
Automated analysis of dynamic web services

Jonas Boustedt

jbt@hig.se

Masters Thesis in Computer Science

Uppsala University, Sweden

5th March 2002

Abstract

Web applications appear as mazes to a user. Using a web browser,

the user explores each web page without seeing the structure of the en-

tire service. For a software tester, it would be convenient to have a map,

in form of a graph, describing the functional topology of the service. In

that way, it would be possible to analyse the possible paths which can be

navigated to discover redundancies and circularities for example. A web

spider tool can automate the construction of such a graph. The spider

can request a document from the application, �nd all references to other

documents in it, and explore them recursively until all the references have

been analysed. However, web services often produce dynamic responses

which means that the content cannot be distinctly represented by its ref-

erence, i.e., the responses must be classi�ed in a way that matches the

users perception. The main problem is to �nd suitable criteria for this

classi�cation. This study describes how to make such a tool and it sur-

veys ideas for how to create a classifying identi�er for dynamic responses.

The implemented spider was used to make experiments on selected web

services, using di�erent models for web node identi�cation. The result

is a proposal of suitable criteria for classi�cation of dynamic responses,

coming from web applications. These criteria are implemented in algo-

rithms which use the parse structure and the set of internal references as

the dominant terms of identi�cation.

Keywords: Web Analysis, Graph Editor, Web Spider

Contents

1 Introduction 1

1.1 Problem de�nition . 2

1.2 Expected result . 3

1.3 Questions at issue . 3

1.3.1 Web node equivalence . 3

1.3.2 Accessing the web . 3

1.3.3 User interaction . 3

1.3.4 Graph de�nition . 4

1.3.5 Visualization of graphs . 4

1.4 Method . 4

1.5 Delimitation . 4

2 Related work 5

3 Background 7

3.1 World Wide Web . 7

3.1.1 Hypertext Transfer Protocol 8

3.1.2 Cookies . 8

3.1.3 Adding security using HTTPS 8

3.1.4 Hypertext Mark-up Language 8

3.1.5 Web browsers . 9

3.1.6 Frames . 9

3.1.7 User input by forms . 10

3.1.8 Client side scripts . 10

3.2 Web applications . 11

3.2.1 Public services . 11

3.2.2 Intranets . 11

3.3 Web servers . 12

3.4 Dynamic server side responses . 12

3.4.1 Server-parsed scripts . 12

3.4.2 Interfacing against external programs 12

3.5 Web Spiders . 13

3.5.1 Search engines . 13

3.5.2 Intelligent agents . 13

3.5.3 Web Robot exclusion . 13

ii

4 Realisation 15

4.1 Web node equivalence . 15

4.1.1 Edges . 15

4.1.2 Titles . 16

4.1.3 Name/value-pairs in forms 16

4.1.4 Partial parse trees . 16

4.1.5 Repeated patterns in the parse pre�x 17

4.1.6 The equivalence algorithm, all put together 18

4.2 Accessing the web . 19

4.2.1 The web spider algorithm 19

4.2.2 Implementation . 22

4.3 User interaction . 23

4.3.1 Forms . 23

4.3.2 Methods for passing information 24

4.3.3 Secure HTTP and authentication 24

4.4 Graph de�nition . 25

4.4.1 GML . 25

4.5 Visualizing graphs . 25

4.5.1 VGJ . 26

5 The implemented tool 28

5.1 The Web Graph Tool . 28

5.1.1 The �le menu . 29

5.1.2 The sites menu . 29

5.1.3 The options menu . 29

5.2 Presentation of graphs . 30

5.3 Results from running the tool . 31

5.3.1 Analysing black box sites 32

5.3.2 Analysing white box sites 34

5.4 Delimitation . 39

5.4.1 Support for HTML version 3.2 39

5.4.2 Client side scripts - Dynamic HTML 39

5.4.3 User input into forms . 39

5.4.4 Cookies unsupported . 40

5.4.5 Multithreading . 40

6 Discussion 42

6.1 The expected versus the achieved result 42

6.1.1 Web node equivalence . 43

6.2 Previous research and results . 43

6.3 Usefulness . 43

6.4 Acknowledgements . 44

7 Conclusions 45

7.1 Answers to the questions at issue 45

7.1.1 Web node equivalence . 45

7.1.2 Accessing the web . 46

7.1.3 User interaction . 46

7.1.4 Graph de�nition . 46

7.1.5 Visualization of graphs . 46

iii

7.2 Further research . 46

References 48

Appendix 51

A 51

iv

List of Figures

3.1 An example of HTML code. 9

3.2 The rendered HTML document. 9

3.3 The HTML code for an input form. 10

3.4 How a form is visualized in a web browser. 10

4.1 A partial parse tree. 16

4.2 A truncated partial parse tree. 17

4.3 The patternTruncator algorithm. 18

4.4 The complete equivalence algorithm. 19

4.5 The spider algorithm. 20

4.6 Subprograms used by the spider algorithm. 20

4.7 A graphical view of the spider algorithm in action. 21

4.8 An example of GML. 26

5.1 The main GUI for the tool. 28

5.2 Several options can be selected. 30

5.3 A generated graph with a poor layout. 31

5.4 Graphs can be edited manually. 31

5.5 A graph showing a news application. 33

5.6 The graph of a commercial site. 33

5.7 The graph editor can show a graph under construction. 34

5.8 Forms are rendered by the tool. 35

5.9 An incomplete graph for the Othello application. 36

5.10 The graph for an incomplete Human vs. Computer game. 36

5.11 The graph for an incomplete Computer vs. Computer game. . . . 36

5.12 A complete graph for the Human vs. Computer game. 37

5.13 A complete graph for the Othello application. 37

5.14 The spider tool showing statistics. 38

5.15 A graph showing three web services. 39

5.16 A self-referencing, growing document. 40

A.1 The class diagram for the application. 51

v

Chapter 1

Introduction

A large number of the modern information systems today, are accessible through

the World Wide Web. These systems are designed as distributed client/server

applications which means that several users, i.e., clients, can connect to a service

through a web server system. The clients use a piece of software, a browser, to

exchange information between the user and the application.

Traditionally, the way to design web sites was to construct them as large

hierarchic menus from where the user could passively select the desired infor-

mation. Now they are often highly dynamic systems where the actions of the

users have impact on the system's behaviour and contents. As an example, we

can access a bank service, log in, and then perform actions, e.g., pay the bills,

transfer currency between accounts or even buy stock shares. Clearly, these

applications are very advanced and delicate. The services must not be error

prone and must be secure, hence there is a need for software testing that is

well-structured and well-documented. Manual software testing is complicated,

sometimes tedious and always expensive, which has led to a need for tools that

support automated testing.

Today, there are tools for automated testing of web services. They mainly

focus on testing functionality, performance and scalability. It is usual to design

them as macro recorders with the ability to replay the macros, simulating a huge

number of simultaneous clients. Two examples of such benchmarking tools are

LoadRunner and WinRunner from Mercury [1].

If the tool supports a scripting language, the test engineers can write script

programs, �ne-tune and parameterise the test. This requires a good under-

standing of the structure and functionality of the actual web service. Such

knowledge is gained either from a well-de�ned speci�cation or from empirical

experience. Much of this knowledge could be described by a graph. The graph

would describe the functional topology of the service, thus showing how to nav-

igate through it, revealing every sub service (link) and its attributes, such as

input values and types. It could be used as a speci�cation, from which tests

cases could be designed and it could be useful when comparing updates of ser-

vices. This approach could be useful for test engineers if the graphs could be

automatically generated by a software tool.

Web spiders are tools used to explore the web in order to collect informa-

tion. The principle is to �nd links in the retrieved documents and follow them

recursively. Along the way, information is collected and stored. Traditionally

1

the contents in the web were static �les. However, modern web services generate

both static and dynamic responses. This means that the content, received as

a response to a speci�c URI1 request, often is generated from a database and

thus it is variable. The response can be a�ected by the users behaviour, i.e.,

explicit user input (parameters), implicit input (navigation history) or by the

state of the service, e.g., stocks and bank accounts. The server can also have a

random behaviour or the responses can depend on the actions of other clients.

Obviously, when designing a spider tool that manages this type of behaviour, a

number of new problems arise.

1.1 Problem de�nition

Given a web application, which criteria can be used to classify its output2

in order to automatically produce a graph that represents the application's

functional topology?

The nodes of the graph should represent the application's \states" from a

user's perspective. A common de�nition of a state is that a system has reached

a certain state when the combination of all involved
ow control parameters

has a certain unique value. As a consequence of this de�nition, there will be an

immediate state transition when any of the parameters is changed. From one

state there is a well-de�ned, �nite set of possible state transitions to other states.

However, there is no way to access a web application's internal parameters from

the client side; the web application acts as a \black box". Instead, we have

to de�ne the state of the system by either the input to the system, its output

or both. The input to the application is the requested URI and additional

parameters. This could be an adequate de�nition for static applications, where

each URI is mapped to a speci�c static resource, typically an HTML document.

However, when the application has a dynamic behaviour, there is no guarantee

that a speci�c URI is mapped to a certain output. Furthermore, the input is

often concealed to the user. From the user's perspective, the dynamic output

from the application represents its states. The output from the application

normally consist of structured HTML code which has a logical meaning to the

user. In fact, the response is normally the only entity that keeps the state

since the application itself is stateless. The application is only active for a short

moment when it is using the user input and possibly some auxiliary data3 to

determine its state and produce the output. In addition, the responses de�ne

the actions that can be performed in the current state through input parameters

and a set of hyper-links (URIs). Each link represents a potential state transition

and the links are represented by edges in the graph. Hence, it is natural to de�ne

the application's states by classifying the output coming from the application

into equivalence classes that represent the nodes in the graph.

Naturally, using the proposed de�nition of states, a program that explores a

web application must examine all possible responses coming from the web server.

This is only possible if the responses can be identi�ed, i.e., we must de�ne some

1URI is the generic set of all references to resources. Both URL (Universe Resource Loca-

tor) and URN (Universe Resource Name) are URIs
2A web application's output is the web server response to an HTTP request, a requested

URI.
3A database can also keep state information.

2

criteria that can be used to determine if two responses are equivalent or not, i.e.,

if they should be represented by the same node in the graph. The fact that the

responses can have dynamic contents complicates the problem, since the criteria

for de�ning equivalence must allow \equal" responses to have variable content

to some extent. A user would probably allow some variations in the output and

still regard them as belonging to the same logical state. As an example, we can

consider a page displaying the balance of a bank account. This leads to the

main question, the problem of web node equivalence.

1.2 Expected result

This study will suggest suitable criteria and algorithms for web node equivalence.

In order to validate and enhance the criteria a tool must be developed. It

is expected that the tool can produce graphs that can be used as an aid for

web service testers. However, it will merely be a prototype for experiments

and demonstrations and it should be useful for the further work on how the

generated graphs could be used in software testing.

1.3 Questions at issue

The problem can be subdivided into �ve groups of questions.

1.3.1 Web node equivalence

Dealing with dynamic contents, how should the spider classify the server re-

sponses into nodes, in order to build the graph? Solving the problem of web
node equivalence is the key to success, i.e., if we know how to compare responses

from web servers, we can make the classi�cation. Which criteria are possible

candidates for web node equivalence and identi�cation and which are the most

suitable ones?

1.3.2 Accessing the web

The tool must be able to communicate with remote web servers through the

Internet. The search space, the set of resources on the Internet, is huge and

must therefore be de�ned for the web application at issue since it could point

to external resources. Without a well-de�ned search space the analysis could

end up with a graph of the entire Internet. Also, the stop criteria must be well-

de�ned. Otherwise the analysis would never end. Which are the underlying

principles of a web spider and how should this web spider be designed in order

to ful�l the speci�c requirements for this type of application?

1.3.3 User interaction

The data input from clients a�ect the response. How should the data be dealt

with, i.e., how should the web spider know which data to insert, in order to

automate the analysis? Some interaction from the operator is probably required.

Could the same data be repeated? Could it be reused and manipulated? How

3

should the input forms be presented to the user, and how should the entered

values be captured?

1.3.4 Graph de�nition

How should the graph be de�ned and abstracted? A well-structured, possibly

extensible, language is needed to store information of the graph structure and

other data attributes collected in the traverse. Are there some standards?

1.3.5 Visualization of graphs

One of the main ideas is to be able to visualize the functional topology of a

web application. The graph should be editable and storable. It should also be

possible to send it to a printer. The problem is not trivial since the renderer

must be able to organise the nodes and edges into a well-structured view. Thus

a rendering tool must be developed, or are there such tools available?

1.4 Method

A spider engine must be developed in order to investigate methods for response

classi�cation and user interaction. That requires knowledge about the concepts

of client/server applications on the Internet and some practical skills in pro-

gramming and usage of APIs (not rocket science but yet time consuming).

Theoretical ideas, for how classi�cation of responses can be done, will be

generated and evaluated using the tool. Experiments will verify or reject these

ideas. Some ideas are collected from other researchers and some are new. The

method is in other words innovative, experimental and iterative.

The structure of the response is more important than its literal content.

There are several aspects to consider such as: parse trees, links, titles and

contents. However it is hard to make a conclusion a priori of which criteria will

be successful, thus an iterative process combining new ideas with experiments

and test will be used.

1.5 Delimitation

This study focuses on the analysis of web services, creation and visualization of

functional graphs. The aim is not to produce complete functional speci�cations

that could be used for test case generation. However, the results, if successful,

could probably be used in further research to achieve that goal.

4

Chapter 2

Related work

Jonsson, L�of and Magnenat discuss the possibility to construct test schedules

for a web service if a state graph of the service is provided [2, 3]. Such a

state (transition) diagram would be comprehensive and useful for a test suite

developer. This fact urge to create such a graph automatically. However, how

should it be constructed? Using the principles of a web spider would make

it possible to explore a web service and collect information along the road by

issuing requests and receiving responses. Links, titles, input parameter names

and values, script detection, etc. are examples of such information.

Filippo Ricca and Paulo Tonella have developed similar tools for analysis and

testing of web applications and their results were presented in April at TACAS
2001 [4]. The tool ReWeb downloads and analyses the web pages and then

creates an UML model of the web service. TestWeb generates and executes a

set of test cases based on the model from ReWeb. Both tools are semiautomatic.
However, the problem of web node equivalence is not discussed in their paper.

It is stated that all versions of the same page are merged. That is exactly the

issue here: how do we know that a page is a potential variant of itself?

WWWPal [5] is an example of another type of tool. It analyses the contents

of a web server and produces graphs showing all the references to documents.

It can also create synthesised web pages containing a skeletal representation of

the generated graph. However, dynamic behaviour of the web server is not con-

sidered. This is a tool suitable for analysing information server systems where

links are bound to speci�c documents, i.e., the link identi�es the document.

Yet another example of an automated analysis of web sites using a spider

combined with having the result represented in a graph is WebCutter [6]. It is

a tool for tailored information searching. It combines the search paradigm with

the browse paradigm by presenting the dynamic search results from a site in a

graph. The generated graph is interactive, thus letting a user browse the graph

by clicking the nodes.

One of the non-trivial problems in this study is the web node identi�cation,

i.e., how the contents (server responses) can be mapped into nodes and how

they can be compared to each other (equivalence). Web node equivalence is

discussed by Luca de Alfaro in a paper on Model Checking the World Wide
Web [7]. Alfaro talks about the following aspects of web node comparison and

equivalence:

5

� Textual comparison.

The actual text contents in two pages (s; t) can be compared and equiva-

lence would be based on identical text in the pages.

s = t, text(s) = text(t)

Comment1: this approach does not consider equivalence on a higher level
of abstraction. Any single character can cause a mismatch. An HTTP
request is required.

� Link comparison.

If two pages contain the same links they can be considered as potentially

equal.

s = t, links(s) = links(t)

Comment: having this de�nition could lead to a loss of data but the struc-
ture of the graph will be preserved in a minimal form. An HTTP request
is required.

� Original URL comparison.

Pages are identi�ed by their referred URLs (a0; b0).

s = t, a0 = b0

Comment: this is very eÆcient since it is suÆcient to visit each node only
once. It will work in a static context, but is useless for dynamic services.
An HTTP request is not required.

� Final URL comparison.

Pages are identi�ed by their �nal identi�ers - after redirections and com-

pletions into fully quali�ed URLs (an; bk).

s = t, an = bk

Comment: if two responses originates from di�erent locations, they are
not likely to be de�ned as equivalent even if the contents are identical. An
HTTP request is required.

� Redirection sequence comparison.

The sequence of redirection URLs obtained until a page response occurs

can be used to identify the page. If two such URL sets have a common

member, the pages are equivalent. This criterion is more robust than the

other URL comparisons.

s = t, fa0; : : : ; ang \ fb0; : : : ; bkg 6= ;

Comment: an HTTP request is required.

Finally it is stated that a mix of the above de�nitions is likely to be the

optimal equivalence de�nition. The mix could be taylored for the web domain

in question. However, redirection sequence comparison is used in de Alfaro's

implementation, \for the sake of simplicity".

1The comments here are the authors comments on de Alfaro's proposed criteria.

6

Chapter 3

Background

The following sections explain some concepts that the reader should be familiar

with in order to comprehend the problems discussed in the following chapters.

The initiated reader could skip these sections.

3.1 World Wide Web

The World Wide Web (WWW) [8] is a community of servers that o�er mul-

timedia information and interactivity through the Internet. These servers are

normally accessed via client-side software tools called browsers. The commu-

nication between the client and the server is performed using the Hypertext

Transfer Protocol (HTTP), and the information is normally structured in docu-

ments by the Hypertext Mark-up Language (HTML); however any type of data

can be transferred, e.g., pictures. The HTML language can describe structure

and presentation of information and can de�ne hyperlinks, i.e., references to

other sources of information, typically other HTML documents. A hyperlink is

structured as a Universe Resource Identi�er (URI) [9].

The original use of the web was to let the web browser passively display

the contents of a given URI. The only interaction with the server side was to

send new URI requests (by typing in a new URI or by clicking on a hyperlink),

receive the response and display it. In this type of static applications, the web

server is acting alone on the server side. In order to update information on the

server side, the static �les (documents) had to be manually edited.

However, according to James E. Goldman the Internet is transforming from

a government funded entity designed for research and education to a privately

funded entity that o�ers commercial services [10]. Along with this increased

commercial use new needs come for improved user interaction. A web shop

must be able to show products and prices that are up to date. Moreover, a

customer should be able to buy the products in a simple manner. This requires

some user-input mechanisms for selection and text �elds for the credit card

number. The user interactions can also a�ect the state of the service, i.e., bank

transactions should be able to be traced and must be stored in a database.

Hence, HTML and HTTP have been enhanced during the years to meet these

new demands. Most of all modern web services or web applications today have

this dynamic behaviour.

7

3.1.1 Hypertext Transfer Protocol

The Hypertext Transfer Protocol [11] is a high level, platform independent,

client/server protocol, residing in the application layer on top of TCP. It is a

stateless protocol, hence it is quite di�erent comparing with other TCP/IP ap-

plications. A client connects to a server, and makes a request, gets a response

and then closes the connection. After this point, there is no state change any-

where from the protocols perspective. The next connection will have no other

relation with the former. State awareness must be solved at a higher level, e.g.,

by using hidden parameters in the response or by using cookies.

3.1.2 Cookies

The use of cookies is a way for web applications to store persistent information

on the client side. This information can be fetched (polled) by the web service

in order to retrieve the state of the particular user. Using cookies is optional

in web browsers since the browser actually writes the cookie on the client disk.

Web services must handle users that do not accept cookies. According to Hal

Berghel, the use of cookies have drawbacks since they a�ect both the clients

storage and integrity [12].

3.1.3 Adding security using HTTPS

In order to provide security (communications privacy) for HTTP connections,

a security layer can be applied. Secure Sockets Layer (SSL) by Netscape is a

protocol that establishes a secure connection between computers [13]. An URI

indicates the use of a SSL server by using the \https:" protocol speci�er. The

SSL layer resides on top of HTTP.

3.1.4 Hypertext Mark-up Language

HTML [14] is a fairly well-formed language that structures multimedia contents.

It also suggests to the browser how the data should be presented to the end user.

This is controlled by \tags" embedded in the textual contents in a hierarchic

manner (tree structure). Some tags are more or less mandatory, e.g., the \root"

tag <HTML>, and others (<HEAD>, <TITLE> and <BODY>). The tags that express

structure (have contents) are all balanced, i.e., they consist of a start tag an

a end tag (<TABLE>...</TABLE>). Tags without contents are not balanced, e.g.,

the line break tag
. Tags can contain embedded attributes. The anchor tag

<A ...> for example, de�nes a hyperlink (URI) using the attribute HREF. The

contents between the start and end tags represent the hyperlink when the page

is visualized by the browser. See Figure 3.1 for an example of HTML-code and

Figure 3.2 to see how it is rendered by an HTML-browser.

Links can be expected in several other tags. To �nd them, the page must

be parsed following the syntax of HTML. Unfortunately, browser developers

have augmented the language standard in di�erent directions. In addition the

parsers in the browsers are very forgiving, i.e., the HTML documents will often

be parsed and rendered even if the documents breaks the syntactical rules. This

8

<HTML>

<HEAD>

<TITLE>A table in HTML</TITLE>

</HEAD>

<BODY>

<HR><H2>A table in HTML</H2><HR>

<TABLE>

<TR><TD>A11</TD><TD>A12</TD><TD>A13</TD></TR>

<TR><TD>A21</TD><TD>A22</TD><TD>A23</TD></TR>

<TR><TD>A31</TD><TD>A32</TD><TD>A33</TD></TR>

</TABLE>

This is a hyperlink.<HR>

</BODY>

</HTML>

Figure 3.1: An example of HTML code.

Figure 3.2: The rendered HTML document.

has caused a sloppiness1 when writing HTML code. These circumstances lead

to major problems when parsing a document, since the parser has to ignore

many special cases and syntactic errors.

3.1.5 Web browsers

A web browser is an application that can fetch multimedia data from the Internet

via HTTP or from a local �le system. It can interpret and visualize HTML-

documents, but can also render pictures of various �le formats, play music, etc.

Some of the most well-known browsers are Mosaic, Netscape and Explorer.

3.1.6 Frames

The users view of web pages are often structured by frames. Typically, the

browser presents a number of important links at the left side or in the top

or bottom. If the user selects one of those links, the browser will show the

response to that action in another section. The browser is actually divided into

a number of rectangular windows. Thus, we have a split vision of the service.

This is controlled by the <FRAMESET> tag in HTML.

1In the absence of HTML compilers, trial and error is the prevailing method for writing

HTML code.

9

3.1.7 User input by forms

The technique for passing information to a server side application is very sim-

ple. The <FORM> tag implies that this section of the HTML document contains

name/value pairs. A name/value pair is a name (a key) and a string value which

can be set by the user. In order to send the information to the application, a

submit-button must be activated. The forms speci�es an action that should

be performed on submit and it is typically an URI. In addition, a parameter

passing method is speci�ed. It could be either POST or GET. The web browser

has to visualize this form in some way in order to prompt the user. The pa-

rameters are associated with several types of GUI-components (widgets). These

can be text �elds, check boxes, selection boxes, text areas, buttons or radio but-

tons. However, there are also \hidden" parameters, which are not visualized in

the browser. These parameters can carry state information since they are sent

back to the server application in the next HTTP request. See Figure 3.3 for an

example of HTML-form code and Figure 3.4 to see how it is visualized.

<HTML>

<HEAD><TITLE>An input form example</TITLE></HEAD>

<BODY>

<HR><H2>An input form example</H2><HR>

<P>Please identify yourself and log in.

<FORM METHOD=POST ACTION="http://www.secret.to/login.cgi">

<INPUT TYPE=HIDDEN NAME="retries" VALUE="4">

<P>Your SSN: <INPUT TYPE=TEXT NAME="ssn">

<INPUT TYPE=SUBMIT VALUE="Login">

</FORM>

<HR>

</BODY>

</HTML>

Figure 3.3: The HTML code for an input form.

Figure 3.4: How a form is visualized in a web browser.

3.1.8 Client side scripts

On the client side, browsers can interpret scripts that are embedded in the

downloaded pages. JavaScript, JScript and VBScript are examples of such

10

script languages. Some of the most common tasks for the scripts are checking

user input, controlling \banners", performing reactions on user actions, making

nicer graphical appearance, and so on. HTML-documents containing scripts

are often referred to as \Dynamic HTML". In addition, Java applets can be

executed in a JVM2 on the client. The applet's GUI3 appears embedded in the

browser, but the execution is restricted to the JVM and they have no access to

the browser's API. Client side scripts can also handle URIs and issue associated

actions, i.e., request the URI or it could even start new browser instances. URIs

are treated as strings in the script languages, and can be built by function calls

and substrings at run time. This fact has a dramatic impact on the spider

application in this work. It is not suÆcient to parse the contents; the scripts

must actually be executed to ensure that all URIs are found.

3.2 Web applications

Web applications, or services, are composed of a number of sub-services that

put together can interact with a user through a web browser. WWW itself

is a service layer on the Internet, which o�ers the possibility to access other

services. The typical server side architecture of a modern web service is a web

server connected to a set of software applications, residing in an application

server. The web server can activate these applications when it is resolving a

request from a client. The request typically consists of a URI and input data

entered by the user. The web server communicates with the application using

some protocol, e.g., CGI4, and the response from the application is sent back to

the client either directly or through the web server. The response is typically

an HTML document and the contents is likely to vary depending on user input

and the state of the application; the state of some database for example.

3.2.1 Public services

Anyone equipped with web browser software and an Internet connection can

access any public web service. Some of them require a login procedure, with

a prompt for username and password, to identify the users. This could be

bank services, web shops, libraries, public service applications and naturally

the classical \homepages" of organisations. Even some private persons o�er

interactive services but most people don't have a permanent TCP/IP address

nor do they have a server. The ISP5 provides a dynamic address for them that

is �xed during the current session only.

3.2.2 Intranets

An Intranet is a private network based on TCP/IP protocols hidden from the

Internet behind a �rewall. Thus, only the members of the organisation can

access the network. Others can access it from outside only by authorisation. An

intranet's web site acts as a normal web site within the private network. This

2Java Virtual Machine
3Graphical User Interface
4Common Gateway Interface
5Internet Service Provider

11

allows the company to present classi�ed information and to o�er internal web

services to its employees. Goldman gives some examples of intranet applications:

discussion forums, on-line polls, organisational directories, company policies and

procedures and company forms [10]. Other examples are company news, time

management and address books.

3.3 Web servers

The web server software distributes requests and responses between the client

and the server. The information on the server is auxiliary to the server software

and is normally a set of �les (static or executable). Some well-known server

software are: Apache (GNU), AERN, Microsoft IIS, NCSA and Netscape [15].

3.4 Dynamic server side responses

In order to generate dynamic server side responses, some code must be executed

on the server side (host). It can be done by either letting the web server interpret

code written in some script language, or by delegating the task to the operating

system.

3.4.1 Server-parsed scripts

Web servers can run several script languages. The SSI6 directives were the �rst

tool to make the pages act dynamically. They are put in HTML comment lines.

However, merely directives do not make an expressive scripting language and

since the demand for dynamic behaviour in the services on the web increased,

so did the demand for better tools. ASP7 was the �rst server side scripting

language, followed by many others, e.g., PHP8 and JSP9. The idea behind all

of the embedded server-parsed languages is based upon embedding the script

code within the HTML document. The web server parses the document and

interprets or executes the script code (in an execution thread), replacing the

code with its results, and then delivers the resulting web page to the browser.

Often, the �le name extensions of the URI reveals the type of scripting language:

.asp, .jsp, .php3.

3.4.2 Interfacing against external programs

The \Common Gateway Interface" (CGI) is a speci�cation that allows com-

munication between a client and an executable program or script on a remote

operating system through the WWW, using HTTP. It is a standard for informa-

tion servers, such as web servers, to interface with external gateway programs.

Gateways are programs, which receive requests for information and return the

requested information, which can be generated dynamically in real time. The

server and the gateway run as separate processes on the host operating system

in contrast to server-parsed scripts. When a CGI program is executed, either

6Server Side Includes
7Active Server Pages (Microsoft - VB-script)
8Personal Home Pages (open-source by Apache Software Foundation)
9Java Server Pages (JavaScript executed on the server)

12

it can get its input data from the standard input stream or it can be provided

as command line parameters. CGI also speci�es environment variables that can

be accessed by both the server and the program during execution. The most

common input data are name/value pairs originating from a FORM request in

an HTML page. The output from the program is transferred back to the client

via the server and is typically a web page. The gateway can get information

from various sources, e.g., a database, and then transform the data into a for-

mat that can be read by the client, i.e., if the client is a web browser, the data

should be HTML encoded. The major drawback with CGI programs is the

sometimes poor execution time. The operating system has to start up and kill

a process for each request. One of the advantages is the possibility to interface

against previously developed applications. There are many gateway programs

that collect information from external systems. They can easily be modi�ed to

support CGI. Normally the URI ends with a \.cgi". The CGI programs can be

written in any programming language that produce executables, e.g., C, C++,

Perl, Python, TCL, UNIX shell scripting languages (Bourne, C, Korn, ...) [15].

3.5 Web Spiders

A web spider is any application that traverses the web automatically. These

applications are also known as web wanderers, web robots or web crawlers.

Their intention is to �nd information in the web. It could be information in

some speci�c topic or it could be a higher level search as indexing the web in to

databases [16].

3.5.1 Search engines

Web search engines are web applications, which use huge databases to keep an

index of information that can be found in the web. The index is generated

by web robots that continuously search the web for information. The gathered

information is indexed and is then put into a database. A client can connect to

the search engine and type in some keywords into a search form. The database

is searched for these keywords and the result is typically a list of URIs. Each

URI refers to a document containing the keywords. However, since the indexing

process is very time consuming, it is impossible to keep the index updated at

all times. Thus, it is quite common that the links are broken or the content is

changed etc. The major search engines, e.g., AltaVista, Yahoo, Evreka, etc.,

are only used to �nd static web pages in the web.

3.5.2 Intelligent agents

Some web spider applications, intelligent agents [17] can detect changes in se-

lected web pages (static or dynamic). It could be weather reports, stock prices,

etc. As a user, you subscribe to some speci�c URIs and the spider will auto-

matically detect updates and inform you, e.g., by e-mail.

3.5.3 Web Robot exclusion

The Internet is crowded by all kind of robots, looking for information. The

performance of a web server under \attack" from a robot can be considerably

13

reduced. Both the web masters and the web robot launchers have a mutual

interest of keeping the Internet as fast as possible. Therefore, some steps have

been taken to solve the problem. The \Web Robots Exclusion Protocol" is a

very simple way of de�ning which parts of a site that should not be visited by

robots. A plain text �le http://.../robots.txt contains such information.

Another way of doing it is by using a HTML META tag (Robots Meta Tag)
in the actual page, inhibiting indexing and linking. Note that these methods

require co-operation from the robot creators since this is just information to the

robot and it could be ignored.

14

Chapter 4

Realisation

This chapter describes how the problems were solved, which criteria were chosen

for web node equivalence and how they were implemented into algorithms.

4.1 Web node equivalence

The unsolved problem in the described spider algorithm is how to identify nodes

and how to compare them. Using a highly pedantic method will cause a never-

ending loop in the algorithm since \new" nodes will keep showing up. A sloppier

method may lead to missed nodes. Dealing with dynamic services implies that

some contents in a speci�c node will be dynamic and the rest remain constant.

This is what has to be considered when formulating the equivalence criteria.

Luca de Alfaro suggests �ve di�erent methods that can be combined to identify

nodes [7]. Some of those ideas are used but some new thoughts are implemented

and evaluated.

4.1.1 Edges

Two nodes, that have the same set of node references (edges) are potentially

equal. Two nodes that have di�erent node sets cannot possibly be equivalent

due to graph properties. Using this model, a web site is considered to be a

structure with no other contents (attributes) than the edges themselves. If a

new response does not have the same ordered set of edges as other nodes, it

could not be identi�ed with any of the existing nodes. Obviously, this is not a

suÆcient demand, but it is required, in order to maintain the graph properties.

Actually, keeping the references in a set will make the de�nition of equivalence

weak. The order of the references and repeated occurrences could be regarded.

Thus, a stronger di�erentiation is achieved if the set is ordered and it allows

duplicates. A simple implementation would be to put the references in a linear

string. However, it is possible that some applications produce internal links1

dynamically; the order of links could be changed or they could be repeated. The

would lead to new nodes in the graph where an uni�cation were expected. In

this case an unordered set of links is better to use. An ordered set is chosen for

the prototype.

1Links within the application itself are edges in the graph.

15

4.1.2 Titles

According to W3C, one of the mandatory tags in the HTML language is the title

tag [18]. If the title tag is missing, the web browser may not be able to render

and display the document. The content in the title block will be displayed in the

browsers title bar. Search engines also use it to describe a documents content.

Thus, the title tag is expected in a well-formed HTML document. Using an

objective perspective it would also be predictable that the title is unique to the

actual page. Reversing this argument gives us a strong reason to believe that

the title for a speci�c node is constant in time. The title criterion is optionally

added to the set of edges criterion. The e�ect will be veri�ed by experiments.

4.1.3 Name/value-pairs in forms

If there is one or more forms in a document, each input component is associated

with a parameter name. When the form is submitted, the names are combined

with the entered values into name/value pairs. The set of parameter names

from these pairs is a potential identi�er for an HTML document. Therefore, the

identi�cation algorithm will use the ordered set of parameter names.

4.1.4 Partial parse trees

[1]{html}[2]{head}[3]{c}[2]{body}[3]{h2}[3]{table}

[4]{tr}[5]{td}[6]{c}[5]{td}[6]{c}[5]{td}[6]{c}

[4]{tr}[5]{td}[6]{c}[5]{td}[6]{c}[5]{td}[6]{c}

[4]{tr}[5]{td}[6]{c}[5]{td}[6]{c}[5]{td}[6]{c}[3]{c}[3]{p}

Figure 4.1: A partial parse tree.

The HTML document in Figure 3.1 is represented here as a partial parse tree. A pre�x string

is produced by a depth �rst traversal of the tree. Each node is represented by its depth and

type, but only the non-leaf nodes are represented. The generated pre�x string is displayed

beneath the parse tree.

An HTML document can be described as a parse tree. Is it possible to �nd

a method to delimit the parse tree in such a way that dynamic contents are

excluded? Equivalence would then occur if it is possible to abstract two parse

trees into a common, non-trivial, tree. As a �rst step in this direction, the parse

16

tree could be cut o� at some �xed level. The root element and its children are

kept and the textual content is ignored. However all HTML documents are iso-

morphic until level 2, so this approach would be far too naive. The implemented

and veri�ed method is to build a signature, or pre�x, that describes the parse

tree, i.e., every node with contents is tagged with its depth and type. Thus the

parse tree is
attened by a traversing the tree by depth �rst, and the signature

is stored as a linear string. When determining equivalence, the signatures are

matched by string comparison. The leaves, representing the textual contents,

are represented as an abstract content in the signature, allowing textual varia-

tions in the documents, hence it describes a partial parse tree. However, if the

structure of the document is changed, the equivalence algorithm will not match.

As shown in Figure 4.1, the partial parse tree for the HTML document in

Figure 3.1 can be described as a string. Brackets surround the level of a node in

the parse tree and curly braces mark the node type. The element fcg symbolises

textual contents.

4.1.5 Repeated patterns in the parse pre�x

Some applications show dynamic listings of items, e.g., a list of bank accounts

or a list of news titles. When this kind of applications are analysed, the number

of items in those lists could vary during the analysis. The examination itself

may a�ect the state of the service and thus a�ect the responses. In a news

publishing system, every inset of a new article would a�ect the index of articles.

The new version of the index page would now be regarded as a new node, using

the partial parse tree algorithm described in section 4.1.4. Nevertheless, the

amount of repeated items should not stop the uni�cation of nodes. Either the

parse pre�x option must be turned o� or a more sophisticated algorithm must

be used to avoid a graph with a group of nodes that should be the same.

[1]{html}[2]{head}[3]{c}[2]{body}[3]{h2}[3]{table}

[4]{tr}[5]{td}[6]{c}[3]{c}[3]{p}

Figure 4.2: A truncated partial parse tree.

This �gure shows the results from the patternTruncator algorithm, when applied to the pre�x

string from Figure 4.1. The resulting pre�x string and it's corresponding parse tree are

truncated. The HTML table has been reduced to having only one row and one column.

17

A suggestion is to �nd adjacent repeated patterns in the parse tree pre�x and

replace such patterns with one instance. This implies that all repeated tables,

rows, columns, lists and paragraphs for example, would be abstracted into a

basic structure, containing all unique substructures, and the varying responses

would be uni�ed. Naturally, this is only the case when the other equivalence

criteria are ful�lled. Figure 4.2 shows an example of this idea. Starting with the

HTML document in Figure 3.1 and then creating the partial parse tree pre�x

shown in Figure 4.1, the pre�x is truncated into the pre�x shown in the �gure.

The algorithm, patternTruncator, takes the parse tree pre�x string and

�nds its sub-trees using the algorithm divideTree. The sub-trees are examined

and if two adjacent sub-trees are identical, the second is removed, etc. The

remaining sub-trees are then recursively processed by patternTruncator. Dur-

ing the end of the recursion, the sub-trees are concatenated into one truncated

parse tree pre�x.

patternTruncator(pre�xString, level) : string

resultString := head(pre�xString, level) to �rst occurrence of level

pre�xString := tail(pre�xString, level) from �rst occurrence of level

subtreeList := divideTree(pre�xString, level) �nd all sub-trees of level

truncatedList := �ndUniquePre�xes(subtreeList) remove adjacent repetitions

if truncatedList is empty then

resultString := concat(resultString, pre�xString) base case

else

foreach subtreeString in truncatedList do recursive case

resultString := concat(resultString, patternTruncator(subtreeString, level+1))

end foreach

endif

return resultString

divideTree(pre�xString, level) : stringList

subttreeList := �

while(head(pre�xString) = level) do

subtreeString := �rstSubtree(pre�xString, level)

add(subtreeList, subtreeString)

pre�xString := remove(pre�xString, subtreeString)

endwhile

return subtreeList

Figure 4.3: The patternTruncator algorithm.

4.1.6 The equivalence algorithm, all put together

The equivalence algorithm is a composition of the suggested variants of equiv-

alence de�nitions. Some are optional since their importance for di�erent kinds

of services may vary. The fundamental criterion for the comparison is the set

of edges found in the responses and therefore it is not optional. Then follows

the optional comparison of the titles found in the document. The third op-

tional criterion is the parse tree pre�xes, which may have been truncated by

the patternTruncator algorithm. As a last optional means of equivalence, the

parameter names found in the possible forms are used.

18

equivalenceAlgorithm(a, b) : boolean

boolean e := (edges(a) = edges(b)) Set of edges, not optional

boolean t := (title(a) = title(b)) or not optionT Titles, optional

boolean p := (pre�x(a) = pre�x(b)) or not optionP Parse trees, optional

boolean f := (fparam(a) = fparam(b)) or not optionF Form parameters, optional

return (e and t and p and f)

Figure 4.4: The complete equivalence algorithm.

The parse tree pre�x is optionally truncated by the patternTruncator algorithm when it is

constructed from the parse tree.

4.2 Accessing the web

Having solved the problem of how nodes should be compared, it is now possible

to use the de�nition of equivalence in an algorithm that generates a graph.

4.2.1 The web spider algorithm

The algorithms used to explore web services follows the same principle as pro-

posed independently by Ricca and Tonella [4], with some di�erences.

The suggested algorithm uses two sets:

� R, a set of node objects, representing web server responses. Each node

has a set of edges (URIs).

� U , a set of edge objects, representing URIs. Each edge has a set of at-

tributes, e.g., a node reference, the URI, form parameters, etc.

The main principle is to iterate as long as U is not empty. Therefore the start

edge (URI) is put into U and then the iteration can begin.

In each iterative step, an edge element (URI), u, is picked out from U . The

URI from u is issued to a subprogram that fetches a web server response (an

HTML document) and puts it in a new node object2. The node object, r, is

analysed in several ways. First the HTML document is parsed and converted

into a parse tree. Then a parse tree pre�x is produced and optionally truncated

to prepare for the equivalence algorithm. If the HTML document contains an

HTML form, the form is optionally completed with data. Then the parse tree is

traversed in order to �nd all URIs, referring to other web resources. Each found

URI is put in an edge object which is put in the node object's edge set. After

the analysis of the document, the node object keeps only the most important

attributes found in the document, such as: the parse tree pre�x, the set if edges,

the title and the form parameter names.

Now, it must be determined if the node object is a member of R or if it is

a unique node. This is done by the set operation member that iterates through

R and performs calls to the equivalenceAlgorithm. If, r, is already a member,

there must exist an equivalent node, x, in R. Now, the node object in R that

refers to r, must have its reference to r updated so that it refers to x instead.

However if r is unique, it is put in R and all of its internal edges (URIs) are

put in U . Thus the iteration will continue until the last edge (URI) in U has a

2When a node object is created, it actually contains the responded HTML document.

19

response node that, either is a member of R or has no URIs in it. The algorithm

could be described in pseudo code (see Figure 4.5 and Figure 4.6).

U; T � fall edges (URIs)g start; edge 2 U

R � fall nodes (HTTP Responses)g node 2 R

Spider.run(start) : \graph"

R :=�

T :=�

U := fstartg

while not empty(U) do

edge := removeElement(U)

node := getResponse(edge)

bindEdgeToNode(edge, node)

if member(node,R) is true then

updateEdge(node,R)

else

T := �ndEdges(node)

bindNodeToEdges(node, T)

foreach edge in T do

insertElement(edge,U)

endforeach

insertElement(node,R)

endif

endwhile

return start

Figure 4.5: The spider algorithm.

member(node, R) : boolean

foreach n in R do

if equivalenceAlgorithm(node, n) is true then

return true

endif

endforeach

return false

updateEdge(node, R)

e1 := parent(node)

e2 := �ndEquivalent(node)

if not e1 is null and not e2 is null then

removeEdge(e1, node)

insertEdge(e1, e2)

updateReferences(valueOption, e2, node)

endif

Figure 4.6: Subprograms used by the spider algorithm.

The subprogram equivalenceAlgorithm(node, node) in the algorithm returns

true if the node elements (server responses) are \equivalent". As described in

section 4.4, the function composes several criteria, some of which are optional,

to determine equivalence. The optional criteria can be used in order to �ne-tune

the behaviour of the algorithm, and thus adapt the analysis to the speci�c web

application.

However, when reading the pseudo code in Figure 4.5 we must keep in mind

20

Figure 4.7: A graphical view of the spider algorithm in action.

that both the nodes and the edges are objects, having attributes and operations.

An edge keeps a reference to a node and a node has a set of edge references.

The start edge is returned from the algorithm and it is representing the entire

graph, since the node and edge objects are traversable through operations.

In Figure 4.7, an example of an analysis is illustrated. The �gures show how

21

the URIs and responses are related to each other, and how the graph gradually

is constructed.

4.2.2 Implementation

In order to investigate methods for page identi�cation, a spider engine was

implemented using the Java3 JDK 2.0 platform. This choice was based on the

high-level support for graphical user interfaces and networking facilities. The

javax.swing.text.html package supports HTML 3.2 parsing and rendering.

The parser structures the components of an HTML document into an abstract

document model.

The HTML document model has some drawbacks when it is used in the web

spider, since it is primarily intended to be used for constructing, editing and

rendering HTML documents, but not for parsing them after their construction.

In summary, the parser converts the HTML code into an abstract tree model

containing various objects. When the tree is parsed during the analysis, some

objects have to be accessed by method calls in order to get all of their attributes.

Some of the objects has unique method names. In these cases the object refer-

ence must be type casted to the objects explicit type. This causes a problem,

as the explicit type of a chosen object is unknown due to the abstract structure

of the model.

In detail, the document is a container of elements and an element is some-

thing which has a name, a list of attributes, and a list of child elements. The

element attributes are available by function calls. However, the type \Element"

is a java interface, a pure declaration of a set of functions without de�nition

(implementation). Any class4 can implement the interface and thereby share

its type. This mechanism allowes the document to consist of any objects that

implements the interface \Element". This is one aspect of polymorphism5. This

is very nice as the document structure holds independently of the implementing

classes. However, when the HTML parser builds a document, it uses rules that

are not very well-documented. Sometimes it uses the default implementation

of the Element interface, the \AbstractElement". In other cases it creates very

speci�c objects, i.e., the graphical components used in HTML forms: buttons,

text �elds, text areas and radio buttons. In these cases, the speci�c object type

must be identi�ed in order to properly access its attributes, such as entered user

input. In addition, it is not obvious which HTML tags are associated with the

elements in the document. As for an example, the <TITLE> tag cannot be found

as an element in the document. On the contrary, it is an accessible \property"

of the document. Therefore, it is hard to �nd out which are the underlying

objects and this makes the analysis of a document a bit cumbersome. Several

experiments were carryed out to gain knowledge of the behaviour of the parser

and the various objects it produces. This knowledge had to be implemented in

the code that uses these Java classes in order to make appropriate type conver-

sions and feasible exception handling, since an exception could be \thown" if a

3Java is a trademark of Sun Microsystems Inc.
4A class is an encapsulation of data and code that de�nes an abstract datatype. The class

can be instansiated into objects of this type.
5One de�nition of polymorphism is when references (function calls) to a type are bound

to the implementing object in runtime. Neither the compiler nor the programmer knows the

explicit type of the target object.

22

type cast was not successful.

The ability to render the document was the crucial argument for this choice

of technology since our program must be able to present forms to an operator

in order to fetch input parameters that are sent to the web service. The idea is

to show the form in a window on the screen, letting the user enter information

and then extract the parameters from the widget components in the document

model.

In summary, the chosen Java classes makes it very easy to visualize HTML

documents which makes it possible to fetch user input. They also provides a

built-in HTML parser, working in the background, which converts HTML code

into a document. The code that analyses HTML documents heavily depends

on the (undocumented) behaviour of the parser. Future changes in the parsers

implemented behaviour could a�ect the spider. On the other hand, it would

have been a big e�ort to build a parser from scratch.

The Java class URL speci�es the desired target URI and has a method

openConnection which establishes the connection to the server. The class URL-
Connection abstracts the connection and it lets us issue operations like get-
InputStream() and getOutputStream(). Through these streams, data can be

exchanged between the application and the server. An input stream reader

can be assigned to an object of the class HTMLDocument which then gets the

response from the server and parses the contents. The tree structure of the

document object can then be traversed in order to analyse its contents on a

higher level. One of the results of this analysis is the set of URIs pointing to

other resources. The responses and URIs are abstracted by the user de�ned

Java classes Response and Link.

4.3 User interaction

The ideal web service analysis tool is totally automatic. Provided with a start

URI, options and constraints, the tool should start the process, do the analysis

and then present the results as a graph. However, reality is too complex and

thus the practical solution is to make the analysis semiautomatic.

4.3.1 Forms

When a form is detected in the analysed HTML document, its input parameters

should be assigned some values before they are sent to the server side by issuing

the action URI (see section 3.1.7). It is most likely that the values a�ect the

state and behaviour of the server. Is it possible to automate this process? From

where should these values be fetched? For input controls with an enumerated

set of values, e.g., the check box and the radio button, these values could be

combined into a �nite number of states. Each combination could be sent to the

server and its various responses would be analysed as usual. However, the form

can have input controls that allow the user to type in arbitrary text strings,

e.g., text �elds and text areas. In these cases, the number of combinations

would be almost in�nite, and the process would never stop. This leaves us

with two possibilities. Either the form values are fetched from some kind of

database or they are entered by a human operator, ad hoc. However, if the

values are stored in a database, how can they be known a priori? It would require

23

thorough preparations before any web application could be analysed. Thus, in

this implementation, the input values are entered by the user in \runtime" or

they are optionally left blank.

One of the main reasons to use the Java Swing API, when the spider was

developed, was its ability to render HTML documents; including forms. When

a document containing frames are received, a window running in a separate

execution thread visualizes it. All input controls are modelled into standard

Java Swing controls. The user can enter values into the controls and then press

a submit button. At that point, the document tree is scanned and the entered

values are collected and stored in a set of name/value pairs. When the action

URI is �nally issued, the name/value pairs are passed to the server. The user

can optionally press the enter data again button and can then enter a new set of

values into the same form. This can be done until all interesting combinations

of data have been entered and each combination has been sent to the server.

4.3.2 Methods for passing information

The name/value pairs in a form are sent to the server in two ways, either

using the GET or the POST method. The di�erences between these methods

have impact on the implementation. Using the GET method, the parameter

pairs constitutes the trailing part of the action URI, separated from it by a

\?". If the GET method would be used in Figure 3.4 and 3.3, the URI would be

http://www.secret.to/login.cgi?retries=4&ssn=991231-0126. This implies that

the values must follow the general rules for how URIs can be formed, since some

characters are forbidden in URIs. Hence, the data values must be URI-encoded

before they can appear in the URI. In addition, the total length of the URI

must not exceed the stipulated maximum length of some hundreds of bytes.

Thus, the program must augment the action URI with the parameters if the

form method is GET.

The POST method is completely di�erent. When the program is requesting

the action URI and after the HTTP connection is established, the parameter

values are streamed to the server. Using this method, there are no limitations

of the length or the contents of the data. Nevertheless, the name/value pairs

are still formatted as a list of pairs, each pair glued together by a \=", and

the pairs separated by an \&". The data should not be URI-encoded by the

program.

4.3.3 Secure HTTP and authentication

Some sites are password protected by the web server (not by the service). As

a part of the HTTP protocol, the server can require authentication. This is

implemented by the Java API and the only requirement is to implement a Java

interface. A suitable implementation is by displaying an authentication window

on the screen, letting an operator enter the user name and password. The

drawback is that it is tedious and it requires the operator to know all possible

logins. As a solution, the pairs of user names and passwords are saved together

with the URI as a search key. Whenever the server requests authentication, the

set of logins are searched and if found, the login is used automatically in the

background. If the login would fail, a manual window is displayed.

24

The HTTPS protocol, described in section 3.1.3, is used by many web ser-

vices. The Java API did not support this protocol when the tool was imple-

mented. However, Sun Microsystems provided a reference implementation of a

HTTPS package that was easily downloaded and plugged in. HTTPS will be

included in the Java 2 Platform API, version 1.4.

4.4 Graph de�nition

The graphs should be de�ned and stored by a structured,
exible and well-

de�ned representation. XML6 and XSL7 were �rst considered to be a good

choice. XGMML8 [19] is an XML application for describing graphs, based on

GML9 [20], a standard language specialised for graph de�nition in �le format.

However, it turned out that GML is used by several graph-drawing systems,

including the one chosen for the spider tool. This fact motivated the choice of

GML.

4.4.1 GML

GML, the Graph Modeling Language, is a portable �le format for graphs. GML

has been used in several graph drawing and analysing systems, including Graphlet

[21], LEDA [22], GraVis [23] and VGJ [20]. A graph is de�ned as a block con-

sisting of node de�nitions followed by edge de�nitions. Each node has the

mandatory attribute id and the edges has source and target. In addition, any

user-de�ned attributes can be added. These attributes may be plain name/value

pairs or they can be composite objects, represented by a block of attributes, etc.

The possibility to create user-de�ned attributes is used by the web spider

application. The user-de�ned attribute data is a composite attribute. It con-

tains user input, the name/value-pairs from forms. Furthermore the original,

absolute and received URIs are stored together with the response time (see Fig-

ure 4.8). This information should be available in the visualization of the graph,

by clicking on the edge.

4.5 Visualizing graphs

There are several existing graph drawing tools that could be used together by

the spider tool, e.g., AGD [24], daVinci [25], GEM [26], Graphlet [21], GraVis

[23], Graphviz [27], Interactive Graph Drawing [28], LEDA [22], LINK [29], VGJ

[30] and VCG [31]. Most of these tools are implemented using the programming

language C++ because of its performance bene�ts. Some of the tools o�er an

API to interface against from external applications. This is precisely what is

needed in the spider tool.

It would be very convenient if the graph drawing tool was developed using

Java, since it would save lots of e�ort and time if the code could be accessed

directly from the spider tool. VGJ is a visual graph editor, written in Java.

Hence, combining the spider tool with VGJ leads to a tool entirely built on the

6eXtensible Markup Language
7eXtensible Stylesheet Language
8eXtensible Graph Markup and Modeling Language
9Graph Modeling Language

25

graph

[

node

[

id 0

label "Welcome"

data

[

Form_1_input_1 "hidden : status"

Form_1_input_2 "select : service"

]

]

node

[

id 1

label "Bye"

data

[

Form_1_input_1 "hidden : status"

Form_1_input_2 "hidden : previous"

]

]

edge

[

source 0

target 1

data

[

OriginalURL "service.cgi"

AbsoluteURL "http::192.168.1.4/cgi-bin/service.cgi"

ReceivedURL "http::192.168.1.4/cgi-bin/service.cgi"

Method "Post"

Params "status=reset&service=quit"

Accesstime "60"

]

]

]

Figure 4.8: An example of GML.

Java platform. One of the bene�ts of having all code written in Java is that the

tool would be platform independent, i.e., executable from any operating system,

having an JVM.

4.5.1 VGJ

VGJ, Visualizing Graphs with Java, is a tool for graph drawing and graph layout

[30]. Graphs can be input into it in two ways: with a textual description, a GML

�le (see section 4.4.1), or by directly using the graph editor. The graphs can be

output to a printer, or a �le in postscript format.

The software package is used as an important component in the spider tool.

Fortunately, the source code for it is available and free to use and is distributed

under the GNU General Public License [32]. This made it possible to make some
necessary modi�cations of its API in order to �t in properly. The GUI has been

stripped from irrelevant features and it is now possible to create graphs from an

external application by method calls. This makes it possible to draw the graph

26

for the web service during the analysis (in runtime). This graph \animation"

shows how far the spider algorithm has progressed at a given point of time.

The user chooses the layout style of the graphs from a menu. The vari-

ous layout algorithms are adapted to speci�c types of graphs. However, only

one of the original layout algorithms remains in the modi�ed version: the tree
algorithm.

Tree algorithm

The tree algorithm implementation is referred to as the Walker algorithm or

tree layout algorithm [33]. Trees are drawn so that:

� Nodes at same level lie on a straight line.

� Parents are centred over their children.

� There is vertical symmetry.

� Isomorphic sub trees are drawn identically.

Given the above properties and a minimum horizontal spacing, the tree has

the minimum possible width. The algorithm does adjust for di�erent sized

nodes. If the graph is not a tree, a depth-�rst search will be used to identify

a spanning tree, which will be used for layout. Before the algorithm is run, a

node that will act as the root must be selected, if the graph contains cycles [30].

27

Chapter 5

The implemented tool

The main result of this study is the algorithm used for node identi�cation and

its implementation into a web spider prototype. Secondary results are generated

from the experiments using the spider. This chapter describes the spider and

the results of the experiments.

5.1 The Web Graph Tool

When the spider is started the main GUI appears on the screen (see Figure 5.1).

In order to analyse a service or a site a start URI must be entered. By default,

the constraining domain will be based on the path to the resource. Services may

be distributed on several hosts and these can be speci�ed in the \show sites"

window.

Figure 5.1: The main GUI for the tool.

It is possible to choose among some variations of the comparison algorithm

and there are some other options regarding the user input. The produced GML-

graph is stored in a plain text �le. Using a Java-package called VGJ [30] the

graphs can be rendered and presented when the analysis is �nished. This pack-

age has been slightly modi�ed in order to be able to show the growing graph

during the analysis. The graph is drawn using a hierarchic tree-algorithm, which

28

puts the start node on top and the children are placed recursively downwards.

The graph can be edited by the user in terms of moving nodes etc. All nodes

and edges have attributes, which can be viewed by double clicking on the object.

Postscript output to a printer or to a �le is possible. VGJ (standard version) is

a stand-alone package and can be used separately from the spider to view and

edit the graphs at any time.

5.1.1 The �le menu

From the �le menu the current settings and results can be saved (save) or

previous results can be reloaded and re-run without having to type in URIs,

domains and options (open). Finally GML-�les (graphs) can be visualized (show

a graph).

5.1.2 The sites menu

There are two possible site windows; one for the allowed sites and one for pro-

hibited sites or links. The idea is to specify the paths that the spider may or may

not visit. The default accepting path is the longest possible path that can be

extracted from the start URI, e.g., the start URI http://www.x.y/z/q.html

would give the default accepting path http://www.x.y/z/. Any number of

paths can be added. This is important since a web service is often distributed

over a number of servers (hosts).

Detected links to hosts outside the speci�ed sites should optionally be pre-

sented in runtime and it should be possible to insert them into the set accepted

sites. This option is planned for, but still remains to be implemented.

5.1.3 The options menu

There are a set of options used to �ne-tune the way the spider should operate.

In some cases, a web site has special features that have to be considered. The

most important options make it possible to decide variations of the equivalence

algorithm. There is also a possibility to choose whether user input in forms

should be prompted by rendering the HTML-documents containing forms, or if

it should be done automatically by using empty input data. See Figure 5.2.

The options are as follows:

� Depth �rst. Should the spider follow new links �rst in a depth �rst

manner?

� Form input. Should documents containing forms be rendered, allowing

user input?

� Scan client scripts for URIs. The URI scanning algorithm for client

scripts is not perfect. However, it �nds most of the static URIs in the

script code.

� Use form parameter names in comparison. Should the equivalence

algorithm use the set of input parameter names?

� Node labels. Should the nodes in the graph be labelled with the docu-

ment titles?

29

Figure 5.2: Several options can be selected.

� Assume same links give same result. Assumed static links will be

visited once only. This also complies with dynamic links which have the

same set of associated parameters and values as a previous request to the

same URI.

� Show graph. The graph will be displayed automatically after the anal-

ysis.

� Edge labels. Edges will be labelled with the URI.

� Use truncated tree pre�xes. Truncate the parse tree pre�xes before

they are used by the equivalence algorithm.

� Always follow unique FORM-values. New values in the name/value-

pairs will force new requests.

� Limit edges/node in graph. No more than �ve edges will be drawn

towards any node in the graph. This can be useful when a large graph

with many back references is displayed.

� Use tree pre�x in comparison. The pre�x that identi�es a response

will be used to identify nodes by the unifying algorithm.

� Use title in comparison. The document title will be part of the unifying

algorithm.

� Animated graph. A graph window will show the graph building up

during analysis.

5.2 Presentation of graphs

The graphs are visualized by a call to the modi�ed VGJ package (see section

4.5.1). This can be done either by an explicit selection of a GML-�le, or au-

tomatically at the end of an analysis. Optionally, a graph window can display

the construction of a graph during the analysis. In this mode the operator can

watch the impact of various data input in the HTML-forms.

30

Normally, a web service is resembles a tree. The tree layout algorithm in

VGJ is well-suited for these cases, since it tries to draw the graph as a tree.

However, this is not always the case. In fact, some sites have a structure more

reminding of a web. The tree layout algorithm will not be suitable in those

cases and the generated graphs have to be edited after the analysis to make

them more comprehensive. The graph in Figure 5.3 represents a worst case

scenario since it consists of eight nodes, each referring to every other node in

the graph. Unfortunately, the edges are put on top of each other, thus concealing

their sources and targets. The graph was manually edited in the VGJ window,

into the graph shown in Figure 5.4.

Figure 5.3: A generated graph with a poor layout.

This graph is captured from the tool, showing the results from analysing a web application

consisting of eight nodes, all referring to each other. The tree algorithm is not optional in this

case since it will generate only two levels in the tree.

Figure 5.4: Graphs can be edited manually.

If the tree layout algorithm is unsuccessful, the graph can be edited manually edited, simply

by dragging the nodes with the mouse.

5.3 Results from running the tool

During the development of the spider, several analyses of web services have

been performed. The web services can be divided into two types. First we

have the black box sites; these are analysed \as is", with no knowledge of the

implementation details. Web sites like university home pages, commercial sites

and company intranets have been selected for analysis and graph production.

However, since we did not have access to the full speci�cation of these services,

31

we do not know to what extent these graphs actually re
ect the complete struc-

ture of the analysed web services. The completeness can only be veri�ed by a

manual exploration of the site.

The other type can be referred as \white box" sites, i.e., applications with

a well-known behaviour and structure. Some purely dynamic example applica-

tions (using CGI) have been developed and they were used in order to verify

some special conditions where it was important to know exactly how the server

application worked inside.

5.3.1 Analysing black box sites

Intranet service for news

One of the services was an intranet application for internal company news. There

were hundreds of di�erent documents in the service. Many of the documents

contained cross-referencing links to other documents and almost all documents

contained explicit back links to higher level documents. Since the spider al-

gorithm does not identify responses by its referring URI, each occurring URI

must be visited. This makes the algorithm ineÆcient, having an exponential

growth of HTTP requests. Finally 383 nodes were identi�ed and the graph was

slowly displayed. However, a screenshot of the rendered graph shows that it is

impossible to take in and understand the structure of such a vast service, see

Figure 5.5. The analysis of the news service took over one hour to accomplish

and over 4000 HTTP requests were made. At the time of this experiment, the

truncated parse tree pre�x algorithm was not yet developed. Having used that

option, it is possible that the analysis would have ended up with a reduced

number of nodes in the graph.

After this and other time consuming analyses, a special option (\assume

same links give same result") was added to the tool. With this option enabled,

the spider will make repeated requests to a speci�c URI only if it has a unique

set of associated input parameters and values. It means that if an input form

is entered with exactly the same data twice, it will only cause one request to

the server. This also automatically leads to the fact that there will only be one

request to a speci�c static URI, regardless of the amount of references to it from

whithin the service. This is obvious since there are no parameters associated to

static URIs (static �les on the server side).

Commercial sites

Most commercial sites use embedded client side scripts (dynamic HTML) to cre-

ate more appealing and functional user interfaces. Typical tasks for the scripts

are: control of animations, invocation of new browser instances, veri�cation of

user input before sending it to the server and other operations that involves

URIs. Unfortunately, the spider cannot detect all URIs in these scripts and

hence, when the spider is applied to this kind of web applications, some parts

of the functionality will be missing in the graph representation. This malfunc-

tion is veri�ed through a manual exploration of the web service, comparing the

functions in it with the graph. A typical e�ect of client scripts is that they often

start a new browser window to display an auxiliary service or site. The result

from an analysis of a commercial site is presented in Figure 5.6.

32

Figure 5.5: A graph showing a news application.

Sometimes the service is to vast to visualize. The shaded parts of the picture are the edges.

The program works, but the graph editor is overloaded. The graph contains 383 nodes with

thousands of edges.

Figure 5.6: The graph of a commercial site.

This graph is the result from an analysis of the site Bingolotto. The major functions are

detected and correctly represented in the graph. However, some of the functions are missing

since client side scripts initiate them; typically the instansiation of new browser windows.

University homepages

Some homepages of sta� members at the university were analysed. It was no-

ticed that client side scripts were unusual in this context, so the analysis worked

out �ne. However, some server side applications were occasionally found and

form input had to be entered. This is a mix of static and dynamic responses

and typically, the static documents are ordered in a hierarchic manner. This

can be viewed in Figure 5.7 showing the graph editor during an analysis.

33

Figure 5.7: The graph editor can show a graph under construction.

The graph editor, based on VGJ, is a graph visualizing tool with the capability to create and

edit graphs.

5.3.2 Analysing white box sites

In order to really examine the correctness of the tool, it must be used on a site

with a well-known behaviour. For this purpose, a web service developed by the

author was used. It is a web based Othello game implemented in C++ using

CGI. It is purely dynamic, i.e., there is no static HTML documents involved at

all. The C++ program generates all responses. One drawback is that the ap-

plication is completely non-persistent. The state of the game is entirely decided

by the parameters that are passed between the client and the server application.

In the HTML responses, hidden parameters keep the state. Thus, no surprises

can appear, i.e., the response on a speci�c set of input data is well-de�ned.

The game of Othello

The �rst state of the game is the \choose game" page. The user can select from

three modes:

� Human vs. Computer.

� Computer vs. Human.

� Computer vs. Computer.

Once a choice is made, the user can begin to play. When it is the human's move,

he can select one of the possible moves from a select box. The computers move

34

is just con�rmed by a click on the submit button. Regardless of the selected

game mode, it will take about 60 moves to end the game. Normally the tool

ends the search when there are no more links to visit.

However, a weakness in that approach was discovered. The game would not

end, i.e., the �nal state \Game Over" was never reached. It is not hard to

�gure out why it behaves like this. After a couple of moves, the identi�cation

algorithm uni�es the nodes. The new links from the \uni�ed" node will not be

added to the \not visited" set, because it is identi�ed as \the same" response

as the previously analysed one. The links are always included in the unifying

algorithm and so are the names of the name/value-pairs of possible forms. In

this case, a compromise must be done. If the values of the name/value pairs

are di�erent, the nodes are still uni�ed. In order to keep the game going the

links must be put in the set of not visited links again if they contain unique

parameter values. Thus, the game will continue until it ends. Othello is certainly
not a representative web service, however the principle is important. If input

values are changed, the process should continue. This discovery was considered

important and a new option was added to the tool.

Figure 5.8: Forms are rendered by the tool.

When a form is encountered, the user can enter data if the \form input" option is set. It is

possible to keep on entering new combinations of data by selecting Enter new data in this

form. When there are no more interesting inputs to explore, the form is closed by selecting

Done with this form.

The interesting subject here is that depending on which algorithm option

chosen for the tool, the results were totally di�erent. To perform the analysis,

the option form input was enabled (see �gure 5.8), the tool started, and when

the start form was prompted all three game modes were selected. Then the form

input was deactivated and the tool started to \play". Figure 5.9 to Figure 5.14

35

shows the results from analysing the Othello application under di�erent modes.

The Game Of Othello - Choose Game

Othello - Human Move Othello - Computers Move

Figure 5.9: An incomplete graph for the Othello application.

All states of the game has not been generated, hence the graph is incomplete. Entering three

di�erent inputs in the �rst form starts three game modes. But the process ends before the

game is completed, due to the way the equivalence algorithm works. It seems as if it is

impossible to reach the Human Move node from the Computers Move node. Note that the

little arrow head inside the Computers Move node is a self-reference.

Figure 5.9 shows the result of running the tool and entering all three game

modes. The problem is that the game over state is never reached and there is no

transition from Computers Move to Human Move. In Figure 5.10 only Human
vs. Computer was selected and the missing state is Game Over.

The Game Of Othello - Choose Game

Othello - Human Move

Othello - Computers Move

Figure 5.10: The graph for an incomplete Human vs. Computer game.

The graph is incomplete, even after a analysis of reduced state space, by selecting only the

Human vs. Computer game. However the algorithm detects transitions between Human Move

and Computes Move in both directions, but the Game Over state is not reached.

The Game Of Othello - Choose Game

Othello - Computers Move

Figure 5.11: The graph for an incomplete Computer vs. Computer game.

Selecting only the Computer vs. Computer game will also fail since the Game Over state is

not reached. Note the self-reference.

We will have the same poor results regardless of what game mode is selected.

The equivalence algorithm classi�es the responses and the process ends because

the algorithm is not able to detect the di�erences in the responses. The reason

for this is that the state information is kept in hidden parameters in the forms.

However, only the parameter values change, not the parameter names. A change

of the amount of parameters, their names or their order would classify the

response as unique, but this is not the case when it comes to the values.

36

The proposed solution of this problem is to introduce a new option in the

tool. It does not a�ect the equivalenceAlgorithm, but it a�ects the way links are
added to the set of not visited URIs. Optionally, if a unique set of parameter

values is detected in a response, the action URI found in the form is added

to the set of not visited URIs, together with the new set of name/value pairs.

This is the case even if the response is uni�ed with previously received response.

This option is put in the add links algorithm of the spider. This explains the

optional call to updateReferences in Figure 4.6.

Using the new option, the game actually is played until all states of the

application are surveyed. Hence, the graph is a complete functional view of the

application. Unfortunately, a successful analysis is dependent on correct user

input. If the user input excludes information that would bring the application

into a new state, the corresponding sub graph will not be analysed.

Now it is possible to start the program and give a complete set of inputs to

the �rst input frame of the application. Figure 5.12 shows the successful result

after selecting the Human vs. Computer game.

The Game Of Othello - Choose Game

Othello - Human Move

Othello - Computers Move

Othello - GAME OVER

Figure 5.12: A complete graph for the Human vs. Computer game.

The process runs until the Game Over state is encountered. Thus all the states of the game

are explored and the analysis is successful. Note: the graph was edited by moving the Game

Over node to the right. It was originally drawn centred at the bottom, concealing some of the

other edges.

If the operator selects all of the three game modes, they will be played

simultaneously until game over. At last the generated graph in Figure 5.13 is

a complete representation of the web application. All crucial user input was

considered and entered by the operator.

The Game Of Othello - Choose Game

Othello - Human Move Othello - Computers Move

Othello - GAME OVER

Figure 5.13: A complete graph for the Othello application.

This is the complete graph showing all of the states and state transitions of the Othello

application. Note the self-reference in the Computers Move node.

37

Some statistics of the analysis is presented in the spider GUI during the

process. They are:

� The current number of URIs in the unvisited set.

� The current number of unique responses in the visited set (according to

the equivalence algoritm).

� The total number of responses.

� The number of failed requests.

� The accumulated response time.

� The mean access time.

Figure 5.14 shows a the spider GUI after the analysis of the Othello applica-

tion, exploring all game modes. It is interesting to see that 251 responses were

analysed and classi�ed into only four unique nodes.

Figure 5.14: The spider tool showing statistics.

Analysing three sub services

There is no limit of the number of services that can be explored and analysed

during one single pass of the spider. This is the reason for having constraints on

the sites and hosts that are allowed. Without the sites list, potentially the entire

Internet would be explored as long as there are new links to follow. However,

inside the delimitation, all links must be explored and these links may point

to di�erent services. As an example of the state independence of the HTTP

protocol, three applications are examined in parallel. The analysis is done in

breadth �rst mode, meaning that the input forms from the di�erent services are

mixed with each other. It is very confusing for an operator to follow the program

ow of the services. Using depth �rst makes it much easier for the operator to

understand what is going on, since the forms are displayed separately for each

sub service. However, the same graph, representing the three di�erent services,

is produced by the spider (see Figure 5.15).

38

Figure 5.15: A graph showing three web services.

Experiments on dynamic tables

A server application that counts the number of accesses to it was developed in

order to evaluate the truncated parse tree pre�x algorithm. The application

creates an HTML table containing a new row for each access. Using the spider

without this algorithm causes a never-ending loop since each response is unique

to the previously generated ones. Therefore, it has to be aborted. However, it

turned out that the truncation works out �ne. The result is a graph containing

only one node. In Figure 5.16, a snapshot of speci�c response is shown to the

left. In the middle is a part of the generated graph (after abortion). Finally,

the complete graph containing only one node and a self-reference is shown to

the right.

5.4 Delimitation

Some delimitation of the problem were made in order to �nd feasible solutions.

The most important are highlighted in this section.

5.4.1 Support for HTML version 3.2

The implementation uses Java 1.3 (Swing) which has a parser that only supports

HTML 3.2. Today XHTML 1.01 or at least HTML 4.01 are standards on the

Internet [18].

5.4.2 Client side scripts - Dynamic HTML

HTML documents can contain script statements within <SCRIPT> tags. If links

are hidden within the scripts, the ability to parse them is required. However

implementing such a parser lies beyond the scope of this work since a semantic

analysis would be required. Thus the problem is solved by a straight forward

scanning for URIs in the comments within the <SCRIPT> tags.

5.4.3 User input into forms

The suggested tool will not try to generate or simulate user input. No other

automated generation of form data than the default selections will be performed.

1XHTML 1.0 is a reformulation of HTML 4.01 in XML

39

Figure 5.16: A self-referencing, growing document.
To the left is a snapshot of an HTML response from the web application, visualized in a web

browser. Every new access causes the table to grow by one row. Apparently, the application

has been accessed 23 times. If the spider starts an analysis of this application, it will keep on

�nding new nodes since an HTML table is a structure that indeed a�ects the structure of the

parse tree. Thus the parse tree pre�x will be a�ected, and the nodes will be considered as

unique to each other. This will result in a never-ending graph, seen in the middle. However

if the patternTruncator algorithm is used, the table structure will not a�ect the equivalence

algorithm. As long as there is a table in the same relative position in the document, the

responses will be uni�ed. The graph will consist of only one node, referring to itself, shown

to the right.

However, the operator (user) can manually insert data into the forms.

5.4.4 Cookies unsupported

Support for cookies is not yet implemented. Cookies are optional \footprints"

of the state of a service, stored on the client. The web browser stores the data

in the cookie �le, in negotiation with the web server using the HTTP-protocol.

The contents of the cookie can be sent back to the server on demand. In this

study, the protocol for this negotiation has not been investigated.

5.4.5 Multithreading

A multithreaded implementation would dramatically speed up the tool. The

bottleneck lies in the delayed server responses. If requests would be sent out

40

in parallel, lots of time would be gained. One could believe that this is the

case only if two requests have di�erent target hosts. However, the servers are

designed as multithreaded platforms themselves and thus each request will cause

a new thread on the server that will compete with other threads for CPU-time.

To achieve this the main containers used by the algorithm must be synchronised

and thread safe. It could easily be done in breadth-�rst search mode by querying

all URIs originating from a common parent. Luca de Alfaro [7] also realised this

and implemented it, but discusses the danger of this speed up. The servers may

be overloaded. In a test environment such a behaviour is perfectly all right and

is even desirable, but for commercial sites, this would rather be experienced as

a hostile attack.

41

Chapter 6

Discussion

In this chapter some issues are raised for discussion. The results are discussed

in section 6.1, the importance of other works within this area in section 6.2, use-

fulness in section 6.3 and �nally, a number of acknowledgements are presented

in section 6.4.

6.1 The expected versus the achieved result

The expected result was to develop a tool that could build a graph, describing

a web service. This graph would be useful for software testers when they are

designing tests for the service. The goal is achieved and there is a prototype

implementation, which can make the analysis, present the graph and even print

it. However, there are some shortcomings of the compleatness of the analysis.

Many modern web services use client side scripts, embedded in the HTML

code. The scripts code can conceal links from the tool by building URIs dy-

namically. The tool does not consider the syntax and semantics of the various

scripting languages. However, the scripts are scanned for strings that look like

an URI. This makes the analysis potentially incomplete for these kind of sites.

Further work is needed to make the tool work properly concerning client side

scripts.

It is also possible to imagine an application where a large number of di�erent

parameters can be input from HTML forms. It is often obvious which data to

input in the form. However, some rare combinations of input will lead to certain

states of the application which are not in the \mainstream". Given a piece of

�nite time, long enough to try all combinations, we will eventually succeed in

�nding all states of the application. The problem is that a piece of �nite time

could be very long; it could take days, months or thousands of years to �nd all

possible combinations1. This could lead to an incomplete analysis of application.

If the operator does not know all of the special cases and \backdoors" in the

system, they will probably never be found.

In summary, as this study demonstrates, it was possible to solve the major

problems and make a more or less functional tool.

1It must be kept in mind that the data input is not inserted automatically; it is done by

an human operator.

42

6.1.1 Web node equivalence

The web node equivalence problem is challenging and hard to de�ne: what are

the factors that make a node di�erent from another? In the authors comprehen-

sion, some di�erences should not a�ect equivalence, such as the number of rows

in a table or list or the number of paragraphs in a text block. This problem is

solved by the patternTruncator algorithm (see section 4.1.5), an augment of the

partial parse tree algorithm that neglects \repeated patterns" in the parse tree

pre�x.

The fundamentals of the unifying algorithm are based upon the set of internal

links and it is not optional. The other criteria are optional: the set of names

in the form name/value-pairs, the document titles and the parse tree pre�xes

(optionally truncated). The experiments have shown that the algorithm works.

6.2 Previous research and results

Many of the issues in the paper by Ricca and Tonella [4] are quite similar to

the problems at hand in this work, and so are the solutions. The similarities of

the spider algorithm in both works support my solution. They seem to have the

same philosophy concerning user interaction and their tool is semiautomatic as

well. They focused on white box testing, hence using knowledge of the server

application.

6.3 Usefulness

In my opinion, the tool is very useful for analysing static web sites and dynamic

web applications. The produced graph will show a \map" of the site (or appli-

cation) which could be very useful for understanding how it is structured. Of

course, using the tool for an analysis is a test itself. In addition, the graph can

be used as a foundation when constructing tests for the application. It is also a

good way of documenting the application. The graph is just not a abstraction of

the application's structure. It is also a collection of all the captured attributes

from the analysis. All the URIs, form parameter names and input values are

accessible from the graph by a simple \double click" on a node or edge.

The tool could be slightly modi�ed to produce a \
at index" of a web site.

This would be a structured HTML page containing all the URIs found in the

entire site. The index page would be a collection of short cuts that could be

useful for a designer, tester or user.

One drawback is the order in which the input forms are displayed. An input

form will appear on the screen as soon as a server response contains an HTML

form. There is no guarantee that the order will follow the logical order in the

application. An addition, some URIs are issued many times. If they contain

forms, the same form will be displayed several times, forcing the user to enter

new input. This could be annoying and time consuming for the user.

What do the users think about the tool; could it be used as an aid for testing?

In the discussion after the presentation of the tool, the invited software testers

came up with some comments. They are pleased with the tools at hand and

they did not think they could gain very much by using this tool. Perhaps they

could use it as a complementary tool. The research problems in the scope of

43

this work are quite interesting, but perhaps the practical use is not interesting

enough for the presumptive users. However, the tool is not completed yet. The

ability to build a graph was focused in this work, and hopefully the tool can be

further developed into a useful application for software testers.

6.4 Acknowledgements

As a gesture of deepest gratitude, the importance of the contributions from the

following persons must be emphasized:

� Professor Bengt Jonsson at University of Uppsala, initiator, supervisor

and examiner.

� Stefan Magnenat, supervisor at Validation AB, Stockholm.

44

Chapter 7

Conclusions

This study shows that it is possible to make a tool that performs an analysis of

a web service and presents a model of the service in a graph that is visualized

in the tool. It is possible to identify and classify the Web server responses by

using its structure rather than using its reference (URI). However, this has to

be further developed before it can be used as a professional tool. There is no

guarantee that the produced graphs re
ect a 100% true picture of the explored

web service. One of the reasons for this is that the tool is unable to analyse the

semantics of embedded client side scripts. The scripts must be interpreted in

order understand its behaviour, e.g., how it produces URIs.

7.1 Answers to the questions at issue

The issued questions were answered during the development of the tool and the

algorithms. The results are brie
y summarised in this section.

7.1.1 Web node equivalence

Repeated requests to a web application through the same URI can give di�erent

responses. This is why the URI itself cannot be used as a criteria for equivalence.

It is a better approach to compare the contents of the responses; the HTML

documents.

Nodes are identi�ed using a combination of criteria, some of which are op-

tional. They are:

� The set of internal links (necessary).

� The set of parameter names (necessary).

� Partial parse trees (narrowing), with or without truncating (optional).

� Titles (optional).

It is hard to �nd one algorithm that suites all kinds of services and therefore

the spider has many optional parameters to �ne tune the analysis.

45

7.1.2 Accessing the web

An algorithm that searches through a web service was developed and veri�ed.

The Java API o�ers classes for a convenient, high level approach to the problem.

The entire HTML page is modelled into an abstract document that contains the

elements. The algorithm starts with a set (U) of not visited nodes containing

only the start URI. An URI is selected from U, it is visited, the response is

analysed and any occurrence of an URI is added to U. But not if the URI was

visited before (node identi�cation). The process continues until U is empty.

7.1.3 User interaction

When forms appear in an HTML document, the page is rendered in a GUI

and the user (the operator) can enter data into it. In order to investigate all

combinations of interest, the operator can post any number copies of the form

carrying di�erent input values. Each of these forms can potentially give raise

to a new path in the graph.

7.1.4 Graph de�nition

Graphs are de�ned in text �les using the GML language. Nodes and edges are

de�ned separately and they can contain any set of attributes. These attributes

are used to store data, e.g., URIs and the name/value pairs in forms. The

information is stored in a well-structured format, which is suitable to parse by

the graph editor. Arbitrary attributes can be added to the graph ad hoc.

7.1.5 Visualization of graphs

A package called VGJ (visualizing graphs with Java) is used to render the

graphs. It supports the GML language and can read and visualize GML �les.

VGJ is a graph editor with many functions. It can draw new nodes and edges,

edit them and even print the graphs. Some modi�cations of the code were

necessary in order to build graphs \ad hoc" from the spider. Some of the edit

modes were also removed from the tool. Double clicking on a node or an edge

accesses the attributes.

7.2 Further research

The Java platform is convenient, but the swing XML parser and the HTML-

package o�ers an API that makes it a bit cumbersome to analyse the structure

of web documents. In addition, there is no support for parsing client side scripts

and therefore this implementation uses a simple string-matching algorithm to

�nd links within the script code. It would perhaps be a better idea to use a

standardised speci�cation such as DOM1 in order to access the elements of a

document. Modern web browsers provide a DOM API for script programmers

and these browsers can parse and interpret client side scripts. Is it possible to

write applications that interfaces to a web browser through DOM, thus using

the browser's parser, i.e., do they provide an open API?

1Document Object Model

46

One of the major reasons to develop this tool was to get a visual repre-

sentation of a web service. Using this representation (speci�cation), would it

be possible to select a path from within the graph and automatically generate

scripting code for the various existing test tools?

Another development would be to let the tool detect changes in web services,

provided with a previously generated graph of the same services. This would

require an extended level of persistency of the nodes and edges. The parse tree

pre�xes would have to be stored in the graph de�nition �le; the GML �le. How

should the changes be represented in the new graph? Would colour coding be

feasible?

How should HTML frames be represented in the graph? Using frames in

an web application allows the user to interact in a number of parallel browser

windows. Normally, one of the windows is used as a \main menue" from wich

the user can make choices which have an impact on an other window's content.

The generated graph will show all the nodes (URIs) but it will not give any in-

formation of which nodes are reachable from a certain frame. This information

would be very importent since it re
ects the users apprehension of the applica-

tion. Could the problem be solved by colour coding the sub trees in the graph

that are visualized in a certain frame?

47

Bibliography

[1] Mercury Interactive Corporation. WinRunner and LoadRunner. URL:

http://www-svca.mercuryinteractive.com/products, December 2001.

[2] Bengt Jonsson, Daniel L�of, and Stefan Magnenat. Graphically structured

speci�cations of www application interfaces and their use for automated

test case generation. ASTEC competence center for Software Technology,

2000.

[3] Daniel L�of. Automated testing of web application functionality. Masters

thesis, University of Uppsala, Uppsala, Sweden, January 2000.

[4] Filippo Ricca and Paolo Tonella. Building a tool for the analysis and

testing of web applications : Problems and solutions. In T. Margaria and

W. Yi, editors, In proceedings of TACAS 2001, LNCS 2031, pages 373{388,

Berlin Heidelberg, 2001. Centro per la Ricera Scienti�ca e Tecnologia, Italy,

Springer-Verlag.

[5] J. Punin and M. Krishnamoorty. Wwwpal system - a system for

analysis and synthesis of web pages. In Proceedings of the Web-
Net 98 Conference, Orlando, URL: http://www.cs.rpi.edu/�puninj/WEB-

NET/wwwpal paper.html, November 1998. Dept. of Computer Science,

Rensselaer Polytechnic Institute, NY, USA.

[6] Y. Maarek and I. Shaul. Webcutter: A system for dynamic and tai-

lorable site mapping. In Proceedings of WWW 6 Conference, Santa
Clara, USA, URL: http://www.scope.gmd.de/info/www6/technical/pa-

per040/paper40.html, 1997. IBM Haifa Research Laboratory.

[7] Luca de Alfaro. Model checking the world wide web. In Proceedings of the
13th Conference on Computer Aided Veri�cation, Berlin Heidelberg, 2001.

University of California at Berkeley, USA, Springer-Verlag.

[8] T. Berners-Lee, R. Cailliau, A. Loutonen, H. F. Nielsen, and A. Secret.

The world wide web. In Communications of the ACM, Volume 37, Number

8, pages 76{82, New York, August 1994. ACM, ACM press.

[9] Tim Berners-Lee et al. RFC 2396 Universe Resource Identi�ers (URI):

Generic syntax. World Wide Web Consortium, MIT Laboratory for Com-

puter Science 545 Technology Square Cambridge, MA 02139, U.S.A., Au-

gust 1998.

48

[10] James E. Goldman, Phillip T. Rawles, and Julie R. Mariga. Client/server
information systems : a business-oriented approach. John Wiley & Sons,

Inc, New York, 1999.

[11] Tim Berners-Lee et al. RFC 1945 HTTP/1.0. World Wide Web Con-

sortium, MIT Laboratory for Computer Science 545 Technology Square

Cambridge, MA 02139, U.S.A., May 1996.

[12] Hal Berghel. Caustic cookies. In Communications of the ACM, Volume 44,

Number 5, pages 19{22, New York, May 2001. ACM, ACM press.

[13] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Protocol
Version 3.0. Transport Layer Security Working Group, November 1996.

Internet draft, expired in June 1997.

[14] Dave Ragget. HTML 3.2 Reference Speci�cation : W3C Recommendation
14-Jan-1997. World Wide Web Consortium, January 1997.

[15] Roger Fournier. A Methodology for Client/Server and Web Application
Development. Prentice-Hall, Inc, Upper Saddle River, NJ 07458, 1999.

[16] Martijn Koster. Www robots, wanderers and spiders. URL: http://www.ro-

botstxt.org/wc/robots.html, December 2001.

[17] Doug Reichen. Intelligent agents. In Communications of the ACM, Volume

37, Number 7, New York, July 1994. ACM, ACM press.

[18] The World Wide Web Consortium. URL: http://www.w3c.org, December

2001.

[19] J. Punin and M. Krishnamoorty. Extensible graph markup and model-

ing language (xgmml). In The XML.org XML Standards Report, URL:
http://www.cs.rpi.edu/�puninj/XGMML/, 2001. Dept. of Computer Sci-

ence, Rensselaer Polytechnic Institute, NY, USA.

[20] Michael Himsolt. Gml : A portable graph �le format. Technical report, Uni-

versit�at Passau, URL: http://www.uni-passau.de/Graphlet/GML, 1997.

[21] Michael Himsolt. Graphlet. Technical report, Universit�at Passau, URL:

http://www.uni-passau.de/Graphlet/, 1997.

[22] Algorithmic Solutions Software GmbH, URL: http://www.algorithmic-

solutions.com/as html/products/leda/products leda.html. LEDA, Decem-
ber 2001.

[23] R. Wiese and M. Kaufmann et al. GraVis. Wilhelm-Schickard-Institut

f�ur Informatik, URL: http://www-pr.informatik.uni-tuebingen.de/For-

schung/GraVis/welcome.html, December 2001.

[24] Max-Planck-Institut f�ur Informatik, URL: http://www.mpi-sb.mpg.de/A-

GD/index.html. AGD, December 2001.

[25] Michael Fr�ohlich and Mattias Werner. daVinci. University of Bremen,

Germany, URL: http://www.informatik.uni-bremen.de/daVinci/, Decem-

ber 2001.

49

[26] I. Bruss and A. Frick. Gem3Ddraw. Fakult�at f�ur Informatik, Universit�at

Karlsruhe, Germany, URL: http://i44s11.info.uni-karlsruhe.de/�frick/gd/,

December 2001.

[27] J. Ellson, E. Gansner, and E. Koutso�os et al. Graphviz. AT&T

Labs-Research, URL: http://www.research.att.com/sw/tools/graphviz/,

December 2001.

[28] �Ulfar Erlingsson and Mukkai Krishnamoorthy. Interactive Graph Draw-
ing on the World Wide Web. Dept. of Computer Science, Rensse-

laer Polytechnic Institute, NY, USA, URL: http://www.cs.rpi.edu/pro-

jects/pb/graphdraw/, December 2001.

[29] J. Berry, N. Dean, M. Goldberg, G. Shannon, and S. Skiena. Graph drawing

and manipulation with link. In Lecture Notes in Computer Science, LNCS
1353, pages 425{437, Berlin Heidelberg, 1997. Springer-Verlag.

[30] Dr. Carolyn McReary and Larry Barowski. Drawing Graphs with
VGJ. Auburn University, U.S.A., URL: http://www.eng.auburn.edu/de-

partment/cse/research/graph drawing/graph drawing.html, 1998.

[31] G. Sander. Graph layout through the vcg tool. In R. Tamassia and I. G.

Tollis, editors, Lecture Notes in Computer Science, Graph Drawing, DI-

MACS International Workshop GD'94, LNCS 894, pages 194{205, Berlin

Heidelberg, 1995. Springer-Verlag.

[32] FSF. GNU GENERAL PUBLIC LICENSE, Version 2. Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,

USA, June 1991.

[33] J. Q. Walker II. A node-positioning algorithm for general trees. In Software-
Practice and Experience, Vol 20(7), pages 685{705, July 1990.

50

Appendix A

Figure A.1: The class diagram for the application.

This is a UML class diagram, showing the relations between the classes in the implemented

system.

51

