
Set Variables and Local Search

Magnus Ågren

Department of Information Technology
Uppsala University, Box 337, S – 751 05 Uppsala, Sweden

agren@it.uu.se

Abstract. Many combinatorial (optimisation) problems have natural
models based on, or including, set variables and set constraints. This
modelling device has been around for quite some time in the constraint
programming area, and proved its usefulness in many applications. This
paper introduces set variables and set constraints also in the local search
area. It presents a way of representing set variables in the local search
context, where we deal with concepts like transition functions, neighbour-
hoods, and penalty costs. Furthermore, some common set constraints and
their penalty costs are defined. These constraints are later used to model
three problems and some initial experimental results are reported.

1 Introduction

For some time now, set variables and set constraints have been around in the
Constraint Programming (CP) area. Most of the popular CP systems of today
have features for modelling problems using set variables, i.e., variables taking
values that are subsets of some universe. Consider the work by Gervet [6, 7],
Müller and Müller [13], and Puget [16].

Indeed, many problems have natural models using set variables. Classical
examples include the set partitioning problem and the set covering problem.
However, such problems also appear frequently as sub-problems in many real-
life applications. Examples include airline crew rostering, tournament scheduling,
time-tabling, and nurse rostering.

To be able to reason about these problems at the higher level that set vari-
ables mean may reduce the development time and increase the understanding of
an application considerably. Since this is already known from the CP area, we
believe that it should be put also in a local search framework.

Local search is becoming more and more popular as an alternative or com-
plement to CP when it comes to tackling hard combinatorial problems such as
the Constraint Satisfaction Problem (CSP). It has proven to be very efficient
and often outperforms other techniques [4, 1, 15].

In recent years, there has been much research on the integration of CP tech-
niques and local search, investigating such concepts as high declarativeness, in-
crementality, and global constraints (see [10, 14, 5, 3, 11, 17, 12, 2] for instance).

In the following, Section 2 presents the Finite Domain CSP in a local search
setting. We define the concepts of configurations, neighbourhoods, and penalty

costs. Section 3 generalises these concepts for Set CSPs. Then, in Section 4, we
introduce some constraints on set variables. We present their semantics and their
penalty costs. Section 5 briefly discusses the search component in local search,
and some commonly used heuristics. Section 6 presents set-based models for
three problems and Section 7 reports on computational results for one of these.
Finally, Section 8 contains a discussion about the methods and the results, and
Section 9 concludes the paper.

2 Local Search for Finite Domain CSPs

A local search algorithm for solving a combinatorial (optimisation) problem P
starts from some initial configuration k of P and, using the penalty costs of
P with respect to k and the neighbours of k, moves to neighbours having less
penalty cost. The algorithm stops and returns the current configuration when an
optimal penalty cost is obtained, or when some maximum number of iterations is
reached. In this section, we define a class of problems, FDCSPs, that local search
applies to. We also define the concepts above such as configurations, neighbours,
and penalty costs for these problems.

Definition 1. A Finite Domain CSP (FDCSP) is a triple 〈Vfd ,Dfd , C〉 where

– Vfd = {v1, . . . , vn} is a finite set of variables.
– Dfd = {D1, . . . , Dn} is a finite set of finite domains, each Di containing the

set of possible values for the corresponding variable vi.
– C = {c1, . . . , cm} is a finite set of constraints, each ci being defined on a

subset of the variables in Vfd specifying the valid combinations of values for
those.

Definition 2. Let P = 〈Vfd ,Dfd , C〉 be an FDCSP. A configuration for P is
a function k : Vfd → D1 ∪ · · · ∪ Dn with the condition that k(vi) ∈ Di for all
vi ∈ Vfd .

Example 1. Let P = 〈{v1, v2, v3}, {D1, D2, D3}, {c1, c2}〉 be an FDCSP where
D1 = D2 = D3 = {1, 2}. One possible configuration k for P is defined as k(v1) =
k(v2) = 1, k(v3) = 2 or equivalently as the set k = {v1 7→ 1, v2 7→ 1, v3 7→ 2}.
Definition 3. Let K denote the set of all possible configurations for an FDCSP
P . A transition function for P is a function trans : K → 2K .

Definition 4. Let P be an FDCSP, let k be a configuration for P , and let trans
be a transition function for P . The neighbourhood of P with respect to k and
trans is the set of configurations trans(k).

Example 2. Consider P and k from Example 1. A possible neighbourhood trans(k)
of P with respect to some transition function trans is the set of configurations
{{v1 7→ 2, v2 7→ 1, v3 7→ 2}, {v1 7→ 1, v2 7→ 2, v3 7→ 2}, {v1 7→ 1, v2 7→ 1, v3 7→
1}}.

2

Example 3. While the neighbourhood of Example 2 was specified given a par-
ticular configuration, we define more general neighbourhoods as shown below.
These define a set of configurations given any configuration k of some FDCSP
〈Vfd ,Dfd , C〉.

Flip(k) = {k′ | ∃vi ∈ Vfd : ∃d 6= d′ ∈ Di : k − k′ = {v 7→ d} &
k′ − k = {v 7→ d′}}

Swap(k) = {k′ | ∃vi 6= vj ∈ Vfd : ∃d 6= d′ ∈ Di : ∃d 6= d′ ∈ Dj :
k − k′ = {vi 7→ d, vj 7→ d′} & k′ − k = {vi 7→ d′, vj 7→ d}}

A member of the set Flip(k) differs from k in the value of one variable. A member
of the set Swap(k) differs from k in the values of two variables, where their values
have been swapped. The neighbourhood given in Example 2 is an example of a
Flip neighbourhood.

Definition 5. Let P = 〈Vfd ,Dfd , C〉 be an FDCSP and remember that K de-
notes the set of all possible configurations for P . The penalty cost function of a
constraint c ∈ C is a function cost(c) : K → N.

Definition 6. Let P = 〈Vfd ,Dfd , C〉 be an FDCSP and let k be a configuration
for P . The penalty cost of P with respect to k is the sum:

∑

c∈C

cost(c)(k)

Example 4. Consider once again P from Example 1 and let c1 and c2 be the bi-
nary constraints v1 = v2 and v2 6= v3 respectively. Let the penalty cost functions
of c1 and c2 be defined as:

cost(c1) =

{
0, if v1 = v2

1, otherwise
and cost(c2) =

{
0, if v2 6= v3

1, otherwise

Now, the penalty costs of P with respect to the different configurations

k1 = {v1 7→ 2, v2 7→ 1, v3 7→ 2}, k2 = {v1 7→ 1, v2 7→ 2, v3 7→ 2}, and
k3 = {v1 7→ 1, v2 7→ 1, v3 7→ 1}

are cost(c1)(k1)+cost(c2)(k1) = 1+0 = 1, cost(c1)(k2)+cost(c2)(k2) = 1+1 = 2,
and cost(c1)(k3) + cost(c2)(k3) = 0 + 1 = 1 respectively.

3 Local Search for Set CSPs

Let us now generalise the concepts introduced in Section 2 for another, extended,
class of problems.

Definition 7. A Set CSP (SCSP) is a triple 〈〈Vfd ,Vset〉, 〈Dfd ,Dset〉, C〉 where

3

– Vfd = {v1, . . . , vm} and Vset = {s1, . . . , sn} are finite sets of variables. A
member v ∈ Vfd denotes a finite domain variable, and a member s ∈ Vset

denotes a finite set variable.
– Dfd = {D1, . . . , Dm} is a finite set of finite domains, each Di containing the

set of possible values for the corresponding variable vi.
– Dset = {U1, . . . , Un} is a finite set of finite sets, each Ui being a universe,

defined below, for the corresponding variable si.
– C = {c1, . . . , cm} is a finite set of constraints, each ci ∈ C being defined on

a subset of the variables in Vfd ∪ Vset , specifying the valid combinations of
values for those.

Definition 8. Let s be a finite set variable. The universe of s is a finite set U
such that s ⊆ U .

Definition 9. Let s be a finite set variable and let U be the universe of s. The
characteristic function of s is the function χs : U → {0, 1} defined as:

χs(v) =

{
1, if v ∈ s

0, otherwise

Definition 10. Let P = 〈〈Vfd ,Vset〉, 〈Dfd ,Dset〉, C〉 be an SCSP. A configura-
tion for P is a pair of functions

〈kfd : Vfd → D1 ∪ · · · ∪Dm, kset : Vset → χ〉
where χ is a set of characteristic functions for the variables in Vset . A condition
for kfd is that kfd(vi) ∈ Di for all vi ∈ Vfd . Similarly, a condition for kset is that
{u | kset(si)(u) = 1} ⊆ Ui for all si ∈ Vset .

From the above, we may conclude that the value of a finite set variable s
with respect to its universe U and a current configuration 〈kfd , kset〉 is the set
{u ∈ U | kset(s)(u) = 1}. Let us now look at an example of a configuration for
a specific SCSP.

Example 5. Consider an SCSP P = 〈〈{v1, v2}, {s1, s2}〉, 〈{D1, D2}, {U1, U2}〉,
C〉 where D1 = D2 = {1, 2} and U1 = U2 = {a, b, c}. Let χ1 and χ2 be the sets
of mappings {a 7→ 0, b 7→ 0, c 7→ 1} and {a 7→ 1, b 7→ 1, c 7→ 0} respectively.

One possible configuration 〈kfd , kset〉 for P is defined as k = kfd(v1) =
1, kfd(v2) = 1, kset(s1) = χ1, kset(s2) = χ2 or equivalently as the pair of sets
〈{v1 7→ 1, v2 7→ 1}, {s1 7→ χ1, s2 7→ χ2}〉. Under this configuration, the values of
the variables in P are v1 = 1, v2 = 1, s1 = {c}, and s2 = {a, b}.
Example 6. Consider P and k from Example 5 and let trans be a transition
function for P . A possible neighbourhood for P with respect to k and trans
is the set of configurations trans(k) = {〈{v1 7→ 1, v2 7→ 1}, {s1 7→ χ1, s2 7→
χ2}〉, 〈{v1 7→ 1, v2 7→ 1}, {s1 7→ χ3, s2 7→ χ4}〉} where

χ1 = {a 7→ 1, b 7→ 0, c 7→ 0}, χ2 = {a 7→ 0, b 7→ 1, c 7→ 1},
χ3 = {a 7→ 0, b 7→ 1, c 7→ 0}, and χ4 = {a 7→ 1, b 7→ 0, c 7→ 1}.

4

This neighbourhood does not affect the finite domain variables of the problem
but flips any two values in the finite set variables s1 and s2.

Example 7. As we did for FDCSPs, we will define general neighbourhoods also
for SCSPs. Let us do this for an SCSP 〈〈Vfd ,Vset〉, 〈Dfd ,Dset〉, C〉 and a config-
uration 〈kfd , kset〉.

trans(〈kfd , kset〉) = {〈kfd , k〉 | kset − k = {s 7→ χs} &
kset(s)− k(s) = {u 7→ 1, u′ 7→ 0} &
k(s)− kset(s) = {u 7→ 0, u′ 7→ 1}}

The above neighbourhood leaves kfd untouched. kset and k differ in exactly one
mapping s 7→ χs. For this variable, the characteristic function kset(s) differs
from k(s) in exactly two values, say u and u′. For kset , u ∈ s and u′ /∈ s, while
the opposite is true for k. We have thus defined a neighbourhood that flips one
value in one finite set variable.

Let us generalise the neighbourhood presented in the above example and also
present additional useful neighbourhoods for SCSPs. We focus here on neigh-
bourhoods that change the finite set variables of the problem and do nothing to
the finite domain variables. One could of course also consider neighbourhoods
that change both sets of variables.

Example 8. Roughly, there are five different things one can do with a finite
set variable: 1. Add p values to it taken from its complement, increasing its
cardinality. 2. Remove p values from it, decreasing its cardinality. 3. Flip p values
in it with values from its complement. 4. Swap p values in it to values in another
finite set variable. 5. Any combination of the previous. The first four of these,
with respect to the SCSP and configuration of Example 7, are shown below.

AddP(〈kfd , kset〉) = { 〈kfd , k〉 | kset − k = {s 7→ χs} &
kset(s)− k(s) = {v1 7→ 0, . . . , vp 7→ 0} &
k(s)− kset(s) = {v1 7→ 1, . . . , vp 7→ 1}}

RemoveP(〈kfd , kset〉) = { 〈kfd , k〉 | kset − k = {s 7→ χs} &
kset(s)− k(s) = {v1 7→ 1, . . . , vp 7→ 1} &
k(s)− kset(s) = {v1 7→ 0, . . . , vp 7→ 0}}

FlipP(〈kfd , kset〉) = {〈kfd , k〉 | kset − k = {s 7→ χs} &
kset(s)− k(s) = {v1 7→ 1, . . . , vp 7→ 1, v′1 7→ 0, . . . , v′p 7→ 0} &
k(s)− kset(s) = {v1 7→ 0, . . . , vp 7→ 0, v′1 7→ 1, . . . , v′p 7→ 1}}

SwapP(〈kfd , kset〉) = {〈kfd , k〉 | kset − k = {s 7→ χs, s
′ 7→ χs′} &

kset(s)− k(s) = {v1 7→ 1, . . . , vp 7→ 1, v′1 7→ 0, . . . , v′p 7→ 0} &
kset(s′)− k(s′) = {v1 7→ 0, . . . , vp 7→ 0, v′1 7→ 1, . . . , v′p 7→ 1}
k(s)− kset(s) = {v1 7→ 0, . . . , vp 7→ 0, v′1 7→ 1, . . . , v′p 7→ 1}
k(s′)− kset(s′) = {v1 7→ 1, . . . , vp 7→ 1, v′1 7→ 0, . . . , v′p 7→ 0}}

Note that the neighbourhood FlipP is a generalisation of the one presented
in Example 7. Also, while these are generic neighbourhoods, applicable to any
model of an SCSP, one could also think of more problem specific neighbourhoods
that depend on the actual model. This is discussed further in Section 6.4.

5

4 Constraints and Penalty Costs

In this section, we present five constraints on finite set variables: the AllDisjoint
constraint, the Cardinality constraint, the Intersection constraint, the MaxSum
constraint, and the Partition constraint. We discuss their semantics and penalty
costs at a high and abstract level.

Concerning penalty costs, we have followed the approach taken for instance
in [5]; the penalty cost for a constraint c is, whenever possible, the least number
of values that must change in order to satisfy c. This means that, when there
is a choice between adding values to, removing values from, or swapping values
between the variables in c, we will assume the operation resulting in the minimal
cost.

4.1 The AllDisjoint Constraint.

The constraint allDisjoint({s1, . . . , sn}), where {s1, . . . , sn} is a set of finite set
variables, expresses that all these variables are disjoint, i.e., ∀i 6= j ∈ 1 . . . n :
si ∩ sj = ∅.

The penalty cost for an allDisjoint({s1, . . . , sn}) constraint is equal to the
number of values that must be removed from any of the variables in {s1, . . . , sn}
in order to make them all disjoint. This is equal to the sum

∑
v∈s1∪···∪sn

(vocc − 1) (1)

where vocc is the number of variables in {s1, . . . , sn} that contain v. Clearly, we
need to remove a value from n−1 finite set variables if it is contained in n finite
set variables in order to satisfy the constraint.

Next, let us show that a satisfied allDisjoint constraint has zero penalty cost.
A satisfied instance allDisjoint({s1, . . . , sn}) of this constraint has the property
that ∀i 6= j ∈ 1 . . . n : si ∩ sj = ∅. This implies that for each v ∈ s1 ∪ · · · ∪ sn we
have that vocc = 1. Hence, the equation (1) above must be equal to 0.

The following example illustrates the above. Assume that s1 = {1, 2, 3}, s2 =
{1, 2, 4}, and s3 = {1, 4}. The values 1, 2, 3, and 4, that comprise the union of s1,
s2, and s3, appear in 3, 2, 1, and 2 variables respectively. Thus, the above sum and
the penalty cost for allDisjoint({s1, s2, s3}) is (3−1)+(2−1)+(1−1)+(2−1) = 4.

4.2 The Cardinality Constraint.

The constraint card(s, vmin , vmax), where s is a finite set variable and vmin and
vmax are finite integer domain variables, expresses that the cardinality of s is in
the range vmin . . . vmax .

The penalty cost for a card(s, vmin , vmax) constraint is equal to the number
of values that must be added to or removed from s so that its cardinality is in
the range vmin . . . vmax . This is calculated as follows. If |s| is less than vmin , the
penalty cost of the constraint is vmin − |s|. If |s| is larger than vmax , the penalty

6

cost of the constraint is |s| − vmax . Otherwise, the penalty cost of the constraint
is 0. Hence

CardCost =





vmin − |s|, if |s| < vmin

|s| − vmax , if |s| > vmax

0, otherwise
(2)

denotes the penalty cost of this constraint. Now, to see that a satisfied instance
of this constraint has zero penalty cost is trivial.

Now, assume that the current value of s is {1, 2, 3, 4, 5}, that vmin = 1, and
that vmax = 3. Since the cardinality of s is 5 and vmax = 3, we need to remove
at least 5− 3 = 2 values from s in order to make the constraint satisfied.

4.3 The Intersection Constraint.

The constraint intersect(s1, s2, s), where s1, s2, and s are finite set variables,
expresses that the intersection of s1 and s2 is equal to s, i.e., that s1 ∩ s2 = s.

The penalty cost for an intersect(s1, s2, s) constraint is equal to the least
number of values that must be removed from, added to, or swapped between
any of the variables s1, s2, and s so that s1 ∩ s2 = s. This is calculated in
four steps as follows. First, the set of values that are in s1 and s2 but not in s
is identified. This set should be removed from both s1 and s2, or added to s.
Second, the set of values that are in s but not in any of s1 and s2 is identified.
This set should be removed from s, or added to both s1 and s2. Third, the set of
values that are in s and s1 but not in s2 is identified. This set should be added
to s2, or removed from s. Fourth, the set of values that are in s and s2 but not
in s1 is identified. This set should be added to s1, or removed from s. From this,
we obtain the following sum expressing the penalty cost for the constraint:

|(s1 ∩ s2)− s|+ |s− (s1 ∪ s2)|+ |(s ∩ s1)− s2|+ |(s ∩ s2)− s1| (3)

In fact, we can improve on the above by observing the following. For the identified
set of values, say sa and sb, in the first and second step, we have decided to
respectively add these to and remove these from s when calculating the penalty
cost. Since sb is to be removed from s and sa is to be added to s, we may instead
swap values from sb to values in sa. This is true for the first and third step
and the first and fourth step as well. By doing this whenever possible, i.e., for a
maximum of |sa| = |(s1 ∩ s2)− s| values, we obtain the following new expression
for the penalty cost:

|(s1 ∩ s2)− s|+ |s− (s1 ∪ s2)|+ |(s ∩ s1)− s2|+ |(s ∩ s2)− s1|− (4)
min(|(s1 ∩ s2)− s|, |(s− (s1 ∪ s2)) ∪ ((s ∩ s1)− s2) ∪ ((s ∩ s2)− s1)|)

Now, let us show that a satisfied instance intersect(s1, s2, s) of this constraint
has zero penalty cost. For such an instance, we have that s1 ∩ s2 = s. In the
expression (4) above, the first term is 0 since all elements in s appear also in the
intersection of s1 and s2. The second term is 0 since all elements in s appear also

7

in s1 or s2. The third term is 0 since the intersection of s and s1 cannot contain
an element that is not in s2. A similar reasoning holds for the fourth term. The
fifth term is also 0 by the above and hence we obtain a total penalty cost of 0.

As an example, assume that s1 = {1, 2, 3, 4, 5}, s2 = {4, 5, 6, 7, 8}, and s =
{1, 2, 3, 6, 7}. The values 4 and 5 in the intersection of s1 and s2 are not in s.
Also, the values 1, 2, and 3 are in the intersection of s and s1 but are not in s2.
Similarly, the values 6 and 7 are in the intersection of s and s2 but are not in s1.
Finally, the fifth term in expression (4) evaluates to 2. This results in a penalty
cost of 2 + 0 + 3 + 2− 2 = 5.

4.4 The MaxSum Constraint.

Let s be a finite set variable, weight : U → N a weight function from the universe
U of s to the integers, and m a finite integer domain variable. The constraint
maxSum(s,weight , m) expresses that the sum

∑
u∈s weight(u) is less than or

equal to m.
The penalty cost for a maxSum(s,weight ,m) constraint, where we let Sum

denote the sum
∑

u∈s weight(u), is equal to the least number of values that must
be removed from s in order for Sum to be less than or equal to m. This penalty
cost is calculated by finding the minimal subset s′ of values of s such that the
sum

∑
u′∈s′ weight(u′) is larger than or equal to the difference between Sum and

m. By removing the set s′ from s we will obtain a new sum Sum ′ that is less
than or equal to m. Hence, the expression:

∣∣∣∣∣min({s′ ⊆ s|
∑

u′∈s′
weight(u′) ≥

(∑
u∈s

weight(u)

)
−m})

∣∣∣∣∣ (5)

denotes the penalty cost for this constraint, where min({s1, . . . , sn}) denotes a
set si with minimal cardinality among s1, . . . , sn.

Now, let us show that a satisfied instance maxSum(s,weight ,m) of this
constraint has zero penalty cost. For such an instance, we have that the sum∑

u∈s weight(u) is less than or equal to m. This means that the difference d
between these in expression (5) is less than or equal to 0. Then we need to find
the minimal subset s′ of s such that

∑
u′∈s′ weight(u′) ≥ d. Clearly, the least

such subset of s is ∅ and |∅| = 0.
As an example, let s = {1, 2, 3}, weight(1) = 2, weight(2) = weight(3) = 1,

and m = 2. Then the sum
∑

u∈s weight(u) = 4. In order to satisfy this constraint,
the least subset of values to remove from s is {1} since weight(1) = 2 ≥ 4 − 2
and there is no smaller subset s′ ⊆ s such that

∑
u∈s′ weight(u) ≥ 2. Hence the

penalty cost of this constraint is 1.

4.5 The Partition Constraint.

The constraint partition({s1, . . . , sn}, s), where {s1, . . . , sn} is a set of finite set
variables and s is a finite set variable, expresses that the variables in {s1, . . . , sn}

8

are all disjoint, i.e., that ∀i 6= j ∈ 1 . . . n : si ∩ sj = ∅, and that their union is
equal to s, i.e., that s1 ∪ · · · ∪ sn = s. Note that this definition of a partition
allows one or more variables in {s1, . . . , sn} to be empty.

The penalty cost for a partition({s1, . . . , sn}, s) constraint is equal to the
number of values that must be removed from any variable in {s1, . . . , sn} in
order to make them all disjoint plus the number of values that must be removed
from, added to, or swapped between any of the variables in {s, s1, . . . , sn} so
that the union s1 ∪ · · · ∪ sn is equal to s.

We start by calculating the penalty cost for the overlapping values among
the variables s1, . . . , sn. This is done in the same way as for the allDisjoint
constraint, i.e., the expression (1) denotes this penalty cost. Next, we calculate
the penalty cost for the values in s1∪· · ·∪sn that are not in s. These values must
be removed from s1 ∪ · · · ∪ sn, or added to s. Finally, we calculate the penalty
cost for the values in s that are not in s1∪· · ·∪sn. These values must be removed
from s, or added to s1 ∪ · · · ∪ sn. Now, by following the same reasoning as for
the intersect constraint, we see that a number of values in s and s1 ∪ · · · ∪ sn

can be swapped directly, giving us a subtrahend in our penalty cost expression.
Hence, the expression:

(∑
u∈s1∪···∪sn

(vocc − 1)
)

+ |(s1 ∪ · · · ∪ sn)− s|+ |s− (s1 ∪ · · · ∪ sn)|− (6)

min(|(s1 ∪ · · · ∪ sn)− s|, |s− (s1 ∪ · · · ∪ sn)|)

denotes the penalty cost for the constraint.
Now we show that a satisfied instance partition({s1, . . . , sn}, s) of this con-

straint has zero penalty cost. We know from the allDisjoint constraint that, for
a satisfied instance, the first term in expression (6) above is 0. For the second
and third term, note that for a satisfied instance of this constraint we have that
s1∪· · ·∪sn = s. The difference between two equal sets is the empty set ∅. Hence,
the last two terms are 0, giving us a total penalty cost of 0.

As an example, assume that s1 = {1, 2, 3}, s2 = {2, 3, 4}, s3 = {2, 5}, and
that s = {4, 5, 6, 7}. First, in order for s1, s2, and s3 to be disjoint, we need
to remove the value 2 from two of the variables in {s1, s2, s3} and the value 3
from one of the variables in {s1, s2}. Second, in order for s1 ∪ s2 ∪ s3 to be a
subset of s, we need to remove 1, 2, and 3 from that union, or add these values
to s. Third, in order for s to be a subset of s1 ∪ s2 ∪ s3, we need to remove 6
and 7 from s, or add these values to the union. Since two of the values in the
second and third steps may be swapped directly, we obtain a subtrahend of 2.
This gives us a total penalty cost of 3 + 3 + 2− 2 = 6.

5 Search and Heuristics

One crucial point when it comes to local search is the ability to avoid getting
stuck in local optima. If nothing is done to avoid this, the algorithm will probably
perform very badly. Much research has gone into this area and some approaches

9

are different randomisation algorithms, simulated annealing, and tabu search.
Randomisation algorithms have, in addition to the penalty cost of the current
configuration and its neighbours, some random-based way of choosing the next
configuration. This means that the algorithm does not always have to move to
a configuration having less penalty cost compared to the current one. Simulated
annealing [9] is actually a variant of such a randomisation algorithm, in which
the probability of choosing a degrading configuration changes over time. This
method was derived from the process of growing a crystal in thermodynamics
and has proven to be very efficient.

In this paper we have used tabu search [8] in our experiments. Such an algo-
rithm may also move to worse configurations with respect to their penalty costs.
When the next move is considered, a configuration with minimal penalty cost
among the neighbours is chosen, even though this penalty cost may be larger than
the penalty cost of the current configuration. In order to avoid a cyclic behaviour
the method uses a memory called tabu list. This list stores configurations from a
number, the tabu tenure, of previous iterations and any configuration contained
in it is not allowed.

There are many ways to represent the tabu list. We have chosen the following
simple approach for the finite set variables. For each value u ∈ U , where U is the
universe of a finite set variable s, we keep a counter that denotes the number of
future iterations where u is tabu. When s is instantiated to a particular value,
say given by the characteristic function χs, the counters for all elements in the
set {u ∈ U | χS(u) = 1} are set to the tabu tenure value. At each iteration, the
counters for all values in U greater than 0 are decreased by 1.

6 Example Problems

This section presents possible models using finite set variables and the con-
straints presented in Section 4 for three different problems: the progressive party
problem, the social golfer problem, and the minimal intersection subset prob-
lem. It demonstrates the usefulness of having finite set variables as a modelling
device.

6.1 The Progressive Party Problem

The problem is to timetable a party at a yacht club. Certain boats are designated
as hosts, while the crews of the remaining boats are designated as guests. The
crew of a host boat remains on board throughout the party to act as hosts, while
the crew of a guest boat together visits host boats over a number of periods.
The crew of a guest boat must party at some host boat each period (c1). The
spare capacity of any host boat is not to be exceeded at any period by the sum
of the crew sizes of all the guest boats that are scheduled to visit it then (c2).
Any guest crew can visit any host boat in at most one period (c3). Any two
distinct guest crews can visit the same host boat in at most one period (c4).

10

Model. Let H = {h1, . . . , hm} be the set of host boats and let G = {g1, . . . , gn}
be the set of guest boats. Furthermore, let capacity(h) and size(g) denote the
spare capacity of host boat h and the crew size of guest boat g respectively.
Let periods be the number of periods we want to find a schedule for, and let
P = 1 . . . periods be the range of periods. Now, let p(h,j) be a finite set variable
containing the set of guest boats whose crews boat h hosts at time period j.
Then the following constraints model the problem:

(c1) : ∀j ∈ P : partition({p(h1,j), . . . , p(hm,j)}, G)
(c2) : ∀h ∈ H : ∀j ∈ P : maxSum(p(h,j), size, capacity(h))
(c3) : ∀h ∈ H : ∀j 6= j′ ∈ P : intersect(p(h,j), p(h,j′), ∅)
(c4) : ∀h 6= h′ ∈ H : ∀j 6= j′ ∈ P : intersect(p(h,j), p(h′,j′), s(h,j,h′,j′)) &

card(s(h,j,h′,j′), 0, 1)

where the introduced finite set variables s(h,j,h′,j′) in (c4) have G as universe.

6.2 The Social Golfer Problem

In a golf club, there are n players, each of whom play golf once a week (c1) and
always in g groups of size s (c2), hence n = gs. The objective is to determine
whether there is a schedule of w weeks of play for these golfers, such that there
is at most one week where any two distinct players are scheduled to play in the
same group (c3).

Model. Let P = {p1, . . . , pn} be the set of golfers. Let g(i,j) be a finite set
variable containing the players playing in group i in week j. Then the following
constraints model the problem:

(c1) : ∀j ∈ 1 . . . w : partition({g(1,j), . . . , g(g,j)}, P)
(c2) : ∀i ∈ 1 . . . g : ∀j ∈ 1 . . . w : card(g(i,j), s, s)
(c3) : ∀i, i′ ∈ 1 . . . g : ∀j 6= j′ ∈ 1 . . . w : intersect(g(i,j), g(i′,j′), s(i,i′,j,j′)) &

card(s(i,i′,j,j′), 0, 1)

where the introduced finite set variables s(i,i′,j,j′) in (c3) have P as universe.

6.3 The Minimal Intersection Subset Problem

Assume a set R of r elements. The objective is to find k ≥ 2 subsets of R of size
p (c1) such that the size of the largest intersection between any two different
subsets is minimised (c2, c3).

Model. Let R = {1, . . . , r} and let ri be a finite set variable denoting the ith
subset of R. Then the following constraints model the problem and the objective
is to minimise δ:

(c1) : ∀i ∈ 1 . . . k : card(ri, p, p)

11

(c2) : ∀i 6= j ∈ 1 . . . k : intersect(ri, rj , s(i,j)) & card(s(i,j), δ(i,j), δ(i,j))
(c3) : max ({δ(i,j)|i 6= j ∈ 1 . . . k}, δ)

In the above, the introduced finite set variables S(i,j) have R as their universe,
the introduced finite integer domain variables in {δ} ∪ {δi,j |i 6= j ∈ 1 . . . k} can
take values in the domain 0 . . . r, and max (Set ,m) is satisfied iff m takes the
same value as the maximum element in Set .

6.4 Problem-Specific Neighbourhoods

The models presented above respect any choice of neighbourhood for the finite
set variables of the problems. By this, we mean that one may add, remove, flip,
or swap values in the variables when defining a neighbourhood and still be sure
that a solution to the model is a solution to the modelled problem.

One could also think of more neighbourhood-specific models, i.e., models that
do not allow all possible neighbourhoods. This means that the problems can be
modelled using fewer constraints, allowing for more efficient solving.

For example, the model for the social golfer problem, presented in Section 6.2,
could also be modelled by dropping the constraints in (c2). These constraints
force each finite set variable g(i,j) to have cardinality s, i.e., they force the group
size constraint. If these constraints are not added to the model, care must be
taken when defining neighbourhoods. In this case any neighbourhood that does
not change the size of the finite set variables, and an initial assignment respecting
(c2), would be valid. In addition to this, one could also replace the partition
constraint in (c1) by an allDisjoint constraint. If this is done, we need to make
sure that any chosen neighbourhood keeps the property that the union of all the
finite set variables in each week is equal to the total set of golfers. Of course,
the initial assignment would also have to respect this property. Actually, we
could even drop the partition constraint completely if we use a neighbourhood
that respects it. For instance, a SwapP neighbourhood that only swaps values
between variables in the same week would be a valid one.

7 Results

Due to lack of space we only present experimental results for the social golfer
problem. We compared our set based model for this problem with a model based
on finite domain variables. Both models were implemented in Objective Caml
(http://www.ocaml.org) and the results are displayed in Table 1.

The finite domain model is based on each group in each week being mod-
elled as a list of size s of finite domain variables. Each such variable has the
domain 1 . . . n, where n is the total number of golfers, and relevant finite domain
constraints for modelling the problem are stated. For this model, we used the
neighbourhood Flip as was given in Example 3 of Section 2, i.e., the neighbour-
hood where the value of any variable is flipped to another value in its domain.

For the finite set variables in the set based model we used the neighbourhood
SwapP as was given in Example 8 of Section 3, i.e., the neighbourhood where

12

Table 1. Experimental results on the social golfer problem. Numbers displayed in bold
correspond to the set based approach.

g-s-w Iterations Solved Improvement g-s-w Iterations Solved Improvement

3-3-2 7 1 10 10 7.0 5-3-5 98 10 10 10 9.8
3-3-3 12 2 10 10 6.0 5-3-6 216 68 1 4 3.2
3-3-4 32 4 10 10 8.0 5-3-7 ? 136 0 4 ?
4-3-2 9 1 10 10 9.0 5-4-2 16 3 10 10 5.3
4-3-3 18 3 10 10 6.0 5-4-3 41 6 10 10 6.8
4-3-4 91 6 10 10 15.2 5-4-4 271 19 10 10 14.3
4-4-2 12 2 10 10 6.0 5-4-5 476 91 1 4 5.2
4-4-3 36 6 10 10 6.0 8-4-2 23 2 10 10 11.5
4-4-4 226 16 10 10 14.1 8-4-3 37 5 10 10 7.4
4-4-5 255 25 7 10 10.2 8-4-4 58 10 10 10 5.8
5-3-2 11 1 10 10 11.0 8-4-5 97 15 10 10 6.5
5-3-3 18 3 10 10 6.0 8-4-6 208 33 10 10 6.3
5-3-4 32 4 10 10 8.0 8-4-7 698 111 9 10 6.3

any two values for any two variables are swapped. This neighbourhood needs an
initial assignment respecting the constraints (c1) and (c2).

In Table 1, bold numbers correspond to the set variable approach. For both
approaches, each instance was run 10 times. For the finite domain based ap-
proach, a maximum of 1000 iterations was allowed in each run. When 1000 it-
erations were reached the instance was considered not solved. For the set based
approach, this number was set to 200. The first column displays the instance
solved, where g is the number of groups, s is the size of each group, and w is
the number of weeks to find a schedule for. The second column displays the
average number of iterations needed to find a solution among the runs where a
solution was actually found. A non-solved instance was thus not contributing to
this value. The third column displays the number of runs, out of 10, where a
solution was found. Finally, the fourth column displays the improvement ratio,
i.e., the average number of iterations in the finite domain based model divided
by the average number of iterations in the set based model.

8 Discussion

As can be seen in Table 1, the number of iterations needed in the model based
on set variables is less than the number of iterations needed in the model based
on finite domain variables in all instances tried. The set based model also solves
instances where the finite domain based model fails in all runs.

One reason for this is probably the different choices of neighbourhoods. The
SwapP neighbourhood used in the set based model is more powerful than the
simple Flip neighbourhood used in the finite domain based model. However,
the neighbourhoods picked are natural for their respective models. Defining a

13

neighbourhood similar to the SwapP one for the finite domain model would
be tedious. Having finite set variables at ones disposal simplifies this process
considerably.

Another measurement that could be used is processing time. However, the
current implementation of the set based constraints uses näıve algorithms for
updating the penalty costs when exploring neighbourhoods. No incrementality
whatsoever is used which, of course, implies poor performance. This is also seen
by looking at the solved instances of the social golfer problem; none of them
are particularly hard. Now, the aim of this paper was not (yet) to break any
new records, but to present a new way of solving combinatorial (optimisation)
problems using local search. Efficiency will come later and there are many op-
tions available to achieve this. One could for instance use the approach taken in
Comet [11] by introducing invariants in the system, or the approach taken in [2]
by reasoning about the constraints from a graph-based point of view.

9 Conclusion

We introduced finite set variables into local search. We defined the concepts
of configurations, transition functions, neighbourhoods, and penalty costs for
finite set variables and constraints on these. We also introduced a number of
set constraints and defined their penalty costs, and used these to model three
combinatorial problems.

We believe that local search techniques are ready to be taken to a higher and
more abstract level, and that one step in this direction is to introduce finite set
variables. This will allow a user to utilise a modelling device that has been around
for quite some time in the neighbouring constraint programming area. This will
also mean that the designers and implementors of local search systems may
reason about the components in their systems at a higher level. This should be
beneficial for the necessary incremental algorithms and data structures, leading
to more efficient systems.

Acknowledgements

I thank Pierre Flener and Justin Pearson for fruitful discussions and comments
on earlier drafts of this paper.

References

1. Adam Ameur and Jakub Orzechowski Westholm. Local search methods in gene
expression analysis. Technical Report T2002-12, Swedish Institute of Computer
Science, 2002. Available from http://www.sics.se/libindex.html.

2. Markus Bohlin. Design and Implementation of a Graph-Based Constraint Model
for Local Search, April 2004. PhL thesis, Department of Computer Science and
Engineering, Mälardalen University, Väster̊as, Sweden.

14

3. P. Codognet and D. Diaz. Yet another local search method for constraint solving.
In K Steinhöfel, editor, Proceedings of SAGA 2001, First International Symposium
on Stochastic Algorithms : Foundations and Applications, volume 2264 of LNCS,
pages 73–90. Springer-Verlag, 2001.

4. Philippe Galinier and Jin-Kao Hao. Solving the progressive party problem by
local search. In S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-
heuristics: Advances and Trends in Local Search Paradigms for Optimization, chap-
ter 29, pages 418–432. Kluwer Academic Publishers, 1998.

5. Philippe Galinier and Jin-Kao Hao. A general approach for constraint solving by
local search. In Proceedings of CP-AI-OR’00, 2000.

6. Carmen Gervet. Set Intervals in Constraint Logic Programming: Definition and
Implementation of a Language. PhD thesis, Université de Franche-Comté, France,
September 1995. European thesis, in English.

7. Carmen Gervet. Interval propagation to reason about sets: Definition and imple-
mentation of a practical language. Constraints, 1(3):191–244, 1997.

8. Fred Glover and Manuel Laguna. Tabu search. In Modern Heuristic Techniques
for Combinatorial Problems, pages 70–150. John Wiley & Sons, 1993.

9. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, may 1983.

10. Laurent Michel and Pascal Van Hentenryck. Localizer: A modeling language for
local search. In Gert Smolka, editor, Proceedings of CP’97, volume 1330 of LNCS.
Springer-Verlag, 1997.

11. Laurent Michel and Pascal Van Hentenryck. A constraint-based architecture for
local search. ACM SIGPLAN Notices, 37(11):101–110, 2002. Proceedings of OOP-
SLA’02.

12. Laurent Michel and Pascal Van Hentenryck. Maintaining longest paths incremen-
tally. In Francesca Rossi, editor, Proceedings of CP’03, volume 2833 of LNCS,
pages 540–554. Springer-Verlag, 2003.

13. Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry,
Burkhard Freitag, and Dietmar Seipel, editors, 13. Workshop Logische Program-
mierung, pages 104–115, Technische Universität München, 17–19 September 1997.

14. Alexander Nareyek. Using global constraints for local search. In Proceedings of
DIMACS Workshop on Constraint Programming and Large Scale Discrete Opti-
mization, pages 1–18, 1998.

15. Bertrand Neveu and Gilles Trombettoni. When local search goes with the winners.
In Michel Gendreau, Gilles Pesant, and Louis-Martin Rousseau, editors, Proceed-
ings of CP-AI-OR’03, pages 180–194, 2003.

16. Jean-François Puget. Finite set intervals. In Proceedings of Workshop on Set
Constraints, held at CP’96, 1996.

17. Pascal Van Hentenryck and Laurent Michel. Control abstractions for local search.
In Francesca Rossi, editor, Proceedings of CP’03, volume 2833 of LNCS, pages
65–80. Springer-Verlag, 2003.

15

