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Abstract. This paper reconsiders the problems of discovering symme-
tries in constraint satisfaction problems (CSPs). It proposes a composi-
tional approach which derives symmetries of the applications from prim-
itive constraints. Its key insight is the recognition of the special role of
global constraints in symmetry detection. Once the symmetries of global
constraints are available, it often becomes much easier to derive sym-
metries compositionally and efficiently. The paper demonstrates the po-
tential of this approach by studying several classes of value and variable
symmetries and applying the resulting techniques to two non-trivial ap-
plications. The paper also discusses the potential of reformulations and
high-level modelling abstractions to strengthen symmetry discovery.
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Abstract

This paper reconsiders the problems of discovering symme-
tries in constraint satisfaction problems (CSPs). It proposes
a compositional approach which derives symmetries of the
applications from primitive constraints. Its key insight is the
recognition of the special role of global constraints in sym-
metry detection. Once the symmetries of global constraints
are available, it often becomes much easier to derive symme-
tries compositionally and efficiently. The paper demonstrates
the potential of this approach by studying several classes
of value and variable symmetries and applying the resulting
techniques to two non-trivial applications. The paper also dis-
cusses the potential of reformulations and high-level model-
ing abstractions to strengthen symmetry discovery.

Introduction
Many applications in constraint satisfaction exhibit natural
symmetries which may significantly increase the difficulty
of solving. It is thus not surprising that increased attention
has been devoted to symmetry breaking in the last decade.

Recent research has mostly focused on breaking symme-
tries, including general symmetry-breaking schemes (e.g.,
SBDS (Backofen & Will 1999; Gent & Smith 2000) and
SBDD (Fahle, Schamberger, & Sellmann 2001; Focacci &
Milano 2001)), their efficient implementations (e.g., (Puget
2003)), and their specialisations for specific applications
(e.g., (Barnier & Brisset 2002; Puget 2002)). There has also
been a tendency to abstract some of the techniques from par-
ticular applications to classes of CSPs (Van Hentenryck et
al. 2003) or models (Flener et al. 2002). However, this line
of research assumes that symmetries are given and ignores
the tedious and error-prone task of discovering them.

The detection of symmetries is a research avenue pio-
neered by (Freuder 1991) and subsequently investigated by
many others. Freuder introduced various forms of value in-
terchangeability and his goal was to discover symmetries
and preprocess CSPs to remove their symmetries. Unfor-
tunately, it is not tractable to discover many, apparently sim-
ple, classes of symmetries in CSPs arising in practical appli-
cations.

This research reconsiders the problem of discovering
symmetries from a fundamentally novel angle. Its key in-
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sight is to recognize that global (optimization) constraints
(Beldiceanu & Contejean 1994; Régin 1994; Focacci, Lodi,
& Milano 2002) offer significant benefits for deriving sym-
metries compositionally and efficiently. Global constraints
are a fundamental aspect of constraint programming: They
capture common combinatorial substructures of practical
applications and exploit the substructure semantics to obtain
more effective filtering algorithms, linear relaxations, and
cooperation schemes between solvers. The main contribu-
tion of this research is to show that, once the symmetries of
global constraints are specified, it becomes much simpler to
derive the symmetries of an application. This research can
also be seen as shifting the burden of discovering symme-
tries from users to solver designers who are experts in the
underlying combinatorics.

The purpose of this paper is to demonstrate the potential
of this research direction. The paper makes the following
technical contributions:

1. It considers various classes of symmetries and shows
how to derive symmetries compositionally and efficiently,
starting from global constraints. They include value and
variable symmetries, and symmetries in matrix models.

2. It shows how to apply these results to derive the symme-
tries of two non-trivial applications: scene allocation and
progressive party.

3. It shows how various problem reformulations can im-
prove the accuracy of the derivations and suggests a vari-
ety of modeling practices to improve symmetry detection.

These technical results should be viewed as a first (small)
step towards a comprehensive automated tool for discover-
ing symmetries. What is particularly interesting however
is their ability to handle non-trivial applications already, as
well as the various research directions they suggest for mod-
eling languages and reformulation tools.

The rest of the paper is organized as follows. After some
preliminaries, the paper shows how constraint and function
symmetries can be composed for various forms of inter-
changeability. The techniques are then illustrated on two ap-
plications: scene allocation and the progressive party prob-
lem. The next section discusses how problem reformulations
improve symmetry detection. Finally, symmetries in matrix
models are presented and illustrated.



Preliminaries
This section defines the main concepts used in this paper.
The definitions are borrowed from (Van Hentenryck et al.
2003), which uses them for different purposes. The basic
idea is to abstract the set of constraints by a Boolean function
which holds if all the constraints are satisfied. Solutions are
also represented as functions (assignments), namely from
variables to the set of values.
Definition 1. A CSP is a triple 〈V, D, C〉, where V denotes
the set of variables, D denotes the set of possible values for
these variables, and C : (V → D) → Bool is a constraint
that specifies which assignments of values to the variables
are solutions. A solution to a CSP P = 〈V, D, C〉 is a func-
tion σ : V → D such that C(σ) = true. The set of solutions
to a CSP P is denoted by Sol(P).
Many practical problems involve the optimization of objec-
tive functions and much research in recent years has focused
on applying filtering algorithms to prune the resulting “op-
timization” constraints (e.g., (Régin 1999; Focacci, Lodi,
& Milano 2002)). In general, in existing languages and
systems, these optimization constraints are expressed using
auxiliary variables. However, it is more elegant from a mod-
eling standpoint, and more effective when deriving symme-
tries, to capture these functions directly.
Definition 2. A global function over variables V and values
D is a function f : (V → D) → N .
A constraint optimization problem (COP) consists of mini-
mizing an objective function subject to a set of constraints.
Definition 3. A COP is a quadruple O = 〈V, D, C, f〉,
where P = 〈V, D, C〉 is a CSP and f is a global function
over V and D. The optimal value f ∗ of O is the minimal
value of f taken by any solution to P , i.e.,

f∗ = min
σ∈Sol(P)

f(σ).

An optimal solution of O is a solution σ of P whose ob-
jective value is optimal, i.e., f(σ) = f ∗. We use Sol(O) to
denote Sol(P) in the following.
The key idea behind this paper is that symmetries can be sys-
tematically derived through composition of CSPs (or COPs).
The next definition captures compositions of CSPs formally.
Definition 4. Let P1 = 〈V, D, C1〉 and P2 = 〈V, D, C2〉
be two CSPs. The composition of P1 and P2, denoted by
P1 ∧ P2, is the CSP P = 〈V, D, C1 ∧ C2〉, whose solutions
satisfy Sol(P) = Sol(P1) ∩ Sol(P2).

Value and Variable Interchangeability
There are many applications in resource allocation and
scheduling where the exact values taken by the variables
are not important. What is significant is which variables
take the same values or, in other terms, how the variables
are clustered. Other applications exhibit weaker notions of
value interchangeability, such as the concept of piecewise
value interchangeability where only subsets of values are in-
terchangeable. As shown in (Van Hentenryck et al. 2003),
these symmetries can be broken efficiently during search and
it is thus particularly important to discover them automati-
cally.

Definition 5. Let P = 〈V, D, C〉 be a CSP. P is value-
interchangeable if, for each solution σ ∈ Sol(P) and each
bijection b : D → D, the function b ◦ σ ∈ Sol(P).
Example 6. Let V ⊇ {v1, v2, v3}. The CSP P =
〈V, D, allDifferent(v1, v2, v3)〉 is value-interchangeable.
We now define piecewise value-interchangeability.
Definition 7. Let D = {D1, . . . , Dn} be a partition of D.
A bijection b : D → D is piecewise interchangeable over D
if ∀v ∈ Di : b(v) ∈ Di (1 ≤ i ≤ n).

Definition 8. Let P = 〈V, D, C〉 be a CSP and D be a parti-
tion of D. P is piecewise-value-interchangeable (PVI) over
D if, for each solution σ ∈ Sol(P) and each piecewise-
interchangeable bijection b over D, b ◦ σ ∈ Sol(P).
Note that, if P = 〈V, D, C〉 is value-interchangeable, then
it is piecewise-value-interchangeable over {D}. As a conse-
quence, it is easy to compose these two forms of symmetries.
Example 9. Let V ⊇ {v1, v2, v3}, D 3 1,
and consider a constraint atmost(o, d, 〈v1, . . . , vk〉) which
holds for an assignment σ if there are at most o
occurrences of d in 〈σ(v1), . . . , σ(vk)〉. The CSP
〈V, D, atmost(2, 1, 〈v1, v2, v3〉)〉 is PVI over {{1}, D \
{1}}.
Value-interchangeability also applies to global functions, in
which case the value of a function must not change under
various forms of bijection.
Definition 10. A global function f : (V → D) → N is
value-interchangeable if, for each assignment σ : V → D
and each bijection b : D → D, f(σ) = f(b ◦ σ).
Example 11. Let V ⊇ {v1, . . . , v5} and consider
global functions of the form nbDistinct(v1, . . . , vk) which,
given an assignment σ, return the number of dis-
tinct values in 〈σ(v1), . . . , σ(vk)〉. The global function
nbDistinct(v1, . . . , v5) is value-interchangeable.
Definition 12. Let D be a partition of D. A global function
f : (V → D) → N is piecewise-value-interchangeable
over D if, for each assignment σ : V → D and piecewise-
interchangeable bijection b over D, f(σ) = f(b ◦ σ).
These concepts can be generalized to COPs.
Definition 13. Let O = 〈V, D, C, f〉 be a COP. O is value-
interchangeable if, for each solution σ ∈ Sol(O) and each
bijection b : D → D, b ◦ σ ∈ Sol(O) and f(σ) = f(b ◦ σ).
Definition 14. Let O = 〈V, D, C, f〉 be a COP and D be
a partition of D. O is piecewise-value-interchangeable over
D if, for each solution σ ∈ Sol(O) and each piecewise-
interchangeable bijection b over D, b ◦ σ ∈ Sol(O) and
f(σ) = f(b ◦ σ).
In the following, we often assume fixed sets V and D in
examples for simplicity and talk directly about the compo-
sition and interchangeability of constraints, since they are
essentially equivalent to their CSP counterparts.

It is also important to emphasize that all results presented
in the next sections have direct counterparts for variable in-
terchangeability. This is due to the fact that the definition of
variable interchangeability is essentially similar to value in-
terchangeability. Consider the simplest definition of variable
interchangeability.



Definition 15. Let P = 〈V, D, C〉 be a CSP. P is variable-
interchangeable if, for each solution σ ∈ Sol(P) and each
bijection b : V → V , the function σ ◦ b ∈ Sol(P).

The difference is the composition order of σ and the bijec-
tion (which also has a different signature).

Composition of Constraint Symmetries
Value symmetries arise in many applications and can be bro-
ken efficiently during search. Unfortunately, there is no gen-
eral efficient algorithm for computing interchangeable val-
ues in CSPs (Freuder 1991). The key insight in this paper is
that symmetries can be compositionally inferred from global
constraints. More precisely, given two constraints (or CSPs)
C1 and C2, the symmetries of their composition C1∧C2 can
be inferred automatically from the symmetries of C1 and C2.
The following result is immediate.

Proposition 16. Let P1 = 〈V, D, C1〉 and P2 = 〈V, D, C2〉
be two value-interchangeable CSPs. Then, their composi-
tion P1 ∧ P2 is value-interchangeable.

The following example illustrates the result.

Example 17. Let V ⊇ {v1, . . . , v6} and let C1

and C2 be the constraints allDifferent(v1, v2, v3)
and allDifferent(v4, v5, v6). Then C1 ∧ C2 is value-
interchangeable.

Note that constraints in practice only “constrain” a subset
of the variables, although they are formally defined over
all variables. The next result specifies how to compose
piecewise-value-interchangeable CSPs.

Proposition 18. Let P1 = 〈V, D, C1〉 and P2 =
〈V, D, C2〉 be two CSPs. Assume that Pi is piecewise-value-
interchangeable over partition Di of D (1 ≤ i ≤ 2). Then
the composition P1∧P2 is piecewise-value-interchangeable
over

D = {D1 ∩D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩ D2 6= ∅}.

Proof. First observe that D is a partition of D. Now let b be
a piecewise-interchangeable bijection over D. We show that
b is piecewise-interchangeable over D1. Indeed, consider
a set D1 ∈ D1 and a value d ∈ D1. By definition of D,
there exists D2 ∈ D2 such that I = D1 ∩ D2 and d ∈ I .
Since b is piecewise-interchangeable overD, b(d) ∈ I ⊆ D1

and b is piecewise-interchangeable over D1. Similarly, we
can show that b is piecewise-interchangeable over D2. As a
consequence, if σ ∈ Sol(P1 ∧ P2), then b ◦ σ ∈ Sol(P1)
and b ◦ σ ∈ Sol(P2). Hence, b ◦ σ ∈ Sol(P1 ∧ P2).

Example 19. Let D = {1, . . . , 10} and let C1

and C2 be the constraints atmost(1, 1, 〈v1, . . . , v5〉) and
atmost(2, 2, 〈v1, . . . , v5〉) which are PVI over D1 =
{{1}, {2, . . . , 10}} and D2 = {{2}, {1, 3, . . . , 10}} respec-
tively. The composition C1 ∧ C2 is PVI over

D = {{1}, {2}, {3, . . . , 10}}.

It is important to emphasize that the derivation of symme-
tries using propositions 16 and 18 is polynomial in |D|. As
a consequence, the compositional symmetry analysis of a
CSP is polynomial in |D| and the number of constraints. Of

course, it is not guaranteed to be precise, i.e., it may not
report all symmetries in the application. However, when-
ever global constraints are used to model an application, the
symmetries appear naturally and the loss of precision is of-
ten avoided. Futhermore, we discuss this later in the paper
how reformulations may help in addressing this issue.

Composition of Function Symmetries
This section shows how to compose function symmetries
from global functions. It also shows how to infer symme-
tries in COPs and how function symmetries can be used to
infer symmetries on numerical constraints.

Proposition 20. Let f1 and f2 be two global functions of
signature (V → D) → N . If f1 and f2 are value-
interchangeable, then so are f1 ? f2 (? ∈ {+,−,×}).

Of course, the result can be generalized to other operators.

Example 21. Let V ⊇ {v1, . . . , v6} and let f1 and
f2 be the global functions nbDistinct(v1, v2, v3) and
nbDistinct(v4, v5, v6). Then, the global function 3f1 + 4f2

is value-interchangeable.

Proposition 22. Let f1 : (V → D) → N and f2 :
(V → D) → N be two global functions. If f1 and f2

are piecewise-value-interchangeable over D1 and D2 re-
spectively, then f1 ? f2, where ? ∈ {+,−,×}, is piecewise-
value-interchangeable over

D = {D1 ∩ D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 6= ∅}.

We now show how to derive symmetries for COPs by con-
sidering both the constraint and the objective function.

Proposition 23. Let O = 〈V, D, C, f〉 be a COP and
P = 〈V, D, C〉. If P and f are value-interchangeable,
then O is value-interchangeable. If P is piecewise-value-
interchangeable over partition D1 of D and f is piecewise-
value-interchangeable over partition D2 of D, then O is
piecewise-value-interchangeable over

D = {D1 ∩ D2 | D1 ∈ D1 & D2 ∈ D2 & D1 ∩D2 6= ∅}.

In many applications, constraints are built from global func-
tions and arithmetic operators. The next proposition shows
how to derive symmetries for such constraints.

Proposition 24. Let f : (V → D) → N be a global
function and D be a partition of D. If f is piecewise-
value-interchangeable over D, then the CSP 〈V, D, f ≈ 0〉
is piecewise-value-interchangeable over D as well, where
≈ ∈ {>,≥, =, 6=,≤, <}.

Scene Allocation
We now illustrate how these results can be used to detect
value symmetries on the scene-allocation problem, which
consists of producing a movie at minimal cost by deciding
when to shoot scenes. Each scene involves a number of ac-
tors and at most 5 scenes a day can be filmed. All actors of
a scene must be present on the day the scene is shot. The
actors have fees representing the amount to be paid per day
they spend in the studio. The goal of the application is to



range Scenes = ...;
range Days = ...;
range Actors = ...;
int fee[Actors] = ...;
{Scenes} S[Actors] = ...;
var Days shoot[Scenes];

minimize
sum(a in Actors)
fee[a]*nbDistinct(all(s in S[a]) shoot[s])

subject to
atmost(5,Days,shoot);

Figure 1: The Scene Allocation Model

minimize the production costs and an optimal solution is an
assignment of scenes to days which minimizes the produc-
tion costs. On some reasonably small instances, a state-of-
the-art MIP solver took about 2 minutes and a CP solver
took about 8 minutes for solving the problem. By removing
value symmetries during search, the execution time of the
CP solver fell to below 10 seconds (Van Hentenryck 2002).

It is also interesting to quote (Van Hentenryck et al. 2003)
here: “It should be apparent that the exact days assigned to
the scenes have no importance in this application and are
fully interchangeable. What is important is how the scenes
are clustered together. Our approach does not aim at dis-
covering this fact; rather it focuses on how to exploit it to
eliminate the symmetries it induces.” The main contribution
of this paper is entirely orthogonal: it shows how the value
interchangeability of the scene allocation problem can be
automatically derived from the properties of the constraints.

Consider Figure 1 which depicts an OPL-like model for
scene allocation, where the instance data is given in a sepa-
rate file as typical. The first three lines specify the various
ranges for scenes, days, and actors. The next two lines spec-
ify the fee of each actor and the set of scenes S[a] which
actor a plays in. The next line specifies the variables and
shoot[s] represents the day assigned to scene s. The
constraint atmost(5,Days,shoot) is a global cardi-
nality constraint which specifies that at most 5 scenes can be
shot every day. The objective function sums the fees of each
actor, each actor being paid her fee for each different day
in which one of her scenes is shot. Indeed, the expression
all(s in S[a]) shoot[s] collects the variables as-
sociated with the scenes of actor a in an array of vari-
ables, which is used in the function nbDistinct. Observe
now that constraint atmost(5,Days,shoot) is value-
interchangeable. The global function nbDistinct is also
value-interchangeable (see Example 11). By Proposition 20,
the objective function is value-interchangeable. Hence, by
Proposition 23, the scene-allocation model in Figure 1 is
value-interchangeable. In summary, as mentioned earlier,
once the value symmetries of the global objects are known,
it is possible to derive value symmetries of the entire model
using the results of this paper.

It is also useful to stress the benefits of global constraints.
The value symmetries derived on the model above are dra-
matically more complicated to detect on the MIP model. In-
deed, the values are not even explicit in that model, which
encodes the scene assignment in terms of 0/1 variables.

range Boats = ...;
range Parties = ...;
range Periods = ...;
int size[Parties] = ...;
int cap[Boats] = ...;
var Boats b[Parties,Periods];
solve {
forall(g in Parties)

allDifferent(all(p in Periods) b[g,p]);
forall(p in Periods)

weightedAtmost(size,
all(g in Parties) b[g,p],
cap);

forall(i in Parties, j in Parties: j>i)
meetAtmost(all(p in Periods) b[i,p],

all(p in Periods) b[j,p],
1);

};

Figure 2: The Progressive Party Model

Progressive Party Problem
The progressive party problem is a traditional benchmark
which is often used to compare constraint programming,
mathematical programming, and local search. Figure 2 de-
picts an OPL-like model for this problem, which is a direct
translation of the Comet model in (Michel & Van Henten-
ryck 2002). The first three lines specify the ranges, i.e., the
boats, the parties, and the periods. The next two lines spec-
ify the size of the parties and the capacities of the boats.
The variables are declared next and assign a boat b[g,p]
to party g at period p. The first set of constraints speci-
fies that a party never visits the same boat twice. The sec-
ond set of constraints are weighted cardinality constraints
which specify that the sizes of the parties visiting a boat
during a period cannot exceed the boat capacity. The fi-
nal set of constraints are again cardinality constraints spec-
ifying that two parties meet at most once: a constraint
meetAtmost(〈v1, . . . , vp〉, 〈w1, . . . , wp〉, k) holds for an as-
signment σ if #{i ∈ 1..p | σ(vi) = σ(wi)} ≤
k. Observe that the allDifferent constraints are value-
interchangeable. The meetAtmost constraints are also value-
interchangeable. The interesting part in this model are the
weightedAtmost constraints. A constraint

weightedAtmost(〈s1, . . . , sn〉, 〈v1, . . . , vn〉, 〈c1, . . . , cm〉)

holds for an assignment σ if ∀k ∈ 1..m :
∑

i∈Sk
si ≤ ck

where Sk = {i ∈ 1..n | σ(vi) = k}. This constraint is
piecewise-value-interchangeable over D = {D1, . . . , Dm},
where Dk = {i ∈ 1..n | ci = ck}. As a con-
sequence, our compositional derivation automatically in-
fers that boats with the same capacity are piecewise-value-
interchangeable. Note that a similar derivation for the vari-
ables infers that parties with the same sizes are piecewise-
variable-interchangeable.

Reformulations
The symmetry derivations presented earlier can often
be strenghtened by model reformulations which can be
seen as adaptations to constraint satisfaction of “presolve”
techniques used in mixed-integer programming (Johnson,



Nemhauser, & Savelsbergh 2000). For space reasons, we
only present two reformulations, aggregation and projection.

Aggregation The symmetry derivations presented earlier
may be suboptimal as the following example indicates.

Example 25. Let V ⊇ {v1, . . . , v3} and D ⊇ {1, 2}. Con-
straint C1 = atmost(2, 1, 〈v1, v2, v3〉) is PVI over D =
{{1}, D \ {1}}. Constraint C2 = atmost(2, 2, 〈v1, v2, v3〉)
is PVI overD = {{2}, D\{2}}. By Proposition 18, C1∧C2

is PVI over D = {{1}, {2}, D \ {1, 2}}. However, C1 ∧C2

is also PVI overD = {{1, 2}, D\{1, 2}}, which is stronger.

This precision loss can be remedied by modeling the prob-
lem more globally using, say, a global cardinality constraint
(Régin 1999). Again, the observation is that global con-
straints are fundamental tools to derive stronger symmetries.

Example 26. Consider a global cardinality constraint
atmost(〈o1, . . . , ok〉, 〈d1, . . . , dk〉, 〈v1, . . . , vn〉) which
holds for an assignment σ if there exist at most oi oc-
currences of di in 〈σ(v1), . . . , σ(vn)〉 (1 ≤ i ≤ k). It
is PVI over {D1, . . . , Dk, D \ (D1 ∪ · · · ∪ Dk)} where
Di = {dj | oj = oi & 1 ≤ j ≤ k} (1 ≤ i ≤ k). For
instance, atmost(〈1, 2, 1〉, 〈1, 2, 3〉, 〈v1, . . . , vn〉) is PVI
over {{1, 3}, {2}, D \ {1, 2, 3}} since D1 = D3 = {1, 3}.

As a consequence, automated tools for symmetry detection
should provide aggregation operators exploiting the seman-
tics of constraints. They can be specified as follows.

Definition 27. Let C1 and C2 be two constraints of signa-
ture C = (V → D) → Bool. A compositional aggregator
is a binary operator ⊗ of signature (C × C) → C such that
C1 ⊗ C2 is a single constraint equivalent to C1 ∧ C2.

Example 28. Let V ⊇ {v1, v2, v3}, D ⊇ {1, 2}
and constraints C1 = atmost(2, 1, 〈v1, v2, v3〉) and
C2 = atmost(2, 2, 〈v1, v2, v3〉). A compositional
aggregator of C1 and C2 may return the constraint
atmost(〈2, 2〉, 〈1, 2〉, 〈v1, . . . , v3〉).

Projection Projections, the second class of reformulations
considered in this paper, are important in many applications.
On the one hand, they are often useful when a general model
(e.g., a round-robin sport-scheduling model) is specialized
to a specific problem (e.g., the ACC basketball schedule for
the 2004 season) by introducing, among others, some fixed
decisions. On the other hand, they are useful in deriving dy-
namic symmetries, i.e., symmetries not present in the orig-
inal problem but arising after a number of variable assign-
ments. The following example illustrates the significance of
projections when deriving symmetries.

Example 29. Let V = {v1, . . . , v5}, let C1 be the con-
straint atmost(〈3, 2〉, 〈1, 2〉, 〈v1, . . . , v5〉) and C2 be v1 = 1.
The CSP 〈V, D, C1 ∧ C2〉 is derived to be PVI over D =
{{1}, {2}, D \ {1, 2}} since C1 is PVI over {{1}, {2}, D \
{1, 2}} and C2 is PVI over {{1}, D \ {1}}, which is as
strong as possible. However, consider V ′ = V \{v1} and the
constraint C defined as atmost(〈2, 2〉, 〈1, 2〉, 〈v2, . . . , v5〉).
The CSP 〈V ′, D, C〉 is PVI over D = {{1, 2}, D \ {1, 2}}.

range Boats = ...;
range Parties = ...;
range Periods = ...;
int size[Parties] = ...;
int cap[Boats] = ...;
var Boats b[Parties,Periods];
solve {
forall(g in Parties)

allDifferent(b[g]);
weightedAtmost(size,b,cap);
forall(i in Parties, j in Parties: j>i)

meetAtmost(b[i],b[j],1);
};

Figure 3: The Progressive Party Matrix Model

This example indicates that more symmetries may be avail-
able on subproblems when some variables are projected out.
Moreover, since the assignment of values to variables is the
fundamental operation of many search procedures, projec-
tions are an important tool to derive symmetries dynami-
cally. As a consequence, symmetry detection tools should
ideally include projection operators exploiting the seman-
tics of primitive constraints.

Definition 30. Let C be a constraint of signature C = (V →
D) → Bool, and V ′ = V \ {v}. A projection operator for
C wrt v = d is a function ↑v=d of signature C → C ′, where
C′ = (V ′ → D) → Bool, satisfying

Sol(〈V, D, C ∧ v = d〉) = Sol(〈V, D, C ↑v=d ∧v = d〉.

The key intuition here is that constraint C ↑v=d is only ex-
pressed in terms of variables in V ′ and does not add or re-
move any solution to the original problem.

Symmetries in Matrix Models
This section considers the derivation of variable symmetries
in matrix models, which have been found useful in a variety
of applications involving symmetries. In particular, we show
how the techniques presented earlier apply to the detection
of column symmetries in matrix models. (The derivation
of row symmetries is similar.) Figure 3 presents a specifi-
cation of the progressive party problem using matrix mod-
eling. It is essentially similar to the model presented ear-
lier but uses matrices and rows of matrices directly in con-
straints. We now show how to systematically derive column-
interchangeability on this model.

Formally, a matrix M of variables can be modelled as a
bijection X × Y → V , where X are the row indices of M ,
Y its column indices, and V its set of variables. For clarity,
we use traditional notations: M [i, j] denotes the variable in
row i and in column j, M [i] row i, and M [∗, j] column j.
We assume that all matrices are defined over row indices X
and column indices Y .

Definition 31. A matrix-CSP (MCSP) is a triple 〈M, D, C〉,
where M is a matrix of variables, D denotes the set of values
for these variables, and C : (M → D) → Bool specifies
which assignments of values to the variables are solutions.
A solution to an MCSP P = 〈M, D, C〉 is a function σ :
M → D such that C(σ) = true. The set of solutions to P
is denoted by Sol(P).



The next definitions specify column interchangeability, a
“global” form of variable interchangeability.

Definition 32. A column permutation for a matrix M is a
function ρ : M → M such that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X & j ∈ Y )

for some bijection b : Y → Y .

Definition 33. An MCSP P = 〈M, D, C〉 is column-
interchangeable if, for each solution σ ∈ Sol(P) and each
column permutation ρ : M → M , the function σ ◦ ρ ∈
Sol(P).

Proposition 34. Let P1 = 〈M, D, C1〉 and P2 =
〈M, D, C2〉 be two column-interchangeable MCSPs. Then,
their composition P1 ∧ P2 is column-interchangeable.

Consider the matrix model in Figure 3. Constraints allDif-
ferent and meetAtmost are column-interchangeable. Indeed,
the variable (resp. pair) order is not significant in allDiffer-
ent (resp. meetAtmost) and both are applied on rows of the
matrix. The global weightedAtmost constraint is column-
interchangeable, since it applies the same constraint to all
columns. It is an aggregation of

forall(p in Periods)
weightedAtmost(size,b[*,p],cap);

which cannot be shown column-interchangeable composi-
tionally. We conclude this section by generalizing the results
to piecewise interchangeability.

Definition 35. Let Y be a partition over Y . A piecewise
column permutation over Y for a matrix M is a function
ρ : M → M such that

M [i, j] = ρ(M)[i, b(j)] (i ∈ X & j ∈ Y )

for some piecewise-interchangeable bijection b over Y .

Definition 36. Let Y be a partition over Y . An MCSP P =
〈M, D, C〉 is piecewise-column-interchangeable over Y if,
for each solution σ ∈ Sol(P) and each piecewise column
permutation ρ over Y , the function σ ◦ ρ ∈ Sol(P).

Proposition 37. Let P1 = 〈M, D, C1〉 and P2 =
〈M, D, C2〉 be two piecewise-column-interchangeable MC-
SPs over Y1 and Y2 respectively. Then, their composition
P1 ∧ P2 is piecewise-column-interchangeable over

Y = {Y1 ∩ Y2 | Y1 ∈ Y1 & Y2 ∈ Y2 & Y1 ∩ Y2 6= ∅}.

These results naturally generalize to matrix-COPS.

Conclusion
This paper reconsidered the problem of discovering symme-
tries in constraint satisfaction problems by exploiting one
of the fundamental aspects of constraint programming: the
ability of global constraints to capture combinatorial sub-
structures. The paper showed that, once the symmetries of
global constraints are specified, various classes of symme-
tries can be derived precisely and efficiently in a composi-
tional fashion. The paper studied value and variable inter-
changeability, as well as column and row interchangeabil-
ity in matrix models. It also stressed the benefits of tradi-
tional reformulations such as aggregation and projection to

strengthen symmetry detection. The potential of this novel
approach was demonstrated on two non-trivial applications.

It is interesting to relate this research to the automatic
modeling project of (Bakewell, Frisch, & Miguel 2003),
which uses compositional refinement to transform abstract
specifications into constraint programs. Since these trans-
formations may introduce symmetries, (Bakewell, Frisch, &
Miguel 2003) propose to annotate the refinement rules with
the symmetries so that they can be broken subsequently. Our
bottom-up derivation approach is entirely orthogonal to their
top-down refinement approach: It could in fact be applied
as a first step to deduce properties of models before refine-
ment. Both works also address the need for more automation
for non-experts, a feature which is currently lacking in con-
straint programming when compared to MIP technology.
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