
Insights to Angluin’s Learning

Therese Berg, Bengt Jonsson, Martin Leucker and Mayank Saksena

Department of Computer Systems, Uppsala University, Sweden
{thereseb, bengt, leucker, mayanks}@docs.uu.se

Abstract. Among other domains, learning finite-state machines is im-
portant for obtaining a model of a system under development, so that
powerful formal methods such as model checking can be applied.
A prominent algorithm for learning such devices was developed by An-
gluin. We have implemented this algorithm in a straightforward way
to gain further insights to practical applicability. Furthermore, we have
analyzed its performance on randomly generated as well as real-world
examples. Our experiments focus on the impact of the alphabet size
and the number of states on the needed number of membership queries.
Additionally, we have implemented and analyzed an optimized version
for learning prefix-closed regular languages. Memory consumption is one
major obstacle when we attempted to learn large examples.
We see that prefix-closed languages are relatively hard to learn compared
to arbitrary regular languages. The optimization, however, shows positive
results.

1 Introduction

The last decades have witnessed significant advances in model-based techniques

for specification, implementation, verification, and validation of reactive and usu-
ally distributed systems, e.g., in telecommunication, embedded control, and re-
lated application areas. The techniques include model checking [LPY97,GHP97],
code generation [HLN+90] and model-based test generation [FJJV97,SEG00].
They all assume that a formal model of the system under study is available.
Such formal models are assumed to be developed during the specification phase
of system development, or a posteriori from an existing implementation.

One large obstacle to the adoption of model-based techniques is that in prac-
tice, quite often no formal specification is available or it is outdated due to the
iteration process in the development of a system. Even if a formal specification
is present that captures the latest version of the system intended to develop, it
is not clear whether it corresponds to its actual realization.

One approach to overcome these limitations is to develop techniques for gen-
erating formal models with less manual effort and more automated support. In
the extreme case, a formal model could be generated a posteriori, from the de-
veloped system. If no model of the system under development was present, this
model can be used to analyze and validate the implementation. If a formal model
was available a priori, the generated model can be compared with this one to
show conformance of the implementation with respect to its specification.

For software systems with given source code, various static and dynamic
analysis techniques have been developed, which can also be used to generate
abstract models of a developed system [CDH+00,Hol00]. However, peripheral
hardware systems, combined hard- and software systems, or third-party software
systems do not allow means of static analysis. In practice, there is often no
other way to analyze these systems than by looking at their traces, i.e., their
sequences of input and output actions. Also, a program that analyzes the source
code statically is heavily dependent on the particular implementation language
used. A tool that analyzes externally observed traces is easier to adapt to a new
program written in a new language.

In a seminal paper, Angluin [Ang87] described a method for learning finite-
state automata, if it is possible to ask whether a string is a member of the
language of the automata. This result implies that, in principle, finite-state
automata can be learned for finite-state systems that have the following two
characteristics:

– one can send sequences of actions to the system and
– the system signals whether it could execute the sequence.

This approach has been used in projects for test sequence generation by Steffen
et al. [HHNS02], and by Peled et al. for developing techniques for conformance
testing of finite automata [GPY02]. The number of reported efforts to use An-
gluin’s algorithm (or some related algorithm) for generating finite automata
models of reactive systems is still rather small and it is still not possible to make
conclusions about the applicability of the techniques, how well it scales, or to
pinpoint the crucial bottlenecks.

The objective of the research reported in this project is to investigate the
efficiency of Angluin’s algorithm for learning finite automata, and among them
models of reactive systems, to investigate potential bottlenecks in applying it,
and to investigate the effect of a rather straight-forward optimization for prefix-
closed DFA. For this purpose, we have developed a naive implementation of
Angluin’s algorithm together with an optimization, which can optionally be in-
voked. We have applied this implementation to a series of synthetically generated
systems, and to a set of rather simple models of reactive systems intended for
verification by the Concurrency Workbench. From the results, we draw conclu-
sions regarding the applicability and scalability of Angluin’s algorithm, as well
as the effect of our implemented optimization.

[HNS03] studies domain-specific optimizations to Angluin’s learning algo-
rithm including optimizations for prefix-closed languages. They have considered
examples from telecommunication software but not studied the performance on
synthetic examples. They have in this article used a slightly different model and
therefore we could not easily compare our results. In [Ang01], Angluin revis-
its his algorithm and discusses several variants and their complexity. Practical
results, however, are not mentioned.

In the next section, we recall basic definition of automata theory. In Section 3,
we describe Angluin’s learning algorithm as well as our optimization for prefix-
closed languages. Our experiments are described and discussed in Section 4.

2

2 Preliminaries

For the following, we fix an alphabet Σ, i.e. a finite set of letters, usually denoted
by a, b, . . . , a1, a2, . . . A language is a subset of Σ∗, the set of finite (possibly
empty) sequences of letters, also called strings or words.

A deterministic finite-state automaton (DFA) over Σ is a structure A =
(Q, δ, q0, F) where Q is a non-empty finite set of states, q0 ∈ Q is the initial

state, F ⊆ Q is the set of final states, and δ : Q × Σ → Q is the transition

function. We denote the number of states Q, the size of the alphabet Σ, and the
size of the transition function δ by respectively |Q|, |Σ|, and |δ|. The latter is
defined to be the number of elements of the domain of δ, i.e. |Q × Σ|.

A run of A on a finite word w = a1 . . . an ∈ Σ∗ is a sequence q0
a1→ . . .

an→ qn,
where q0 is the initial state of A and qi+1 = δ(qi, ai+1) for i ∈ {0, . . . , n − 1}. It
is called accepting, if qn ∈ F . The language accepted by A, denoted by L(A), is
defined as L(A) = {w ∈ Σ∗ | there is an accepting run of A on w}. We call a
language L regular if there is a DFA accepting L.

Let us recall the notion of Nerode’s right congruence. Given a language L,
we say that two words u, v ∈ Σ∗ are equivalent, written as u ≡L v, if for all
w ∈ Σ∗ we have uw ∈ L iff vw ∈ L. It is easy to see that ≡L⊆ Σ∗×Σ∗ is a right
congruence, i.e., it is an equivalence relation that additionally satisfies u ≡L v

implies uw ≡L vw for all w ∈ Σ∗. We denote the equivalence class of a word w

by [w].
It is folklore that a language L is regular iff ≡L has finite index, i.e., the

number of equivalence classes of Σ∗ with respect to ≡L is finite. Let us recall
the idea of the proof for the direction right-to-left : Given a language L with
finite index, we construct an automaton AL such that L(AL) = L. The states of
AL are the equivalence classes of Σ∗ with respect to ≡L, the initial state is the
equivalence class containing the empty string, denoted by ε, final states are the
ones containing strings in L, and the transition function maps ([w], a) to [wa].

It can be shown that this construction yields a minimal DFA accepting L,
i.e., the number of states is minimal among all DFA accepting L. Furthermore, it
can be shown that every minimal DFA is isomorphic to the one we constructed.

3 Learning finite state machines

3.1 Angluin’s learning algorithm

We here try to give a succinct description of the main ideas behind Angluin’s
learning algorithm. We assume that a system in which we are interested can be
modeled by a DFA A. The problem can now be looked upon as identifying the
regular language which is accepted by A, denoted by L(A).

In a learning algorithm a so called Learner, who initially knows nothing
about A, is trying to learn L(A) by asking queries to a Teacher and an Oracle.
There are two kinds of queries.

– A membership query consists in asking the Teacher whether a string w ∈ Σ∗

is in L(A).

3

– An equivalence query consists in asking the Oracle whether a hypothesized
DFA M is correct, i.e., whether L(M) = L(A). The Oracle will answer yes

if M is correct, or else supply a counterexample u, either in L(A) \ L(M)
or in L(M) \ L(A).

The typical behavior of a Learner is to start by asking a sequence of membership
queries, and gradually build a hypothesized DFA M using the obtained answers.
When the Learner feels that she has built a “stable” hypothesis M, she makes
an equivalence query to find out whether M is correct. If the result is successful,
the Learner has succeeded, otherwise she uses the returned counterexample to
revise M and perform subsequent membership queries until arriving at a new
hypothesized DFA, etc.

The information gained by the Learner can at any point during the learning
process be represented as a partial mapping O from Σ∗ to {accepted, rejected}.
The domain Dom(O) of O is the set of strings for which membership queries
have been performed, or which the Oracle has given as counterexamples in
equivalence queries.

Roughly speaking, a learning algorithm should prescribe how to transform a
partial mapping O into an automaton. This can be done by fixing a subset S of
Dom(O), defining an equivalence relation ' on S, and building the automaton
as the set of equivalence classes of strings in S. Intuitively, two strings u and
u′ should be equivalent if there is reason to believe that u ≡L(A) u′. Since the
Learner can only obtain partial information about A from O, one idea is to
approximate ≡L(A) by an equivalence ', which uses only information in O. To
be able to build an automaton on the basis of S and ', the following two criteria
should preferably be satisfied.

– completeness: If u ∈ S, and a ∈ Σ then ua ' u′ for some u′ ∈ S.

– consistency: If u ' u′ for u, u′ ∈ S and a ∈ Σ, then ua ' u′a (i.e., ' is a
right congruence).

Completeness ensures that we can define transitions from each equivalence class
for each letter in Σ; consistency ensures that such transitions have a unique
target equivalence class. We note that in order to check completeness and con-
sistency, it is necessary to define ' on all strings u and ua such that u ∈ S and
a ∈ Σ. Whenever the current values of S and ' satisfy the completeness and
consistency criteria, the Learner can form the corresponding hypothesis M and
make an equivalence query about M.

Let us now describe Angluin’s algorithm more specifically. Angluin’s algo-
rithm maintains a prefix-closed set S and a suffix-closed set E of strings, both
of which are monotonically increased during the algorithm. Initially S and E

contain the empty string ε. We define ' as follows: u ' v if for all w ∈ E we
have uw ∈ L(A) iff vw ∈ L(A).

From a complete and consistent O, a hypothesis M is formed as the automa-
ton, whose states are equivalence classes of strings in S. If O is not complete,
then S is increased with strings that represent missing equivalence classes. If O

4

is not consistent, E is increased with a suffix which replaces the inconsistent
equivalence class with two new classes.

The description of Angluin’s algorithm in [Ang87] represents O by an obser-

vation table OT . The observation table is a table with rows corresponding to
strings in S and columns corresponding to strings in E. The algorithm gradu-
ally fills the entry (u, v) for row u and column v by accepted or rejected, after
receiving a reply for a membership query for uv.

Of course, some membership queries can be saved by entering also the coun-
terexamples returned in negative equivalence queries as accepted or rejected. We
note that the observation table is redundant in that the result of a membership
query for u occurs in all entries (v, w) such that u = vw. Thus, we do not need
to make one membership query for each such entry, but we can simultaneously
fill all such entries.

Angluin’s algorithm is designed to construct minimal DFA for the guessed
language.

3.2 Prefix-closed models

In many applications, we want to learn an automaton A, which is a model of a
reactive system. Often, reactive systems can be modelled as transition systems.
These can be understood as (non-deterministic) finite-state automata (with par-
tial transition relations) in which every state is an accepting state. Thus, the
language defined by such an automaton will be prefix-closed. In this section, we
discuss how to exploit this fact for optimizing the learning process.

A language L is prefix-closed if for every w in L, all prefixes of w are in L.
A DFA is prefix-closed if its language is prefix-closed. It follows that a minimal
prefix-closed DFA has only one non-final state, the so-called sink, with transitions
only to itself. Note that Angluin’s algoritm learns minimal DFA.

Studying strings that are possibly accepted by prefix-closed DFA, we make
the following simple but important observations:

1. Prefixes of accepted strings are accepted.
2. Suffixes of rejected strings are rejected.

We can use these characteristics of prefix-closed DFA to reduce the needed
number of membership queries as follows. Before querying a string, we first test
it for (2), that is whether it is an extension of a string already observed to be
rejected. If so, we can add the result immediately to the observation table. Oth-
erwise, we ask the teacher. Thus, we never need to query extensions of observed
rejected strings.

Angluin’s Learner starts with queries for short strings, and thereafter queries
successively longer and longer strings. In general, the test for (1) will not be able
to consult previous observations, so it is rarely applicable. There is, though, an
exception when it could be useful, namely when performing queries for prefixes
of received counterexamples. If the counterexample c is accepted, we know that
all its prefixes are accepted, too. In the best case, applying (1) would save me

5

membership queries, where m is the maximum length of any received counterex-
ample and e is the number of equivalence queries made. Knowing the best case
bound and due to lack of evaluation time, we did not implement (1).

4 Experimental Results

The implementation We have implemented Angluin’s learning algorithm,
closely following the high-level description in [Ang87]. Furthermore, we have
implemented our proposed optimization for prefix-closed models. It differs from
the ordinary learner only in that it can infer the answer of some membership
queries, due to properties of prefix-closed languages. Accordingly, the number of
membership queries can be expected to be smaller, while the number of equiva-
lence queries is unchanged. Furthermore, it requires the same amount of memory
for the observation table.

We simulated the teacher (and oracle) on the same computer as the learner,
for reasons of simplicity. In practice, a teacher will typically be realized as a
process communicating with a slow external device.

Our learners are written in Java using the library AMoRE developed at
RWTH Aachen for maintaining automata.

The experiments Our experiments aim at finding out how our implementation
of Angluin’s learner and our optimized learner perform and scale in practice. We
have examined real-world examples and randomly generated examples. The real-
world examples are several protocols shipped with the Edinburgh Concurrency
Workbench. They were originally formulated in Milner’s CCS. We transformed
their transition system representation into prefix-closed DFA.

For reasons of comparison, we studied two kinds of random examples, prefix-
closed random examples and arbitrary random DFA.

As pointed out before, the expected bottle-neck in practice for a learner is
the number of membership and equivalence queries, since a communication with
a typically slow external device is required and quite many queries are needed.
Thus, we concentrated our experiments on the number of membership and equiv-
alence queries. To get an overall picture, we also measured the execution time
and memory consumption for large examples. Hereby “execution time” means
the total execution time minus the time for equivalence queries. In other words,
we measure the time spent by the learner plus the one spent by the teacher.
Since there are several ways to realize The oracle, we disregard this time.

In our experiments, we vary the alphabet size and the number of states of the
automata. Our measurements do not adhere to strong statistical requirements.
Thus, they cannot be used to prove the practical performance of the algorithms
in a statistical sense. However, they are good enough to show a tendency and to
point out directions for future optimizations and analysis.

6

4.1 Angluin’s algorithm

A theoretical upper bound for the number of membership queries is the worst-
case size of the observation table. Angluin [Ang87] calculates this bound to
O(m|Σ||Q|2), where m is the maximum length of any received counterexample.
If the Oracle always provides a smallest counterexample, then m = |Q|, and

thus the number of membership queries are in the worst case O(|Σ||Q|3).
To investigate how the algorithm behaves in practice, we studied it on arbi-

trary random examples as well as prefix-closed random examples. Let us start
with the arbitrary ones.

Random examples

The samples We studied random examples varying the number of states and
letters. We generated and learned DFA between 10 and 100 states, in steps of
10.

Each set of measurements was carried out with different alphabet size. For
systems with up to 60 states, we studied from 5 up to 50 letters in steps of 5,
and, for systems with more states, from 10 up to 50 letters in steps of 10.

We sampled 10 DFA for each state and letter combination, except for those
with the number of states 70 or higher, for which we sampled only 5.

Experience Fixing the number of states but varying the number of letters, we
observe a linear behavior, as expected. See Figure 1, in which the number of
states are fixed to 10 and 60.

The collected data shows that, in terms of membership queries, Angluin’s
learning algorithm is approximately linear in states on random DFA, despite
the algorithm’s worst-case complexity. As an example, we show the number of
membership queries relative to the number of states, with the number of letters
fixed to 10 and 40, in Figure 2.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 5 10 15 20 25 30 35 40 45

m
em

be
rs

hi
p

qu
er

ie
s

letters

Angluin, 10 states
Angluin, 60 states

Fig. 1. Random automata, number of states fixed to 10 and 60.

7

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 10 20 30 40 50 60 70 80 90 100

m
em

be
rs

hi
p

qu
er

ie
s

states

Angluin, 10 letters
Angluin, 40 letters

min
max

Fig. 2. Random automata, number of letters fixed to 10 and 40.

To get an impression of the performance of the algorithm, learning a random
example of 100 states and 25 letters, took 1 hour, 40,000 membership and 15
equivalence queries, and 110 MB of space. This long execution time was one
reason for learning fewer automata of larger sizes. The other reason is the huge
memory consumption of the observation table.

Additionally, we studied the number of membership queries with respect to
the number of transitions, |δ| = |Q||Σ|. This is possible since we discovered
by our measurements that the nominal variables states and letters behave in-
terchangeably. Figure 3 shows the number of membership queries with respect
to the number of transitions. We can describe the observations roughly by the
relation |membership queries| = k|δ|, where k ≈ 14.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

m
em

be
rs

hi
p

qu
er

ie
s

transitions

Angluin

Fig. 3. Membership queries and transitions for random automaton.

Random prefix-closed Examples

8

The samples In general, prefix-closed DFA require more time and space to learn
with Angluin’s algorithm, so we studied fewer samples. We learned automata
with 10 to 50 states in steps of 10 and varied the number of letters from 10 to
50 in steps of 10. We learned approximately 10 automata of each kind up to 30
states and fewer of larger ones.

Experiences As mentioned before, arbitrary random examples are in general
easier to learn than prefix-closed random examples. An example for this is shown
in Figure 4. Learning a particular random generated automaton, with 40 letters
and 40 states, requires approximately 19,000 membership queries and a prefix-
closed automaton of the same size requires 40,000 membership queries, that is
about twice as many.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 10 15 20 25 30 35 40

m
em

be
rs

hi
p

qu
er

ie
s

states

Prefix-closed random automata
Random automata

Fig. 4. Random prefix-closed automata and random automata, both with 40 letters.

Let us study the cause for this difference. Angluin’s learning algorithm tries
to learn an automaton by finding representatives of different Nerode’s right con-
gruence classes, as described in Section 3.1. To show that two strings u and v are
not members of the same congruence class, it has to find one string w so that uw

is accepted but vw not, or the other way around. In minimal prefix-closed DFA,
as maintained by Angluin, every state except one is accepting, and it is more
likely that states accept almost the same language. This makes it more difficult
to find a distinguishing string w.

Furthermore, we see that the curves for learning prefix-closed languages grow
steeper than for arbitrary random examples. On prefix-closed examples we come
closer to the worst case complexity of Angluin’s algorithm. Thus, prefix-closed
examples are harder to learn than arbitrary ones. This result is slightly dis-
appointing, since reactive systems can usually be modeled by prefix-closed au-
tomata. This experience is in contrast to the one gained in the area of model
checking, where worst-case complexities usually do not show up in real-world
examples.

9

A particular random example with 100 states and 25 letters took 11 hours,
110,000 membership queries, 29 equivalence queries and 160 MB of memory.

The top curve in Figure 5 shows membership queries versus transitions for
random prefix-closed examples. It is no longer linear. We can give a very rough
description of the observations by the quadratic relation |membership queries| =

k|δ|
2
, where k ≈ 0.016.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 200 400 600 800 1000 1200 1400 1600

m
em

be
rs

hi
p

qu
er

ie
s

transitions

Angluin
Optimization

Fig. 5. Transitions for random prefix-closed automata. Angluin vs. with optimization.

4.2 The optimization for prefix-closed systems

As pointed out in the previous section, the optimized version for prefix-closed
languages takes into account that suffixes of rejected strings are rejected. Before
issuing a membership query to the teacher, we check whether we can deduce it
from previous membership queries. In our setting, the optimized learner gives
about the same execution time as the ordinary learner. Since we simulate the
Teacher on the same computer, a query takes roughly the same amount of time
as a table lookup. Note that in the setting where a concrete hardware system is
learned, the time for a table lookup might be negligible compared to the time a
membership query needs.

Prefix-closed random examples

The samples On the optimized learner, we studied the same random prefix-closed
examples as with the ordinary learner.

Experience We observe that the optimization yields noteworthy savings in terms
of membership queries. To give an example, we have shown the number of mem-
bership queries with respect to the number of states in Figure 6(a) and Fig-
ure 6(b) for the number of letters fixed to 10 and 40, for the optimized version

10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40

m
em

be
rs

hi
p

qu
er

ie
s

states

Angluin, 10 letters
Optimization, 10 letters

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35 40

m
em

be
rs

hi
p

qu
er

ie
s

states

Angluin, 40 letters
Optimization, 40 letters

(b)

Fig. 6. Random prefix-closed examples learned with Angluin and optimization, number
of letters fixed to 10 and 40.

in comparison with Angluin’s version. We save in case of larger automata ap-
proximately 20% in both cases when using the optimization.

The particular example of size 100 states and 25 letters, from the previous
subsection, took 12 hours, 96,000 membership queries, 29 equivalence queries
and 160 MB of memory for our optimized learner.

Real-world examples

The samples We studied 6 transition systems of CCS processes. They are simple
examples like buffers, vending machines, or several examples of schedulers and
mutual exclusion protocols. Their number of states lie between 2 and 13 and the
number of letters between 3 and 6.

We failed to learn some larger protocols, namely some instances of parame-
terized schedulers, the Jobshop (77 states, 7 letters) and an ATM protocol (1715
states, 27 letters). The reason is that we did not invest effort into a good algo-
rithm for finding counterexamples; it took too long to find counterexamples for
the protocols in question. (Note that the execution time which we measure is
independent of the time spent for finding counterexamples.) The ATM, though,
failed due to lack of memory.

Experience The number of membership and equivalence queries, as well as exe-
cution time, are shown in Table 1.

Comparing the number of membership queries of the optimized version with
respect to Angluin’s algorithm, we saved about 60%. Details can be found in
Table 2.

To check whether real-world examples show a different behavior in learning by
the optimized algorithm, we compared them with random prefix-closed examples
of the same sizes. The results are shown in Table 3.

11

Protocol states letters mq eq
time
(ms)

mq
with
opt

eq
with
opt

time
with
opt
(ms)

Abp-lossy 3 3 22 2 65 9 2 1057
Buff3 9 3 202 5 2305 77 5 4907

Dekker-2 2 3 7 1 646 4 1 7
Peterson-2 2 3 7 1 352 4 1 288

Sched2 13 6 691 7 43031 115 7 48207
VMnew 11 4 513 7 26191 191 7 20091

Table 1. Learning real-world example.

Protocol mq mq with
opt

saved mq
(%)

Abp-lossy 22 9 59
Buff3 202 77 62

Dekker-2 7 4 43
Peterson-2 7 4 43

Sched2 691 115 83
VMnew 513 191 63

Table 2. Saved membership queries with optimization.

We see that the optimized learner is often better on the protocols relative to
random examples (see Table 4). On average the real-world examples required 7%
fewer membership queries without and 35% with the optimization. This might
indicate that real-world examples exhibit a certain structure which makes the
algorithm perform better.

The bottom curve in Figure 5 shows membership queries with the optimized
learner versus transitions for random prefix-closed examples. A very rough sum-
mary of our observations is |membership queries| = k|δ|

2
, with k ≈ 0.013.

5 Conclusions and future work

Among the conclusions we draw from our experiences is the fact that random
prefix-closed automata are harder to learn in comparison to completely ran-
domly generated automata. For our random examples, the number of member-
ship queries can roughly be described as linear in the number of transitions.
Membership queries for our prefix-closed examples, in comparison, are approxi-
mately quadratic in transitions.

Moving deeper into the domain of prefix-closed automata we conclude that
it is possible to reduce the number of membership queries by using an optimiza-
tion specially shaped for these automata. The optimization reduces the number

12

states letters mq eq
time
(ms)

mq
with
Opt

eq
with
Opt
(ms)

time
with
Opt
(ms)

3 3 22 2 153 12 2 115
9 3 233 5 1443 173 5 1384
2 3 7 1 25 4 1 10

13 6 992 8 10885 737 8 10989
11 4 497 7 5230 341 7 5408

Table 3. Random prefix-closed automata.

protocol
m.q. quo-
tient

with opt.

Abp-lossy 1 0.75
Buff3 0.87 0.45

Dekker-2 1 1
Peterson-2 1 1

Sched2 0.70 0.16
VMnew 1.03 0.56

Table 4. Random prefix-closed automata vs. real-world examples.

of membership queries considerably. For the randomly generated prefix-closed
automata we measured a reduction of 20%.

Turning our attention to the real-world examples we see that the optimiza-
tion works much better, saving 60% membership queries relative to unoptimized
learning. We also compared the result of learning real-world examples with ran-
domly generated prefix-closed examples of the same size, in order to investigate
if they behaved in the same manner. The result reveals a better performance
for the real-world examples in terms of membership queries, especially with the
optimization. This seems to imply that our real-world examples have a more
suited structure for learning. Hopefully this observation can be used to optimize
the learning process further.

Memory consumption is a problem we experienced when learning large mod-
els. In order to learn these models, we need more memory efficient data struc-
tures. Further optimizations for prefix-closed DFA are possible. For instance,
one can save space and time by using the fact that there is exactly one non-final
state.

Consider the following idea which might improve learning. When some state
representatives are “sufficiently equivalent” we can stop distinguishing them fur-
ther. In observation table terminology, this would correspond to not querying
any more column labels for row labels which are “sufficiently equivalent”. Can
such criteria improve the learning process and does it yield correct models for
some classes of systems?

13

References

[Ang87] Dana Angluin. Learning regaular sets from queries and counterexamples.
Information and Computation, 75:87–106, 1987.

[Ang01] Dana Angluin. Queries revisited. In Naoki Abe, Roni Khardon, and Thomas
Zeugmann, editors, Algorithmic Learning Theory, 12th International Con-

ference 2001, volume 2225 of Lecture Notes in Computer Science. Springer,
2001.

[CDH+00] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu, Robby,
and H. Zheng. Bandera : Extracting finite-state models from java source
code. In Proc. 22nd Int. Conf. on Software Engineering, June 2000.

[FJJV97] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in au-
tomatic generation of test suites for protocols with verification technology.
Science of Computer Programming, 29, 1997.

[GHP97] Jean-Charles Grégoire, Gerard J. Holzmann, and Doron A. Peled, editors.
The Spin Verification System, volume 32 of DIMACS series. American
Mathematical Society, 1997. ISBN 0-8218-0680-7, 203p.

[GPY02] A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In J.-P.
Katoen and P. Stevens, editors, Proc. TACAS ’02, 8th Int. Conf. on Tools

and Algorithms for the Construction and Analysis of Systems, volume 2280
of Lecture Notes in Computer Science, pages 357–370. Springer Verlag, 2002.

[HHNS02] A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by
moderated regular extrapolation. In R.-D. Kutsche and H. Weber, editors,
Proc. FASE ’02, 5th Int. Conf. on Fundamental Approaches to Software

Engineering, volume 2306 of Lecture Notes in Computer Science, pages 80–
95. Springer Verlag, 2002.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M.B. Trakhtenbrot. STATEMATE: A working en-
vironment for the development of complex reactive systems. IEEE Trans.

on Software Engineering, 16(4):403–414, April 1990.
[HNS03] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific opti-

mization in automata learning. In Proc. 15th Int. Conf. on Computer Aided

Verification, 2003. to appear.
[Hol00] G.J. Holzmann. Logic verification of ANSI-C code with SPIN. In

K. Havelund, J. Penix, and W. Visser, editors, SPIN Model Checking and

Software Verification: Proc. 7th Int. SPIN Workshop, volume 1885 of Lecture

Notes in Computer Science, pages 131–147, Stanford, CA, 2000. Springer
Verlag.

[LPY97] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Software

Tools for Technology Transfer, 1(1-2), 1997.
[SEG00] M. Schmitt, M. Ebner, and J. Grabowski. Test generation with autolink

and testcomposer. In Proc. 2nd Workshop of the SDL Forum Society on

SDL and MSC - SAM’2000, June 2000.

14

