending the test code with a sequence of
six NOP instructions, we may assume that every instruction of the test code has terminated when all
ending NOP’s has been issued and the measuring timer is stopped.

By using identical sequences of 6 + 6 NOP instructions as wrappings for every test code, we obtain that
the test code can be equivalently measured on the simulator and on the emulator. The execution time
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result for an test invoking only the wrapping sequences, i.e. the twelve NOP’s, can be subtracted from
the timing results for the ordinary test codes in order improve the comparison accuracy.

By always subtracting the total execution time for the twelve NOP’s, we can say that we do not
measure and compare absolute execution times (T). Instead, we compare changes in execution time
(∆T) due to insertion of the code pattern sequences. We believe these values to be more stable and
improve the accuracy of execution time comparison since any difference in how the emulator and the
simulator start and stop their timers is removed.
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8. Validation Test Results
This chapter presents the results from comparing the test code execution times produced by the
emulator to the execution times calculated by the original simulator and its improved versions. These
results are shown by comparing the execution times for a set of benchmark programs, between the
emulator and each simulator version.

8.1. Validation and Debugging Iterations
Initial validation was performed on a previously untested (regarding timing) version of the simulator,
denoted here as simulator version 0.1.
It was assumed that this version contained several faults in form of erroneous abstraction, modelling
and implementation bugs. Comparing simulator version 0.1 results to the validation reference, given
by the emulator, showed the simulator miscalculating execution time in 62 % of the test cases.
Table 8.1 shows some examples of analysis of the comparison results together with the actual bugs
found in the simulator implementation.

We do not list all simulator bugs, why they occurred and how they where fixed. It is not the intention
of this thesis to cover simulator design and implementation issues. The important is that all bug where
discovered directly or indirectly from analysing the results from execution our validation test programs,
and we want to give a flavour of the kinds of bugs found. Many simulator errors found were due to the
fact that the simulator was based on an earlier version of the V850E documentation that did not detail
the Additional Pipeline.

Comparison outcome Debugging
Unexpected addition of one extra clock cycle to
every other pattern instances in many test cases,
including some relatively trivial tests in family
F1. All such test cases invoke a mix of 16 and 32-
bit instructions and this indicates an incorrect
modelling of the prefetch unit.

This is a very serious fault, which was not taken
into consideration when the test cases where
designed. F1_7, F1_8 and F1_9 were added to
clarify this error.

All misaligned 32-bit instructions take two cycles
to fetch in the simulator, which is wrong, due to a
logical error in prefetch simulation. Modelling
bug.

Signed and unsigned divide instruction tests have
mismatched execution times. (F4)

The simulator had swapped execution times for
signed and unsigned division, due to a
implementation bug

Most simple jump/branch instructions modelled
with too long static delays. (F9)

All branch instructions are one cycle faster in new
documentation. Major change to simulator
structure.

One variant of the multiplication instruction,
writing to two GR, was too optimistic simulated.
(F3_3, F3_4)

The extra delay was not modelled since it was not
stated in the documentation.

Several PREPARE and DISPOSE tests
miscalculated. (F14)

PREPARE with three operands modelled too
optimistic, DISPOSE with return too pessimistic.
PREPARE not writing ep one clock cycle too
long due to implementation bug.

Dual issue scenarios not implemented at all in the
simulator (F10, F11, F12, F13)

Additional Pipeline not implemented. Major
simulator design bug, due to old documentation.

Table 8-1. Examples of errors found on simulator version 0.1

After simulator debugging, we rerun all the test cases on the simulator, and analysed the errors again.
This process was repeated until comparison outcomes showed that every significant divergence
between simulator results and validation reference was eliminated.
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Table 8-2 gives the numbers of correct and incorrect test cases for each simulator version. Note that as
a result of debugging the simulator, some earlier correct test cases become incorrect. The reduction of
incorrect test cases after debugging is also shown as a bar chart in Figure 8-1.

# Incorrect test cases
Sim. version

# Test
cases

# Correct
test cases old new

v 0.1 97 37 60 -
v 1.1 97 81 9 7
v 1.2 97 92 4 1
v 1.3 97 94 3 0

Table 8-2. Number of correct and incorrect test cases.

Figure 8-1. The reduction of incorrect test cases.

8.1.1 Omitted SLD Test Cases
There are some exceptions from the validation condition of perfect agreement. These test cases (F10_3,
F11_3, and F12_3) include the instruction SLD and they render strange execution timing results when
run on the emulator. It has been very hard to find an simulator model that produce the same results as
rendered by the emulator, hence these test cases was omitted.

We strongly suspect that the instruction SLD suffer from hardware bugs, which may have effected the
emulator results. Furthermore, we have during our work received information on suspected SLD
hardware bugs from NEC in Japan and Germany. It seems that SLD does not check for write-after write
hazards, which can occur, since SLD is run in parallel to the Master Pipeline.

8.2. Benchmark Evaluation of Simulator Improvement
To test the improvements of the simulator accuracy and measure the effectiveness of our method, we
have executed a set of benchmark programs on the emulator and compared the execution times to the
results of simulator version 0.1 and version 1.3. The benchmark programs are modified to execute with
a static worst-case behaviour and have been used for WCET experiments [3]. The benchmarks are
listed and described in Table 8-1.
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We used a modified IAR V850E compiler to produce equivalent simulator and emulator test programs
from each benchmark source code. The only difference is the output format, since the simulator has its
own input format.

Table 8-2 shows resulting execution times and differences between the emulator and simulator version
0.1 and version 1.3. All execution times (Total) are given in clock cycles.

Program Brief description
fibcall Simple iterative fibonacci calculation. Calculate fib(30).
insertsort Insertion sort on a reversed array of length 10.
matmult Matrix multiplication of two 20 x 20 matrices.
duff Using “Duff’s device” to copy a 43 byte array.
fir DSP algorithm; finite impulse response filter.
jfdctint Discrete-cosine transformation on an 8x8 pixel block.

Table 8-1: Description of the benchmark programs.

Simulator v 0.1 Simulator v 1.3
Divergence Divergence

Program Emulator

Total Total Total % Total Total %
fibcall 325 286 -39 -12,0 313 -12 -3,7

insertsort 956 1123 167 17,5 1047 91 9,5
matmult 222236 239526 17290 7,8 231422 9186 4,1

duff 1094 1193 99 9,0 1083 -11 -1,0
fir 348105 323277 -24828 7,1 348097 -8 0,0

jfdctint 4686 5414 728 15,5 4893 207 4,4

Average: 11,5 Average: 3,8

Table 8-2. Execution times for benchmarks programs.

The benchmark tests indicate a significant improvement in simulator accuracy. The final results from
fibcall, duff and fir are satisfying. Emulator measurement conditions during these benchmark tests have
not been as controllable as during validation tests, thus minor divergences in total execution time are
probably unavoidable.

Final results of insertsort, matmult and jfdctint clearly show improvement but also that the accuracy
still is unacceptably poor. This indicates that we have missed something significant in our validation
analyses and tests, or it may even point out that our method may not be a feasible strategy for reaching
acceptable cycle correctness in the simulator.

Closer investigations of emulator and simulator trace logs from the benchmark programs insertsort,
matmult, and, jfdctint gave us some answers.

1. An additional valid dual issue case 4 (MOV/ *) scenario was discovered. Our specifications on
dual issue case 4 were not correct. The analysis had discovered too few instruction combinations
and the case restrictions were derived too hastily. This is clearly a problem when investigating
totally undocumented hardware behaviours.

2. Our analysis and validation tests show that the multiply instructions MUL and MULU, which write
two general registers, always cause an pipeline delay. This is not true if one or both of these
registers is R0, which was not discovered during our analysis. This exception is also not
documented and is probably due to the special property of R0 as “read as zero”. I.e. treated as a
special case, compared to other registers.

The benchmark comparison test results after modifying the simulator to handle these new
specifications are given in Table 8-3.
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Simulator v 1.4
Divergence

Program Emulator

Total Total Total %
fibcall 325 313 -12 -3,7

insertsort 956 939 -17 -1,8
matmult 222236 221822 -414 -0,2

duff 1094 1083 -11 -1,0
fir 348105 348095 -10 0,0

jfdctint 4686 4733 47 1,0

Average: 1,3

Table 8-3. Execution times for benchmarks programs on emulator and simulator version 1.4

To judge what are acceptable divergences, we need to look at the absolute divergences (“Total”) and
not just at the relative divergences (“%”). A divergence of 10 clock cycles may be explained by
measurement inaccuracy, in which case the real error might be much smaller. Indeed, the larger
benchmarks show better accuracy (relative) than the smaller, supporting this theory.

The time frame of this work did not permit a closer investigation of the last set of divergences.
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9. Conclusions
In this thesis, we have investigated a new strategy for validation and debugging of cycle-accurate CPU
simulators. This validation method is based on comparing the execution time for small micro-
benchmark programs between a CPU simulator and real hardware.

Our work has been in the form of a case study, in which a NEC V850E CPU simulator taken from the
Uppsala/Paderborn WCET research project has been compared to a NEC V850E CPU emulator. The
work has included studies of V850E documentation as well as analysis of the correlation between the
hardware documentation and the real-world results given by the emulator.

From the results of the micro-benchmark programs, all derived from our hardware analysis, we have
been able to significantly improve the cycle-accuracy of the simulator. Comparison tests invoking
several larger benchmark programs shows that average incorrectness in cycle-accuracy has dropped
from 11,5 % down to 1,3 %, and from 62% of tests yielding errors down to 3%.

We believe that these results indicate that our method of validation can be a valid strategy, at least
regarding CPU architectures that are not too complex. Other enabling restrictions on the hardware
complexity are simplified memory interface models with well-known memory access times.

During hardware analysis, we have encountered several obscurities in the V850E documentation and
also several cases of divergence between the documentation and emulator tests results. These examples
illustrate a significant problem for independent compiler and simulator vendors, since they are often
limited to hardware documentation and emulators for deriving application specifications. The
requirements for correct and detailed hardware documentation, provided by the hardware manufacturer,
is definitely unavoidable.
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11. Appendix A

11.1. Test Case Specifications

This list specifies every individual test code pattern. The patterns are organised into test case families.
Most families target on closely related instruction where the relations are defined by execution
properties associated with the instructions. Special Dual issue families target on separate dual issue
conditions. In all other test case families, dual issue is avoided.
Test cases of initial F0 family are used to measure execution timing of test bed overhead.

Each test pattern has a short description for clarifying its characteristics.

Modification notes:

Modified 000515 ADDITIONAL: F1_7-10 and F3_7 for clarification purpose
Modified 000522 ADDITIONAL F9_12-13and F14_10 for clarification purpose
Forced to introduce MOVHI in combination with MOVEA to avoid MOV32.
Modified 000601 ADDITIONAL FAMILIES AF7, AF10, and AF13 for clarification purpose.

*********************************************************************************
Family: NOP (extended with empty test case)
Number: F0
Target Instructions: NOP
Remark:
NOP instruction is tested to verify assumption of well-defined execution behavior.
***********************************************************************************

F0_1: Empty test sequence. Only test code wrapping instructions are executed.
{
}

F0_2: Only NOP instructions
{
NOP
}

*********************************************************************************
Family: Arithmetic, logical etc. instructions with well-behaving Master Pipeline execution
Number: F1
Target Instructions: ADD (reg, reg), ADD (imm, reg), CMP, MOV (reg, reg), SXB, ADDI, DI

and MOVEA
Remark:

All instructions in these tests utilise Master Pipeline only, they individually fit well into a five – stage
pipeline model, implying that no execution delays due to structural conflicts or data hazards are
excepted.
***********************************************************************************

F1_1: Only 32-bit instructions. No data hazards.
{
MOVEA 1,R15, R16
ADDI 1, R17, R18
}
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F1_2: Only 32-bit instructions. Maximum data hazards
{
ADDI 1, R15, R15
}

F1_3: Only 16-bit instructions. No data hazards.
{
MOV R15, R16
ADD 1, R18
}

F1_4: Only 16-bit instructions. Maximum data hazards.
{
ADD R15, R15
}

F1_5: Mix of 16 and 32-bit instructions. No data hazards between adjacent instructions.
{
DI
MOV R15, R16
MOVEA 1, R17, R18
ADD R19, R15
SXR R17
ADDI 1, R18, R16
ADD 1, R15
CMP R17, R18
}

F1_6: Mix of 16 and 32-bit instructions. Maximum data hazards.
{
DI
MOV R17, R16
MOVEA 0, R16, R17
ADD R17, R17
SXB R17
ADDI 1, R17, R17
ADD 1, R17
CMP R16, R17
}

F1_7: Every other: one 16-bit and one 32-bit instructions. ADDITIONAL 000515
{
ADD R15, R16
ADDI 1, R17, R18
ADD R15, R16
ADDI 1, R17, R18
}

F1_8: Every other: two 16-bit and two 32-bit instructions. ADDITIONAL 000515
{
ADD R15, R16
ADD R17, R18
ADDI 1, R15, R16
ADDI 1, R17, R18
}

F1_9: one 16-bit followed by two 32-bit instructions, repeated. ADDITIONAL 000515
{
ADD R15, R16
ADDI 1, R17, R18
ADDI 1, R19, R20
}
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F1_10: two 16-bit followed by one 32-bit instruction, repeated. ADDITIONAL 000515
{
ADD R15, R16
ADD R17, R18
ADDI 1, R19, R20
}

***********************************************************************************
Family: Load /Store instructions
Number: F2
Target Instructions: SLD.W, SST.W, LD.W and ST.W
Remark:
Note conceivable delays due to data hazards and structural conflict.
***********************************************************************************

F2_1: 32-bit load. No data hazards.
{
LD.W 0[sp], R15
ADDI 1, R16, R17
}

F2_2: 32-bit load. Data hazard (R15).
{
LD.W 0[sp], R15
ADDI 1, R15, R17
}

F2_3: 16-bit short address mode load. No data hazards.
{
SLD.W 0[ep], R15
ADDI 1, R16, R17
}

F2_4: 16-bit short address mode load. Data hazard (R15).
{
SLD.W 0[ep], R15
ADDI 1, R15, R17
}

F2_5: 32-bit store. Data hazard (R17).
{
ADD R16, R17
ST.W R17, 0[sp]
}

F2_6: Structural conflict (MEM stage) between 32-bit store and 16-bit short load. Data hazard between
short load and addition instruction (R15). This combination should render an extra delay of the
succeeding ADD instruction.
{
ST.W R15, 0[sp]
SLD.W 0[ep], R16
ADD R16, R17
}

F2_7: Data hazard (ep). May delay 16-bit short load instruction?
{
MOVEA 0, sp, ep
SLD.W 0[ep], R16
ADD R16, R17
}



47

F2_8: Data hazard (sp). May delay 32-bit load instruction?
{
MOVEA 0, ep, sp
LD.W 0[sp], R16
ADD R16, R17
}

***********************************************************************************
Family: Multiply instructions
Number: F3
Target Instructions: MULH, MULHI and MUL

Remark:
Note conceivable impact of data hazards. Note impact of instruction writing to two general registers.
***********************************************************************************

F3_1: 32-bit. Writing to single GR. No data hazards.
{
MULHI 1, R16, R17
ADD R18, R19
}

F3_2: 32-bit. Writing to single GR. Data hazard (R17).
{
MULHI 1, R16, R17
ADD R17, R17
}

F3_3: 32-bit. Writing to two GR. No data hazards.
{
MUL R15, R16, R17
ADD R18, R19
}

F3_4: 32-bit. Writing to two GR. Data hazards (R16, R17)
{
MUL R15, R16, R17
ADD R16, R17
}

F3_5: 16-bit. Writing to single GR. No data hazards.
{
MULH R15, R16
ADD R17, R18
}

F3_6: 16-bit. Writing to single GR. Data hazard (R16).
{
MULH R15, R16
ADD R16, R17
}

F3_7: 32-bit. Writing to two GR. Immediate succeeding (and preceding) instruction do not write to any
register. ADDITIONAL 000515
{
MUL R15, R16, R17
NOP
}
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***********************************************************************************
Family: Divide instructions
Number: F4
Target Instructions: DIVH, DIVU and DIV

Remark:
Note how instructions with long execution block the entire pipeline. Note conceivable impact of
writing to two GR and data hazards.
***********************************************************************************

F4_1: Writing to single GR. No data hazards.
{
DIVH R15, R16
ADD R17, R18
}

F4_2: Writing to single GR. Data hazard (R16).
{
DIVH R15, R16
ADD R16, R17
}

F4_3: Writing to two GR. No data hazards.
{
DIV R15, R16, R17
ADD R18, R19
}

F4_4: Writing to two GR. Data hazards (R16, R17).
{
DIV R15, R16, R17
ADD R16, R17
}

F4_5: Writing to two GR. No data hazards. Unsigned.
{
DIVU R15, R16, R17
ADD R18, R19
}

********************************************************************************
Family: MOV imm32
Number: F5
Target Instruction: MOV (imm32)

Remark:
Long 48-bit instruction. Separate tests of invoking memory alignment interference. Possible
interference of data hazards is also tested.
*********************************************************************************

F5_1: Memory alignment test. Only every other move instruction located on word alignment.
{
MOV 55555555, R15
}

F5_2: Memory alignment test. Every move instruction located on word alignment.
{
MOV 55555555, R15
NOP
}
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F5_3: No data hazards. Every move instruction located on word alignment.
{
MOV 55555555, R15
ADDI 1, R16, R17
NOP
}

F5_4: Data hazard (R15). Every move instruction located on word alignment.
{
MOV 55555555, R15
ADDI 1, R15, R17
NOP
}

***********************************************************************************
Family: CMOV
Number: F6
Target Instruction: CMOV

Remark:
Conceivable impact of data hazards (PSW and GR) is tested.
Condition test: 0 = “if Overflow”. Will never be true.
***********************************************************************************

F6_1: Data hazard on PSW, since preceding instruction is writing PSW. No other data hazards.
{
ADD R15, R16
CMOV 0, R17, R18, R19
}

F6_2: No hazard on PSW, since preceding instruction does not write PSW.
{
NOP
CMOV 0, R17, R18, R19
}

F6_3: No data hazard on PSW. Data hazard (R17).
{
CMOV 0, R15, R16, R17
MOV R17, R18
}

F6_4: Data hazard (R16).
{
ADD R15, R19
MOV R18, R16
CMOV 0, R15, R16, R17
}

F6_5: No data hazard. ADD writes PSW.
{
ADD R15, R19
MOV R18, R19
CMOV 0, R15, R16, R17
}
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***********************************************************************************
Family: Bit manipulation instructions
Number: F7
Target Instructions: SET1, TST1

Remark:
These instructions have a long execution and thereby block the pipeline. Data hazards of base address
registers are tested. Also note impact of structural conflicts (MEM stage). Note that SET1 executes in
MEM stage twice, TST1 only once.
***********************************************************************************

F7_1: No data hazards or other conflicts.
{
CLR1 R15, [sp]
NOP
}

F7_2: No data hazards or other conflicts.
{
TST1 R15, [sp]
NOP
}

F7_3: Data hazards on address register (R16).
{
MOV sp, R16
CLR1 R15, [R16]
NOP
}

F7_4: CLR1 execute MEM stage twice, rendering a structural conflict (MEM stage) between CLR1
and SLD. Data hazard (R17) will cause ADD instruction to be delayed.
{
CLR1 R15, [sp]
SLD.W 0[ep], R17
ADD R17, R18
}

F7_5: TST1 only execute MEM stage once. Hence there will be no additional structural conflicts and
ADD instruction will not be delayed.
{
TST1 R15, [sp]
SLD.W 0[ep], R17
ADD R17, R18
}

**********************************************************************************
Family: System Register Load/Store instructions
Number: F8
Target Instruction: LDSR, STSR
Remark:
Tests if access to system registers require additional time.
**********************************************************************************

F8_1: Fast “Download - Modify – Upload”. Exception/Interrupt Program Status Word (EIPSW)

{
STSR 1, R15
MOV R15, R16
LDSR R15, 1
NOP
}
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F8_2: Continuos “Download – Upload – Download...” (EIPSW)
{
STSR 1, R15
LDSR R15, 1
}

F8_3: Continuos “Download – Upload – Download...” Exception/Interrupt Program Counter (EIPC).
According to “V850E User’s Manual [1], chapter 8 p. 154”, each pattern transition in this test will
cause some extra delay.
{
STSR 0, R15
LDSR R15, 0
}

***********************************************************************************
Family: Simple Jump/Branch instructions
Number: F9
Target Instructions: Bcond (BV, BNV), BR, JMP, JARL, JR

Remark:
Note impact of condition hazard (fixed delays). Note delays when instruction writing PSW precede
conditional branch instruction.
BV (branch if overflow) and BNV (branch if not overflow) is chosen as Bcond, in order to maintain
full control of test execution.
A 16-bit instruction is also inserted first in sequences, to avoid execution delays due to misalignment.
All jumps are performed forward in test code.
***********************************************************************************

F9_1: Jump relative
{
NOP
ADDI 1, R15, R16
JR label<I>
Label<I>:
}

F9_2: Jump register
{
NOP
MOV Label<I>, R10 (MOV imm32)
JMP [R10]
Label<I>:
}

F9_3: Jump and Register Link
{
NOP
ADDI R15, R16
JARL Label<I>, R10
Label<I>:
}

F9_4: Conditional branch (taken). Preceding instruction is writing PSW.
{
NOP
ADDI 1, R15, R16
BNV Label<I>
Label<I>:
}
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F9_5: Conditional branch (not taken). Preceding instruction is writing PSW
{
NOP
ADDI 1, R15, R16
BV Label<I>
Label<I>:
}

F9_6: Conditional branch (taken). NO preceding instruction is writing PSW.
{
NOP
MOVEA 1, R15, R16
BNV Label<I>
Label<I>:
}

F9_7: Conditional branch (not taken). ADD instruction is writing PSW but not MOVEA.
{
ADD R15, R16
MOVEA 1, R15, R16
BV Label<I>
Label<I>:
}

F9_8: Conditional branch (not taken). NO preceding instruction is writing PSW
{
NOP
MOVEA 1, R15, R16
BV Label<I>
Label<I>:
}

F9_9: Unconditional branch. Preceding instruction is writing PSW.
{
NOP
ADDI 1, R15, R16
BR Label<I>
Label<I>:
}

F9_10: Unconditional branch. NO preceding instruction is writing PSW.
{
NOP
MOVEA 1, R15, R16
BR Label<I>
Label<I>:
}

F9_11: Misalignment test. Misalignment of 32 - bit instruction in every other sequence.
{
ADDI 1, R15, R16 (misalignment in every other seq.)
BR Label<I>
Label<I>:
}

F9_12: Jump register. ADDITIONAL 000522. Avoid MOV32.
{
NOP
MOVHI hwrd(Label<I>), R0, R10
MOVEA lwrd(Label<I>), R10, R10
JMP [R10]
Label<I>:
}
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F9_13: Jump register. ADDITIONAL 000522. Avoid MOV32. Avoid Data dependency ( R10)
{
NOP
MOVHI hwrd(Label<I>), R0, R10
MOVEA lwrd(Label<I>), R10, R10
NOP
JMP [R10]
Label<I>:
}

***********************************************************************************
Family: Dual issue case 1
Number: F10
Target Instructions: * / SLD.W

Remark:
Note impact of instruction preceding * / SLD pair (DD Condition Enabler/Disabler). Very unclear if
this is an emulator bug or not.
********************************************************************************

F10_1: A NOP inserted to enable dual issue.
{
NOP
ADD R15, R16
SLD.W 0[ep], R17
}

F10_2: A NOP inserted to enable dual issue.
{
NOP
MULH R15, R16
SLD.W 0[ep], R17
}

F10_3: No such enabling instruction.
{
ADD R15, R16
SLD.W 0[ep], R17
}

F10_4: No such enabling instruction.
{
MULH R15, R16
SLD.W 0[ep], R17
}

F10_5: Enabling instruction inserted but not a valid dual issue scenario.
{
NOP
DIVH R15, R16
SLD.W 0[ep], R17
}

F10_6: Enabling instruction followed by a disabling instruction.
{
NOP
SST.T R16, 0[ep]
MULH R15, R16
SLD.W 0[ep], R17
}
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***********************************************************************************
Family: Dual issue case 2
Number: F11
Target Instructions: */ Bcond

Remark:
Note impact of preceding instruction(s) writing PSW.
BNV chosen as Bcond instruction in order to render tests where branch is always taken.
A 16-bit instruction is inserted first in sequence to avoid misalignment execution delays.
********************************************************************************

F11_1: No preceding instructions write PSW.
{
NOP
MOV R15, R16
BNV Label<I>
Label<I>:
}

F11_2: No preceding instructions write PSW.
{
NOP
SST.W R15, 0[ep]
BNV Label<I>
Label<I>:
}

F11_3: No preceding instructions write PSW.
{
SLD.W 0[ep], R15
SLD.W 0[ep], R16
BNV Label<I>
Label<I>:
}

F11_4: First instruction in dual issue pair is writing PSW.
{
NOP
CMP R15, R16
BNV Label<I>
Label<I>:
}

F11_5: Instruction preceding dual issue pair is writing PSW.
{
NOP
ADDI 1, R15, R16
MOV R17, R18
BNV Label<I>
Label<I>:
}
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***********************************************************************************
Family: Dual issue case 3
Number: F12
Target Instructions: * / BR

Remark:
Note impact of preceding instruction(s) writing PSW (No impact at all?).
“Cross – branch data hazard” test.
A 16-bit instruction is inserted first in sequence to avoid misalignment execution delays.
Similar to Case 2 tests.
**********************************************************************************

F12_1: No preceding instructions are writing PSW
{
NOP
MOV R15, R16
BR Label<I>
Label<I>:
}

F12_2: No preceding instructions are writing PSW
{
NOP
SST.W R15, 0[ep]
BR Label<I>
Label<I>:
}

F12_3: No preceding instructions are writing PSW
{
SLD.W 0[ep], R15
SLD.W 0[ep], R16
BR Label<I>
Label<I>:
}

F12_4: First instruction in dual issue pair is writing PSW
{
NOP
ADD R15, R16
BR Label<I>
Label<I>:
}

F12_5: “Cross-branch data hazard test”. Data hazard (R16) between each multiplication instruction.
{
MULH R15, R16
BR Label<I>
Label<I>:
}
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***********************************************************************************
Family: Dual issue case 4
Number: F13
Target Instructions: MOV / *

Remark:
Note instruction format and data hazard as Dual issue Conditions. Not many tests implemented, since
this behaviour has not been found in any V850E documentation and it is very unclear if it is a chip
feature or an emulator bug.
***********************************************************************************

F13_1: Conditions are satisfied.
{
MOV R15, R16
ADD R17, R16
}

F13_2: Data hazard condition is not satisfied.
{
MOV R15, R16
ADD R17, R18
}

F13_3: Operand format condition is not satisfied.
{
MOV R15, R16
ADD 1, R16
}

***********************************************************************************
Family: PREPARE and DISPOSE
Number: F14
Target Instructions: PREPARE, DISPOSE

Remark:
Note impact of instruction length (PREPARE only) and register list length (operand). Instruction to
restore origin stack pointer value inserted .
***********************************************************************************

F14_1: List - operand includes only one register.
{
DISPOSE 0, {R20}
NOP
MOV R7, sp
}

F14_2: List - operand includes eight registers.
{
DISPOSE 0, {R20, R21, R22, R23, R24, R26, R27, R28}
NOP
MOV R7, sp
}

F14_3: List - operand includes eight registers. Invokes unconditional branch.
{
NOP
MOV R7, sp
MOV Label<I>, R15 (MOV imm32)
DISPOSE 0, {R20, R21, R22, R23, R24, R26, R27, R28}, [R15]
Label<I>:
}
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F14_4: 32-bit instruction. List - operand includes only one register.
{
PREPARE {R20}, 0
NOP
MOV R7, sp
}

F14_5: 32-bit instruction. List - operand includes eight registers.
{
PREPARE {R20, R21, R22, R23, R24, R26, R27, R28}, 0
NOP
MOV R7, sp
}

F14_6: 32-bit instruction. List - operand includes eight registers.
{
PREPARE {R20, R21, R22, R23, R24, R26, R27, R28}, 0, sp
NOP
MOV R7, sp
}

F14_7: 48-bit instruction. List - operand includes eight registers.
{
PREPARE {R20, R21, R22, R23, R24, R26, R27, R28}, 0, 5555
NOP
MOV R7, sp
}

F14_8: 64-bit instruction. List - operand includes only one register.
{
PREPARE {R20}, 0, 55555555
NOP
MOV R7, sp
}

F14_9: 64-bit instruction. List - operand includes eight registers.
{
PREPARE {R20, R21, R22, R23, R24, R26, R27, R28}, 0, 55555555
NOP
MOV R7, sp
}

F14_10: ADDITIONAL 000522. Variant of F14_3. Avoid MOV32. Avoid data dependency (R15)
{
NOP
MOV R7, sp
MOVHI hwrd(Label<I>), R0, R15
MOVEA lwrd(Label<I>), R15, R15
NOP
DISPOSE 0, {R20, R21, R22, R23, R24, R26, R27, R28}, [R15]
Label<I>:
}
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***********************************************************************************
Family: SWITCH
Number: F15
Target Instruction: SWITCH

Remark:
Single test exploring fixed delays. Base address to case table in R11
***********************************************************************************

F15_1: Simple test of nested switch - statement.
{
SWITCH R11
DH 1
}

***********************************************************************************
Family: CALLT and CTRET
Number: F16
Target Instructions: CALLT, CTRET

Remark:
No nested invocations. Note impact of structural conflict (MEM stage). Test F16_3 and F16_4
explores possible interference of adjacent instructions reading and writing system register.
***********************************************************************************
Call Routine A: “Nice”

MOV R15, R16
CTRET

Call Routine B: STSR reads CTPSW, LDSR writes CTPSW and RETI reads CTPSW.

STSR 17, R15 (17 = CTPSW)
NOP
LDSR R15, 17
CTRET

F16_1: No structural conflicts. Call Routine A.
{
MOV R16, R17
MOV R18, R19
CALLT 0
}

F16_2: Structural conflict (MEM stage) between ST and CALLT. Call Routine A.
{
MOV R15, R16
ST.W R17, 0[sp]
CALLT 0
}

F16_3: Instruction preceding CALLT write CTBP, CALLT always read CTBP. Call Routine A.
{
NOP
STSR 20, R15 (20 = CTBP)
NOP
LDSR R15, 20
CALLT 0
}
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F16_4: Invokes Call Routine B. Attention: CALLT always writes CTPSW.
{
MOV R17, R18
CALLT 0
}

***********************************************************************************
Family: TRAP and RETI
Number: F17
Target Instructions: TRAP, RETI

Remark:
Test for checking statically delay. Adjacent System Register Usage test, similar to test in F16.
***********************************************************************************
Trap Routine A. “Nice”:
{
ADD R15, R17
MOV R15, R16
RETI
}

Trap Routine B. STSR reads EIPSW, LDSR writes EIPSW and RETI reads EIPSW:
{
STSR 1, R15 (1 = EIPSW)
NOP
LDSR R15, 1
RETI
}

F17_1: No possible conflicts on system register EIPSW. Trap routine A.
{
MOV R17, R18
TRAP 0
}

F17_2: Invokes Trap Routine B. Attention: TRAP always writes EIPSW.
{
MOV R17, R18
TRAP 0
}
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***********************************************************************************
Family: ADDITIONAL Bit Manipulation instructions
Number: AF7
Target Instructions: SET1, TST1

Remark:
These instructions have a long execution and thereby block the pipeline. Data hazards of base address
registers are tested. Also note impact of structural conflicts (MEM stage). Note that SET1 executes in
MEM stage twice, TST1 only once.
***********************************************************************************

AF7_1: Possible conflict on sp.
{
CLR1 R15, [sp]
LD.W 0[sp], R17
NOP
}

AF7_2: No register conflicts.
{
CLR1 R15, [sp]
LD.W 0[ep], R17
NOP
}

AF7_3: Same as AF7_1 but with TST1.
{
TST1 R15, [sp]
LD.W 0[sp], R17
NOP
}

AF7_4: Same as AF7_2 but with TST1
{
TST1 R15, [sp]
LD.W 0[ep], R17
NOP
}

AF7_5: Same as AF7_4 but with SLD
{
TST1 R15, [sp]
SLD.W 0[ep], R17
NOP
}

***********************************************************************************
Family: ADDITIONAL Dual issue, Case 1
Number: AF10
Target Instructions: * / SLD.W

Remark: Introduce SUB
********************************************************************************

AF10_1:
{
NOP
SUB R13, R14
SLD.W 0[ep], R15
ADD R11, R14
}
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***********************************************************************************
Family: ADDITIONAL Dual issue, Case 4
Number: AF13
Target Instructions: MOV / *

Remark: Some more cases. All 16 bit instructions
***********************************************************************************

AF13_1:
{
MOV R15, R16
ADD 1, R16
}

AF13_2:
{
MOV R15, R16
SUB R17, R16
}

AF13_3:
{
MOV R15, R16
SUBR R17, R16
}

AF13_4:
{
MOV R15, R16
AND R17, R16
}

AF13_5:
{
MOV R15, R16
OR R17, R16
}

AF13_6:
{
MOV R15, R16
XOR R17, R16
}

AF13_7:
{
MOV R15, R16
NOT R17, R16
}

AF13_8:
{
MOV R15, R16
SATADD R17, R16
}
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11.2.Test Programs of Test Case F0_1

This example shows corresponding simulator and emulator programs generated by the test program
generator

F0_1 Emulator Test Program

. ;**************************************************
NAME testfile

PUBLIC main
PUBLIC ?C_EXIT

;*** DATA DEF ***
startd DEFINE 0ABCDh
stopd DEFINE 0DCBAh
sSize DEFINE 64

;*** RAM ***
RSEG DATA

stack DS32 sSize ; some data memory space (64x4 bytes)
tags DS32 2 ; space for timer tags

;*** ROM ***

ASEG 0
JR main

;------------------------
;TRAP AREA:
;-----------------------
;CALLT AREA:
;------------------------

ASEG 1000h

main

MOV stack,R20
MOV sSize,R21
MULH 4,R21
MOV stack,R22
ADD R21,R22
MOV R0,R21
MOV 4,R21

clean
CMP R20,R22
BLE done

ST.W R0,0[R22]
SUB R21,R22
JR clean

done
MOV stack,sp
ADDI 100,sp,sp
MOV sp,R7
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MOV tags,R6
MOV 1,R10
MOV startd,R11
MOV stopd,R12

ST.W R10,0[sp]
ST.W R11,0[R6]
ST.W R12,4[R6]

MOV 1,R15
MOV 1,R16
MOV 1,R17
MOV 1,R18
MOV 1,R19
MOV 1,R20

MOV 0,R10
MOV 0,R11

MOV sp,ep
JR go

; R6 - timer tags base address
; R7 - origin sp address
; R25 - tag carrier

ASEG 1FFCh

go
LD.W 0[R6],R25 ; start timer

;************************************************

NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP

;**************************************************
LD.W 4[R6],R25 ; stop timer
NOP
NOP
NOP

?C_EXIT
END main

;*************************************************
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F0_1 Simulator Test Program

Basic Block Definition File:

begin block label_start:
pred ;
succ label_end ;
code

2000 : 2 : Nop ;
2002 : 2 : Nop ;
2004 : 2 : Nop ;
2006 : 2 : Nop ;
2008 : 2 : Nop ;
2010 : 2 : Nop ;

end code
end block

begin block label_end:
pred label_start ;
succ ;
code

2012 : 2 : Nop ;
2014 : 2 : Nop ;
2016 : 2 : Nop ;
2018 : 2 : Nop ;
2020 : 2 : Nop ;
2022 : 2 : Nop ;

end code
end block

Basic Block Trace File:

label_start
label_end
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12. Appendix B

12.1.List of the Execution Parameters

Used in Table B-2, B-3, B-4, and B-5:

EP1: Instruction length
EP2: Instruction reading one or two GR during ID stage.
EP3: Instruction writing to GR in WB stage.
EP4: Instruction reading PSW during ID stage.
EP5: Instruction writing PSW during EX stage.
EP6: Instruction reading SR (other than PSW).
EP7: Instruction writing SR (other than PSW).
EP8: Instruction accessing memory in MEM stage.
EP9: Instruction modifying PC.
EP10: Instruction execution in EX stage more than once
EP11: Instruction executes EX stage after MEM stage
EP12: Instruction enables */SLD dual issue.
EP13: Instruction disables */SLD dual issue.
EP14: Dual issue classification

12.2.List of Dual Issue Scenario

Used in Table B-1:

Case 1: Master / SLD.X
Case 2: Master / Bcond
Case 3: Master / BR
Case 4: MOV r1,r2 / Slave
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12.3.Table B-1: Dual issue Classification (EP14)

Instr Opds C 1 C 2 C 3 C 4 EP14

MOV r1, r2 M M M M D1

MOV imm5, r2 M M M

MULH r1, r2 M M M

MULH imm5, r2 M M M

NOP M M M

SXB r1 M M M

SXH r1 M M M

ZXB r1 M M M

ZXH r1 M M M

D2

ADD r1, r2 M M S

AND r1, r2 M M S

OR r1, r2 M M S

SATADD r1, r2 M M S

SATSUB r1, r2 M M S

SATSUBR r1, r2 M M S

SUB r1, r2 M M S

SUBR r1, r2 M M S

XOR r1, r2 M M S

D3

ADD imm5, r2 M M

CMP r1, r2 M M

CMP imm5, r2 M M

NOT r1, r2 M M

SAR imm5, r2 M M

SATADD imm5, r2 M M

SHL imm5, r2 M M

SHR imm5, r2 M M

TST r1, r2 M M

D4

SST.X r2, disp[ep] M M D5

SLD.X disp[ep], r2 S M M D6

Bcond disp9 S D7

BR S D8

DIVH r1, r2

JMP [r1]

CALLT imm6

D9
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12.4. Table B-2: 16-bit Instructions with Constant
Timing Behaviour

EC: Equivalence Class

Instr Opds EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EP10 EP11 EP12 EP13 EP14 EC
ADD r1, r2 Yes 1 Yes D3

AND r1, r2 Yes 1 Yes D3

OR r1, r2 Yes 1 Yes D3

SATADD r1, r2 Yes 1 Yes D3

SATSUB r1, r2 Yes 1 Yes D3

SATSUBR r1, r2 Yes 1 Yes D3

SUB r1, r2 Yes 1 Yes D3

SUBR r1, r2 Yes 1 Yes D3

XOR r1, r2 Yes 1 Yes D3

16-01

ADD imm5, r2 Yes 1 Yes D4

NOT r1, r2 Yes 1 Yes D4

SAR imm5, r2 Yes 1 Yes D4

SATADD imm5, r2 Yes 1 Yes D4

SHL imm5, r2 Yes 1 Yes D4

SHR imm5, r2 Yes 1 Yes D4

16-02

CMP r1, r2 Yes Yes Yes D4

CMP imm5, r2 Yes Yes Yes D4

TST r1, r2 Yes Yes Yes D4

16-03

DIVH r1, r2 Yes 1 Yes 34 Yes D9 16-04

MOV r1, r2 Yes 1 D1 16-05

MOV imm5, r2 Yes 1 D2

SXB r1 Yes 1 D2

SXH r1 Yes 1 D2

ZXB r1 Yes 1 D2

ZXH r1 Yes 1 D2

16-06

NOP Yes D2 16-07

MULH r1, r2 Yes 1 2 1 Yes D2

MULH imm5, r2 Yes 1 2 1 Yes D2
16-08

SLD.X disp[ep], r2 Yes 1 1 Yes D6 16-09

SST.X r2, disp[ep] Yes 1 Yes D5 16-10

Bcond disp9 Yes Cond Yes D7 16-11

BR disp9 UnCond Yes D8 16-12

JMP [r1] Yes UnCond Yes D9 16-13

CALLT imm6 Yes Yes Yes 1 2 UnCond Yes D9 16-14

Note 1: Fully pipelined.
Note 2: Instruction memory access.
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12.5.Table B-3: 32 and 48-bit Instructions with
Constant Timing Behaviour

EC: Equivalence Class

Instr Opds EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EP10 EP11 EP12 EP13 EC
ADDI imm16, r1, r2 32 Yes 1 Yes

ANDI imm16, r1, r2 32 Yes 1 Yes

BSH r1, r2 32 Yes 1 Yes

BSW r1, r2 32 Yes 1 Yes

HSW r1, r2 32 Yes 1 Yes

ORI imm16, r1, r2 32 Yes 1 Yes

SAR r1, r2 32 Yes 1 Yes

SATSUBI im16, r1, r2 32 Yes 1 Yes

SHL r1, r2 32 Yes 1 Yes

SHR r1, r2 32 Yes 1 Yes

XORI imm16, r1, r2 32 Yes 1 Yes

32-01

DI 32 Yes

EI 32 Yes
32-02

CLR1 b#3, disp16[r1] 32 Yes Yes 2 2 Yes Yes

CLR1 r1, [r2] 32 Yes Yes 2 2 Yes Yes

NOT1 b#3, disp16[r1] 32 Yes Yes 2 2 Yes Yes

NOT1 r2, [r1] 32 Yes Yes 2 2 Yes Yes

SET1 b#3, disp16[r1] 32 Yes Yes 2 2 Yes Yes

SET1 r2, [r1] 32 Yes Yes 2 2 Yes Yes

32-03

TST1 b#3, disp16[r1] 32 Yes Yes 1 2 Yes Yes

TST1 r2, [r1] 32 Yes Yes 1 2 Yes Yes
32-04

DIVHU r1, r2, r3 32 Yes 2 Yes 34 Yes

DIVU r1, r2, r3 32 Yes 2 Yes 34 Yes
32-05

DIV r1, r2, r3 32 Yes 2 Yes 35 Yes

DIVH r1, r2, r3 32 Yes 2 Yes 35 Yes
32-06

MOVEA imm16, r1, r2 32 Yes 1

MOVHI imm16, r1, r2 32 Yes 1
32-07

CMOV cccc, r1, r2, r3 32 Yes 1 Yes

CMOV cccc,imm5,r1,r2 32 Yes 1 Yes

SASF cccc, r2 32 Yes 1 Yes

SETF cccc, r2 32 Yes 1 Yes

32-08

MULHI imm16, r1, r2 32 Yes 1 2 1 32-09

MUL r1, r2, r3 32 Yes 2 2 1

MUL imm9, r2, r3 32 Yes 2 2 1

MULU r1, r2, r3 32 Yes 2 2 1

MULU imm9, r2, r3 32 Yes 2 2 1

32-10

LD disp16[r1], r2 32 Yes 1 1 Yes 32-11

ST r2, disp16[r1] 32 Yes 1 Yes 32-12

JARL disp22, r2 32 Yes 1 UnCond Yes 32-13

JR disp22 32 UnCond Yes 32-14

CRET imm6 32 Yes2 1 3 UnCond Yes 32-15

RETI 32 UnCond 32-16

SWITCH r1 32 Yes 1 3 UnCond 2 Yes 32-17

TRAP vector 32 Yes2 UnCond 32-18

LDSR r1,regID 32 1 op.dep op.dep 32-19

STSR regID,r1 32 Yes op.dep op.dep 32-20

MOV imm32, r1 48 1 Yes 48-1

Note 1: Fully pipelined.
Note 2: Will not effect branch destination instruction or succeding instructions.
Note 3: Instruction memory access.
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12.6.Table B-4: Instructions with Operand Dependent
Timing Behaviour

EC: Equivalence Class

Instr Opds EP1 EP2 EP3 EP8 EP9 EP12 EP13 EC
DISPOSE imm5, list12 32 Yes1 op.dep2 op.dep. Yes 32-21S

DISPOSE imm5,list12, [r1] 32 Yes1 op.dep2 op.dep. UnCond Yes 32-22S

PREPARE list, imm5 32 Yes1 sp2 op.dep. Yes 32-23S

PREPARE list, im5, sp 32 Yes1 sp/ep2 op.dep. Yes 32-24S

PREPARE list, imm5, imm16 48 Yes1 sp/ep2 op.dep. Yes 48-02S

PREPARE list, imm5, imm32 64 Yes1 sp/ep2 op.dep. Yes 64-01S

Note 1: Unclear at which points in time GR readings occur (incl. sp).
Note 2: Unclear at which points in time GR writings occur (incl. sp and ep).
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12.7.Table B-5: Selected Instructions

Instr Opds EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EP10 EP11 EP12 EP13 E.C
ADD r1, r2 16 Yes 1 Yes 16-01

ADD imm5, r2 16 Yes 1 Yes 16-02

CMP r1, r2 16 Yes Yes Yes 16-03

DIVH r1, r2 16 Yes 1 Yes 34 Yes 16-04

MOV r1, r2 16 Yes 1 16-05

SXB r1 16 Yes 1 16-06

NOP 16 Yes 16-07

MULH r1, r2 16 Yes 1 2 1 Yes 16-08

SLD.X disp[ep], r2 16 Yes 1 1 Yes 16-09

SST.X r2, disp[ep] 16 Yes 1 Yes 16-10

Bcond disp9 16 Yes Cond Yes 16-11

BR disp9 16 UnCond Yes 16-12

JMP [r1] 16 Yes UnCond Yes 16-13

CALLT imm6 16 Yes Yes Yes 1 2 UnCond Yes 16-14

ADDI imm16, r1, r2 32 Yes 1 Yes 32-01

DI 32 Yes 32-02

CLR1 r1, [r2] 32 Yes Yes 2 2 Yes Yes 32-03

TST1 r2, [r1] 32 Yes Yes 1 2 Yes Yes 32-04

DIVU r1, r2, r3 32 Yes 2 Yes 34 Yes 32-05

DIV r1, r2, r3 32 Yes 2 Yes 35 Yes 32-06

MOVEA imm16, r1, r2 32 Yes 1 32-07

CMOV cccc, r1, r2, r3 32 Yes 1 Yes 32-08

MULHI imm16, r1, r2 32 Yes 1 2 1 32-09

MUL r1, r2, r3 32 Yes 2 2 1 32-10

LD disp16[r1], r2 32 Yes 1 Yes 32-11

ST r2, disp16[r1] 32 Yes 1 1 Yes 32-12

JARL disp22, r2 32 Yes UnCond Yes 32-13

JR disp22 32 1 UnCond Yes 32-14

CTRET 32 Yes Yes UnCond Yes 32-15

RETI 32 Yes Yes Yes UnCond Yes 32-16

SWITCH r1 32 Yes 1 2 UnCond 2 Yes Yes 32-17

TRAP vector 32 Yes Yes Yes UnCond Yes 32-18

LDSR r1, regID 32 1 op.dep. op.dep. 32-19

STSR regID, r2 32 Yes op.dep. op.dep. 32-20

MOV imm32, r1 48 1 Yes 48-01

DISPOSE imm5, list12 32 Yes3 op.dep.4 op.dep. Yes 32-21S

DISPOSE imm5,list12, [r1] 32 Yes3 op.dep.4 op.dep. UnCond Yes 32-22S

PREPARE list, imm5 32 Yes3 sp4 op.dep. Yes 32-23S

PREPARE list, im5, sp 32 Yes3 sp/ep4 op.dep. Yes 32-24S

PREPARE list, imm5, imm16 48 Yes3 sp/ep4 op.dep. Yes 48-02S

PREPARE list, imm5, imm32 62 Yes3 sp/ep4 op.dep. Yes 64-01S

Note 1: Fully pipelined.
Note 2: Instruction memory access.
Note 3: Unclear at which points in time GR readings occur (incl. sp).
Note 4: Unclear at which points in time GR writings occur (incl. sp and ep).


