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Abstract

The energy consumption of software is becoming an increasingly important issue in designing mo-
bile embedded systems where batteries are used as the main power source. As a consequence, recently,
a number of promising techniques have been proposed to optimize software for reduced energy con-
sumption. Such low-power software techniques require an energy consumption model that can be used
to identify the factors contributing to the overall energy consumption. We propose a technique to derive
an accurate energy consumption model by abstracting the energy behavior of the target processor. The
proposed approach combines empirical measurement with a statistical analysistechniqueto approximate
the actual energy consumption, whoseresult isamodel equation that can be used to estimate software en-
ergy consumption. The model equation also providesinsightful information that can be used in program
optimization for low energy, by identifying the factors affecting the energy consumption of software.
Experimental results show that the model equation can accurately estimate the energy consumption of a
random instruction sequence, with an average error of 2.5 %.

*An earlier version of this paper appeared in the Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems, 2001 [16].

1school of Computer Science and Engineering, Seoul National University, Seoul 151-742, Korea. (TEL) +82-2-880-1831,
(FAX) +82-2-885-7296, (EMAIL) sylee@archi.snu.ac.kr, symin@dandelion.snu.ac.kr, nachyuck@snu.ac.kr.

2Dept. of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden. (TEL) +46-18-4713172, (FAX) +46-18-
550225, (EMAIL) ebbe@docs.uu.se.



1 Introduction

Energy consumption of software has recently emerged as an important metric of system performance with
the growing requirement for low-energy computing. Especially for embedded systems, there is a high
demand for optimization techniques that enable energy reduction for software, since an increasing humber
of applications are powered by batteries. Therefore, several promising techniques have been proposed for
reducing the energy consumed by software, focusing on program optimization [12, 18, 24]. Such program
optimization techniques require a detailed program cost model represented in terms of energy consumption
that can guide the decisions on program transformation.

We propose a technigue to derive an accurate energy consumption model by abstracting the energy be-
havior of the target processor, which can be used to identify the important factors contributing to software
energy consumption and thus provide insightful information to a program optimizer. At the same time,
the energy consumption model resulting from the proposed technique can be used to estimate the energy
consumption of software at a high level of accuracy, based on a simple model equation. For the energy
consumption model to be applicable to a program optimization framework, it must have the following prop-
erties.

e Accountability: The model should be able to identify the factors that affect the energy consumption
of software. Moreover, it should be able to indicate the significance of each contributing factor.

e Accuracy: Themodel should be able to accurately estimate the energy cost of instructions, by reflect-
ing the actual energy behavior of the target processor.

e Simplicity: The model should be constructed using simple properties accessible from the program’s
point of view, so that it can be easily incorporated into a program optimizer.

e Generality: The model derivation technique should be independent of any specific implementation,
so that the technique can be applied to different target processors.

To derive an energy consumption model, we combine an empirical method and a statistical approach.
That is, we first assume a hypothetical model equation that is composed of various aspects of instruction
execution that can possibly influence the energy behavior of the processor. Then we determine the yet
unknown parameters in this equation by applying a stimulus-response approach as illustrated in Figure 1,
where we run a set of test programs (stimulus) and observe the energy consumption measured from real
hardware (response). For the purpose of approximating the model equation to the actual energy consumption
data gathered from measurement, a statistical analysis technique called regression analysisis used. That is,
we derive the energy model eguation by investigating alarge number of sample combinations of instructions
executed and the corresponding energy consumption data.

The major contributions of the proposed technique are as follows. First, using the proposed technique,
we can identify the important factors that influence the energy consumption of instruction execution. Sec-
ond, the technique provides a systematic approach for estimating software energy consumption based on a
simplelinear equation. Third, the framework used inthe model derivation isgenerally applicable to avariety
of different processors, since it does not depend on implementation information of aspecific target processor.
That is, the technique requires only basic information about the ISA (Instruction Set Architecture) and the
instruction pipeline organization. Finally, the availability of such a detailed energy consumption model can
direct future research for developing aggressive program optimization techniques geared towards software
energy reduction.
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Figure 1: The stimulus-response approach for energy model derivation.

Therest of the paper is organized as follows. Section 2 discusses previous works related to our research.
In Section 3, we explain the basics of energy consumption in CMOS processors, and describe the method
used in gathering the cycle-level energy consumption data used in the model derivation. Section 4 details
the proposed approach for deriving an energy consumption model by abstracting the energy behavior of the
processor. Our experimental setup and results are presented in Section 5. Finally, Section 6 concludes the
paper by outlining possible future extensions to this work.

2 Reated Work

Recently, attempts have been made to construct energy consumption models for software. The previous
approaches are based either on software simulation of the processor, or on direct measurement of energy.
In simulation-based methods, the energy consumed by software is estimated by calculating the energy con-
sumption of various components in the target processor through simulations at different levels. The benefit
of these simulation-based approaches is that they provide high flexibility, i.e., we can easily add, remove,
or modify components of the simulation, or even retarget the simulator to different processors. Besides,
these methods have the advantage that they can cover a large spectrum of abstraction level. For example,
we can develop acircuit-level or gate-level simulator when accurate details are required, while a behaviora
function simulator can be used to abstract the processor’s energy consumption.

On the other hand, in the measurement-based approaches, the energy consumption of software is charac-
terized by examining the data obtained from real hardware. The major advantage of the measurement-based
approaches isthat the resulting energy model is close to the actual energy behavior of the processor, because
the datais acquired from the hardware itself. Another good point is that the complexity of the model deriva-
tion is much lower than in the simulation-based approaches, because the measurement-based approaches
generally do not require the detailed information about the hardware implementation.

Both simulation-based methods and measurement-based methods can be classified according to their
level of abstraction used in modeling energy behavior of processors. At the highest level of abstraction,
efforts are focused on accounting for the energy costs of instructions. Typically, attempts have been made
to characterize the energy consumption of instructions based on measuring the average current drawn by
the processor. In this class of modeling techniques, Tiwari et al. [23] describe a seminal approach, where



they model the software energy consumption using a power cost table that records the unique base cost
for each instruction and the inter-instruction effects. The base cost of an instruction is defined as the av-
erage current drawn by that instruction executed repeatedly in a tight loop, multiplied by the number of
cycles taken by each instance of the instruction. On the other hand, the inter-instruction effect is defined
as the additional power cost incurred by executing different instructions sequentially. However, recording
this inter-instruction effect requires O(N?) space where N is the number of instructions in the instruction
set. To rectify this problem, a technique is proposed to group the instructions into common classes [15].
These techniques provide a simple framework for software energy estimation by summarizing the energy
consumption of instructions in the form of atable. However, by relying on the average current, they largely
ignore the detailed impacts of various factors that affect the energy consumption at the instruction level.
In contrast to these approaches based on the average current, Russell and Jacome [19] present a software
energy estimation model based on instantaneous power measured by a digitizing oscilloscope. In this work,
they propose a simple constant parameter model, which is validated by a statistical inference technique.

The next highest level of abstraction is centered around functional unit modeling, where analytical mod-
elsaretypically used for each component comprising the processor. For example, Mehta et al. [17] propose
apower profiler that records the information of the previous and the current states of functional units, aswell
asthe correlated switching capacitance. Asan extension to this approach, Chen et al. [8] present atechnique
that can be used to estimate the cycle-level energy consumption data based on hierarchical decomposition
of the architectural features of the target processor. A more generalized form of an RT (register transfer)
level energy simulator called SimplePower is proposed in [26]. SimplePower provides detailed energy in-
formation about the instruction execution on a pipelined RISC processor using accurate architecture-level
simulation of internal components.

At the lowest level of abstraction, an energy model is constructed using circuit-level/gate-level simu-
lation or cycle-level measurement. Typically, efforts are made to characterize the energy behavior of the
target processor by describing the low-level implementation of the target processor or by measuring de-
tailed cycle-level energy consumption data. Klass et a. [14] analyze the effect of sequentia execution of
different instructions, using a gate-level analysis tool. In their approach, the inter-instruction effect is mod-
eled by additiona energy consumption observed when each instruction is executed after a NOP instruction.
While the above approach is based on an analytical model, Chang et a. [6] present a technique to derive
afine-grained energy model by measuring the cycle-level energy consumption using special measurement
hardware. They also analyze the impact of various properties of instructions on the energy consumption,
showing that software energy consumption is dependent on the factors such as register numbers, immediate
operands, etc.

When an energy model is constructed at a high level of abstraction, we have the benefit of being able
to relate the energy consumption behavior of the processor to program execution information, thus provid-
ing useful information to program optimization techniques. However, compared to the lower-level energy
models, these high-level techniques lack the ability to give detailed information about the variation caused
by the actual behavior of the processor, which is often masked by abstraction. On the other hand, the ad-
vantage of alow-level energy model is that it provides a better mechanism for energy estimation in terms
of accuracy. Since the techniques are based on detailed and fine-grained energy consumption information,
the resulting models accurately reflect every small element that contributes to the total energy consumption,
which cannot be provided by high-level modeling techniques. However, such low-level techniques have
the disadvantage that the model derivation istoo complex to be practically applied to software optimization
techniques. In other words, by putting more effort to model the details of hardware implementation, we gain
model accuracy at the cost of degraded accountability.



The technigue described in this paper can be viewed as a hybrid approach, where we try to provide
highly abstract information while keeping the model as accurate as possible by relying on detailed mea-
surement data. It is distinguished both from the simulation-based approaches in that we do not describe
the internal implementation, and from approximation methods based on average current, where various as-
pects of the processor’s energy behavior are largely ignored. To derive an abstract model from the detailed
cycle-level measurement data, we incorporate a well-defined modeling technique called linear regression
analysis. Such statistical analysis techniques have been used in previous works for energy modeling meth-
ods, since the technique is in nature suitable for approximating the relationship between observed data and
the factors assumed to influence them. Gebotys et a. [10, 11] propose an energy estimation and optimization
technique for VLIW processors, incorporating a statistical method for analyzing the functional unit usage
patterns of instructions. This approach tries to predict the energy consumption of software using regression
analysis. The prediction is used to minimize the energy consumption with respect to the average current
drawn. Recent studies due to Brandolese et a. [3] and Sami et al. [20] present techniques to estimate the
software energy consumption using a combination of functional decomposition and statistical analysis tech-
nigues. These approaches are focused on modeling the energy consumption in terms of the usage of various
functional units, mainly targeted for VLIW processors.

3 Processor Energy Consumption and M easurement

In Section 3.1, we present the basics of the energy consumption in CMOS processors, to form a basis for
modeling the energy behavior using a linear equation. Section 3.2 briefly explains the design and imple-
mentation of a measurement scheme used to provide cycle-level energy consumption information, which is
used in our model derivation.

3.1 Energy Consumption of CM OS Processors

The total energy consumption of a CMOS (Complementary Metal Oxide Semiconductor) circuit, which is
commonly used for building microprocessors, consists of the following three components [9].

e Switching power: The energy consumed when a gate with output capacitance of C' is charged and
discharged, is given by
E:%xCfod, )

where V, isthe supply voltage of the circuit.

e Short-circuit power: A CMOScircuit consists of both p-type and n-type transistors. When the input
of a gate is at an intermediate level, both the p-type and n-type networks can conduct, causing a
short-circuit path from V; to ground.

e Leakagecurrent: Thetransistor networks conduct asmall current even when the circuit is not active.
The current isin general negligibly small as compared with the above two components, but becomes
significant when transistors are operated at alow voltage [21].

In a well-designed active CMOS circuit, the switching power dominates, with the short-circuit and the
leakage accounting for only a small portion of the total energy consumption [9]. Therefore, the power
dissipation, hence the energy consumption of a CMOS circuit largely depends on the switching activity of
the circuit, which is afunction of the current inputs and the previous states of the circuit.
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This suggests that the energy consumption is linearly dependent on the number of state transitions,
i.e., the Hamming distances between the current and the previous states of the circuit. However, when
dynamic CMOS circuits are used in the implementation, which is the case for high-performance datapaths
used in anumber of modern embedded systems, the total energy consumption has also a component that is
not proportional to the Hamming distance mentioned above. This is due to the precharge-and-evaluation
scheme, as described in the following. The dynamic CMOS circuits precharge before every evaluation, for
the sake of fast operation. Therefore, the circuit draws a large current causing high energy consumption
if it has been discharged in the previous evaluation, i.e., in the previous clock cycle. On the other hand,
the circuit draws only a small current if the circuit has not been discharged, i.e., when it has been left
charged in the previous clock cycle. Accordingly, the energy consumption of this dynamic CMOScircuit is
proportional to the weight of the current data, i.e., the number of 1's (or the number of 0's, depending on
the circuit structure). This observation motivates us to abstract the energy behavior of a processor using a
model equation that isalinear combination of Hamming distances and weights of a number of variables, as
will be explained in Section 4.1.

3.2 Cycle-Level Energy Measurement Hardware

In previous approaches for energy model construction, standard instrumenting equipment has been used to
measure the energy consumption of processors. However, these methods have limitations that they do not
provide accurate energy consumption information with high precision. For example, digital multimeters
can only measure average current drawn when the target processor executes the same instructions repeat-
edly [23], mainly dueto its slow response. To rectify this problem, a high-bandwidth digitizing oscilloscope
can be used to measure instantaneous power [19] instead of the average current, by capturing the voltage
envelope. This method, however, has a drawback that the measurement data can be corrupted by current
spikes, which is common in digital systems.

Therefore, to provide cycle-level energy consumption information, we propose anovel technique, where
the energy measurement is based on instrumenting the charge transfer. First, using a separate power source,
we charge a capacitor, which is then used to supply power to the target processor for one clock cycle. As
the processor consumes energy, the capacitor is discharged by the amount of energy it has supplied to the
processor. Therefore, by measuring the voltage level observed at the output of the capacitor before and
after it is discharged, we can calculate the energy consumption as the difference between the energy initialy
charged in the capacitor and the energy remaining after it has been discharged. Using Equation 1, we can
calculate the energy difference by

1 1
AE = §CV+2 — 5OVE, )

where C' denotes the capacitance used, whereas V; and V_ denote the voltage level before and after the
capacitor is discharged, respectively.

Figure 2 illustrates the mechanism used to implement the measurement technique explained above. Note
that we have two separate capacitors controlled by two pairs of alternating switches, which are synchronized
to the same clock signal that is used by the target processor. Thisis required because, in aclock cycle when
one capacitor is being charged, the other capacitor must supply power to the target processor. In the next
clock cycle, the capacitor discharged in the previous cycle is recharged, while the other is supplying power
to the processor and thus discharged. For example, assume that the switch pair {S, Sy} is closed and the
other pair {S2, S3} isopen at the current clock cycle. Then the capacitor C is charged with Vs, while Cy is
connected to the voltage input of the target processor to supply power, being discharged. In the next clock
cycle, the switch pair {S2, S5} becomes closed and {51, S4} becomes open, charging C» and discharging
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Figure 2: Functional block diagram for the measurement hardware.

(1. Like this, the two capacitors are repeatedly charged and discharged, as controlled by the switch pairs,
aternately providing apower source for the target processor. To measure the voltage output of the capacitors,
the data acquisition circuit is equipped with a high-precision AC/DC converter, which records V/ at every
rising edge and falling edge of the clock signal. Thisinformation is stored in the profile memory and later
used to calculate the cycle-level energy consumption information, based on Equation 2.

By using this measurement hardware synchronized to the same clock signal that is used by the tar-
get processor, we have the following advantages. First, we can provide the cycle-level accurate energy
consumption information without necessitating a high sampling rate, which is commonly required by tra-
ditional approaches depending on instantaneous power measurement. That is, we need to take only two
samples per clock cycle, since energy is consumed by signal transitions caused by the clock ticks [5]. Sec-
ond, because the measurement data is synchronous to the processor clock cycle, we can easily correlate
the energy consumption data to the instruction execution information, which is crucial in modeling energy
behavior of microprocessors at the software level. The detailed design and implementation of the measure-
ment hardware is described in [5, 6], aong with applications of the hardware for instruction-level energy
characterization. Moreover, in [5], the accuracy of the measurement system is verified against the average
power measured by adigital multimeter.

4 Statistical Derivation of an Energy Mode

The energy consumption of a microprocessor is dependent on the internal implementation of the processor.
This implies that one possible approach for estimating the energy consumption is to describe the details of
hardware implementation of the target processor, which is essentially equivalent to simulating the processor
at the gate level or at the circuit level. However, this simulation-based energy estimation is not practical
for the purpose of program optimization for a number of reasons. For example, evaluating the impact of
even a dight change in the instruction sequence would require re-running the whole simulation procedure,
which has substantial complexity. This high complexity of the models relying on the implementation data
makes the simulation-based methods not applicable to program optimization, where frequent cost evalua-
tion of optimization candidates is required. Moreover, gate-level or circuit-level implementation data for
a commercia off-the-shelf microprocessor is not generally available, which makes the simulation-based
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Figure 3: The overal approach for deriving an energy consumption model.

approaches more difficult to apply.

Therefore, we propose anovel approach for deriving an energy consumption model that enables accurate
estimation of the energy consumption of software by investigating high-level information related to instruc-
tion execution. Figure 3 summarizes our approach for deriving the energy consumption model. Instead of
relying on the implementation information of the target processor, we use an empirical method, where the
model construction is based on the actual energy consumption data measured from real hardware. That is,
we regard the circuit-level implementation of the target processor as a black box, whoseinternal structureis
unknown, and assume that the only accessible information is the response from this black box for a set of
stimuli. In other words, we observe the energy consumption (responses) of the target processor when it exe-
cutes a number of test programs (stimuli). Then wetry to derive an energy consumption model by reasoning
about the relationship between the instructions executed and the corresponding energy consumption.

This empirical method has the following advantages over describing the detailed hardware implemen-
tation. First, the resulting moddl is self-validating. That is, the derived energy model accurately reflects
the actual behavior of the target processor, since the model is based on real measurement. Second, the
empirical model remarkably simplifies the process of software energy estimation, by providing the abstract
form of an equation instead of a complex implementation model for calculating energy consumption. Fi-
nally, the technique is generally applicable to a variety of different processors because it is not dependent
on a specific implementation. Of course, the whole measurement procedure should be repeated when the
energy consumption model is to be constructed for a different processor, which means we need measure-
ment equipment such as the one described in 3.2. Note, however, that our methodology is not confined
to measurement-based construction of an energy model. That is, the proposed technique can also be used
to derive an energy consumption model from the information provided by a cycle-level energy simulator,
when such a simulator is already available. In this case, the proposed technique can abstract the energy
behavior of the target processor, and thus correlate the energy consumption data to the instruction execution
information, which is not possible by the simulator alone.

To derive the energy consumption model by summarizing the data gathered from measurement (or sim-
ulation), we use a statistical modeling technique called regression analysis [7]. First, we assume a hypothet-



ical model equation, which is expressed in terms of the factors that are assumed to influence the energy con-
sumption of software. Thismodel equation isalinear combination of the model variables defined in terms of
various aspects of instruction execution, with a number of unknown parameters yet to be determined. Then
we extract the values of these model variables from the test programs by examining its instruction sequence.
Using the model variable values combined with the corresponding cycle-level energy information given by
measurement, the regression analysis determines the values of the unknown parameters of the model equa-
tion. This procedure is called model fitting [7], whose result is a fitted model equation that explains the
relationship between the model variables and the energy behavior of the target processor. Using this fitted
model equation, we can accurately estimate the energy consumed by a given instruction sequence executed
on the target processor. In addition, the regression analysis will produce a set of statistical measures, which
can be used in refining the model aswell asin assessing the quality of the fitted model equation.

In Section 4.1, we show how the hypothetical model equation is constructed, by introducing a set of
energy formulas. Then in Section 4.2, we explain how we can derive the parameters of the model equation
using linear regression analysis.

4.1 Energy Model Equation

In general, the energy consumed in a CMOS processor is dependent on the number of state transitions
aswell asthe current charge/discharge states of the internal signals, as previously explained in Section 3.1.
Specifically, the energy consumed in aclock cycleis proportional to (1) the number of bit flipsin the internal
signalsinthat clock cycle, and (2) the number of logical 1's (or the number of logical O's, dternatively) inthe
signals. Sincetheinterna signals are intrinsically controlled by the execution of instructions, we conjecture
that the energy consumption can be modeled by properties derived from the instructions executed. This
motivates us to define the energy model equation in terms of the currently executing instruction and the
previously executed instruction.

For a pipelined processor, in general, the energy consumed in aclock cycle is determined by the instruc-
tions that currently occupy the pipeline stages and those that previously occupied them. Assuming that the
energy consumed in aclock cycle isthe sum of energy consumed at all the pipeline stages in that cycle, we
calculate the energy consumption in a clock cycle by asimple equation. Let .S be the set of all the pipeline
stages and I,(4) the instruction occupying stage s at clock cycle ;. Then the energy consumed at cycle can
be calculated by

E; = Zes(Is(i)als(i_ 1)), ©)
SES
where e, (X,Y") denotes the energy consumed in pipeline stage s when instruction X is executed in that
stage, preceded by instruction Y'.

For example, consider the pipelined execution scenario shown in Figure 4, where we have three pipeline
stages: IF (instruction fetch), ID (instruction decode), and EX (execute). Assume that an instruction se-
guence of A, B, C, D, E, and F is executed sequentially. The energy consumption at clock cycle 4, for
instance, is calculated by

Es = ¢p(D,C) +¢p(C,B) + epx (B, A) . 4@

We model the energy consumed at pipeline stage s by instruction X executed after instruction Y, denoted
by es(X,Y), in terms of the resources controlled by the execution of instructions X and Y. Specifically,
we define a set of resources that possibly have influence on the energy consumption of instruction execution
and construct the model equation as a combination of these resources. Note that we can capture different
aspects of instruction execution by defining different sets of resources. For example, we can model the
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Figure 4: Example of pipelined execution scenario.

instruction properties visible in the binary representation of instructions by defining resources such as the
opcode, register numbers, etc. On the other hand, we can describe architecture-level behavior by defining
the functional units as the resources. In other words, the model equation is general enough to handle various
levels of abstraction in energy consumption modeling, by incorporating the concept of resources.

Assume that we have identified all the resources that have significance in energy consumption. If we let
R bethe set of al the resources, e;(X,Y') isgiven by

es(X,Y) = BY + 3 fI/X(6:(X), 8:(Y)) )

reRr

where §,(X) and 5, (Y') denote the binary representation of resource r defined by instructions X and Y,
respectively. The term BX gives the base cost for instruction X at pipeline stage s, which corresponds
to the portion of energy consumed by instruction X at stage s, regardless of the current and the previous
states of the resources. On the other hand, the function f; /X (6,(X), 5, (Y)) gives the variation of energy
consumption according to the resource r controlled by the execution of instruction X at stage s, preceded
by instruction Y.

Based on the observation that the energy consumption is proportional to the number of bit flips and the
number of logical 1'sin the interna signals, we define the energy variation function as

TX(B,(X), B (Y)) = HYY - h(B.(X), 5 (Y)) + WX - w(B,(X)), (6)

where h(i, j) denotes the Hamming distance between two binary numbers i and j, while w(i) denotes the
weight (number of 1's) of abinary number i. In Equation 6, H /X and W'* are unknown coefficients that
characterize the energy consumption of instruction X at pipeline stage s, with regard to resource r.

Combining Equations 3, 5, and 6, we have an equation system connecting the cycle-level energy con-
sumption with the resources defined by instruction execution. Note that this model equation is a linear
combination of model variables defined in terms of various resources, with a number of unknown param-
eters, i.e, Hi/X's, WI/*'s, and BX’s. We call these parameters characterizing parameters, becausse they
describe the characteristics of the energy behavior of the target processor. When we gather the energy con-
sumption data for a large number of cycles and extract the values of model variables, we have a number
of simultaneous equations with the characterizing parameters as unknowns. One might be tempted to solve
these eguations to obtain the exact solution to the equations. However, due to the erroneous nature of the
measurement and possible incompleteness of the model equation (e.g., we might not have completely listed
al the resources that actually affect the energy consumption), it does not make much sense to exactly solve
the equations. Instead, we use a statistical analysis technique called regression analysis to derive the best
estimates of these characterizing parameters, as will be explained in Section 4.2.

Note that the number of such characterizing parameters can be very large, depending on the number
of pipeline stages, the number of different instructions, and the cardinality of the set of resources defined.
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Moreover, the set of characterizing parameters possibly contains those parameters that are insignificant or
even irrelevant to energy consumption, which possibly degrades the accuracy of the model. Therefore,
to rectify this problem, the regression analysis uses two techniques based on statistical model testing, in
addition to deriving the values of the characterizing parameters. First, we identify the parameters that
have little or no significance and eliminate them, to reduce the number of characterizing parameters and
enhance the model accuracy at the same time. Second, we merge certain characterizing parameters for all
the instructions or for a selected group of instructions, when the behavior of different instructions in the
same group is similar with respect to one or more resource model variables. These techniques, together with
the process of deriving the values of the characterizing parameters, are presented below.

4.2 Regression Analysisfor Energy Model

Regression analysis is a statistical method for investigating functional relationships among variables [7].
Therelationship is expressed in the form of an equation or amodel connecting aresponse variable with one
or more predictor variables. That is, when we denote the response variable by y and the set of predictor
variables by z1, zs, ..., z,, the true relationship between y and 1, z2, ..., z, can be approximated by a
regression model

y=f(z1,22,...,2p) + ¢, (7

where ¢ is assumed to be an error representing the discrepancy in the approximation.

When the relationship between the response and the set of predictors is assumed to be linear, the method
for constructing the regression model is called linear regression analysis. That is, alinear regression model
is expressed by an equation

y:a0+041$1+042$2+"'+O{p$p+8, (8)

where ag, a1, ..., a, are constants and are called regression coefficients. The best estimates of these
regression coefficients, i.e., the ones that lead to the model equation that best explains the relationship
between the response and the predictors, are determined by investigating a number of sample combinations
of the response and the predictors. The most common method used in finding the regression coefficients is
called theleast square method [7], which isthe one that we usein our analysis. Theleast square method tries
to approximate the model equation to the true relationship between the response and the set of predictors by
minimizing the sum of the deviations squared (least square error) from a given set of data.

In our case of deriving the energy model, the response variable corresponds to the energy consumption
measured in each clock cycle, while the predictor variables are:

1. the Hamming distances between the binary representations of resources controlled by execution of
two adjacent instructions, i.e., (G, (X), 5, (Y))’s,

2. the weights of the binary representations of resources controlled by execution of an instruction, i.e.,
w(f,(X))'s, and

3. indicator (or dummy) variables' introduced to express the base costs of instructions, for each of the
pipeline stages.

Note that, with the above settings, the structure of our energy model equation presented in Section 4.1 can
be exactly mapped to a linear regression model, with the characterizing parameters being the regression

1An indicator or dummy variable is a predictor variable that can only take aboolean (0 or 1) value [7].
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coefficients. That is, finding the best estimates of the regression coefficients corresponds to determining the
values of the characterizing parameters in the energy model equation, and thus approximating our model to
the actual energy behavior observed by the measurement hardware.

Compared to many other applications of statistical analysis, where the sample data corresponds to ob-
servation from uncontrollable natural environment, our case lends us the benefit of being able to freely
set the values of the predictor variables. For example, when we define the model variables in terms of
instruction-level resources such as instruction fetch address and register numbers, we can control the values
of the predictor variables by using carefully written test programs. This means that we can determine a
subset of characterizing parameters independently of the others, and use the values of these parameters later
in the analysis for the remaining parameters yet to be determined. For example, we can change the instruc-
tion fetch address while fixing al the other factors such as register numbers and data values, by repeatedly
executing the same instructions. By doing this, we can derive the impact of the instruction fetch address,
separately from those of the other resources. Then we can determine the impact of register numbers, for
example, by executing the same instructions with different register numbers but with all the other factors
fixed. This stepwise derivation of characterizing parameters not only enhances the accuracy of the model by
reducing the possible errors incurred in regression, but also keeps the complexity of the regression analysis
low by decomposing the whole problem into several subproblems.

In addition to deriving the values of the characterizing parameters, we identify and remove the predictor
variables that have little or no significance in the energy consumption, based on statistical inference. This
is done by testing a null hypothesis H, : «; = 0 against the alternative H; : «; # 0 for each regression
coefficient ;. The best model is selected using a model testing technique called the ¢-test [7]. Intuitively,
to assess the significance of each predictor variable, we compare the model with a specific characterizing
parameter set to zero with another model with the parameter set to the value derived from the model fitting
procedure. Removing the predictors that are insignificant or even irrelevant to the energy consumption not
only increases the accuracy of the resulting model equation, but also maintains the model complexity at a
reasonable level.

Also, we can reduce the complexity of the model equation further by merging specific characterizing
parameters for all the instructions, or for a selected group of instructions. This is done by testing a null

hypothesis Hy : o; = aj = - = «, against the aternative H; : o; # o # --- # oy, for acombination
of selected regression coefficients o, o, . . ., . The model that best explains our measured energy value

is selected based on a model testing technique called the F'-test [7]. Intuitively, to check if a group of
instructions should be merged or not with respect to a specific type of resource, we compare a model with
the same characterizing parameters for a certain subset of instructions and another model with different
characterizing parameters for those instructions. For example, we intuitively assume that the impact of the
instruction fetch address and that of register numbers are identical for al the instructions, while the impact
of data values is different from one instruction to another. In Section 5.1, this assumption is validated for
our target processor, using the techniques explained above.

Besides the fitted model equation, the regression analysis also produces a set of statistical measures that
can be used to assess the soundness of the model. The most common measure of the quality of fit, i.e., the
accuracy of the resulting model equation, is the coefficient of determination, denoted by I£ [7]. Intuitively,
it is interpreted as the proportion of the total variability in the response variable that is accounted for by
the set of predictor variables in the model equation. In the rest of this paper, we will use this F value for
evaluating the quality of our energy model.
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5 Experimental Results

To demonstrate the validity of our approach for deriving an energy consumption model by abstracting the
behavior of the hardware, we performed a set of experiments. In Section 5.1, we apply the proposed tech-
nique to derive an energy model equation for our target processor ARM7TDMI [1]. Then, in Section 5.2, we
estimate the energy consumption of a randomly-generated instruction sequence using the model equation
derived from our analysis.

5.1 Case Study: ARM7TDMI

We applied our proposed technique for energy model derivation to the ARM7TDMI processor core. The
target processor has a three-stage pipeline similar to the one shown in Figure 4. We derived an energy
consumption model for the ARM data-processing instructions that have one of the following two instruction
formats [9].

op Rd,Rn,Rm
op Rd,Rn,#i nm

Here, op specifies the opcode for the instruction, while Rd, Rn, and Rmspecify the destination operand
register, the first source operand register, and the second source operand register, respectively. Instead of
the second source operand register, an immediate value can be given as the second source operand with the
#i mmfield specified.

We defined a set of model variables in terms of instruction-level resources. They are:

e instruction fetch address, which is assumed to affect the energy consumption of the internal address
bus when the instruction is fetched,

e instruction bit encoding, which is assumed to affect the energy consumption of the instruction register
and the pipeline latches,

e operand specifiers, such as register numbers and the immediates, which are assumed to affect the
energy consumption of instruction decoding and execution, and

e data values, which are assumed to affect the energy consumption of arithmetic and logical execution
units.

That is, the model variables are chosen in such a way that the model equation essentially captures the
influence of the binary representation of instructions on the energy behavior of various functional units
inside the processor, without describing the internal implementation.

As previously mentioned in Section 4.2, we decompose the problem of energy model derivation into
several subproblems and derive the characterizing parameters in a number of steps, for the sake of model ac-
curacy and analysis simplicity. Figure 5 illustrates this problem decomposition, showing sample instruction
sequences similar to the ones actually used in our derivation of the characterizing parameters. In thefirst set
of test programs, we executed the same instructions at different program locations with the same operand
specifiers and the same data values, to derive the parameters for the instruction fetch address (denoted by
FA). That is, we give variation to the fetch address while fixing all the other variables, so that the only
variability of the energy consumption comes from the changes in the fetch address. The regression analysis

derived H) 2"/ = 2.72 (pJ) and W, 2*/* = —3.44 (pJ), which could be merged for all the nstructions under
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Model variables Instruction Base costs for Register Data
under investigation fetch address instructions numbers values
Experimental Register used has Register used has All registers have All registers have ran-
settings certain fixed value certain fixed value same fixed value dom but known values
3
Example of and r0,r0,r0 and r0,r0,r0 and rl,r0,r8 and r2,r8,r7
instruction and r0,r0,r0 sub r0,r0,r0 and r2,r3,r7 and r3,r5,r9
uszzqi‘;er’;‘;zel and r0,r0,r0 eor r0,r0,r0 and r9,rll,r2 and r9,rll,r2
derivation and r0,r0,r0 add r0,r0,rx0 and r3,r9,rl0 and rl10,r2,rl
Legend Analysis Steps

Figure 5: Stepwise derivation of characterizing parameters.

Table 1: Base Costs of Different Instructions

Pipeline Stage

Instruction IF | ID | EX
add 300.77 | 317.03 | 328.00
sub 298.14 | 200.34 | 189.36
and 300.10 | 272.60 | 330.83
eor 298.53 | 419.70 | 332.07

g P | 331 1171 030]
(units: pJ, RZ = 0.97)

investigation. In this case, the coefficient of determination was 2 = 0.98, which means that the resource
FA was capable of accounting for approximately 98 % of the energy variation due the changes in the fetch
address. The results indicate that the energy consumption is proportional to the number of bit switches in
the fetch address, and negatively proportional to the number of 1's in the fetch address. With this infor-
mation available, we can apply program optimization towards low energy such as code replacement, where
frequently executed instructions are placed in program addresses with small Hamming distances and alarge
number of 1's.

To derive the base costs of various instructions at each of the three pipeline stages, we executed another
set of test programs. The test program consists of an instruction mix of different instructions, with the
same operand specifiers and the same data values for al the instructions. Note that we cannot execute the
instruction mix without varying the Hamming distance and the weight of the opcode encoding. Therefore,
we derive the characterizing parameters for resource opcode (denoted by op) at the sametime. On the other
hand, to eliminate the effect of inevitable changes in the instruction fetch address as we execute the test
program, we calculated the energy variation caused by changes in the fetch address using the parameter
values derived in the previous analysis step, and subtracted it from the measured energy values. Table 1
presents the results from our regression analysis for four sample instructiong. The results indicate that the
energy consumed in the |F stage is not noticeably different from one instruction to another, as shown in
the second column of the table. However, the energy consumed in the stages ID and EX vary substantially
depending on the instructions executed. For example, the sub instruction appears to consume much less

2Due to the space limitation, we only present the results for four instructions, although we derived the parameters for all the
data-processing instructions in the ARM instruction set [9].
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Table 2: Parameters for Register Numbers

Variable Pipeline Stage
Resource | Type IF | ID | EX
Rd H 0.86 7.64 0.84
w 0.64 2.77 0.50
Rn H 1.34 3.92 1.02
w 155 3.40 1.14
Rm H 0.87 6.51 144
w 2.20 347 | —0.47

(units: pJ, R? = 0.92)

energy inthe ID and EX stages than the other instructions, while the eor instruction consumes much more
in the ID stage. The results also signifies that the energy consumption is proportional to the Hamming
distance of the opcode, as shown in the last row of Table 1, while the weight of the opcode turned out to
have little or no impact on the energy consumption.

Thislarge difference of the base costs of different instructions and the tendency of increase in the energy
consumption with the increase in the Hamming distance of the opcode indicate that the energy consump-
tion of software can be reduced by applying instruction selection and/or instruction scheduling techniques
tailored for low energy [22, 25]. Specifically, the energy consumption can be significantly reduced by ju-
diciously selecting the instructions with low base costs when more than one choices are possible for the
same execution semantics. Moreover, careful scheduling of instructions can save a substantial portion of
energy consumed in the processor core, by reducing the number of bit switches in the opcodes of adjacent
instructions. For our target processor, for instance, reducing one opcode bit flip on average will save approx-
imately 15.32 pJ of energy per instruction (the sum of savings in the three pipeline stages), which amounts
to approximately 1.2 % of the total energy.

To derive the characterizing parameters for register numbers, we executed still another set of test pro-
grams where the same instructions are executed with changes in the register numbers (i.e., Rd, Rn, and
Rm). Again, to eliminate the influence of instruction fetch addresses, we calculated the variation due to the
changes in the fetch address and subtracted it from the measurement data. Table 2 summarizes the results
from our regression analysis. We successfully derived the parameter values for the Hamming distance and
the weight of each register number in each of the pipeline stages, which could be merged for al the in-
structions under consideration. The results indicate that the major portion of the energy variation caused by
register numbersisin the ID stage, as can be induced from the large coefficient values in the fourth column
of the table. Especially, the most significant factors are the Hamming distances of Rd and Rm which have
the largest coefficient values. This information can be used in program optimization techniques such as
register assignment and/or register relabeling for low energy [2, 4, 13]. Specificaly, if we reduce one bit flip
in each of the three register numbers on average, the resulting energy savings will be approximately 24.43
pJ per instruction, which corresponds to 1.9 % of the total energy.

Similarly, we executed a set of test programs with random data values to derive the coefficients for data
values used in the computation. Table 3 shows the results from our regression anaysis for four sample
instructions®, where sr c1 and sr ¢2 denote the first and the second source operands, respectively, while
dest denotes the destination operand. The results show that the resources defined in terms of data values

3Again, we list the results for only four sample instructions, due to the space limitation.
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Table 3: Parameters for Data Values

Variable | Pipeline Stage
Instruction | Resource | Type ID | EX

srcl W 3.93 6.61

add src2 w 0.18 7.32
dest W - 3.63

srcl W 8.81 595

sub src2 w 9.58 8.36
dest W - 4.88

srcl W 8.68 8.66

and src2 w 0.41 9.39
dest W - —-2.30

srcl w 2.75 7.09

eor src2 W —1.30 7.58
dest W - 2.82

(units: pJ, R? = 0.97)

have significance only in the weights, not in the Hamming distances. This phenomenon is presumably due
to the precharge-and-evaluation scheme used in the dynamic CM OS implementation of the target processor
datapath, as previoudy explained in Section 3.1. Note that the weight of the destination operand in the ID
stage is not included in the table because the computation result will not be generated until the EX stage.
Also note that, unlike the results from the previous analysis steps, different instructions have different pa-
rameter values for the model variables defined in terms of data values. Thisis because different instructions
behave differently with respect to data values, according to the operations specified by the instructions. We
conjecture that this difference in energy behavior is due to the different ways of utilizing the arithmetic and
logical functional units by different instructions.

Likewise, we performed regression analysis on the impact of the immediate operand, which turned out
to have only significance in the Hamming distances in the IF and ID stages. The coefficient values derived

are B = 4.06 (p3), and H] ™" = 8.98 (pJ), respectively, with the 2 value of 0.98,

5.2 Software Energy Estimation

To show the accuracy of our energy consumption model in estimating the energy consumed by an instruc-
tion sequence, we implemented an energy consumption analyzer. The analyzer takes an assembly source
program (or a binary program) as its input, and estimates the energy consumption of the given instruction
sequence at each clock cycle. The analyzer first extracts the values of the model variables by examining
the instruction sequence* Then it computes the energy consumption at each clock cycle using the model
equation and the values of the characterizing parameters previously determined by the regression analysis,
as described in Section 5.1.

For the experiments, a sample program was generated that contains a random mixture of ARM data-
processing instructions, with the operand specifiers (i.e., the register numbers and the immediates) are cho-
sen at random. Also, the data values are randomly generated and prepared by the sample program prior to

“In deriving the values of the model variables defined in terms of data values, we assumed that the initial values in the registers
are known apriori.
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Figure 6;: Comparison between estimated and measured energy.

the execution of the instruction sequence under investigation. Figure 6 compares the estimated energy with
the actual energy consumption measured on the hardware, for the same sample instruction sequence that
executes for 40 clock cycles.

The results indicate that the proposed approach enables an accurate energy estimation, which is verified
by the fact that the graph for the estimated energy closely resembles that of the measured energy. The
coefficient of determination (R?) value in this case was 0.99, which indicates that 99 % of the variation in
the measured energy value was captured by our energy model equation. The total of the measured energy
consumption for the 40 clock cycles was 5.2532 nJ, while that of the estimated energy was 5.2993 nJ. The
error in this total energy was less than 1 %. We also calculated the error ratio in each cycle given by

_ |estimation — measurement|
N measurement

Te

; (9)

whose average value was 0.0251, which means that the error of the energy estimation by our model egquation
was on average 2.5 %. Besides, the maximum of r. was 0.0633, which means that the error was at most
6.3 %. The error comes from a number of sources, including the following.

e The energy consumption may not be perfectly linear to the Hamming distances and the weights of the
binary representation of the resources defined.

e The choice of the model variables might have missed one or more factors that have significant impacts
on energy consumption.

e The quantization error inherent in the measurement hardware used in the model construction may
cause inaccuracies in deriving the values of the characterizing parameters.
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6 Conclusions and Future Work

We have proposed a technique for deriving an accurate energy consumption model for an embedded micro-
processor by abstracting the physical energy behavior of the processor hardware at a higher level. The pro-
posed approach combines an empirical method and astatistical analysis technique called regression analysis.
In the empirical method, we base the model construction upon the actual measurement data from hardware,
without describing the implementation of the target processor. For this purpose, we designed and imple-
mented a cycle-accurate high-precision measurement hardware that provides accurate energy consumption
data at the clock-cycle level. In the statistical analysis, we use linear regression modeling to derive a model
equation that explains the complex interactions among different sources of energy variation. The technique
described in this paper enables a simple but yet accurate estimation of energy consumption of software,
based on a linear model equation. Moreover, we can identify the contributing factors that affect the soft-
ware energy consumption, and further detect the significance of each factor. Therefore, the availability of
such an energy consumption model will provide an important basis for various energy reduction techniques
for embedded software, such as program optimization techniques for low energy. Another advantage of the
proposed approach is that the model derivation technique can be applied to a number of different processors,
since it is not dependent on a specific processor implementation.

We applied our proposed method to derive an energy model for the ARM7TDMI processor core, to
prove the validity of the approach. This case study shows that an accurate energy model can be derived
from instruction-level characterization of software, using the technique proposed in this paper. The results
from our experiments indicate that our energy model can accurately estimate the energy consumption of a
given instruction sequence. Statistical measures show that approximately 99 % of the energy variation can
be explained by the derived model equation for the experimented case. The maximum error ratio of the
estimation was 6.3 %, while the average was approximately 2.5 %.

We are currently investigating the tradeoff between the estimation accuracy and the model accountability
by modeling resources at different levels of abstraction. For example, we can build a model based on the
architecture-level resources, where the model variables correspond to the binary states of internal functional
units such as ALUs, pipeline latches, address registers, etc. In this case, we modify a functional simulator
for the target processor to extract the values of the model variables, by calculating the binary states of the
functional units at each clock cycle. The advantage of such architecture-level modeling is that the model
equation can be closer to the actua energy behavior of the target processor, since it incorporates more
detailed information about the internal structure of the processor. In addition to this enhanced accuracy,
architecture-level resource modeling will enable capturing of more complex situations such as pipeline stalls,
execution of multi-cycle operations, and memory loads/stores, which cannot be expressed by modeling
instruction-level resources alone. However, using such architecture-level resource models, we surrender to
some extent the ability to relate the energy consumption to the properties that can be exploited by high-level
optimization techniques such as program transformation for low energy. Therefore, we aim to pinpoint the
level of abstraction appropriate for providing meaningful information to program optimizer and enabling
accurate energy estimation of instruction sequences at the same time. That is, we hope to determine where
to put the boundary between instruction-level modeling and architecture simulation for deriving an energy
model, by covering a broad range of analysis levels in asingle framework for energy model derivation.
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