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Abstract

SILK stands for Scout In the Linux Kernel, and is a port of
the Scout operating system to run as a Linux kernel mod-
ule. SILK forms a replacement networking subsystem for
standard Linux 2.4 kernels. Linux applications create and
use Scout paths via the Linux socket interface with virtually
no modifications to the applications themselves. SILK pro-
vides Linux applications with the benefits of Scout paths,
including early packet demultiplexing, per-flow accounting
of resources, and explicit scheduling of network processing.
SILK also introduces the concept of anextended pathto
provide a framework for application QoS. We demonstrate
the utility of SILK by showing how it can provide QoS for
the Apache Web server.

1 Introduction

In recent years, many research efforts have focused on im-
proving operating system architectures. Architectural fea-
tures have been advanced to help systems avoid receive live-
lock and overload, fight denial of service attacks, account
for kernel resources used on behalf of applications, and pro-
vide application QoS. Despite the quality of many of these
efforts, their underlying ideas have not spread to the average
desktop. For example, Linux is a popular operating system
with freely available source. Yet the standard Linux net-
working stack still cannot prioritize among incoming net-
work packets, and so a Linux application cannot take full
advantage of QoS provided by the network. Nor can an
MPEG player running in Linux inform the system that it
requires a certain rate on the CPU to play its video. Re-
searchers have solved these problems, but adoption of the
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mechanisms they have proposed, and the applications to ex-
ploit them, has been slow. The question is, how can research
more quickly have an impact on the systems and programs
that average people use every day?

We have identified several factors that inhibit the quick
distribution and widespread evaluation of systems research
ideas. They are:

• Steep learning curves. Several research systems have
been built from scratch, usually around better abstrac-
tions and architectures, and are freely available. These
systems often possess real advantages. However, most
people are reluctant to invest the time to master a new
system.

• Lack of applications. This problem plagues research
systems that are built from the ground up, but also af-
fects any research idea that requires heavy changes to
existing applications. The issue is one of chicken-or-
egg: new mechanisms will not be quickly adopted if
few applications can use them effectively, yet people
will not spend effort rewriting applications to take ad-
vantage of mechanisms that are unavailable.

• Kernel patches. Most good research efforts are tar-
geted at specific problems. However, a sysadmin may
want to combine a number of these solutions in her sys-
tem. She faces unpredictable results if she downloads
six kernel patches from six different research projects
and applies them all at once—there could be feature
interaction, or the patches themselves might conflict.
Also, a patch may not be available for the kernel ver-
sion she is using.

This paper presents SILK, which stands for Scout In the
Linux Kernel, in response to these problems. SILK makes
three contributions. First, SILK is a replacement network-
ing subsystem for Linux based on the Scout path architec-
ture [18]. Scout paths combine a number of widely advo-
cated research ideas into a simple, clean system abstraction.
Applications interact with SILK through the Linux socket
interface. Second, SILK provides a QoS framework through
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the idea of anextended path. SILK conceptually extends
the path from the network to the application to coschedule
application and network processing. We believe that many
current applications can take advantage of this framework
with minimal modifications, providing them with immedi-
ate benefits. Third, SILK is packaged as a kernel module
that can be loaded into a standard Linux 2.4 kernel. SILK
allows people to experiment with advanced research ideas
with very little effort and risk, and serves as a vehicle for
widely distributing these ideas and evaluating them in real
contexts.

We demonstrate the capabilities of SILK using the
Apache Web server, a popular and complex application. Our
results show that SILK’s performance is competitive with
the native Linux network stack, and that Apache with SILK
can provide nearly constant response time for preferred re-
quests independent of the total number of clients accessing
the server.

The rest of the paper is organized as follows. Section 2
presents an overview of Scout paths, which form the heart
of SILK, and shows how SILK fits into Linux. Section 3
describes important parts of the SILK design. Section 4
presents a set of experiments done with Apache, to show
that SILK can provide benefits to a widely-used application.
Section 5 discusses further issues and future work, and Sec-
tion 6 discusses other work related to SILK.

2 Overview

2.1 Scout

Scout [18] is a modular, configurable, communication-
oriented operating system developed for small network ap-
pliances. Scout was designed around the needs of data-
centric applications with particular attention given to net-
working. It incorporates a number of ideas found in other
network architectures as well. They are:

Early demultiplexing of incoming packets to flow queues.
This allows the system to isolate flows as early as pos-
sible, in order to prioritize packet processing and accu-
rately account for resources.

Early dropping when flow queues are full. The server can
avoid overload by dropping packets before investing
many resources in them.

Accounting of the resources used by each data flow, in-
cluding CPU, memory, and bandwidth. Knowledge of
the resources used by a flow is necessary in order to
provide overall fairness or to place resource limits on
individual flows.

TCP

IP

ETH

SOCKET

VNET

Figure 1: A Scout path

Explicit scheduling of flow processing, including network
processing. Scheduling and accounting are combined
to provide resource guarantees to flows; for example,
CPU or bandwidth reservations.

Extensibility through Scout’s modular design. This makes
it easy to add new protocols and construct new network
services. Different protocol versions can exist side-by-
side. A new service can be deployed by specifying a
sequence of modules for a data flow.

Scout’s main contribution is to combine all of the fea-
tures listed above into a single, clean abstraction: thepath.
A path is a structured system activity. Each Scout path en-
capsulates a flow of data, for example, a single TCP connec-
tion. A path consists of a string of code modules that pro-
cess and perhaps transform the data as it flows through the
system, and all resources consumed on the flow’s behalf are
charged to the path. Previous research has demonstrated the
usefulness of Scout paths for distributing multimedia pro-
cessing across configurable network nodes [20], scheduling
packet processing in a software router [23], and for protect-
ing against denial of service (DoS) attacks [25].

Figure 1 shows a picture of a Scout TCP path. The path
corresponds to a single TCP connection. It consists of a
chain of protocol modules that process packets belonging to
the connection, with input and output queues at each end.
When a packet arrives on the network device VNET, it is
demultiplexed based on its header information to locate its
corresponding path. If the packet belongs to the TCP con-
nection of this path, it is placed in the input queue at the bot-
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Figure 2: The SILK module in Linux

tom of the path; if the queue is full the packet is dropped. A
path is consideredreadyto run once it has data in its input
queue.

The Scout scheduler chooses a path to run from among
those that are ready. Scout provides a number of CPU
schedulers for scheduling paths; fixed priority, Earliest
Deadline First (EDF), Weighted Fair Queueing (WFQ), and
Best Effort Real Time (BERT) schedulers can be configured
in Scout. When a path is run, a thread belonging to the path
dequeues a piece of data from its input queue, runs the code
modules in sequence, and deposits the result in the output
queue at the opposite end of the path. Scout can prioritize
among different data flows using a fixed priority scheduler,
or give each a CPU share with a WFQ scheduler. The com-
bination of paths and configurable scheduling allows Scout
to produce a rich variety of system behaviors.

2.2 SILK

SILK is an encapsulation of Scout in a Linux kernel mod-
ule. SILK provides a drop-in, extensible networking sub-
system for Linux based on Scout paths. SILK also provides
a framework for building application-level QoS solutions
through the concept of anextended path. In this section
we give a high-level view of SILK.

Figure 2 shows the SILK kernel module within the Linux
kernel. In the left portion, the SILK module exchanges data
with the network device drivers, the socket interface, and the
packet filter interfacenetfilter in standard ways. SILK
also modifies the scheduling parameters of Linux tasks to
influence the decisions made by the Linux CPU scheduler.

The right part of the figure shows two Scout paths within
SILK, corresponding to two TCP connections. (In the re-
mainder of this paper, when we refer to a “path” we mean
a Scout path in SILK.) Each path has two input queues and
one output queue; the lower output queue is unnecessary
since the path sends outgoing packets straight to the de-
vice.1 The SILK module also contains its own CPU sched-
uler that cooperates with the one in Linux. This coopera-
tion is represented by the “Linux thread”; by executing this
thread, SILK transfers control to the Linux scheduler. The
next section will discuss each piece in more detail and de-
scribe how they fit together.

3 Design of SILK

We have three main design goals for SILK:

1. Minimal changes to Linux. Since we want SILK to be
widely used it is important that it is able to run in an un-
modified Linux kernel. Only minimal changes should
be required to Linux applications to enable them to use
paths in SILK.

2. SILK has control of the CPU. Our aim is to take ad-
vantage of the different CPU schedulers implemented
in Scout. In particular, we want to be able to prioritize
among paths, and to provide them with CPU guaran-
tees.

1In other words, the output queue is the packet queue maintained by the
network device driver.
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3. Coscheduling of paths and applications. SILK should
be able to schedule Linux tasks as well as paths to pro-
vide application-specific QoS.

This section describes how our design and implementa-
tion of SILK meets each of these goals.

3.1 SILK Sockets

Linux applications create and use paths in SILK through
the Linux socket API. New applications can use the new
PF SCOUT protocol family to construct paths with experi-
mental or non-standard protocols. SILK can also intercept
socket calls on the PFINET family, allowing unmodified
legacy applications to access TCP and UDP paths.2 In
both cases, SILK implements socket operations and inter-
cepts network packets using interfaces exported to kernel
modules by Linux, and hence does not require any kernel
patches. The rest of this section focuses on the TCP path
shown in Figure 1, and describes how this path exchanges
data with Linux.

The VNET module at the bottom of the path connects
to thenetfilter interface, the packet filtering interface
provided by recent Linux kernels. Incoming packets be-
longing to a TCP path must be processed only by SILK and
not by Linux. To accomplish this, SILK inserts a netfil-
ter hook at the earliest possible location, before Linux has
performed any IP processing; all incoming IP packets are
diverted to this hook. SILK demultiplexes each packet to
see if it matches a path. If it matches, then the packet is
enqueued at the bottom of the path, the path is scheduled
as described in Section 2.1, and Linux is instructed to drop
the packet. If demultiplexing does not match the packet to a
path, SILK lets Linux continue with network processing.

SILK uses another method to receive ARP packets (net-
filter only handles IP packets). SILK snoops ARP packets
directly from the network device using a lower-level inter-
face than netfilter. This interface is not as powerful as netfil-
ter since it is not possible to use it to filter packets. However,
it is sufficient for implementing new network-layer proto-
cols within SILK, because by default the Linux networking
stack will drop packets it receives for unknown protocols.

At the top of the path, the SOCKET module connects
to Linux using the generic socket interface in the kernel.
SOCKET supplies routines that map the familiar socket
calls into operations on paths. For example,connect()
creates a path for a new TCP connection and then starts the
three-way handshake;recv() reads data from the output
queue of the path and passes it to user space;send() reads
data from user space and enqueues it on the path’s input

2This behavior is configurable. If on, SILK takes over all networking
functions; if off, SILK and Linux networking exist side-by-side.

queue; andclose() tears down the connection and de-
stroys the path. These hooks are straightforward.

An interesting point is that the SOCKET and VNET
modules are actually specializations of a single Scout mod-
ule called GenericNet. This module provides generic ver-
sions of the operations that always occur at path endpoints
(e.g., demultiplexing and enqueuing messages), while al-
lowing the module to be specialized for different contexts.
For example, when the application invokessend() , the
data is passed to SILK in a user-space buffer. The spe-
cialized code in SOCKET reads the data from user space
and converts it to a Message (SILK’s internal packet ab-
straction). Likewise, VNET converts the outgoing packet
from a Message to ansk buff (Linux’s internal represen-
tation). GenericNet is also used to implement hardware de-
vice drivers in Scout.

3.2 CPU Scheduling

SILK contains its own CPU scheduler and thread package
that coexists with the Linux scheduler. In this discussion,
SILK runs threadswithin paths, while the Linux scheduler
runstasks. SILK implements thread scheduling on top of a
Linux kernel task created when the SILK module initializes.
As far as we are aware, we are the first to implement a self-
contained thread package and scheduler in a Linux kernel
module; we realize that this may be regarded as an abuse of
the kernel module concept. This section describes how the
SILK and Linux schedulers interact, i.e., how SILK controls
the CPU.

SILK creates a Linux kernel task at startup and sets its
priority to maximum realtime priority, the highest priority
in the system. Therefore, the SILK kernel task will run al-
most immediately whenever it is runnable3. Kernel tasks
run nonpreemptively in Linux, hence another task can be
scheduled to run only when the SILK kernel task yields or
sleeps. SILK multiplexes all of its threads onto this high
priority kernel task.

SILK temporarily transfers control back to Linux
through the “Linux” thread shown in Figure 2. This “Linux”
thread is an actual thread in SILK and SILK can schedule
it like any other thread. When SILK executes this thread,
it causes the SILK kernel task to yield and thus transfers
control to the Linux scheduler. Note that a Linux task
that yields is not considered runnable again until another
task has run. Therefore, when SILK executes the “Linux”
thread, the Linux scheduler chooses one other task to run
and then transfers control back to SILK. Through the mech-
anism of the “Linux” thread, SILK gains the ability to allow
Linux to run one task.

The scheduling parameters assigned to the “Linux”
thread determine SILK’s policy for transferring control to

3It may have to wait for another kernel task to yield.
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Linux. This policy will depend on which scheduler SILK is
running—for example, with the WFQ scheduler the thread
can be given a CPU rate of 50%, and this will cause SILK
and Linux to evenly share the CPU. In this manner SILK
controls how often Linux “as a whole” is allowed to run.

3.3 Extending the Path

One of our goals is to provide application-specific QoS to
Linux programs that use SILK. A scheduling-aware appli-
cation should be able to specify how it and its paths are
scheduled by the system. On the other hand, since SILK is
modular and configurable, intelligence can be built directly
into SILK so that it can provide QoS to existing “dumb”
applications without the application’s participation or even
its knowledge. To this end, SILK introduces the concept of
anextended pathto encompass coscheduling of applications
and paths.

The idea is that, by giving the SILK scheduler the ability
to control Linux’s scheduling decisions, SILK can coordi-
nate processing between the network stack and the appli-
cation. SILK must be able to do two things to “extend the
path” in this sense. First, it must identify the task associ-
ated with each SILK path. This is simply the task that calls
connect() or accept() . Second, SILK must cause the
Linux scheduler (running Linux tasks) to mirror the deci-
sions made by the SILK scheduler (running paths). Exactly
what form this cooperation takes depends on which sched-
uler SILK is using. We have implemented path extensions
for SILK’s fixed priority scheduler as follows.

We had two objectives when implementing an extended
path for the priority scheduler. The first was that net-
worked Linux tasks using SILK’s networking stack should
be scheduled at the same relative priorities as their corre-
sponding paths. The second was that, since we want to pro-
vide these tasks with QoS, they should run at an absolute
priority higher than other tasks in the system to avoid inter-
ference from these tasks. Note that the Linux scheduler usu-
ally provides some form of fairness to tasks. When choosing
a task to run, Linux takes its priority (i.e., as set bynice )
into account but does not strictly schedule by task priority
alone. However, Linux can be made to perform strict prior-
ity scheduling by using the realtime priorities. A task with
realtime priorityp runs at a higher priority than a realtime
task of priority less thanp as well as any non-realtime task.
Realtime priorities meet both of our objectives, and hence
we map SILK priorities onto Linux realtime priorities.

SILK forms an extended path by mirroring the network
path’s priority in the realtime priority of the Linux task that
uses it. For example, if a path has priority 2 (in SILK) then a
Linux task reading from it would inherit a realtime priority
of 2 (in Linux). Furthermore, the priority inherited by a
Linux task from a path can change over time. A task that

blocks onaccept() first receives the priority of the SILK
listen socket’s path. Then it adopts the path priority of the
socket returned byaccept() and finally it returns to its
original priority when closing the socket. SILK does not
change the priorities of Linux tasks, except for the ones that
use SILK paths.

Priority inversion will result if SILK chooses to sched-
ule a path when there is a runnable Linux task with a higher
priority. To avoid this, the SILK kernel task yields to Linux
when a runnable task has a higher priority than any ready
path. For each priorityp starting with the highest, if there
are no ready paths with that priority, then the SILK priority
scheduler checks a list of Linux tasks having realtime pri-
ority p to see if one is runnable. If so, then SILK runs the
Linux thread described in Section3.2. This causes the SILK
kernel task to yield, and the Linux scheduler then runs one
of the tasks with realtime priorityp. If SILK finds nothing
runnable at any priority, it runs the Linux thread by default;
this allows Linux to schedule a task unrelated to SILK. In
this way, SILK socket priorities are inherited by Linux tasks
and SILK controls the scheduling of Linux tasks as well as
paths.

4 Evaluation

SILK is an entire networking subsystem and not just an
architectural feature. As such, it introduces new imple-
mentations of network protocols and scheduling algorithms
into Linux. Because SILK itself encompasses so much,
and because the benefits of Scout paths have been shown
elsewhere, our experiments focus on demonstrating SILK’s
high-level behavior with a real application: the popular
Apache web server. Our evaluation focuses on three areas:
performance, prioritizing network processing, and provid-
ing service differentiation through extended paths.

Our testbed consists of a server and two traffic genera-
tors. The server machine is a 1.4 GHz Athlon with 256 MB
of memory running SILK on Linux 2.4 and Apache version
1.3.20. We are running the standard Apache configuration
unless explicitly mentioned. The traffic generator machines
are both Pentium IIIs, running at 733 MHz and 600 MHz.
All three machines have Netgear GA622T Gigabit Ether-
net cards and are connected via a 1 Gb/sec Ethernet switch.
Our desire is to stretch the limits of SILK by using muscular
machines and fast networks.

As a traffic generator we use sclient [4]. Sclient uses a
single process to manage a large number of concurrent con-
nections to the server. In our version, sclient makes a re-
quest to the server and waits for the response. Immediately
after receiving the response, sclient makes a new request to
the server. By increasing the number of concurrent connec-
tions (referred to as clients), the load on the server can be
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increased. We use up to 97 clients in our experiments.

4.1 Performance

In the first set of experiments we compare the performance
of Apache on SILK against Apache on Linux. Our goal is
to show that, for a real application, the overall performance
of Linux and SILK are comparable. This would provide
evidence that SILK can be a viable network subsystem re-
placement for Linux.

Two metrics are important when measuring a Web
server’s performance [7]: overall throughput and response
time. The throughput measured in requests served per sec-
ond provides a good indication of the efficiency of the sys-
tem. The response time or latency is the time measured by
the client from when it opens a connection until the last byte
of the response arrives. Response time is a measurement
of the usability of the system, since people perceive long
delays as unacceptable [8]. Each data point in our experi-
ments represents an average of the observed throughput or
response time over a run of 2 minutes.

Our experiments measure the throughput and latency for
a group of clients making requests to the server. For each
run of the experiment we configure sclient with a static
number of clients, all of which request the same file. We
vary the number of clients and the size of the requested file
across runs. Note that we do not use a more realistic request
pattern because our goal is to stress different aspects of the
networking stack, and constant file sizes are more useful
for this purpose. Shorter file sizes place more emphasis on
per-connection overheads [6], for example, SILK path cre-
ation and destruction. On the other hand, inefficiencies in
the SILK protocol stack, such as excessive data copying,
should be more visible using large files.

For this experiment we configure all SILK paths with
equal priorities. Since the SILK kernel task runs at a higher
priority than any Linux task, this means that all paths are
prioritized equally within SILK but have higher priority
than Linux tasks. In Linux this is also the case because pro-
tocol processing occurs in a high-priority interrupt context.
Therefore, we expect that SILK and Linux will behave sim-
ilarly. In particular we expect that the overall throughput for
both Linux and SILK remains roughly the same regardless
of the number of clients. The response time should increase
linearly with the number of clients, since we would expect
each client to receive about1/n of the resources whenn
clients are active simultaneously.

Figures 3 and 4 present the results for SILK and Linux.
Figure 3 shows results for three small files of sizes between
1 KB and 50 KB. The bottom graph shows the through-
put and the top graph shows the response time. The fig-
ure shows that the throughput of SILK is slightly lower
and the response time slightly higher than for Linux, ex-
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Figure 3: Comparison between standard Linux and SILK:
response time and throughput for small files

cept for 1 KB files, where for some reason SILK is faster
than Linux. The same measurements for three large files
between 100 KB and 500 KB are shown in Figure 4. Ig-
noring the 1 KB file results which we feel to be anomalous,
these graphs show that SILK’s networking performance is
marginally slower than Linux.

We are aware of inefficiencies in SILK that can affect
performance. For example, SILK uses Scout Messages as
its packet abstraction. This requires copying data between a
Linux sk buff and a Message when moving a packet be-
tween SILK and Linux. Byte copying is one of the most ex-
pensive operations for Web servers [19]. The copy could be
avoided by integrating Messages andsk buff s; this opti-
mization is in progress. Also, path creation and destruction
are fairly heavyweight operations. Table 1 shows some mi-
crobenchmarks for SILK averaged across runs for different
file sizes. We note that caching SILK paths for reuse could
save considerable overhead, especially when the server is
handling thousands of requests per second. Packet demulti-
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Figure 4: Comparison between standard Linux and SILK:
response time and throughput for large files

plexing is already fairly cheap, but since demultiplexing oc-
curs in an interrupt context, it should be further optimized
in order to decrease the vulnerability of the system to re-
ceive livelock [17]. Finally, it is much more expensive to
copy data from a Message (which can be fragmented across
multiple buffers) than from ansk buff . SILK performs
the more expensive copy when sending an outgoing packet;
this overhead represents a significant performance hit for a
Web server. In summary, there is room for optimization in
SILK, but its overall performance appears to be respectable.

4.2 Prioritizing Paths

SILK sockets provide the ability to schedule network pro-
cessing on a per-connection basis. For instance, if the un-
derlying network provides some quality of service (traffic
priorities or bandwidth reservations), SILK can extend this
QoS to the application itself. One question is how much
current non-QoS-aware applications can benefit from this

Description Avg Time in µs
Path create 41.5
Path destroy 12.3

Packet demultiplexing 1.8
Copy from Msg to skbuff 4.3
Copy from skbuff to Msg 1.1

Table 1: Microbenchmarks for SILK

capability. In this section we investigate allowing SILK to
schedule only paths and not Apache.

For the experiment there are two classes of requests: pre-
ferred and standard. We differentiate between these based
on source IP address. This determination could also be
based on information gathered from the network (e.g., the
Type of Service field in the IP header), or by the URL re-
quested or an embedded cookie.

We assign the following priorities to SILK paths: paths
handling preferred requests have priority 2, the listen
socket’s path has priority 1, and standard request paths have
priority 0. 4 These priorities affect network processing as
follows. All incoming SYN packets are delivered to the lis-
ten path. When the listen path runs, the source IP address
of the SYN is inspected and a new path of the appropriate
priority is created to handle the request. We chose prior-
ity 1 for the listen path because SYNs belonging to both
request classes arrive on this path. We wanted to give pre-
ferred SYN packets a higher priority than standard connec-
tions, yet ensure that standard SYN packets had a lower pri-
ority than preferred connections. Note that only the network
processing done in SILK is prioritized in this way. Linux
runs the Apache server processes as usual, and the “Linux”
thread in SILK runs at priority 0.

We repeat the experiment in Section 4.1 while adding
a client generating preferred requests. We run sclient on
two host. The first runs a static number of standard clients
requesting the same file as before. The second runs one
client also requesting the same file but these requests are
preferred. Again, we vary the number of standard clients
and the requested file size across runs. We also increase
the number of Apache server processes to 100; using the
low standard number of Apache server processes, the time
requests spend in the listen queue dominates the response
time. We would expect to see some improvement in the
response time of the preferred requests.

The results in Figure 5 compare the response times of
preferred requests in this experiment to the response times
we observed in Experiment 4.1 for four representative file
sizes. Thex-axis denotes the number of standard clients
competing with the preferred client. Our initial assumption

4Higher values mean higher priority.
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Figure 5: Comparison between response time for small
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was that prioritizing paths in SILK would show a greater im-
provement for preferred requests of large files, since they re-
quire more network processing. However, the results clearly
show a benefit for small files and none for large files. The
second column in Table 2 shows the reason why. An Apache
server task that is sending a large file will repeatedly fill
up the socket send buffer and block. When the send buffer
opens and the task is unblocked, some time elapses before
it is scheduled to run again. Since Linux tries to schedule
all processes fairly, this time increases proportionally to the
total number of processes in the system. In this case the
Linux scheduler dominates the response time for preferred
requests. For small files, this delay was zero in all experi-
ments because the entire file fit in the send buffer.

Number of standard Avg Time Avg Time
clients no path ext. with path ext.

1 387.7µsec 39µsec
16 18.0 msec 46.6µsec
32 32.6 msec 47µsec
64 50.1 msec 53µsec
96 57.5 msec 58µsec

Table 2: Average time elapsed between when a server task
unblocks and when it runs, for preferred requests and large
files only
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Figure 6: Response time with path extensions

4.3 Extending the Path

An extended pathis SILK’s abstraction for coscheduling ap-
plications and paths. In this section, we redo the experiment
of the previous section while enabling extended paths. This
time, SILK changes the realtime priority of a Linux task to
reflect the (SILK) priority of the path that the Linux task
“extends”. In the current setup, this means that a server task
servicing a preferred request runs at realtime priority 2, a
process waiting on the listen queue has realtime priority 1,
and a process servicing a standard request is given realtime
priority 0. We expect that this will remove the Linux sched-
uler as the bottleneck for providing better service to large
preferred requests.

The results are shown in Figure 6. The response times
are very low even for the larger files. For example, with 96
standard clients the response time for a 250 KB preferred
request has decreased from about one second in the previ-
ous experiment to less than 25 milliseconds. In fact, though
the numbers in the figures are averages, the maximum re-
sponse time seen by a preferred client is quite close to the
average response time. For 96 clients and the 500KB file the
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File size (KB) Exp 1 Exp 2 Exp 3
1 3041.1 2752.8 2880.5
16 1084.4 974.5 992.7
50 463.2 434.7 440.35
100 234 215.2 221
250 103.8 103.5 103.9
500 54.1 53.2 54.2

Table 3: Throughput in conn/sec with 96 standard clients in
the three experiments

average response time was 58 ms while the maximum was
98 ms. Also, the response times are almost independent of
the number of competing standard clients. There is a small
increase in the response time with 96 competing standard
clients, and the main reason for this is that the Linux in-
terrupt handler has higher priority than SILK.5 The third
column of Table 2 shows the average elapsed time that an
unblocked “preferred” server task6 waits to run with ex-
tended paths. Note that there is a difference of three orders
magnitude compared to not using path extension with 96
standard clients. This is the reason for the improvements
shown in Figure 6.

Table 3 shows the overall system throughput of SILK and
Apache, with 96 standard clients for each of the three exper-
iments detailed in this section. Recall that the first experi-
ment had only standard clients, while the other two had 96
standard and one preferred client. We can see from the table
that introducing priorities and path extension into SILK has
a minor impact on the system performance. The throughput
was slightly worse in the second experiment than in the first,
and this is probably because in the second experiment we
“penalized” the standard clients by lowering their priority
from 1 (in the first experiment) to 0. The third experiment
with extended paths shows overall higher throughput com-
pared to the second, and for large file sizes the throughput
is the same as in the first experiment.

In summary, we have shown that SILK can handle a high
request load, give low response times to preferred requests,
and all without rewriting Apache.

5Another noticeable fact is that, based on the results for other file sizes,
we would expect the response time for the 500KB file to be lower. From
our detailed timing log we could see that this result was due to an interac-
tion between the server’s TCP implementation and the client’s Linux TCP,
and was not caused by any scheduling overhead.

6In other words, a server task servicing a preferred request.

5 Discussion and Future Work

5.1 Collisions with Linux

Scout has its origins as a standalone operating system. For
this reason, both Scout and Linux independently manage
resources that are actually shared between them. In order to
realize SILK’s goal of requiring no changes to Linux, it is
necessary for the system adminiatrator to ensure that SILK
and Linux do not collide in two areas: CPU scheduling and
TCP port space.

The relationship between the SILK and Linux schedulers
described in Sections 3.2 and 3.3 assumes that there are no
other realtime Linux tasks. If this is not the case, careful
thought must be given to the task’s interaction with SILK
when choosing priorities for it, the SILK kernel task, and
tasks scheduled by path extensions. Such a discussion is
beyond the scope of this paper.

SILK and Linux cannot automatically coordinate which
TCP port numbers each is using without any Linux changes.
If SILK chooses to use the same port as Linux (for instance,
two Apache processes listening on port 80 with one using
SILK sockets) then SILK will grab all of the packets match-
ing that port and Linux will never see them. One solution
is to manually partition the port space between SILK and
Linux. If a minor change to Linux is permissible, then an-
other solution could be to export the port management func-
tions from the Linux kernel, and to modify SILK so that it
could use them too.

5.2 System Priorities

Realtime resource kernels minimize the work done in in-
terrupts, for the reason that interrupts run asynchronously
and at a higher priority than any task. This can disrupt
the system’s ability to offer firm guarantees of timing be-
havior. Since Linux manages hardware devices for SILK,
SILK socket processing can be preempted by Linux inter-
rupts. Therefore, SILK can provide only soft realtime guar-
antees.

Many of the key ideas of Scout and other recent network
architectures stem from the observation that today’s oper-
ating systems cannot assign different priorities to network
processing. The standard Linux kernel is no exception—
all network processing occurs in a bottom-half handler that
runs at interrupt priority. Packet demultiplexing to SILK
sockets occurs in this Linux handler, but packet process-
ing itself runs at the priority of the SILK kernel task. This
means that, strictly speaking, Linux network processing
runs at a higher priority than SILK sockets which can lead
to receive live-lock [17]. However, our expectation is that
systems running SILK will either use Scout networking ex-
clusively, or at least minimize the amount of network traffic
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handled by Linux. A solution that may allow both SILK and
Linux networking to coexist is to use polling of the network
device; this capability already exists in Scout and we intend
to port it to SILK.

5.3 Extending the Path

The extended path mechanism described in Section 3.3 as-
sumes a one-to-one correspondence between Linux pro-
cesses and SILK sockets. In contrast, recent Web servers
such as Flash [22] and Apache 2.0 use a single process
to manage multiple connections. Single-process servers
with multiple connections must make heavy use of these-
lect() system call. We believe that the extended path
concept could be used in this environment by limiting the
set of paths returned viaselect() . We have not yet im-
plemented and evaluated this mechanism and leave it as fu-
ture work.

Extended paths provide a framework for implementing
application QoS. One interesting question is whether QoS
policies reside in the application or in SILK itself. To al-
low applications to take advantage of special features in
SILK, we are defining an API for configuring paths us-
ing the setsockopt() interface. For example, QoS-
aware applications can specify path priorities and request
extended paths through this interface. On the other hand,
since SILK is a modular and configurable system, it can
include application-specific policy modules for providing
QoS to “dumb” legacy applications. We are also building
a SILK-based QoS kernel module for Apache as a demon-
stration of this capability. We note that SILK provides flex-
ibility as to where in the system we implement policy intel-
ligence.

6 Related Work

SILK provides a network architecture for Linux based on
Scout paths. Lazy Receiver Processing [11] incorporates
many of the same ideas as Scout, including early demul-
tiplexing and protocol processing at the priority of the re-
ceiving application. A difference is that LRP waits to pro-
cess the packet until the receiver requests it, which in turn
depends on when the system runs the receiving process; in
contrast, through path extension SILK can implement high-
level QoS by scheduling the receiver itself to run. In con-
junction with LRP, Resource Containers [5] allow consider-
able flexibility in accounting for all system resources, in-
cluding kernel processing, used on behalf of an activity.
Resource Containers can be associated with multiple pro-
cesses or network connections based on the structure of
the application. The Scout path abstraction encapsulates a
single data flow and is less general than a Resource Con-

tainer. However, resource containers themselves are just an
accounting mechanism, while Scout paths combine a num-
ber of ideas embracing aspects of both Resource Containers
and LRP. Additionally, unlike SILK, LRP (implemented in
Sun OS) and Resource Containers (originally implemented
in FreeBSD and, more recently, Linux [1]) require signifi-
cant changes to the OS kernel.

The coordination of application and kernel scheduling
underlying the path extension concept has a long history,
mainly with a focus on multimedia. Processor reserves [16]
can be used to provide QoS for multimedia applications in
a microkernel environment. Client applications make CPU
reservations which are then guaranteed by the system, and
work done by a server on a client’s behalf is accounted to the
client. In [14], Jeffayet al. propose early packet demulti-
plexing along with coordinated proportional share schedul-
ing of both packet processing and user tasks to avoid receive
livelock in overload. We believe that SILK configured with
path extensions and WFQ scheduling very closely resem-
bles their scheme.

Several research efforts have focused on building new
operating systems around abstractions that support QoS for
multimedia applications. Operating systems such as Neme-
sis [13] and Rialto [15] can provide finer-grained QoS guar-
antees to applications. However, systems that are built from
the ground up often suffer from a lack of real applications
which prevents their wider adoption.

Another approach is to modify existing operating sys-
tems to provide QoS to applications. Brunoet al. have
implemented the Eclipse operating system into FreeBSD
and support hierarchical proportional-share CPU, disk and
link schedulers [10]. QLinux [12] incorporates hierarchical
schedulers for CPU and network, LRP and an advanced disk
scheduling framework. Both systems depend on particular
versions of the hosting operating system.

Linux/RK [21] is an adaptation of the resource kernel
concept, developed in RT-Mach, to Linux. A resource ker-
nel provides applications with explicit guarantees to sys-
tem resources through abstractions such as CPU Reserves.
Linux/RK shares some goals with SILK, including modu-
larity and minimal changes to Linux. Linux/RK also maps
its own scheduling policies to Linux task priorities like
SILK does; their experience may be relevant to SILK as
we create path extension mechanisms for schedulers other
than fixed priority. However, SILK is not a resource kernel,
but rather a networking subsystem that supports coordinated
network and application processing.

Scheduler Activations [3] address problems with multi-
plexing user-level threads onto kernel threads. Most of these
problems stem from poor coordination of thread schedul-
ing between the user and kernel domains. SILK sidesteps
these issues by multiplexing its threads onto a Linux ker-
nel task and then controlling how this task itself is sched-
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uled. Since the task runs nonpreemptively, Linux cannot
choose to take control away from SILK; since the task has
the highest priority, Linux must always run this task when
it is runnable. The extended path concept avoids priority in-
versions by further coordinating scheduling across the SILK
and Linux schedulers.

A few papers in the area of Web server QoS deserve
mention. WebQoS[9] is a middleware that provides ser-
vice differentiation and admission control. Reumannet al.
[24] have presented virtual services, a new operating sys-
tem abstraction that provides resource partitioning and man-
agement. This approach relies on some kernel modifica-
tions. Almeidaet al. [2] use priority-based schemes to pro-
vide differentiated levels of service to clients depending on
the Web pages accessed. While in their approach the Web
server determines request priorities, Voigtet al.[26] provide
mechanisms for QoS and overload protection that reside in
the kernel and can be applied without context-switching to
user level. Our approach goes even further than the architec-
tures described above since we can apply scheduling poli-
cies already during the TCP connection setup.

7 Conclusions

SILK is a replacement networking subsystem for Linux
based on Scout paths. “Extended paths” provide a QoS
framework through coscheduling applications and paths.
We have demonstrated that the performance of SILK is
comparable with Linux for the Apache Web server, and
shown how extended paths can be used to provide differ-
entiated service for Web requests. SILK can serve as a plat-
form for research in network protocols, resource manage-
ment, CPU scheduling, and QoS policies. Finally, it works
with an unmodified Linux 2.4 kernel and existing applica-
tions, and hence provides a vehicle for distributing research
solutions so that they can be widely used and evaluated. The
SILK code will be freely available and is scheduled for re-
lease in early 2002.
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