
Department of Information Technology Technical report 2001-026
Uppsala University November 2001
Box 337, SE-751 05 Uppsala, Sweden ISSN 1404-3203

Usability Throughout the
Entire Software

Development Lifecycle
A Summary of the

INTERACT 2001
Workshop

Jan Gulliksen
Inger Boivie

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

1

Usability Throughout the Entire Software Development
Lifecycle

A Summary of the INTERACT 2001 Workshop

Introduction.. 2
Previous Workshops... 2
Position Papers – Submissions and Presentations.. 3
Usability Throughout the Entire Software Development Lifecycle ... 6
Separate Track or Seamless Integration... 8
Patterns.. 8
User-centred Design versus Usability Engineering.. 9
Use Cases Versus Task Analysis... 9
Conclusions...10
References ...11
Position Papers ..12

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

2

Introduction
The un-usability of systems, products and services is a tremendous problem for users and consumers all over the
world, despite the efforts put in by researchers, usability practitioners and designers. Therefore, usability still
needs to be the main focus of our activities. Research and development must focus more on developing
processes, methods and tools that significantly turn IT development in another direction. In practice, usability
aspects are usually regarded very late (if at all) in software development.

Software development does not stop with delivery, nor do usability issues. Most systems and products are
modified and improved in a number of releases over a number of years. Web sites are continuously updated and
modified. Most efforts at working with usability matters stop after the initial development process. What do we
do after delivery?

Furthermore, commercial software development models, such as Rational Unified Process™ (RUP) and
Dynamic Systems Development Method™ (DSDM) are becoming widely used in industry. Other software
development models with different approaches are also starting to attract attention from industry, e.g. eXtreme
Programming. These models are basically not user-centered and most of them provide limited support for
usability activities. Thus, it is also important to find ways of integrating usability aspects into such
development models.

To discuss these issues, the authors organised a one-day workshop at the INTERACT 2001 conference in
Tokyo, Japan, on July 9, 2001. The workshop was an official workshop for the International Federation for
Information Processing (IFIP) working group 13.2 on “Methodologies for User Centred Systems Design”. Nine
position papers were accepted and the workshop gathered 10 participants. In addition, two representatives of IFIP
Technical Committee 13 on Human Computer Interaction sat in on the workshop during parts of the day and
contributed to the discussions. The position papers are included below.

The position papers were briefly presented at the start of the workshop, and the remaining time was spent
discussing matters as described below.

Previous Workshops
The first workshop on “User-centred design in practice – problems and possibilities” was held at the 1998

Participatory Design Conference (PDC’98) in Seattle, November 1998. The summary of this workshop was
published in SIGCHI Bulletin [1] together with all the submitted contributions. This workshop highlighted the
difficulties in adopting a fully user-centred design (UCD) approach in practice and the need to spend more efforts
on making the UCD process work better. The workshop addressed among other things

• when and how to involve users in the design and development process
• practical experiences of prototyping and video recording in the analysis, design and evaluation processes
• organisational obstacles to user-centred design
• the role of the UCD facilitator in the development process
• communication problems that occur when people with varied skills and expertise communicate with one

another
As a sequel to this workshop, another one on the topic “Making User-Centred Design Usable” was arranged at

the INTERACT’99 conference in Edinburgh, Scotland, August 99. The summary of this workshop was also
published in SIGCHI Bulletin [2]. This workshop focussed on the users of the user-centred design process,
namely the software developers. The result of the workshop was a list of aspects that are crucial to the usability
of the UCD process:

• communication
the importance of meeting users and supporting a shared understanding.

• representations
the need for understandable design representations and equivalent design representations, i.e. different
representations that convey the same information about an object but in different forms and terms

• process
the need for good qualified, experienced usability experts, as well as the necessity to cultivate IT in use.
Each organisation must specify its own UCD process

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

3

• attitudes
the importance of conveying UCD attitudes, not just tools and methods. UCD must be escalated to
management level, by means of, for instance, business cases. One way is to create a demand for usability
guarantees on the consumer/user side.

Based on the results of these two workshops, we felt a need to arrange a follow-up workshop addressing
usability throughout the entire software development .

Position Papers – Submissions and Presentations
The position papers and the presentations at the workshop are summarised briefly below. The full versions of

the papers are attached in this document, and also available on the workshop website . (www.hci.uu.se/~jg/UCD2001/)

• Unifying User-Centered and Use-Case Driven Requirements Engineering Lifecycle – Antunes H.,
Seffah A., Radhakrishnan T. and Pestina S.
The paper discusses the problem of where to integrate usability activities in a software engineering
process and the need for improving and mediating software-usability engineering communication. They
suggest re-designing the software engineering, represented by Rational Unified Process (RUP), to
include users and usability expertise. They compare the forms used in RESPECT [3] to describe the
context of use and tasks with use cases. The authors argue that the same artifact should be represented
in several notations to serve the different needs in the software and usability engineering processes.
During the presentation Seffah argued that one common view on the relation between software
engineering and usability is that the developers build the system, then the usability experts make it
usable. Nothing could be more wrong! Such an approach does not take into account the relation
between the external and the internal parts of software. Previous attempts to integrate usability activities
and software development have been done in particular contexts. A formal, general, framework for
integrating usability into basically any software development process is needed.

• An Evaluation Framework for Assessing the Capability of Human-Computer Interaction Methods In
Support of the Development of Interactive Systems – Daabaj Y.
Daabaj suggests a framework for evaluating the applicability of task analysis methods in software
development, particularly in the requirements capture phase. The task analysis methods are evaluated
against criteria on, for instance, the usability of the output, the scope of analysis, representation format
and requirements mapping. Unfortunately the author could not participate in the workshop to elaborate
on his paper.

• Incorporating Usability into an Object Oriented Development Process – Ferré X.
This paper discusses usability engineering and use cases in object-oriented software development. Ferré
argues that use cases may bridge the gap between software engineering and usability engineering but
they need a supplementary user-centred focus. The author suggests a joint usability/software engineering
development cycle based on Larman’s object-oriented approach.
Ferré argued that there is too much focus on technology and low-level design in software engineering,
resulting in too many design decisions being made during analysis. It is difficult for developers not to
think in design terms when modelling, since the models will eventually be turned into designs. Use
cases may be the solution to this problem. Use cases are, however, not used properly from a usability
point of view. They are often seen as an early version of design artifacts, taken from the user to the
designer/technology world. The focus should move from requirements to design, where the external
design must come before the internal design. The shift to a design focus calls for less formality in the
software development models. At the same time, usability activities move towards a higher degree of
formality.

• Modelling the Usability Testing Process with the Perspective of Developing a Computer Aided
Usability Engineering (CAUE) System – Gellner M. and Forbrig P.
This paper discusses the need to create support for usability evaluation activities in software
development projects. The authors compare the evaluation process to the software engineering process
and suggest a framework consisting of eight phases to describe the evaluation process. The authors
outline a computer support for usability testing (CAUE). This tool should support all the eight phases

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

4

of the evaluation process and be aimed primarily at organisations without usability expertise. The
below figure illustrates the evaluation process.

Determining test targetsDetermining test targets

Choosing test methodChoosing test method

Develop test materialDevelop test material

Planning und OrganizationPlanning und Organization

Executing the testExecuting the test

Editing DataEditing Data

Evaluating DataEvaluating Data

Writing the StudyWriting the Study

Fig1: The eight phases in the usability evaluation process

• A Usability Designer at Work – Göransson B.
Göransson describes the usability designer role, which merges ideas from usability engineering as
described by, for instance, Nielsen and the interaction design approach suggested by Cooper. The
usability designer participates continuously throughout the entire development project. He/she has the
responsibility for the user-centred approach and all usability-related activities in the project, including
taking an active part in the design process.
Göransson particularly wants to address the problems with the “usability-at-the-end” view and the fact
that many commercial software development models do not honour the importance of usability.
Usability is taken for granted. He also argues that user-centred design, a prerequisite for usability, is
about attitudes and process, with an emphasis on attitudes. User-centred design ought to be the standard
operating procedure for software development, and the usability designer provides a way of achieving
that.

• Usability as a Tool for Competence Development – Holmlid S.
This paper discusses a model for use quality to be used in design and the setting up of a learning
environment. The concept learner-centred design is introduced and the role of the learner facilitator is
discussed. Holmlid describes a project which has been performed in cooperation with a major Swedish
bank. Unfortunately the author could not participate in the workshop to elaborate on his paper.

• Learning from traditional architects – Johnston L.S
Software development is an engineering discipline, and may as such, be compared to other engineering
disciplines. Johnston discusses the roles of the architecture in building projects throughout history.
When architects were absent in the building process during industrialisation a low standard of building
was the result. The engineers, assuming the role of the architect, put functionality before form and
people. Presently, the role of the architect has changed into being more like a user representative and
context of use analyst. In addition to the architect being the users’ advocate, each project needs a good
project manager to see to it that the process is doing what it should do. In addition, “up front” quality
goals have to be specified
The author also brings up usability patterns. She argues that they may help capturing good practice,
reducing the need for iterations.
During the presentation, Johnston also pointed out that there is a large difference between small-scale
development and development on a large scale. She also brought up the question about what needs to
be shared between HCI people and software engineers.

Evidence-Based Usability Engineering: Seven Thesis on the Integration, Establishment and Continuous
Improvement of Human-Centred Design Methods in Software Development Processes – Metzker E.
Evidence-based usability engineering is based on three fields; usability engineering, software process
improvement and knowledge management. Metzker outlines a tool for compiling know-how and
expertise regarding HCI methods and tools. The aim is to increase the effectiveness of usability

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

5

activities and to support a flexible strategy for integrating usability engineering in software
development processes. The tool is based on the idea that the efficacy of HCI activities depends on the
development context. Thus, HCI methods and processes cannot be introduced into an organisation as a
fixed workflow model. They have to be adapted to the particular context. The suggested tool would be
based on available evidence of the usefulness and applicability of a particular method or technique. It
would provide support in choosing and adapting methods and techniques to the situation at hand. See
the illustration of the evidence-based usability engineering process below.

SATUP

CUES

REUSE

Define / evolve UE reference

model and its base practices.

Select UE base practices to be
integrated in the development
process. Select appropriate

methods, based on the
development context at hand.

Perform UE methods selected.

Support development team by
providing best practices and

reusable artifacts.

Capture and organize best practices,
experiences and reusable artifacts..

Experience Base
Tailoring

Organisational Level

Project Level

Fig 2: Evidence-based usability engineering process

• User Intelligence Will Make Mobile Solutions Fly – Olsson A. and Svantesson S.
The authors describe an approach to capturing and compiling information about the user and the usage
of mobile applications. User intelligence consists of frame-finding (who are the users, what do they do,
where, when, how and with what) and gaining insight (goals, problems, desires and values). Common
data collection methods are interviews, observations, videos, etc. The approach also includes
prioritising features, creating scenarios, prototyping and qualitative usability evaluations.
In the workshop, the authors emphasised the importance of usefulness in products. A product must add
value to peoples’ lives. People will not use products if they do not feel the need of the services. They
also mentioned the necessity of communicating the impact of user experience to the project managers.
What is it like being a user? What is user experience? The authors work at a Swedish consultancy and
have introduced and established the user intelligence approach in the organisation which has taken them
3-4 years to achieve. Currently, an information designer typically works throughout the development
process, controlling it. The use cases are written by the information designer and software engineers to
make sure that both views are represented.

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

6

Usability Throughout the Entire Software Development Lifecycle
What do we mean by usability throughout the entire software development? What expertise, aspects, issues,

activities, etc, should be included in this approach? If we were to write a textbook on usability in the entire
development lifecycle, what topics ought to be included? The participants were invited to list the topics that they
considered the most important for such a book. The contributions were then categorised as described below.

The ensuing discussion primarily concerned the target group and main aim of such a book. Who should be
the intended reader, software engineers or HCI people? Is the aim to introduce usability and increase the usability
awareness among software developers, or is it to facilitate the introduction and establishing of usability in an
organisation? The discussion about the target readers and the main aim of such a book highlighted the problems
and tensions within the field. Is usability a concern of the HCI expert participating in the projects, or should it be
the concern and responsibility of the software engineers? Some of the participants argued that presently, there are
no textbooks on usability that cater to the needs and background knowledge of software engineers. Is it so,
perhaps, that few within the HCI community have enough knowledge about software engineering to address the
issues and problems with usability that pertain to engineering? In the HCI community, usability is the major
aspect within software engineering, requiring special attention, expertise and methods based on, for instance,
psychology and ethnography. For the software engineer, usability is one aspect out of many that must be taken
into account, preferably by means of an engineering approach. One interesting matter was that the representatives
of the software engineering community in the workshop favoured an engineering approach to usability – the
papers submitted by them mainly related to the usability engineering approach suggested by Mayhew [4], etc.

The topics suggested for a book on usability in the entire lifecycle were
• Definitions

A textbook on usability in software development must provide good, applicable, agreed-on definitions
and descriptions of a number of basic concepts. What is usability and how does it relate to and affect
software development? What is user-centred design? What is usability engineering? A roadmap of how
user-centred design, usability engineering and the HCI field relate to one another was suggested.
Furthermore, some of the fields contributing to HCI must be covered, for instance, ethnography and
cognitive science.

• Process
A section on the development process should discuss different models for integrating usability in the
software development lifecycle. One particular matter of interest is whether usability activities should
be a separate process running in parallel with or be an integral part of the software engineering process.
Most participants were in favour of a tight integration. Typical usability activities, tools and methods
should be described briefly as well as concepts such as iterative development and incremental
development. Another important aspect to cover is how to introduce and establish usability activities in
mainstream software engineering processes. How formal must a process be, how to best manage it, and
how do we maintain the usefulness and usability focus throughout the development? Time aspects are
important and the book should cover matters, such as, when to start the actual design and how much
time to spend on capturing requirements in relation to other activities.

• Roles and responsibilities
Some of the roles suggested were project manager, software engineer and usability expert or usability
engineer. What are the responsibilities and activities of each role? Does usability require an overall role,
a usability champion? Does usability require expertise on the client side as well as on the development
team?

• Users
The users are so important that they deserve a whole section of their own. It is essential that the
software development team identify the users and other stakeholders, and understand who their users
are. Different methods for investigating users’ needs, situation, behaviour, interest and motives should
be described, including methods for evaluating the user experience. The matter of involving users, if,
when and how must be covered. Problems that may arise from large user groups and broad varieties of
users should be addressed.

• Requirements
How do you best capture and understand the needs of the users? How do you ensure usability and

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

7

quality? Is it possible to order a usable system? This section should cover topics, such as, usability
requirements/goals and functional requirements, requirements engineering with a “usability flavour” and
requirements elicitation methods.

• Tasks and use cases
Understanding the work to be supported by the system is an essential part of designing for usability.
The book should cover different methods for analysing and describing tasks. The HCI field provides a
number of models for analysing and describing human activities, for instance, hierarchical task analysis,
activity theory and situated action. The applicability of such methods in software design is, however,
much questioned. Other approaches have been proposed by the software engineering community, in
particular use case modelling applied in object-oriented development methodology.

• Design
Design has been somewhat of a blind spot within the HCI community, where a majority of the
proposed usability methods and techniques focus on analysis and evaluations. The importance of the
design phase has been increasingly acknowledged over the last few years, however. A design section
should cover design methods, for instance, contextual design, scenarios, prototyping techniques and
criteria-based design. This section should also discuss conceptualisation and how to design the
information structure/architecture. Design patterns - what they are, how they may be used, advantages
and disadvantages, etc - should also be included.

• Evaluations
Usability evaluations ought to be an important part of the usability efforts in any software development
project. This section should describe different methods for usability testing and inspections, their main
characteristics and usage, the advantages and disadvantages of each method, etc. How to plan and set up
an evaluation, report the findings and feed them back into the design are important matters.

• Tools
This section should cover tools for supporting the usability activities in a software development
project, in particular such tools that address the gap between the usability expertise and the CASE tools
used by the software engineers.

• Project aspects
The software development process must be adapted to the undertaking at hand. Criteria that determine
the development process include the size of the project – small-scale versus large-scale projects – the
domain, life expectancy of the software, quality requirements, etc.

• Organisational aspects
Depending on the intended reader group the book should contain a section on how to introduce and
organise the usability work in an organisation. This includes specifying a framework for selecting,
defining and evaluating the integration of usability and user-centred design in software engineering.
Practical applicability, industry practices and cost-justification should be addressed, as well as cultural
aspects.

• Communication
Communication is a recurring theme in our workshops. Good communication between users, software
developers, project managers, client representatives, etc, is a prerequisite for success in software
development. One important aspect is the creation of a shared understanding of the problem to be
solved.

It may seem an impossible endeavour to write such a comprehensive book, but the reader must bear in mind
that the list above is the sum total of all the contributions from all the participants. Should any one of the
workshop participants undertake to write a textbook, the contents would certainly be adapted to the special
interest of the intended reader group or groups, as well as the particular hobbyhorses of the author.

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

8

Separate Track or Seamless Integration
Many projects start without the intended users – they start with the functional requirements and client

requirements expressing the business goals rather than the user requirements. The ideal would be to start with a
group containing user representatives, usability experts and software engineers, even before the requirements
capture phase starts. Requirements can then be captured by means of user research.

Fig 3: Development cycle

Users and designers need to get to know each other. Users must be involved early and continuously and
particularly in the design phase. Some of the participants argued that it is easier to involve users in interface
design activities than in use case modelling. Does this mean that the interface should be designed before the use
case modelling starts? The matter will be further discussed in the section on tasks and use cases below.

Do we need a separate usability process or should it be seamlessly integrated into the software development
process? The group did not reach agreement on the matter, but everyone at least agreed that it is a key problem.
Why do we need a usability process at all? Processes are rarely used to guide the day-to-day work and most people
only care about their own parts of the process. Processes are, however, useful for reasoning about one’s work and
describe it to others. They are particularly important for persuading management to introduce usability activities
in software development. Having a separate usability process may help in making the software development
process more suitable for a usability focus.

Patterns
Design patterns or usability patterns have raised the hopes amongst software designers and the HCI

community of late. With patterns, good design solutions may be re-used, and bad ones hopefully eliminated.
Design patterns could be seen as user needs resolved into working solutions, representing best design practices.

Patterns can be used to facilitate communication between different groups, but need not be understood by
users. One concern is finding a design pattern to fit a particualar design problem – naming design patterns
suitably is therefore important. The names of the patterns should help jog the imagination of the designer.

There are a number of product-based design patterns and pattern languages. Pattern languages are groups of
patterns that capture a philosophy of solutions. The patterns in a language share the same design philosophy and
come from the same design rationale. A pattern language can be domain specific or system type specific. Pattern
languages were further discussed at the INTERACT 2001 conference by Mahemoff and Johnston, in the paper
Usability Pattern Languages: the "Language" Aspect.

Design patterns or usability patterns are typically product-oriented – but methods and techniques could be seen
as process-oriented patterns. The USEPACKs (Usability Engineering Experience Package) discussed by Metzker
in his position paper, Evidence-Based Usability Engineering: Seven Thesis on the Integration, Establishment and
Continuous Improvement of Human-Centred Design Methods in Software Development Processes, could be seen
as a kind of patterns. A USEPACK is used to capture best practices in applying various HCI methods and
techniques. It is a semi-formal notation and describes the HCI activity or method with an increasing level of
complexity and detail. The USEPACK describes the activity/method, the development context in which it is
suitable and provides a set of artifacts such as checklists and templates. The idea is to provide guidance and
inspiration in such a way that USEPACKs can be mapped into the software engineering process also by less
experienced usability workers.

The project
over time

Users
SW eng
Usab exp Requirements Design Evaluations Implementation

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

9

User-centred Design versus Usability Engineering
Are usability engineering and user-centred design the same? Or is it so that engineers equate usability

engineering with user-centred design, just because of the engineering suffix? Do they need an engineering suffix
in order to accept a user-centred design approach? The computer scientists participating in the workshop said that
to many software engineers, user-centred design is just another word for usability engineering. Software
engineering is far from being a mature discipline, it certainly needs further research and development as regards
user- orientation.

User-centred design is a philosophy opposed to the system-driven development philosophy that is the
traditional way of seeing and doing things in software development. User-centred, or human-centred design is the
way we want to move in software development, but it has not become established practice. Hopefully, it will
become the established, traditional way of doing things. However, to dislodge the system-oriented approach takes
an enormous amount of effort or a miracle. It may be on its way with new technologies and decentralised
software development.

It is important though, to use the terminology unequivocally. It is perhaps a bit unfortunate that usability
engineering has become the way of thinking about user-centred design in the software engineering community.
Usability engineering focuses on requirements and evaluations preserving, perhaps, a technical, engineering-
oriented attitude to software development. User-centred design, on the other hand, addresses designing with the
users. Seffah presented a slide clarifying the differences between human-centred and technology-driven
development, see the illustration below.

Traditional software
development philosophy

Human-centered development
philosophy

Technology/developer-driven

Component focus

Individual contribution

Focus on internal architecture

Quality measured by product defects
and performance (system quality)

Implementation prior to human
validation

Solutions are directed by functional
requirements

User-driven

Solution focus

Multidisciplinary teamwork including
users, customers, human factors experts

Focus on external attributes (look and
feel, interaction)

Quality defined by user satisfaction and
performance (quality in use)

Implementation of user-validated solution only

Understanding the context of use (user,
task, work environment)

Fig 4:Traditional software development versus human-centred developmen

Use Cases Versus Task Analysis
Use cases provided the hottest topic of the day, causing a rather heated discussion. Despite the fact that the

group that discussed use cases and tasks during the breakout session could not agree on what a use case is. Use
cases describe what the system does and define its limits including task allocation – but how? The four
participants represented four different views – from a use case being just a name of a task to a use case being a
detailed specification of the task including interaction details, such as button clicks. The level of description
should be determined by usability concerns. You need a good task model in order to create a usable system.

Who should specify the use cases? Dedicated use case specifiers, software engineers or the usability expert?
Should users be involved? The group could not agree on whether or not to involve users. Some participants
argued that use case modelling was introduced into software development in order to facilitate early and

versus

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

10

continuous user involvement. Use cases are meant to replace functional/technical approaches in requirements
elicitation.

Use cases supposedly provide the means for getting the user needs into the projects in that they capture the
functional requirements in terms of what the user wants to do with the system. It was argued that use cases are a
collection of functionality and that such a collection must be the starting point in the project. You need the
functional requirements before starting the user interface design. Use cases capture what the software engineers
need to know about the context and the user needs. They are the starting point for the software engineers.

Based on their own experiences, other participants argued that users and clients (and sometimes software
developers!) often do not understand how to write use cases. They are difficult to explain and to apply. Users
generally find it easier to participate in interface design than in use case modelling. As somebody pointed out:

“Writing use cases with clients, what you get is an approved use case model. But when the design comes out
the client does not want that.”

The use case sceptics argued that user interface design, instead of use case modelling, should be the starting
point of the development project. The use case advocates, however, objected to this approach. Use case
modelling, they argued, must precede user interface design. This is clearly a point on which usability people and
software engineers differ. Software engineers start with functionality and usability people with the user interface
(interaction). One participant pointed out that interface prototypes and use cases should be used together and that a
conceptual model of the interface should be developed before starting on the use cases. There are also alternative
use case approaches, in particular essential use cases [5] that are supposed to better support user interface design
in that they do not contain interaction details.

Do we need use cases at all? They seem to present quite significant problems. How do we move on from use
cases to integrate all the aspects that are necessary to usability? Use case models are used to facilitate
communication between the different parties in software development, but they are not good enough. Obviously,
we need something else to bring users, usability and software engineers together. Currently available alternatives
are storyboards, scenarios, design mockups, prototypes, etc. There are also a number of methods for working
with the design phase, such as, participatory design workshops, parallel design workshops and preference-based
design.

Conclusions
Usability being a natural part of software development is still far away, though some organisations are

slowly closing in on the ideal situation. The workshop contained many fruitful discussions and some provocative
thoughts were expressed. Some of the conclusions that we have arrived at from the workshop discussions are
described below.

• Get software engineers and HCI people together
It is imperative to further deepen the cross-disciplinary work between the HCI community and the
software engineering community. Views on user involvement, user-centred design, work context
analysis, etc tend to differ. The discussions further pointed to the fact that much of the literature
about usability is produced within the HCI community and unsuccessful in addressing the concerns
of the software engineers in relation to usability. There are basically no textbooks on HCI and
usability that can be used in the software engineering education!

• Use cases are not the answer to all problems in software design
Use cases versus task analysis and use cases versus interface design are obviously topics that need
elaboration. Moreover, they particularly call for software engineers and usability people getting
together to discuss the problems. Or we will end up with two camps, each spouting arguments for
their own convictions and the users getting nothing out of it. How do we best capture the routines,
procedures, events, actions – in short, the details that make up a work context? Are the use cases the
answer, and in such case, how should they be complemented to better support user requirements
capture, usability efforts and interaction design? Should use cases be replaced by something better?
What?

• Future work
Given the fact that most software engineers are introduced to the field of HCI through books on

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

11

usability engineering (e.g. Nielsen, 1992, Mayhew, 1999, Faulkner, 2000) or from more software
based methodologies (e.g. Constantine & Lockwood, 1999) there is a need for material that
communicates the knowledge and experience established within the field of HCI in a better and more
direct way. The discussion after the workshop has driven us to propose an edited book integrating
HCI and software engineering (proposal to come). Hopefully such a book could fill the need to
educate software engineers on usability in a way that they can collaborate with HCI experts.
Furthermore we will pursue the discussion on upcoming working conferences and workshops
organised by IFIP WG 13.2 on the topic. For more information please watch the upcoming website
for IFIP WG 13.2 . (www.hci.uu.se/~jg/IFIP13.2/)

References
1. Gulliksen J., Lantz A. and Boivie I. (1999). User Centered Design – Problems and Possibilities. SIGCHI

Bulletin, Vol. 31, No. 2, April 1999, pp. 25-35. Summary of the PDC ’98 workshop on User Orientation
in Practice – Problems and Possibilities. Also available with all accepted contributions as technical report
TRITA-NA-D9813, CID-40 . (www.nada.kth.se/cid/pdf/cid_40.pdf)

2. Gulliksen J., Lantz A. and Boivie I. (2001). How to make User Centred Design Usable. SIGCHI Bulletin,
Vol 33, No. 3, July 2001. Summary of the INTERACT ’00-workshop on How to make user centred design
usable. Also available with all accepted contributions as technical report TRITA-NA-D0006, CID-72 .
(http://cid.nada.kth.se/pdf/cid_72.pdf)

3. Maguire M.C. (1998). RESPECT User Centered Requirements Handbook. EC Telematics Applications
Program, Project TE 2010 RESPECT, Wp5 Deliverable D5.3, 1998

4. Mayhew D.J. (1999), The usability engineering lifecycle, a practitioner’s handbook for user interface
design. Morgan Kaufmann Publishers Inc., San Fransisco, CA.

5. Constantine, L.L., Lockwood, L.A.D., (1999) Software for Use – A Practical Guide to the Models and
Methods of Usage-Centered Design, Addison Wesley Longman, Inc. Reading, Massachusetts.

6. Nielsen, J. (1993). Usability Engineering. Academic Press, Inc., San Diego.
7. Faulkner, X. (2000) Usability Engineering, Palgrave, New York, N.Y., ISBN 0–333–77321–7.
8. Constantine, L. L. & Lockwood L. A. D. , (1999), Software for Use: A Practical Guide to the Models

and Methods of Usage-Centred Design, Boston, Addison-Wesley.

INTERACT 2001 – Workshop on
Usability throughout the entire software development lifecycle

12

Position Papers
Included are the position papers submitted to and accepted at the workshop.
They are

• Unifying User-Centered and Use-Case Driven Requirements Engineering Lifecycle – Antunes H., Seffah
A., Radhakrishnan T. and Pestina S.

• An Evaluation Framework for Assessing the Capability of Human-Computer Interaction Methods In
Support of the Development of Interactive Systems – Daabaj Y.

• Incorporating Usability into an Object Oriented Development Process – Ferré X.

• Modelling the Usability Testing Process with the Perspective of Developing a Computer Aided
Usability Engineering (CAUE) System – Gellner M. and Forbrig P.

• A Usability Designer at Work – Göransson B.

• Usability as a Tool for Competence Development – Holmlid S.

• Learning from traditional architects – Johnston L.S

• Evidence-Based Usability Engineering: Seven Thesis on the Integration, Establishment and Continuous
Improvement of Human-Centred Design Methods in Software Development Processes – Metzker E.

• User Intelligence Will Make Mobile Solutions Fly – Olsson A. and Svantesson S.

Unifying User-Centered and Use-Case
Driven Requirements Engineering Lifecycle

H. Antunes, A. Seffah, T. Radhakrishnan, S.
Pestina

Department of Computer Science, Concordia University,
1455 de Maisonneuve W., Montreal PQ H3G 1M8, Canada

Tel: 1 (514) 848 3024
Fax: 1 (514) 848 2830
Email: {antunes, seffah, krishnan, pestina}@cs.concordia.ca
URL: http://www.cs.concordia.ca

In the last five years, many software development teams have tried to
integrate the user-centered design techniques into their software
engineering lifecycles, in particular in the use case driven software
engineering lifecycle. However, because of lack of understanding and
communication between two diverse teams and cultures, they often run
into problems. One problem arises from the fact that the software
engineering community has their own techniques and tools for
managing the whole development lifecycle including usability issues,
and it is not clear where exactly in this usability engineering techniques
should be placed and integrated with existing software engineering
methods to maximize benefits gained from both. This paper identifies
the principles of a cost-effective communication line between human
factors/usability specialists and software development teams. It also
describes a tool that can help to understand, define and improve this
communication line while facilitating the integration of usability in the
software development lifecycle. As a case study, we will consider two
popular requirements engineering processes: user-centered
requirements process as defined in ISO-13407 and implemented in
RESPECT and the use case driven requirements process as defined
and implemented in the Rational Unified Process.

Keywords: usability engineering, software development lifecycle, use
cases user-centered design, human-to-human communication.

1 Introduction

For small-size projects, software development teams can mostly avoid the direct
involvement of usability experts, due in particular to the availability of design
guidelines and usability patterns, heuristics for evaluation or tasks flowcharts to
supplement the functional requirements analysis. However, for large-scale projects
it is necessary, almost impossible, not to involve explicitly usability specialists, at
least during the requirements analysis and usability testing steps. Culled from our
day-to-day experience, four different ways, for involving usability expertise in the
software development teams, are possible: (1) resort to third part companies
specialized in usability engineering, (2) involve a consultant expert in usability, (3)
form/create a usability team, and finally (4) provide training to some members of
the development team that can act as the champions of the usability.

However, whatever the approach chosen for involving usability engineers
in the software development lifecycle, the difficulties of communication between
the software development team and the usability specialists could seriously
compromise the integration of the usability expertise in software development
lifecycle. Among the difficulties of communication, one can mention the
educational gap, the use of different notations, languages and tools, as well as the
perception of the role and importance of the design artifacts. For example, in spite
of the similarities existing between use cases and task analysis (Artim et al., 1998;
Forbrig, 1999; Seffah et al., 1999) and the advantages by their complementarity
uses, the software and usability engineers often try to substitute one by other.

The ultimate objective of our research is to build a framework, while
contrasting and comparing the software and usability engineering lifecycles, for
improving and mediating the communication between the software development
teams and usability engineers. This framework is governed by the questions below
we are addressing:

• How can the software engineering lifecycle be re-designed so that end users
and usability engineers can act as active participant throughout the whole
lifecycle?

• Which artifacts collected and generated in the usability engineering lifecycle
are relevant and what are their added values and relationships with software
engineering artifacts?

• What are the usability techniques and activities for gathering and specifying
these relevant artifacts?

• How can these artifacts, techniques and activities be presented to software
engineers (notations), as well as integrated (tool support) in the software
development lifecycle in general?

2 Background and Related Work

The following are only some of the many investigations that, over the last few
years, have tried to answer such questions.

Artim (1998) emphasizes the role of task analysis by providing a user-
centric view of a suite of applications, and then emphasizes use cases by providing
each application with a method of exploring user-system interaction and
describing system behavior. Jarke (1999) points out that scenarios are used in
software engineering as intermediate design artifacts in an expanded goal-driven
change process. They provide a task-oriented design decomposition that can be
used from many perspectives, including usability trade-off, iterative development
and manageable software design object models. Ralyte (1999) in the CREWS
project develops a framework for integrating different kinds of scenarios into
requirement engineering methods. Constantine (1999) suggests that use case
specifiers first prepare lightweight use case model descriptions (essential use
cases) that do not contain any implicit user interface decisions. Later on, the user
interface designer can use these essential use cases as input to create the user
interface without being bound by any implicit decisions. Nunes (1999) proposes to
annotate use cases using non-functional requirements at the level of abstraction at
which they should to be considered. Rosson (1999) proposes combining the
development of tasks and object-oriented models, which are viewed as a
refinement of rapid prototyping and an extension of scenario-based analysis.
Krutchen (1999) introduces the concept of use case storyboard as a logical and
conceptual description of how a use case is provided by the user interface,
including the interaction required between the actor(s) and the system.

3 A brief Description of the Processes Investigated in Our Case
Study

As starting point of our investigations and a research case study, we are
considering the following two requirements processes (Figure 1):

• The use case driven requirements workflow as defined in the Unified software
engineering Process (UP) proposed by Rational Software Inc (Booch, 1999).

• The RESPECT framework (REquirements SPECification in Tematics), which
is concerned with the capture and specification of end-user requirements
(Maguire, 1998).

Figure 1. A View of our Research Case Study and Framework.

3.1 Capturing User Requirements as Use Cases in the Unified Process

The goal of the requirements process, as defined in the unified process (UP), is to
describe what the system should in terms of functionalities do in terms of
functionalities, and allow the developers and the customer to agree on this
description. Use cases are the most important requirements artifact. It is used by
(1) the customer to validate that the system will be what is expected in terns of
functionalities, and (2) by the developers to achieve a better understanding of the
requirements and a starting point for technical design. A Use case storyboarding,
which is a logical and conceptual description of how use cases are provided by the
user interface, includes the required interaction between the user(s) and the system.
Storyboards represent a high-level understanding of the user interface, and are
much faster to develop than the user interface itself. The use case storyboards can
thus be used to create and evaluate several versions of the user interface before it is
prototyped designed and implemented (Krutchen, 1999).

One of the weaknesses of use case driven requirements workflow is that the
use cases attempt to describe representative ways in which the user will interact
with the software but is not comprehensive. Another weakness of this process is
that the main people involved in this process are stakeholders and technical
persons including use case specifier and user interface developer. End-User is not
directly involved. Use case specifier details the specification for a part of the
system’s functionalities by describing the requirements aspect of one or several use
cases.

User-Centered
Approach

ISO-13407 Standard
on Human Centered

Design Process

RESPECT-User-
Centered Requirements

Engineering Process

System-Driven
Approach

IEEE-8021 Standard
for Software
Development

Processes

Rationale Use-Case
Driven Requirements

Engineering

E
ng

in
ee

ri
ng

P
hi

lo
so

ph
y

P
ro

ce
ss

E
ng

in
ee

ri
ng

St
an

da
rd

s

Sp
ec

if
ic

P
ro

ce
ss

3.2 User Requirements Engineering in RESPECT Framework

RESPECT is a user-centered requirements engineering framework developed by
European Usability Support Centres. The RESPECT process is a concrete
implementation of the iterative user-centered design process for interactive
software suggested by the ISO-13407 Standard (ISO, 1999). The RESPECT
process starts from the point where project is summarized from the end user point
of view. By the end of the process, it produced different text-based forms that
detail the user interface, user support and help, the physical and organizational
context, equipment and hardware constraints, usability goals that must be
achieved, as well as the system installation procedure.

Although RESPECT is a highly detailed process for capturing and validating
context of use and usability requirements with the active involvement of end-users
and stakeholders, the text-based forms produced are not easily understandable by
software development teams. They are also a source of ambiguity and
inconsistency, especially when they are compared to the use cases.

4 Principles for Improving the Human-to-Human
Communication

Our first step for improving and mediating software-to-usability communication
involved identifying complementarities between the use-case requirements and
RESPECT processes. The four principles outlined below summarize these
complementarities.

Firstly, RESPECT captures a complete description of the context of use
including user characteristics, task analysis, as well as the physical, technical and
organizational environments in which the system will be used. Although in theory
use cases have the potential to gather the non-functional requirements that are a
simplified description of the context of use, in practice, use cases have been used
for gathering the system functionalities and features including technical
capabilities and constraints. Therefore:

Principle 1: Context of use and functional requirements should be considered
as two views of the requirements picture. The software view on this picture is
a set of artifacts describing the functionalities and the technical requirements
of the system. The usability view is a set of artifacts describing the context of
use and the usability goals/factors in which the functionalities will be used.

To a certain extent, this principle means that both the software and the
usability views are important. Table 1 indicates the software and usability views
for each of the processes that we considered in our case study. Such classification
of the artifact can facilitate the identification of potential relationships between
artifacts.

RESPECT UP Requirements
Workflow

Software View General system
characteristics
System functions and
features
User Interface

Use Case Diagram
Requirements attributes
Boundary class
Use case storyboard
User interface prototype

Usability View Organizational structure
Task scenario and
interaction steps
Technical environment
User support
Physical environment
Social and Organizational
environment

Stakeholder and Users
needs
Additional
Requirements

Other artifacts that
cannot be classified.

Standards and style guides
to apply
Test plan
Implementation plan

Vision document
Glossary

Table 1. Relationship between RESPECT and UP Requirements Artifacts

Secondly, in RESPECT, the context of use is described using a non-
formal notation which is easy to understand by end-users and stakeholders.
However, these forms are a cause for inconsistency and ambiguity when used by
software developers. The artifacts that are produced and the semi-formal notation
used in use case approach are more understandable by software developers. Use
cases as a notation can also support, in a certain extent, automatic generation of
code (Krutchen, 1999, Booch, 1999).

Principle 2: As Artim’s (1998) discussed about “one model, but many views
and notations.” We strongly share his belief that different notations for the
same concept may foster communication between persons. This means that
we can use different notations to describe the artifacts related to the functional
and context of use including text-based forms and use cases. However, this
requires maintaining the correspondence between multiple views at an
abstract level using a high level notation.

Thirdly, in RESPECT as in other similar approaches, usability specialists
use the context of use as an important input for usability testing. Software
developers use the functional requirement artifacts as a starting point for technical
design and implementation.

Principle 3: A common step to the two processes should include activities for
reviewing and validating the integrity and consistency of all requirements

artifacts from both the usability and software views. After validation, we
should generate a usability testing and implementation portfolios.

For example, the usability-testing portfolio should include the entire
usability requirement artifacts that will be used during usability testing. The
implementation plan should include the artifacts that required for implementing
the system.

Fourthly, it is important for usability-to-software engineering
collaboration and for consistency and coherence of requirement artifacts to gain a
high-level understanding of the system and this from the beginning. Therefore:

Principle 4: The requirements should start when a representative set of users
and/or stakeholders are invited to summarize the system from the future user’s
perspective. They are mainly asked to answer different questions that we
organized in a system summary form. Users and stakeholders, the main
contributors during this step, are invited to give brief answers to these
questions. All completed forms are then analyzed and compiled in a unique
system summary form by usability engineers. This compiled form is approved
by software developers, stakeholders and users. It is used as a roadmap during
the requirement process and represents a general consensus on the system.

Questions Assumptions
What is the purpose of the
system?

ISO 9000-based quality system over an Intranet

Why is this system
necessary?

Supporting the development of the company
outside the country (new clients, remote offices.)

Who will use the system? Employees and some of the company’s clients
What will the users
accomplish with the
system?

Access to quality procedures and associated forms
Learn the quality system and the ISO 9000 standard

Where will the system be
used?

Standalone workstations and personal digital
assistants

How will users learn to use
the system?

Introductory course and online assistant

How will the system be
installed?

By a Webmaster for the server version, and by
employees on their PDA (download from the
server)

How will the system be
maintained?

By a Webmaster and a quality control manager

Table 4. An Example of the System Summary Form.

Table 4 is an example of the system summary form that we developed.
User-centered requirements frameworks such RESPECT and use case-driven
approach supporters (Constantine, 1999) suggested similar questions.

5 A Framework for User-Centered and Use-Case Driven
Requirements Engineering

Based on these principles, we iteratively defined, used and validated a framework
for improving software-to-usability engineering communication (Figure 2). This
framework clarifies how usability expert activities can be incorporated in the
software development lifecycles. It also clarifies the relationships between
activities done by software engineers and usability experts.

Figure 2. A Framework for User-Driven and Use Case-Based for User Interfaces
Engineering.

Mainly the framework has been used in 10 projects we conducted at
CRIM (Computer Research Institute of Montreal) between 1997 and 2000. All the
projects are related to Web-based interactive systems including, for example, an
environment for managing ISO 9001 documentation, a tool for sharing resources

UI Screen
Design
Support

H
um

an
 F

ac
to

rs
 A

ct
iv

iti
es

Prep
A

Obtain
Pertinent

Documentation

SOPs
METL
Trng Object.
OPORDs
FRAGOs
T&EOs
Field Manuals
Briefings
High Interest Events

Review
Pertinent

Documentation

Identify
Key Events to
Be Observed

Observe Training
Exercise

Prepare
Data Collectio n

Tools

Monitor Exercise
For Key Events

O/C Wor ks tation
Tape Recorder
Video Recorder
Paper Forms
Note Cards

Monitor radio traffic
Monitor functional areas of simulation
Monitor video feeds
Monitor electronic messaging
Monitor ground tru th
Monitor perceived truth

Collect Data
on Key
Events

Attach Observations
to Co llected Data

Store Data
and Observation

Collect
Data from O/Cs

Organize
Data

Analy ze
Data

Prepare AAR
Discussio n
Outline

Prepare AAR
Discussio n
Materials

A

B

C

DEFG

UC 5320
UC 5390
W2K2116
W2K3586
W2K1020

UC 5026
W2K3590
W2K3586

W2K1029
W2K3586

W2K3590
W2K3586

Plan
AAR

Prepare
AAR

Conduct
AAR

System
Analysis

Use
Case
Revie

U
I

E
ng

in
ee

ri
ng

 A
ct

iv
iti

es

User
Interface
Prototyping

Use Case- Driven Design and
Development

Use Case-Driven Requirements
Analysis

User Requirements Analysis Usability Support

Usability
Testing

Software
Design, Code
and Test

User
Feedback

UI
Conceptualization

Functional
Requirements

Task
Development

as well as a Web-based training system. RESPECT and use case-driven
approaches were used simultaneously by software and usability experts. At the end
of each project, we conduct a series of ethnographic interviews where all
participants were interviewed. We asked them to describe their activities during
the projects and to highlight the difficulties in term of communication. We also
reviewed the framework with all participants and asked them about potential
improvements.

6 Conclusion and Further Investigations

In this paper, we presented our investigations on how to improve and mediate the
communication between usability expert and software development teams. With
respect to experimentation, two specific processes constitute the focus of our
interests: use case-driven and the user-centered requirements engineering
processes. Further to the framework for improving software-to-usability
engineering communication we defined, we identified the following principles that
we consider as critical issues.

First, the requirements of an interactive system must be defined on two
levels, but not independent of one another as it is today. The first level is
concerned with the specification of the context of use, and the second focuses on
functional requirements. Different specification notations may be used for the two
levels, but they should exploit an integrated representation of all the requirements
artifacts. In our case, we adopted the text-based forms as used in RESPECT and
the graphical representation of use cases as defined in Unified Method Language.

Secondly, the list of artifacts describing the context of use ensures a good
usability specification. Better still, this list can assist with generating functional
requirements, at least to a limited extent. This result is fundamental because it can
minimize requirements artifacts inconsistency and improve communication
between software and usability engineers.

References

Artim J., VanHarmelen M., and al.; “Incorporating Work, Process and Task Analysis into
Commercial and Industrial Object-Oriented System Development”, SIGCHI
Bulletin, 30(4), 1998.

Booch G., Jacobson I., and Rumbaugh J.; Unified Software Development Process. Reading,
Massachusetts: Addison-Wesley, 1999.

Cockburn A.; “Structuring Use Cases with Goals.” Journal of Object-Oriented
Programming, Sept-Oct 1997 and Nov-Dec 1997.

Constantine L.L., and Lockwood L.A.D.; Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design. Reading, Massachusetts:
Addison-Wesley, 1999.

Forbrig P.; “Task and Object-Oriented Development of Interactive Systems – How many
models are necessary?” Design Specification and Verification of Interactive
Systems Workshop DSVIS’99, Braga, Portugal, June 1999.

ISO 13407 Standard: Human Centered Design Processes for Interactive Systems, 1999.

Jacobson I.; Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley Object Technology Series, Reading, Massachusetts: Addison
Wesley, 1994.

Jarke M.; “Scenarios for Modeling,” Communications of the ACM 42(1), 1999.

Kaindl H.; “Combining goals and functional requirements in a scenario-based design
process”. In People and Computers XIII, Proceedings of Human Computer
Interaction ’98 (HCI'98), pages 101–121, Sheffield, UK, September 1998.
Springer.

Krutchen P.; “Use Case Storyboards in the Rational Unified Process,” Workshop on
Integrating Human Factors in Use Case and OO Methods. 12th European
Conference on Object-Oriented Programming. Lisbon, Portugal, June 14-20,
1999.

Maguire M.C.; RESPECT User Centered Requirements Handbook, EC Telematics
Applications Program, Project TE 2010 RESPECT, Wp5 Deliverable D5.3, 1998.

Nunes N.; “A bridge too far: Can UML finally help bridge the gap?” Proceedings of
INTERACT’99 Doctoral Consortium, Edinburgh, Scotland, 1999.

Ralyte J.; “Reusing Scenario Based Approaches in Requirement Engineering Methods:
CREWS Method Base”. In Proceedings of the First International Workshop on
the Requirements Engineering Process - Innovative Techniques, Models, Tools to
support the RE Process, Florence, Italy, September 1999.

Rosson M.B.; “Integrating Development of Tasks and Object Models.” Communications of
the ACM, 42(1) 1999.

Seffah A., and Hayne C.; “Integrating Human Factors in Use Case and OO Methods,” 12th

European Conference on Object-Oriented Programming Workshop Reader,
Lecture Notes in Computer Science 1743, 1999.

An Evaluation Framework for Assessing the Capabilit y of
Human-Computer Interaction Methods In Support of the

Development of Interactive Systems

Yousef Daabaj

Information Systems Institute,
The University of Salford, Manchester, M5 4WT, UK

Y.H.Daabaj1@salford.ac.uk

Abstract: In the course of this research project the output of four Task Analysis (TA) methods were investigated,
explored and evaluated to ascertain whether they could support the Requirements Analysis (RA) phase and so contribute
directly to other activities in the development li fe cycle for Interactive MultiMedia (IMM) systems. The research
discusses the success and failure factors particular TA methods. The problems of an IMM systems development li fe
cycle are linked to the weaknesses of the Requirements Analysis phase and in particular to the incomplete support of TA
methods and techniques used within the Requirements Analysis phase. The outputs of the selected TA methods are
evaluated according to four factors, which are represented as an Evaluation Framework (EF). Each factor represents
specific criteria and features that TA methods should cover in their processes and outputs. The findings show that TA
methods have a number of weaknesses in the support of and the contributions they make. Therefore questions and
recommendations are considered about how the methods can be improved in order to obtain better requirements.

Keywords: Task analysis, requirements analysis, human-computer interaction, interactive systems, world wide web,
multimedia.

1 Introduction
The impetus for the research study came from the
growing importance of Task Analysis (TA) methods in
the success of the overall IMM systems design and
development li fe cycle. This was coupled with the
perceived limitations and insuff icient contributions of
Task Analysis methods to support the Requirements
Analysis phase in order to capture the new
requirements, distinctive features and characteristics,
domain, context and environment of IMM systems.
The initial aim of the research was to investigate,
explore and evaluate existing TA methods for use and
application within the IMM domain and environment,
in terms of both theoretical background and practical
application. The objective of this research was,
therefore, to evaluate the capabilit y of TA methods.
The nature of Task Analysis is such that it was felt to
be most appropriate to do this in an applied context.
Thus, in this project a variety of TA methods have
been used to assess the adequacy of a proposed design
for a World Wide Web (WWW) site/systems within a
particular IMM context. The domain and environment
chosen was one which will help a group of research
students conduct their doctoral programme as carried
out at the University of Salford, UK. This was because
the range of problems that arise in using TA methods
often only becomes evident when the methods are used
in anger. Thus in order to allow a realistic examination

of TA methods, the results of the application of these
methods, together with their input into the later design
activities, have been analysed and compared, both to
each other and to a defined schema with its set of
special characteristics and criteria. These
characteristics and criteria have been represented
within a framework that consists of four factors. The
purpose of the framework was to assess the capabilit y
of TA methods, and to consider Task Analysis in a
general way within the IMM context. In this way we
were seeking to provide general guidelines, as well as
identify aspects and issues to be considered in TA
methods themselves, with regard to what they can offer
and what they might contain in their final analysis
output.

Most of the descriptive efforts in HCI have focused
on developing user and task models that can be used to
analyse, predict, or explain the performance of users
with different interface and system designs, but do
these models really provide the necessary descriptive
capabiliti es? The question addressed by this research is
simple in its expression but daunting in the work
required to answer it. The main question that this
research effort is trying to answer is:
Can the output of Task Analysis (TA) methods support
and contribute directly to the Requirement Analysis
(RA) phase of the development life cycle of IMM
systems?

In order to understand the relative contributions of
each method and technique to the success or otherwise
of a design, one needs to know how well each fare in
real design settings. The main question is related to a
number of sub-questions that have to be answered, and
these are:

� How does IMM systems design and development
differ from that of traditional software systems with
respect to the Requirements Analysis process?

• Why do current IMM information systems require a
frequent need to redesign the system?

• How is the Requirements Analysis activity, and in
particular Task Analysis, a very important process
in designing IMM information systems?

• What can and does each Task Analysis method and
technique describe and contribute?

• What decisions and analyses remain outside the
scope of any method or technique?

2 Background and Motivation
The current emphasis on user-centred design for
interactive technologies (Martijn et al, 1999; Annett,
2000) places great emphasis on understanding the user
in attempting to develop more usable artifacts. To this
end, design teams are urged to perform user and task
analysis at the earliest stages of product development
and to consider the nature of the users' cognitive and
physical pre-dispositions and abiliti es. These user
characteristics are correctly seen as important in
constraining the available design options and, if
attended to, increasing the likelihood of producing a
usable application.

The 1990s have witnessed the world-wide
development and utili sation of Interactive MultiMedia
(IMM) Systems, and the development processes for
such systems have shown a number peculiarities that
differentiate them from so-called “classic” software
development activities. It is already clear that designers
of IMM systems should be made aware of these
specific features, constraints and peculiarities as early
as possible in the development process. Although IMM
design is related to traditional software design, many of
its aspects are arguably different from those applicable
to sequential media and computer-based instruction, as
well as from hypertext (Lowe, 1999). The traditional
software li fe cycles provided structure to the
development of large software systems that were
mainly concerned with data-processing applications in
business. These systems were not highly interactive.
Consequently, issues concerning usabilit y from an end-
user’s perspective were so that important (Dix et al,
1998). IMM is inherently multidisciplinary in nature
and differs in many aspects from the traditional
software development. Developing a usable IMM
system involves a complex set of design activities and

processes. However, it is widely recognised that the
design of a product can only be as good as the
statement of requirements for that product. This means
striving for a requirements specification that is as
unambiguous, complete and consistent as possible, so
that progress towards the goals specified can be
verified in the course of the design. Therefore, future
IMM systems will have to be carefully matched to the
work environment, expectations, characteristics and
tasks of the target users if they are to be successful.
This in turn suggests that such issues will become
progressively more central to the li fe cycle of IMM
systems’ design and development.

Since the aim of Human-Computer Interaction
(HCI) is to produce designs that fit their expected
context of use, in order to support people so that they
can carry out their activities productively and safely, it
is becoming one of the most important issues in
information systems development. Diaper (1989)
describes the goal of HCI as being to “develop or
improve the safety, utilit y, effectiveness, eff iciency and
usabilit y of system that include computers” . The study
of HCI helps to determine how this computer
technology can be made more user friendly (Smith,
2000). These goals are extremely important and
relevant in considering IMM systems to support
learning. HCI research and design practice has long
recognised that IMM systems are of littl e value if they
do not support users in performing their work tasks
(Hamilton, 1999). HCI is a discipline concerned with
the design, evaluation and implementation of
interactive computing systems for human use and with
the study of major phenomena surrounding them
(ACM, 1992). The relevance of HCI is rapidly
increasing, giving rise to a growing number of users
with a wide range of skill l evels making greater
demands upon IMM systems in a wide variety of
contexts. The discipline of HCI is now widely
recognised as a valid partner in design methodology,
and the concept of Task Analysis (TA) is often
considered of central importance, although the exact
meaning of the label varies widely depending on the
design approach (Van der ver, 1996).

Given the increasing prominence of the role of TA
and user modelli ng in systems design, the motivation
for the research centres on the application and use of a
number of TA methods in supporting the analysis and
design of usable IMM systems. Its contribution is,
therefore, to the emergent disciplines of HCI,
Requirements Analysis (RA), Task Analysis (TA) and
Interactive Multimedia (IMM) information systems.
The author has chosen to study of the activities
involved in Requirement Analysis with particular
attention to the use of TA methods. This is because
Requirements Analysis is a crucial area for the success
of the whole IMM development process, since it is the

only way to ensure that the final system will be
appropriate for the users and their needs. In order to
make TA methods capable enough to support the
design and development of IMM systems, their
context-in-use needs to be actively and effectively
exploited. As such, the focus here will be on the use of
TA methods to analyse the requirements for a proposed
World Wide Web (WWW) site within an IMM
environment. The WWW system was selected to
provide a complex and interactive environment,
context and domain that would help to explore and
evaluate the support, contributions and capabilit y of
chosen TA methods.

3 Problems of the Ear ly Analysis
Process

A profusion of notations, methodologies and
techniques is documented in the literature of HCI, for
example (Diaper, 1997; Lim, 1994; Johnson, 1992).
Many of these approaches have been used as
techniques during the Requirements Analysis (RA)
activity of the interactive systems development process
in order to provide descriptive models of the work-task
knowledge that people possess. From the literature
review it was clear that most Task Analysis (TA)
techniques represent a serious attempt by HCI
researchers to help designers to develop more usable
systems. It has been generally accepted that Task
Analysis may substantially contribute to the design of
usable products because it focuses specifically on the
end user. Task Analysis investigates users'
characteristics and the task world of which they are a
part, and the information gathered should be recorded
in a task model that captures the relevant aspects. The
literature on requirements engineering contains littl e in
the way of either theoretical guidance or empirical case
studies relating to the specification of requirements for
IMM information systems (Jones, 1996). The lack of
capabilit y of HCI techniques (in particular TA
methods) means that the development costs are often
high, and that the quality and usabilit y of the resulting
systems are frequently low, with the capabiliti es of
new technologies being only poorly exploited.
Although specifying the requirements of the new
system to be built i s one of the most important parts of
the li fe cycle of any project, its support in practice is
still i nsuff icient (Davis, 1993).
The emphasis in systems development has traditionally
been on building systems that meet specific functional
requirements, without a suff iciently detailed
understanding of the cognitive and physical
capabiliti es and expectations of the intended users, or a
clear view of the context within which the system will
be used. In addition, although basing initial concept
design on an understanding of users and their tasks has

been advocated for some years, confusion still reigns
as to what this means in actual practice. Some authors
claim that the required clarity resides in traditional
approaches to TA (Dix et al, 1998), but not only are
these approaches infrequently used (Bellotti, 1990;
Lim, 1996), other researchers question their adequacy
and usabilit y (Preece, 1994). The biggest problem is
often not in simply applying the technique, but in
communicating the results produced to a client or to
other members of a design team. If the results of Task
Analysis are not communicated well , then their value
to the development process rapidly diminishes. The
criticism of current TA techniques is that they do not
specify how multimedia development may be taken
through from analysis specification to detailed design
specification. Existing TA techniques need to capture:

� the requirements in their original format (e.g.,
graphics, text, audio, video),

� the context of the interaction and interactivity style
and level,

� the context of the stored information content and
type,

� the delivery environment and technical constraints,
� the corresponding limitations that should be placed

on multimedia output.
� the navigational structure of the system,

The refinement of these original requirements and
the identification attributes associated with the
requirements are outside the scope of most current
methods, and therefore when they are dealt with it is
often in an informal way.

4 The Role of Task Analysis (TA)
Human-Computer Interaction (HCI) has a role in the
design and development of all kinds of systems,
ranging from those like air traff ic control and nuclear
processing, where safety is extremely important, to
off ice systems, where productivity and job satisfaction
are paramount, to computer games, which must excite
and engage users (Preece, 1993). An information
system will be of no value if it does not contribute to
the improvement of the work situation for people in the
organization. Therefore, it is not enough to study the
contents of the information system. The activities
people perform in an organisation and how these could
somehow be improved must also be examined. The
fundamental idea of Task Analysis (TA) lies in a
science-based and purpose-oriented method or
procedure to determine what kind of elements the
respective task is composed of, how these elements are
arranged and structured in a logical, or/and timely
order, how the existence of a task can be explained or
justified, what the driving force to generate it was, and
how the task or its elements can be aggregated to
another entity, composition, or compound. Task

Analysis could therefore be a central activity in system
design. Task Analysis helps ensure that human
performance requirements match users’ needs and
capabiliti es and that the system can be operated in a
safe and eff icient manner. As technical systems
become more sophisticated and pressure to reduce
manpower in them increases, there is a severe risk that
unique human skill s and abiliti es may not be used as
effectively as they should, thus degrading the potential
performance of a system. Therefore, TA as one of the
main analysis techniques for human-machine systems
design plays an important role in different project
development phases.

A critical issue in the emerging area of IMM
Information Systems is the abilit y of these systems to
fulfil the information requirements of various user
groups. The importance of the TA process is rapidly
increasing with the growing number of users with a
wide range of skill l evels making greater demands
upon IMM systems in a wide variety of contexts. Task
Analysis is about examining the context and criteria in
order to establish a solution, as well as about
examining the context and criteria associated with
goals in practical situations to identify how they are
carried out or what problems are associated with their
execution. Therefore, TA is very useful to the extent
that it helps us to improve the design or
implementation of systems or, at least, to focus upon
areas of poor human performance. IMM systems are
designed to fulfil particular goals and should aid
people to accomplish them. The way people
accomplish goals is by executing tasks. Therefore, a
task model can reveal much about the way in which
tasks need to be organised within an IMM system.
Therefore, a good picture of human task performance
is very important for the design of IMM systems. Table
1 shows the relation between TA and RA. Task
Analysis methods are expected to indicate, for
instance:

� which tasks will be used often or only infrequently,
� to allocate tasks between multimedia system and

the target user,
� which media or combination of media the designer

must pay attention to,
� the main features of the interface and the structure

of the content of the system, etc.
Both RA & TA have elements (concepts) in common
which is to produce a definition:

� that can be used as a basis for realisation of a
software system that delivers the behaviours and
features required.

� that is suff icient as validation criterion for the
system produced.

� to establish constraints to support later design
decisions and extensions.

RA vs. TA Requirements
Analysis (RA)

[abstract, par tial
task elements]

Task Analysis (TA)
[real, complete,

representative tasks]

Differ on
“ who/wha

t” it is
about

RA about system’s
needs, functions and

specifications.

TA about real users and
real tasks they want to do.

Purpose/
Aim

RA specifies WHAT
the system should

do.

TA provides information
about HOW it should be
done. TA is concerned

with how a user performs
things “ tasks” .

General
process

activities

In general :
1.Requirements
identification
2.Identification of
software devel-
opment con straints
3.Requirements
analysis process
4.Requirements
representation,
5.Development of
acceptance criteria
and procedures.

In general:
1.Information collection,
2.Task description,
3.Task Analysis,
4.Representation,
5.Application.

Data
collection
techniques

used

Observations,
Interviews, Focus
group discussion,

Existing
documentation,

Checklist,
Questionnaires,

Videotape, Survey,
and TA techniques.

Observations, Interviews,
Focus group discussion,
Existing documentation,

Checklist,
Questionnaires,
Videotape, Task

allocation.

Par ticular
strengths

Generate a great deal
of background

information about:
problem domain;
user requirements
and characteristics

on the current
situation.

Understanding current
work in depth, provide a

representation of how
users perform their tasks,

envisionment of how
user’s work might be in

the future, and
establishing basis for

satisfying jobs.
Similar
concepts

in
different
models

Waterfall model Iterative design

Expertise
or skill s
required

Purpose of analysis,
Interviewing,

Planning and Subject
handling, user –

analysts
communication

techniques, Group
chairing, Survey

design and analysis
skills and expertise.

A depth knowledge of TA
technique(s),

Interviewing, Planning
and Subject handling,
System knowledge,

Purpose of analysis, User
– analysts communication

techniques, Group
chairing, Experience and
skills in conducting the

analysis.
Differ on
“ who”
does

Done by systems
analyst

Mostly done by User
Interface designers, and

Human Factors specialist.

Table 1: Requirements analysis vs. task analysis.

5 The Pr inciple Behind the
Framework

The bottleneck in producing such IMM systems is no
longer in the technical stages of building it, but in the
preliminary analysis phase of specifying the essence of
design (producing the logical structure of the system)
and capturing the specific features and characteristics.
The advent of larger and more complex IMM systems
has resulted in the need to reconsider the ways in which
requirements are captured, analysed, formalised,
modelled, represented and communicated pertaining to
those systems. This reflects the author’s view that
conventional systems analysis, design and development
methods do not cater for IMM systems, and most
published work on IMM focuses either on
programming or hardware issues (and the real technical
challenges involved). The specification of information
requirements is a particularly important part of the
Requirement Analysis (RA) phase, since poor
specification leads to poorly-designed systems which in
turn leads to reduced usabilit y of the systems.
The problems of current software design methods
highlights the importance of the Requirements Analysis
phase in system development, and draws out the
importance of integrating and combining with Task
Analysis (TA) techniques in order to design usable
IMM systems, see Figure 1.

Figure 1: An overview of the principle behind the
 evaluation framework.

There is very littl e published on how to capture,
analyse, model, represent and communicate
requirements for and design IMM systems (Jones,
1996). IMM system design requires techniques to
support the early phase of the development process that
have suff icient expressive power to capture the nature

of the context of use that supports the multimedia
development li fe cycle. The development of
multimedia application places many demands on the
multimedia author, including the following:

� a knowledge of the information content required in
the application.

� a knowledge of the application user and the
requirements of the application user.

� a knowledge of the target user’s tasks.
� a knowledge of the working environment within

which the system will be used.

6 An Evaluation Framework for
Assessing the Capabili ty of TA

Although some researchers, for example (Card et al,
1983; Johnson, 1990) have made claims about what
TA, HCI principles and methods might contribute to
system design, they have aimed at finding desirable
criteria and identifying some distinguishing features
for assessing the suitabilit y and applicabilit y of TA
Methods, for example (Diaper, 1989; Bellotti, 1990;
Wilson, 1993) order to support comparisons between
them. Finding the right criteria to determine what
makes a good TA is diff icult to find in the literature,
despite the many suggestions that have been made
about how TA should be done. It is an open question,
as to which of the TA methods will prove most
successful to design more usable systems. The views
expressed in the literature have identified desirable
criteria that should exist within the process/products of
current TA models. These criteria were represented in
a framework, called “An Evaluation Framework (EF)
for Assessing the Capabilit y of TA Methods” , which
consisted of four main factors. These desirable criteria
of each factor aimed to improve the capabilit y of
current TA methods in order to support and contribute
directly into the Requirements Analysis (RA) phase,
which could result in producing better requirements.
The Scope of Analysis Factor :

�

Requirements Classification
�

Identify Task Characteristics and Procedures
�

Environmental Characteristics and constraints
�

Select and Match Media to Content Analysis
�

System Navigational Structure and Access Techniques
�

Identify Special Interactions and Features of IMM
Systems

�

Requirements Implementation Plan
Representation Form and Suppor t Factor :

�

Variety of Representation Form Provided by TA Method
�

The Completeness of Notational Support
�

Automated Support to Represent the Features of IMM
Systems

Requirements Mapping Factor :
�

Feasibilit y Study/ Project Planning/ Problem Definition
�

Requirements Analysis & Specification (RA&S)

Classical Software
Development Process in
respect of RA activity

IMM Systems Design
Process in respect of early

analysis activities

Current TA Methods:
process, roles
and problems

A famework to
evaluate the support,

contributions and
capabilit y of TA

methods

Learning about
RA roles and
problems

Learning about the requirements
of IMM design activities

Learning about TA: success & failure factors

The role and impact of RA

The role &
 Impact of TA

The role &
Impact of TA

�

Information Design-Content Selection and Organising
�

Choosing the Correct Navigational Structure and Access
Techniques

�

Choosing: Design Approach and User Interface
Approach

�

Iterative & Prototype Process
�

Implementation
�

Web/System Testing & Delivery
Core Cr iteria Factor :

� Understandabilit y of Requirements Output
� Correctness of Requirements Output
� Usabilit y
� Validity

In order to explore the reviewed TA methods’
support, contributions and capabiliti es, as well as to
assess how their capabilit y could be improved, the
Evaluation Framework relates the scope of TA
methods, in particular to the RA phase (i.e., to obtain
better requirements), and in general to the IMM
systems development process. The concern was with
the use of TA methods to support the RA activities, see
Figure 2 below.

Figure 2: An Overview of the Evaluation Framework.

To make a useful evaluation of TA methods, is to
decide whether they are capable enough to support and
contribute directly to analysis and web site design
within the IMM context and environment. This
requires a scheme that asks what ought to be in a TA
product, what can/cannot be offered, what the role and
impact of these methods is in designing the usabilit y of
IMM systems, what the scope of the potential
contributions is (i.e., what is the usefulness of the
analysis), what resources (skill s, time, modelli ng tools)
would be required for application of the method (i.e.,

how usable is the method), and whether information
obtained leads to positive design recommendations.
The framework is a conceptual representation in
tabular format and textual form, and is aimed to
structure and understand a range of concepts of Task
Analysis methods. Each factor represents some specific
issues, desirable features and elements for the RA
phase and other activities of the IMM approach, the
TA method should cover and represent these features
somehow in their process and outputs. Clearly these
kinds of “criteria” are qualitative and not quantitative.

7 The Case Study
Arguably the most critical activity/phase in the
development of a large, interactive and complex
multimedia information systems is to capture, analyse,
organise, represent and communicate the output of the
early analysis process (Wood, 1998; Lowe, 1999).
Furthermore, there is currently a growing interest in
the explicit introduction of Task Analysis (Annett,
2000; Lim 1996). This has come about as a result of
the realisation that the development of fr iendly IMM
information systems is becoming increasingly diff icult
as contextual factors become broader and more
sophisticated (Dix et al, 1998). The researcher has to
be domain-literate in order to understand the
significance of events and activities in their domain
context. It is argued that the nature of information
collection processes under a naturalistic setting must be
opportunistic rather than systematic.

Case study is a method for doing research which
involves an empirical investigation of a particular
contemporary phenomenon within its real-li fe context
using multiple sources of evidence. A case study can
describe a phenomenon, can build theory, or can test
existing theoretical concepts and relationships
(Cavaye, 1996). To complement the theoretical
assessment of Task Analysis (TA) methods and their
evaluation against the framework (defined factors with
their specific criteria), an empirical evaluation of TA
methods for analysing user information requirements
and tasks should be implemented. Although
experimental laboratory studies could be used to study
specific aspects of the task, it was felt that within the
time span and scope of the research empirical study
would allow consideration of a wider scope of TA
issues and problems. The research is interested in
human activity in a scientific approach (Positivist –
Case study). At a more theoretical level, practical uses
of TA help to further ergonomics knowledge and
theory in this area. Through practical use, problems or
deficiencies in methods will be highlighted; methods
can then be improved to increase their capabilit y.
When a researcher selects case study as an appropriate

 Represent & communicate
 the task information

The Scope of
Analysis Factor

Representation
Form and

Suppor t Factor

Requirements
Mapping
Factor

Core Cr iteria
Factor

Representation

Task description
& analysis

Task information
collection

 TA Activities Main Factors of The
Evaluation Framework

 TA Output

method for a research study, the strengths of case study
are considered of importance and the weaknesses are
accepted as method-related limitations of the research
(Cavaye, 1996).

7.1 Aim and purpose of the case study
Task Analysis covers a wide variety of roles, goals,
methods and techniques, and because of this, it is
useful to specify at the outset what is meant by a task.
The task focused on here is that which must be
performed from the point of view of Ph.D. research
students, who usually carry it out, so that the potential
user (Ph.D. student) of the system may be taken into
account during the design process. The main goal of
the analysis is to describe sets of tasks, in terms of
tasks which must be executed, and that may be useful
for the design of a WWW site/system. The aim
therefore is to describe the execution of a set of tasks,
as they are perceived by Ph.D. research students who
perform them: in other words, how they would explain
the performing of these tasks to a beginner. However,
the basic idea behind the case study was based on
using the selected TA methods in order to find out how
Ph.D. research students conduct and plan their doctoral
research programme from the start to the final step of
writing up the thesis. The results of using TA methods
were collected and analysed, compared and evaluated
as to whether their outputs were capable enough to
support the Requirement Analysis phase. It was
planned in the future to use the results of this research
(i.e., the analysis output) to design and develop a
WWW Web sit in order to teach and introduce the
basic steps, concepts, terms and aspects of all details of
how Ph.D. research students can conduct their doctoral
research, as well as to provide basic information that
Ph.D. research students may find useful, to avoid the
problems they are currently facing. It could save a
great deal of time and frustration if research students
get to know these basic procedures.

The research questions and objectives show that
four-case designs (i.e., four examples of Task Analysis
methods) are more desirable than a single-case study,
because they allow us to examine the boundaries of TA
methods in more detail , they also allow for cross-case
analysis and for the extension of the boundaries of
current Task Analysis approaches. More than one case
may yield more general research results and enable the
researcher to relate differences in context to constants
in process and outcome. The Task Analysis methods
that were selected, reviewed, explored, used, applied
and evaluated during the case study were (four):

� The First Case: Analysis and Training in
Information Technology Tasks: Hierarchical Task
Analysis (HTA) method, (Shepherd, 1989).

� The Second Case: Task-Action Grammar (TAG)
method: The Model and it’ s Developments, (Payne,
1989).

� The Third Case: Supporting System Design by
Analysing Current Task Knowledge; Task
Knowledge Structures (TKS) method, (Johnson,
1992).

� The Fourth Case: Task Analysis for Knowledge
Descriptions (TAKD) method: The Method and an
Example, (Diaper, 1989).
For each TA method, only one reference was used

to obtain the details of the product (the references are
those cited above). This is intended to avoid the
problem of alternative versions of a TA being obtained
from different references.

The purpose of the case study was to provide a
complementary input into the study, and to offer an
appropriate context for the study of the methods to
complement the theoretical considerations of analysis.
The aim of the case study, however, was to
demonstrate how Task Analysis methods can be
applied within an IMM environment and to evaluate
and explore the limitations and boundaries of the
process of the selected Task Analysis methods. The
aim is also to find out the critical failure factors that
limited the scope of analysis, representation form,
usabilit y, mapping and contribution of specifications to
other development activities.

7.2 The problem situation
Doing doctoral research involves steps, skill s,
knowledge, planning, scheduling, etc, required by
Ph.D. research students. Why should students know
how to do research? One reason is that they are
studying for a degree, which requires a thesis. By
knowing how to begin and how to conduct the research
successfully, they would save time, money and
maintain more control over the research by discovering
what kinds of things they need to know and what kind
of help they need. Another reason for knowing how to
do research is that they will be better able to weigh the
value of other people’s research. The purposes of
describing the procedures for the progression of
doctoral research towards their final degree are: to
encourage the most quali fied and able students to
continue in the doctoral programme and to assure their
steady progress toward completion of the Ph.D. degree
without imposing onerous burdens; to protect those
students who are unlikely to succeed in the programme
from pointless investment of time and effort and to
help maintain and promote the high quality of the
Ph.D. doctoral research programme.
A problem situation was selected in order to provide
contexts and applications of TA method where
adequate access (i.e., easy access to the expected users-
Ph.D. research students) could be granted and where

the availabilit y of the application domain to analyse
existed. Task Analysis methods considered typical
decisions that had to be made and examined what
information needed to be considered by the Ph.D.
doctoral research students to conduct their research
stages and also what kind of problems needed to be
avoided.

7.3 Sources of information
A clear description of data sources and the way they
contribute to the findings of the research is an
important aspect of the reliabilit y and vitality of the
findings. The case study’s unique strength is its abilit y
to deal with a full variety of evidence-documents,
artifacts, interviews, and observations. The goal of
using different data collection is to obtain a rich set of
data surrounding TA processes, usabilit y and
capabilit y, boundaries, limitations and the possible
causes of failure, as well as capturing the contextual
complexity. The data to be collected will depend on the
research questions and the unit of analysis.

The more precise the goals of the investigation, the
more specialised the data collection can be. Therefore
techniques applied will depend not only on the
methods of TA that are to be used, but also on the goal,
the purpose of the study and the time and resources
available. This is based on the view that different data
collection techniques can offer a different perspective
on the task. For example, document studies and
interviews with real users determine what should be
done and what they think they have to do. For an
analysis of all but a simple task it is likely that several
methods will be employed to collect the task data,
either independently or in conjunction with one
another. Ainsworth (1995) report that in order to
ensure that TA is reliable, it is useful to use different
sources of information while developing and
rechecking the TA. The resulting TA can only be as
good as the original data (Dix et al, 1998).

Whilst the TA methods provide a framework for
organising the task descriptions and information, the
quality of the analysis depends on the information
input into the analysis. Therefore, it is important to
select a data collection method that provides
information in a format that can be used by the
analysts. Though observation and interviews are most
frequently used in case study method, methods of
collecting information were selected which were
appropriate for the task, that is, in respect to the
research method (i.e., Positivist - Case study),
questions and hypothesis. However, in order to find out
precisely what the task entailed and where the problem
areas lay, the requirements information used in the case
study was obtained and collected from a variety of
diverse sources, and was governed entirely by the
availabilit y of documents and access to Ph.D. research
students. Relevant task domain information had to be

collected focusing on different phenomena, and using
different methods of data collection. Based on an
analysis of the character of the knowledge sources in
the reviewed TA frameworks, different methods were
identified to collect all i nformation needed to construct
the required task models. The techniques addressed the
students’ research procedures and identified the main
tasks, stages, goals and reasons for particular task
structuring. The data collection techniques which were
used are as follows:

� structured and un-structured interviews (subject-
based);

� questionnaires (subject-based);
� documentation;
� walk through,
� focus group discussion.

8 Research Reflections
A major problem with the introduction of information
systems is the fact that a very large proportion of them
fail to meet their initial aspirations (Smith, 2000). This
is due to the lack of obtaining better requirements
during the Requirements Analysis (RA) phase as a
result of inadequate support and contribution by Task
Analysis (TA) methods and techniques. The followings
are what the author has learned from the research
process:
♦ advances in information technology and the

expansion of the numbers and types of systems
and applications that use the new technology in
innovative ways are quickly leading to a world in
which pervasive computing is the norm. The result
impacts upon people in both individual and
organisational contexts and in society at large.
This is particularly so with recent developments of
the internet and web-based applications and with
the rapidly-expanding range of technological
devices that are being embedded in many products
and systems. It is essential that the research, tools,
methods and techniques developed in the field of
HCI are considered and integrated into the
development of software and systems using these
new technological advances, if the anticipated
benefits are to be fully realised.

♦ there are many tools, methods and techniques that
can be used to gather task-related information and
place it into a meaningful context. Each of these
has its particular strengths and weaknesses.
Therefore, the success or otherwise of any TA
exercise will t o a large extent depend upon how
the mix of TA techniques and data sources is
selected and applied. Ideally, for any TA project
there should be an overall plan and subsequent
close monitoring to ensure that objectives are met.

♦ mechanisms for collecting the raw data could
similarly be structured. The analysis of existing

tasks tends to rely largely upon observation,
interviews and documentation. While techniques
for analysing these data independently are
available, these have yet to be integrated and
combined with the task analytic method.
Conceptually, at least, this is not a diff icult
undertaking, but one that has yet to be proven in
the field.

♦ at present, littl e is known of the reliabilit y and
validity of current TA methods. There is certainly
plenty of scope for more research of this kind to
be conducted, and the development of methods
would clearly be beneficial. In addition,
standardised training and documentation of
methods should be developed, as acquisition
appears to rely largely upon self-development at
present.

♦ the way in which all user views, tasks, needs,
requirements, preferences, characteristics, and
environment (i.e., physical, aspirational and
functional) are re-ascertained will be a major
factor in supporting the Requirements Analysis
(RA) phase which leads to obtaining better
requirements, as well as in determining the quality
(effectiveness, eff iciency and satisfaction) within
the end product.

♦ since Task Analysis is a time-consuming activity,
a guidance to the application of the method, in
particular during the generification, can limit the
employment of resources necessary to carry out
the complete TA process. Essentially, it is
apparent from the case study that there is a need
for the development of guidelines to address the
various stages of undertaking a TA, including
planning the methodology, data collection, data
analysis, presentation of TA information and
mapping the output information into each activity
of the development li fe cycle. However, such
guidelines should provide systematic advice,
rather than inflexible, prescriptive rules.

9 Conclusion
Attempts to tie the various theoretical and
methodological strands together will only come about
by framing the problem in terms of human activity in
context. This ecological perspective seems to be
fundamental to task analysis (Annett, 2000). In this
research the application of TA methods has been used
to assess the adequacy of a proposed design for a
World Wide Web (WWW) site within an IMM
environment which will help research students conduct
and deliver their doctoral programme as carried out at
the University of Salford, UK. The results of the
application of TA methods and their input into the
design activities were analysed and compared both to
each other and to a defined framework (a set of four

main factors with desirable criteria that should exist in
the output of the TA process) in order to evaluate their
capabiliti es. These criteria were developed as a result
of an extensive literature review, where methods which
could potentially be used for this purpose were
identified. The findings however, have shown that TA
methods have a number of weaknesses in the support
and contribution they made.

The philosophy of IMM is quite unlike that of the
more traditional mediated systems which are designed
for a specific task or range of tasks. IMM systems have
special and different characteristics, which make their
design and development process more diff icult and
thus should be approached differently from the early
phase. Some of these characteristics are: the
complexity of the system’s navigational structure,
media-selection, integration and synchronisation, the
type and variety of contents, the style and the level of
the interactivity and interactions and the UI design, etc.
The research argues that the design process can be
more eff icient or optimised by the continuous use and
application of the relevant TA methods throughout the
development cycle in order to aid IMM system design
activities.

Surprisingly littl e Task Analysis (TA) has appeared
for one of the most discussed and fastest-growing
interactive computer application the ‘WWW’. The
reviewed TA methods did not however include any
concepts explicitly intended for interactive systems
involving multiple media types. This was an
intentionally important aspect of our chosen
application (i.e., WWW). This failure of the reviewed
TA methods can be seen as a further example of how
the technological developments of IMM pose novel
design issues for HCI, in this case raising the need to
broaden the scope of TA. The scope of the selected TA
methods needs to be extended to cover and focus on
the complete system’s design and development
activities, including for example the application
domain of the intended system (i.e., the major
constraints on design decisions) and to bridge the gap
that exists between the analysis process and the
subsequent development activities. Proper operation of
any TA method should form part of a general planned
approach to a problem.

References

ACM SIGCH (1992), Human-Computer Interaction, Web
Site-Available at
http://www.acm.org/sigchi/cdg/cdg2.html/

Ainsworth, L. & Pendlebury, G. (1995), Task-Based
Contributions to the Design and Assessment of the

Man-Machine Interfaces for a Pressurized Water
Reactor, Ergonomics 38(3), pp. 462-474.

Annett, J. & Stanton, N.A. (2000), Task Analysis, Taylor &
Francis, London & New York.

Bellotti, V. (1990), A Framework for Assessing the
Applicabilit y of HCI Techniques. In Proceedings of
INTERACT’90, Cambridge, North-Holland,
Amsterdam, 213-218.

Card, S.K., Moran, T.P. & Newell , A. (1983), The
Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates.

Cavaye, A.L.M. (1996), Case Study Research: A Multi -
Faced Research Approach for IS. Information Systems
Journal 6, Blackwell Science Ltd., 227-242.

Davis, A.M. (1993), Software Requirements: Objects,
Functions, and States. Prentice-Hall , Englewood
Cli ffs, NJ.

Diaper, D. (1989), Task Analysis for Human-Computer
Interaction. Elli s Horwood Limited.

Diaper, D. (1997), Integrating HCI and Software
Engineering Requirements Analysis: A Demonstration
of Task Analysis Supporting Entity Modelli ng HCI
and Requirements Engineering. ACM SIGCHI Bulletin
29(1), 41-50.

Dix, A., Finlay, J., Abowd, G. & Beale, R. (1998), Human-
Computer Interaction. Second Edition, Prentice Hall
Europe, ISBN 0-13-239864-8.

Hamilton, F., Johnson, H. & Johnson, P. (1999), PRIDE:
Task-Related Principles For User Interface Design, in
M.A. Sasse & C. Johnson (eds.), Human-Computer
Interaction – INTERACT ’99: Proceedings of the
Seventh IFIP Conference on Human-Computer
Interaction, IOS Press.

Johnson, P. (1992), Task Knowledge Structures (TKS)
Theory, and Knowledge Analysis of Tasks (KAT)
Method. In Human-Computer Interaction: Psychology,
Task Analysis and Software Engineering. P. Johnson
(ed.), McGraw-Hill , 151-192.

Jones, S. & Britton, C. (1996), Early Elicitation and
Definition of Requirements for an Interactive
Multimedia Information System. In the Proceedings of
ICSE’96 Conference, Session 2A, 12-19.

Johnson, H. & Johnson, P. (1990), Designers-identified
Requirements for Tools to Support Task Analysis. In
Human-Computer Interaction (INTERACT’90), D.
Diaper., D. Gilmore., G. Cockton and B. Shackel
(eds.), IFIP, Elsevier Science Publishers B.V. (North-
Holland) , 259-264.

Lim, K.Y. (1996), Structured Task Analysis: An Instantiation
of the MUSE Method for Usabilit y Engineering.
Interacting with Computers 8(1), 31-50.

Lowe, D. & Hall , W. (1999), Hypermedia and the Web: An
Engineering Approach, Wiley.

Lim, K.Y. & Long, J. (1994), The MUSE Method for
Usabilit y Engineering, Cambridge University Press,
Cambridge.

Martijn, V.W., Van der Veer, G.C. & Anton, E. (1999),
Breaking Down Usabilit y, Faculty of Computer
Science, Vrije Universiteit Amsterdam.

Payne, S. & Green, T.R.G. (1989), Task-Action Grammar
(TAG) method: The Model and it’s Developments, in
Task Analysis for Human-Computer Interaction,
Diaper, D. (ed.), Elli s Horwood Limited, Chichester,
pp.75-107.

Preece, J. A. (1993), Guide to Usabilit y: Human Factors in
Computing Reading, MA, Addison-Wesley.

Shepherd, A. (1989), Analysing and Training in Information
Technology Tasks, in Task Analysis for Human-
Computer Interaction, D. Diaper (ed.), Elli s Horwood
Limited, Chichester, pp. 15-55.

Smith, A. (2000), Human-Computer Factors: A Study of
Users and Information Systems, Information Systems
Series, The McGraw-Hill Companies.

Van der Veer, G.C., Lenting, B.F. & Bergevoet, B.A.J.
(1996), GTA: Groupware Task Analysis - Modelli ng
Complexity, Acta Psychologica 91, 297-322.

Wilson, S., Johnson, P., Kelly, C., Cunningham, J.,
Markopoulos, P. & Beyond, P. (1993), Hacking: A
Model-Based Approach to User Interface Design. In
People and Computers VIII , J.L. Alty, D. Diaper and
S. Guest (eds.), Proceedings of HCI’ 93, Cambridge
University Press, 215-231.

Wood, L.E. (1998), User Interface Design: Bridging the gap
from User Requirements to Design. CRC Press.

1

I n c o r p o r a t i n g U s a b i l i t y i n t o a n O b j e c t O r i e n t e d

D e v e l o p m e n t P r o c e s s

Xavier Ferré
Facultad de Informática

Universidad Politécnica de Madrid
Campus de Montegancedo
28660 - Boadilla del Monte

Spain
xavier@fi.upm.es

Abstract

Software development organizations pay and increasing attention to the usability of their software products. HCI
(Human-Computer Interaction) techniques are employed profusely in software development, but they are not
integrated with the Software Engineering development processes in most of the cases. Use cases stand as a bridge
between Software Engineering and HCI, because of their popularity in object-oriented development and because
its user-centered nature. Giving use cases an additional user-centered focus we can make our way through object-
oriented software development combined with usability techniques. From the numerous approaches to software
development we have chosen an iterative, incremental and use-case driven process. We briefly analyze two
methods with this approach, the Unified Process and Larman's method, considering their suitability for integration
with usability techniques. A generally applicable object-oriented development process with integrated usability
techniques is presented, following the approach shared by both methods. Specifically, from Larman's method we
stick to its idea of giving priority to the interaction design over the design of the internal part of the system. The
proposed process gives advice on the usability techniques to be used in every phase of such joint development
process.

1 Introduction

Usability is not commonly addressed in software development. It is properly addressed only in projects where
there is an explicit interest on usability, and the quality of the system-user interaction is perceived as critical by
the software development organization. In this kind of projects usability experts drive the development, using
mostly usability-related techniques in the phases previous to coding.

Usability techniques are applied following development processes alternative to the Software Engineering ones,
due to the fact that it is not solved yet how to integrate usability techniques into Software Engineering
development processes [1][2]. One of the virtues of the HCI field lies on its multidisciplinary essence. This
characteristic is at the same time the main obstacle for its integration with Software Engineering: while the HCI
foundations come from the disciplines of psychology, sociology, industrial design, graphic design, and so forth;
software engineers have a very different approach, a typical engineering approach. Both fields speak a different
language and they deal with software development using a different perspective.

Software Engineering has traditionally constructed software systems with development focused on internals, on
processing logic and data organization [3]. Consequently, software quality has been identified with issues like
efficiency, reliability, reusability or modularity. These are aspects of the system that the user is scarcely aware of.
In contrast, the interaction with the user has been sometimes left as a secondary issue [2]. Despite the stated aim
of building a software system that satisfies the user, after establishing a closed set of specifications the user is
forgotten until the first release of the software product. Usability is sometimes wrongly identified to be a graphical
user interface issue, which can be addressed after the main part of the functionality has already been developed
[4]. When developers perceive usability in this way, they tend to think that after having constructed the
"important" part of the system (the internal part), usability specialists can add a nice user interface in order to
make the product usable. This attitude leads to systems where usability problems are very costly to fix when
identified.

2

Usability practitioners, on the other hand, have focused on the user and the way he or she interacts with the
system. They employ a set of techniques to better canalize the creative activity of interaction design, and to
evaluate its products with real users. Focusing on the creative nature of interaction design, they haven't paid
attention to issues central to Software Engineering such as how to make their way of developing systems
repeatable and structured, or how to estimate and plan their procedures.

A change can be seen in the attention paid to usability. An increasing number of software development companies
are beginning to consider usability as strategic for their business, and they are pursuing the aim of integrating
usability practices into their Software Engineering processes. One of the leading journals for software
practitioners, IEEE Software, has dedicated its January/February 2001 issue to the role of Usability Engineering
in software development. Some proposals for integration ([5][6]) present ad-hoc solutions which have been
created for particular software development organizations, but they lack a generic approach to be applied to
organizations with different characteristics.

In this paper we propose an object-oriented development process where usability techniques are embedded where
appropriate. The approach we propose is generally applicable in the development of interactive software systems.

Considering the large number of existing usability techniques, some of them can be more easily applied from a
Software Engineering point of view. These ones have been chosen to be embedded in our proposal for a joint
development process. Likewise, among the numerous Software Engineering methods, use-case driven approaches
are the closest to a usability perspective. They are considered in the next section. Usability-related activities are
accommodated into a use-case driven method and the resulting process is described in section 3. The particular
usability techniques chosen to be applied in each phase or activity are detailed in section 4. Finally, conclusions
and future directions are presented in section 5.

2 Use Cases and Usability

Traditionally, software development has taken a variety of forms, with minor or big differences, but with a
common focus: trying to build a system beginning from the inner part of it, the internal structure. A different
approach stands out in object-oriented software development: use-case driven development.

Use cases are a user-centered technique in its conception, so they can fit well with the HCI approach. Therefore,
use cases seem to be the best starting point for the integration of usability techniques and Software Engineering.

Nevertheless, using the technique of use cases is not a guarantee of a real user-centric development. For that
purpose it is crucial that use cases are not automatically converted into technical specifications, in the sense of a
production line. When use cases are taken away from the user sphere they loose their main benefit from a
usability perspective. That is not to say that technical specifications will not be based in the use cases defined, but
they are not the result of some direct use case transformation. Technical specifications reflect the development
team decisions, which are taken according to the user needs stated in the use cases. It is important that use cases
are not considered as initial design artifacts, because then the modeler can easily cross the line and model them
according to a particular internal functionality design.

To get the maximum from use cases as a technique to improve the usability level of the software product, we must
complement them with the concept of task used in HCI, specifically in the set of techniques known as Task
Analysis ([7]). User intentions and needs must be in the root of the use-case modeling task, in order to have them
fixed in the user world all the time, in the context where the system will have to be deployed.

Today's possibly most popular object-oriented method is the Unified Process [8]. This process is labeled by its
creators as use-case driven. However, analyzing the role of use cases in the process, it can be observed that the
use-case model plays a secondary role compared to system architecture. The use-case model is very important in
cycle planning, but once the cycles start use cases are regarded as a preliminary version of elements of the internal
functionality design. When design elements are labeled as use-case realizations we are shifting use cases to the
design world, and therefore away from the user realm. Overall, we consider that the Unified Process, as described
by its authors in [8], is mostly devoted to design, and to a design level very close to implementation. This
approach can significantly prevent the development team from adopting a proper user-centered perspective. Yet,
we adopt from the Unified Process the iterative and incremental nature of its process, because it allows for early
usability testing. Having early in the development cycle a running part of the system can give us the opportunity
of testing it with users.

3

In the object-oriented method proposed by Larman [9] we can also find an iterative, incremental and use-case
driven process. This method establishes a distinction between analysis and design that we find useful for our
purpose.The analysis phase, while including traditional analysis activities like the creation of a Conceptual Model,
it also addresses the design of the interaction of the system with the user, by viewing the system as a black box
that receives requests from users and other systems. The external system communication is specified by means of
system sequence diagrams and system operation contracts. The details of the internals are left for the design
phase. This approach is well suited for an integrated process, as it allows for an interaction design previous to the
low-level design that will give form to the inner part of the system.

Unfortunately, despite having a suitable focus, Larman´s method has some important flaws from a usability
perspective. On one hand, the Conceptual Model (supposedly an analysis construct) is exploited as a rudimentary
database, causing the developer to focus more on database modeling than on gathering user-domain knowledge.
On the other hand, an event-driven interaction mode is implicit in its approach. This lack of flexibility regarding
the interaction mode can force the production of a software system of lesser quality.

We will take as starting point for our endeavor an iterative, incremental and use-case driven object-oriented
development process. We will supplement this approach with the usability techniques appropriate for each phase
of the development, and we will adopt an interpretation of use cases closer to HCI. We consider that such a
process can yield useful from both a Software Engineering and a HCI point of view.

3 Joint Development Process

We base our process in Larman’s method, but we have adapted his terminology to make explicit the user-centered
philosophy. We call External Design to the analysis phase in Larman’s method, and Internal Design to his design
phase. External Design deals with the design of the communication between the outside world and the system,
while Internal Design is concerned with the design of the internal structures to give service to that previously
designed interaction.

The structure of the process is shown in figure 1, where activities at the same horizontal level can be performed in
parallel, and activities which are placed higher inside a phase are performed before than activities placed lower.
The process is formed by a preliminary Analysis phase and five phases inside the iterative cycles.

The preliminary phase is as follows:

• Analysis: Before taking any decision about the future system, it is defined what the system is supposed to
be in general terms (System Concept Definition), and what the intended users will be and their
characteristics (User Analysis). Later on, a more detailed definition of what the system is going to offer to
the user is specified (Task Analysis). A traditional set of requirements is specified with the addition of
particular usability requirements (Requirements Specification). To ensure that the set of tasks created suit
the user needs, a Validity and Usability Evaluation is performed on the requirements and tasks.

The phases performed in every development cycle, for the use cases selected for it, are the following ones:

• Analysis Refinement: A deeper understanding of the problem is obtained from the design effort in
the previous cycle. The documents and models created in the preliminary analysis are consequently
revised in this activity.

• External Design: The tasks identified in the Task Analysis are designed more precisely (Task
Design) in parallel with the definition of interaction objects and their behavior (Interaction
Conceptual Design). The resulting interaction scheme is evaluated (Usability Evaluation).

• Internal Design: The classes to support the interaction designed in the previous phase are specified,
along with their behavior (Object Oriented Design). The graphical user interface that gives shape to
the interaction design is built with the contribution of experts in graphic design (Interaction Visual
Design).

• Implementation: The structures designed in the previous phase are taken to a specific programming
language, and converted into a working system.

• Testing: The system built is subject to tests to ensure that complies with the requirements
(Verification and Validation). In particular, it is tested with users for compliance with usability
requirements (Usability Evaluation).

4

Figure 1 Joint Development Process

Analysis

Task Analysis Requirements Specification

Validity and Usability Evaluation

System Scope Definition User Analysis

Cycle i

Implementation

Internal Design

Object Oriented
Design

Interaction Visual
Design

External Design

Task Design

Usability Evaluation

Interaction
Conceptual Design

Testing

Verification and Validation Usability Testing

Analysis Refinement

Analysis

Task Analysis Requirements Specification

Validity and Usability Evaluation

System Scope Definition User Analysis

Analysis

Task Analysis Requirements Specification

Validity and Usability Evaluation

System Scope Definition User Analysis

Cycle i

Implementation

Internal Design

Object Oriented
Design

Interaction Visual
Design

External Design

Task Design

Usability Evaluation

Interaction
Conceptual Design

Testing

Verification and Validation Usability Testing

Analysis RefinementCycle i

Implementation

Internal Design

Object Oriented
Design

Interaction Visual
Design

Internal Design

Object Oriented
Design

Interaction Visual
Design

External Design

Task Design

Usability Evaluation

Interaction
Conceptual Design

External Design

Task Design

Usability Evaluation

Interaction
Conceptual Design

Testing

Verification and Validation Usability Testing

Testing

Verification and Validation Usability Testing

Analysis Refinement

5

After the system is deployed, maintenance begins and it can be considered as additional cycles in the
development. Maintenance cycles are driven by customer or user requests and some of the activities showed in
figure 1 may be lighter than in previous development cycles.

Table 1 classifies the activities of the joint development process in the ones belonging to object oriented
development and the ones from HCI. Please note that some activities combine both sources, such as Requirements
Specification.

4 Usability Techniques in the Joint Development Process

HCI offers numerous techniques to be used for different project characteristics and for different usability
purposes. We have chosen the ones more valuable for a broad variety of systems, considering specially their
applicability from a software engineer point of view. Most of them can be applied with moderate usability
training.

In the following sections we present the usability techniques we recommend. They are structured according to the
phase of the joint development process where they can be applied. Table 2 summarizes this information.
4.1 Analysis

The activity of System Scope Definition will be highly dependent on the kind of system to be built. For traditional
systems it can be just a short description of what the system is intended to do, but for innovative systems the set of
techniques known as Holistic Design [10] can yield an adequate definition of what the system will do and how it
will be like. This kind of definition can be called “Product Vision” [5]. For systems built from scratch, but not
necessarily so innovative, Needs Analysis [2] would suffice.

User Analysis can be performed for in-site developments or tailored systems by means of site visits. A variant of
sites visits is the Contextual Design approach [11].

The activities mentioned above feed the Task Analysis activity. The identified tasks are modeled following the
technique of use cases, but with the focus of tasks [7] as mentioned earlier.

Requirements Specification is a traditional Software Engineering activity, but it will be performed in parallel with
Task Analysis. Both activities are complementary, because identifying tasks can help to discover new
requirements, and requirements must be related to tasks. Furthermore, we will include a set of operationally-
defined Usability Specifications [2], so they can be checked by means of Usability Testing.

Table 1 Activities of the joint development process classified according to their
belonging to either object oriented development or HCI

Joint Development
Process

Object Oriented
Development HCI

User Analysis

Interaction Conceptual Design

Usability Evaluation
Object Oriented Design

Interaction Visual Design
Implementation Implementation

Testing Verification and Validation Usability Testing

Internal Design

External Design Task Design

Analysis

System Scope Definition

Task Analysis

Requirements Specification
Validity and Usability Evaluation

6

Validity and Usability Evaluation is a combination of Validity Evaluation performed on the requirements and
usability evaluation. The latter can be performed using paper prototypes (sometimes called paper mock-ups [4]).
4.2 Analysis Refinement

At the beginning of a development cycle the analysis documents are revised. Therefore, all the activities described
above for Analysis can be applied again in this phase.
4.3 External Design

Design has been divided into two phases: External and Internal Design. We want to deal first with the part of the
system the user is aware of (External Design), that is the way of working with the system plus the elements of the
graphical user interface. The former is addressed in Task Design and the latter in the Interaction Conceptual
Design.

In the activity of Task Design every task (or use case) identified in Task Analysis is specified in detail, in order to
design precisely the interaction between the user and the system. Techniques described above for Task Analysis
can apply. The structure for the detailed tasks produced can be the one proposed by Larman [9] for use cases in
expanded format. The techniques mentioned for Task Analysis can be applied here as well, specifically where
they address the design of the tasks the new system will offer.

We model the user interface elements in the Interaction Conceptual Design. It is a genuine creative activity, for
which we cannot find a process whose application guarantees usable designs. Nevertheless, usability experts have
gathered valuable Design Guidelines (like the ones in [3], [4] and [12]), which are the basic guidance for
newcomers to the field. We consider that the existing interaction notations are too formal to be applied by average
software developers.

We can evaluate the result of both activities through Usability Evaluation. It can be performed either by Heuristic
Evaluation[4], by Collaborative Usability Inspection[3], or by informal usability testing with users, but always
keeping a focus on Formative Evaluation[2]. It is not that much checking measurable levels against previously
defined desired values, as it is to get from the evaluation ideas of how to improve the usability of the interaction
design.
4.4 Internal Design

This phase is mostly devoted to traditional Software Engineering activities, being Visual Interaction Design the
only HCI activity. Design tips for this activity can be found in [12] and [13].
4.5 Construction

No specific usability techniques can be applied in this phase.
4.6 Testing

Along with the Software Engineering activities of Verification and Validation, Usability Testing is performed at a
laboratory with real users [14]. With the results the developing team will be able to assess the fulfillment of the
usability specifications defined in the Requirements Specification. When Acceptance Tests are performed, they
can include usability testing of specific usability criteria [12].

4.6.1 Maintenance Cycles

After system deployment, maintenance can be performed with a usability perspective as well.

Usability evaluation can be enriched with User-Performance Data Logging [4][12], User Satisfaction
Questionnaires [12], and other kinds of user feedback such as beta testing or trouble reporting[12].

When users are organized in Focus Groups [4][12], they can provide feedback information more valuable than
individual interviews, as Focus Groups are more representative of the user population.

Joint Development
Process Usability Techniques Bibliographical Source

7

Holistic Design [10]

Product Vision [5]

Needs Analysis [2]

Contextual Design [11]

Task Analysis [7]

Paper Prototypes [4]

Analysis

Usability Specifications [2]

Design Guidelines [3] [4] [12]

Heuristic Evaluation [4]

Collaborative Usability Inspection [3]
External Design

Formative Evaluation [2]

Internal Design Design tips for Visual Interaction Design [12] [13]

Usability Testing [14]

User-Performance Data Logging [4][12]

User Satisfaction Questionnaires [12]

Trouble Reporting [12]

Testing

Focus Groups [4][12]

Table 2 Usability Techniques to be applied in each Phase of the Joint Development Process

5 Conclusions and Future Directions

The need for integration of usability techniques into an object oriented development process has been discussed.
HCI does not offer a satisfactory process in Software Engineering terms. Additionally, current Software
Engineering processes don’t address properly usability issues, therefore producing unusable software products.
Some proposals are beginning to emerge [5][6], but they are not generally applicable studies, instead they address
specific cases in particular development organizations. A generic process where usability activities are integrated
has been proposed, including the specific usability techniques to be applied in each phase according to the
characteristics of the project.

Our experience has shown us that developers with a Software Engineering background regard usability activities
as a nuisance, specially when company-wide rules require passing some kind of usability evaluation. In a
development environment where development time is critical, and when reducing the time-to-market is the main
objective, usability activities are perceived as a considerable delay in the project schedule. We have proposed in
the joint development process a parallelization of HCI activities with Software Engineering ones where possible,
in order to reduce at a minimum the increase in development time.

Software engineers require a high degree of flexibility when adapting to the joint process, as the HCI philosophy
can be hard to fit together with a traditional Software Engineering background. Organizational and cultural
change needs to be managed carefully.

8

Some activities in the joint development process combine Software Engineering activities with HCI ones. This
combined techniques will have to be defined at a more detailed level, especially the ones belonging to the
Analysis phase.

Finally, the application of the process to a variety of projects is needed to define a detailed guide of how to tailor
the joint development process to specific projects and software development organizations. The relationship with
management activities can be detailed as well after application to industry projects.

References

[1] X. Ferré, N. Juristo, H. Windl, L. Constantine. Usability Basics for Software Developers. IEEE Software,
vol.18, no.1, January/February 2001. pp. 22-29.

[2] D. Hix, H.R. Hartson. Developing User Interfaces: Ensuring Usability Through Product and Process. John
Wiley and Sons, 1993.

[3] L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and Methods of
Usage-Centered Design. Addison-Wesley, 1999.

[4] J. Nielsen. Usability Engineering. AP Professional, 1993.

[5] J. Anderson, F.Fleek, K. Garrity, F. Drake. Integrating Usability Techniques into Software Development.
IEEE Software, vol.18, no.1. January/February 2001. pp. 46-53.

[6] K. Radle, S. Young. Partnering Usability with Development: How Three Organizations Succeeded. IEEE
Software, vol.18, no.1, January/February 2001. pp. 38-45.

[8] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process. Addison Wesley, 1999.

[7] J.T. Hackos, J.C. Redish.User and Task Analysis for Interface Design. John Wiley & Sons, 1998.

[9] C. Larman. Applying UML and Patterns. Prentice Hall, New Jersey, 1998.

[10] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction. Addison
Wesley, 1994.

[11] H. Beyer, K. Holtzblatt. Contextual Design: A Customer-Centered Approach to Systems Design. Morgan
Kaufmann Publishers, 1997.

[12] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction.
Addison-Wesley, Reading, MA, 1998.

[13] K. Mullet, D. Sano. Designing Visual Interfaces: Communication Oriented Techniques. Prentice Hall, 1994.

[14] J. S. Dumas, J. C. Redish. A Practical Guide to Usability Testing. Intellect, 1999.

������������	�

�����
������������������������������������	
�������������� !�����������
���
r-��"���������������#�$�����������"���	�

�
%���&
"���������'(�������)�����������������

������������������	
(CAUE) * �+������&,.-0/2143�526879526:6:;452<�=8>?52@�52<BA?C�<�D4<�-0EF4G8HJIJKML2N�OQPSRUT�VWRUO2O2N�VWRUT+XMN�G8Y�Z�[\ O2Z�L2N�IJ]^O2RUI4G8H4_`G8]^Z�Y�IJO2N?F4a2VWO2RUa2O2[b RUVWcUO2N�deVWIJfMG8H4g`G8deIJG8a2hiQjWk O2N�IJl�PSVWRUdeIJO2VWRUl�F4IJN�m2n�og`G8deIJG8a2h�o�p�q�r�o

Germanys4s4t�u+v�w p�o�x t�u p�l w�t+w�wy]^T�O jWj RUO2N�z Z�HJG8N k N�VWT�{B|�VWRUHJG8N�]^L2IJVWh�m Y�RUVWl�N�G8deIJG8a2h�m }�O

ABSTRACT~����J�U�W�W�W�W�`�W�����W�W�2�M�����e�W�S���W�W�^�W�����e�����W�2�M�W�2�`�����J�U�W�W�W�W�B���4�W�2��W�2�W�������W���M�J�e�W���:�e���W���8�8�2�����e���������S�W�2�e���W���e���S�W�Q�W�2�������e�������W�W��W���2�J�e���W�?���2�������U�8���������W�����2�S�J�e���2�������������W�S�����e���W�`�W�2�e��:�W���W�����?�2�W�+�W�J�e���^���������e�2�W���Q�J�e�^�J�U�W�^�W�9���2���e���^�����J�U�W�W�W�W����2���W�2���0�e�^�e�2���W���W�2���W�e�W�B�����J�U�W�W�W�W���W�J�U���e�e�W���e�W�����`�����`�e�2����e���W���`�?�W�?�U���������S�U�B���2�M�����0�e�S�J�e���U���W�W���U�B�W�2�`���e�����
a-� ���e�W�W�����8�������W���2�0�e���e�2�B���������W�����0�e���W�2�e���J�e�S�2�����J�U�W���W�B���
n-�������������J�U�W�W�W�W�?�����e�W�

ations. 0���W�S�����2���W���0�e���M�e�S�B�:�e�����W�2�e�4�����J�U�W�W�W�W�S�e�������W�W���W�+�����J�U�W�W�W�W����:�:���e�W�?���2�W���M�2�e�����W�?�U���e�����������e�2�W�����U�B�����J�U�W�W�W�W�B�����e�W�
a-�W�W���2�U¡?���������2����¢������2���S�W�2�S�����J�U�W�W�W�W�����8���e���W���`�����e���U���

m-���e�������4�U�?�W�2�0�e���e���W�2���W�2�?���:�:�W���W���2���S�����W�2�?�����J�U�W�W�W�W�����e������������8�����e�`�W�2�������J�U�W�W�W�W�`�W�2�W�������W�W���M�����e���?���W�W�M���2�W�B���`�e�W�����
p-�����e�8�W���e�������M�����������W�0�e£0���e���W���`�?���2�0�e���e�?�W�2�`���������W���W�����
o-���������������W�4�U�������������e�W�����2�8���:�W�W�U�W�2�W�4�W���e�`�W�B�:���W���e�?���?� �e�S�W����2���0�e���W�e�2�M�W�2�`�����J�U�W�W�W�W�B�����e�W���e�W�W���^�e�S�?���e�������������������J�
a-�U�W���W�S�W�2�����e�������������U�����

t
���J�e�����2���W�2���0�e�W�2���

Keywords¤ ���W�����W�W�2����¥������J�U�W�W�W�W�`���2���W�2���0�e�W�2��¥������J�U�W�W�W�W�`�W�����W�W�2��¥8�����J�U�
l-�W�W�?�����e�W���e�W�W���

¦�§�¨�©�ª «�ª ¬�­�®�¯�¨�«�¦�¨�¬�ª °?±²¨�±�³9¬�´�®�¦�§�¨�©�ª «�ª ¬�­�°?µ¶ª
N-¬�®�·�¨�¸�¬�ª ¯�®M§�­

STEMS¤ �����������J�U�W�W�W�W�S�W�B�����`�`���B� �e���¹�����2�����`�0�S���������4�e�2�`���W�
e-���W�e�W�W�Q� �e���º�����:�W���J�e�B�W��������� �e���^�e�2�+��»��������W���+�W�����e�e�4~����0�e����S�2�����W���W�0�e�e�W���:���e�W�2�0�e�`���e���W�2�?�:�e���U�W�2�e�U�S���e���W���¹�W�4�2�J�e�`�W���������¼^���e���e�2�Q�`���e���W�2�0�e���W�?�`�����������W�W�W�W���^���2�W���^�W���e���S�W����W�W���e�W�W���`�W�`�W�2�e�������������e���������W�����e�2�2���e�U�?�����W�`�W���������W���`�0�e���½²�2�e���:���e�W���e���S�?���e�����������2�e�M�2�e�^���������2���4�W�2�W�0�e�����4�W���W�2������0�e�`�2�����W�Q�:�W�2�M���B�W�Q�2�e�2���W���U�����e�����`�W�2��� �S�e�0���e�������2�W�e�W�W����������W�9�2���8�U�M�W�2�W�0�J���e���W���9¾0¿�À0���?�2�^�`���e�^�W�������e�W�e�2�S�������
l-�����`���2���W���W�2�e�����W�2���S�W�2�QÁ st Â �e�2���J�e��Ã�Ä�Ä�ÄB�W�2�����2���W����»��W�e�2������W�2�^Å8���e�������e�����0�e�����2�QÆ?� �e�����W�W���+Ç�Ä�È�Ã�É�Ä�È�Å8Å8ÊË�U�������`������e�W�W�Ë�W� ¤ �0�e�`�e�2�e¥B�������W���e�����9���e�¹�e�����������������W���e�0�e��¥Q�W������e���W���e�����B�����M�����:�W���J�e�^�W�2�e�S�������Q�2���S�:���W�W���.�0�e�����2���`�W��e���W���?¾0É�À0¥����W�2���`���2�������W�2�M�W�2�`��»��W���W�W�2�M�����:�W���J�e�`�e�������J�U�W�W�W�W�

�U���W���2���4�2�����W���W�2�?�������W���e�0�e�������W�W��� 1�U�8�2�S���e�������?���e���������e��������W���e�0�e�+���W�W�B���:�:�����B�W�²�W�2�������:�W���J�e�^���e���������0�e�9�W�¹�W�2�e��`�e�W�W�0�e¥4���W�2���Q�������9���0�e���W���W�`���W�W���W���e�+�W�+���W�2�0�^�����`�e�2���B�W��2���������:�W���J�e�?���W�W���U�8�U�������2�U�e�2�`�W�����W�2�0���W�2�W�0�J���e���W�e�W�W���2�����
ex
�W���W�W�2�����0�e���W�����e���e�����`���2�W���¡?����¢����e�W�`�����J�U�W�W�W�W�B���U���e���������W�S�W�S�?�e�������W���W�2�e�����0�����2���S������:�:���e�W��¥4���W�`�W�W�J�M�W�`�e�������W�W�`�W�9���W�2�0�M�����`�e�W�2���4�8�2�Q���������W�

p-�`���2�����8�e�����0���W�J�U�W�S�����0�e£0�W�2�W�0�e�:�e�������e��¢���� �e�����W�������W�:�W�S���2���
l-�������B�e�2�^�W�����W�`���9�W�2�Q���2�Q�2�e�2�+�e�2�+���e���������e���Q�W�2�W���2���W������2���e�����`���2���W�`�����J�U�W�W�W�W�?�W�����W�W�2�����B�W�2�?���W�2�0�S�2�e�2����Ì��������W�W�J��U�?���`�e�W�W�0�8���e� � �����W���W�2�������J�U�W�W�W�W�?���:�:���e�W�4���e�?�U�?�J�U�����U�2�e�W������W�2�B���2���W�S�U���������W�4���^�����J�U�W�W�W�W�M�W�����W�W�2�+�e�2�+�����e�W���e�W�W���9�J�e����`�W�W�W�����U�B�������B���e� � �����W��¥����:�W���+���W�W�+�W�2� � �����W�W�:�W���e�W�W���2¥��W�2�e��W�2�B���:�:���e�4�:���Q�W�2�B�����0�M�W�`�e�W���e�e�`���`�e�W���W�9�M���`�e�W�����e���W���`�Ê4���2����¢������2�W�W�����W�W�Ë�W�2�¶���������W��»��W�W�����Q�����e���W���Í�W�2�0�e���W��`���e�?�W�2�e�U���e�?�U�?�����2�?���W�W�B�W�W���8�2�?�����0�S���e�Q�������������S�`���e����W�0���S�e�2�M�W�2�`�����J�U�W�W�W�W�B���:�:���e���W�2�0�e���e���`�W�^�W�2�B���e�`�B�������e�����Î����U�W�2�0�e�?�W���4�����W�2� 2¥U� �e�����W�2�e�����2¥U�������Q�W�����W���J�e�S�2�����`���e��W�M�e�����W���� 0�2�����2���W���W���2���W���`���?�����U���e���W���`�`�W�^���e���9���W�2�0�M���e��:���9��»��e�����W�+���2�W�9�J�������J�e¥S�W�`�W�2�0�e�+�J�e�+�����������e���W���`����¡?����e���S�W�`�����S���������W��»B���e���W�����W���2�J�e���W���W�`�0�e���e�W�S�����S�W���e���W����e�2�9���W�e�W�������W������¥��:���^�W�2�e�8�e���e�����¶�����J�U�W�W�W�W�^���W�����W���Q�e���W���e�W�W��W�e�������W�e�����~����J�U�W�W�W�W�������e�W���e�W�W���Q���:�W���M�2�J�������2�?�W�M�W�2���W�e���2���2�e���������W�2����������W�����`���2�S���e���W���?�8�2�e�S�W�M�W�2�+���e���+�W�����`�e�W�W�0�9���2��� �e�
n-�`���2�W��¥B���2�0�e���0�e�����2���`�W���W�e�e�`�������e�e���W�W�����W�2�����������e�W�
a-�W�W���2���U�8�2�0�e�S�����J�U�W�W�W�W���W�����W�W�2�Q�W�?�����2���W���0�e���Q�e�?�����J�e�8�����W�2��W�����W�W�2��£ ���2�e�����4Ï����2���W�W���2�e���e�2�+�W�����W���e���0�J�e���e�B���W�W�8�U�M�:�W»�������0�e�W�e�W�2�W�9�W���W�2�e�`���W�W���e�W�W���2¥����2�0�e���e�^�¶�����0�e£0�W�2�W�0�e�:�e���9�W�2�e��`�W�������S�W�2�`�W�J�e���������W�W���2���U�U�B���2�e�2��������Ð?���e�`�e�W�W�Q�`�W���W�e�����

1 0�M�����`��Å8���e�������e�M�������2� �e�W���?�W�2����� �e�����W�W�����W�?���e�W�W��¥��W�M�W�2����W�2�0�B���2���S�W�����W�W�U�U�������`�B���e�W�W��¥����W�2���B�����0�e�S���J�e�W� ���W���W�e�2����8�W�2�SÅ8���e�������e�MÊ4���`�`���2�W�W�`�2�e�?�W�B�W���e�M�W�2�W�?��� �e�����W�W�����W�
na
�W�W���2�e���W�e���

2 �W�2�e�����0�����2���S� �e���.�S���e� � �����4Ñ0���������W��»��W�W�e¥����WÒe��¥����e�����e� m-�`�W�2���W�2�W�0�e�:�e������¥2�e�`�����2�����U�����������2���2�W�����W��� Ó

�W�2�e�?�J�e�M�:�����2�9�e�B�W�e�W�M�e�B�W�2�W�B�J�e�M��»������2���W���^�W�9�:�W»�¥?���:�W����W�2�0�e�¶�J�e�¶�����2���0���W�W���2�e�?���e���U�W���`��¥`���2�W���¶�U�������`�¶���W�����
v-�0�e�����8¼^���W�2�����S�W�Q�e�2�e�W�eÒe�`�W�2�`�����J�U�W�W�W�W�B���4�B���e���W���.�W�^���
r-�W�W�0�9���W�e�W����¥S�J�e�9���:�W���²���2���2�����²�W�²�������²���`�e�W�W�0�¶���2��� �e�
n-

ments.«�°?± � ¬�®�·��º°?©���®�¸�¬�ª ¯�®�¸�°�����¦�¬�®�·²¨�ª ³�®�³Ë¦�§�¨�©�ª
L-ª ¬�­M®�¯�¨�«�¦�¨�¬�ª °?±

(CAUE)
Motivation�8�2�S���e����������¥4�W�2�e�����e�2�W�`�W�^�2��� �����e���W���`�`�W�`�U�������`�M�0�e�

o-�2���`�W���e�W�W�e¥U�W�?���U���W�������W�`�2���W�W�2�0�����e�e���W�W���e�8�2���`���e���`�W�B�W���J�e�2¥�W�M�:�e�����W���W�S�2�����0�e�����2���`�W�`¾�Á�¿�À0�8�8�2�0�e�`�W�S�2�Q�������U���W�^�W�2�W��:�W���W�`�W�2�e�U�W�2�W�4���e�B���e�����S�W�������������S�e���������e�������e�2�B���:�:�W���W���2���e����W�2���`�W�2�����e���������S�e�2�M�W�W�S���W�0���S���W�W���2�����e�W�W�0�B�W�^�W�2�`�:���W���e��W�����W�4�:�����4�U���W�W�0���2�e�2���W�W�2�B���0�e�S�2��� ���:�����e�2�B�������W�B�W�2�0�e���e����W�2�M� �e�e�2�W���J�e���2���^���S�W�2�M���2���W�����e������������Ì��0�e�W�������W�W�����W�+�W�2�W������e�B�e�2�B�:���W�W����£0���+�����e�������2�����W�B�W���e�B�W�`����������� �U�W�W�W�W�`������e�����2��£0� �e� �²�����J�U�W�W�W�W�^�����e�W���e�W�W���2���8�2�M�W�W�W�W�M�:���+�W�2�W�Q���W�2�¶������e���W���`���W���
	���
����������������������������� ���� !#"�$��� ���������	�%�&(')	�	� ��

(CAUE-Tools)
�Q�8�2�e�M�W�^�e���W�e�W�����W�¹�W�2�*�
	���
������������������

+�	-,.��/������0"�%21���%���������%21���3-�4��+2"�5 6��W�2�e�8�e���e�W�W�����B�:���^�W�2�M�����
t-���J�e�^���2���W�2���0�e�W�2��¥?���2�e�SÊ4¡?~�Å¹���W�W�S�e�W� �:���9�W�2�+�:�W���W����������J�U�W�W�W�W�¹�����e�W���e�W�W���2�^ 0�.�W�2�Ë�:���W�W�����W�2� �W�2�Ë��»��W���W�W�2� �
p-���e���e���2�����e�2�B���W���������Q�W�2�S�����J�U�W�W�W�W�������e�W���e�W�W�������e���������?�J�e����2�����2��Î��e�����`���B�W�2�W�4�S�2�����`�������U���W�W���U�����e�������2�W����¥U���W�2����W�2���2���¶��»��W�

t
�W�2�����W�������J�e���2���������W�W�`�e���:���?�����8�����J���������

Approaches7�8�9 : ;
<�=->0?�>�@�: >�=->�A0>�B�<�C D�<�: E 8�@0B�F�G D�F�>�=4?�>�@�: >�=->�A0A�>�F�E H�@�8�2�B�����e�W���e�W�W���+���������:�W���J�e�B�W�`� �e�����W�2�S���0�e�W�������W�W���Q���?�W�2������J�U�W�W�W�W�Q�U�e���������²�W�����J�����e���e���2����¥������:�W���J�e�9���e�W���2�W������������0�?�����2� �e�����
•

Ï�� �e���W�W�`�`���e���W��� �W�?���������J�e���Q���W�W�^�e�W�����e�W�W���e���W����¥8�W�2�e��`���e�2�B�W�+�W�2�M�����`�`���^�e���W���Q�����2���`�e�������������W�0�+�
n-�W�0�e�:�e������¥��W�2�S���W�e�W�:���e���W�������W�:�W�Q���W�e�2���J�e���`�e�2�B��������� �U�W��W�^�e���W���^���B�W�W�^�����e���W�2�²�����2�W��»��W�`Æ?�W���0�e�����2�����+�W���W�2��e���W���4�W���e�`�W���������0�e���e���W�2�B���e�W���S�:�����W�2�S���e���W���`�4I��0���
e-�����2�W�e�W�W���`�:���Q�W�2�W���Q���e�Q���������e�W���e�W�W�2�^�W�2�B�����J�U�W�W�W�W�Q��������:�W���J�e���J�e���W�2�W�������W�W���`�`���W�2�����4�W�W���?Å�J?¡?Æ? 0��¥ ¤ �?¼^�����K?£(L�£0¼^�

•
�8�2�9�����0�e£0�����2� �e�����������W���Ë�W�������+�2���B�����`�����Ë���Ë�W�2�¢��������W�W���B�W���S���e���W���¹���W�W�������W�`�W�2���e���W�����U�������Q�W�2���e���

a-�W�W����� �e��� �����0�e�Q�W�9�W�2�^���e���W���`�?¡?�Q��»����0�e�W���2���+���2������������M�����:�W���J�e���W�2�e�8�����2�:� �e�`�?���W�W�M�e�W���e���W���S���e�^�W���e�M�W������J�U�W�W�W�W� ���e���U�W���`���ËÏ���� ��»��e�����W� � �����W���W�W��� �W�2�e��`�e�W���2�����W�2���`���2�W�e�8�`�������8�����W�2�������0�`���e���U���������0�e�W����W�`�e�2���W�2�0�����2�S�W�2�e�8�������?�2���2�e���e���M�������M�`�`���2�W�e�2���
o-� �����W�W�����U�����:�

l
�W�������e�W���W�2���e���W�����

EVADIS�8�2�^�����W�������S�W�J�e�����S����Å�J?¡?Æ? 0�����������W�����0�e�Q�W�M�W�¶�2��� �¹�e������J�U�W�W�W�W�9���2���W�2���0�Q�U�9���2�������W�2���¶�����:�W���J�e�9���e���W��� ��� � �
c-�W�W�����W�B¾�Á2M�À0��½²�W�W�+Å�J?¡?Æ? 0�9�W�2�B�:���W�W�����W�2�^���W�0�����2�e���B�W���U�

done:

•
Ï��W�2���W�2���W������¢��������W�W���2�

•
¡?�����W�2���:���?�W�2�����e�����0�e�W�W�������U�W�2�������0�e�

•
Ê4���W�W�����W�W�2���W�2���W������¢��������W�W���2�

•
J?�e�W���W�2���W�2��¢��������W�W���2�

•
ÊU�e���e�W�W�2���?�W�����e�e�0�����e�Æ?���W���W�W�+�W�2�+�:�e�����W�2�e���W�2�+�����J�U�W�W�W�W�9��»����0�e�����2�W�¶���������J�e����U���2�e���W���?�e�2���������W���`�����S���e���W���¹���W�W�B�W���W�4����¢��������W�W���2��¥��W�2�W��`���W�2�����W�e�e�����W�e�W�Ë�W���e�����W���W�0�S�W�2�?�0�e�����2���`�W�8���e�����0�e�W�W���4��������e���W���Ë�
o
�W�W���W�W���e�W��¾0Ç�À0� 0���:�e���S���W�W��Å�J?¡?Æ? 0���W�S�W����������� �U�W�+�W�¶�������W���+�����e�W�2�0�9����e���W���º�:���W�W�������Q���W�e�2���J�e�^���Q�2���W¥��W���W�4�W���������^�����W���W�W�Q�W�2����e���e�2�WÒe�e�W�W���2�e�������0�e�2���e�M�W�����e�W�2�������W�W�+¾(N�À0��L��W�`�W�W�e�W�W���2���W��W�2���������:�

l
�2���������UÅ�J?¡?Æ? 0�B�J�e�PO

•
Ï����W�W�����W�2���?���W�e�2���J�e���W���2�����e���W���`�e�W�W���e�W�W�S���W�`�W�W�J�S�W�4�U������J�U�W��¥��:���e�W�2�0�e�`���e�9�2���e� �:���W�W£0�:�W�W�W�W�2���W�^�2���`�W�����W�W���W����e�e���W�W���e�W¥UÅ�J?¡?Æ? 0�M�W���U�e�����Q���M�2���W�2�W�2�S�U���8���W�e�2���J�e�����Ï����+��»��e�����W�^���W�W�2�����S�+�W�����W�W�2�M���0�e�������W�2�+����� � �����W�W��������2�W���2�W�`���2�����U�?�����0�?���e�2�2���e�U�������2���W���0�e�����

•
 0�¶�^���������J�e�W�����¶���S�W���+�����W���W�W���2�Q���2�0�e�^�W�2���W�����2�W�e�W�W��W�2���:� �e���U���2�?�`�e�W���2���4�W�2�?�����0�e�4�`���2�W�e�U�`���������U���U���W�

h-�����?�:���W�W�����W�2�9�W�2�M���2�����������J�U�W�W�W�W�B�e���W���Q�e�2�¶�e�2���W�2�0����2���`�W�������?�W�2�W�?�W�J�e�����2�U���8�������?�2���2���e���e�Q�e�2�`���4�W�2������e���W���`���2�W�M�W�2�Q���������2�+���2�Q���W�W���U�M�:���W�W�������9���²�W�S�
d-���W�����`���e�W�����W�e�W���Q�U�^Å�J?¡?Æ? 0�����W�W�8�U�������`�M�:�����2���e�W�W������U�W�2���:���W�W�����W�2���W�����W���`���2�

ations.

•
Ð?���.�����2���0���W�S�e��¢���� �e�+�9�W�������`�`�e�W�2�W���2�e�2���+���9�W�2��� ������e���8�e�������W�W�4�e���W���`�e�W�W���e�W�W�S�W�B�2���e�����W���W�e�W�W���2���U���`�W�2�W������U�W�W�M���0�����S¢��������W�W���2�B�2�������?���0�e�`�e�2���2�W�W�^�W�B�U�`�

e-�2���������S���`�e�W���e�W�W�0�e�2�e�W�W���2�M£B�:���9��»��e�����W�9�W�2�9�W�����
e-�`���2�W�e�W�W���^���4���������J�U�W�`�W����� �U�J�e��Q¶�J�e�`���:�W���+�������^�:���Q��W���2�Q�W�W�`�������`�`���2�W�`���2�W�W�8�W�2���`�J�e�0R � �����W�W�:�W����S��W���e��������?�2���¶���W�e�W�������W�����

•
L����J�e�2�J�U�W�W�W�W�B���e�2�2�����U�`��»����W���e������ 0�4�W���2���J�e�W�Q�W���������

i-�U�W�B�W�M�����W�W�`�e�W�Q���2�e�����:�:���e�W�`�J�e�Q�2�����������J�e�M�W�^�W���J�e�9�W������e�����W�W�²�¶���e���W���`�����W�2���9Å�J?¡?Æ? 0�Ë�����e���^���W�W�2��������W�����W�2�¶�W�����W�W�2�M���0�e�����2�Q�W�2�W�Q�W�������e�W�e�2�S�`�J�e�¶�W�Q�e�Q��:�e�����W���2���e�����:���8�e���e�W�W�?�`�����`�J�����W�W���e�W�W���2���
•

�8�2�SÅ�J?¡?Æ? 0�����e�������������W�W�M�2���2���e�����?���������W�e�W�W���Q¢����
s-�W�W���2�Q�2�������Q�B���e���������S�W� � ���������?Î������e�����^�����W�2�+���0�e������W�e�W�W���`¢��������W�W���2�4�S�2���J�e�W���e���e�������e���������U�2�e���W���U�S�W�2������ � �����U�����S�W���������W�W�QÅ�J?¡?Æ? 0���U 0���W���2�����`���e�2�W�2���:�����W����`�������Q���:�W�2�S�����e�Q���W�W�M�����e���W���W�J�����W�M�W�2�e�2�������W�W�W���2����B���W���`���2�W�^�e�^�����W�`�e�^�2�����U�0�e�^�e�2�²�������Ë���W�2���+������e�J���2�W���e�����

e
�`���2�W�����W�W�����W�W�W���e�W�W�0�e�Ïe�e���º�W�2�?�����W�2�4�������W���¹�����Q�����J�U�W�W�W�W�M�W�����W�0�M�W�2�e���2�������2�W����e�2�W�4�W� � �������?�W�2�?�����J�U�W�W�W�W���U�����e�e�W�2�0�S� �e�W���4�W���W�����e�����?�W�2�e����e�����0�e�W�����Q�����e���W��� �������Ë���W�����W�W�2�Ë�`���W�2���Ë�W�9�������W�������Å�J?¡?Æ? 0���:���W�W����� �`���e���������?���e���W���U���?�������B�2���?�W�2�W�����e�e�W��W�W�����W�4�W�^�W�2�e�����e���������S�:���B��»��e�����W�`�e�S�Q���W�2�^�����Q�����U���e���W������W�2���M���2�e�2�����B�W�¶�e�¶�e�����e�2�����Q���e���������8�U�������`�M�`���e�M�

x-�����2���W�����J�e�����2�Q�`�:�e���W���`���SÁ�ÄQ���W�W�M�����0�e�`�W�e���������2�e����¥8�:�
l-�W�����W�2�9�W�2�M�W�e���8���2�e���M���e�������B�2���J�e� �U�W�M�������W�B�W�S�W�2�0�e�^���0�e��2�����������J�e�¶�e�W�W�0�e�2�e�W�W���2�^Ñ0���2�e�`�W�^�2�W���2�W�M���e���U�J�U�W��Ó0¥`�:�����e��W�����e�������`���2�����e�W���2�W���������J�U�W�W�W�W�?�W�����W�W�2��Å�J?¡?Æ? 0�Q�W�2�W�0�e�����2���

d
���:�W�2�W�W���W���W�Ë�W�e�W��¾�Á�À0¥Q¾0Ã�À0�QÅ�J?¡?Æ? 0� �`�J���¶�W�2�������J�U�W�W�W�W�

�����e�W���e�W�W���M���e���������B�W�¶�2�+���e�e¥��W�?�����U���W�W�W���W���B�2�W� ���W�W���e������`���2��¥2�������e�����0�e�W�W�����:���?�W�2�������2�����2�W�W���2�e���e�2���`���W�2�����W���e��2���W�0�e�������2�����������e�������������e�2�2���e�U�����0�e�W������� �e���ËÅ�J?¡?Æ? 0���
GOMS�8�2�+�W�0�e�

GOMS
���W�e�2���M�:���¶�W�2�9�:�����¶�����������2���2�W�^�����e�W��¥�����0�e�e�W���e��¥8�`���W�2�����S�e�2�M�����W�����W�W���`�e���W����¥8�W�2�`�:�����2���e�W�W���2�S���¤ �?¼^���U�8�2�W���`���W�2���B�����W�e���Q�e�2�e�W�e���W�?���W���W�����?�`�W�e���S�e�����

r-���W�����W�`�W�M�����U�W�e�����?���2�W�W�8�W�2�0�e���J�e�����2�W�`�e�W���`�W�`���W�0����¥8���2�W����J�e���W�2�������0�e�e�W���e�����8�2��� �`���:�:���e�����e�`�U�`�`���e�����e���M�e�2���U�e��������¶�������¶�����0�e�e�W���e�B�^���2���W�����e���������B���e�M�U�M�����W�W�`�e�W������
n-���������W���W����������� �U�W���W�S�������e�`�W�`�e���W�2�e�W�W���`���U�W�2�����W�2���e�2���W�2��W�W�`���?�W�e�����2���������W�4�U�?�:���W�:�W�W�W��� 3 ¾�Á � À0¥�¾�Á�É�À0�)L��W�`�W�W�e�W�W���2�4�J�e����e���S�W�4�e���e���2¥����2���B�W�2�?�����e���4�W�2�e�U�2�e���?�W�4�U�S�e�2�e�W�eÒe���B�J�e����������W��»����9���W�W���e��� �J�e�������W�J�¶�����e���:�W�����W�e�����^���e�2�2�����U��������0�e� �U���+���W�W� ¤ �?¼^���4Ð?���e�`�e�W�W�M�W�2�Q�`� � ���e�W�W�M���?�W�e�����B�W��2���W�W�2�0�B�:���W�:�W�W�W�����U�B��»����0�e�W�S�2���B���e�^�W�2���B���2�M�e�W���e�e�����W�
h-�������e�2�`�0�J�e���e��¥��U���8�W�2�������J�e�����e�����?�W�2�e� ¤ �?¼^�^�W�?�2���8�����
i-�`�e���:���?�e�2��� �e���Ë�?�����2� �e�e���`���e�2�W�2���W�B�W�2�?�:�W���W�`���������J�U�W�W�W�W�

evalua
�W�W���`¾(M�À0��8�2�8�e�������W�W�4�����?�U� ¤ �?¼^�Q���e�?�U�?�W�e�����Q�e�������W�2�B���2�e���:�

r-���2�����`��� ���4�:���M�e�2�e�W�eÒe�W�2�+�W���J�e�2�W�2�+�����e�������U�����W�2���^�J�e�M�2������e�����0�M�:���M���������J�e�W�2�+�W�2�������W�W�9���W�:�:�0�e���2�������0�M�W�������W�������¤ �?¼^�9�W���Q�`���W�2���^�W�2�e���W�`�����W�W���+�:���M�e�2�e�W�eÒe�W�2�+�M�W�������W�e����W�e�������8�����e���?���2�0�e���e�?�W�8�W�?�2���8�`�W�����8�:���`�0�e���e�W�W�2�Q�������2�
r-�W�����W�2�e�����2�e�W�e�U���W�e�����`�e�������e�W�����W�`�

s
�J�U�W�W�W�W�?�W�����W���

: ��> D�F�<���E C E : � >�@�H�E @�>�>�=-E @�H���=-8�?�>�F�F 9 =-8�� : ��>���>�=-F���>�?�: E B�> 8�9
: ��>0D�F�>�=4?�>�@�: >�=->�A0A�>�F�E H�@
	���
����
������������� ����!�"���#���$%$�� "���&�'�(*)����

lsen¡��:� �e���`�������e���9�:���¶�W�2�9�����J�U�W�W�W�W�¶���2���W�2���0�e�W�2�+���e���������^�:�
l-�W�����W�2�¶�W�2�^�J�����e���e���������W�2�^�����0�9�����2�W�0�e�����������W����Ñ0~�Ê4Æ?Ó���e���U���:�����2���W�`¾(M�À0¥2����� ')���� ��

1.
')���� ��

1 + ��	�,������ 	-, ���������� ���� ! "�$��� ���������	�%������ ��	.-0���� �����%
[8] .

1.
K?�2���¶�8�2�������0�
a.

 0�2���W���W�����e�������0�?���2�J�e�e���W�0�e�W���W�W���
b.

�8�2�������0��/0�������J�e���2���e�2��������� �e�����W�e�����
c.

Ï����2���W�W���2�e���e�2�e�W�e���W�
d.

�8�2���������W���W�W���`���U�W�2�������0�?�e�2���W�2� � ���
2.

Ê4���������W�W�W�W�����e�2�e�W�e���W�
3.

�����W�W�W�2�������J�U�W�W�W�W�?�����e�W�
a.

Ï��W�2�e�2���W�e���W�����e�����e�2�e�W�e���W�
4.

Ì��J�e�e�W�W�����������W���
5.

Ì��J�e�W�W��� ���e�W���e�?�������W���
6.

Ê4�����e���W�2�e�W�����������W���`���U�W�2���W���W�e���W�2�W�0�e�:�e���
7.

¡8�����W�?�����W�����W�W�2�����e�2���2�����e�W���W�W���e�2�e�W�e���W�
3 ���`�W�8���e���U���`�������W���Q�2���²�W�M�`�����e�S���e�������������`�`�:�W�W���2�e��W�B�U�M�������2�����?�8�2�����e�Q�e�W���`�W�^�����2���W���0�e���¶�������W�M�U�^�W�2��`�������B���W�W���^���+�W�2�

‘ file’
�`���2��¥��W�2�Q�`�������Q���W�W���+���9�W�2��`���2�`�����W�2�0S �������*/?�e�2�+�W�2�Q�:���W�W�����W�2�+�e���W�W���2�`�W�2���W���Q�W�2�

dialog.

8. Prototyping

9.
Å8����� �e�W���e���W�����W�W�2�

10.
 0�W�0�e�e�W�W����Æ?�����W���
a.

Ê4�J���W���e���������W�����e�e�W�W���2�e�W�
11.

Ê4���W�W�������:�������U�e����� �e���Ë�:�W���W�������
¡?�W�W�2�������B�W�2�W�U�e�0���e�������2�W�e�W�W���Q�������`���W���U�S���������W���W�S�W���W���:����W�2�?�:���W�W�����W�2���e���e�����2�4�2�������e�����0���e�������W�J�e�W�W�2�?�����W�2���:�����W�2��:���e�W�2�0�?�`�������W�W�2�����U�?Ê4¡?~�Å^���

stem.Ï����S�����������J�������?�����`�?�W�W���`�4Ñ0��� �����W�W���10`�e�2��M�Ó��J�e�S�2�J�e�B�W��e���e�W�WÒe��¥����W�2���9Ð?�W���W�����9���e�������`���^�2�0�e�Q��������� �U�W�W�W�W�W���^���B�W�2������J�U�W�W�W�W�S���2���W�2���0�S�W�2�e�U�2�?�2�e�����2���S���e���������W�W���Q�e�2�B�����J�U�
l-�W�W�+�W�����W�W�2�¶�2�J�������2�Q�W�2�2��������QË�+���W�W���e�W�W�����W�2�e�S���e�2�2���4�U��e�������`���`�����0�e�e���2�0�e���� 0�������J�U�W�W�W�W�S�W�����W�W�2�`��»��������W���?�U����»��W�
r-�2�e�4���2���W�2���0�e�����2�����W�`�U�B�����2���W���0�e���+�e�W���^�������9�����e�������
p-�W�W���`�W���?���W�2�����U�W�2���e�W�W���W�W�`�W�

ation.�?�:�W���Ë�e�Ë��»��W�0�e�2�e�B�����J�U�W�W�W�W���W�J�U���e�e�W���e���W�+�W�2����������¥`���W�2����W�2�W�0�e�2�e�8�e�������`�`���2���e�W�W���2�B�:���^�W�2�M���������W�����`���2�?�������W�9�2����U�?�����W�J�U�W�W���2���`¾�Á2N�À8�e�2�`�����`���W�W�`���������e�W���e�W�W�2�B�e���W�W���W�W�W�����J�e��e��¢���� �e���²�W�9�U�������2����»��W�0�e�2�e�W�W��Ñ0�:�����2�����¶�U���W�2��¢����e�W�W�W��`�e�2�e�����`���2�WÓ0��Ïe�e���¹�����������W�2�U�������W�����S�`�W»��W���e�?�����e�W�������W�� �e���Ë�����:�W���J�e�����������W�����`���2�����e���W���4���W�W�B�W�2�e�U�����W�2�?�����J�U�W�W�W�W������e�W���e�W�W���B���e���W�?�W���2�������e�e���W�W���e�W¥U���W�2���S�W�2�W�����������W�W���e�W�����W�2��e�2�e�W�e���W�����U�W�2�����W�2���W�����2�e����������W�`�W�W�J�M�W�^Ð?�W���W�����2�B�`�������?�J�e�M�W�2�M���2���B�W�¶¾�Á�Ä�À��e�2�9¾�Á�Ã�À�e�2���e�2�e�W�����W�S�W�2�e���W�2���8�e����� �e�W�����W�S�����e���������4�W�2�e�U�����e���4���2�W��W�2���W���^�9���������e�2� 4�SÎ������e�����+���`�W�2�e���:�e���W�M�W���������`�M�`���e��J�����e�����e�W�e�W���W�S�����2���W���0�?�W�2���`���2�W�W���2�������e���W�����e�����e���������W�W������e���W����Ñ0���?�e�����J�e�W�����U�������`���2����Ó0¥2���W�2�����W�2���S�W���e���?�W�2�?�e���W���e������J�U�W�W�W�W�?�����e� 5 �W�`�`�e�2�8�����W�2�W���
2�3�4*5�6�7�798�6�7�5�3�: ;=<>: 4*?A@>3�4*B1C�D*E

ubinI����U�W� ���2������� �W� Á�Ç�Ç�0 ¾�Á�Á�À¶���2�Ë�`���e�Ë�J�����e���e���2¥^�W�2�e����e�W���2�����W�2���e���W�W���2�����U�W�2�������J�U�
l
�W�W�?�W�����W�0��O

1.
Æ?�������W�����W�2���W�2���8������Ì��W�e�

2.
�����W�����W�W�2���e�2��¡?��¢���� �e�W�2��Ì��J�e�W�W�

ipants

3.
Ìe�e�0���J�e�W�2���W�2���8������¼^�e�W�0�

ials

4.
Ê4���2�������W�W�2���W�2���8�����

5.
Æ?�0���e�W���:�W�2���W�2��Ì��J�e�W�W�

ipant

6.
�2�e�e�2���:���e�`�W�2��Æ?�e�W�Ë 0�2�W�¹Ï��W�2���W�2�����e�2��I������

m-
mendations

�
��������,�	�%GF�������%���H 	�����

4 0�2�������Q�e�W�8�W�2���W���e�����e���W�2���e�?���e���W���W�2��� �`�J�e�W�W���W���?� �e��� �W�2����0�e�W�������W�W�������^�����J�U�W�W�W�W�²�W�����W�0�e�
in
���������e�2�W���¶Ñ0Ð?�W���W����������`��� � �e���!��~�Ð?£¹¼^�W�0�e�����e���W���`��¥²Ì��:��I����0� � �e��� �W�2������2�����WÒe�0�e�W�����2��K8�e�����W�W�e�2���W�e�W�S�e�2�¶���W�W�`�J�e�S� �e��� ¤ Å�

n-�:���e�`�e�W�W���²���e���W���`��ÓM���2�0�e�¶�W�2�¶�����¶���e�����������²�����:�W���J�e��2�e���W���U���e�2�e�W�eÒe�����
5 �W�2�e����»��e�����������0�e� ���W�W���`�W���W���W�����������:���

¡?�W�W�2�������#I����U�W�2�9�`�������Q�������0�e� �U���9���2�W�+���2�e�����9�W�2�e�M�J�e��W�2�������S���J�e�8�����W�2�������J�U�W�W�W�W�����e����������¥��W�8�������?�2���������W���e�S�W�2��W�2�����e���W�W���e�`�:�����2���e�W�W���²�:���¶�¶Ê4¡?~�Å8£0���e���W���`�`�?�Ë�W�2�¶���2��2�e�2�B�W�������e�W�e�2���e�W�������W���J�e�S�`�W�����W�2�B�e�2�B���Q�W�2�����W�2�0�`�2�e�2������`���e�0���
e
�����2�W�e�W�W���2���J�e���2���������W�W�`�e�����e�?�:���?�W�e�W�0�?�����e����O

•
�8�2�����2���e�`�����Ë�W�W�`��£0�����2�����`�W�2�¹���2�e���������W�2�����e�W����e�0���J�e�e�W�W���²�W�²�W�2�e�`�W�2�9���2���W�9�e�`�����2�`���B�W�2�Q�e��������`�e�W�0�e�W�e�S�W�S�e�����������¶�W�9���e�W�+�W�2�e�S���e�^�U�^�����e�W���e�W�����W��`�W�����W�2���W��I

u
�U�W�2���`�������W�

•
�8�2�������e�W���e�W�W���M�e�2�Q�W�2���0�e���e�W�W���MÑ0�W�2�e���`���e�2�S�W�2�

writ-
ing
Ó`���`�W�2�+���W�����9�J�e�+�2�������W���W�W�2�����W���2�����W���e�2�9���e�e����W�2���9Ê4¡?~�Å ���W�W�`�����������e�B�W�2�¶���W�e�2���J�e���+�:����¢����e�W�W�W�

management6
�W�2�e�U�W�4����� �e���2�B�W�W�`�W�W�e�W�W���2�U 0�8�����������e�2��W�?���U�W�W�����Q�W�B���������`���2���W�2�`���������W���W�����e���������W�W���`���e�

c-�����S�B�����J�U�W�W�W�W�B���W�����B�W�S�e�^�W�������e�W�e�2�����������`���2�W��½9�e�
t-�W�2���?���W�����?�:���?�W�2�e�e�����J���������W���S�����e�`�W�2�e���U�W�2���4�e�B�
s-�J�U�W�W�W�W�Q�W�����W�0�Q�����W�M�Q�������`���0�S���e� � ����� È��W�����4���0�e�W�����4Î
e-���e�����������W�2�W�?���:�:���e�8�W�2�����e�W�W�W�2�M���2�����W���U�`���2�J�e���M� �e����W�2�S�����e�W���e�W�W�2�?���2�e������¡?�2�Q� �e��� �`�`���W�2�����W���e�2�����W�2�8������W���.�W���W�M���2���W���e���W�¶���W�:�:�0�9�2���4�U���W���������W�2�+�����2� �e�e����2�e���¶���Q�����e�W���e�W�W�2�²�e�2�²�W�2�¶���2�W���:���e�`�e�B�`���W�W���e�W������e�W�W�W�2���8 0�^�BÊ4¡?~�Å����e���W���.���U���W�������W�B�J�U�����W���W�`���W�:�:�
r-���2�?�`�������W���B�������W�9�����������e�?�W�2�����^�e���W�W���2��¥8�e�0���e�������2�
a-�W�W���2���W�2�e���2�����W�����W�W�2�B�W�2�W���:�e�������W�W�8�W���e�Q�W�B�:���e�W�2�0�`���
n-����¢������2���������W�W�`�?�2�W���`�������e�����������e���U�J�U�

lity. 0�2������� I����U�W�2�?���W���²�W�?�2���J�B���^�W�2�����e�e���W�W����¥8���W�`�W�W�J�B�W�Q�W�2��W�2�W���W�W�W���������e���e�2�����e���?�W�S�����W�2Ï����?�W�2��Ê4¡?~�Å^�J�����e���e���B�W�2�W��e���e���:���e�W���e���S�:���?���e�e���W�W���e�������e�M�`�W���S�W�������e�W�e�2���:���e�`�e�4�
s-

pects.
� @�<�C �)F�E F�8�9 : ��>0D�F�<���E C E : � >�B�<�C D�<�: E 8�@G��=-8�?�>�F�F¡

CAUE
���e���W�������2�����W�+�W���e�+�W���e�������9�W�2�Q���2���W�Q�����J�U�W�W�W�W������e�W���e�W�W���9���e���������^�e�2���e�����������e�2�¶�W���e�������²�����0�e�¶���W�2���W����W�0�¶�e�S�����W�e�W�W���M�e�4��������� �U�W�����8�M�e�W�º�W�2�W�������e�4�W�4�2�e���W���U��e�2�e�W�eÒe���M� �e���.���2�e�������������2���2�W���W�2�W�4���e�����������������������2���W������U�e�2�����2�W�������J�e�W�����U�W�����e���U�����

pported.¡��:� �e�������W�����W�+���W���º���²�W�2�Q���e���������^���:�:�0�e�^�W�2�9�:���W�W�����W�2������2���`��O�/�	�������%21 �������������� ��?�e�2�
templates

� �e��� �W�2�������J�U�
l-�W�W���W�����W�0���W���e� �W�������W�W�J�U���e�e�W�W�������W�W���W�2� ���e�����
c-�0�e�WÈ����������W�����0�e�S�e�2�M���W�W�^�W�����W�W�2�����0�e�����2���W�M�Q���0�e�W�e�W�B���e�
d-�����W¥2�W�S�W�2�������J�U�

l
�W�W�?���W�����?Ñ0�������:�W�����e�`Á�Ó0� 0�Q�W�2�S�:� �e�������W�0�+�����W�2�W�?�W���e���4���2�e�����`�������

input
�`���e�2�?�W�2��e���W�W���W�W�W���4� �e���¹�W�2�?�����J�U�W�W�W�W�S�W�����W�0�e�4Ñ0���WÓ��W�����e���������S�����e���W�2�

6 �8�2�W���`�e�W���2�������+�����0�e�S���e���������0�M�W�2�e���e���2�`¢����e�W�W�W�M�`� n-�e�����`���2�������S�W�` 0���²Ç�Ä�Ä�Á?���`�W�2�e�8�2�e�?�W�?�e���M�������M�2�W���2�0����W�e�2���J�e���?�U�����e�����M���S�����e���W�2�9�W�¶�J�e���e�Q���W�W���2�W���2�0�+�
e-�`�e�2�������`���������e�W�W�?�e�2�����������`���2�W�e�W�W���2�

�`�e�W�0�e�W�e�W���W�W���B¢��������W�W���2�2�e� �e�������S���J���0�Q�e�2�`�����2���W�����e�W�W�0�e�2� 0�Q�W�2�S���������2�B���W�0�+�W�����������W�e�2�����:���`�W�2���W�����W�W�2�S���0�e�����2�?Ñ0� ��Ó�e���W�W���W�W�W������ 0�¶�W�2�W�?���2�e���M�W�2�M���������W�������9�����e���W�2�¶�`�e�W�0�e�W�e�W��J�e�B� �e�e�2���:�0�J�e���^�W�M�Q���W�2�^����Ñ ���e��Ó8�e�������W�W� 7���8�M�W�2�B���2�^�W�2��W�e���?�W�������?�`���e�2�B�e���e�W�¶�W�2�M�����J�U�W�W�W�W�^�W�����W�0�e�Q�e���W�W���W�W�W�����?¡?��W�2�W�������W�2�W���W�����W�e�2�����:���?�W�2�?�����e�`���W�W�B�W�2�?���e�W�S�W�2�e�U�W���e���4�W��W�2�S�:�W�2�e�2�e�������`�`���2���e�W�W���2�?�W� �����W�2���e���W���e�W�W�`�����e�W���e�W�W���2¥��W�2��e���������2�W�W�W���^� �e���¹�e���W�����e�2�4�:�e���W�������4�����W�2�B�W�W�`�B���0�e�W�����e�2�
pre
���J�e�����`�e�W�0�e�W�e�W��� 0�9�M�2��»����J�����e���e���9�W�2�Q�:� �e�������W�����W�2�e�����e�Q�U�Q�������¶�e�B�e����W�2�M���4�e�^�����W���W���`���W���¶�U�������`���S�`���e���e���:�W�2���^Ñ0�����B�:�W�����e�Ã�Ó(OM¡?���e�`�����2�M���`���J�e�e�`���W�0�e���W���e�����W�¹�W�������W�:�W�²�W�����W�W�2��`���W�2�����S�W�S�U�`���2�������^� �e���.�B�����������e���e�W�W�J�U�W�B�`���W�2������¥�����W�2�e���W�2�����W���U�e�������e�W�����U�W�2�������J�U�W�W�W�W�?�����e�W���e�W�W�������e�������������W�W��U�4�e���e���2�������8�2���W�����W�W�2�Q�`���W�2�����?�����W�0�e�`�W�2�����W�����W�`�W�2�`�

n-���e�����9�`�e�W�0�e�W�e�W�����8�����e�^�W�2�M�W�W�W�0�e�e�W���e�����e�����������Q�2���J�e�W� � Ä�`���W�2�������:���������2�������W�W�2�.�����J�U�W�W�W�W�����W�����W�����+Ð?���e�`�e�W�W���W������0�e�+�`���W�2�����W�2�e���W�M���������������e�W�W�e¥S�:�W�W�W�W�2����� �e�e�W�����W���M�e�2��`�e�W�0�e�W�e�W�4�2�e���?�W�4�U�8���e�0���J�e�����UÅ8���0�e���e���e�W�W�J�U�W�S�W�2�:���e�`�e�W�W����J�U�����U�W�2�?�����0�e���e�2�B�W�2�������J�������S���8�W�2�S���e���W�������2�����W�B���2�W�0��W�+�W�2�?���e�0���J�e�e�W�W���2����¼^�����W�W�Q�W�2�?���e�W�2��� ���e�4���W�e�W�������2�W���+�
s-�������W�+Ñ0�����`�`���Ë�e�����0���W�e�2����¥`�����W�W�J�U�W�W�W�W���:�����W�2���W�e����¥B�����W��������0�e� ���W�W�����2������Ó��2�e���M�W�B�U�M�e�2�e�W�eÒe���¶�e�2�¶���W�W�����2�W�����
f-�:���e�W���8�8�2�`�W�0�e� ���������� ���� ! ���������2���e�`�e�W�W�Q�����`�e�2�����W�2�e�4�W�����W����W�W�¹�W�����W�W�2�¶���0�e�����2�¶�W�e���+���W�e����Ñ0����� +�	-,.��/������ ,���%����������

��$��� ���������	�%�$���� �������G,���%������������������ 1�%�Ó0�U 0�Q�������Q�W�2�������W�W���e�W�W���2��W�2�^���J�e�W�W��� ���e�2�W�9�W���e�¹�e�Q�U���:���e���W�2���W�����W�W�2�¹�`�e�W�0�e�W�e�W�¶�W������e���W�2���`�e�W�0�e�W�e�W��¥���� ���`¢��������W�W���2�2�e� �e���+�W���e�Ë�W��¢��������W�W�
n-�2�e� �e���`�W�2�e�����e�Q�U�Q�����e�W���e�W����¥4�W�2�0�e�Q�J�e�M�����W���`�W�2�����B�e�����W��e�2�`���W����������¢������2�����4�e�2�`���0�����2���W�2�`�W�`�W�2�S�`���W�2�������:���e�W�2�0����������`���2�W�?���B�`�����W�e¥8�W�2�����`�J�e�`�W�2�W�0�e�`�����W�J�e�?�e�������W�W���8Ïe�e����W�2�����`�W�2�`�:�W�2�e���e�������W�W�S���e�`�U�`�����W�����W�����U�B¢����e�2�W�W�W�e�W�W���B�e�2�¢����e�W�W�W�e�W�W�����e�2�e�

ysis.¡?�:�W�0�Q�W�2�W�������e�W���e�W�W���+�W�2�Q�:�W�2�e���e�������W�W�`�2�������`���e�0���e�������2�
a-�W�W���2¥U�W�Q�`���������8�W�2�S���e�������W�2�W���W�������������`���2���W�2�e���������0�e� �U����W�2�`���2���W�`�����e��¥8�W�2�`�������M�`���W�2�������W�M�W�����4�e�2�^�����e�W���e�W�B�e������W�U�e�4�W�2�8�e�������W�W�4�e�2���e�������`�`���2���e�W�W���2�4�����W�2�S�����J�e�����W�W���2�Ñ0�������:�

gure
Ã�Ó0� 8¡?�W�W�2�������M�W�2�W�?���W���²�e���e�W�M�e� �e���e���`�`�����W�e�W���?�`���������W��»M�

m-���e�������W���2¥4�:���e�W�2�0�M�����2���W���0�e�e�W�W���2�`���S�W�2�����e���������B�J�e�M�2�����
s-���J�e�B���W�2���`���W�W�+�W�2�e�4�`�������4���W���¹���2�W�Q� �e�W���W�e�U�e��¢���� �e���`���2�W����e�B�U�B�:���W�:�W�W�W���^�e�2�^���:�:���e�W�����e�2�2���U�U�Q�����W�W�`�e�W�����U½²�2�0�e���e��W�����e�S�W�2�0�e�?�W�4�S���W�����W�S���2�����W�������?�J�U�����U�W�2�8���e�W�2��� ���W���4�W�2�e�

7 ¡²�:�W�W�W���B������¢��������W�W���2�2�e� �e�S�W�����W�2�B���2�e�������W���W�M�W�2�W�?�`�������W¥�e�B���2�����e�W���e�W�����U���U�2�����������J�e�S���2��¥��W�U�����e�����W�2�S���e�`�S���e����W�W�`�8���J���0���9�����2���W���`�������W¥2�e�`�W�2�W�0�e���W���¶��� �e�e�W�����e�
8 �8�2�S��»��W�e�2�����W�:�:�0�e�������2���0�e�2�W�2�B�W�`�W�2���W�W�`�������e� � �����8�W�?� c-���������e�2�W���^�e�2�^�W�^�W�2�Q���W�2�+���?�W�2�:���e�`�e�W�W���9��»����2�e�2�����4 0��W�2�Q���e���������0�¶���e�2�W�^���2�W�¶�M���e���W���W�J���9�W�^�U�¶�W�����W����¥`�W�2����������`���2���2�e���4�U�W�B�����W���2�W¥U�W�2���W���e�B���8�W�2�W�?�W�2�����������`���2��2�e�S���2�W�B�W�2�`���2�J�e�e���W�0�Q�����Q�W�����W�W�2�^���������`���2�W�e�W�W���+�W���

s-�J�U�W�W�W�W�^�W�����W�0�^�e�2�¶�W�2�^�����:�W���J�e�^���������W�����0�+�����e�¶�W�������W�2�0��:���?�`�e�2�8���2�e�������e�2����»����2�e�2�����e�������W�W���W�2�W���2���W�����W�e�

� �	�	
	�
��
	� �� �	�	
	�
��� �	�

(Test)
Results

Usability
Study

Knowledge
base

Szenarios���
� ��� �����������
Conception

� �	�	
	�
��
	� �

Template���	��� �������
data)

 � 1������
1
�*$�����/�	�%0��!������������� ���� ! ��%21���%���������%210
���	�,������

�2�e���Q�W�`�U�Q�:���W�W�������+� �e�����e�¶�0�e�����2���`�W�����0�e�W�������W�W��� 9¥��W�2����e���������B�W�2�e�?�`���e�����e���B�W�2�M�������������B���S�W�2�e�?���W�0���B�W�Q�2�J�e���W��e�2�e�W�eÒe�����S�������e�����M�J�e�B�e�J�e��¥����W�������W�e�W�W�¶� �e��� �W�2�9���W���2�`����0�e���e�W�W�2�������������e�W�W�2�������������W�0�8�U�e���������
stems.�8�2�8���J���0�S� �e���¹¾�Á�0�À��e�2�B¾ 0�À��W�2�e�����������������W�W�Q�W�2�S�����:�W���J�e������������e�����4�W�2�`�����J�U�W�W�W�W�B�����e�W���e�W�W���`���e���������S���W���B�Q�������0�e�

p-�W�W���Q���8�W�2�e�����`�W�����e�W���`�e�2�B���������W�W�2�������������2�0�e���W�S���W��������W�2�� 0����Ç�Ã�0�Á4���W�e�2���J�e�����?���`�W�2��Å�J?¡?Æ? 0�B���
stem.���W�2���������J�U�W�W�W�W�?�W�����W�W�2���W�������2���0�e�2�W�2���W�S�W�2���W���2�����2���?�W�S�����0������2�W�0�e���+�������W���9Ñ0~�Ê4Æ?ÓS�W�����e�M�e�9�e���W�W���W�W�M�W�2�e�������e���`���W�W�Ñ0�W�����WÓ4�����0�e�?¾(N�À0¥�¾�Á�Á�À4���`���W�`�W�W�J�?�e�0���e�������2�W�e�W�W�����S��»����0�e�W�`�

n-�W�e�����e�����������W�2���^�J�e�9�����`�`���2�W�¶���������� 0�²�����2� �e�e���W���W�W���Ë�W������2���`�e�W�W�¹�����:���e�`�e�9�`���W�2�����9��������� �U�W�W�W�W�W���Ë�W�.�:�������U�e����J�U�������`���e���W�
y
�0�e���J�e���2�����������J�e�e�

¬�����¯�� ���	��
���
���¸�¨�¦�®M§���������
����������`¦�������� � � ���M®������ �
a-��� ��� ��

o � �������M®�� ��!�
�������������"� ���Bµ�����#���� ��$ ����������8�2�9�:���W�W�����W�2���W�²�:�W�����e� N����2�����¶���2�e���¶���e�W���2�W���²�`��������:���W�:�W�W�W���W�2�������`�e�2�����W�2�e�����0�e���`�e�����W�����W�W���W�W�W�?���2�W�W���2�0�e�PO
•

�8�2���e���W�W���W�W�W�������U�����J�U�W�W�W�W�?�W���
t
�W�2���J�e�����e�W�2�0�e�����

•
�8�2�S�`���������e����� �e�W���W�����Q�W�2�4�e���W�����e�2�8�e�W�������W�?Ñ0������ÊU�e�W�W�W����`Ð?�W���W�����2��¼^�������WÓ

•
�8�2�M�������0�e� �U���9���W�0���B�W�¶�W�2�^�`�������S�:�W�S�W�9���W���2�W�:�W���e�2�W�W����W���W�W�2�����W���2�J�U�W�����W�0��� 10

•
 0�?���:�:�0�e�B�`���e�e���W�W���J�U�W�M�e�2�9�2�e�2���`�U�e���W�Q�:���+�`�������W�W�2��e�2���������W���2�W�2���

CAUE
���e���W��� 0�M�e�����W�W�W���M�W�B�W�2�e�8�W�2�����W�0���?�����2���0�e�2�W�2�Q�W�2�W�?�`�����������e�`�U��W�����W���`���2�W���Q���0���J�e�e�W���W�`���B�W�2�e�8�W�2�`���W�2���W�����e���������W�S���e�`�U��������¶�J���J�e�S� �e��� �W�2�^���W�2�0�+���2�����?�8�2�^�`�������S���e�^�U�^���

n-�2�����W���Q�W�B�W�2�����2�����M�`�������W�S�:���B�W�2�`�����:�W���J�e�`���������W�����`���2�
9 ¡?�2�����2�e���`�W���W�e���������2�����W�4�U���e�����W�����
10 Ê4�������J�e����� �������W�W�MÐ?�W���W����� R0Ìe�e���W���W�J���W�2��S ¥��W�2�e���������0�e� �U����2���S���2���B�W�2�W�4���W�0�^�2�e�4�W�4�U�S�����2�S�W�2�W�`�W�2�S�����J�U�W�W�W�W�����2�

i-�2���0�e�W�2�Q���e���W���2���W�W�2�0�`���2���M�W�8�W�?�����2����Å8�����M�W�2���W�J�e�����8�W��2���S��� �e�����W�W�+���U���W������¥?���W�2���^�9�`���W�2�����W�W���+�W�2�e���2�������M������:�W���J�e�����������W�����0�e¥����e��¢���� �e���`���2�8�W�2�e���W�S�2�����e���e�W�W�B�2�
c-�������J�e�?�:���?�����e���W�2���W�`�W�2���:�W���W�����U�����J�U�W�W�W�W�?�W�����W�W�2���

���J�e�+Ñ0�����Ë�:�W�����e�#N�¥ 0�e�2�B¿�Ó��e�2�B�:���W�W�����������W��W�2� ���e�W�0�e�:�e�W� �`���
a-���2���e� �8�����W�W�2� � �e������e���W���`� �W� ����� �e����0�e�����2���`�W�+���0�e�W�������W�W���� ���e���������º���W�`�W�W�J� �W����2���������e���������������W�B�W�2����e���������W�2�`�������W���S���8�W�2��W�2������� �e�`���`�W�^�����:�W���J�e����2���W�2���0�e�W�2���e�2���
t-�W���2�����º� �e��� �`���W�2��������¶���W���0�e���¹�������W�e�¶���
i-���2�����?�e�2�M�W�2�������e���2�
l-�����e� �8�2� �:���W�W�����W�2��`�������U�����2���W���W�����8���W���2����2�e�����Q���2�W�����J�e�^�������0�e� �U���¶�W���:�W�����e��N��?Æ?�W�:�:�0�e���2�S�W�9�W�2����e�W�0�e�:�e�W���`���������W�9�����:�W���J�e�Q���2���W�2���0�e�W�2�+¾0Ã�À��W�2�M�:�������U�e������e�W�2�B�`�����?�2���8�e����� �e�W���?���2�M�W�e�e�0�e¥������0�e�^�:�������U�e���Q���e�W�¶�W���������� �U�W����»����0�����W�2�������

p
�������W�e�e�0�?���2�W�e�

~��W�W�W�`�e�W���W�`�W�M�����0�e�����2�e�����W�8���e����������������� ���8�W�2�e���`���W�2��������Q�2���������W�����B�W�2�e���W�������e�W�e�2�����J�e�W�S���4�W�2�`���e���W���`�����e�+�2����U���e���e���2���������e�W�2�`�W�2�?��»��������W�W���B�����W�2�?�W�����W�e½²�W�W�B�������B���e�W��2���e���e�����2�J�U�W�S�����e�B�2���e���e�����2�J�U�W�������e�Q�W�8��������� �U�W��¥����2�W�`��:���e�W�2�0�B��»��������W�W���^�e�:�W�0�B�B���W�:�:�0�e���2�U���W�e�2�W�2�^�e�2�^�����2���0���W�W����W�9�2�0�e�^�e�������`�`���2���J�U�W��¥Q�W�2�e���e��¢���� �e��� � �������W�2���U�e���¹�e��`�������W�e�e�0�e�Q�e�Q�2�����������J�e�e�?�?�2�W�+�e�:�W�0�+�2�e���W�2�¶���e�W�W�W�����W�2����W�����²�2�Ë�:�������U�e���¹�������`�¶�W�¶�U���2��� ���:���W�Q 0�^�W�2�9���e����������e���e���2���B�W�2�e�������W�2���e�W�������e�?�U���:���e�S���2�����B���������������:���W¥U���W�2�
r-���W���B�W�2�e�4���W�e�W�B�������W�+�2�����2�e���S�U�����Q�e���e���2�����4 0�2�������+�:�
r-�W�2�0�S�W�����W�W�2�`���e�B�W�e���8���W�e����¥e�U���U�:���e�`�e�U�W�2�W�4�W�4�����2���W���0�e���B�e��S�2�������W�������e�2�B�W�2�e�����e�Q�����e�����W�W�Q���2�������0�e���W���Q���8���:�
r-�`�0�?���2�����`���e���W���`�2�8�2�����W�2���W�����2�e�������e�2���W�2��� �?�`���e�2�W�2��O

% ������������%�� ����������%21 ������1������'&�¡?�S�������e���U�B�W�2�����W�e�2�2�W�2�M� �e������e� � �����W���W�2�B��»��e���4����� � �����4���?�W���2�e�`�W�`�U�Q�������W�J�e���+�e�2������`���W�W�`�����������`�W���U���:�����2���

()�* +�, -�.�/ 0 +�)�+�*/ 1�2�3 +�* / 4�.�, 2
developer

5�6�7�8�9�:!8�6�;�< :!= 7

Usability
study

>@?BA 3 2�, CD.�/ 0 +�)+�*@/ 1�2FE!G
> ()�* +�, -�.�/ 0 +�)�+�*/ 1�2�E!G�H

...
Questionnaries

I�J!K L M N'OQP�R S�N
T N'L J�U V'M J�WXP�R S�N

Scenario

...

Paper&Pencil.-
Plan

E!2�3 /'2�YD2�Z�[�3 0 +�)

Intermediary
results

...

()�\�[�/'+�*@/ 1�2[�3 . A 0] 0 / ^B/ 2�3 / 2�,

E!2�3 /'2�CD.�] [�.�/ 0 +�)

Questionnaires

Protocols

Interviews
_�`�OQa M R J!K

b�M c�J�`QdQS�L J�U M S�R
Capturefiles

c�M VfeDg�`�h�i�dQJ�N'L�K

 � 1������kjGF�� ,.��%����0$�����/�	�%0��!������������� ���� ! ��$��� ���������	�%

���	�,������

l�m�n m�o pQq r�s�n mDt�n q r�s�n u�o s�mDn t
vBw�x�x t�q r�s�n mDt�n q r�s�pQm�n w�x'y t
l�mDz�m�{ x�| q r�s�n mDt�n q r�s�pQuDn mDo q u�{

}@{ u�r�q r�s�uDr y�x o s'u�r�q ~Du�n q x r
���'m�����n q r�s�n w m�n mDt�n

� y q n q r�s y u�n u
�fz�u�{ ��u�n q r�s y u�n u

��o q n q r�s�n w m�t�n � y��
 � 1�������� "�� 1 !���
 !�������� ��	����� 4,.	�� ���������� ���� !*����������%21�
���	

c-������������%��0��!���
�	��������� �� ,.����������,
��
�����!��

��!�	�	�����%21 ����������%21 ������!�	����'&��?�^�W�2�`���2���W�`�W�2�`�`���W�2�����S�
e-�����2�+� �e�����W�2�Q�������W�J�e���+�W�J�e�����W��¥4�W�2�S�e���������e�����`�e�2�9�W�2����2�e�������U�W�2�������:�W���J�e�����e�

ject.
% ��$��� �	2
���%21 ����������%21 �������������� &`�8�2�^�W�����W�W�2�¶�`�e�W�0�e�W�e���W�M�

e-�W�0�e�`�W�2�����W���e�������`�W�2�����2�������`�W�����W�W�2���`���
hods.11

+ ���%���%21���%���	���1���%�� � ������	�%�&8�8���W�2�e�������W�2�U�e�W�U�W�2��� �e���������:�:���e�W��:���M�����2�������W�W�2�+�����J�U�W�W�W�W�M�W�����W�`�J�e�Q�������2�W����¥��W�2�e�?�`���e�2����:�:���e�W�B�:���^�����J�e���W�����2���W�2�9���W�W�M���J�e�W�W��� ���e�2�W��¥8�e����� �e�2����0�e�����2�e�U���W�e�2�2�W�2��¥��W�2���W�e�W�W�e�W�W���2��¥��W�����2�2�W���e�4�������W�����`�e�2����S���2�
"��)��,�������	�%�	-,0��!��0���������'&��8�2�����2�e���S�W�Q�W�2�e���W�2�S���2�������Q�`���

h-�������J�e�S�J�����W�W���B�W�������W�2�0�����W�W�M�W�2���W�����W�W�2�S���0�e�����2����¡?�
e-¢����e�W�`�`�����W�B�J�e�`�������M�W�S�e�������e�M�W�2�`���������W���2����¡?�W�W�2��������W�2����»��������W�W���M�e�2�Q�W�W�S�����J�e�����W�2�����S�2�e���`�B�����2� �e�e���`���
n-�W�2��¥2�W�2�W�����2�e�������������2�������e�������W�2���2�W���2���������:�:���e�W���

"���������%21 ��������&S�8�2�Q�W�����W�W�2�9���e�W�^�������B�2���?�����`�M�W�¶�^���W�e�W��¥�W�2�e���e�W�W�����������e�W���e�W�W�2��¥¹�2�����e��������W�����M����¢������2�������2�����+�W�`�U�Q�:�W�W�W�0�e����¥�e�2�����0�e�4�W�B¢��������W�W���2�2�e� �e���4�2�����`�W���U��������2�W��� � �e�W���W�e�W�W�e� ¡?�W�W�2�������!�W�2�W����2�e���S���8�W�2�������2�W���2�W�?���e���U�������2���
d-�0�e���^�e�`�����e�0���2�e���Q���?�W�2�Q�:���W�W�����W�2������e�W���e�W�W���2¥¶�W�2� ���0���J�e�e�W�.�`�������W�W�2����:�:�0�e���e�����

ntages:

I.
�8�2�¶�����W�W�W�2�9���2�e���¶�W�9�W�2�����2��W�2�e�?���e�������B�W�2�^�2�W���2�����S�W�W�`�^���:�:���e�W��W�¹�W�2�����2���W�������J�U�W�W�W�W�����2���W�2���0�e�W�2����e���W��Ñ0�`���W�W���e�W�W�2���

spect).

II.
�8�2�W�¹���2�e��� ���:�:�0�e�����2���e�`�������������� �U�W�W�W�W�W���º�:��� �����������e�W���W���e������������������W�0���U�e�����`���e���W���`�4�W���`�W�2�W�`�WÒe��W�2�����W�W���e�������e�W�W���2�e�W���

fforts.

III.
�8� �e�����W���º�W�2�e�Q���2�e���¹�W� �W�2��:���W�W�����W�2�`�����e�W���e�W�W���?���2�e���S�������W�?�U��W�����e�����0�e�SÎ����W���W�2�9���:�:���e�W�^�e�2���W�2��`���W�W� ���W�M�����W���W�W���¶�J�����e���e���2��� � �����W�W�:��W�2�e�������2���W���0�e�e�W�W���2¥U���W�2���S�W�2�W�������e�`���2���J�e�0���W�B���e���e���

n-�J�U�W���W�����W���`���2�
ation.

"�$��� ���������%21 ��������& �8�2�e�º�`���e�2� �W�2�Í¢����e�2�W�W�W�e�W�W���Í�e�2�¢����e�W�W�W�e�W�W�����e�2�e�
y
���W�����U�W�2���

d
�W�W�������e�W�e�

� ��������%21 ��!�� �������2!�&�Æ?�0�����2���W�2�9�W�+�W�2���e��¢���� �e���`���2�W�B���S�W�2����e�W�2��� ���e�8�W�2�4�e�������W�W�?�J�e�����e�W�W�W���M�������2�� 0�2�W���2���W���`�����
k-�W�2�M�W�������W�2�0�B���e�^���e�����`�W�2�e�������0�e�?�e���W�����e�2�4�W�2�:���e�`�e�W�W����W�?� �e�e�2���:�0�J�e���S�U���W�������M���������W�����0�`�e�2�Q�W�����W�0�e�8 0�^�W�2�W�S�W�2����W�������2�e�?���2�W�`�W�2���`���e�2�W�2�Q�������U�����W�2�����8�e�0�����e�W�� 0���W�2����e�W�2��� ���e�8�2�e�?�W�?���e�������W�2�e�8�2���������Q��»��W�0�e�2�e�8�����2�����W�W�W�2��W�B���W�������8¢����e�W�W�W���`�e�2�e�����`���2���W�2�S���W���������e�S�U�������`�S������2� �e�e�?�`���e�2�W�2��¥��`���e�M�W�2�e�¶�e�2�+�����2�����W�W�W�2�¶�W�2�e�S�2�
p-�����2���9�W�2����������¡.���W�����^�����2�W�e�W�2�B���������`���2�W�J�e�+�e�W�������W��¥�e���W�����e�2���e�������W�W�B���^�^�����W�e�W�W���9�W�W���?���S�����0�e�`�e���`�J�e���J�U�W������W�2���e�2�+�:���e�W�2�0�M�^�������0�e� ���W�W���¶���S�W�2�����e�����e�������W���¶�:���

11 ¡?�2���e���W�2�����e�����`�e�8�U���W�S�W�2����»��W�e�2�����U�W�2���e���������e�������

�W�2�^�����J�e�����W�W���2���?¡?���`���e�^�W�2�W�0�e�2�e�����W���º�W���W�2�+���W�2���W����2�e���������W�W�e�U������� � �������W�S�?�:���W�W���¶�������J���0�e�
ª �!���� �
������ �� 	����� ��� ��!�����������
 ��#����"� �!��� ����� ���!�����"��
��
lifecycleI����U�W�Q�������0�e� �U�����W�Q¾�Á�Á�À0¥U�W�2�e���W�Q���������2���S�W�2�S�����J�e���2�8�W�����W�W�2��`���W�2�����¶�U���W���2�º�W�.���2�������W�2���:���W�W�����W�2�º�:�����.�W�����W�W�2�
classes:

•
"���
� �	�������	���! ������� &?Æ?�W�:�:�0�e���2�4�e�W�W�0�e�2�e�W�W���B�����W���W�W���2�`�:���M����e���W���.���2�����W�M���������J�e�����8�8�2�B�:���������W���W�2�B���W���W�+����������2���0���W¥2�W�2�����0���W�`���U�W�2�����e���W���W�J�������W���2�����W�����W�����

•
����������������%�� ')����� &+�8�2�W�¶���W�2���¶���^�W�����W�M�e��¢���� �e�²�`���e������2�0�e���W�S���e���W���`��¥����W�2�����W�2�4���e�e���W�W���0�U�W�W�W�W�`� �e��� ���W�e�W������W� ���2���������)���W�W� �e���e���W�����W�W�2� ���0�e�����2��� �8�2��W�2�������W�W���e�W�W���2���e�2�e�W�eÒe���W�2�������J�U�W�����0���W�2�

• � �� �����������	�% ')����� &S�8�2�Q�e�2�e�W�eÒe���+���e���W�����W�`� �e���e�W���+�e�B��e���e���¶�W�^�e���9���e���������W��Ï��������^�W�^�W���9�e���e�����2�^�:���^�U�e�

���e���W���¶�U���2�e���W���e�
•

�
	���
���������	�% ')�����
:
Ï��������º�W�º�W�2� �����2���W���0�e�e�W�W��� ������W�:�:�0�e���2���e�W�W�0�e�2�e�W�W�������W�2�������������J�e�W�����`�W�����W���U�e�������B�W�2��W���e�������W�2�0�?�W�����W�W�2�����W�e���������

½²�2�e�4���W�2�^�����W�����4�����B�W� I����U�W�9���W�W�W�`�e�W���W�M�W�e���������W�e����¥4�W������W�0�e�`�W�2���`� �e���¹�W�2�8���2�e���?�����W�2�8���e� � �����W¥�� �e���¹�W�2�?�2�����U�0����S���e�e�:�W�B�e�2�9� �e��� �W�2�^�W�J�e�����W�Q�����W�2�^�W�����W�W�2���?¡?�W�S�W�����W�W�2����W�e�������4���e�?�U�S����� � ���������8�W�2�S���2�����Q���W���2�����2�e���S�`���������W�2�e��e���e�W�M���e���U���������M�W�^�����0�e�?���2�e���`���4�W�2�`�����:�W���J�e�`�W�W�:�����e���W��e���������^���e���W��¥U�:�W�����e� 0B�e�2�Q�:�W�����e��¿Q���2���²�W�2�W�?�:���`�W���B���
f-�:�0�e���2�������:�W���J�e���W�W�:�����e���W���`�

dels.

�	�
 �
 ��
�� ������� �����

Specification

Design

Implementation

Testing

Practice

Analysis ������� � � ��� � � �����! �
" �! #$�!���%���! �

& � # � ���
 � �'���! �

('� �
 �����
 � �'���! �

 � 1������*)��
	�%�%���,�����	�%�	-, ��!�� ��� 1 !��4
 !������ ��	����� �,.	������������� ���� ! ����������%21 /�����! ��!��
/�������� ,.�� � 4��	����� �,.	��
��	-,.��/������ ����$��� �	2
�����%���,.	� � �	�/���%21 ��!��4,.	���� ����������%21 ����������� 1������
��������	,+.-'/'0 /�����!0��%�,�	��2
� ���%21 ��!��� ������)�����
 �

�8�2���:� �e�������������?���2�e�����4����W�2�¹���W���2�Q���2�e�����`��������J�e�9�W�e�����²�W�²�e�W�B�W�����W�W�2����0�e�W�����!�8�2��� ���0�����2�� �e��� �W�2� �e�`�����2� ������e���U�W���`�²�W���W�2���`����������e�`���e�������M�W�W�2���J�e�W�B���B�W��:�������U�e�������e�e�^�J�e�¶�2�
c-�������J�e� Ñ0����� ���J�e�e���e�J���

' !�� � ����/ ,.��	�� ���4����"
+2!)��������	�% ��!������������� ���� !
"�$��� ���������	�% + ��	�,������ �
"�� 1 !�� + !�������� /�����! ���

d-����,
� + ����!���Ó0���8�2�Q�`���W� i-���W� �e�0�����W�W�W�W��� ��� �W�2��`���������W� �W�2�Í�2���e�`�e����e���^�W���B���e�����������W�M�
c-���������e�2�W��� �W���e�������!��W���2���0�.���0�e�W��� ���2�0�e���e��W�2�����W�2���W�4�e���M�W���e�������M��2���J�e�W� �e���e��� ���e����������`���W�2�����W���e�W�W� ���e����������e���U�W���`��� ���0�e�W��������2�e�2����� �������W�
�����`��e�W���2�²���W�W�Ë�2�W���Ë���:�:���e�W��e�2�¹�������W��¥M���¹�W�^�W���W�2��e���W���W�2�e�¹�W�2���.�e���`�e�W�

undone.Ïe�e���.�W�2�0�e�B�Q���J�e�W�Q�W�2�
e-���e�e�W�W�������^�����J�U�W�W�W�W�Ë�
s-�������W�¶�W�2�W�Ë�W�2�����������W�
p-�`���2�����e���W���W�4���e�2�W������������W�����W�W�2�º���e���W��Ñ0�²�e����W���e���������W�2���:� �e���M������������2�e���������?�W�2�Q���W���2�����2�e���Q�`�������WÓS� �e�����M���0�e�W�e�W�9���W�e�W�Q����e�:�W�0�S�����0�e�S��»��W���2���W���?�`�����W�:�W���e�W�W���Q���8�W�2�S�����0���W�2�W�0�e�:�e���S���e��U�`�2��� ���:���W�2½9�e�W�W�W�2�M�B�����2���W�����W�2�M���W�����Q�e�:�W�0�Q�������+���W�0�����W��2�����2�����������J�e� 12¥4�W�9�:�W�����e� 0+�e�2�+�:�W�����e��¿9�W�2�W�B���W�0�²�W�B���

g-�������W�������0���J�e�e�W���W�?���`�W�2�����0�e�?���2�����U�W�2���W�2�������W�W�
ation.

CONCLUSION�8�2�B���2�����+���W���2�U���2�e���B�`�������4���������J�U�W�W�W�W�Q�����e�W���e�W�W���9�:�
l-�:�W�W�W���W�2�����e�������2���e��¢���� �e���`���2�W�?�W�B�������0�e� �U���W�2�4���e���������?���

m-���e���2���2���W����¥8�����W�e�W�W���M�e�2�M�W�^�Q���W�2�^�W�2�e�4�:�e���W�W�W�W�e�W�����W�2�B�:�
r-�W�2�0�`���������W�����`���2�W��½²�W�W�M�W�2�`���W���2�����2�e���`�`���������W�2�`�:���e�W�2�0����e�����e�¶�U�¶�������Ë���W���J�e�W��OB�W�2�¶���W�2���W�M���2�e�����9�2�����Ë�W�9�U������e�����B�����W�U�8�2���Q���W�:�:�0�e���2���W�2�W�0�e�:�e�������W�`�W�2�S�����:�W���J�e�S���2�
i-�2���0�e�W�2�S���e���������?���2�����W�S�U���e�2�e�W�eÒe���Q���W�2���������e�W���Q�W�2�:���e�
a-�W�W���9�:�W�����U���W�������9�����J�U�W�W�W�W�M�W�����W�0�^�e�2�9�����:�W���J�e�M���������W�����0��J�e�M���e�2�W������¡?�?�W�2�W�?�����W�2�?�^�2�W���M�����W���2�W�W�e�S���������W�W�`�WÒe�W�2����e�+�U�+�������2�S¡��`�W�W�����W���2�+�W���e���e���2�������2�����W�2�+�����J�U�W�W�W�W������e�W���e�W�W���+���e���������M���e�+�U�+�����2� �e���W�W�������2�W�Q�U�¶�e�²��»����0�
i-

12 Å8»����0�����W�2�S���W�W���e�W�W���Q�W�2�e���W�2�S���W���������0�e�������W�2�4�����J��������������������`���2�W�W�2���W�2�����:�:���e�W���W�`�?¢����e�W�W�W�?�`�e�2�e�����`���2��� �e�e�`���

���2�����^�����0�Q���W�W�2���������2�����W�������Q�W�9�����:�W���J�e�Q�0�e�����2���`�W���`����W�^�����:�W���J�e�`�W�����2�2���W�����e¥8�W�2�e���W�S���2�`���4�W�2�`�������W�J�e���^�W�J�e�����W�����Ê4¡?~�Å8�8½²�W�W�����������+���W�e�W�^�+�:���e�W�2�0�+���������W�����`���2�S���e���������� �U�W���?¡º���e���W��� �W�2�e�S�:���W�W�����Q�W�2�W�S���e�W�2��� ���W���M�������W���
n-�0�e���e���?�W�2�?���:�:�W���W���2���S���������J�U�W�W�W�W�S�W�����W�4���2���e�`�������W�e�U¡?�2���W�2�0��:�W���W���W�2�e�`���e�9�U�9�����e���������²���W�W�²�������²�¶���e���W��� �W�^�W�2��e�2�e�W�e���W�?�����W�2�`�:���2���e�`���2�W�e���W�����W�W�2�M�`���W�2������¥8���W�������W�e�W�W�B�W��������U�W�2�e�W�W���Q���W�W�Q���2�����W���������U�e�������W�2�e���������W�B�����`�S���W�W�Q�Ê4¡?~�Å²���e���W���`��¡?�W���+���W�:�:�0�e���2�?���e�e�B���S�W�2�W�����e�e�W�W�2�9Ê4¡?~�Å���e���W���`�M�W��Ê4¡?��Å��W�����W�M�e�2���W�����������W�����`���2�����e���W���`�^�
i-�e�����W�W�M���2�����W�B�U�Q�:�����2��¥4���W�2���Q�W�2�e�����:�:�0�e�B�W�2�M���2���e�W�����?���
s-�W�e�2�����M�U���W���������W�2���������2�W�0�J���J�e�M�W���W�2�¶���������W�����`���2�^�e�2�

usability.

REFERENCES
1.

Î������e�2¥2Ð?� ¥��P%���� 1���������%21����������� ���� ! ��%���	���!�� % ��$��� �	2
�����%��
Lifecycle

�� 0� O4Á����U 0�2�W�0�e�2�e�W�W���2�e��Ê4���2�:�0�e���2���S���Q¡8�����W�W���Å2�e�����2���`�W����Ñ0 0Ê4¡?Å=/0Ç � Ó0¥2 0���W�e���U���W¥ Â ���2�`Á�Ç�Ç � �
2.

Î��e�WÒe�0�e�W¥���� ¥����
!�������,
! ����� +�	-,.��/�������&(')��,
!�%����!&
+�	-,.��/�������& H ��%��21�������%�� 6 +�	-,.��/�������&������� ����
	���������,
!�������%21�6
Unternehmensmodellierung

�B�e������� �e���`¥B¡?���e��� J?�0�e�W� ¥
�����W����� �U�0�e��¥8Á�Ç�Ç�M��

�
� ����������� ����� �
(Ra)

Proto-
type1

�
� ����������� ����� �
(Ra)

�
� ����������� ����� �
(Ra)

Prototype2 Prototype3
Pilote

system

Detailed
design

� � ����� ��� � ������������ �� ����!
����"���# � ���������
Benchmarks

Coding
Modal
test

Integration������� ����
Acceptance

test

Service

Software
requirements

�
 �$���� # ��� ���� ��"�� ���
%�� &' �(���(�� �"�� ���

Product
design

) ��� �*�# ��� � ���������
� ���� � ��*�"�� ���

Development
plan

+,# � � � ��*�� -� ���� �����

 � 1������/.
,�	�%�%���,�����	�%0	-, ��!������ 1 !���
 !���������	�����)/�����!0��!�����
�������)��	�����

3.
Æ?���2�2�W�2��¥UÌ��U�e�2�BÆ?�J�e���e�2¥UÌ�� ¥.��,�����	�%�&(�
��%���������� % ����� 1�%

. 0� O��8�0�J�e�¹½²�W�2�����e�e� Ñ0Å8���W�W���eÓ � ����%21���%21 % ����� 1�% ��	
+�	-,.��/������
�2¡?�����W������½²�����W���e¥8Á�Ç�Ç � �

4.
���J�e�W���W��¥ I�� ¥����������� �����%21 ��%�� � ��/���������%21 �����
������������,
!��������21� ���,
!��������#$�	�% +�	-,.��/������ 6���������
����-,.��%21
��%�� H ��,
!�������������� ��� � ������
����� �����
� ��%���� � ��%21���	������ ,.
	�,
!�� ����%���� H 	����� �� ����%����

Schichtplangestaltungssystems
� Æ?� ���W���`�J�J�U���W�W¥~��2�W���0�e���W���e���?�W�������U���e��¥8Á�Ç�Ç�É��

5.
���e�e�2��¥.Ê4� ¥ +�	-,.��/������ "�%21���%���������%21 ,.	�� ���������� ���� ! �
�P%���� 1���������	�%�	-, !�������%�,.��,���	�����,.	�������������%������ ,.��,�������%���	
��!�� ��	-,.��/������ ����$��� �	2
�����%��� �� ,.�
, !�,� ��e�U~��2�W�0�e�������2���2�B�>I��¤ ���2�0�e�e�^Æ?�e�W�eÊ4���`�
	 ��¼^���W�W�W�`�����W�#I���ÆÍÊ4���2� �e�Ë�W�
I��e�2�`��� ����� ')�� ���,�	�������%���,�������	�%�� H �� ��������������

Program
¥2¼^���2� �e���e��Á�Ç�Ç � �

6.
���e������£0Ð?���W���W�0�e¥�½²� ¥�Î��e�������2¥�I�� ¥������e�2���W�����2¥?Ê4� ¥

Die"���1�	�%�	�����% ��	�������%�� � ��� �����
� �� ����%,
!���������������������$�����	�����%���%21 ,
����+�	-,.��/������ ���������������

.� /0�W¥2Ð8�e�2Ã�¿�È�Ç�Ç�O����8Á�Ä�Ä�£�Á�Ä�Ã��
7.

¼^�e�e�2����¥�Æ?� Â � ¥4�8�2�Q~����J�U�W�W�W�W�MÅ8�2���W�2���0�e�W�2� L��W�:�����e���W���¼^���e���e� K?�e���:�`�e�2�+Ì����U�W�W���2�0�e��¥� 0�2��� ¥�K?�e�W�W�:���e�2�W���2¥����e�Ïe�e�e�2���W������¥8Á�Ç�Ç�Ç��
8.

Ð?�W���W�����2¥ Â � ¥ ���������� ���� !�"�%21���%���������%21���¡?Ì�Ìe�e���:�:�������W���2�e�W¥Ð?��� Â �0�e�����BÁ�Ç�Ç�N��
9.

�8�����0�e�`�e�2�2¥ I�� ¥ ���2�e� ¥
Software-ergonomische

Evaluation
� % ���,������� ,.������%�" � � % �P+ ���	� ¥�Ã�� ¥4�2���������W�W� ¥��� ¤ �e���e�W�0�e¥2Î��0�e�W�W�2¥8Á�Ç�Ç�Ã��

10.
Ì��:��I����0�e¥ Â �BÌ�� ¥ ���������� ���� !*"�%21���%���������%21�&�����1���%�����������	�%
����� �
����������$����
	�� ��� " % � & + ��	��.�
��������%��21�������%�� 6+�	-,.��/�������& "���1�	�%�	������ ��% ����� + ���.�)������Ìe�e� � �����W� J?�0�e�W�e��¥½²�W�2�W�0�e�W�2���e¥8Á�Ç�Ç�Ã��

11.
I����U�W�2¥ Â � ¥�� ��%�����	�	�� 	-,*���������� ���� ! ')��������%21�&�� 	�/ ��	

+ ���%26 % ����� 1�%26*��%�� �
	�%�����,���" ,�,.��,�����$�� ')��������¥ Â ���2�½²�W�W�����²�����2��¥2 0�2��� ¥8Á�Ç�Ç�0��

12.
���`�W�W¥�Å8� ¥��������� �� ���������� ���� ! ��$��� ���������	�%�& � , ��!�� ��	�%�������%
/�	�%�� � ,�	���� ��	 H 	�!����������26�H 	�!������������������.1�	���	���!��

mountain
�` 0�ËÌ��e� �e�W���¶½²� Â ���e���e�¹Ñ0Å8���W�W���eÓ0¥ Usability"�$��� ���������	�%*��% �P%�����������!��`�8�e�e�W��� � Ïe�e�e�2���W��¥ L����2�����2¥

1996.

13.
���W�W�`�J�e�W¥
I��4Ì�� ¥���" �P%-,.	�����������	�% +�����$���,������� 0�¶¼^�W���2�e���Å8�M½²�W���W���2��Ñ0Å8���W�W���eÓ0¥ ���������� ���� ! ��% + ����,�����,�� 6�� 	�/
�
	���
���%������ % ��$��� �	2
 ��������& ������%��� ! + ��	�����,�������¡?ÌÌe�e���:�������W���2�e�W¥2¼^�e�����e���2�������W�W��¥8Á�Ç�Ç�0��

14.
��� �e�J�����WÒe¥`½²�`½²� ¥ �P��
� �������%�����������%21 ����� �P+�����j.) -�&
"�$��� �������	������ � ����1� �����,
! ����� % ���� �	21���%���/���,
�� ���%21 ���������� ��
�����=H ����!�	������������4��+2"�&(')	�	� ���� % � ��%�� ������H ����!�	����

Dialognetze/Constraints
� Æ?� ���W���`�J�J�U���W�W¥ ~��2�W���0�e���W���e�½²�W���2¥8Á�Ç�Ç�M��

15.
�8�2����� �e����¥ ��� ¥UÐ?�W���W�����2¥ Â � ¥.��������������%21 ��!��0���������� ���� ! 	-, �
������� �P%������ ,.��,�� +�����%���������¥SÌe�e�����������W�2���M¡?Ê4¼(Ê,�� /0Ç�ÁÊ4���2�:�0�e���2����¥2��� N�N�¿�£(N�0�Á�¥2Ð?���¶�8�e�W���e�2��¥8Á�Ç�Ç�Á��

16.
½²�e�2���`�e���2�0�e¥ Â � ¥�"���% � ����� � ���21�,
�������=H +�& ��%��� !)����%
� ��� +������� �������	�% ��%�� � �

wer
����%21 $�	�% + ��	���	�� !�
���%��������

Entwurf.
 0� ¤ �2��Òe���W�W�W����Ñ0Å8���W�W���eÓ0¥��8�e�����2���W�U�e�2�`Ì�Î�/0Ç�É�O

Prototy
�������>I��9Î����2���WÒe���2���������2�2�W�W�W���W���W�W����Ñ �����0N�¿�£ 0�Ã�Ó0�

Pader
�U���e� O ~��2�W���0�e���W���e� £ ¤ �����e�`�

hochschu
�W� Ì��

-���0�J�U���e�2¥�Ï�Î¹¼^�
thematik/

 0�2�:���e�`�e�W�W���?Ñ0Å2�e�����2�W���2�����e�W�
-0	���� � ��% � � �P%���������������$���% +2!)����������%�¥ �����:�SÁ�Ç�¥8Ð?���������U�0�Á�Ç�Ç�É�¥2��� N�¿

-
0�Ã�Ó0�

17.
½²�e�2���`�e���2�0�e¥ Â � ¥
���=H +�& ��%��� !)����%*����� ���������=H +�&
"�������	������=H +2" % ��~��2�W�0�e�W�e����� Òe� ¤ �?¼^��Å8Æ �e� 0�2���W�W�W��� �>I�� Ì����e���2���W�����W��¥ ¡8�U�W���W�W���2� ¡?�2�������e�2���W�
Kognitions

�����e���2���W�����W� �8�����2�2�W�����2� ~��2�W���0�e���W���e�Æ?�J�e�`���W�e���W¥8Á�Ç�Ç�M
18.

I����W�W�0�e�0�e¥,���4���2�+�8�����0�e�`�e�2�2¥ I�� ¥�"�$��� ���������	�% 	-, �������
��%������ ,.��,����'&�" � � % �P+ ��� � � ,�	���
����
!���%�����$�� ��$��� ���������	�%
approach

�� 0� O�Î����2�e���W��� �¹ 0�2�:���e�`�e�W�W���Q�8�����2�2���W�����e¥4N�¥���8Á2N�É
Q¶Á�0�M��

A Usability Designer at Work

Bengt Göransson1,2
1Uppsala University, Department of Human-Computer Interaction, P.O. Box 337, SE-751 05 Uppsala, Sweden

2Enea Redina, Smedsgränd 9, SE-753 20 Uppsala, Sweden
Email: Bengt.Goransson@enea.se

ABSTRACT
In this position paper I introduce the idea of having a usability designer role in development projects to enhance a
user-centred design approach. This role is responsible for the usability in all phases of development, integrating
usability design into the development process. It is my experience that there is a need for this kind of role,
advocating for usability in the organisation and in all projects.

1. INTRODUCTION AND PROBLEM BACKGROUND
There is no sole and exact definition of user-centred design (UCD). John Karat from IBM classifies UCD as: “For
me, UCD is an iterative process whose goal is the development of usable systems, achieved through involvement of
potential users of a system in system design.” (Karat, 1996). I regard user-centred design as a process based on an
attitude. The ������� must be drawn upon the key principles for developing usable systems articulated by Gould et
al. (1997): Early—and continual—focus on users; empirical measurement; iterative design; and integrated design—
wherein all aspects of usability evolve together. Further on, it demands the “users” of the process (the developers) to
have a user-centred ���	�
�� and act accordingly. I also believe that to be really effective, user-centred design must
become the standard operating procedure for a developing organisation. Otherwise it will always be questioned and
degraded. If user-centred design becomes ���
��� to develop systems in an organisation there is no longer a need to
speak out loudly about it or to question it. No matter if it is an in-house organisation or some other type of
organisation, support from management is crucial to achieve this. Further on, there must be an understanding
between the development organisation and the organisation buying the system to work according to a user-centred
design philosophy. It is important to consider usability and user-centred design as a part of the development process,
rather than something that is added on. I have through my practice and research encountered some major obstacles
for introducing user-centred design:

• There are problems in understanding and recognising user-centred design. State of the art development
processes do not honour usability and user-centred design, but organisations think that it can be added on
without any cost.

• Lack of competence in usability and user-centred design. These topics are not sufficiently integrated in
higher education and practices.

• Usability is often taken for granted and does not get any attention.
• If a client in the tender process (where a client orders a system from a developer organisation) does not

specifically order a usable system, i.e. have usability requirements built into the requirements specification,
the developer organisation is reluctant to spend any additional resources on making the system usable.

Starting to use a UCD process and, further on, to use it on a regular basis, is a great challenge. It surely has to be a
step-wise adjustment to the “new” paradigm and for most organisations it will never be a total shift, rather the
integration of some activities and methods to their present process and arsenal of methods. In my practice and
research, I have focussed on the development process and tried to challenge some of these obstacles from that angle.
����	�	��
���	�� and the
���	�	��
���	���� development role are attempts to do this.

2. RESEARCH METHODS
I work both as a practitioner and researcher and have the opportunity to use existing methods, and partly developing
new methods and processes, putting them into practice and using them as activities in the development process. In
this way I get the chance to study, analyse and reflect upon the true value of the proposed course of actions or
procedures. As a result of these studies I can further improve the methods and practices to formulate new theories
and so on. This is an iterative process that has the potential to engage all parties involved in a system development
project. The result of such a project is not only the developed system, but also knowledge and experiences about the
process itself and the practice of it. My research approach falls into the category of action research.

Action research is a methodology that has the dual aims of action and research (Dick, 1993):

• ���	�� to bring about change in some community or organisation or program.
• �������� to increase understanding on the part of the researcher or the client, or both (and often some

wider community).

The mix of action and research can be tuned to the level that is accurate for the researcher’s aims. One important
aspect is that the researcher takes part in the studied situation, for instance a project, not just as an observer but also
as a fully participating project member. Action research as a research method makes it possible for the researcher to
apply his/her theories in practice, in a realistic work situation, take action and make a change in that situation.
Action research is not like controlled experimental research with fixed parameters in a laboratory setting. Instead,
action research projects are conducted in real life projects at the practitioner’s work place.

3. DEFINING USABILITY DESIGN
Usability design is my attempt to “put a face” on user-centred design and try to get organisations and projects to
start to adopt parts of the philosophy behind user-centred design. The main rationale behind the concept is that
clients (buyers of software development) want the design solution. They are not particularly interested in all the
fancy methods and theories that Human-Computer Interaction (HCI) and usability people talk about. I see usability
design as an unpretentious and lightweight UCD process that can work in practice. Usability design is to some
extent the marriage between usability engineering, and user interface and interaction design. For those familiar with
the subject, it is supposed to be the best from two worlds: Jakob Nielsen (usability engineering) and Alan Cooper
(interaction design). Usability design is also an expression that Gould et al. (1997) used when describing their
principles for UCD. In an attempt to define usability design I like to say that usability design is: �

�����������

���	��
��������
���
�������	��

�����
	�������	��
��������
����	�	��

���	�	��
���	����	��
�	��
	�������	��
���	���

���
������	�	��
������	��
���	��

���
	����������
����
���
�
���
	�����	��
�������. Usability design is one way to
focus more on the solution, the design, than, e.g. usability engineering does, but still have one foot in usability and
HCI. Is, then, usability design just another term for usability engineering? No, it is inspired by usability engineering
but is focused more on design and integrated user-centred design. It is my experience that, in general, developing
organisations have difficulty in understanding the full benefit and potential of “pure” usability engineering. Usability
engineering as defined by Preece et al. (1994, p. 722): “an approach to system design in which levels of usability are
specified and defined quantitatively in advance, and the system is engineered towards these measures, which are
known as metrics.”, focuses traditionally on metrics for measuring usability. Here we have too much analysing and
evaluating, and not enough of more pragmatic design solutions. On the other hand, just user interface and interaction
design is not enough, so usability design may be regarded as weaving them together.

The figure to the right is a result from my
research and practice, and describes
roughly the steps in the development
process that are focused on usability
design aspects. The principles for user-
centred design by Gould (see the upper
right corner of the figure) are there to set
the ground for the usability design
process. The process should be used
iteratively and can be used together with
other development processes. The
process contains activities that can be
carried out with various methods. The
exact selection of methods is done in an
earlier stage (when planning the UCD
process). It is still a framework and is not
fully developed or evaluated. It serves
the dual purpose to be an understandable
and communicative arte-fact, and a
process that guides the user-centred
design process.

����������	
����
�
�

��
���

�����	���

�
��
�����
�

���	��	��
�
��������

��
	����
��
��� ����
�
���
�	��
���

��
����
�	�
�
�����

��� ���
��	 ���� �	!��	���	������
���

��������

"��#$��

������	��

��
���

%��
��	���

���

�
��	&

��
����
�	�
�
�����

'�	����	���
��
���

(��	�	���

%��
��	���

���

�
��	&

��
����
�	�
�
�����

��	��
���
��
���

%��
��	���

'�	�������
���������	�

���

�
��	&<HV

1R�

<HV

1R� 1R�

<HV
��
����
�	�
�
�����

(QHD�5HGLQD�$%��YHUVLRQ����

���
�����	

���������	
����
	�
	������ ���������
�

)��
�
�
)��
�
�

* %��
���������	����
�����
�����
��

* %�������
����
������	

* '	���	������
���

* '�	����	�����
���

�������������
���
�	���!��������+#+�+�
	!�����������	
����
��

Figure 1: The usability design process.

4. USABILITY DESIGNER
The usability designer development role as a usability champion, and an advocate for usability and user-centred
design is a representative for the usability design approach.

Background to the role was the urgent need for
a practical way to really be able to practice
usability and user-centred design. During my
time in different industrial as well as in research
projects, I had noticed the difficulties to bring
in—and to practice—user-centred design. I had
realised the obstacles for practicing user-centred
design mentioned earlier. Many of the
organisations I worked with were not committed
to, or even aware of, usability. So I defined the
usability designer role as a kind of usability
champion on a user-centred design level rather
than on a user interface design level, with the
explicit purpose not to introduce just another
user interface designer, but someone with the
capability to work for users’ best and user-
centred design throughout the whole
organisation and in all projects.

���������	
���
�	��
�����������	
���
�	
���������	
����
��

We take care
of patients…

Objects

Data model

Tools

How?

Why?

When?

���������	
���
�	��
�����������	
���
�	
���������	
����
��

We take care
of patients…

Objects

Data model

Tools

How?

Why?

When?

Figure 2: The usability designer as a development role to
facilitate the user-centred design process.

The role is not an easy one, but when successful, promises to make large impact in organisations and projects. The
characteristics of the role are:

• The usability designer is responsible for keeping the development process user-centred, focusing on
usability aspects. Planning and performing activities related to the usability design process and making sure
that the results of usability activities are further used in the development process, is very important for the
usability designer. The role must also be given the authority to advocate for the users by management both
in the development organisation and in the user organisation.

• It is crucial that the usability designer takes an active part in the design and development process, and does
not only become another project manager. The usability designer can make a large impact by being present
in most situations where the design of the system is discussed. By promoting a user’s view in every
situation, developers and others may always be forced to think twice before doing anything that would
compromise usability.

• I emphasise the importance of a person participating in all the user-centred activities, to prevent valuable
information from being lost in the transitions between the activities.

• The usability designer can to some extent be seen as a “discount” usability role, as it combines several
skills in one role and in an efficient way copes with the user-centred design process.

REFERENCES
Dick B., (1993), ��

����
��
��
��
���	��
��������
����	��, available on-line at

http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html, download date 2001-01-16.

Gould J. D., Boies S. J. & Ukelson J., (1997), ���
��
 ��	��
������
!������, in Helander, Landauer & Prabhu
(eds.), Handbook of Human-Computer Interaction, Elsevier Science B.V.

Karat J., (1996), ����
"������
 ��	��#
$
��	��
��
$
��%����, in the ACM/SIGCHI magazine, interactions
july+august 1996.

Preece J., Rogers Y., Sharp H., Benyon D., Holland S. & Carey T., (1994), �
����"���
���
&�������	��, Addison
Wesley Publishing Company, Wokingham, England.

���������	��	�	�

�	�
�	

������
�	

�����
�����

UCD2001pospap.fm Page 1 Friday, May 25, 2001 12:42 PM

���������	��	�	�

�	�
�

������
�	�����
�����

��� ���� 	
��
 	
� ��� ��
 ���� ��� ����������� ����	���
� �������� ����

�
 ����� �
��
� ��� �
�������
	 �
��
 �������� �
 �����
�
�� �
 �������
������
���� ��
���� ��� 	��� ���� �
������

���� �
�� ���� ����
� ������

��� ����� �����
��
� ��� ��
����� ��
������ ���� 	
��

� ��� ��������

	

��� �������� 	��������
�
� ���
��� �� ����������
� ��
���� ���� �

�

 ���
�
�	����

	 � �
���
	 �
� ������� 	
� ��
��� ��� ��������
� ����

�
�

Adapting users

� ���� ����
 ��� ������� 	
��

	 ��� 	����
	 ��� ��
 ���� ��� �����
��
����
	 ��� ����������� ����	���
� ��� �

�����
� ��
 ���� ���� �����
�
��

�
��� �� ������� �
 �����
� ! ����� ��
���
	 ������
���� ��� �
�	��

��
���
 ��
 ���� ��������� !
 ��	��
��������
 ��� �����
�
�� �
������
 �

�����
� "� "��� ���������� ���� �
�� ��
���

�

������ �	
�
�

�������������
 �������
���� ���������� �����������

����	��
�
�� ��

!�������
� �� �����"� #�����	� $�������
%&' () *+ &*(,-

UCD2001pospap.fm Page 2 Friday, May 25, 2001 12:42 PM

!� ���
��� ���� �
��
 ��� �
 #��� ��� �
������

���� �
�� ����

����
� ����� ����
���
 �
�������� �����
������ ��� �
 ����
	 ����

�������� �
" �
 �
� ���

	�"���� ����� �
 � ����� �
������� �� �
��

�������� �
 ��� �����
�
��� $��� �� �
��
 �
 �������� "
�# "�����

��� ��
 ������ ���� �
������� "��� �
��
 �������� �

������ ���

�����	��� ��� ��
 �
���
�
� ���� %

� &'()*+�
������
���� "
�# ������ ��" ���
�������
 ��
 ���� ���	
���� �����

��� ��	������
	 ��������
�� ��������������� ��
���� ��� ����
�

�
����

	 �
������
���
���� ���������
��� ��
����� ��
���� ��
 �
���� ������� ,� ���
�� ���� ����� �

���� 	
� ��
����� ���
�
������� ����
����
�
	� ���� ���������� ��		���

����
� �� �
�������
� "��� ������
 �� �
�������� �
� ��� �������� &
��
���� ��
��
 &'((-++� ,� ���
���� ���� ����� �
 ���� 	
� ��
�����
�

����
�
�
�� �
 "��� �
 �
���
 	
� �
� �������� ��� ������ 	
��
�

�

�������� 	��������
� ��������
� ��� ��� �
�
������
�
	 �
���

	 �
�
������� ���� ��� �� �
�� 	
��������� �� 	��������
�
 �� ��
������ ��������

�����
�����
�

.���� '((/ � ���� �
������� �� ����������
� ��
����� ��
����
�
������ "��� �
�������� �����
���
 �� � ����� ."���
� ���#� ���

��
����� �
�� ��
 ���� �
 �����
� �������� ��
�� �
���

	 �
� ��������

���� ��� �� �
�� 	
� ����

�

	 ��
������ ������ ��
����
� 0
�
���
������ �������� �����
�����
� ��� ��

� �� � �
���� ���
�������� ������

����������� ����	���
�

$� ��� �� ��� ������
	 	��
����� ���
 ��
���� ��� � 1�2 ���
�
 �
 ���

,��
��� 344'� 5���� �����
�
� ��� ������������ �� ��� �
���� ���
����
����� ��� �� 	
��� �� ����677"""���������
�78
���
7���������
�
7

����������

UCD2001pospap.fm Page 3 Friday, May 25, 2001 12:42 PM

References
%

�� 9�� :� &'()*+� 1������

	 ���������� �� ���� �������� ��

����� ���
�
 �� �
������� .�
���
� ��� ;)* �
�	������ ��
�����

���
� �� '<'�'</� 5�
������ !�
�������
��
��
� %�� �� &'((-+� =
�� ���� ����
����
� ��� �
�
	 � ���� ����

�
�� 1�2 ���
�
� >�����
���
	 $�
���� !�
�������

UCD2001pospap.fm Page 4 Friday, May 25, 2001 12:42 PM

Learning from traditional architects

LorraineJohnston

Schoolof InformationTechnology
SwinburneComputerHumanInteractionLaboratory

SwinburneUniversityof Technology
Hawthorn,Australia 3122
ljohnston@swin.edu.au
Fax: +61 3 92145501

Abstract

Thispaperfocuseson lessonsthat canbelearnedfromlookingat thehistoryof traditional
architecture. Whenarchitectsstayedaloof fromthecommonbuilding activitiesduring the
IndustrialRevolution,a low standard of building resulted,andtheneedsof thepeoplewere
madesubservientto theneedsof industry. Canweapplylessonsfromtraditionalarchitec-
ture to software?

This paperreflectson the role of usabilitypatternsand suggeststhere are probablyother
lessonswhich canbelearned,for example, in termsof affectiveinterfaces.

Keywords: Usability, architect,softwareprocess,historyof architecture

1 Introduction

Heath(1991),apractisingarchitect,publishedahumorousbookabouttraditionalarchitectsandtheir
profession,writing:

“Weall knowwhata perfectbuilding is like. It nevercracksor leaks.It finishes,if it agesat
all, gracefully. Thelayoutis convenientfor its occupants,andexplainsitself to thestranger.
Theroomsare neithertoo large or too small; their shapeis just right for what is donein
them.. . . , yetit doesnotcosta fortuneto run. . . . Cleaningandmaintenanceareeasy. The
building is secureagainstrobbery, andresistsvandalism,or neverattractsit. . . . ”

Heath’s descriptionclearlyflagsthefactthatmany of theconcernsof traditionalarchitectureparallel
thosein thesoftwareindustry, i.e. reliability, easeof use,fitnessfor purpose,efficiency, maintainability,
security, etc. While therearenumerousanecdotesaboutthefallibility of architects,we still valuetheir

1

serviceswhenwe wish to constructa complex building—or in many instancessimply to altera home.
We expect the architectto producea designwhich is, amongother things,usable. For example,we
would preferthatdisabledaccesswaspartof theoriginal design,andnot addedin a piecemealfashion
afterwards. Similarly, we would like a building orientedto optimizethe naturalwarmthand light in
winter, while minimizing the impactof thehot sunin summer. Suchattributescannotbebuilt in later,
but mustbedesignedin from thebeginning.

Are therelessonsto be learnedfrom the disciplineof (traditional)architectureaboutproducinga
usableproduct?

2 Architecture and History

The activity of architectsis documentedasearly as the third millennium B.C., but sometracesof
architecturalpracticepredatethis substantially. For example,thereareextant architecturaldrawings
fromasfarbackasancientEgyptandMesopotamia(Kostof,1985)—theword“architect”actuallycomes
from theGreekwordmeaning“masterbuilder”.

Historyrecordsthearchitectasbeingtheoriginalmaster-builder, responsible,for example,for thede-
signandconstructionof medieval churches.By theseventeenthcentury, thearchitectwasstill dependent
ontheguildsandtheircraftsmen,whoincludedmasons,carpenters,carversandcabinet-makers,butusu-
ally hada clerk of worksto take chargeof theactualconstructionon thesite(Richards,1974).During
theeighteenthandnineteenthcenturies,therole of thearchitectchanged,becominglesspersonal.The
buildernow controlledthecraftsmen,andthearchitectvisitedthebuilding sitelessfrequently, commu-
nicatinghis instructionsmainly throughcomplex setsof diagrams(ibid). Theperiodsaw thedivorceof
designfrom construction,andarchitectsbecamecaughtup in therevival of many differentarchitectural
styles.Whentheindustrialrevolutionbroughttheneedfor differenttypesof buildings,suchasfactories,
mills andwarehouses,architectstendedto have little interestin copingwith theconstructionneedsof
theindustrialage(Stevens,1965).

“. . . while the architectural championsof Gothic and Classicwere makingthe head-
lines,hard-headedpracticalandindustriousmenwere quietlychangingthefaceof Britain
with their railwaystationsandtheir viaducts,their mills, factoriesandhousingestates.

Thefactoriesandmills . . . and thehousing, squalid,insanitary, shoddilyconstructed
and unspeakablydreary, cried out for the vision and aesthetictouch of the architect, but
they were left to builders andtheir factory-owningclientswhoseinterestslay not in social
welfare or visualbeautybut in industrialexpansion.Theurbanslumwasborn.”

It wasanew playerwhotookresponsibilityfor thedesignandbuildingof thesenew typesof structures—
thecivil engineer. Graduallyhedevelopedascientificapproachto thenew constructionalformsandnew
building materials.Eventually, theprocessof constructinglargebuilding workswould involveateamof
specialists:thearchitect,theengineer, thequantitysurveyor andthecontractor(Stevens,1965).

Duringtheeighteenthandnineteenthcenturies,architectswererathersidelinedwith respecttochanges
tobuildingstyleandthusthechangestosociety. They followedclassicaldesignprinciplesandleft others
to dealwith therequirementsresultingfrom theindustrialrevolution.

It wasnot until the early twentiethcenturythat architectsreemergedaskey playersin the building
industry. They cameto appreciatethenew materialsandtechniques,but alsorealisedthey hada vital
role to play in bringingorderandhumanityinto anincreasinglychaoticworld (Richards,1974).Today,

thearchitectworkson theprojectnotonly with thestructuralengineer, but alsowith electrical,heating,
lighting andacousticengineers,not to mentioninteriordesigners.

An architectstill specialisesin design,but evenmorepossesses“a capacityfor co-ordination,com-
promise, and negotiation, the ability to balancecompetingdemandsand needsand to appreciatethe
pointsof view of otherprofessionalswith their owndesires.” (Kostof,1977).Numerousbooksexist to
introducearchitecturestudentsto their dutiesin termsof dealingwith the rangeof peopleandevents
necessaryfor thelife of asuccessfulproject,e.g.Harrigan& Neel(1996).

Kostof, p.335,alsonotes: “To the new role of teamcoordinator, the architect would bring also a
developedsocialconscienceanda missionof serviceto society. . . . thenew architectwasto seekout
society’sneeds,identifyandproposesolutionsfor them,bring togetherthenecessaryskills,andoperate
asa memberof a team. . . ”

2.1 An observation

Traditionalarchitectsdesignedand built edificesfor all typesof people. When they forgot about
therealneedsof users,andtechnologiststook over duringthe industrialrevolution, theresultwaslow
quality. It wasonly whenarchitectsunderstoodandworkedwith theadvancesin technologythat they
wereableto contributein asocially-meaningfulway.

Software startedas a specialistarea,but today is usedin a generalistway. In earlierdays,when
interactivity of softwarewasnot an issue,it wasreasonableto have the softwaredevelopmentdriven
by technologists.However, today interactive software predominates,and high quality is clearly not
achieved unlessthe needsof the userare taken into account. Both the humanandthe technological
factorsareimportant.

Thepersonwho is todaychargedwith thearchitecturaldesignof a largesoftwareproducthasa role
similar to that of the structuralengineer. That personis part of a teamand interactswith peopleof
otherspecialitiesto ensurethattheproductwill meetsuchrequirementsasperformance,reliability and
portability. Usability is not alwaysincludedasaspecificrequirement,astechnicalexpertsoftenbelieve
they know what the userneeds—justasthe civil engineerof the industrialrevolution knew what was
neededto build factoriesandrailways!Providing ausableproductis moreoftenthannotseenasmerely
the technicalissueof providing a (graphical)interfacewhich hasa suitablelayout—whichin no way
guaranteestheuser’s needsaremet. Thusonly someof therequirementsfor softwaretendto betaken
into accountby thecurrentincarnationof softwarearchitect.

3 Designing for usability

Thedevelopmentof designtheorycanbe tracedfrom theearlyarchitectssuchasVitruvius through
industrialdesignandinto systemsdesign.An architectdesigninga building mustsynthesizea solution
whichcanresolvenumerousconflictingforces.Mostlistsof principlesfor goodsoftwaredesigninclude
a requirementfor thedesignto exhibit uniformity andintegration(see,for examplePressman(1997)).
Brooks contendedthat “conceptualintegrity” is the most importantconsiderationin systemdesign”
(p.42(BrooksJr., 1995)).He furthersaysthatevery partshouldreflectthe“samephilosophiesandthe
samebalancingof desiderata”.

3.1 Usability principles

Peopleworking in HumanComputerInteraction(HCI) oftentalk of usabilityprinciples,but do these
principleshaveaparallelin traditionalarchitecture?

Mahemoff & Johnston(1998) consideredthat existing HCI guidelineswere heavily focussedon
graphicaluserinterfaces,andgave little supportfor developingmoregeneraltypesof interfaces.They
thereforeabstractedfrom theusabilitypropertiesgivenin themostpopularguidelines,andidentifiedsix
sub-propertiesof asystem’susability: robustness(likelihoodof usererrorandeasewith whichuserscan
correcterrors),taskefficiency, reusabilityof knowledge,effectivenessof user-computercommunication,
comprehensibilityandflexibility .

Mostof theseprinciplesalsoapplyin theconstructionarena:

� Robustness—How easilycanthestructurebedamaged?In heavy winds,will it beunroofed?

� Taskefficiency—How easyis it to usethekitchen,for example.Is thedistancebetweensink,oven
andrefrigeratoroptimizedfor the user?How far doesoneneedto walk from thekitchento the
laundry?

� Flexibility—Can the constructbe usedfor differing purposes?For example,can the building
intendedasa schoolgymnasiumbeusedasaconcerthall?

� Effectivenessof user-computercommunication—Perhapsthis is bestthoughtof in termsof the
ambienceof the roomsor the building. It suggeststhe intentionof the rooms. It could alsobe
thoughtof in termsof theeffectivenessof theacousticdesignof anauditorium.

� Reusabilityof knowledge—Thisis lessobvious,but could apply to the way the doorsswing or
fasten(consistency).

� Comprehensibility—Isthepurposeof thedesignelementsobvious?Are therenooksandcrannies
whosepurposedefiesanalysis?Or doesthelayout“explain itself” asHeathdescribes?

In general,thereareobvioususabilityparallelsbetweenthetwo disciplines.

4 Learning from history

For atraditionalarchitectcalledonto designahospital,it is importantthateverydetailof theworking
of the hospitalis known early. Spacecannotbeallocatedor eventhe form of thebuildingsconceived
until the peopleresponsiblefor wards,kitchensandoperatingtheatres,say, have beenableto explain
their requirements.While someof thesepeoplemayknow whatthey want,thearchitecttakingahigher-
level view maybeableto suggesta betterworking arrangement.Similarly with software,taskanalysis
cansuggestpotentialfor businessprocessreengineering.Only afterall thepreliminarywork is donefor
thehospitalcananarchitectdecidewhethera smallnumberof multi-storiedbuildingswouldsuit better
thana seriesof lower connectedbuildings. Up to this point thereis no physicalshapefor thebuilding,
nor any architecturalcharacter(p.20Richards(1974)). Richardsfurthergoeson to saythat thevisible
form andtheaestheticquality for a building will emergeaspartof theproblem-solving,in contrastto
theearlierapproachof startingwith apreconceivedimageandfixing thefunctionalityto suit (ibid.).

Writing abouttraditionalarchitecture,Harrigan& Neel(1996)state:“The wayclientsare lookingto
thefuture requiresthat westudyour client’s situationmore thanwehaveeverdonebefore. If weare to
succeed,wemustlearn a greatdealabouthowclientsare organizedandwhatstrategiesunderlietheir
way of doing business.” This is a quoteabouttraditionalarchitecturein moderntimes. A practising
architectdescribedit this way: “Ar chitectsview designasa settingfor humanand“social” activities
andhenceareforcedto dealwith designin thecontext of its use. Onetrait of reallygiftedarchitectsis to
notonlygeneratedesignsthatclientsaspire to but alsoto fulfill aspirationsthat they maynototherwise
conceiveof.”

4.1 Doing it better in software

Thesituationis not dissimilarfor software.To comeup with a suitableconceptualdesign,onemust
be groundedin the underlyingtechnology. Producinga conceptualdesignin the absenceof detailed
informationabouttheunderlyingtechnologyis fraughtwith danger. Theauthorhasobservedprojects
wherea conceptualdesignwasdelivered,but the technologyeventuallyusedfor the developmentdid
not supporta numberof the facilities planned. Thus “work-arounds”resulted. Having one person
responsiblefor carryingthroughthe conceptualdesignis a necessary, but not sufficient, conditionfor
success.Thetechnicalfeasibilitymustbeconsideredaswell.

Conversely, proposinga solutionwithout fully understandingthe userinterfacerequirementsleads
to problems.The authorwasinvolved in a “lessonslearned”casestudyof a sophisticatedmulti-user
computerisedtrainingsystemwith a total hardwareandsoftwarecostof approximatelyA$20M. More
detaileddescriptionsof the projectand the lessonslearnedaregiven in Schmidtet al. (1999). One
particularproblemwasthat a lack of consultationwith the client, andend-usersespecially, led to the
contractordevelopinganentirelyinappropriateuserinterface.

The formerexampleis analogousto a traditionalarchitectrenovatinga 1800swarehouse,but using
the old plumbingjust whereit was. The latter is like building a houseto “normal” standardsof door
andbenchheights,but notfindingoutuntil laterthattheowner-occupierof thehousewasmorethan2.2
metrestall. Theeffective integrationof usabilityinto thesoftwaredevelopmentprocessneedsbothuser
domainknowledgeandtechnicalexpertise.

4.2 An iterative approach

Therearemany proponentsof iterativeapproachesto softwaredevelopment,with theWinWin spiral
model(Boehmet al., 1997)beingtoutedfrequentlyby softwareengineers.Usability consultantsand
HCI lecturers,on the otherhand,swearby the Usability Cycle. Thusthereis generalagreementon
theneedto have an iterative processsothatwe canrefineour designsfor a usableproduct.Architects
do sketchesandbuild scalemodelsto testout potentialsolutions.Softwaredevelopersdo not have the
luxuryof beingabletoscaleuptheirmodels,soneedto takeadifferentapproach.Prototypescanbeused
at varying levelsof fidelity from paperto executables.They canbe usedto testout userinteractions,
or to testpotentialalgorithms. However, final usertestingis still imperative. Is theresomeway this
repetitiveprocesscanbeshortened?

Wherehousesareconstructedby speculativebuildersthey areusingwell-known patternsof construc-
tion whichneedlittle adaptation.Similarly for well-defined,well-practicedsolutionsto relatively small
problemsin software,probablya specialistarchitectis anoverkill. Thethemeof patternsadvocatedby
Alexanderandothersin traditionalarchitecture(see,e.g.(Alexanderetal.,1977))hasbeentakenupin a

numberof differentsoftwareareas,includingarchitecturaldesign,usabilityandcode((Bassetal.,1998;
Mahemoff & Johnston,1998; Gammaetal.,1995)).Patternspromiseto assistin reusein many different
ways,andmayoffer somehelptowardsconceptualunity if thepatternlanguageis tightly constructed.

Usability patternsin particularoffer the opportunityto reducethe numberof iterationsrequired,as
they embodysolutionswhich have beenproven to work, and which have alreadybeenthroughthe
repetitive process.It shouldbenotedthatusabilitypatternsaremoreakin to Alexander’s original idea
of patternsthanarethe commonly-usedobjectorientedpatterns.Alexanderhadthe userperspective
in mind with his “habitableenvironment”. Sometimesdesignrationalerelatesto a negative concept,
especiallyin anarealike safetycritical design,wherethedesignertriesto avoid thesituatonsthathave
beenproblematicin thepast.Usabilitypatterns,on theotherhand,offer theopportunityto capturebest
practice—solutionsthatwork!

Patternlanguagesoffer anevenbetteropportunityto capitaliseontheexistinginvestment,asmember
patternshave beengeneratedfrom a particulardesignphilosophy. Thusif softwarehasbeendeveloped
usingapatternlanguage,it shouldbestraightforwardto applyrelatedpatternswhenmakingchangesto
thesoftwareduringmaintenance.

5 Conclusions

Therearemany parallelswhichcanbedrawn betweenthesituationsconfrontingtraditionalarchitects
andsoftwaredevelopers.In particular, usabilitypatternscanhelpcapturegoodpractice,sothatthereis
a reducedneedto iterateto produceanacceptableproduct.

We arealsomoving to a time wherethe “joy” andaestheticsof userinterfacesarebecomingmore
important.Are therelessonsapplicablehere,whichwecanlearnfrom traditionalarchitecture?

References

Alexander, C., Ishikawa,S.& Silverstein,M. (1977),A PatternLanguage, OxfordUniversityPress.

Bass,L., Clements,P. & Kazman,R. (1998),Software Architecture in Practice, SEI Seriesin SoftwareEngineer-
ing, AddisonWesley Longman,Inc.

Boehm,B., Egyed,A., Kwan,J.& Madachy, R. (1997),“DevelopingMultimediaApplicationswith theWinWin
SpiralModel”, ACM SIGSOFTSoftware EngineeringNotes22(6), 20–39.

BrooksJr., F. P. (1995),TheMythicalMan-Month, 20thanniversaryedition,Addison-Wesley.

Gamma,E.,Helm,R.,Johnson,R.& Vlissides,R.(1995),DesignPatterns:Elementsof ReusableObject-Oriented
Software, Addison-Wesley, Reading,MA.

Harrigan,J.E. & Neel,P. R. (1996),Theexecutivearchitect: transformingdesigners into leaders, JohnWiley.

Heath,T. (1991),What,if anything, is anarchitect?, ArchitectureAustraliaPty.Ltd.

Kostof,S.(1985),A Historyof Architecture, OxfordUniversityPress.

Kostof,S.(ed.)(1977),TheArchitect, OxfordUniversityPress.

Mahemoff, M. J. & Johnston,L. J. (1998),Principlesfor a Usability-OrientedPatternLanguage,in P. Calder&
B. Thomas(eds.),OZCHI ’98 Proceedings, IEEEComputerSociety, LosAlamitos,CA, pp.132–139.

Pressman,R. S.(1997),Software Engineering:A Practitioner’s Approach, 4thedition,McGraw-Hill Inc.

Richards,J. (1974),Architecture, TheProfessions,NewtonAbbot,David andCharles.

Schmidt,C., Dart,P., Johnston,L., Sterling,L. & Thorne,P. (1999),“Disincentivesfor CommunicatingRisk: A
RiskParadox”,InformationandSoftware Technology 41(7), 403–411.

Stevens,R. (1965),Building in History, Cassell,London.

Evidence-Based Usability Engineering: Seven Thesis on the
Integration, Establisment and Continuous Improvement of
Human-Centred Design Methods in Software Development

Processes

Eduard Metzker
 DaimlerChrysler Research & Technology, Software Technology Lab,

Wilhelm-Runge Str. 11, P.O. Box 2360, D-89013 Ulm, Germany
eduard.metzker@daimlerchrysler.com

Abstract: In this position paper we propose an approach for the systematic integration of human-centred design
(HCD) methods in software development process, called evidence-based usability engineering. Instead of
clinging to a fixed workflow model of the usability engineering process our approach advocates a paradigm of
situated decision making to enable development teams to select an optimal set of HCD methods based on the
available evidence of the engineering task at hand and the experience of the software development organization.
Our approach is linked to process assessment tools such as UMM (Usability Maturity Model) via a meta-model
that guides the introduction, establishment and continuous improvement of HCD methods and promotes
organizational learning in HCD. We present first concepts of a novel kind of process-centred usability
engineering environment, ProUSE, to support our evidence-based usability engineering approach. We develop
our approach by proposing seven thesis that emphasize shortcomings and urgent requirements of current HCD
practice and that are based on our recent research efforts and experiences with HCD process improvement at
DaimlerChrysler.

Keywords: usability maturity, process improvement, human-centred design methods

1 Introduction
The relevance of usability as a software quality
factor is continually increasing for software
development organizations: usability and user
acceptance are about to become the ultimate
measurement for the quality of today’s mobile
services and tomorrows proactive assistance
technology. Taking these circumstances into
account human-centered design (HCD) methods for
designing interactive systems are changing from a
last minute add-on to a crucial part of the software
development lifecycle.

It is well accepted both among software
practitioners and in the human-computer interaction
research community that structured approaches are
required to build interactive systems with high
usability. On the other hand specific knowledge

about exactly how to most efficiently and smoothly
integrate HCD methods into established software
development processes is still missing [1]. While
approaches such as the usability maturity model
(UMM) [2] provide means to assess an
organizations capability to perform HCD processes
it lacks guidance on how to actually implement
process improvement in HCD. It often remains
unclear to users of HCD methods if and why certain
tools and methods are better suited in a certain
development context than others [3]. In fact we
know very little of the actual value of the methods
that we propose. We lack strategies and tools that
support development organizations in evaluating
and selecting an optimal HCD method for a given
development context and perform systematic
process improvement in HCD. Little research has
been done on integrating methods and tools of HCD
in the development process and gathering

knowledge about HCD activities in a form that can
capture relationships between specific development
contexts and applicable methods and tools [4].

In this paper we work out seven thesis that point
out shortcomings and requirements of current HCD
practice. First we take a look at existing HCD
process models, trying to identify the organizational
obstacles that hamper the establishment of these
models in mainstream software development
processes. Next we present results of a survey
where we examined how exactly HCD methods are
applied in actual projects and derived implications
for tools to support process improvement in HCD.
Finally we outline the concepts of an evidence-
based usability engineering approach that we
propose to address the shortcomings and
requirements we have come across.

2 Existing HCD process models
There is a large body of research and practical
experience available on software process models
which are used to describe and manage the
development process of software systems.
Prominent examples are the waterfall model [5], the
spiral model [6], or the fountain model [7]. Yet for
the shortcomings of traditional process models
concerning usability issues, a number of approaches
have been developed that take into account the
special problems encountered with the development
of highly interactive systems [1, 8-11]. According to
ISO13407 these approaches can be embraced by the
term ‘human-centered design processes’ [12]. In
this section we focus on those approaches which
have been extensively applied to industrial software
development projects. We outline their basic
principles and discuss some of their drawbacks
based on documented case studies.

One of the first approaches used to address
usability issues was the soft system methodology
(SSM) [8, 13]. SSM was widely applied to capture
the objectives, people involved (e.g. stakeholder,
actors, and clients), constraints, and different views
of interactive systems during development.
However, since SSM’s origins are in general
systems theory, rather than computer science, it
lacks many of the specific HCD activities such as
construction of user interface mockups or iterative
usability testing which are necessary to fully specify
interactive systems. These shortcomings limit the
utilization of SSM to the early activities of the
development process such as requirements or task
analysis.

The star lifecycle [9], proposed by Hix and
Hartson, focuses on usability evaluation as the
central process activity. Around this central task
the, activities system / task / functional / user
analysis, requirements / usability specifications,
design & design representation, rapid prototyping,
software production and deployment are placed.
The results of each activity such as task analysis are
subjected to an evaluation before going on to the
next process activity. The bi-directional links
between the central usability evaluation task and all
other process activities cause the graphical
representation of the model to look like a star.

One problem concerning this approach was
already outlined by Hix and Hartson [9]: Project
managers tend to have problems with the highly
iterative nature of the model. They find it difficult
to decide when a specific iteration is completed,
complicating the management of resources and
limiting their ability to control the overall progress
of the development process. Furthermore, the star
lifecycle addresses only the interactive parts of a
software system, leaving open how to integrate the
star lifecycle with a general software development
method.

The usability engineering lifecycle [1] by
Deborah Mayhew is an attempt to redesign the
whole software development process around
usability engineering knowledge, methods, and
activities. This process starts with a structured
requirements analysis concerning usability issues.
The data gathered from the requirements analysis is
used to define explicit, measurable usability goals
of the proposed system. The usability engineering
lifecycle focuses on accomplishing the defined
usability goals using an iteration of usability
engineering methods such as conceptual model
design, user interface mockups, prototyping and
usability testing [10]. The iterative process is
finished if the usability goals have been met.

As outlined by Mayhew [1], the usability
engineering lifecycle has been successfully applied
throughout various projects. However, some general
drawbacks have been discovered by Mayhew during
these case studies: One important concern is that
redesigning the whole development process around
usability issues often poses a problem regarding the
organizational culture of software development
organizations. The well established development
processes of an organization can not be turned into
human-centered processes during a single project.
Furthermore, the knowledge necessary to perform
the HCD activities is often missing in the
development teams, hampering the persistent

establishment of HCD activities within the practiced
development processes. How the HCD activities
proposed in the usability engineering lifecycle
should be integrated exactly and smoothly into
development processes practiced by software
development organizations, was declared by
Mayhew as an open research issue [1].

Usage-centered design [11], developed by
Constantine and Lockwood, is based on a process
model called activity model for usage-centered
design. The activity model describes a concurrent
HCD process starting with the activities of
collaborative requirements modeling, task
modeling, and domain modeling, in order to elicit
basic requirements of the planned software system.
The requirements analysis phase is followed by the
design activities: interface content modeling and
implementation modeling. These activities are
continuously repeated until the system passes the
usability inspections carried out after each iteration.
The design and test activities are paralleled by help
system / documentation development and standards
/ style definition for the proposed system. This
general framework of activities is supplemented by
special methods like essential use case models or
user role maps.

Constantine and Lockwood provide many case
studies where usage centered design was
successfully applied, yet they basically encountered
the same organizational obstacles as Mayhew [1]
when introducing their HCD approach into software
development processes practiced. They emphasize
the fact that ‘new practices, processes, and tools
have to be introduced into the organization and then
spread beyond the point of introduction’ [11]. A
straightforward solution to these problems is
training courses for all participants of HCD
activities offered by external consultants. However,
this solution is regarded as being time consuming
and cost intensive in the long run. It tends to have
only a limited temporary effect and thus does not
promote organizational learning in HCD design
methods [11]. Constantine and Lockwood conclude
that it is necessary to build up an internal body of
knowledge concerning HCD methods, best practices
and tools tailored to the needs of the development
organization.

The organizational obstacles that are
encountered in establishing HCD methods in
development processes can be summarized in the
claims 1-4 [14]:
Claim 1 Existing HCD process models are
decoupled from the overall software development
process.

One common concern relating to HCD
approaches is that they are regarded by software
project managers as being somehow decoupled
from the software development process practiced by
the development teams. It appears to project
managers that they have to control two separate
processes: the overall system development process
and the HCD process for the interactive
components. As it remains unclear how to integrate
and manage both perspectives, the HCD activities
have often been regarded as dispensable and have
been skipped in case of tight schedules [1].
Claim 2 Existing HCD approaches assume that
HCD methods can be performed by the
development team ad hoc.

Most approaches also assume that experienced
human factors specialists are available throughout
the development team and that HCD methods can
be performed ad hoc. However, recent research
shows that even highly interactive systems are often
developed without the help of in-house human
factors specialists or external usability consultants
[15]. Therefore HCD methods often can not be
utilized because the necessary knowledge is not
available within the development teams [[1, 2]]
Claim 3 Existing UE process models are not
tailorable to the usability maturity of software
development organizations.

Another point that is also ignored by the
approaches described is that development
organizations are often overwhelmed by the sheer
complexity of the proposed HCD process models.
The models lack a defined procedure for tailoring
the development process and methods for specific
project constraints such as system domain, team
size, experience of the development team or the
system development process already practiced by
the organization.
Claim 4 Integrating UE Methods into mainstream
software development process must be understood
as an organizational learning task.

Almost all approaches do not account for the
fact that turning technology-centered development
processes into human-centered development
processes must be seen as a continuos process
improvement task [16]. A strategy for supporting a
long-lasting establishment of HCD knowledge,
methods, and tools within development
organizations is still missing. A model is needed
that guides the introduction, establishment and
continuous improvement of UE methods in
mainstream software development processes.

3 Human-Centred Design in
Practice

To compare these findings with To be able to
construct a tool for the effective support of UE
processes, we needed in-depth knowledge of the
future users of such a tool and their requirements.
This led to the following central questions:
! What kind of development process for

interactive systems is practiced by the
development organizations in their projects?

! What typical tasks do the developers have to
solve?

! What problems are typical for the development
process?

! What are possible implications for tool
support?

The survey was elaborated, performed and
evaluated in collaboration with industrial
psychologists and had the following structure [17]:
A questionnaire was used to record both personal
data and information on the respondents'
professional experience and typical development
tasks. A semi-structured interview supplemented by
a special set of questions concerning the application
of UE activities during the development process as
perceived by the respondents formed the core of the
survey.

A total of 16 employees from four major
companiesi involved in the development of
interactive software systems were selected. The
respondents are engaged in developing these
systems in projects from diverse domains: military
systems, car driver assistance technology or next-
generation home entertainment components. The
questioning was performed by a single interviewer
and the answers were recorded by a second person
in a pre-structured protocol document. Each
interview took between 90-150 minutes.

The organizations examined are practicing
highly diverse individual development processes,
however non of the UE development models
proposed by [1, 10, 11, 18] are exactly used.

Furthermore, the persons who are entrusted with
the ergonomic analysis and evaluation of interactive
systems are primarily the developers of the
products. External usability or human factors
experts or a separate in-house ergonomics

i DaimlerChrysler Aerospace (DASA) in Ulm, Sony

in Fellbach, Grundig in Fuerth and
DaimlerChrysler in Sindelfingen (all sites are
located in Germany)

department are seldom available. Furthermore, few
of the participants were familiar with basic methods
like user profile analysis or cognitive walkthrough.

The UE methods that are considered to be
reasonable to apply by the respondents are often not
used for the following interrelated reasons:
! There is no time allocated for UE activities:

they are neither integrated in the development
process nor in the project schedule.

! Knowledge needed for the performance of UE
tasks is not available within the development
team.

! The effort for the application of the UE tasks is
estimated to be too high because they are
regarded as time consuming.

3.1 Survey Conclusions
The results of the survey led to the following
conclusions regarding the requirements of a
software tool to support the improvement of UE
processes:
Claim 5 Support flexible UE process models

The tool should not force the development
organization to adopt a fixed UE process model as
the processes practiced are very diverse. Instead,
the tool should facilitate a smooth integration of UE
methods into the individual software development
process practiced by the organization. Turning
technology-centered processes into human-centered
processes should be seen as a continuous process
improvement task where organizations learn which
of the methods available best match certain
development contexts, and where these
organizations may gradually adopt new UE
methods.
Claim 6 Support evolutionary development and
reuse of UE experience

It was observed that the staff entrusted with
ergonomic design and evaluation often lacks a
special background in UE methods. Yet, as the need
for usability was recognized by the participating
organizations, they tend to develop their own in-
house usability guidelines and heuristics. Recent
research [19-22] supports the observation that such
usability best practices and heuristics are, in fact,
compiled and used by software development
organizations. Spencer [21], for example, presents a
streamlined cognitive walkthrough method which
has been developed to facilitate efficient
performance of cognitive walkthroughs under the
social constraints of a large software development
organization. However, from experiences collected
in the field of software engineering [23] it must be
assumed that, in most cases, best practices like

Spencer’s are unfortunately not published in either
development organizations or the scientific
community. They are bound to the people of a
certain project or, even worse, to one expert
member of this group, making the available body of
knowledge hard to access. Similar projects in other
departments of the organization usually cannot
profit from these experiences. In the worst case, the
experiences may leave the organization with the
expert when changing jobs. Therefore, the proposed
tool should not only support existing human factors
methods but also allow the organizations to
compile, develop and evolve their own approaches.
Claim 7 Provide means to trace the application
context of UE knowledge

UE methods still have to be regarded as
knowledge-intensive. Tools are needed to support
developers with the knowledge required to
effectively perform UE activities. Furthermore, the
tool should enable software development
organizations to explore which of the existing
methods and process models of UE works best for
them in a certain development context and how they
can refine and evolve basic methods to make them
fit into their particular development context. A
dynamic model is needed that allows to keep track
of the application context of UE methods.

4 The Evidence-Based Usability
Engineering Approach

To address the shortcomings and meet the
requirements described in our claims we advocate
an evidence-based approach to the improvement of
HCD processes.
The essence of the evidence-based approach is that
we do not cling to a fixed workflow model of the
usability engineering process, but instead follow a
paradigm of situated decision making. In this
approach HCD methods are selected based on the
available evidence that they will match to the
development context at hand.
After performing each method it should be
evaluated if the method was useful for the
development context or if it must be modified. The
modification of the method should be recorded and
stored as a best practice for later reuse. Once a
certain body of HCD knowledge is accumulated in
that way, we have sound evidence for selecting an
optimal set of HCD best practices for given
development context. Via continuously appyling
this procedure of conducting, evaluating and
adpting HCD methods, an organization gradually

adapts a set of HCD base practices to a wide variety
of development contexts. This directly contributes
to the general idea of software maturity models such
as UMM. According to these models organizations
are highly ranked on a maturity scale, if they are
capable to tailor a set of base practices according to
a set of constraints such as available resources or
project characteristics to achieve a defined
engineering task.
So far we argue that the evidence based approach
requires three ingredients:
! A process meta-model, which guides the

selection of HCD methods for a given
development context and their integration in an
overall software development process in a
flexible, decision-oriented manner. The model
must as well provide a strategy for evaluating,
refining and capturing best practices for new
development contexts thus promoting
continuous process improvement and
organizational learning in HCD.

! A concept for an experience base that allows to
keep track of documented best practices and
their application context even if the underlying
context factors such as processes, technologies,
domains and quality standards are still
evolving.

! A tool concept for managing the experience
base and that allows to predict optimal sets of
HCD method based on the available evidence
of the engineering task and the experience of
the development organization.

4.1 The Evidence-Based Improvement
Model

Our evidence-based model for human-centered
design processes comprises a set of organizational
tasks that support the introduction, establishment
and continuous improvement of HCD methods
throughout the whole development lifecycle. It
helps to manage and tailor the HCD base practices
defined in UMM [2] and the related methods
practiced by the development organization
according to specific constraints of the respective
project and the needs of the development
organization. These organizational tasks are
grouped in our model as depicted in Figure 1. The
evidence-based usability engineering model is
based on our findings of experience based
improvement of HCD processes [14]. We refined
the model to the extend that we now use the UMM
as a basis for assessing which HCD base practices
are conducted by an organization and which are
missing. Then the selection of the actual HCD

methods is guided by a model of the development
context. So while the UMM framework is used to
assess which HCD base practices should be
conducted, a model of the development context is
used to map the development context to an optimal
set of HCD methods.
In more detail the model consists of the following
four logical steps:
Step 1: Analyze the HCD activities practiced
The first step comprises an analysis of the practiced
HCD process and the related HCD base practices,
to elicit when, where and how HCD methods are
performed within the software development
lifecycle in use. The deliverable of this step is a
documentation of possible improvements of the
HCD process that is currently used. This assessment
can be performed using an UMM questionnaire.
Step 2: Select suitable HCD base practices and
integrate them into the practiced software
development process
The results of the first step form the rationale for
the selection of HCD base practices from UMM
reference model for the improvement of the
development process. The HCD base practices
which have been selected for the improvement of
the development process have to be integrated in
the model of the practiced software development
lifecycle and the project planning and form the
improved development process.
However, in this step further important factors have
to be considered, e.g. the type of system to be
developed and project constraints like budget and
schedules. This evidence must be mapped into a
context model and guide the selection of
appropriate HCD methods to perform the selected
base practices.

Analyze the HCD processes practiced
(UMM Assesment)

Select required HCD base practices based
on UMM assessment and integrate them

in the development process in use.
Select HCD methods based on the

evidence available.

Apply HCD methods. Support
development team by providing

documented best practices, reusable
artefacts and tools.

Capture and organize best practices and
reusable artefacts concerning HCD

Figure 1: Steps of the evidence-based model

Step 3: Support effective performance of the defined
HCD methods
Generally, at this step in the model resources have
already been allocated for HCD activities, e.g., a
usability engineer was nominated, who is
responsible for coordinating and supporting the
execution of the various HCD activities of the new
process. However, the efficiency and impact of the
proposed HCD methods must be increased by
providing the development team with best practices,
tools and reusable deliverables of past projects (e.g.
templates for usability test questionnaires, results of
conceptual task analysis or user interface mockups)
which facilitate effective performance of the
selected HCD methods. This set of information
should be easily accessible for all participants of
HCD activities.
Step 4: Collect and disseminate best practices and
artifacts concerning HCD tasks
During the execution of HCD activities, artifacts
with a high value for reuse in the same or
subsequent projects are generated by the
participants of HCD activities, for example,
templates for usability tests, reusable code
fragments, or an experience on how to most
efficiently conduct a user profile analysis for
assistence systems. Observation like this comprise
HCD experience and rationale that have to be
captured and organized in best practices along with
the development context in which they apply to

allow for easy reuse in the same or subsequent
projects.

The evidence-based model contains two cycles:
The inner cycle between step 3 and 4 supports the
introduction and establishment of HCD activities
and methods within the practiced software
development process. It supports the effective
utilization and improvement of HCD methods
selected by fostering the application of best
practices which are tailored to the needs of the
development organization. This cycle is
continuously iterated during the development
process.

The outer cycle which connects step 4 and 1
should be performed in the ideal case at least twice
during the development process of large projects as
it serves the improvement of the overall HCD
processes practiced by an organization.

4.2 The HCD Experience Base
To capture and evolve HCD knowledge for reuse
and process improvement, we need a concept for an
HCD experience base. For this purpose we have
developed the concepts of USEPACKs (Usability
Engineering Experience Package) and a context
model. While a USEPACK is used to capture HCD
best practices a context model is used to formally
relate these best practices to a development context.
The USEPACK concept
A USEPACK is a semi-formal notation for
structuring knowledge relating to HCD activities. It
encapsulates best practices on how to most
effectively perform certain HCD activities and
includes the related artifacts like documents, code
fragments, templates and tools that facilitate the
compliance with the best practice described. A
USEPACK is structured into five logical sections:
! The core information permits authors to

describe the main message of a USEPACK. It
is organized according to the pyramid principle
for structuring information [24]. The
information first presented to the reader has a
low level of complexity, allowing the reader to
quickly decide if the USEPACK is worth
further exploration. With further reading, the
degree of complexity rises, introducing the
reader to the experience described. The core
information section includes the fields title,
keywords, abstract, description and comments.

! The context situation describes the
development context related to the experience
in question. The context situation is generated
by using the context model, allowing the
authors and readers of USEPACKs to utilize a

shared vocabulary for contextualizing and
accessing USEPACKs.

! A set of artifacts, such as checklists for user
profile analysis or templates for usability test
questionnaires, facilitates the efficient
compliance with the best practice. They
represent an added value to the readers of a
USEPACK. Artifacts allow readers to regain
time spent on exploring the package by using
the supplied artifacts to simplify their work.

4.3 The Context Model Concept
The context model serves as a template to construct
the context situation for USEPACKs – a semi-
formal description of the development context in
which the information of a USEPACK can be
applied. It is organized in a hirarchical structure,
divided into sections which contain groups of
context factors. On the one hand, authors can use
the context model to easily construct a description
of the context in which the information of a
USEPACK can be applied by selecting appropriate
context factors from the model. On the other hand,
readers can use the context model to specify a
context situation which reflects the development
context for which they need support in the form of
USEPACKs. Currently a context model containing
the following four sections is used:
! The process context section provides context

factors to describe to which base practices of
the UMM reference model a best practice is
related.

! The project context section provides context
factors to describe project constraints like the
size of the development team, budget or project
duration which are related to the experience
cited.

! The domain context section provides context
factors to describe elements of the domain
related to the experience described. Top-level
context factors of this section specify domains
in terms like ‘home entertainment systems’ or
‘car driver assistance systems’, which can be
subsequently refined to capture more detailed
domain attributes.

! The technology context section provides
context factors to describe features of
technologies related to the experience
described like ‘gesture recognition’ or ‘speech
input’.

4.4 Tool Support
To increase the impact of the evidence-based
usability engineering approach tool support is

needed. In the BMBFii lead project EMBASSIiii we
currently develop a prototypical tool called ProUSE
(Process centred Usability Engineering
Environment). ProUSE consists of an HCD
experience base and three logical components as
depicted in Figure 2.

SATUP
Setup Assistant for

Usability
Engineering
Processes

Experience Base

CUES
Cooperative

Usability
Engineering
Workspace

REUSE
Repository for

Usability
Engineering
Experience

Figure 2 : Logical Components of ProUSE

The experience is seeded with an initial set of
best practices in form of USEPACKs. In our case
we have adopted a variety of usability engineering
methods from Nielsen and Mayhew[1,10] but in
general any HCD approach should be appropriate.

 The REUSE (Repository for Usability
Engineering Experience) [15] component is used to
capture, manage and evolve best practices related to
HCD activities. It assists in documenting best
practices using the USEPACK concept and relating
them to a formal development context using a
context model and storing them in the experience
base.
SATUP (Setup Assistant for Usability Engineering
Processes) is used to plan HCD activities for a
software development project. Given all available
context information on the process (e.g. which HCD
base practices should be performed), project (e.g.
duration, budget, team size), domain and
technology context factors, SATUP will propose
optimal HCD methods and reusable artefacts based
on the accumulated experience of the development
organization.

Once an optimal HCD process was planned,
CUES (Cooperative Usability Engineering

ii German Ministry of Education and Research
iii Electronic Multimedia Operating and Service

Assistence

Workspace) can be used by a distributed
development team to perform the HCD methods
selected.

The ProUSE prototype is based on Java
technologies and integrated via a web portal
concept which makes the modules available through
intranet and web browser.
First versions of SATUP, CUES and REUSE are
currently evaluated with our consortium partnersi so
that we expect some interesting results soon.

5 Discussion
The findings, concepts and tools presented in this
paper reflect the experiences we collected in the
recent years with improving HCD processes in our
business units at DaimlerChrysler and indicate
research directions we currently explore. Hopefully
the vast amount of ideas provides a rich foundation
to stimulate further discussions in directions such
as:
• What concepts exist for knowledge/experience

based usability engineering approaches and
tools?

• We care a lot about usable systems, but what
can we do to make our methods usable for
development teams?

• How can we more reliably evaluate the actual
value of the HCD methods we propose?

• Is there an optimal form for capturing HCD
knowledge that balances the needs for ease of
use and formality?

• How do we balance that needs for structured
approaches and creativity in HCD approaches?

6 References
1. Mayhew, D.J., The Usability Engineering

Lifecycle: A Practioner's Handbook for
User Interface Design. 1999: Morgan
Kaufman.

2. Earthy, J. Human Centred Processes,
their Maturity and their Improvement. in
IFIP TC.13 International Conference on
Human-Computer Interaction. 1999.
Edinburgh, UK: British Computer Society.

3. Welie, M.v. Breaking Down Usability. in
IFIP TC.13 International Conference on
Human-Computer Interaction. 1999.
Endinburgh, UK: IOS Press.

4. Henninger, S., A Methodology and Tools
for Applying Context-Specific Usability
Guidelines to Interface Design. Interacting
with Computers, 2000. 12(3): p. 225-243.

5. Royce, W.W. Managing the development
of large software systems. in IEEE
WESTCON. 1970. San Francisco, USA.

6. Boehm, B.W., A spiral model of software
development and enhancement. IEEE
Computer, 1988. 21(5): p. 61-72.

7. Henderson-Sellers, B. and J.M. Edwards,
Object-Oriented Systems Life Cycle.
Communications of the ACM, 1990. 31: p.
143-159.

8. Checkland, P.B., Systems Thinking,
Systems Practice. 1981: John Wiles &
Sons.

9. Hix, D. and H.R. Hartson, Iterative,
Evaluation-Centered User Interaction
Development, in Developing User
Interfaces: Ensuring Usability Through
Product & Process. 1993, John Wiley &
Sons: New York. p. 95-116.

10. Nielsen, J., Usability Engineering. 1994:
Morgan Kaufman Publishers.

11. Constantine, L.L. and L.A.D. Lockwood,
Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered
Design. 1999: Addison-Wesley.

12. ISO/TC 159 Ergonomics, Human-centered
Design Processes for Interactive Systems, .
1999, ISO International Organization for
Standardization.

13. Checkland, P.B. and J. Scholes, Soft
Systems Methodology in Action. 1990:
John Wiley & Sons.

14. Metzker, E. and M. Offergeld. An
Interdisciplinary Approach for
Successfully Integrating Human-Centered
Design Methods Into Development
Processes Practiced by Industrial
Software Development Organizations.
accepted for: 8th IFIP Working
Conference on Engineering for Human-
Computer Interaction, EHCI2001. 2001.
Toronto Canada

15. Metzker, E. and M. Offergeld. REUSE:
Computer-Aided Improvement of Human-
Centered Design Processes. in Mensch
und Computer, 1. Fachübergreifende
Konferenz, MC2001. 2001. Bad Honnef,
Germany: Teubner Verlag.

16. Norman, D.A., The Invisible Computer.
1998: MIT Press.

17. Wetzenstein, E. and A. Becker,
Requirements of Software Developers for a
Usability Engineering Environment, .

2000, Artop Institute for Industrial
Psychology: Berlin.

18. Beyer, H. and K. Holtzblatt, Contextual
Design: Defining Customer-Centered
Systems. 1998: Morgan Kaufmann.

19. Weinschenk, S. and S.C. Yeo, Guidelines
for Enterprise-wide GUI design. 1995,
New York: Wiley.

20. Billingsley, P.A., Starting from Scratch:
Building a Usability Programm at Union
Pacific Railroad. Interactions, 1995. 2(4):
p. 27-30.

21. Spencer, R. The Streamlined Cognitive
Walkthrough Method: Working Around
Social Constraints Encountered in a
Software Development Company. in
CHI2000. 2000. The Hague: ACM Press.

22. Rosenbaum, S., J.A. Rohn, and J.
Humburg. A Toolkit for Startegic
Usability: Results from Workshops, Panels
and Surveys. in Conference on Human
Factors in Computing Systems. 2000. The
Hague, Netherlands: ACM press.

23. Basili, V.R., G. Caldiera, and H.D.
Rombach, Experience Factory, in
Encyclopedia of Software Engineering, J.J.
Marciniak, Editor. 1994, John Wiley &
Sons: New York. p. 528-532.

24. Minto, B., The Pyramid Principle - Logic
in Writing and Thinking. 3 ed. 1987,
London: Minto International Inc.

User Intelligence Will Make Mobile Solutions Fly

Anna Olsson, Razorfish AB
anna@razorfish.com

Sofia Svanteson, Ocean Observations
sofia@oceanobservations.com

Stockholm, Sweden, April 2001

User Intelligence Will Make Mobile Solutions Fly

 2

Introduction
Consideration of user intelligence is critical when developing solutions for mobile applications
or products, and is a necessary and effective way to tackle many of the challenges inherent in
mobility. Usability is a qualitative focus one takes when defining the user experience, while
usefulness must be acquired through performing user research, i.e. user intelligence, on the
presumptive users. Creating a thorough user experience for a product or service requires a
number of activities to be carried out to achieve the desired qualitative standard. Without
aiming for usefulness, the usability can be excellent but still worthless.

Understanding users is the true foundation for developing an effective business strategy and
digital experiences, which connect wired or wireless ventures with their users in meaningful
ways. While many firms say they “design for the user experience”, what they usually mean is
that they refine the site architecture and navigation for an optimal on-line experience
subsequent to prototype development.

The user experience does not begin or end with the digital interface.

The greatest potential for understanding the user lies in capitalizing on this knowledge to set
the strategic course up-front, prior to concept development. This means understanding user
needs and preferences on and off-line, the relationship between the digital realm and the non-
digital realm in users’ lives, the boundaries between work and the rest of life, and finally their
situations, needs, behaviors, values and skills. Expectations and standards for a particular
digital experience are crafted with regard to interactions in every other aspect of life and work.
Therefore, identifying unmet user needs, and determining how services and products can add
significant value to their lives, must be determined with respect to the larger context of their
lives. Only when users are understood in context, can an effective strategy for connecting
with them digitally be developed. This effective strategy is called “User Intelligence”.

This paper highlights some of the challenges found within mobile solutions and illustrates how
attention to user intelligence can improve the way services are built and thus the way people
interact with each other and with mobile devices.

The New Mobile Culture

Wireless technology is on its’ way to radically alter social behaviors and patterns. The
affordability of mobile phones has enabled many more people than before to be mobile. As a
result, greater numbers of people worldwide are free of the physical, economic, and
organizational constraints associated with wired communication. Mobility used to be a
privilege reserved primarily for the wealthy, now most people in the western world can be
mobile. The result is a new society characterized by increased freedom, independence, and
the power to think and work beyond traditional confines of space and time.

Understanding that mobility has reshaped our society leads to the next point: the new mobile
citizenry has developed its own distinctive culture with its own etiquette and behaviors that did
not exist prior to wireless technology. Like most cultures, mobile culture has evolved, and will
continue to do so, over time, largely driven by the current parameters of wireless
infrastructure, devices, and software. Although technology made this new culture possible,
one has to realize that a culture needs to be nurtured and paid attention to. The wireless
technology cannot be developed in a vacuum where there is no anchoring in the real world
and the common people. Today, there are several proofs of this vacuum. The mobile industry
in Europe and the US is to a large extent governed and developed by engineers who have
not paid sufficient attention to the target groups of mobile devices. Mobile phones are not

User Intelligence Will Make Mobile Solutions Fly

 3

esthetically pleasing enough, navigation is tricky and services are hard to use. There are
several network and device constraints. The circuit-switched network makes interactions
within a mobile service time consuming. Mobile devices have no common standards for
design and functionality. Furthermore, screens are tiny, resolution and data entry is poor and
these factors make it even harder for designers to create services for these devices. Having
in mind the performance of mobile devices, and the desires of the target group, is essential
when developing mobile solutions.

User Intelligence
A mobile user intelligence approach should be formed in order to analyze the situations,
needs and behaviors of possible users in a mobile context and thus build mobile solutions
that meet their immediate needs within that context. One can study the mobile culture with
help from deep interviews, contextual interviews, video ethnography, quantitative analysis,
visual stories, life stage comparison, secondary research etc. The user analysis consists of
two steps; frame findings and gain insight.

Frame findings is about making structure and find patterns of:

­ People – who are they?
­ Activities – what do people do?
­ Places – where do they do it?
­ Time – when or how often do they do it?
­ Tools – what helps them do it?
­ Interactions – how do they do it?

Gain insights is about underlying:

­ Goals – why do they do it?
­ Motivations – what makes them do it?
­ Problems – what problems are there?
­ Difficulties – what do they have to deal with?
­ Met/Unmet needs – what do they need?
­ Desires – what do they really want?
­ Values – what does it mean to them? What is meaningful to them?

Benefits of Performing User Intelligence
Provides input to business strategy and site design to ensure optimal user experience.

­ Describes intended users in a meaningful way, and highlights significant differences,

which affect product design (gender, life stage, values, capabilities, interests).
­ Provides information for the underpinnings of brand strategy.
­ Identifies unmet user needs and points the way to strategic opportunities for adding value

digitally.
­ Provides essential information and inspiration for designers.
­ Identifies and prioritizes meaningful and essential content.
­ Provides direct implications with respect to revenue generation – m-commerce

(expectations, values) and appropriate advertising (synergies, partnerships, sponsors).
­ Minimizes random or capricious architecture or visual design changes late in the game.

User Intelligence Will Make Mobile Solutions Fly

 4

Case Study: Mobile Buddies1
In the Mobile Buddies project user intelligence was applied in the form of deep interviews and
contextual interviews in order to find out in what way people would like to communicate with,
and locate, their friends with help from utilizing different platforms.

The deep interviews took place in a comfortable room where one observer, one moderator
and the subject were the only present. The contextual interviews were set in a mobile context,
in a public environment, where the subjects were likely to use their mobile phones. These
public environments were located in the city center during lunchtime, popular bars on
Thursday-Saturday nights, and café neighborhoods during Saturday and Sunday afternoons.
The locations were selected due to an email research session within the target group. A total
of 30 subjects participated in the interviews.

The questions asked in the interviews focused on topics such as:

­ How many mobile phone calls do you make during lunchtime/evenings/weekends and
what is the purpose of these calls?

­ How many SMS:es do you send every week? Why and when do you send them?
­ In what situations do you want to know where your friends are located?
­ In what situations is it all right that your friends know where you are located? Why?
­ How often do you use the Yellow Pages or different city guides? Why do you use these

information sources?
­ Describe your habits during lunchtime. How do you find someone to have lunch with?
­ Describe your habits on weekday nights. How do you plan your evenings? How do you

find your friends? Can this process be improved somehow?
­ Describe your habits during the weekends? How do you plan your day? How do you find

your friends? Can this process be improved somehow?

The results that came out of the study showed us, among other things, that:

­ Users want to know where their friends are especially around lunchtime during weekdays
and Friday and Saturday nights.

­ Users want “visibility” to be optional.
­ Users want to be able to create different groups of friends, coworkers etc and give them

different rights.
­ Friends are the main source when looking for some “entertainment”. Word of mouth is

more reliable than city guides.
­ Users want to be alerted when they are passing the bank, post office, pharmacy etc since

they often forget to go to these institutions during lunch hours although they are in the
near hood…

­ They also want to be alerted when friends are at particular places during certain time
slots.

Conceptualization
Conceptualization is about creating consistent user and brand experiences through features,
functions, content and design across appropriate platforms.

1 Mobile Buddies is an instant messaging style communication solution for WAP, SMS, DTMF and
WWW equipped with positioning. The solution is aimed at the private consumer market. The service is
bundled with an operator’s positioning service and subscription. Mobile Buddies enables access to a
community whenever and wherever the user feels like it. Razorfish AB in Stockholm, Sweden created
Mobile Buddies.

User Intelligence Will Make Mobile Solutions Fly

 5

In this phase the users’ situations are thoroughly analyzed to gain a deeper understanding of
the users’ needs and how these can be transformed into creative concepts and desired
products and services.

The conceptualization is a way to package and profile the functionality. This is also done to
align the users’ goals with the client’s business goals and brand values. In this way a more
evolved and finely tuned user experience can be delivered, which gives that added value to
the intended users, which in turn, can create the basis for having satisfied customers and the
foundation to a strong customer relationship. That is what in the end will differentiate products
and services against their competitors in the marketplace. A well-substantiated relationship,
grounded in user intelligence studies is difficult to copy.

The methods and tools used for Mobile Buddies in the Conceptualization phase are
presented below:

­ P n’ Func – a matrix that shows how the users’ needs and wanted experiences match
with the defined functionality, features, content, business goals and brand values.

­ The Flop – a grading tool for how important each function or feature is to every user
profile.

­ Nomatrix – a tool that help us combine and develop features in a creative way.
­ Geo time – a matrix that helps mapping out, time, place and environment, which are

important parameters to keep track of in the mobile world.
­ Mood boards – proposals for the visual expression.

After having run the user research material through the conceptualization program we came
up with a number of functions and features. The following are a few examples of the Mobile
Buddies functionality:

Send a message to all buddies within an area
The subjects expressed support for an efficient “group communication” when looking for
friends who are in a certain mood and or location.

Search buddy
A buddy does not answer his or her phone and you want to find out where he or she is. (It is
probably Friday night and the buddy is at a noisy bar.)

Find Bookmark
There was a great interest in getting useful information from your buddies about a city area
one does not know too well.

Alert me!
The subjects thought it would be useful to know when some of their buddies were located at
the same place or in the same area.

Prototyping
By the use of prototyping techniques the results are visualized in form as well as in
functionality. This makes the decision-making process easier and reduces the uncertainty that
may come with the gap between the conceptualization and the finalized product or service.

The differentiating factor for a product or service’s success is the user’s experience. It is
therefore obvious to have both the users’ experience and the client’s business goals in mind
when designing. With the aid of prototyping, a dialog can be kept with the users even before
the product is implemented. That guarantees that it can live up to the demands held by the

User Intelligence Will Make Mobile Solutions Fly

 6

target audience and that we will produce products and services that are both usable and
useful.

User Scenarios
The purpose of creating user scenarios originates in the view of having a user focus
throughout the whole design process. In order to create desired user experiences it is
important to find out where the user is, why is the user there, how does the user feel, what
does the user need in order to feel helped, relaxed and more efficient. By using the
information, gathered from user interviews and other material, when creating future user
scenarios one gets a better understanding of what could take place when users have access
to a service like Mobile Buddies. The scenarios help us understand the different modes of use
and thus we are able to tailor content and functionality to the best possible user experience.
Scenarios force the creators to think about tasks and goals. Furthermore, they contribute to
keeping a strategic and long-term vision for the project.

Below are a few scenarios illustrating how people could use Mobile Buddies in a future
context, surrounding them with the trappings of their future lives. It is also important to bear in
mind that new products and services create new behaviors.

Find Bookmark

Maria is strolling around the East Village on a beautiful Sunday afternoon. Since she feels like
having a cup of coffee, she logs on to Mobile Buddies from her mobile phone in order to find a
nice café. She chooses to see bookmarks in the “current” area and she is presented with a
number of cafes that her friends have recommended.

User Intelligence Will Make Mobile Solutions Fly

 7

Search Buddy

5.30pm; Sean is home cooking dinner for his 10 year old son Alex. When it is 6.30 pm Alex
has still not come home. Supper is cold, there is no answer on Alex phone, and Sean is
worried… He logs on to Mobile Buddies (web, SMS or WAP) and searches for Alex. After a
few seconds he can feel relaxed again. Alex is at his best friends house...

Search Buddies in area and send SMS

Sandy has just left work and is on her way home to Chelsea. She realizes she hasn’t eaten
since lunch and really wants to have a bite somewhere close to her home. She logs on to
Mobile Buddies to find out what friends are in the area and sends them a message...

?

!

User Intelligence Will Make Mobile Solutions Fly

 8

Alert Me!

Steve is out having a good time on a Friday night. Although the beer is good and the
atmosphere is great he misses some of his friends, he wonder where they might be. In the
next moment he feels his phone vibrate in his pocket. He picks it up and sees that Marcus
and Josh are at Niagara. “Wow, I better leave for East 7th street now….”

Information Architecture
When using a phone for other reasons than those most users are familiar with, like calling
and sending messages, it should be clear what functions are available at a certain moment
and the result of an accomplished action should be easy to interpret. In other words, the
interface design should ensure that the user understands what she or he can do within the
service and that she is aware of what is happening. Having the limitations of small screens in
mind, as they are finite in terms of showing context, menus, and visualization of alternatives,
this way of thinking contributes to developing better and more successful products.

Using a phone to surf the Internet means taking a huge leap away from the fixation with
looks, as found within web and user-centered design. That is why well-created information
flow is even more important within mobile phone services.

The information architect should consider the mental model of the user, and since not the
common people are familiar with mobile services today, one has to assume that the general
user’s model of the system is pretty vague. Therefore, make services as “light” and easy as
possible.

rrrrrr!

User Intelligence Will Make Mobile Solutions Fly

 9

Information architecture in Mobile Buddies
The information flow beneath shows how a user tries to find a recommended café in the
neighborhood where he or she is at the present time.

Testing
As we mentioned earlier we view usability together with usefulness as a qualitative focus that
should be taken from the very beginning in a user-centered design process. To withhold the
usability and usefulness focus, testing and evaluating are very important activities that need
to be carried out continuously throughout the whole design process to derive at the best
solutions. The overall purpose of testing is to identify potential problems early on and to verify
that the solution is truly user-centered and in keeping with the defined concept, user
experience, brand, visual design and tonality.

A number of tests were performed during the development of Mobile Buddies, but those will
not be discussed in the scope of this paper.

MOBILE BUDDIES

MAIN MENU:
>BOOKMARKS
>BUDDIES
>MESSAGES

MB: BOOKMARKS
>find bookmark
>add new bookmark

>MAIN MENU

MB: BOOKMARKS

area
[current]
category
[all]

name
[...]

>find
>MAIN MENU

options back options back options back select

choose area:
current
all areas
chelsea

east village
soho• The “sender”

should be visible

• Links should have
a different layout
than inactive text
(arrow works on
Nokia 7110)

• Item order should
be the same as in
related web sites

• Links need to be
transparent in order
to avoid
unnecessary clicks

• Tell the user where
he/she is

• Support the user
with a way back to
the first page

• Make it simple, use
single-choice list
instead of text input
when appropriate

• Example of single-
choice list

click bookmark click find bookmark click current select from list
MOBILE BUDDIES

MAIN MENU:
>BOOKMARKS
>BUDDIES
>MESSAGES

MB: BOOKMARKS
>find bookmark
>add new bookmark

>MAIN MENU

MB: BOOKMARKS

area
[current]
category
[all]

name
[...]

>find
>MAIN MENU

options back options back options back select

choose area:
current
all areas
chelsea

east village
soho• The “sender”

should be visible

• Links should have
a different layout
than inactive text
(arrow works on
Nokia 7110)

• Item order should
be the same as in
related web sites

• Links need to be
transparent in order
to avoid
unnecessary clicks

• Tell the user where
he/she is

• Support the user
with a way back to
the first page

• Make it simple, use
single-choice list
instead of text input
when appropriate

• Example of single-
choice list

click bookmark click find bookmark click current select from list

MB: BOOKMARKS
result: 18 hits, page 1/4
>Café Beach E 4th
>Café Creek E 6th
>Café Mountain E 2nd

>Café Rain E 7th
>Café Rainbow E 3rd

>Next Page
>MAIN MENU

MB: BOOKMARKS

area
[current]
category
[cafe]

name
[...]

>find
>MAIN MENU

options backoptions back select back

result: 18 hits, page 4/4
>Café Rauk E 5th
>Café Rock E 5th
>Café Soil E 6th

>Café Tree E 4th

>previous page
>search result
>MAIN MENU

MB: BOOKMARKS

Café Rain
200 east 7th street
phone: 212 325 5476

>read comments (8)
>add to my bookmarks

>previous hit
>next hit
>search result
>MAIN MENU

options

• Think “mobile!
Search criteria
should be designed
for the mobile user
and not the one
behind the desk top
computer

• Try to separate
local and global
navigation links in
terms of layout

• Put the important
information on the
surface. Avoid too
many clicks

click find navigating between pages click Café Rain

• Support global
and local navigation.
Previous page: local
Main menu: global

MB: BOOKMARKS
result: 18 hits, page 1/4
>Café Beach E 4th
>Café Creek E 6th
>Café Mountain E 2nd

>Café Rain E 7th
>Café Rainbow E 3rd

>Next Page
>MAIN MENU

MB: BOOKMARKS

area
[current]
category
[cafe]

name
[...]

>find
>MAIN MENU

options backoptions back select back

result: 18 hits, page 4/4
>Café Rauk E 5th
>Café Rock E 5th
>Café Soil E 6th

>Café Tree E 4th

>previous page
>search result
>MAIN MENU

MB: BOOKMARKS

Café Rain
200 east 7th street
phone: 212 325 5476

>read comments (8)
>add to my bookmarks

>previous hit
>next hit
>search result
>MAIN MENU

options

• Think “mobile!
Search criteria
should be designed
for the mobile user
and not the one
behind the desk top
computer

• Try to separate
local and global
navigation links in
terms of layout

• Put the important
information on the
surface. Avoid too
many clicks

click find navigating between pages click Café Rain

• Support global
and local navigation.
Previous page: local
Main menu: global

User Intelligence Will Make Mobile Solutions Fly

 10

Conclusion
Mobile solutions should be as simple and clear as possible, so that communicating with
another person anywhere, anytime is a natural process requiring little thought or effort.

It is becoming increasingly evident that the quality of user experience has a direct impact on
the sustainability and prolonged lifecycle of mobile products. Both hardware and software
solutions provide opportunities to effectively guide behavior for using mobile devices, and
have the potential to make mobility seem natural. In the near future, as technology enables
solutions to respond better to the habits of its’ users, devices may incorporate features that
play increasingly on serendipity, pushing unexpected but useful and interesting information
onto its users. But keep in mind, this is due to a thorough understanding of the users and
such an understanding is gained through user intelligence. Ultimately, providing mobile
solutions and services that are smart and responsive to user needs will improve the culture of
mobility and make mobile devices an indispensable extension of one’s self.

November 2001
ISSN 1404-3203

http://www.it.uu.se/

Technical reports from the Department of Information Technology

2001-026 Jan Gulliksen and Inger Boivie. Usability Throughout the Entire Software
Development Lifecycle - A Summary of the INTERACT 2001 Workshop.

2001-025 Emmanuel Beffara and Sergei Vorobyov. Is Randomized Gurvich-Karzanov-
Khachiyan's Algorithm for Parity Games Polynomial?

2001-024 Larisa Beilina, Klas Samuelsson and Krister Åhlander. A hybrid method for the wave
equation. October 2001. Also available as Preprint 2001-14 in Chalmers Finite
Element Center Preprint series.

2001-023 Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel and Toby
Walsh. Matrix Modelling.

2001-022 Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson
and Toby Walsh. Symmetry in Matrix Models.

2001-021 Inger Boivie: Usability and Design Decisions in Software Development

2001-020 Emmanuel Beffara and Sergei Vorobyov: Adapting Gurvich-Karzanov-Khachiyan's
Algorithm for Parity Games: Implementation and Experimentation.

2001-019 Wendy Kress and Jonas Nilsson: Boundary conditions and estimates for the
linearized Navier-Stokes equations on staggered grids

2001-018 Emad Abd-Elrady: An adaptive grid point RPEM algorithm for harmonic signal
modeling

2001-017 Henrik Björklund, Viktor Petersson and Sergei Vorobyov: Experiments with Iterative
Improvement Algorithms on Completely Unimodal Hypercubes

2001-016 Robert Stjernström: User-Centred Design of a Train Driver Display

2001-015 Magnus Svärd: On coordinate transformations for summation-by-parts operators

	Metzker.pdf
	Introduction
	Existing HCD process models
	Human-Centred Design in Practice
	Survey Conclusions

	The Evidence-Based Usability Engineering Approach
	The Evidence-Based Improvement Model
	Step 1: Analyze the HCD activities practiced
	Step 2: Select suitable HCD base practices and integrate them into the practiced software development process
	Step 3: Support effective performance of the defined HCD methods
	Step 4: Collect and disseminate best practices and artifacts concerning HCD tasks

	The HCD Experience Base
	The USEPACK concept

	The Context Model Concept
	Tool Support

	Discussion
	References

