
“lic˙report”
2001/3/22
page 1

�

Numerical Simulation of Kinetic Effects in
Ionospheric Plasma

Bengt Eliasson

March 22, 2001

“lic˙report”
2001/3/22
page 2

�

2

Abstract
In this thesis, we study numerically the one-dimensional non-relativistic Vlasov
equation for a plasma consisting of electrons and infinitely heavy ions. This partial
differential equation describes the evolution of the distribution function of parti-
cles in the two-dimensional phase space (x,v). The Vlasov equation describes, in
statistical mechanics terms, the collective dynamics of particles interacting with
long-range forces, but neglects the interactions due to short-range “collisional”
forces. A space plasma consists of electrically charged particles, and therefore the
most important long-range forces acting on a plasma are the Lorentz forces created
by electromagnetic fields.

What makes the numerical solution of the Vlasov equation to a challenging
task is firstly that the fully three-dimensional problem leads to a partial differen-
tial equation in the six-dimensional phase space, plus time, making it even hard to
store a discretized solution in the computer’s memory. Secondly, the Vlasov equa-
tion has a tendency of structuring in velocity space (due to free streaming terms),
in which steep gradients are created and problems of calculating the v (velocity)
derivative of the function accurately increase with time.

The method used in this thesis is based on the technique of Fourier transform-
ing the Vlasov equation in velocity space and then solving the resulting equation.
We have developed a method where the small-scale information in velocity space is
removed through an outgoing wave boundary condition in the Fourier transformed
velocity space. The position of the boundary in the Fourier transformed variable
determines the amount of small-scale information saved in velocity space.

The above numerical method is used to investigate numerically a phenomenon
of tunnelling of information through an ionospheric layer, discovered in exper-
iments, and to assess the accuracy of approximate analytic formulae describing
plasma wave dispersion. The numerical results are compared with theoretical pre-
dictions, and further physical experiments are proposed.

“lic˙report”
2001/3/22
page 3

�

Contents

1 Introduction 1

2 Outflow Boundary Conditions for the Fourier Transformed One-Dimensional
Vlasov-Poisson System 5
2.1 Introduction . 5
2.2 The Vlasov-Maxwell system . 6

2.2.1 The three-dimensional system 6
2.2.2 The one-dimensional Vlasov-Poisson system 8
2.2.3 The problem of structuring in velocity space 9
2.2.4 Some properties of the Fourier transformed system 10
2.2.5 Invariants of the Vlasov-Poisson system 11
2.2.6 The well-posedness of the continuous problem 12

2.3 Numerics . 17
2.3.1 Storage of the solution 17
2.3.2 Discretisation . 18
2.3.3 Pseudo-spectral methods 19
2.3.4 Numerical approximations 20
2.3.5 Stability analysis . 23
2.3.6 The conservation of particles 24

2.4 Numerical results . 24
2.4.1 Reflections at the boundaries 24
2.4.2 Nonlinear Landau damping 26

3 Parallel implementation of the Vlasov code 31
3.1 Introduction . 31
3.2 Program structure . 31
3.3 Time consuming subroutines . 32
3.4 Code optimisation before parallelisation 33
3.5 Parallelisation and partitioning of data 34

3

“lic˙report”
2001/3/22
page 4

�

4

3.6 Performance model . 35
3.7 Numerical experiments and results 37
3.8 Comparison between the performance model and experiment . . . 38

4 Linear dispersion laws and Landau damping 39
4.1 Introduction . 39
4.2 Approximate theoretical dispersion law 39
4.3 The numerical experiment . 40
4.4 Numerical results . 42

5 Kinetic tunnelling through an ionospheric layer 43
5.1 Introduction . 43
5.2 The self-consistent electrostatic potential 45
5.3 The one-dimensional Vlasov-Poisson system 48
5.4 The numerical setup . 49

5.4.1 Numerical boundary conditions 49
5.4.2 The Fourier transformed, dimensionless system 49
5.4.3 Perturbation form . 51
5.4.4 The initial condition . 51

5.5 Numerical experiments . 52
5.5.1 Parameters used in the numerical experiments 52
5.5.2 The numerical results . 53
5.5.3 Suggested experiments 58

A Program listings, one-dimensional Vlasov code 63
A.1 vlasov.f90 . 63
A.2 vlasov numeric mod.f90 . 64
A.3 vlasov domain mod.f90 . 86
A.4 vlasov param mod.f90 . 86

“lic˙report”
2001/3/22
page 1

�

CHAPTER 1

Introduction

Space plasma research is a relatively new discipline, going back in time about 80
years. Before the “space age,” opened up with the advent of the artificial satelites,
space was assumed to be essentially a vacuum, whose content of matter was lim-
ited to the high energy particles that constitute the cosmic radiation. The discovery
of the Earth’s ionosphere came from radio wave observations and the recognition
that only a reflecting layer composed of electrons and ions could explain the char-
acteristics of the observations [8].

A planet’s ionosphere is a partially ionised gas that envelopes the planet, form-
ing an interface between the planet’s atmosphere (if it exists) and space. Since the
gas of the ionosphere is ionised, it cannot be fully described by the equations of
neutral fluid dynamics. Furthermore, it is also often necessary to use models which
take the non-equilibrium distribution of particles in velocity space into account.

One example of an ionosphere is the earth’s ionosphere [8], which begins at
an altitude below 100km and extends to an altitude of about 1000km. The gas
of the earth’s ionosphere is composed mainly of atoms and molecules formed by
the elements oxygen and nitrogen. These atoms and molecules are ionised by
the radiation from the sun and by impact of energetic particles. The degree of
ionisation is of the order 10−2 to 10−4, hence the ionosphere is a partially ionised
plasma [19].

The studies of the earth’s ionosphere were made possible by the development
of technical equipment for remote sensing, and by the space programme with the
associated development of instruments for balloons, rockets, and satellites, which
made in situ measurements possible. Most of the early research was aimed at ex-
plaining the various layers in the ionosphere and their variability with local time,
latitude, season, etc. As time passed by, the emphasis of ionospheric research
shifted towards understanding the dynamics and plasma physics of ionospheric

1

“lic˙report”
2001/3/22
page 2

�

2 BENGT ELIASSON

phenomena. Following this line towards basic research, researchers about 20 years
ago began to use the ionosphere as a test bed for fundamental nonlinear plasma
physics experiments, where the plasma was perturbed by injection of electromag-
netic waves into the plasma [22]. By these controlled experiments, dynamic and
often chaotic processes could be studied and compared with theory. One type of
such experiments is mentioned in Chapter 5.

The development of computers and numerical methods has made it possible
to test mathematical models of plasma physics, sometimes in a more controlled
manner than in physical experiments which are often disturbed by unwanted inter-
ferences from radio transmitters and other electrical equipment. Numerical simu-
lations makes it easier to measure and visualise physical quantities, without having
to plan the design and operation of sensing equipment as in a physical experiment.
By performing the relatively inexpensive numerical experiments, one can test the
mathematical models and then predict more carefully which physical experiments
should be undertaken.

A mathematical model which describes the non-equilibrium distribution of par-
ticles is the Vlasov (or collisionless Boltzmann) equation. It describes the col-
lective dynamics of particles interacting with long-range forces, but neglects any
short-range “collisional” forces. For the electrically charged particles of very low
mass in a plasma, the most important long-range force is the Lorentz force, cre-
ated by electromagnetic fields. The charged particles may then act as sources of
electric net charges and currents, creating self-consistent electromagnetic fields as
described by the Maxwell equations.

In this thesis the one-dimensional non-relativistic Vlasov equation is studied
numerically. What makes the numerical solution of the Vlasov equation such a
challenging task is, firstly, that the fully three-dimensional problem leads to a par-
tial differential equation in the six-dimensional phase space, plus time, making it
even hard to store a discretized solution in the computer’s memory. Secondly, The
Vlasov equation has a tendency of structuring in velocity space (due to the creation
of ballistic, or free streaming, particles), in which steep gradients in the velocity
direction are created and problems of accurately calculating the v (velocity) deriva-
tive of the function increase with time [1].

The numerical method analysed in this thesis is based on the technique of
Fourier transforming the Vlasov equation in velocity space and then solving the
resulting equation numerically. The small-scale information in velocity space is
removed through an outgoing wave boundary condition in the Fourier transformed
velocity space. The position of the boundary in the Fourier transformed variable
determines the amount of small-scale information saved in velocity space.

The numerical method devised is used to investigate numerically the phenomenon
of an apparent tunnelling of plasma waves through an ionospheric layer, discovered

“lic˙report”
2001/3/22
page 3

�

Introduction 3

in experiments [7]. The numerical results are compared with theoretical predic-
tions, and further physical experiments are proposed.

In Chapter 2, the numerical method for the one-dimensional Fourier trans-
formed Vlasov equation is described in detail. A large part of the text in this chapter
has been submitted to and accepted for publication by Journal of Scientific Com-
puting. In Chapter 3, the parallel implementation of the algorithms is described.
The efficiency of the parallelised code is discussed, together with some numerical
tests. In Chapter 4, a comparison is made between a theoretical approximation of
dispersion laws for electrostatic electron waves, and the numerically obtained dis-
persion law. In Chapter 5, a mechanism for tunnelling of plasma waves through a
Gaussian plasma battier, mimicking an ionospheric layer, is investigated numeri-
cally. The numerical tests are compared with theoretical predictions, and physical
experiments are proposed in order to verify or falsify the numerical and theoretical
results. The numerical algorithm described in Chapter 2 and 3 is implemented in
Fortran 90, and the source code is listed in Appendix A.

“lic˙report”
2001/3/22
page 4

�

“lic˙report”
2001/3/22
page 5

�

CHAPTER 2

Outflow Boundary Conditions for the Fourier
Transformed One-Dimensional Vlasov-Poisson
System

2.1 Introduction
Methods of solving numerically the Vlasov equation have been developed for many
decades, including methods based on Hermite and Fourier expansions [1, 4] and
methods based on the convective structure of the Vlasov equation [3]. Convective
schemes have also been developed for the collisional Boltzmann equation [5].

A problem with the Vlasov equation is its tendency of structuring in velocity
space (due to the creation of ballistic, or free streaming particles), in which steep
gradients of the distribution function are created in the velocity direction, and prob-
lems of calculating the v (velocity) derivative of the function accurately increase
with time [1].

Due to the sampling (Nyqvist) theorem, the tendency of structuring of the
Vlasov equation makes it impossible to represent, after a finite time, all parts of the
solution on a uniform grid. If not treated carefully, this problem may eventually
lead to the so-called recurrence phenomenon where parts of the initial condition
artificially re-appear on the numerical grid [3].

In applications, the recurrence phenomenon may in some cases be unimpor-
tant if other processes dominate [12], but can introduce significant errors if, for
example, the long-time behaviour of a single wave is studied [13].

One method of minimising detremental effects due to the recurrence phenomenon
is to have a dense enough grid, so that the interesting physical results have ample
time to develop, and then to terminate the simulation before the recurrence phe-
nomenon takes place [13]. Another method is to apply smoothing operators to the

5

“lic˙report”
2001/3/22
page 6

�

6 BENGT ELIASSON

numerical solution so that the finest structures never appear on the numerical grid
[3].

The method analysed in the present chapter is related to the second of the above
two methods, but instead of direct damping of small-scale information, the small-
scale information in velocity space is removed through an outgoing wave boundary
condition in the Fourier transformed velocity space. The position of the boundary
in the Fourier transformed variable determines the amount of small-scale informa-
tion saved in velocity space. The objective of the method is thus not to resolve the
solution fully but only to a certain degree, and to remove the finest structures of
the solution. How much of the small-scale information one needs to save depends
strongly on the physical problem.

In Section 2.2.1 the three-dimensional Vlasov-Maxwell system is discussed,
together with the Fourier transform technique in velocity space. In Sections 2.2.2–
2.2.5 the one-dimensional Vlasov-Poisson system is discussed. These sections con-
tain a justification or motivation for solving numerically the Fourier transformed
Vlasov-Poisson system in (x,η, t) space instead of the original system in (x,v, t)
space. Well-posed boundary conditions are derived in preparation for the numer-
ical simulation of the Fourier-transformed system. In Section 2.3 the numerical
schemes used to approximate the time-dependent solution of the Vlasov-Poisson
system are described. In Section 2.4 numerical experiments are presented and
compared with known theory and with simulations with other methods. In Section
5.5.3 some conclusions are drawn regarding the usefulness of the method.

2.2 The Vlasov-Maxwell system

2.2.1 The three-dimensional system

The non-relativistic Vlasov equation

∂ fα
∂t

+ v ·∇x fα +
Fα
mα
·∇v fα = 0 (2.1)

where Fα is the Lorentz force

Fα = qα (E + v×B) (2.2)

describes the evolution of the distribution function of electrically charged particles
of type α (e.g., “electrons” or “singly ionised oxygen ions”), each particle having
the electric charge qα and mass mα. One Vlasov equation is needed for each species
of particles.

“lic˙report”
2001/3/22
page 7

�

Outflow Boundary Conditions for the Fourier Transformed . . . 7

The particles interact via the electromagnetic field. In the absence of external
electric and magnetic fields, the charge and current densities act as sources of self-
consistent electromagnetic fields according to the Maxwell equations

∇ ·E =
1
ε0

∑
α

qαnα (2.3)

∇ ·B = 0 (2.4)

∇×E = −∂B
∂t

(2.5)

∇×B = µ0 ∑
α

qαnαvα+ε0µ0
∂E
∂t

(2.6)

where the particle number densities nα and mean velocities vα are obtained as
moments of the distribution function, as

nα(x, t) =

� ∞
−∞

fα(x,v, t)d3v (2.7)

and

vα (x, t) =
1

nα (x, t)

� ∞
−∞

v fα (x,v, t) d3v (2.8)

respectively. The Vlasov equation together with the Maxwell and the constitutive
equations (2.7) and (2.8) form a closed, coupled system of non-linear partial dif-
ferntial equations whose analytical solution is known for only a very few special
cases.

By using the Fourier transform pair

fα(x,v, t) =

� ∞
−∞ �fα(x,η, t)e−iη·v d3η (2.9)�fα(x,η, t) =
1

(2π)3

� ∞
−∞

fα(x,v, t)eiη·v d3η (2.10)

the velocity variable v is transformed into a new variable η and the distribution
function f (x,v, t) is changed to a new, complex valued, function �f (x,η, t), which
obeys the transformed Vlasov equation

∂ �fα
∂t
− i∇x ·∇η �fα− i

qα
mα � E ·η �fα +∇η · ��� B×η � �fα �
	 = 0 (2.11)

The nabla operators ∇x and ∇η denote differentiation with respect to x and η, re-
spectively.

“lic˙report”
2001/3/22
page 8

�

8 BENGT ELIASSON

Equation (2.11) must be solved together with the Maxwell equations, where
the particle number densities and mean velocities are obtained as

nα(x, t) = (2π)3 �fα(x,0, t) (2.12)

and

vα(x, t) = −i
(2π)3

nα(x, t)
� ∇η �fα(x,η, t) �

η=0
(2.13)

respectively. One can note that the integrals over infinite v space have been con-
verted to evaluations at a single point in η space. The factor (2π)3 in Equation
(2.10), (2.12) and (2.13) is valid for three velocity dimensions. For n velocity di-
mensions this factor is (2π)n.

2.2.2 The one-dimensional Vlasov-Poisson system

In order to explore advantages and disadvantages of the Fourier transformation
technique just described, we have chosen to study numerically a simpler case, the
one-dimensional Vlasov-Poisson system consisting of electrons and ions, with the
ions assumed fixed uniformly in space. These assumptions lead to the system

∂ f
∂t

+ v
∂ f
∂x
− eE

m
∂ f
∂v

= 0 (2.14)

∂E(x, t)
∂x

=
e
ε0 � n0−

� ∞
−∞

f (x,v, t)dv �
where qe = −|e| is the charge of the electron and n0 is the neutralising heavy ion
density background.

Introducing the Fourier transform pair

f (x,v, t) =

� ∞
−∞ �f (x,η, t)e−iηv dη (2.15)�f (x,η, t) =
1

2π

� ∞
−∞

f (x,v, t)eiηvdv (2.16)

equation (2.14) will be transformed into

∂ �f
∂t
− i

∂2 �f
∂x∂η

+ i
eE
m
η �f = 0 (2.17)

∂E(x, t)
∂x

=
e
ε0

� n0−2π �f (x,0, t) �

“lic˙report”
2001/3/22
page 9

�

Outflow Boundary Conditions for the Fourier Transformed . . . 9

Equation (2.17) has been studied analytically, by means of the same Fourier
transform technique as the one we use here, by H. Neunzert [15, 16].

The systems (2.14) and (2.17) can be cast into dimensionless form by a scal-
ing of variables: the time t is scaled to the inverse of the plasma frequency
ω−1

p =
 ε0m/(n0e2), the velocity v is scaled to the thermal velocity vth; the new
variable η is then scaled to the inverse of the thermal velocity, and the spatial vari-
able x is scaled to the Debye length rD = vthω

−1
p . Finally, the function �f is scaled to

the background density n0, the function f is scaled to n0/vth and the electric field E
is scaled to the quantity vth

√
n0m/ε0. In terms of primed, dimensionless variables,

the scaling is

t = ω−1
p t′ (2.18)

v = vthv′ (2.19)

η = v−1
th η
′ (2.20)�f = n0 �f ′ (2.21)

f = n0v−1
th f ′ (2.22)

E = vth
 n0m/ε0E′ (2.23)

By this scaling of variables, the systems (2.14) and (2.17) attain the dimensionless
form, where the primes have been omitted,

∂ f
∂t

+ v
∂ f
∂x
−E

∂ f
∂v

= 0 (2.24)

∂E(x, t)
∂x

= 1−
� ∞
−∞

f (x,v, t)dv (2.25)

and

∂ �f
∂t
− i

∂2 �f
∂x∂η

+ iηE �f = 0 (2.26)

∂E(x, t)
∂x

= 1−2π �f (x,0, t) (2.27)

respectively.

2.2.3 The problem of structuring in velocity space
Due to the property of conservation of phase memory, the Vlasov-Poisson sys-
tem in phase (x,v, t) space may develop fine structures in velocity space, since no
smearing of the solution occurs. This can be illustrated by a simple example:

“lic˙report”
2001/3/22
page 10

�

10 BENGT ELIASSON

By making the somewhat unphysical assumption that the self-consistent elec-
tric field is so weak that the Vlasov equation degenerates into the interaction-free
model equation

∂ f
∂t

+ v
∂ f
∂x

= 0 (2.28)

with the choice of initial condition

f (x,v,0) = f0(x,v) = [1 + Acos(kxx)]e−v2/2 (2.29)

the solution to this initial value problem becomes

f (x,v, t) = f0(x− vt,v) = [1 + Acos(kxx− kxvt)]e−v2/2 (2.30)

This solution becomes more oscillatory in the velocity direction with increas-
ing time; it will in fact be impossible to represent the solution after a finite time
due to the Nyqvist theorem, which states that one needs at least two grid points per
wavelength in order to represent a solution on an equidistant grid.

For this simple example it is possible to calculate the time after which the
solution will be impossible to represent: Assume that the grid size in v direction
is ∆v, and that function values are stored for v = 0, ±∆v, ±2∆v, . . . , ±Nv∆v. The
“wavelength” of the function cos(kxx−kxvt) is λv = 2π/kxt in the velocity direction.
The Nyqvist theorem states the condition λv/∆v > 2 for storing the solution, which
for the problem gives the condition 2π/kxt∆v > 2. This condition only holds for
times t < π/kx∆v. After this time it is impossible to represent the solution on the
grid.

The recurrence effect [3] occurs at the time Tc = 2π/kx∆v, which is the time for
the values of the initial condition to re-appear on the numerical grid because of the
Nyqvist theorem just described.

2.2.4 Some properties of the Fourier transformed system

In general f (x,v, t) decreases as a Gaussian function ∼ exp(−αv2) for large val-
ues of v. This behaviour guarantees that the inverse Fourier transformed function�f (x,η, t) is a smooth function in η; it is an analytic function for all complex η and
therefore all η-derivatives are well-defined. This is favourable when the η deriva-
tive in Equation (2.26) is approximated by a numerical difference approximation.

The difference in behaviour for the Fourier transformed system compared to
the untransformed system can be illustrated by the example in the previous section;
taking the Fourier transform of the solution (2.30) in velocity space yields

“lic˙report”
2001/3/22
page 11

�

Outflow Boundary Conditions for the Fourier Transformed . . . 11

�f (x,η, t) =

1√
2π � e−η

2/2 +
A
2
� cos(kxx) � e−(η−kxt)2/2 + e−(η+kxt)2/2 �

+ isin(kxx) � e−(η−kxt)2/2− e−(η+kxt)2/2 � ��� (2.31)

This function does not become oscillatory for large times. The exp[−(η− t)2/2] and
exp[−(η+ t)2/2] terms represent smooth wave packets moving away from the origin
η = 0. Instead of becoming more oscillatory, the Fourier transformed solution
becomes wider with increasing time.

Since the original distribution function f (x,v, t) is real-valued, the Fourier trans-
formed function �f (x,η, t) fulfils the relation�f (x,−η, t) = � �f (x,η, t) � ∗ (2.32)

where ∗ denotes complex conjugation. Therefore it is only necessary to solve the
problem for positive η to obtain the solution for all η. For the derivatives one can
easily show that the relation

∂n �f (x,−η, t)
∂ηn = (−1)n � ∂n �f (x,η, t)

∂ηn � ∗ (2.33)

holds. Thus for even numbers of derivatives of the function �f with respect to η, the
real part is even and the imaginary part is odd with respect to η. For odd numbers
of derivatives of �f , the opposite holds.

2.2.5 Invariants of the Vlasov-Poisson system
The one-dimensional system (2.24) with periodic boundary conditions describes a
closed, non-dissipative system and has several invariants with respect to time, such
as

S =

� L

0

� ∞
−∞

f 2(x,v, t)dvdx (2.34)

N =

� L

0

� ∞
−∞

f (x,v, t)dvdx (2.35)

p =

� L

0

� ∞
−∞

v f (x,v, t)dvdx (2.36)

W =

� L

0 � � ∞−∞ v2

2
f (x,v, t)dv +

E2(x, t)
2

� dx (2.37)

“lic˙report”
2001/3/22
page 12

�

12 BENGT ELIASSON

which describe the conservation of the energy norm (S), the total number of elec-
trons (N), total momentum (p) and total energy (W), respectively. Instead of S as
defined here, other entropy-like functionals can be used, for example where f 2 is
replaced by f log(f) in the integrand of (2.34), with similar results [13]. The choice
used here is convenient because it has its counter-part in the Fourier transformed
space via the Parseval formula, see any mathematical handbook.

The corresponding invariants for the Fourier-transformed system (2.26)–(2.27)
are:

S ′ =
� L

0

� ∞
−∞ ��� �f (x,η, t) ��� 2 dηdx (2.38)

N =

� L

0
2π �f (x,0, t)dx (2.39)

p =

� L

0
−i2π � ∂ �f (x,η, t)

∂η �
η=0

dx (2.40)

W =

� L

0 ���� −π � ∂2 �f (x,η, t)
∂η2 �

η=0

+
E2(x, t)

2 ���� dx (2.41)

where a factor 1/2π has been omitted for S ′. In the absence of an analytical “cali-
bration” solution, it is important to check how well a numerical scheme conserves
these invariants.

2.2.6 The well-posedness of the continuous problem

The equation system (2.26)–(2.27) is valid for all η on the real axis. In order to
simulate numerically the system on an equidistant grid, one must however truncate
the solution domain in the η direction, so that, for example, −ηmax ≤ η ≤ ηmax.
Using the symmetry (2.32), this gives rise to boundaries at η = 0 and η = ηmax.

The boundary η = ηmax must be treated with care so that it does not give rise
to reflection of η “waves” or to instabilities. One strategy is to let outgoing waves
travel out over the boundary and to give a boundary condition equal to zero for
incoming waves. This gives a mathematically well-posed problem.

In order to explore this idea one can study the initial value model problem [cf.
(2.28)]

∂ �f
∂t
− i

∂2 �f
∂x∂η

= 0 (2.42)

f (x,η,0) = f0(x,η) (2.43)

“lic˙report”
2001/3/22
page 13

�

Outflow Boundary Conditions for the Fourier Transformed . . . 13

at the boundary η = ηmax. Fourier transforming Equation (2.42) in the x direction
gives a new differential equation for the unknown function �f (kx,η, t),

∂ �f
∂t

+ kx
∂ �f
∂η

= 0 (2.44)�f (kx,η,0) = �f0(kx,η) (2.45)

The general solution to this equation is�f (kx,η, t) = �f0(kx,η− kxt) (2.46)

where �f0 is an arbitrary function. The solution (2.46) describes outgoing waves at
η = ηmax for kx > 0 and incoming waves for kx < 0.

Assuming the initial condition to be zero at the boundary η = ηmax at the time
t = 0, a well-posed boundary condition is�

∂ �f
∂t + kx

∂ �f
∂η = 0, kx > 0,η = ηmax

∂ �f
∂t = 0, kx ≤ 0,η = ηmax

(2.47)

which can be expressed as

∂ �f
∂t

+ H(kx)kx
∂ �f
∂η

= 0, η = ηmax (2.48)

where H is the Heaviside step function

H(kx) = � 1, kx > 0
0, kx ≤ 0

(2.49)

The boundary condition (2.47–2.48) allows outgoing waves to pass over the bound-
ary and to be lost, while incoming waves are set to zero. In this way, we avoid
nonphysical waves from coming back from the artificial boundary. The loss of the
outgoing waves corresponds to the loss of the finest structures in velocity space.

Introducing short notations for the spatial Fourier transform and inverse spatial
Fourier transform as

Fφ =

� ∞
−∞

φ(x)e−ikx xdx (2.50)

and

F−1 �φ =
1

2π

� ∞
−∞

�φ(kx)eikx xdkx (2.51)

“lic˙report”
2001/3/22
page 14

�

14 BENGT ELIASSON

respectively, then inverse Fourier transforming Equation (2.48) with respect to kx

gives the boundary condition for the original problem (2.42) as

∂ �f
∂t

+ F−1H(kx)F −i
∂2 �f
∂x∂η ! = 0, η = ηmax (2.52)

The projection operator F−1H(kx)F projects a function onto the space of functions
with only positive Fourier components in the x direction.

Problem (2.26) is treated according to the same idea,

∂ �f
∂t

+ F−1H(kx)F −i
∂2 �f
∂x∂η

+ iηE �f ! = 0, η = ηmax (2.53)

which prevents the iηE �f term from producing spurious waves at the boundary.
The continuous problem is well-posed if the energy norm""" �f """ 2

=

� L

x=0

� ηmax

η=0 ��� �f ��� 2 dηdx =

� L

x=0

� ηmax

η=0 �f �f ∗dηdx (2.54)

of the solution is bounded for all times. In the following, we prove that this norm is
monotonically decreasing with time. Taking the time derivative of the norm gives

d
""" �f """ 2

dt
=

� L

x=0

� ηmax

η=0
 �f ∗∂ �f∂t

+ �f ∂ �f ∗∂t ! dηdx (2.55)

and then replacing the time derivatives with the differential equation (2.26) gives

d
""" �f """ 2

dt
=

� L

x=0

� ηmax

η=0 � �f ∗ i
∂2 �f
∂x∂η

− iηE �f ! +�f −i
∂2 �f
∂x∂η

∗
+ iηE∗ �f ∗ ! � dηdx

=

� L

x=0

� ηmax

η=0 � i �f ∗ ∂2 �f
∂x∂η

− �f ∂2 �f
∂x∂η

∗ ! + i �f �f ∗ � E−E∗ �# $&% '
=0, (E real)

� dηdx

= i
� L

x=0

� ηmax

η=0

� ∂
∂η

 �f ∗∂ �f∂x ! − ∂

∂x (f
∂ f ∗

∂η) � dηdx

= i
� L

x=0

� �f ∗∂ �f∂x � ηmax

η=0

dx− i
� ηmax

η=0 � �f ∂ f ∗

∂η
� L

x=0
dη

(2.56)

“lic˙report”
2001/3/22
page 15

�

Outflow Boundary Conditions for the Fourier Transformed . . . 15

where the last term vanishes due to periodic boundary conditions in the x direction,
giving

d
""" �f """ 2

dt
= i

� L

x=0

� �f ∗∂ �f∂x � ηmax

η=0

dx

= i
� L

x=0 �f ∗ (x,ηmax, t)
∂ �f
∂x

(x,ηmax, t)dx

− i
� L

x=0 �f ∗ (x,0, t)
∂ �f
∂x

(x,0, t)dx

(2.57)

The last term in (2.57) vanishes because, due to the symmetry (2.32), the imag-
inary part of the function is zero along the boundary η = 0:

−i
� L

x=0 �f ∗(x,0, t)
∂ �f
∂x

(x,0, t)dx = −i
� L

x=0 �f (Re)(x,0, t)
∂ �f (Re)

∂x
(x,0, t)dx

= −i � 12 �f (Re)(x,0, t)2 � L

x=0
= 0

(2.58)

What remains is

d
""" �f """ 2

dt
= i

� L

x=0 �f ∗ (x,ηmax, t)
∂ �f
∂x

(x,ηmax, t)dx (2.59)

Along the boundary η = ηmax, the boundary condition (2.53) is applied. This
equation can formally be integrated with respect to time, which gives�f (x,ηmax, t)

=

� t

t′=0
F−1H(kx)F � i ∂2 �f

∂x∂η
(x,ηmax, t′)− iηE(x, t′) �f (x,ηmax, t′)� dt′

= F−1H(kx)F
� t

t′=0

� i ∂2 �f
∂x∂η

(x,ηmax, t′)− iηE(x, t′) �f (x,ηmax, t′)� dt′

= F−1H(kx)Fg(x, t)

(2.60)

where

g(x, t) =

� t

t′=0

� i ∂2 �f
∂x∂η

(x,ηmax, t′)− iηE(x, t′) �f (x,ηmax, t′)� dt′ (2.61)

“lic˙report”
2001/3/22
page 16

�

16 BENGT ELIASSON

The expression (2.60) inserted into (2.59) gives

d
""" �f """ 2

dt
= i

� L

x=0 * F−1H(kx)Fg(x, t) + ∗ ∂
∂x * F−1H(kx)Fg(x, t) + dx (2.62)

Due to periodic boundary conditions in the x direction, the function g can be
expanded into a Fourier series,

g(x, t) =
∞
∑

ω=−∞ �gω(t)ei2πω x
L (2.63)

Taking the Fourier transform of this expression gives

Fg(x, t) =

� ∞
−∞

e−ikx x
∞
∑

ω=−∞ �gω(t)ei2πω x
L dx

=
∞
∑

ω=−∞ �gω(t)
� ∞
−∞

ei(2πω
L −kx)xdx

=
∞
∑

ω=−∞ �gω(t)2πδ0 (2πω
L
− kx) (2.64)

where δ0 is the Dirac delta measure.
Multiplying this expression by the Heaviside function truncates the infinite sum

as

H(kx)Fg(x, t) =
∞
∑

ω=−∞ �gω(t)2πH(kx)δ0 (2πω
L
− kx)

=
∞
∑
ω=1 �gω(t)2πδ0 (2πω

L
− kx) (2.65)

since ω ≤ 0 gives zero contribution to the sum.
Inverse Fourier transforming expression (2.65) gives

F−1H(kx)Fg(x, t) =
1

2π

� ∞
−∞ * H(kx)Fg(x, t) + eikx xdkx

=
∞
∑
ω=1 �gω(t)

� ∞
−∞

δ0 (2πω
L
− kx) eikx xdkx

=
∞
∑
ω=1 �gω(t)ei 2πω

L x

(2.66)

“lic˙report”
2001/3/22
page 17

�

Outflow Boundary Conditions for the Fourier Transformed . . . 17

which, inserted into (2.62), gives

d
""" �f """ 2

dt
= i

� L

x=0

� ∞∑
ω=1 �gω(t)ei 2πω

L x � ∗ ∂∂x
� ∞∑
ω=1 �gω(t)ei 2πω

L x � dx

= i
� L

x=0

� ∞∑
ω=1 �g∗ω(t)e−i 2πω

L x � � ∞∑
ω=1 �gω(t)i

2πω
L

ei 2πω
L x � dx

= −2π
L

� L

x=0

∞
∑
ω=1 �g∗ω(t)�gω(t)ωdx = −2π

∞
∑
ω=1 �� �gω(t) �� 2ω ≤ 0

(2.67)

Thus we have proved that the energy norm is non-increasing with time, and there-
fore the continuous problem with the given boundary conditions is well-posed.

2.3 Numerics
2.3.1 Storage of the solution

This section discusses the number of grid points and the amount of data needed for
storing the solution.

When storing the distribution function f (x,v, t) on a grid there are two problems
to keep in mind.

1. The function is defined for all velocities, but numerically one has to truncate
the solution domain at some “high” velocity vmax, where the function values
have become small enough.

2. The function may contain oscillatory structures in the v direction, and one
has to have a fine enough grid to represent these structures.

These two problems have their counterparts in the inverse Fourier transformed vari-
ables; a less localised function in v space leads to finer structures in η space, and
finer structures in v space leads to a less localised function in η space. To be precise,
the two problems are converted to

1. Assuming that the maximum velocity for particles is v = vmax, then after
Fourier transforming the function f (x,v, t), the quantity kη,max = vmax will be
the maximum wave number in η direction, and the minimum “wavelength”
will then be λη,min = 2π/kη,max = 2π/vmax. According to the Nyqvist sampling
theorem one needs at least two grid points per wavelength to represent the
solution, so the grid size condition becomes ∆η < λη,min/2 = π/vmax.

“lic˙report”
2001/3/22
page 18

�

18 BENGT ELIASSON

2. Assuming that the shortest “wavelength” to be resolved in the v direction is
λv,min, the highest wave number in the v direction becomes kv,max = 2π/λv,min.
After Fourier transformation, this gives a condition on the domain size in the
η direction as ηmax ≥ kv,max = 2π/λv,min.

The number of grid points needed to represent the function f (x,η, t) on the interval
0 ≤ η ≤ ηmax [for negative η one can use symmetry relation (2.32)] is then

Nη =
ηmax

∆η
> 2

vmax

λv,min
(2.68)

For representing the original function f (x,v, t) one needs to store the function val-
ues on the domain −vmax ≤ v ≤ vmax, with the grid size ∆v < λv,min/2 according to
the sampling theorem. This gives the number of grid points to be stored in the v
direction as

Nv =
2vmax

∆v
> 4

vmax

λv,min
(2.69)

Thus, in order to represent the original function f (x,v, t) one needs to store twice
as many grid points as compared to representing the Fourier transformed function�f (x,η, t). However, the function �f (x,η, t) is complex valued so the amount of data
to store is the same for �f (x,η, t) as for f (x,v, t).

2.3.2 Discretisation
We discretise the problem on a rectangular, equidistant grid with periodic boundary
conditions in the x direction. In the η direction the grid starts at η = 0 and ends at
some positive η = ηmax.

The approximate function values at the grid points are enumerated such that�f (xi,η j, tk) ≈ �f k
i, j (2.70)

with

xi = i∆x, i = 0, 1, . . . , Nx−1 (2.71)

η j = j∆η, j = 0, 1, . . . , Nη (2.72)

tk = k∆t, k = 0, 1, . . . , Nt (2.73)

where

∆x =
L

Nx
(2.74)

∆η =
ηmax

Nη
(2.75)

∆t =
tend

Nt
(2.76)

“lic˙report”
2001/3/22
page 19

�

Outflow Boundary Conditions for the Fourier Transformed . . . 19

2.3.3 Pseudo-spectral methods
For a problem which has periodic solutions, it is sometimes efficient to use pseudo-
spectral methods to calculate linear operators accurately.

The pseudo-spectral methods are based on trigonometric interpolation where
trigonometric polynomials are interpolated to a function at the grid points. Assume
the discretisation with Nx equidistant grid pints as described in Section 2.3.2. The
discrete Fourier transform (DFT) pair form the quantities�φω =

1
Nx

Nx−1

∑
j=0

φ(x j)exp (−i2πω
j

Nx) ≡ DFTφ(x) (2.77)

φNx(x) =
Nx/2

∑
−(Nx/2−1)

φω exp � i2π x
L
� ≡ DFT−1φω (2.78)

where φ(x) is assumed to be a continuous function which is interpolated at the grid
points x j by the trigonometric interpolating polynomial φNx(x). Thus the function
φ(x) is approximated by φNx(x).

A linear operator acting on φ(x) is approximated by the same linear operator
acting on the interpolating polynomial φNx(x). Linear operators which are trans-
lationally invariant (does not change with x) give rise to functions of ω which
multiply �φω in Equation (2.78). A general notation is therefore, for such a linear
operator P and the corresponding function p(ω),

Pφ(x) ≈ PφNx(x) = DFT−1 p(ω)DFTφ(x) (2.79)

The algorithm is: First the DFT is performed on φ(x), then the result is multi-
plied by p(ω), and then the inverse DFT is performed on this result to obtain the
approximation.

In the case when P = ∂/∂x, then p(ω) = ikx(ω), where kx = 2πω/L. In the case
when P represents an integration operator, then p(ω) = 1/ikx forω 6= 0 and p(ω) = 0
for ω = 0. The function p(ω) = H(kx(ω)), where H is the Heaviside step function,
is used for the boundary condition at η = ηmax. The corresponding operator P for
this case is related to the Hilbert transform.

In what follows, the notation for the numerical approximation of the Fourier
transform on the periodic functions will be

Fφ ≈ DFTφ (2.80)

F−1 �φ ≈ DFT−1 �φ (2.81)

The discrete Fourier transforms are efficiently calculated by the fast Fourier trans-
form (FFT) algorithms.

“lic˙report”
2001/3/22
page 20

�

20 BENGT ELIASSON

2.3.4 Numerical approximations

The Vlasov-Poisson system (2.26,2.27), together with the boundary condition (2.53)
at η = ηmax, is approximated by a semi-discretisation in x and η space. After that,
time steps are taken with the fourth-order Runge-Kutta method.

In order to define the semi-discretisation, the equations are rewritten on the
form

∂ �f
∂t

= i
∂2 �f
∂x∂η

− iηE �f , 0 ≤ η < ηmax, 0 ≤ x < L (2.82)

∂E(x, t)
∂x

= 1−2π �f (x,0, t) (2.83)

∂ �f
∂t

= F−1H(kx)F i
∂2 �f
∂x∂η

− iηE �f ! , η = ηmax, 0 ≤ x < L (2.84)�f (x + L,η, t) = �f (x,η, t) (2.85)

Equation (2.83) is solved numerically to obtain E, which is then used to cal-
culate the right-hand sides in Equation (2.82) and (2.84); one can consider E as
a function of f . The η and x derivatives in Equation (2.82) and (2.84) as well as
the operator F−1H(kx)F in Equation (2.84) are calculated numerically; the methods
will be described below. By these approximations and after discretisations in x
and η directions according to Section 2.3.2, the equation is approximated by the
semi-discretisation

∂ �fi, j
∂t

= P(�f)i, j (2.86)

where P is a grid function representing the numerical approximation of the right-
hand sides of Equation (2.82) and (2.84); the function P is a function of all �fi, j. The
unknown �fi, j is then discretised also in time, and the time-stepping is done with the
well-known Runge-Kutta algorithm:

1. F(1)
i, j ← P(�f k), ∀ i, j

2. F(2)
i, j ← P(�f k + F(1)∆t/2), ∀ i, j

3. F(3)
i, j ← P(�f k + F(2)∆t/2), ∀ i, j

4. F(4)
i, j ← P(�f k + F(3)∆t), ∀ i, j

5. �f k+1
i, j ← �f k

i, j +
∆t
6 (F(1)

i, j + 2F(2)
i, j + 2F(3)

i, j + F(4)
i, j), ∀ i, j

The steps needed for obtaining the approximation Pi, j are:

“lic˙report”
2001/3/22
page 21

�

Outflow Boundary Conditions for the Fourier Transformed . . . 21

1. Calculate the electric field numerically from Equation (2.83).

2. Calculate a numerical approximation of Equation (2.82), for all
points including the points along the boundary η = ηmax.

3. Apply numerically the boundary condition (2.84) for the points
along the boundary η = ηmax.

The periodic boundary condition (2.85) eliminates in practice the boundary at
x = L. There is no need to store the function value corresponding to x = L, and,
when needed, one uses the rule �f (x,η, t) = �f (x − L,η, t) for x ≥ L, and the rule�f (x,η, t) = �f (x + L,η, t) for x < 0. The corresponding rules for the discrete case are�fi, j = �fi−Nx, j for i ≥ Nx and �fi, j = �fi+Nx, j for i < 0, respectively.

Due to the periodicity in the x direction, a pseudo-spectral method can be used
to calculate the x derivatives in the Equations (2.82 – 2.84) accurately, as described
in Section 2.3.3

By using the well-known relation for the Fourier transform

∂φ

∂x
= F−1F

∂φ

∂x
= F−1ikxFφ (2.87)

the corresponding approximation of the x derivative, used in the discretised case
(see Section 2.3.3), is

∂φ

∂x
≈ DFT−1 * ikxDFT(φ) + (2.88)

The integration of E is approximated by

E ≈ DFT−1 � 1
ikx

DFT(1−2π �f k
i,0) � (2.89)

except for kx = 0. The component corresponding to kx = 0 is set equal to zero.
The numerical approximation of the x derivatives in Equation (2.82) and (2.84)

with

∂2 �f
∂x∂η

=
∂

∂η
 ∂ �f
∂x ! (2.90)

is performed as

∂ �f
∂x
≈ DFT−1 � ikxDFT(�f k

i, j) � (2.91)

“lic˙report”
2001/3/22
page 22

�

22 BENGT ELIASSON

In the η direction, the derivative v =
∂ ,f
∂η is calculated using the classical fourth

order Padé scheme [6, 11]. For the inner points, the implicit approximation

vi, j−1 + 4vi, j + vi, j+1 =
3

∆η
� �fi, j+1− �fi, j−1

� , j = 1, 2, . . . , Nη−1 (2.92)

is used. A family of similar schemes exists [11].
At the boundary η = 0, the symmetry (2.32) and (2.33) is used to apply the

same approximation of the derivative at the boundary as for the inner points. The
relations �fi,−1 = �f ∗i,1 and vi,−1 = −v∗i,1 give

−v∗i,1 + 4vi,0 + vi,1 =
3

∆η
� �fi,1− �f ∗i,1 � (2.93)

or, for the real and imaginary parts,

v(Re)
i,0 = 0 (2.94)

2v(Im)
i,0 + v(Im)

i,1 =
3

∆η �f (Im)
i,1 (2.95)

respectively.
At the boundary η = ηmax, the one-sided approximation

vi,Nη + 3vi,Nη−1 = − 1
2∆η

� −5 �fi,Nη + 4 �fi,Nη−1 + �fi,Nη−2
� (2.96)

is used. This gives a truncation error of order ∆η3 at the boundary.
The equations (2.92), (2.93) and (2.96) form one tridiagonal equation system

for each subscript i = 0, 1, . . . , Nx, each system having Nη complex-valued un-
knowns. In practice the equation system can be split into systems for the real
and imaginary parts separately.

At the boundary η = ηmax the boundary condition (2.84) is applied, with the
help of the approximation

F−1H(kx)Fφ(x,ηmax, t) ≈ DFT−1 � H(kx)DFT(φk
i,Nη

) � (2.97)

where φ(x,ηmax, t) is the right-hand side of (2.82) along the boundary η = ηmax and
φk

i,Nη
its discrete approximation.

In order to reduce aliasing effects in the x direction, a sixth-order dissipative
term is added to Equation (2.26), which changes into

∂ �f
∂t
− i

∂2 �f
∂x∂η

+ iηE �f −δ(∆x)4∂
6 �f
∂x6 = 0 (2.98)

where the real constant δ is chosen to some small positive number. The sixth
derivative is approximated with a centred second-order approximation.

“lic˙report”
2001/3/22
page 23

�

Outflow Boundary Conditions for the Fourier Transformed . . . 23

2.3.5 Stability analysis
When solving the reduced model problem

∂ �f
∂t
− i

∂2 �f
∂x∂η

= 0 (2.99)

with an explicit scheme, the stability region is

∆t <
ρ

KxKη
(2.100)

where ρ =
√

8 for the explicit Runge-Kutta scheme, and Kx and Kη are the max-
imum values of the approximations of wavenumbers produced by the numerical
scheme in x and η direction, respectively.

In the x direction the spectral method gives a maximum value of the approxi-
mated wave number equal to

Kx =
π

∆x
(2.101)

In the η direction the Padé scheme, applied to a continuous function, is

v(η−∆η) + 4v(η) + v(η+∆η) =
3

∆η
� �f (η+∆η)− �f (η−∆η) � (2.102)

which, with v(η) = �vexp(ikηη) and �f (η) = �f exp(ikηη), gives�v = i
3

∆η

sin(kη∆η)* 2 + cos(kη∆η) + �f (2.103)

Hence, the maximum value of the approximated wavenumber in the η direction is

Kη = max
0≤kη∆η≤π ����� 3

∆η

sin(kη∆η)* 2 + cos(kη∆η) + ����� = √3
∆η

(2.104)

where the maximum is obtained for kη∆η = 2π/3.
Inserting the expressions for ρ, Kx and Kη into (2.100) then gives the choice of

∆t as

∆t <

√
8√

3π
∆x∆η ≈ 0.52∆x∆η (2.105)

for stability, disregarding the boundary conditions and the dissipative term. The
Courant-Friedrich-Lewy (CFL) condition for stability of explicit schemes for hy-
perbolic equations can be found in text books on numerical analysis, for example

“lic˙report”
2001/3/22
page 24

�

24 BENGT ELIASSON

the text book by Strikwerda [21]. Even if the differential equation treated here is
not a hyperbolic equation, it turns out to be convenient to define a generalised CFL
number, so that the condition (2.105) can be expressed as

∆t = CFL
√

8√
3π

∆x∆η (2.106)

where the positive CFL number

CFL < 1 (2.107)

for stability.
For the full problem, including the nonlinearity, dissipative term and bound-

aries, some numerical tests have shown that CFL = 0.8 gives stability while CFL =

0.9 gives instability; see also section 2.4 for the CFL numbers used there.

2.3.6 The conservation of particles

It is easily shown that the numerical scheme, including the Runge-Kutta time
marching, conserves exactly the total number of particles (2.39), approximated
by the formula

N = 2π
Nx−1

∑
i=0 �f k

i,0∆x (2.108)

The sum only picks up the zeroth Fourier component �f k
i,0, corresponding to kx = 0,

and that component is left unchanged since it vanishes in the term containing the
x derivative in Equation (2.26) with the approximation (2.91). Along the boundary
η = 0 the last term in (2.26) also vanishes. This result has been verified in the
numerical experiments where it has been found that the number of particles are
conserved by the numerical scheme up to the precision of the computer.

2.4 Numerical results
2.4.1 Reflections at the boundaries

In order to verify that waves are absorbed by the boundary at η = ηmax, and that
thereby the recurrence phenomenon is reduced, a numerical experiment was car-
ried out. The simulation domain was chosen to be 0 ≤ x ≤ 4π, 0 ≤ η ≤ 20. The
number of grid points in the x direction was Nx = 100. The initial condition was
chosen according to Equation (2.114) below with the amplitude A = 0.0002 and

“lic˙report”
2001/3/22
page 25

�

Outflow Boundary Conditions for the Fourier Transformed . . . 25-/.

0 .
132&465132 487132&4:9132&46;
132&48<132 46=132&48>

? @BAC?

D
ECF13G�2G�22 HI2 JK2 LK2 132K2

M .

Figure 2.1: Reflections of waves against the boundary η = ηmax. The time develop-
ment of the first spatial harmonic E1 of the electric field.

the wavenumber kx = 0.5; this choice assured that the wave was linearly damped
according to known theory [20]. Three numerical experiments can be seen in
Fig. 2.1, which displays the time development of the first spatial harmonic of the
electric field. Curve a) shows a simulation with the outgoing wave boundary con-
dition and with the grid size ∆η = 2/15, and in curve b) the grid has been made
coarser, ∆η = 2/10. As a reference, curve c) shows a simulation with the com-
monly used [1, 4] Dirichlet-type of boundary condition �f (x,ηmax, t) = 0 on the finer
grid ∆η = 2/15.

As can be seen in Fig. 2.1, the solutions are initially exponentially damped,
and at about t = 50 one can see some smaller reflections from the boundary, fol-
lowed by a much stronger reflection at t = 100. The solution on the finest grid
a) with outgoing wave boundary conditions shows a reflected wave with the am-
plitude about 1/1000 of the amplitude of the initial condition at t = 0, while the
solution on the somewhat coarser grid b) shows a reflected wave with the ampli-

“lic˙report”
2001/3/22
page 26

�

26 BENGT ELIASSON

tude somewhat more than 1/100 of the initial amplitude. With the Dirichlet-type
boundary condition c), the reflected wave is of the same order in amplitude as the
initial amplitude.

As should be apparent from this numerical investigation, the outgoing wave
boundary condition prevents, to a large extent, waves from returning back and
ruining the calculations, while the simple Dirichlet-type boundary condition leads
to an almost total reflection of waves. These reflected waves lead to a similar
detrimental effect as the recurrence phenomenon in real velocity space.

2.4.2 Nonlinear Landau damping
In order to ascertain that the numerical scheme reproduces some known non-linear
effects, tests with larger initial amplitudes of the waves were carried out.

A simulation was performed with the initial condition according to, in terms of
the original (x,v) variables,

f (x,v,0) = (1 + Acos(kxx)) f0(x,v) (2.109)

where f0 was chosen as

f0(x,v) =
1√
2π

exp

�
−1

2 � v− ωkx
Acos(kxx) � 2 N

(2.110)

This is an approximation of a sinusoidal wave moving in the rightward direction.
The approximate dispersion relation for Langmuir waves yields ω =
 1 + 3k2

x. In
the inverse Fourier transformed variables, the initial condition is converted into�f (x,η,0) = [1 + Acos(kxx)] �f0(x,η) (2.111)

where �f0(x,η) =
1

2π
exp � iωkx

Acos(kxx)η � exp (−1
2
η2) (2.112)

which is the initial condition used in the simulation.
The wave number kx = 0.25 and amplitude A = 0.15 were chosen. The sim-

ulation domain was set to 0 ≤ x ≤ 24π, 0 ≤ η ≤ 30 with Nx = 300, Nη = 150 and
∆t = 0.00875 (CFL ≈ 0.33). The numerical dissipation was set to δ = 0.002. In
order to visualise the solution, it was Fourier transformed back to the real-valued
function f (x,v, t) and plotted in Fig. 2.2. One can see the process of electrons get-
ting trapped and starting to oscillate in the potential wells of the wave. As expected,

“lic˙report”
2001/3/22
page 27

�

Outflow Boundary Conditions for the Fourier Transformed . . . 27

t = 0ω−1
p

t = 7ω−1
p

t = 14ω−1
p

t = 21ω−1
p

Figure 2.2: The development of an electrostatic wave in phase space (x,v) at four
different times. One can see particles getting trapped in the potential wells of the
wave.

“lic˙report”
2001/3/22
page 28

�

28 BENGT ELIASSON

ωpt

E3

706050403020100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

ωpt

E2

706050403020100

10−1

10−2

10−3

10−4

10−5

10−6

ωpt

E1

706050403020100

100

10−1

10−2

10−3

10−4

10−5

Figure 2.3: The first three spatial harmonics of the electric field.

ωpt

‖ ,f ‖2
‖ ,f ‖2t=0

70006000500040003000200010000

1

0.8

0.6

0.4

0.2

0

Figure 2.4: The relative change of the squared norm.

“lic˙report”
2001/3/22
page 29

�

Outflow Boundary Conditions for the Fourier Transformed . . . 29

ωpt

W
Wt=0

70006000500040003000200010000

1.001

1.0008

1.0006

1.0004

1.0002

1

0.9998

0.9996

0.9994

0.9992

0.999

Figure 2.5: The relative change of the total energy.

OQP:R
SUT

VXW8W6WY W6W8WZ W8W6W[6W6W8W\ W6W6W] W8W6W^ W8W6WW

^W`_ ^W`_ W ^W`_ W6W ^W`_ W8W6W ^
Figure 2.6: The long-term behaviour of the amplitude of the first spatial mode E1
of the electric field (Function values below 0.04 have been removed).

“lic˙report”
2001/3/22
page 30

�

30 BENGT ELIASSON

the solution becomes increasingly oscillatory in the velocity (v) direction, due to
the ballistic terms.

Another numerical experiment on nonlinear Landau damping was carried out,
with the initial condition chosen to

f (x,v,0) = [1 + Acos(kxx)] f0(v) (2.113)

where A = 0.5, kx = 0.5 and f0(v) = (2π)−1/2 exp(−v2/2); this is identical to one of
the experiments carried out by Cheng and Knorr [3].

In the inverse Fourier transformed variables the initial condition becomes�f (x,η,0) = [1 + Acos(kxx)] �f0(η) (2.114)

with �f0(η) = (2π)−1 exp(−η2/2). The simulation domain was chosen as 0 ≤ x ≤ 4π
and 0 ≤ η ≤ 30 with Nx = Nη = 100, and the time domain was chosen as 0 ≤ t ≤ 70
with Nt = 5000 (CFL ≈ 0.71). The numerical dissipation was set to δ = 0.001. The
amplitudes of the first three spatial components of the electric field were plotted
against time in Fig. 2.3. One can note a strong exponential damping of the ampli-
tudes from t = 0 to t ≈ 10, in agreement with linear Landau theory. From t ≈ 20 to
t ≈ 40 the modes grow exponentially, whereafter they oscillate around equilibria as
the Landau damping enters the nonlinear regime [20]. These results are in excel-
lent agreement with those obtained by Cheng and Knorr. These authors have made
a deeper analysis of the results [3].

In order to test the long-term properties of our numerical method, a longer
simulation was performed where the time domain was changed to 0 ≤ t ≤ 7000
and Nt = 500,000, and the other parameters were kept unchanged. No numerical
instability could be detected in the simulation. The squared energy norm (2.54)
was numerically approximated by using a sum representation of the double integral
and its value, relative to its initial value, was plotted against the time in Fig. 2.4.
Initially it decreases from unity down to an equilibrium state at about 0.8130 after
which it exhibits very small fluctuations. This decrease of the norm is due to waves
passing over the boundary η = ηmax.

The time development of the total energy (2.41) is shown in Fig. 2.5. As can
be seen, the energy is almost entirely conserved. In order to calculate the second
derivative in the formula for the energy, a centred sixth-order scheme was used
together with the symmetry (2.32).

The behaviour of the first spatial mode of the electric field is shown in Fig. 2.6.
The electric field is initially damped from the value 0.5 down to somewhat below
0.05 where the damping almost vanishes. In a numerical long-time experiment
carried out by Manfredi [13], this general behaviour of the solution could also be
observed, for an almost similar problem.

“lic˙report”
2001/3/22
page 31

�

CHAPTER 3

Parallel implementation of the Vlasov code

3.1 Introduction

In this chapter, the parallel implementation of the numerical algorithm is discussed,
with emphasis on the methods used to optimise the code and on the parallel algo-
rithms used. A numerical test is performed on two computer systems in order to
check the portability and speedup of the parallel code.

3.2 Program structure

The algorithms for solving the one-dimensional Vlasov equation is implemented in
Fortran 90. It consists of a main program and a number of subroutines called by the
main program and by each other. The program has a hierarchy as shown in Figure
3.1; as can be seen in the figure, the names of the subroutine are object-like. Even
if Fortran 90 is not fully object-oriented, it has turned out to be more convenient to
think of the routines as objects instead of subroutines and functions. The numerical
objects lower down in the program hierarchy are called by those higher up. Objects
that use MPI commands for communication are marked with “MPI” in the figure.
The source code is listed in Appendix (A).

The code is parallelised using MPI (Message Passing Interface), which makes
the code highly portable; the code has been run on Hewlett-Packard and Sun par-
allel computers (described below) and also on the IBM SP2 system at the Royal
Institute of Technology (KTH).

31

“lic˙report”
2001/3/22
page 32

�

32 BENGT ELIASSON

RungeKutta_ Domain_
Finalizer
Domain_

(numeric_mod)

Domain_
Initializer TimeStepper

(numeric_mod)

(numeric_mod)

(numeric_mod)(numeric_mod)

SimpsonIntegrator

(domain_mod)

MPI

MPI

MPI MPI

MPI

Main

destructor
(domain_mod)
Constructor

PeriodicIntegrator
(numeric_mod)

(numeric_mod)
StatisticsCalculator
Domain_

StatisticsWriter

(numeric_mod)

(numeric_mod)
ElectricField
(numeric_mod)

ElectricField
(numeric_mod)

PDE_RHS

ElectricField x_FourierDifferentiator
(numeric_mod)

(numeric_mod)
TriDiag_Solver

(numeric_mod)
eta_Differentiator

MPI

Figure 3.1: The program hierarchy

3.3 Time consuming subroutines
The most time-consuming subroutines could be identified with the simple profiling
tool gprof. A short description of these subroutines is presented in the following
list:

pde rhs: Calculates the function values in the Runge-Kutta algorithm.

RungeKutta TimeStepper: Performs a Runge-Kutta time step. It
contains a number of loops which perform few arithmetic oper-
ations but accesses memory where large two-dimensional arrays
are stored.

TriDiag Solver: Solves a small tri-diagonal linear equation system.
This routine performs only a few arithmetic operations but is
called many times.

eta Differentiator: Approximates the η derivative with a difference

“lic˙report”
2001/3/22
page 33

�

Parallel implementation of the Vlasov code 33

approximation, where a tri-diagonal system has to be solved; for
this task the TriDiag Solver routine is called.

x FourierDifferentiator: Approximates the x derivative with a spec-
tral method. This is done by using the fast Fourier transform,
supplied by a standard package.

The code was compiled on a single-processor machine with the +O2 optimisation
flag. The problem size was Nx ×Nη = 100× 64 and Nt = 800. The gprof utility
gave the following results:

Subroutine Seconds Milliseconds/call Calls
pde rhs 11.34 3.54 3200
RungeKutta TimeStepper 8.41 10.51 800
TriDiag Solver 4.41 0.01 652800
eta Differentiator 3.79 0.59 6400
x FourierDifferentiator 1.89 0.59 3200

The time command gave the total user time 37.5 seconds for this problem.

3.4 Code optimisation before parallelisation
The single-processor code was investigated in order to make optimisations accord-
ing to “the most common hints,” that is, the most simple optimisations without any
elaborate tricks:

pde rhs: One division and one multiplication by constants in a loop,
were replaced by one multiplication by a constant; this halved
the execution time. Some loops were split into two, which gave
some improvement. After these changes the time used by the
routine decreased from 11.34 to 5.00 seconds.

RungeKutta TimeStepper: This routine updates large arrays with
new values. The first change was to replace the index nota-
tion supported by Fortran 90 by explicit loops over the arrays;
this gave some improvement. Instead of updating two arrays in
one loop, the loop was split into two loops updating one array
each; this also gave some improvement. The third change was to
replace the dynamic arrays, created with the ALLOCATE com-
mand, with static arrays, since it was not necessary for the array
sizes to be changed during run-time. This gave a very large im-
provement of the speed. With these changes, the time used by
this routine decreased from 8.41 to 0.96 seconds.

“lic˙report”
2001/3/22
page 34

�

34 BENGT ELIASSON

TriDiag Solver: No changes were made.

eta Differentiator: One division and one multiplication by constants
in a loop, were replaced by with one multiplication by a constant.
After this change, the time used by the routine decreased from
3.79 to 1.96 seconds.

x FourierDifferentiator: No changes were made.

The code was again compiled with the +O2 optimisation flag with the problem size
Nx×Nη = 100×64 and Nt = 800, with the following results:

Subroutine Seconds Milliseconds/call Calls
pde rhs 5.00 1.83 3200
RungeKutta TimeStepper 0.96 1.70 800
TriDiag Solver 4.66 0.01 652800
eta Differentiator 1.96 0.31 6400
x FourierDifferentiator 1.94 0.61 3200

The time command now gave the total user time 23.6 seconds, to be compared with
37.5 seconds for the original code.

3.5 Parallelisation and partitioning of data
The computation domain was partitioned in the x direction. By this partitioning of
data the following subroutines could be run in parallel; in fact these routines were
not changed at all compared with the single processor code:

Subroutine
RungeKutta TimeStepper
TriDiag Solver
eta Differentiator

The pde rhs subroutine contains a treatment of a boundary condition which
requires a forward and backward FFT on one vector in the x direction. This oper-
ation is performed serially by Processor 0; the communication is performed with
the MPI commands MPI GATHER and MPI SCATTER.

The subroutine ElectricField that calculates the Electric field does so by
a pseudo-spectral method which requires a forward and backward FFT on a vector
plus a multiplication by a constant. This is performed serially by Processor 0
and the communication is performed with the MPI commands MPI GATHER and
MPI SCATTER.

“lic˙report”
2001/3/22
page 35

�

Parallel implementation of the Vlasov code 35

A subroutine that performs statistics of the data needs to communicate partial
sums to a total sum. The partial sums are sent to Processor 0 with the MPI REDUCE
command.

The subroutine x FourierDifferentiator calculates the x derivative on
the whole domain. It does so by using a pseudo-spectral method. It requires a for-
ward and backward FFT of Nη vectors, each of length Nx, and a multiplication with
a constant. Instead of parallelising the FFT (or using a parallelised FFT package),
the work is partitioned by first sending one vector to each processor, then letting
each processor, in parallel, do the forward and inverse FFT and multiplication by a
constant, and then distribute back the results, and then to repeat this procedure until
all Nη vectors are processed. The communication is performed with the MPI com-
mands MPI GATHER and MPI SCATTER. This part of the code puts the heaviest
load on the communication.

3.6 Performance model
In order to make a precise performance model one should know how the computer
systems are constructed and how communication between processors is performed
in detail. The performance model presented here is, however, very simple and
does not take into account the differences in computer systems; it only contains the
very basic elements of a performance model. Therefore one can at best expect the
real computation times and speedups to follow the model qualitatively, not quan-
titatively. For a more detailed discussion about performance models for different
computer designs, see for example the book by Kumar et al. [10].

A simple model for the total execution time T for a problem is

T = Tcomp + Tmsg + Tidle (3.1)

where the computation time is

Tcomp = τfNf (3.2)

Here τf is the time to perform one floating point operation and Nf is the number of
floating point operations performed per processor.

The messaging time is

Tmsg = τsNs +τbLp (3.3)

where τs is the startup time or latency for a message, Ns is the number of messages
to send per processor, τb is the time to send one byte and Lp is the total number of
bytes per processor to be sent.

“lic˙report”
2001/3/22
page 36

�

36 BENGT ELIASSON

The idle time Tidle is the time the processor has to wait when another processor
is doing work. This can happen due to bad load balance or when a purely serial
part of an algorithm is processed by a processor.

With Nt, Nη and Nx being the number of grid points in the time, η and x direc-
tions, respectively, the problem size is

Mtot = 2NtNηNx (3.4)

where the factor 2 comes from the fact that the solution is complex valued. The
problem size per processor is therefore

Mp =
2NtNηNx

Np
(3.5)

where Np is the number of processors.
The total number of floating point operations per processor is approximately

Nf = 25Mp (3.6)

that is, on each data there are 25 arithmetic operations per time step.
The total amount of data to send per processor is approximately

Lp = 2Mp (1− 1
Np) (3.7)

This expression is for the x FourierDifferentiator routine where the MPI GATHER
and MPI SCATTER routines are used.

The total number of messages is approximately

Ns = (10 + Nη)Nt(Np−1) (3.8)

Altogether, this gives the total time to solve the problem as

T =
Mtot

Np � 25τf + 2τb (1− 1
Np) � +τs(10 + Nη)Nt(Np−1) + Tidle (3.9)

This model predicts that the total execution time T → τs(10 + Nη)Nt(Np − 1),
that is, the latency time τs will lead to a dominating and growing term in the limit
Np→∞.

The relative speedup in this model is

S =
T (1)

T (Np)

=
Mtot (25τf) + Tidle

Mtot
Np

� 25τf + 2τb � 1− 1
Np

� � +τs(10 + Nη)Nt(Np−1) + Tidle

(3.10)

Its general behaviour is first an increase with increasing Np and then a decrease as
the latency term τs(10 + Nη)Nt(Np−1) becomes dominating in the denominator.

“lic˙report”
2001/3/22
page 37

�

Parallel implementation of the Vlasov code 37

3.7 Numerical experiments and results
Identical codes were compiled on two different computer systems:

1. The Sun “Albireo” system at the Information Technology depart-
ment at Uppsala University. It consists of two Sun Ultra Enter-
prise servers, each having 16 UltraSparcII (250 MHz) proces-
sors. The system has 4 GB RAM.
The optimisation flag -fast was used for the compiler.

2. The Hewlett Packard “Zeipel” system at the Astronomy depart-
ment at Uppsala University. It consists of an HP 9000/V25000
computer having 12 PA RISC (440 MHz) processors. The sys-
tem has 2 GB RAM.
The optimisation flags +O2 and +Omultiprocessorwas used
in the compilation.

The problem size was varied in the x direction, while the size Nη = 65 and the
number of time steps Nt = 800 were kept constant.

The following Tables show the time consumption measured in minutes:seconds
on the two different computer systems used, as a function of the number of grid-
points Nx and the number of processors Np. The time is the “real” time measured
using the Unix time command.

The “Albireo” system:

Nx = 100 Nx = 200 Nx = 400 Nx = 800 Nx = 1600
Np = 1 40 1:12 2:35 5:40 13:57
Np = 2 29 50 1:36 3:13 6:54
Np = 4 24 45 1:04 1:59 3:42
Np = 5 23 31 54 1:38 3:07
Np = 8 – 34 47 1:20 2:29
Np = 10 32 43 57 1:27 2:42
Np = 20 1:04 1:03 1:21 1:52 3:02

The “Zeipel” system:

Nx = 100 Nx = 200 Nx = 400 Nx = 800 Nx = 1600
Np = 1 15 40 1:56 4:44 9:56
Np = 2 16 29 58 2:32 5:45
Np = 4 13 21 41 1:24 3:08
Np = 5 13 20 36 1:08 2:36
Np = 8 – 18 29 59 1:59
Np = 10 14 18 28 54 1:41

“lic˙report”
2001/3/22
page 38

�

38 BENGT ELIASSON

3.8 Comparison between the performance model and ex-
periment

The numerical experiment showed that both computer systems show an almost
linear speedup for few processors and for large problems. The general behaviour
for the smaller problems are then that the speedups reach maximums for some Np
and then it decreases again; this behaviour is predicted by the theoretical formula
(3.10) for the speedup.

“lic˙report”
2001/3/22
page 39

�

CHAPTER 4

Linear dispersion laws and Landau damping

4.1 Introduction
In order to verify that the computer code developed produces accurate results, a
numerical experiment was carried out to verify that the numerical algorithm repro-
duces the linear dispersion law for electrostatic waves according to known theory.

The dispersion law determines the relation between the angular frequency ω
and the wave vector kx for a wave on the form exp(i(kxx −ωt)). This law is a
macroscopic law, as opposed to the microscopic full solution to the Vlasov equa-
tion; the calculation of the electric field involves taking an integral of f (x,v, t) over
all v, loosing the information of the exact behaviour of f in v direction. If kx is real
valued then ω may be real valued for undamped waves, or ω may be complex val-
ued with a positive imaginary part for waves which grow exponentially with time
or a negative imaginary part for exponentially decaying waves.

4.2 Approximate theoretical dispersion law
As is well known, linear electrostatic plasma waves may be damped even though
there are no collisions that would normally dissipate energy from the wave. This is
due to the Landau damping effect which reduces wave amplitudes through phase
mixing [2]. Groups of electrons will become more and more uncorrelated with
other groups of electrons, resulting in a diminishing of the collective wave elec-
tric field. In the macroscopic dispersion law, the microscopic origin of the Landau
damping will be lost and one will only see the manifestation of it through an ex-
ponential damping of the wave amplitudes. Since the total energy of the system
of electrons is constant, the potential energy of the electric field is converted into
kinetic energy of the electrons. The temperature of the electrons is then raised,

39

“lic˙report”
2001/3/22
page 40

�

40 BENGT ELIASSON

even though no collisions have occurred.
No expression in terms of elementary functions exist for the dispersion law

for electrostatic waves in a Maxwellian Vlasov plasma, but one often uses various
analytic approximations of the dispersion law. For a Maxwellian plasma, with the
zeroth order electron distribution proportional to exp(−v2/2v2

th) and for waves with
a higher phase velocity than thermal velocity, ω/kx > vth, the following approxima-
tion of the angular frequency

ω = ωR + iωI (4.1)

as a function of the wave vector kx is often used:

ωR = ωp 1 + 3
k2

x

k2
D

(4.2)

ωI = − a π

8
k3

D
k3

x
ωp exp � −1

2 (k2
D

k2
x

+ 3) � (4.3)

where the Debye wave number is defined as kD = ωp/vth. In units scaled into
dimensionless form according to Section 2.2.2, the approximation becomes

ωR = b 1 + 3k2
x (4.4)

ωI = − a π

8
1
k3

x
exp � −1

2 (1
k2

x
+ 3) � (4.5)

where ωR and ωI have been scaled to the plasma frequency ωp and kx has been
scaled to kD. One can note that for kx � 1, the damping ωI becomes very small,
while for kx→ 1, the damping becomes larger and finally the approximation breaks
down.

4.3 The numerical experiment
A numerical experiment was set up with the following parameters: Nη = 128,
ηmax = 15.0 and Nx = 50. The simulation domain covered one wavelength in the
x direction, L = 2π/kx, where the wave number kx was varied. The step-size in x
direction thus varied with kx as ∆x = L/Nx = 2π/(kNx). For numerical stability the
CFL number (see Section 2.3.5) was chosen to 0.8.

For the initial condition, a similar setup as in Section 2.4.2 was chosen. In
terms of the original (x,v) variables, the initial function was

f (x,v,0) = [1 + Acos(kxx)] f0(x,v) (4.6)

“lic˙report”
2001/3/22
page 41

�

Linear dispersion laws and Landau damping 41

kx/kD ωR/ωp (Theor.) ωR/ωp (Num.) ωI/ωp (Theor.) ωI/ωp (Num.)
0.10 1.0149 1.0152 −2.70×10−20 —
0.15 1.0332 1.0326 −9.25×10−9 —
0.20 1.0583 1.0639 −6.51×10−5 —
0.25 1.0897 1.1059 −3.00×10−3 −2.16×10−3

0.30 1.1269 1.1600 −2.00×10−2 −1.26×10−2

0.35 1.1694 1.2210 −5.50×10−2 −3.44×10−2

0.40 1.2166 1.2852 −9.60×10−2 −6.62×10−2

0.45 1.2679 1.3494 −1.30×10−1 −1.05×10−1

0.50 1.3229 1.4200 −1.51×10−1 −1.55×10−1

Table 4.1: A comparison between the theoretical (Theor.) and numerical (Num.)
relation between the angular frequency ω and the wave number k.

with

f0(x,v) =
1√
2π

exp

�
−1

2 � v− ωkx
Acos(kxx) � 2 N

(4.7)

which is an approximation of a sinusoidal wave moving in the rightward direction.
The approximate dispersion relation for Langmuir waves yields ω =
 1 + 3k2

x. In
the inverse Fourier transformed variables, the initial condition is converted into�f (x,η,0) = [1 + Acos(kxx)] �f0(x,η) (4.8)

where �f0(x,η) =
1

2π
exp � iωkx

Acos(kxx)η � exp (−1
2
η2) (4.9)

This is the initial condition used in the simulation.
The amplitude of the wave was chosen to a small value, A = 0.0002, to assure

that the wave was nearly linear. The time T10 for the electric field at the point
x = 0 to pass through 10 periods in time was measured, by measuring the time
elapsed between the first time for the electric field to change sign from negative
to positive values and the 11th time to change sign. The real part of the angular
frequency was then obtained as as ωI = 2π×10/T10 (in dimensionless units). The
damping was calculated by measuring the amplitude of the electric field, |E0|, at
the time T0 for the first positive maximum and the amplitude for the maximum of
the electric field, |E10|, at the time T0 + T10. The damping rate was then obtained
as ωI = − log(|E10|/ |E0|)/T10.

“lic˙report”
2001/3/22
page 42

�

42 BENGT ELIASSON

4.4 Numerical results
The theoretical and numerical values of ω are listed in Table 4.1. For the smallest
values of kx, no damping could be measured in the simulations. The agreement is
reasonably good for both the real and imaginary parts of the frequency. For kx→ 0,
the approximate law becomes exact, and in Table 4.1 one can see that the numerical
and theoretical values of ω converge to each other for small kx.

“lic˙report”
2001/3/22
page 43

�

CHAPTER 5

Kinetic tunnelling through an ionospheric layer

5.1 Introduction
Three types of propagating waves can exist in an unmagnetised plasma. The most
well-known type is the electromagnetic wave, which can also propagate in vacuum
as radio waves and light. In the plasma, waves can also propagate as electron
plasma waves, known as Langmuir waves, and as ion acoustic waves. These waves
are of the same compression and rarefaction type as ordinary sound waves in air,
but where the interaction is electromagnetic rather than mechanical. A magnetised
plasma supports a multitude of wave types. The plasma surrounding the earth is
magnetised by the geomagnetic field and is called the ionosphere.

At each height the ionospheric plasma possesses a resonance frequency, called
the plasma frequency, whose value depends on the number of free electrons in the
plasma. Radio waves that are sent vertically into this plasma are reflected back at
the height where the frequency of the wave matches the local plasma frequency; see
Figure 5.1. This property of the ionosphere is used for short wave radio communi-
cation over large distances. Radio waves are also used for probing the near-earth
plasma.

During RF (Radio Frequency) ionospheric experiments, when a powerful ra-
dio wave is injected vertically into the overhead overdense ionospheric plasma,
the level of electrostatic (Langmuir) electron waves and ion acoustic waves are
strongly enhanced near the RF reflection point where the RF matches the local
plasma frequency. The ionosphere will not only passively reflect the wave but will
also “deform” the radio wave and give rise to radio waves on other frequencies
than the frequency of the incident wave. This re-radiation mechanism was discov-
ered in 1981 by Thidé et al. [22] and is now known as Stimulated Electromagnetic
Emission (SEE).

43

“lic˙report”
2001/3/22
page 44

�

44 BENGT ELIASSON

Figure 5.1: a) An electromagnetic wave is reflected from the ionosphere. b) The
wave refracts at the resonant point. A weak electric field reaches the resonant
point. c) The resonant point starts radiating within a range of frequencies around
the original one.

Sometimes a weaker enhancement of Langmuir waves is observed at a higher
altitude, on the far side of the ionospheric layer, where again the RF matches the
local plasma frequency. This phenomenon has been ascribed by Isham et al. [7]
and Mishin et al. [14] to a coupling between the injected electromagnetic O mode
and the Z mode, where the Z mode propagates from the lower matching height to
the higher matching height where it is strong enough to re-generate Langmuir and
ion-acoustic waves.

An alternative mechanism has been pointed out by Revenchuk et al. [17, 18],
in which Langmuir wave regeneration on the far side of the ionosphere is occurs
via a kinetic plasma effect. The kinetic tunnelling effect is due to the trapping
of electrons inside the electrostatic potential well, formed self-consistently in the
ionospheric layer.

In this Chapter, the kinetic tunnelling effect is investigated numerically for the
Gaussian ionospheric profile that has been investigated theoretically by Revenchuk

“lic˙report”
2001/3/22
page 45

�

Kinetic tunnelling through an ionospheric layer 45

et al. [17, 18].

5.2 The self-consistent electrostatic potential
The partially ionised plasma in the ionosphere is produced mainly by solar radi-
ation photoionization of neutral atoms and molecules. The balancing process is
a recombination of ions and electrons to form neutrals. As a simple model, one
may therefore assume that the steady state can be described by a given profile of
immobile ions plus an equal amount of highly mobile electrons. To a good approx-
imation, this model can be used for studying the dynamics of the electrons on time
scales much shorter than the actual physical ion time scales.

For a given ion profile one can draw some conclusions regarding the equi-
librium density of electrons and the governing electrostatic potential. The force
balance of an isothermal electron “fluid” is given by the Navier-Stokes equation as

0 = −∇pe

ne
+ e∇φ (5.1)

where ne is the electron number density, pe is the electron pressure, φ is the electro-
static potential and −e is the electron charge. The force exerted on the electrons by
the pressure gradient is balanced by the electric field, which is expressed in terms
of the electrostatic potential by the relation

E = −∇φ (5.2)

Approximating the electrons with an ideal, isothermal, and isotropic gas, the elec-
tron pressure is given by

pe = kBTene (5.3)

where kB is Boltzmann’s constant and Te is the constant electron temperature. The
electrostatic potential is obtained from the first of Maxwell’s equations (Poisson’s
equation) as

∇ ·E = −∆φ =
e
ε0

(ni−ne) (5.4)

which expresses the divergence of the electric field in terms of the total charge
density.

The Equations (5.1), (5.3) and (5.4) can in principle be solved to obtain ne,
pe and φ. A considerable simplification can be made if the scale length L of the

“lic˙report”
2001/3/22
page 46

�

46 BENGT ELIASSON

problem is “large.” Then one may do the assumption of quasi-neutrality, i.e., that
it holds approximately that

ne = ni (5.5)

If the ion density and electron density would be exactly the same, there would not
exist any electrostatic potentials or electric fields in the ionosphere, but that is not
the case for, i.e., the Earth’s ionosphere [8].

The expression (5.3) for the pressure and the approximate expression (5.5) of
the electron density inserted into Equation (5.1) then yields

0 = −kBTe
∇ne

ne
+ e∇φ (5.6)

which can be integrated to give the potential as

φ =
kBTe

e
log(ni) (5.7)

plus some arbitrary constant, neglected here. The self-consistent electric field is
obtained from the gradient of the potential as

E = −∇φ = −kBTe

e
∇ log(ni) (5.8)

In order to check whether or not the assumption of quasi-neutrality is correct,
the expression (5.7) for the potential is inserted into (5.4) which, after some re-
ordering of terms, gives

ne

ni
= 1 +

ε0kBTe

e2ni
∆ log(ni) = 1 + r2

D∆ log(ni)
n0

ni
(5.9)

where the Debye length is

rD = a ε0kBTe

e2n0
(5.10)

At the peak of the F layer of the Earth’s ionosphere, the temperature is of the order
1500K and the electron density is of the order 1010 m−3 [8], which gives the Debye
length of the order 2–3cm, while the scale-length of the ionosphere is obtained
by the relation 1/L2 = �� ∆ log(ni) �� ; the length-scale L being of the order 10–100
kilometres. These estimates indicate that the term r2

D∆ log(ni) is of the order 10−12

to 10−14, which is negligible compared to unity in Equation (5.9) at the vicinity of
the peak. It follows that the assumption about quasi-neutrality is correct, and that
the expressions for the potential (5.7) and the electric field (5.8) are good estimates.

“lic˙report”
2001/3/22
page 47

�

Kinetic tunnelling through an ionospheric layer 47

For a model ionosphere with the ion profile having a Gaussian shape as a func-
tion of the altitude z, the results are especially simple. The ion profile is then given
as

ni = n0 exp (− z2

L2) (5.11)

where the maximum density n0 and the scale length L are constants and the coor-
dinate system is chosen so that the origin is at the peak of the density profile. Then
it follows from the expressions for the potential (5.7) and electric field (5.8) that

φ =
kBTe

e (log(n0)− z2

L2) (5.12)

and

E = 2
kBTe

e
z

L2 (5.13)

respectively. This confining electric field is directed downwards for z < 0 and up-
wards for z > 0, preventing electrons from escaping from the density profile.

One can note that in the Gaussian-shaped ion profile, the electrons will perform
harmonic oscillations in a parabolic potential well. The equation of motion for one
electron is, according to Newton’s second law,

me
d2z(t)

dt2 = −eE = −2kBTe
z(t)
L2 (5.14)

This ordinary differential equation gives sinusoidal solutions for the position z(t)
of the electrons, which oscillate with the angular frequency

ωb = a 2
kBTe

me

1
L

=
√

2
vth

L
(5.15)

where vth =
√

kBTe/me is the thermal velocity of the electrons. The time it takes for
an electron to perform one oscillation in the potential well is

Tb =
2π
ωb

=
√

2π
L

vth
(5.16)

From Equation (5.14) it follows that the particle trajectories form ellipses in
the (z,v) plane according to� v(t)

vth
� 2

+ 2 � z(t)
L

� 2

= C (5.17)

“lic˙report”
2001/3/22
page 48

�

48 BENGT ELIASSON

where v(t) = dz(t)/dt, for different constants C.
The assumption of quasi-neutrality, ne = ni, is valid as long as |∆φ| � eni/ε0, as

can be seen in Equation (5.4). For the Gaussian ion profile, with φ given by (5.12)
and ni given by (5.11), this gives the condition

kBTe

e
2
L2 �

e
ε0

n0 exp (− z2

L2) (5.18)

or, solving for z,

|z| < L log (L2

2r2
D) (5.19)

For values taken from the Earth’s ionosphere, rD ≈ 1cm and L ≈ 10km, the con-
dition becomes |z| < 5L. In reality, Earths ionosphere is not very well described
by a Gaussian, examples of measured data can be found in the book by Kelliey
[8], but the estimation for the Gaussian still gives a hint that the assumption about
quasi-neutrality is valid well away from the peak of the ion profile.

5.3 The one-dimensional Vlasov-Poisson system
The dynamics of the electrons in a collision-less plasma is described by the Vlasov
equation. It suffices to study the one-dimensional problem if it is assumed that we
have a vertically stratified ionosphere, with ions fixed in space, and with collective
electron motion only along the gradient of the ion profile. In this case the Vlasov-
Maxwell system can be reduced to the one-dimensional Vlasov-Poisson system,
similar to the system in Equation (2.14),

∂ f
∂t

+ v
∂ f
∂z
− e

m
[E + E0(z, t)]

∂ f
∂v

= 0 (5.20)

∂E(z, t)
∂z

=
e
ε0 � ni−

� ∞
−∞

f (z,v, t)dv �
where

ni = n0 exp (− z2

L2) (5.21)

is the neutralising heavy ion density background, which is assumed to have a Gaus-
sian shape with respect to the altitude z in this model problem, and E0(z, t) is an
external electric field, resembling the perturbation of the plasma by a Langmuir
wave.

“lic˙report”
2001/3/22
page 49

�

Kinetic tunnelling through an ionospheric layer 49

As has been shown in Section 5.2, the ion profile has a associated a potential
well, which will prevent the electrons from escaping the profile. If the total charge
of positively charged ions and negatively charged electrons add up to zero, with all
electrons confined to move in the vicinity of the profile, then one can assume that
the electric field will vanish at z = ±∞. In the following, this will be assumed, i.e.,
that the amount of electrons escaping the profile is negligible.

5.4 The numerical setup

5.4.1 Numerical boundary conditions

Periodic boundary conditions are assumed for the function �f . This is unphysical,
but if the boundaries are far away from the ion profile the densities at the bound-
aries will be negligible and the problem can be treated as a periodic problem. The
periodic boundary conditions makes it possible to calculate the spatial derivative
with the pseudo-spectral method, described in Chapter 2.

As a model for the electric field, it is assumed that there is no net charge to the
right or to the left of the computational domain. If the total electric charge of the
whole simulation domain is zero, then the electric field adds up to zero at the left
and at the right boundaries.

Integration of the electric field gives an arbitrary time-dependent constant,
which can be determined so that the electric field is zero at the boundaries. In
practice, the electric field is calculated in two steps:

1. First calculate the electric field with the pseudo-spectral method, described
in Chapter 2.

2. Then subtract the value of the electric field at z = 0 from the electric field at
all points.

By this two-step process, it is possible to calculate the electric field with a pseudo-
spectral method, with high accuracy.

5.4.2 The Fourier transformed, dimensionless system

In order to use the method based on the Fourier-transform technique described in
Chapter 2, the Vlasov-Poisson system is Fourier transformed analytically and is
written in a dimensionless form, in a similar manner as in Section 2.2.2.

“lic˙report”
2001/3/22
page 50

�

50 BENGT ELIASSON

By using the Fourier transform pair

f (z,v, t) =

� ∞
−∞ �f (z,η, t)e−iηv dη (5.22)�f (z,η, t) =
1

2π

� ∞
−∞

f (z,v, t)eiηvdv (5.23)

equation (5.20) is transformed into

∂ �f
∂t
− i

∂2 �f
∂z∂η

+ iη
e
m

[E + E0(z, t)] �f = 0 (5.24)

∂E(z, t)
∂z

=
e
ε0 � n0 exp (− z2

L2) −2π �f (z,0, t) �
In preparation for a numerical simulation, the systems (5.20) and (5.24) are

cast into dimensionless form by a scaling of variables (see also Section 2.2.2):
the time t is scaled to the inverse of the plasma frequency at the peak of the ion
profile, ω−1

p =
 ε0m/(n0e2), the velocity v is scaled to the thermal velocity vth; the
new variable η is then scaled to the inverse of the thermal velocity, and the spatial
variable z and the scale length L is scaled to the Debye length rD = vthω

−1
p . Finally,

the function �f is scaled to the background density n0, the function f is scaled to
n0/vth and the electric fields E and E0 are scaled to the quantity vth

√
n0m/ε0. By

this scaling of variables, the systems (5.20) and (5.24) attain the dimensionless
form

∂ f
∂t

+ v
∂ f
∂z
− [E + E0(z, t)]

∂ f
∂v

= 0 (5.25)

∂E(z, t)
∂z

= exp (− z2

L2) − � ∞−∞ f (z,v, t)dv (5.26)

and

∂ �f
∂t
− i

∂2 �f
∂z∂η

+ iη[E + E0(z, t)] �f = 0 (5.27)

∂E(z, t)
∂z

= exp (− z2

L2) −2π �f (z,0, t) (5.28)

respectively.
The externally applied perturbing electric field is assumed to take the form

E0(z, t) = αexp � − (z− z0

L0) 2 � sin(ωt) (5.29)

“lic˙report”
2001/3/22
page 51

�

Kinetic tunnelling through an ionospheric layer 51

where the constants α, z0, L0 and ω are chosen so that the weak perturbation has an
angular frequency w less than the plasma frequency ωp at the peak of the profile,
and so that the perturbation is centred at the location z0 where the local plasma
frequency coincides with ω.

5.4.3 Perturbation form

If the perturbing electric field E0(x, t) is weak, one can assume that the time-
dependent solution will deviate very little from the steady-state solution, and it
was shown in Section 5.2 that for the steady-state solution, the electron density
deviates very little from the ion density due to the quasi-neutrality.

Therefore it is convenient to write the equation in perturbation form, where one
solves an equation for the perturbation only, and not for the bulk of the plasma. The
advantage with this form is that one avoids large cancellation errors and truncation
errors when making numerical approximations. For example, calculating the elec-
tric field involves calculating differences between ion and electron densities which
are almost equal, with the risk of cancellation errors.

With the change of the variable �f (x,η, t) to a new variable �f (1)(x,η, t) according
to �f =

1
2π

exp (− z2

L2) exp (−η2

2) + �f (1) (5.30)

one obtains the equation system for the new unknown variable as

∂ �f (1)

∂t
− i

zη
πL2 exp (−η2

2) − i
∂2 �f (1)

∂x∂η

+ i(E + E0(z, t))η � 1
2π

exp (− z2

L2) exp (−η2

2) + �f (1) � = 0

(5.31)

∂E
∂z

=−2π �f (1)(z,0, t) (5.32)

The new unknown electron distribution function �f (1)(z,η, t) describes the deviation
from a completely neutral and isothermal plasma.

5.4.4 The initial condition

If one would assume the initial condition �f (1) = 0 everywhere at time t = 0, then
large transient oscillations would appear as the initially totally neutral plasma would
build up a self-consistent electric field, created by a small deviation from neutrality.

“lic˙report”
2001/3/22
page 52

�

52 BENGT ELIASSON

As shown in Equation (5.9), there is a small difference between the ion and
electron densities, which turns out to be important. A heuristic approach to con-
struct an initial condition, which reduces the transient oscillations, has been to set
the initial condition to�f (1) =

∂2

∂z2 log � α1

L2 + exp (− z2

L2) � 1
2π

exp (−η2

2) (5.33)

at time t = 0, for some number α1 ≈ 10. Far from the profile, this function tends
to zero, and it will give the right amount of net charge near the peak of the profile.
The total contribution to the net charge will almost add up to zero, since the integral
of the function will be close to zero if the limits are far from the origin.

Even if the transient oscillations are strongly reduced with this initial condi-
tion, they are not eliminated. A more precise procedure would be to numerically
solve the nonlinear boundary value problem for the potential (in dimensionless
variables),

−d2φ

dz2 = ni(z)− exp(φ) (5.34)

with the boundary conditions dφ/dz = 0 at the boundaries, as as can derived from
the original nonlinear equation system (5.1) – (5.4). The second derivative of the
potential with respect to z then gives the net charge. This would be an improvement
of the existing numerical model.

5.5 Numerical experiments
5.5.1 Parameters used in the numerical experiments
Numerical experiments were carried out for three values of the scale length of the
ion profile:

1. The scale length L = 80rD: The simulation domain was z = −400rD to z =

400rD. The other parameters were chosen ∆z = 2.0rD, Nt = 4200 and tend =

764ω−1
p The Fourier variable was going from η = 0r−1

D to η = ηmax = 50r−1
D ,

and with the grid-size ∆η= 0.25r−1
D . For the electric field, the constants were

chosen to α = 10−4 vth
√

n0me/ε0, ω = 0.9ωp, z0 = −39rD and L0 = 10rD.

2. The scale length L = 400rD: The simulation domain was z = −2000rD to
z = 2000rD, the spatial grid size ∆z = 2.0rD, the number of time steps Nt =

4200 and the end time tend = 3275ω−1
p . The Fourier variable was going from

η = 0r−1
D to η = ηmax = 120r−1

D , and with the grid size ∆η = 0.30r−1
D . For the

electric field, the constants were chosen to α= 10−4 vth
√

n0me/ε0, ω= 0.9ωp,
z0 = −195rD and L0 = 20rD.

“lic˙report”
2001/3/22
page 53

�

Kinetic tunnelling through an ionospheric layer 53

3. The scale length L = 800rD: The simulation domain was z = −4000rD to
z = 4000rD, the spatial grid size ∆z = 2.0rD, the number of time steps Nt =

15000 and the end time tend = 2729ω−1
p . The Fourier variable was going from

η = 0r−1
D to η = ηmax = 200r−1

D , and with the grid size ∆η = 0.25r−1
D . For the

electric field, the constants were chosen to α= 10−4 vth
√

n0me/ε0, ω= 0.9ωp,
z0 = −390rD and L0 = 20rD. The simulation was run on 10 processors on the
Sun system (see Section 3.7), at the department of Information Technology,
Uppsala.

The numerical solution was Fourier transformed back to velocity space and visu-
alised in Figure 5.2 and 5.3.

As a measure of the strength of tunnelling, the quantity max |n2|/max |n1| was
used, where max |n1| is the maximum perturbation of the electron density to the left
of the peak (i.e., for z < 0), and max |n2| is the maximum perturbation to the right of
the peak (i.e., for z > 0) This measure of the tunnelling strength was plotted against
time in Figure 5.4 for different scale lengths L.

5.5.2 The numerical results
One can make a physical interpretation of the numerical results as follows:

1. When the perturbation is initiated at the turning point of the plasma, with the
frequency of the perturbation equal to the local plasma frequency, electro-
static Langmuir waves are created, which start to propagate down the profile
towards regions with lower ion density. This can be seen in Figure 5.2a be-
tween z = −40rD and z = −80rD and the velocities between v = −3.5vth to
v = +2.5vth, where the particles show a macroscopic wave structure, i.e., the
structure is correlated for particles with both negative and positive velocities
to form electrostatic waves travelling from the right to the left.

For the larger profile L = −400rD, the same macroscopic wave structure can
be seen in Figure 5.3a between z = −200rD to z = −400rD and velocities
between v = −4vth and v = +3vth.

2. The phase velocities of the left-going waves decrease as they enter plasma
with lower density, and the waves start to interact with the left-going particles
moving with approximately the same velocity as the phase velocity of the
wave. The particles are accelerated, and the energy of the wave is converted
into energy of particle motion in the process known as Landau damping (re-
ferring to the damping of the wave). The motion of the accelerated particles
with negative velocities v is not correlated with the particles having positive
velocities, as can be seen in Figure 5.2a between z = −80rD to z = −160rD

“lic˙report”
2001/3/22
page 54

�

54 BENGT ELIASSON

cd ef
gihgkjg cg dg e
j hl
mCnomqp r

l
stnquovl l

wyxCz3{Q|~}�}����q��

g f

� x3zC{���}�}����q��

�~x3z3{�����}����o��d e
gihgkjg cg dg e

fcj h
� x3zC{���}�}����q��

g�j ltl gih ltl h l�l j ltl gih ltl h l�l j ltlg f
Figure 5.2: Kinetic tunnelling, L = 80rD.

with the accelerated particles having velocities between v = −1.5vth and
v = −3.5vth. These accelerated particles are thus free-streaming, ballistic
particles, known as van Kampen modes [2], which do not contribute to the
electric field in a correlated manner.

3. The free-streaming particles start to oscillate in the large-scale potential well
created by the ion profile. They first move to the left and then turn and start
moving to the right again, approximately following the elliptic trajectories
described by Equation 5.17, in the (x,v) space. This can be seen in Figure

“lic˙report”
2001/3/22
page 55

�

Kinetic tunnelling through an ionospheric layer 55

�i��k��k��8��k��� �

� ��

�k�

���q�q� ��� �

� ��
�k� �t� � � ��� � �t�t� �k� �t� � � ����`� �t���

�~�3�3�Q�� �¡�¢~£/¤o¥¦

§ �3�C�Q�~¢�¢�¢�£ ¤q¥¦

�i��k��k��8� ¨ �q©oª

« �3�C�� �¡�¢�¢�£�¤q¥¦

¬y�C�3��¡�¢�¢�£ ¤q¥¦

� �t���
Figure 5.3: Kinetic tunnelling, L = 400rD.

5.2b where the accelerated particles turned and reached z = −50rD having
positive velocities around v = +3vth to v = +3.5vth.

4. When the ballistic terms reach positive velocities, they gradually begin to
line up again. In Figure 5.2c one can see the ballistic particles forming al-
most horizontal structures at z = −100rD to z = −200rD and with velocities
around v = 1vth. Particles which have reached z = 50rD, having velocities
around +2vth, form structures which are becoming more and more verti-
cal. The vertical structures give a correlated contribution to the electric field

“lic˙report”
2001/3/22
page 56

�

56 BENGT ELIASSON

­ ®�®°¯ ® ®²±�® ®°³ ® ®µ´ ® ®°¶ ® ®µ· ® ®®¹¸ ®
®¹¸ ¶®¹¸ º
®¹¸ ¯
­ ¸ ®

®
®¹¸ ³
»�¼ ½¿¾ À�Á ¾ ÂÃ»�¼ ½¿¾ ÀyÄ ¾

ÅÃÆ Çº ® ®
(a) L = 80rD

È¹É ÊÈ¹É Ë
È¹É Ì
Í É È

Î�Ï È ÈÎ È È ÈÌ Ï È ÈÌ È È ÈÍ Ï È ÈÍ È È ÈÏ È ÈÈ
È¹É Ð
Ñ�Ò Ó¿Ô Õ�Ö Ô ×ÃÑ�Ò Ó¿Ô ÕyØ Ô

ÙÃÚ ÛÈ¹É È
(b) L = 400rD

Ü¹Ý ÞÜ¹Ý ß
Ü¹Ý à
á Ý Ü

â Ü Ü Üà ã Ü Üà Ü�Ü Üá ã Ü Üá Ü Ü Üã Ü ÜÜ
Ü¹Ý ä
å�æ ç¿è é�ê è ëÃå�æ ç¿è éyì è

íÃî ïÜ¹Ý Ü
(c) L = 800rD

Figure 5.4: Tunnelling strength for different sizes of ion profiles

again, and one can see a macroscopic motion of particles around z = 50rD to
z = 100rD having velocities v = −2vth to +2vth. The corresponding collec-
tive motion for the larger profile L = 400rD can be seen in Figure 5.3c and
5.3d, around z = 250rD to z = 500rD. In Figure 5.3d one can also see the
macroscopic, electrostatic waves again creating ballistic particles, this time

“lic˙report”
2001/3/22
page 57

�

Kinetic tunnelling through an ionospheric layer 57

with positive velocities v = 1 – 2vth at x = 400 – 500rD.

According to the physical interpretation above, the tunnelling effect should appear
after approximately one half bouncing time,

Ttunnelling =
1
2

Tb (5.35)

since the initial perturbation in the lower left quadrant of phase space, (z,v), will
take a half bouncing time to reach the symmetric point in the upper right quadrant
of phase space where the tunnelling effect appears, see Figure 5.2 and 5.3. The
numerical experiment shows a good agreement between this prediction of the tun-
nelling time and the time obtained in the experiment. In figure 5.4 the tunnelling
strength is measured as the maximum perturbation of the electron density on the
right side of the peak at z = 0 of the profile, divided by the maximum perturbation
of the density to the left of the peak. The tunnelling time is the time it takes for
the perturbation, started at time t = 0 on the left side of the peak, to create collec-
tive perturbations on the right-hand side of the peak. This time can clearly be seen
in Figure 5.4 for the three scale lengths L = 80rD, L = 400rD, and L = 800rD, as
start of the first increase of the curve. The tunnelling time from the numerical ex-
periment (Numerical) is compared with the theoretical prediction (Theory) in the
following table:

L/rD
ωpTtunnelling = ωp

1
2 Tb

(Theory)
ωpTtunnelling
(Numerical)

80 178 200
400 889 1000
800 1778 2000

As can be seen, the theoretical prediction and numerical result agrees up to about
90 percent. The numerical tunnelling time is slightly longer than the theoretical
prediction, which is not surprising, since it takes some time for the electrostatic
Langmuir waves to be created and to travel to the point where they are Landau
damped, creating the ballistic particles.

One observation is that the tunnelling strength does not seem to decrease when
the scale length is increased, see Figure 5.4; for all cases, the tunnelling strength
has peaks around 0.3 – 0.4.

The regeneration process described here is related to the so-called plasma echo
effect [9], where an electrostatic wave which is Landau damped may be regenerated
if the plasma is perturbed. This nonlinear effect has been observed in experiments.

“lic˙report”
2001/3/22
page 58

�

58 BENGT ELIASSON

5.5.3 Suggested experiments
In order to verify whether or not the observed regeneration of waves observed in
experiment [7] may be explained by the kinetic tunnelling process investigated
in this thesis, the following experiment is suggested: A similar ion modification
experiment as described by Isham et al. should be repeated, and the following
parameters should be measured:

1. The time between the switch on of the transmitter and the regeneration to
appear should be measured. It was indicated theoretically and shown nu-
merically that the regeneration of waves should appear after approximately
one half bouncing time in the self-consistent potential well of the iono-
sphere. Electrons at a temperature 1500K has the thermal velocity vth ≈ 1.5×
105 m/s. The scale length L of the ionosphere is of the order 10 – 100km,
which gives the bounce time according to Equation (5.16) as Tb ≈ 0.3 – 3
seconds. If the regeneration appears on this time scale, then the kinetic tun-
nelling could be an explanation. If the regeneration appears on a much faster
time scale, then it indicates that some kind of tunnelling of electromagnetic
waves must occur, and that it is unlikely that kinetic tunnelling can explain
the experimental results. Revenchuk et al. [17, 18] propose an experiment
with short pulses in order to measure the time for the regeneration to appear.

2. One should measure the location of the regeneration on the top side of the
ionosphere. The electrons are likely to follow the magnetic filed lines of
the geomagnetic field, since the mobility across the magnetic field lines is
very low. If the regeneration is due to kinetic tunnelling of electrons, then it
should be possible to predict where the regeneration appears on the top side
by following the magnetic field lines from the location of the perturbation
on the bottom side, to the top side. If, on the other hand, the regeneration
is distributed over a large area of the top side, then it is more likely that
some other tunnelling mechanism takes place, for example electromagnetic
tunnelling, which is not constrained by the magnetic field lines.

“lic˙report”
2001/3/22
page 59

�

59

Conclusions
A high-order method for solving numerically the Fourier transformed Vlasov-
Poisson system in the velocity space has been developed, with special attention
paid to the outflow boundary condition in the Fourier transformed space. It was
shown numerically that it is possible to reduce the recurrence phenomenon by this
method.

The boundary condition designed for the transformed system has been proved
to be well-posed in the continuous case. The numerical scheme did not exhibit any
instabilities in the numerical experiments.

As an application of the numerical method, the kinetic tunnelling of an iono-
spheric layer was studied. The theoretically predicted tunnelling effect appeared in
the numerical simulation and did not decrease with larger length scales of the ion
profile.

In these simulations, short range collisions between electrons and other parti-
cles have been neglected.

Physical experiments have been suggested: By measuring certain parameters,
it should be possible to verify if kinetic tunnelling is the cause of the experimentally
observed tunnelling of waves.

Acknowledgements
I want to thank Bertil Gustafsson at Department of Scientific Computing, Uppsala
University, and Bo Thidé at Swedish Institute of Space Physics, Uppsala Division,
for fruitful discussions and their useful advise during my work.

I also want to thank Sergey Revenchuk at Institute of Nuclear Research, Na-
tional Academy of Sciences of Ukraine, Kiev, Ukraine, and Vladimir Pavlenko at
Department of Astronomy and Space Physics, Uppsala, for interesting discussions
on the physics of ionospheric layers.

Special thanks to professor Helmut Neunzert at University of Kaiserslauten,
Germany, who kindly sent me published and unpublished material on the Boltz-
mann equation from his research.

This research was financially supported by the Swedish National Graduate
School in Scientific Computing (NGSSC) and the Swedish Research Council (NFR).

“lic˙report”
2001/3/22
page 60

�

“lic˙report”
2001/3/22
page 61

�

Bibliography

[1] Thomas P. Armstrong, Rollin C. Harding, Georg Knorr, and David Mont-
gomery. Solution of Vlasov’s equation by transform methods. Methods in
Computational Physics (Academic Press), 9:29–86, 1970.

[2] Francis F. Chen. Introduction to plasma physics and controlled fusion, second
edition, pages 261–267. Plenum Press, New York, 1984.

[3] C. Z. Cheng and G. Knorr. The integration of the Vlasov equation in config-
uration space. Journal of Computational Physics., 22:330–351, 1976.

[4] J. Denavit and W. L. Kruer. Comparison of numerical solutions of the Vlasov
equation with particle simulations of collisionless plasmas. The Physics of
Fluids, pages 1782–1791, 1971.

[5] J. Feng and W. N. G. Hitchon. Self-consistent kinetic simulation of plasmas.
Physical Review E, 61:3160–3173, 1999.

[6] Bertil Gustafsson and Pelle Olsson. Fourth-order difference methods for hy-
perbolic ibvps. Journal of Computational Physics., 117:300–317, 1995.

[7] B. Isham, W. Kofman, T. Hagfors, J. Nordling, B. Thidé, C. LaHoz, and
P. Stubbe. New phenomena observed by EISCAT during an RF ionospheric
modification experiment. Radio Sci., 25(3):251–262, 1990.

[8] Michael C. Kelley. The Earth’s ionosphere, plasma physics and electrody-
namics, pages 4–10. Academic Press, Inc., 1989.

[9] Nicholas A. Krall and Alvin W. Trivelpiece. Principles of plasma physics,
pages 4–10. McGraw-Hill, Inc, 1973.

[10] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduc-
tion to parallel computing: design and analysis of algorithms, chapter 4. The
Benjamin/Cummings Publishing Company, Inc, 1994.

61

“lic˙report”
2001/3/22
page 62

�

62

[11] Sanjiva K. Lele. Compact finite difference schemes with spectral-like resolu-
tion. Journal of Computational Physics., 103:16–42, 1992.

[12] Ching-Huei Lin, J. K. Chao, and C. Z. Cheng. One-dimensional Vlasov sim-
ulations of Langmuir solitons. Phys. Plasmas 2, pages 4195–4203, 1995.

[13] Giovanni Manfredi. Long-time behaviour of nonlinear Landau damping.
Phys. Rev. Lett., 79:2815–2818, 1997.

[14] E. Mishin, T. Hagfors, and B. Isham. A generation mehanism for topside
enhanced incoherent backscatter during high frequency modification experi-
ments in Tromsø. Geophys. Res. Lett., pages 479–482, 2001.

[15] Helmut Neunzert. An introduction to the nonlinear Boltzmann-Vlasov equa-
tion. preprint no 28. Lectures given at the international summerschool “Ki-
netic Theories and Boltzmann Equations” of C.I.M.E. in Montecatini (Italy),
June 1981.

[16] Helmut Neunzert. Verallgemeinerte Lösungen von Eigenwertproblemen,
zugehörige Entwicklungsfragen und die Anwendung auf Gleichungen der
Transporttheorie, Jül–816–MA, 1971.

[17] Sergey Revenchuk, Bo Thidé, and Vladimir Pavlenko. Wave tunneling in
the ionosphere due to plasma kinetic effects: 1. Collisionless limit, (not pub-
lished), 2000.

[18] Sergey Revenchuk, Bo Thidé, and Vladimir Pavlenko. Wave tunneling in
the ionosphere due to plasma kinetic effects: 2. Influence of collisions, (not
published), 2000.

[19] Henry Rishbeth and Owen K. Garriot. Introduction to Ionospheric physics,
chapter 1. Academic Press, 1969.

[20] George Schmidt. Physics of high temperature plasmas, second edition, pages
269–282. Academic Press, Inc., 1979.

[21] John C. Strikwerda. Finite difference schemes and partial differential equa-
tions, chapter 1.6. Wadsworth, Inc., 1989.

[22] B. Thidé, H. Kopka, and P. Stubbe. Observations of stimulated scattering
of a strong High-Frequency radio wave in the ionosphere, pages 1561–1564.
Phys. Rev. Lett. 49, 1982.

‘‘lic_report’’
2001/3/22
page 63

�

APPENDIX A

Program listings, one-dimensional Vlasov code

A.1 vlasov.f90
!

!!
! vlasov.f90 Bengt Eliasson 2000-03-18 !
!!
! This main program simulates the evolution of !
! electrostatic waves in a collisionless plasma, !
! according to the Vlasov model. The problem is solved !
! in the Fourier transformed velocity space, whith the !
! variable ’eta’ representing the fourier component of !
! the velocity. !
! The program uses a physical object from the class !
! ’OneDimVlasovPlasma’, and some numerical objects !
! that can operate on objects from this class. !
!!

PROGRAM vlasov

USE vlasov_numeric_mod

IMPLICIT NONE

INTEGER :: i,j,k
REAL(8) :: x,eta,omega,E2
REAL(8) :: Norm,Norm0,NParticles,NParticles0
REAL(8) :: P,P0,W,W0,Wp

TYPE (OneDimVlasovPlasma) :: domain1

! Allocate memory for the domain
CALL Constructor(domain1,Nx,Neta)

! Initialize the initial conditions and various constants, et.c.
CALL Domain_Initializer(domain1)

63

‘‘lic_report’’
2001/3/22
page 64

�

64 BENGT ELIASSON

IF (size.NE.NP) THEN
WRITE(*,*)’size=’,size,’ NP=’,NP,’ are not equal.’
STOP

END IF

! Calculate various quantities from the initial contion
CALL Domain_StatisticsCalculator(domain1,NParticles,P,W,Norm,Wp)

! Remember some of the initial values for the rest of the run
NParticles0 = NParticles
P0 = P
W0 = W
Norm0 = Norm

! Write results to screen and files
k=0
CALL Domain_StatisticsWriter(domain1,k,dt,W0,P0,Norm0,NParticles0, &

W,P,Norm,NParticles,Wp)

DO k = 1,Nt

! Runge-Kutta step
CALL RungeKutta_TimeStepper(domain1,dt,x1,x2,Echoice)

IF (ABS(MOD(DBLE(k),DBLE(print1))) <= 1.0D-6) THEN
! Calculate various quantities from the initial contion
CALL Domain_StatisticsCalculator(domain1,NParticles,P,W,Norm,Wp)

! Write results to screen and files
CALL Domain_StatisticsWriter(domain1,k,dt,W0,P0,Norm0,NParticles0, &
W,P,Norm,NParticles,Wp)

END IF
END DO

! Clean up
CALL Domain_Finalizer(domain1)

! Deallocate memory
CALL Destructor(domain1)

STOP 0

END PROGRAM
!

A.2 vlasov numeric mod.f90
!

!!!
! vlasov_numeric_mod.f90 Bengt Eliasson 2001-03-18 !
!!!
! This module contains numerical objects that can act on !

‘‘lic_report’’
2001/3/22
page 65

�

Program listings, one-dimensional Vlasov code 65

! physical objects from the class OneDimVlasovPlasma, or on !
! parts of the object. !
! !
! The module contains the following numerical objects: !
! !
! Domain_Initializer - Calculates the initial condition for !
! the problem, calculates various constants, opens data !
! files, et.c. !
! !
! Domain_Finalizer - Closes data files, et.c. !
! !
! Domain_StatisticsWriter - Writes various statistics of !
! the solution to file and screen. !
! !
! Domain_StatisticsCalculator - Calculates statistics from !
! the solution. !
! !
! PDE_RHS - Calculates the righthand side of the time- !
! dependent partial differential eqation. !
! !
! ElectricField - Calculates the electric field by !
! integrating the Poisson equation (Maxwell’s equations), !
! using a spectral method. !
! !
! x_FourierDifferentiator - Calculates d/dx of a !
! two-dimensional function f(x,eta), using the a spectral !
! method. !
! !
! TriDiag_Solver - Solves a linear tri-diagonal equation !
! system. !
! !
! eta_Differetiator - Calculates d/deta of a two- !
! dimensional function f(x,eta), using the Pade’ !
! approximation. !
! !
! SimpsonIntegrator - integrates a function f(x), !
! using the Simpson formula. !
! !
! PeriodicIntegrator - integrates a function f(x), !
! where the function is periodic in x. !
! !
! RungeKutta_TimeStepper - Advances the solution one time !
! step by using the fouth order Runge-Kutta method. !
!!!

module vlasov_numeric_mod
USE vlasov_domain_mod

IMPLICIT NONE

contains

!!!
! Initialize the initial condition, various constants, et.c.
!!!

‘‘lic_report’’
2001/3/22
page 66

�

66 BENGT ELIASSON

subroutine Domain_Initializer(domain)
IMPLICIT NONE
TYPE (OneDimVlasovPlasma) :: domain

INTEGER :: i,j,iocheck,info,initial
REAL(8) :: density(Nx),x,eta,w
CHARACTER(len=2) :: procname

! Initialize MPI
CALL MPI_INIT(errcode)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,size,errcode)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rank,errcode)

! Assign ’procname’ to be used for creating file names
SELECT CASE(rank)
CASE(0)

procname=’00’
CASE(1)

procname=’01’
CASE(2)

procname=’02’
CASE(3)

procname=’03’
CASE(4)

procname=’04’
CASE(5)

procname=’05’
CASE(6)

procname=’06’
CASE(7)

procname=’07’
CASE(8)

procname=’08’
CASE(9)

procname=’09’
CASE(10)

procname=’10’
CASE(11)

procname=’11’
CASE(12)

procname=’12’
CASE(13)

procname=’13’
CASE(14)

procname=’14’
CASE(15)

procname=’15’
CASE(16)

procname=’16’
CASE(17)

procname=’17’
CASE(18)

procname=’18’
CASE(19)

procname=’19’
CASE(20)

‘‘lic_report’’
2001/3/22
page 67

�

Program listings, one-dimensional Vlasov code 67

procname=’20’
CASE(21)
procname=’21’

CASE(22)
procname=’22’

CASE(23)
procname=’23’

CASE(24)
procname=’24’

CASE(25)
procname=’25’

CASE(26)
procname=’26’

CASE(27)
procname=’27’

CASE(28)
procname=’28’

CASE(29)
procname=’29’

CASE(30)
procname=’30’

CASE(31)
procname=’31’

END SELECT

! The grid size in x direction
domain%dx = (x2-x1)/DBLE(TotalNx)

! The grid size in eta direction
domain%deta = eta_max/Neta

! Put arrays to zero
domain%fre(:,:) = zero
domain%fim(:,:) = zero
domain%E(:) = zero

! Initial values
initial=0
IF (initial.EQ.0) THEN
DO i = 1,Nx
x = DBLE(rank*Nx+i-1)*domain%dx
DO j = 0,Neta
eta = DBLE(j)*domain%deta
domain%fre(j+1,i) = exp(-eta*eta*half)*(one+A*COS(kx*x))/twopi

END DO
END DO
ELSEIF (initial.EQ.1) THEN
! The propagating wave initial condition.
w=SQRT(one+three*kx*kx)
DO i = 1,Nx
x = DBLE(rank*Nx+i-1)*domain%dx
DO j = 0,Neta

eta = DBLE(j)*domain%deta
domain%fre(j+1,i) = cos(w/kx*A*eta*cos(kx*x))* &

‘‘lic_report’’
2001/3/22
page 68

�

68 BENGT ELIASSON

exp(-eta*eta*half)*(one+A*COS(kx*x))/twopi
domain%fim(j+1,i) = sin(w/kx*A*eta*cos(kx*x))* &

exp(-eta*eta*half)*(one+A*COS(kx*x))/twopi
END DO

END DO
ENDIF

! Calculate E
CALL ElectricField(domain%fre,domain%E,domain%E123, &

domain%dx,Echoice,x1,x2,Nx,Neta)

! Open files
IF (WriteToFile) THEN
OPEN (UNIT=outE_1,FILE=’E_1.dat’,ACCESS=’SEQUENTIAL’, &

FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outE_2,FILE=’E_2.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outE_3,FILE=’E_3.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iOcheck)

OPEN (UNIT=outdP,FILE=’P.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outdW,FILE=’dW.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outCorr,FILE=’etaCorr.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outFourier,FILE=’Fourier.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outE2,FILE=’E2.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outNorm,FILE=’Norm.dat’,ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outfabs,FILE=’fabs.’//procname//’.dat’, &
ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

OPEN (UNIT=outF,FILE=’F.’//procname//’.dat’, &
ACCESS=’SEQUENTIAL’, &
FORM=’FORMATTED’,ACTION=’WRITE’,IOSTAT=iocheck)

END IF

end subroutine Domain_Initializer

!!!
! Close files et.c.
!!!

‘‘lic_report’’
2001/3/22
page 69

�

Program listings, one-dimensional Vlasov code 69

subroutine Domain_Finalizer(domain)
TYPE (OneDimVlasovPlasma) :: domain
INTEGER :: errcode

! Close data files
IF (WriteToFile) THEN
CLOSE(outE_1)
CLOSE(outE_2)
CLOSE(outE_3)
CLOSE(outdP)
CLOSE(outdW)
CLOSE(outCorr)
CLOSE(outFourier)
CLOSE(outE2)
CLOSE(outNorm)
CLOSE(outfabs)
CLOSE(outF)

END IF

! Finalize MPI
CALL MPI_FINALIZE(errcode)

end subroutine Domain_Finalizer

!!!
! Write results to screen and to data files
!!!
subroutine Domain_StatisticsWriter(domain,k,dt,W0,P0, &

Norm0,NParticles0,W,P,Norm,NParticles,Wp)
IMPLICIT NONE
TYPE (OneDimVlasovPlasma) :: domain
INTEGER :: k
REAL(8) :: dt,W0,P0,Norm0,NParticles0,W,P,Norm,NParticles,Wp

REAL(8) :: Nx_temp(Nx),Neta_temp(Neta+1)

INTEGER :: i,j
INTEGER(4) :: SqrTwoPi

! FFTPACK
INTEGER(4) :: L
REAL(8) :: wsave(8*Neta+15),scaling2
COMPLEX(8) :: c(2*Neta)

IF (WriteToFile) THEN

IF (rank.EQ.0) THEN
WRITE (outNorm,906) k*dt," ",(Norm-Norm0)/Norm0
WRITE (outE2,906) k*dt," ",DSQRT(two*Wp)
WRITE (outdP,906) k*dt," ",P-P0
WRITE (outdW,906) k*dt," ",(W-W0)/W0
WRITE (outE_1,906) k*dt," ",domain%E123(1)
WRITE (outE_2,906) k*dt," ",domain%E123(2)
WRITE (outE_3,906) k*dt," ",domain%E123(3)

END IF

! DO i = 1,Nx

‘‘lic_report’’
2001/3/22
page 70

�

70 BENGT ELIASSON

! DO j = 0,Neta
! WRITE (outfabs,907) DSQRT(domain%fre(j+1,i)*domain%fre(j+1,i)+ &
! domain%fim(j+1,i)*domain%fim(j+1,i))
! END DO
! END DO

IF (0.EQ.1) THEN
L=2*Neta

CALL dcffti(L,wsave)

SqrTwoPi=SQRT(twopi)
DO i = 1,Nx

DO j = 1,Neta
c(j)=DCMPLX(domain%fre(j,i)* &
Eta_max/DBLE(Neta)*SqrTwoPi, &
domain%fim(j,i)*Eta_max/DBLE(Neta)*SqrTwoPi)

c(2*Neta+1-j)=DCMPLX(domain%fre(j+1,i)* &
Eta_max/DBLE(Neta)*SqrTwoPi, &
-domain%fim(j+1,i)*Eta_max/DBLE(Neta)*SqrTwoPi)

END DO

CALL dcfftf(L,c,wsave)

DO j = 1,Neta
WRITE (outF,*) REAL(c(Neta+j))

END DO
DO j = 1,Neta
WRITE (outF,*) REAL(c(j))

END DO
END DO

END IF

END IF

IF (rank.EQ.0) THEN
WRITE (*,905) k," dNorm: ",(Norm-Norm0)/Norm0, &

" dN: ",(NParticles-NParticles0)/NParticles0," dP: ",P-P0, &
" dW: ",(W-W0)/W0," Wp: ",Wp/W0

END IF

901 FORMAT (F15.10,A)
902 FORMAT (99A)
903 FORMAT (F15.10)
904 FORMAT (F15.10,A)
905 FORMAT (I7,A,F15.10,A,F15.10,A,F15.13,A,F15.10,A,F15.10)
906 FORMAT (F15.10,A,F15.10)
907 FORMAT (F15.10)

End subroutine Domain_StatisticsWriter

‘‘lic_report’’
2001/3/22
page 71

�

Program listings, one-dimensional Vlasov code 71

subroutine Domain_StatisticsCalculator(domain,NParticles,P,W,Norm,Wp)
IMPLICIT NONE
TYPE (OneDimVlasovPlasma) :: domain
REAL(8) :: NParticles,P,W,Norm,Wp
REAL(8) :: Nx_temp(Nx),Neta_temp(Neta+1)
INTEGER :: i,j

! MPI
INTEGER :: root=0

NParticles = zero
Norm = zero

! The number of particles
DO i = 1,Nx

Nx_temp(i)=twopi*domain%fre(1,i)
END DO
CALL PeriodicIntegrator(Nx_temp,domain%dx,Nx,NParticles)

! Sum all partial sums to proc 0.
CALL MPI_REDUCE(NParticles,NParticles,1, &

MPI_DOUBLE_PRECISION,MPI_SUM,root,MPI_COMM_WORLD,errcode)

! The momentum
DO i = 1,Nx

Nx_temp(i)=twopi*(45.0d0*domain%fim(2,i)-9.0d0*domain%fim(3,i) &
+domain%fim(4,i))/(30.0d0*domain%deta)

END DO
CALL PeriodicIntegrator(Nx_temp,domain%dx,Nx,P)

! Sum all partial sums to proc 0.
CALL MPI_REDUCE(P,P,1,MPI_DOUBLE_PRECISION, &

MPI_SUM,root,MPI_COMM_WORLD,errcode)

! The potential energy
DO i = 1,Nx

Nx_temp(i)=domain%E(i)*domain%E(i)*half
END DO
CALL PeriodicIntegrator(Nx_temp,domain%dx,Nx,Wp)

! Sum all partial sums to proc 0.
CALL MPI_REDUCE(Wp,Wp,1,MPI_DOUBLE_PRECISION, &

MPI_SUM,root,MPI_COMM_WORLD,errcode)

! The kinetic energy
DO i = 1,Nx

Nx_temp(i)=-pi*(-245.0d0*domain%fre(1,i)+270.0d0*domain%fre(2,i) &
-27.0d0*domain%fre(3,i)+2.0d0*domain%fre(4,i))/ &
(90.0d0*domain%deta*domain%deta)

END DO

DO i = 1,Nx
Nx_temp(i)=Nx_temp(i)+domain%E(i)*domain%E(i)*half

END DO

‘‘lic_report’’
2001/3/22
page 72

�

72 BENGT ELIASSON

CALL PeriodicIntegrator(Nx_temp,domain%dx,Nx,W)

! Sum all partial sums to proc 0.
CALL MPI_REDUCE(W,W,1,MPI_DOUBLE_PRECISION, &

MPI_SUM,root,MPI_COMM_WORLD,errcode)

! The entropy function
DO j = 1,Neta+1

DO i = 1,Nx
Nx_temp(i) = domain%fre(j,i)*domain%fre(j,i) &

+domain%fim(j,i)*domain%fim(j,i)
END DO
CALL PeriodicIntegrator(Nx_temp,domain%dx,Nx,Norm)
Neta_temp(j)=Norm

END DO

! Sum all partial sums to proc 0.
CALL MPI_REDUCE(Neta_temp,Neta_temp,Neta+1, &

MPI_DOUBLE_PRECISION,MPI_SUM,root,MPI_COMM_WORLD,errcode)

CALL SimpsonIntegrator(Neta_temp,domain%deta,Neta,Norm)

end subroutine Domain_StatisticsCalculator

!!!
! Calculate the righthand side P of the differential
! equation df/dt=P
!!!
subroutine PDE_RHS (domain,fre,fim,Pre,Pim,E,dx,deta,x1,x2,Echoice)
IMPLICIT NONE

! Arguments
TYPE (OneDimVlasovPlasma) :: domain
REAL(8),DIMENSION(:,:) :: fre,fim,Pre,Pim
REAL(8) :: E(:),dx,deta,x1,x2
INTEGER :: Echoice

REAL(8) :: density(Nx)
REAL(8) :: d_deta_re(Neta+1,Nx),d_deta_im(Neta+1,Nx)
REAL(8) :: d_dxdeta_re(Neta+1,Nx),d_dxdeta_im(Neta+1,Nx)
REAL(8) :: temp(2),eta(1:Neta+1),E123(1:3),frac_1_dx2
INTEGER :: i,j,N

! Fourier transform
REAL(8) :: FreNx(TotalNx),FimNx(TotalNx)

! MPI
INTEGER :: root=0,status(MPI_STATUS_SIZE),ierror,request
INTEGER :: right,left,sendtag,recvtag
REAL(8) :: NxTemp(Nx),sendbuf(1:Neta+1,3)
REAL(8) :: rcre(1:Neta+1,3),lcre(1:Neta+1,3),rcim(1:Neta+1,3),lcim(1:Neta+1,3)

! FFTPACK
INTEGER :: L
REAL(8) :: wsave(4*TotalNx+15),scaling
COMPLEX(8) :: c(TotalNx)

‘‘lic_report’’
2001/3/22
page 73

�

Program listings, one-dimensional Vlasov code 73

! Calculate E
CALL ElectricField(fre,E,E123,dx,Echoice,x1,x2,Nx,Neta)

! Calculate d/deta
CALL eta_Differentiator(domain,fre,d_deta_re,deta,’R’,Nx,Neta)
CALL eta_Differentiator(domain,fim,d_deta_im,deta,’I’,Nx,Neta)

! Calculate the x derivative
CALL x_FourierDifferentiator(domain,d_deta_re,d_deta_im, &
d_dxdeta_re,d_dxdeta_im,dx,Nx,Neta)

! Create eta
DO j = 1,Neta+1
eta(j) = DBLE(j-1)*deta

END DO

! Calculate the righthand side
DO i = 1,Nx
DO j = 1,Neta+1

Pre(j,i) = -d_dxdeta_im(j,i)+eta(j)*E(i)*fim(j,i)
END DO

END DO

DO i = 1,Nx
DO j = 1,Neta+1

Pim(j,i) = d_dxdeta_re(j,i)-eta(j)*E(i)*fre(j,i)
END DO

END DO

!!!!! Boundary eta=eta_max !!!!!!!!!!!!!!!!!!!

! Proc 0 calculates the boundary condition. All procs sends data to proc 0.
DO i=1,Nx
NxTemp(i)=Pre(Neta+1,i)

END DO

CALL MPI_GATHER(NxTemp,Nx,MPI_DOUBLE_PRECISION, &
FreNx,Nx,MPI_DOUBLE_PRECISION, &
root,MPI_COMM_WORLD,errcode)

DO i=1,Nx
NxTemp(i)=Pim(Neta+1,i)

END DO

CALL MPI_GATHER(NxTemp,Nx,MPI_DOUBLE_PRECISION, &
FimNx,Nx,MPI_DOUBLE_PRECISION, &
root,MPI_COMM_WORLD,errcode)

IF (rank.EQ.root) THEN
L=TotalNx

DO i=1,TotalNx
c(i)=DCMPLX(FreNx(i),FimNx(i))

END DO

‘‘lic_report’’
2001/3/22
page 74

�

74 BENGT ELIASSON

! Initialize the FFT routine
CALL dcffti(L,wsave)

! Perform FFTon the boundary
CALL dcfftf(L,c,wsave)

! Remove negative k_x.
DO i=1+TotalNx/2,TotalNx

c(i)=DCMPLX(zero,zero)
END DO

CALL dcfftb(L,c,wsave)

scaling=one/DBLE(TotalNx)

DO i=1,TotalNx
FreNx(i)=DREAL(c(i))*scaling

END DO

DO i=1,TotalNx
FimNx(i)=DIMAG(c(i))*scaling

END DO
END IF

CALL MPI_SCATTER(FreNx,Nx,MPI_DOUBLE_PRECISION, &
NxTemp,Nx,MPI_DOUBLE_PRECISION, &
root,MPI_COMM_WORLD,errcode)

DO i=1,Nx
Pre(Neta+1,i)=NxTemp(i)

END DO

CALL MPI_SCATTER(FimNx,Nx,MPI_DOUBLE_PRECISION, &
NxTemp,Nx,MPI_DOUBLE_PRECISION, &
root,MPI_COMM_WORLD,errcode)

DO i=1,Nx
Pim(Neta+1,i)=NxTemp(i)

END DO
!!!

frac_1_dx2=one/(dx*dx)

! Add a 6:th order dissipative term in x direction
DO i=4,Nx-3
DO j=1, Neta+1

Pre(j,i)=Pre(j,i)+diss*(fre(j,i+3)-six*fre(j,i+2) &
+15.0d0*fre(j,i+1)-20.0d0*fre(j,i)+15.0d0*fre(j,i-1) &

-six*fre(j,i-2)+fre(j,i-3))*frac_1_dx2
END DO

END DO

DO i=4,Nx-3
DO j=1, Neta+1

‘‘lic_report’’
2001/3/22
page 75

�

Program listings, one-dimensional Vlasov code 75

Pim(j,i)=Pim(j,i)+diss*(fim(j,i+3)-six*fim(j,i+2) &
+15.0d0*fim(j,i+1)-20.0d0*fim(j,i)+15.0d0*fim(j,i-1) &
-six*fim(j,i-2)+fim(j,i-3))*frac_1_dx2

END DO
END DO

! Exchange the boundary cells with neighbouring processors
IF (rank.EQ.0) THEN
left=size-1

ELSE
left=rank-1

END IF

IF (rank.EQ.size-1) THEN
right=0

ELSE
right=rank+1

END IF

sendbuf(:,1:3)=fre(:,Nx-2:Nx)
sendtag=100+rank
recvtag=100+left
CALL MPI_ISEND(sendbuf,3*(Neta+1),MPI_DOUBLE_PRECISION, &
right,sendtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)
CALL MPI_IRECV(lcre,3*(Neta+1),MPI_DOUBLE_PRECISION, &
left,recvtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)

sendbuf(:,1:3)=fim(:,Nx-2:Nx)
sendtag=100+rank
recvtag=100+left
CALL MPI_ISEND(sendbuf,3*(Neta+1),MPI_DOUBLE_PRECISION, &
right,sendtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)
CALL MPI_IRECV(lcim,3*(Neta+1),MPI_DOUBLE_PRECISION, &
left,recvtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)

sendbuf(:,1:3)=fre(:,1:3)
sendtag=100+rank
recvtag=100+right
CALL MPI_ISEND(sendbuf,3*(Neta+1),MPI_DOUBLE_PRECISION, &
left,sendtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)
CALL MPI_IRECV(rcre,3*(Neta+1),MPI_DOUBLE_PRECISION, &
right,recvtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)

sendbuf(:,1:3)=fim(:,1:3)
sendtag=100+rank
recvtag=100+right
CALL MPI_ISEND(sendbuf,3*(Neta+1),MPI_DOUBLE_PRECISION, &
left,sendtag,MPI_COMM_WORLD,request,ierror)

CALL MPI_WAIT(request,status,ierror)
CALL MPI_IRECV(rcim,3*(Neta+1),MPI_DOUBLE_PRECISION, &

‘‘lic_report’’
2001/3/22
page 76

�

76 BENGT ELIASSON

right,recvtag,MPI_COMM_WORLD,request,ierror)
CALL MPI_WAIT(request,status,ierror)

DO j=1,Neta+1
Pre(j,1)=Pre(j,1)+diss*(fre(j,4)-six*fre(j,3) &

+15.0d0*fre(j,2)-20.0d0*fre(j,1)+15.0d0*lcre(j,3) &
-six*lcre(j,2)+lcre(j,1))*frac_1_dx2

Pim(j,1)=Pim(j,1)+diss*(fim(j,4)-six*fim(j,3) &
+15.0d0*fim(j,2)-20.0d0*fim(j,1)+15.0d0*lcim(j,3) &
-six*lcim(j,2)+lcim(j,1))*frac_1_dx2

Pre(j,2)=Pre(j,2)+diss*(fre(j,5)-six*fre(j,4) &
+15.0d0*fre(j,3)-20.0d0*fre(j,2)+15.0d0*fre(j,1) &
-six*lcre(j,3)+lcre(j,2))*frac_1_dx2

Pim(j,2)=Pim(j,2)+diss*(fim(j,5)-six*fim(j,4) &
+15.0d0*fim(j,3)-20.0d0*fim(j,2)+15.0d0*fim(j,1) &
-six*lcim(j,3)+lcim(j,2))*frac_1_dx2

Pre(j,3)=Pre(j,3)+diss*(fre(j,6)-six*fre(j,5) &
+15.0d0*fre(j,4)-20.0d0*fre(j,3)+15.0d0*fre(j,2) &
-six*fre(j,1)+lcre(j,3))*frac_1_dx2

Pim(j,3)=Pim(j,3)+diss*(fim(j,6)-six*fim(j,5) &
+15.0d0*fim(j,4)-20.0d0*fim(j,3)+15.0d0*fim(j,2) &
-six*fim(j,1)+lcim(j,3))*frac_1_dx2

Pre(j,Nx-2)=Pre(j,Nx-2)+diss*(rcre(j,1)-six*fre(j,Nx) &
+15.0d0*fre(j,Nx-1)-20.0d0*fre(j,Nx-2)+15.0d0*fre(j,Nx-3) &
-six*fre(j,Nx-4)+fre(j,Nx-5))*frac_1_dx2

Pim(j,Nx-2)=Pim(j,Nx-2)+diss*(rcim(j,1)-six*fim(j,Nx) &
+15.0d0*fim(j,Nx-1)-20.0d0*fim(j,Nx-2)+15.0d0*fim(j,Nx-3) &
-six*fim(j,Nx-4)+fim(j,Nx-5))*frac_1_dx2

Pre(j,Nx-1)=Pre(j,Nx-1)+diss*(rcre(j,2)-six*rcre(j,1) &
+15.0d0*fre(j,Nx)-20.0d0*fre(j,Nx-1)+15.0d0*fre(j,Nx-2) &
-six*fre(j,Nx-3)+fre(j,Nx-4))*frac_1_dx2

Pim(j,Nx-1)=Pim(j,Nx-1)+diss*(rcim(j,2)-six*rcim(j,1) &
+15.0d0*fim(j,Nx)-20.0d0*fim(j,Nx-1)+15.0d0*fim(j,Nx-2) &
-six*fim(j,Nx-3)+fim(j,Nx-4))*frac_1_dx2

Pre(j,Nx)=Pre(j,Nx)+diss*(rcre(j,3)-six*rcre(j,2) &
+15.0d0*rcre(j,1)-20.0d0*fre(j,Nx)+15.0d0*fre(j,Nx-1) &
-six*fre(j,Nx-2)+fre(j,Nx-3))*frac_1_dx2

Pim(j,Nx)=Pim(j,Nx)+diss*(rcim(j,3)-six*rcim(j,2) &
+15.0d0*rcim(j,1)-20.0d0*fim(j,Nx)+15.0d0*fim(j,Nx-1) &
-six*fim(j,Nx-2)+fim(j,Nx-3))*frac_1_dx2

END DO

end subroutine PDE_RHS

!!!
! The ElectricField object calculates the electric field
! from the electron particle density.
!!!
subroutine ElectricField(fre,E,E123,dx,Echoice,x1,x2,Nx,Neta)
IMPLICIT NONE

! Arguments
REAL(8) :: fre(:,:),E(:),E123(1:3)
REAL(8) :: dx,x1,x2

‘‘lic_report’’
2001/3/22
page 77

�

Program listings, one-dimensional Vlasov code 77

INTEGER :: Echoice,Nx,Neta

REAL(8) :: Edelta,U,frac_dx_24
INTEGER :: i

! Fourier transform
REAL(8) :: FreNx(TotalNx),FimNx(TotalNx)

! FFTPACK
REAL(8) :: wsave(4*TotalNx+15),scaling2
COMPLEX(8) :: c(TotalNx)
INTEGER :: L

REAL(8) :: NxTemp(Nx)

! MPI
INTEGER :: root=0

IF (Echoice.EQ.0) THEN

frac_dx_24=dx*0.04166666666666666666d0

! Use trigonometric interpolation

! Proc 0 calculates the electric field. All procs sends data to
! proc 0 for calculating the electric field.
DO i=1,Nx

NxTemp(i)=one-twopi*fre(1,i)
END DO

CALL MPI_GATHER(NxTemp,Nx,MPI_DOUBLE_PRECISION, &
FreNx,Nx,MPI_DOUBLE_PRECISION, &
root,MPI_COMM_WORLD,errcode)

! Calculate E-field if proc 0.
IF (rank.EQ.0) THEN

L=TotalNx

! Initialize the FFT routine
CALL dcffti(L,wsave)

scaling2=twopi/(dx)

DO i=1,TotalNx
FimNx(i)=zero
c(i)=DCMPLX(FreNx(i),FimNx(i))

END DO

CALL dcfftf(L,c,wsave)

! Positive k_x.

‘‘lic_report’’
2001/3/22
page 78

�

78 BENGT ELIASSON

! No zero frequency component.
c(1)=DCMPLX(zero,zero)

! The non-zero frequency components.
DO i=2,TotalNx/2
c(i)=c(i)*dcmplx(zero,-one)/DBLE(i-1)

END DO

! Negative k_x.
DO i=1,TotalNx/2
c(TotalNx+1-i)=c(TotalNx+1-i)*dcmplx(zero,one)/DBLE(i)

END DO
c(TotalNx/2+1)=zero

! Return some components, for statistics ...
E123(1)=ABS(c(2))
E123(2)=ABS(c(3))
E123(3)=ABS(c(4))

CALL dcfftb(L,c,wsave)

DO i=1,TotalNx
FreNx(i)=DREAL(c(i))/scaling2

END DO

END IF

CALL MPI_SCATTER(FreNx,Nx,MPI_DOUBLE_PRECISION, &
E,Nx,MPI_DOUBLE_PRECISION, &
root,MPI_COMM_WORLD,errcode)

ELSE

DO i = 1,Nx
E(i) = zero*COS(pi*DBLE(rank*Nx+i-1)/DBLE(TotalNx))

END DO

END IF
end subroutine ElectricField

!

!!!
! The x_FourierDifferentiator calculates d/dx of a two-
! dimensional function f(x,eta), using the fourth
! order difference approximation.
!!!
subroutine x_FourierDifferentiator(domain, &

vinRe,vinIm,voutRe,voutIm,dx,Nx,Neta)
! Calculate d/dx of ’vin’, the result returned in ’vout’
IMPLICIT NONE

! Arguments
TYPE (OneDimVlasovPlasma) :: domain
REAL(8),DIMENSION(:,:) :: vinRe,vinIm,voutRe,voutIm

‘‘lic_report’’
2001/3/22
page 79

�

Program listings, one-dimensional Vlasov code 79

REAL(8) :: dx
INTEGER :: Nx,Neta

INTEGER :: i,j

!MPI
INTEGER :: root

! FFTPACK
REAL(8) :: wsave(4*TotalNx+15),scaling2
COMPLEX(8) :: c(TotalNx),NxTempZ(Nx)
INTEGER :: L

L=TotalNx

! Initialize the FFT routine
CALL dcffti(L,wsave)

scaling2=twopi/(dx*DBLE(TotalNx*TotalNx))

DO j=1,Neta+1,size
DO root=0,size-1

IF (j+root.LE.Neta+1) THEN

! Proc ’root’ calculates the x derivative. All procs sends data to
! proc 0.
DO i=1,Nx

NxTempZ(i)=DCMPLX(vinRe(j+root,i),vinIm(j+root,i))
END DO

CALL MPI_GATHER(NxTempZ,Nx,MPI_DOUBLE_COMPLEX, &
c,Nx,MPI_DOUBLE_COMPLEX, &
root,MPI_COMM_WORLD,errcode)

END IF
END DO

! All procs calculate the x derivative in parallel.
IF (j+rank.LE.Neta+1) THEN

! Perform forward Fourier transform.
CALL dcfftf(L,c,wsave)

! Multiply by ik_x, positive k_x.
DO i=1,TotalNx/2

c(i)=c(i)*DBLE(i-1)*DCMPLX(zero,one)
END DO

! Multiply by ik_x, negative k_x.
DO i=1,TotalNx/2

c(TotalNx+1-i)=c(TotalNx+1-i)*DBLE(i)*DCMPLX(zero,-one)
END DO

! The Fourier component corresponding to the highest frequency is
! put to zero - it belongs both to positive and negative k_x.
c(TotalNx/2+1)=DCMPLX(zero,zero)

‘‘lic_report’’
2001/3/22
page 80

�

80 BENGT ELIASSON

! Perform backward Fourier transform.
CALL dcfftb(L,c,wsave)

END IF

! Re-distribute the result of the calculation.
DO root=0,size-1
IF (j+root.LE.Neta+1) THEN

CALL MPI_SCATTER(c,Nx,MPI_DOUBLE_COMPLEX, &
NxTempZ,Nx,MPI_DOUBLE_COMPLEX, &
root,MPI_COMM_WORLD,errcode)

DO i=1,Nx
voutRe(j+root,i)=DREAL(NxTempZ(i))*scaling2
voutIm(j+root,i)=DIMAG(NxTempZ(i))*scaling2

END DO

END IF
END DO

END DO

end subroutine x_FourierDifferentiator

!!!
! The TriDiag_Solver solves a linear tri-diagonal
! equation system, using the Thomas algorithm.
! Reference: John C. Strikwerda, Finite Difference
! Schemes and Partial Differential Equations,
! Chapman & Hall, 1989
!!!
subroutine TriDiag_Solver(a,b,c,d,r,p,w,m,iopt)
! Arguments:
! a - vector containing the subdiagonal of matrix
! b - vector containing the diagonal of matrix
! c - vector containing the upper diagonal of matrix
! d - vector containing the righthand side
! p - vector containing a working area
! r - vector containing a working area
! w - the resulting vector - output
! m - the number of unknowns in eqation system
! iopt - option: iopt=1: Create help vector p
! iopt=2: Solve the system
!!!
IMPLICIT NONE

! Arguments
REAL(8),DIMENSION(:) :: a,b,c,d,r,p,w
INTEGER :: m,iopt

REAL(8) :: q(1:m)

INTEGER :: i

IF (iopt.EQ.2) THEN
q(1)=d(1)

‘‘lic_report’’
2001/3/22
page 81

�

Program listings, one-dimensional Vlasov code 81

DO i=1,m-1
q(i+1)=r(i)*(d(i+1)-a(i+1)*q(i))

END DO
w(m+1)=(-a(m+1)*q(m)+d(m+1))/(1+a(m+1)*p(m))
DO i=m,1,-1
w(i)=p(i)*w(i+1)+q(i)

END DO
ELSE IF(iopt.EQ.1) THEN
p(1) = -c(1)
DO i=1, m-1
r(i)=one/(a(i+1)*p(i)+b(i+1))
p(i+1)=-c(i+1)*r(i)

END DO
END IF

end subroutine TriDiag_Solver

!!!
! The eta_Differetiator calculates d/deta of a two-
! dimensional function f(x,eta), using the Pade’
! approximation.
!!!
subroutine eta_Differentiator(domain,vin,vout,deta,ReIm,Nx,Neta)

! Calculate d/deta of ’vin’, the result returned in ’vout’
IMPLICIT NONE

! Declarations of arguments
TYPE (OneDimVlasovPlasma) :: domain
REAL(8),DIMENSION(:,:) :: vin,vout
REAL(8) :: deta
CHARACTER :: ReIm
INTEGER :: Nx,Neta

! Declarations of local variables
INTEGER :: i,j,iopt
REAL(8) :: rhs(Neta+1),frac_1_deta, frac_3_deta

! To be used by TriDiag_Solver
REAL(8) :: a(Neta+1),b(Neta+1),c(Neta+1)
REAL(8) :: r(Neta+1),p(Neta+1),w(Neta+1)

frac_1_deta=one/deta
frac_3_deta=three/deta

IF (ReIm.EQ.’R’) THEN
a(1)=zero
b(1)=one
c(1)=zero

ELSE
a(1)=zero
b(1)=one
c(1)=half

END IF

DO i=2,Neta
a(i)=one
b(i)=four

‘‘lic_report’’
2001/3/22
page 82

�

82 BENGT ELIASSON

c(i)=one
END DO

a(Neta+1)=two
b(Neta+1)=one
c(Neta+1)=zero

iopt=1
CALL TriDiag_Solver(a,b,c,rhs,r,p,w,Neta,iopt)

DO i=1,Nx
! The righthand side of the equation
! The boundary eta=0
IF (ReIm.EQ.’R’) THEN
! The Real part is an even function
rhs(1)=zero

ELSE
! The Imaginary part is an odd function
rhs(1)=vin(2,i)*frac_3_deta*half

END IF
! The inner points
DO j=2,Neta
rhs(j)=(vin(j+1,i)-vin(j-1,i))*frac_3_deta

END DO
! The boundary eta=eta_max
rhs(Neta+1)=-(-five*vin(Neta+1,i)+ &
four*vin(Neta,i) &
+vin(Neta-1,i))*half*frac_1_deta

iopt=2
CALL TriDiag_Solver(a,b,c,rhs,r,p,w,Neta,iopt)

! Store the solution of the equation
DO j=1,Neta+1
vout(j,i)=w(j)

END DO
END DO

end subroutine eta_Differentiator

!!!
! The SimpsonIntegrator integrates a function f(x),
! using the Simpson formula.
!!!
subroutine SimpsonIntegrator(vin,d,N,result)
! Perform the integral of a function ’vin’
IMPLICIT NONE

! Arguments
REAL(8),DIMENSION(:) :: vin
REAL(8) :: d,result
INTEGER :: N

REAL(8) :: frac_d_3,frac_2d_3,frac_4d_3
INTEGER :: i

‘‘lic_report’’
2001/3/22
page 83

�

Program listings, one-dimensional Vlasov code 83

! Use Simpson’s formula for integration
frac_d_3=d*frac_1_3
frac_2d_3=d*frac_2_3
frac_4d_3=d*frac_4_3

result = frac_d_3*(vin(1)+vin(N+1))+frac_4d_3*vin(N)
DO i = 1,N/2-1
result = result +frac_4d_3*vin(i+i)+frac_2d_3*vin(i+i+1)

END DO
end subroutine SimpsonIntegrator

!!!
! The PeriodicIntegrator integrates a periodic function f(x),
!!!
subroutine PeriodicIntegrator(vin,d,N,result)

! Perform the integral of a function ’vin’
IMPLICIT NONE

! Arguments
REAL(8),DIMENSION(:) :: vin
REAL(8) :: d,result
INTEGER :: N

INTEGER :: i

result = zero
DO i = 1,N
result = result+vin(i)*d

END DO
end subroutine PeriodicIntegrator

!!!
! Runge-Kutta time stepper
!!!
subroutine RungeKutta_TimeStepper(domain,dt,x1,x2,Echoice)

IMPLICIT NONE

! Arguments
TYPE(OneDimVlasovPlasma) :: domain
REAL(8) :: density(Nx),dt,x1,x2
INTEGER :: Echoice

REAL(8) :: fre_1(Neta+1,Nx),fim_1(Neta+1,Nx)
REAL(8) :: fre_2(Neta+1,Nx),fim_2(Neta+1,Nx)
REAL(8) :: Pre1(Neta+1,Nx),Pim1(Neta+1,Nx)
REAL(8) :: frac_dt_2, frac_dt_6,frac_2dt_6,E123(1:3)
INTEGER :: i,j

frac_dt_2=dt/two
frac_dt_6=dt/six
frac_2dt_6=two*dt/six

DO i=1,Nx

‘‘lic_report’’
2001/3/22
page 84

�

84 BENGT ELIASSON

DO j=1,Neta+1
fre_1(j,i)=domain%fre(j,i)

END DO
END DO

DO i=1,Nx
DO j=1,Neta+1

fim_1(j,i)=domain%fim(j,i)
END DO

END DO

CALL PDE_RHS (domain,fre_1,fim_1,Pre1,Pim1, &
domain%E,domain%dx,domain%deta,x1,x2,Echoice)

DO i=1,Nx
DO j=1,Neta+1

domain%fre(j,i)=fre_1(j,i)+Pre1(j,i)*frac_dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

domain%fim(j,i)=fim_1(j,i)+Pim1(j,i)*frac_dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

fre_2(j,i)=fre_1(j,i)+Pre1(j,i)*frac_dt_2
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

fim_2(j,i)=fim_1(j,i)+Pim1(j,i)*frac_dt_2
END DO

END DO

CALL PDE_RHS (domain,fre_2,fim_2,Pre1,Pim1, &
domain%E,domain%dx,domain%deta,x1,x2,Echoice)

DO i=1,Nx
DO j=1,Neta+1

domain%fre(j,i)=domain%fre(j,i)+Pre1(j,i)*frac_2dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

domain%fim(j,i)=domain%fim(j,i)+Pim1(j,i)*frac_2dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

fre_2(j,i)=fre_1(j,i)+Pre1(j,i)*frac_dt_2

‘‘lic_report’’
2001/3/22
page 85

�

Program listings, one-dimensional Vlasov code 85

END DO
END DO

DO i=1,Nx
DO j=1,Neta+1

fim_2(j,i)=fim_1(j,i)+Pim1(j,i)*frac_dt_2
END DO

END DO

CALL PDE_RHS (domain,fre_2,fim_2,Pre1,Pim1, &
domain%E,domain%dx,domain%deta,x1,x2,Echoice)

DO i=1,Nx
DO j=1,Neta+1

domain%fre(j,i)=domain%fre(j,i)+Pre1(j,i)*frac_2dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

domain%fim(j,i)=domain%fim(j,i)+Pim1(j,i)*frac_2dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

fre_2(j,i)=fre_1(j,i)+Pre1(j,i)*dt
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

fim_2(j,i)=fim_1(j,i)+Pim1(j,i)*dt
END DO

END DO

CALL PDE_RHS (domain,fre_2,fim_2,Pre1,Pim1, &
domain%E,domain%dx,domain%deta,x1,x2,Echoice)

DO i=1,Nx
DO j=1,Neta+1

domain%fre(j,i)=domain%fre(j,i)+Pre1(j,i)*frac_dt_6
END DO

END DO

DO i=1,Nx
DO j=1,Neta+1

domain%fim(j,i)=domain%fim(j,i)+Pim1(j,i)*frac_dt_6
END DO

END DO

CALL ElectricField(domain%fre,domain%E,domain%E123, &
domain%dx,Echoice,x1,x2,Nx,Neta)

!!!
end subroutine RungeKutta_TimeStepper

‘‘lic_report’’
2001/3/22
page 86

�

86 BENGT ELIASSON

end module vlasov_numeric_mod
!

A.3 vlasov domain mod.f90
!

!!!
! vlasov_domain_mod.f90 Bengt Eliasson 2000-03-18 !
!!!
! Conatains the class OneDimVlasovPlasma, and constructors/ !
! destructors for this class. !
!!!

module vlasov_domain_mod
USE vlasov_param_mod

IMPLICIT NONE

type OneDimVlasovPlasma
! The distribution function
REAL(8), DIMENSION(1:Neta+1,1:Nx) :: fre, fim
! The electric field
REAL(8), DIMENSION(1:Nx) :: E
! The step sizes in x and eta direction
REAL(8) :: dx,deta,E123(1:3)

end type

CONTAINS

! Constructor and Destructor, used if dynamic memory is used ...
SUBROUTINE Constructor(domain,Nx,Neta)

IMPLICIT NONE
TYPE (OneDimVlasovPlasma) :: domain
INTEGER :: Nx, Neta

END SUBROUTINE Constructor

SUBROUTINE Destructor(domain)
IMPLICIT NONE
TYPE (OneDimVlasovPlasma) :: domain

END SUBROUTINE Destructor
end module vlasov_domain_mod
!

A.4 vlasov param mod.f90
!

!!
! vlasov_param_mod.f90 Bengt Eliasson 2000-03-18 !

‘‘lic_report’’
2001/3/22
page 87

�

Program listings, one-dimensional Vlasov code 87

!!
! This module contains mathematical constants and !
! parameters used to set up a run. !
!!

MODULE vlasov_param_mod
IMPLICIT NONE

!---- Include file for MPI and some various
!---- parameters and variables
include ’mpif.h’
INTEGER :: errcode,size,rank

! The number of processors
INTEGER,PARAMETER :: NP=10

!---- Static parameters
REAL(8),PARAMETER :: pi=3.141592653589793238463d0
REAL(8),PARAMETER :: zero=0.0d0
REAL(8),PARAMETER :: one=1.0d0
REAL(8),PARAMETER :: two=2.0d0
REAL(8),PARAMETER :: three=3.0d0
REAL(8),PARAMETER :: four=4.0d0
REAL(8),PARAMETER :: five=5.0d0
REAL(8),PARAMETER :: six=6.0d0
REAL(8),PARAMETER :: seven=7.0d0
REAL(8),PARAMETER :: ten=10.0d0
REAL(8),PARAMETER :: thirteen=13.0d0
REAL(8),PARAMETER :: fourteen=14.0d0
REAL(8),PARAMETER :: twentytwo=22.0d0
REAL(8),PARAMETER :: twopi=6.283185307179586476926d0
REAL(8),PARAMETER :: halfpi=1.570796326794896619232d0
REAL(8),PARAMETER :: half=0.5d0
REAL(8),PARAMETER :: frac_1_6=0.166666666666666666666d0
REAL(8),PARAMETER :: frac_5_2=2.5d0
REAL(8),PARAMETER :: frac_1_3=0.333333333333333333333d0
REAL(8),PARAMETER :: frac_2_3=0.666666666666666666667d0
REAL(8),PARAMETER :: frac_4_3=1.333333333333333333333d0
REAL(8),PARAMETER :: SqrtThree=1.732050807568877293527d0
REAL(8),PARAMETER :: SqrtEight=2.828427124746190097604d0

! File units
INTEGER,PARAMETER :: outE_1=21
INTEGER,PARAMETER :: outE_2=22
INTEGER,PARAMETER :: outE_3=23
INTEGER,PARAMETER :: outdP=18
INTEGER,PARAMETER :: outdW=19
INTEGER,PARAMETER :: outCorr = 12
INTEGER,PARAMETER :: outFourier = 13
INTEGER,PARAMETER :: outE2 = 14
INTEGER,PARAMETER :: outNorm = 15
INTEGER,PARAMETER :: outfabs = 16
INTEGER,PARAMETER :: outF = 17

!---- Settings for a run ----!
!----- Parameters for the domain ----!

“lic˙report”
2001/3/22
page 88

�

88 BENGT ELIASSON

! The total number of gridpoints in x-direction.
INTEGER,PARAMETER :: TotalNx=100

! The number of gridpoints on this processor.
INTEGER,PARAMETER :: Nx=TotalNx/NP

! The number of grid points in eta-direction.
INTEGER,PARAMETER :: Neta=100

! The wave number used in the initial condition
REAL(8),PARAMETER :: kx = 0.5d0

! The amplitude used in the initial condition
REAL(8),PARAMETER :: A = 0.5D0

! The domain in x direction
REAL(8),PARAMETER :: x1=zero
REAL(8),PARAMETER :: x2=2.0d0*pi/kx

! The domain in eta direction
REAL(8),PARAMETER :: eta_max=30.0d0

! Numerical dissipation
REAL(8),PARAMETER :: diss=0.001d0

! The choice of model for the electric field
INTEGER,PARAMETER :: EChoice=0

!---- Other parameters for the run ----!
! The number of steps in time.
INTEGER,PARAMETER :: Nt=5000

! Stability parameters
! The parameter combining the stability condition for the
! Runge-Kutta, Spectral scheme and Pade’ scheme.
REAL(8),PARAMETER :: S_limit=SqrtEight/(SqrtThree*pi)
! The CFL number, CFL<1 for stability
REAL(8),PARAMETER :: CFL=0.71D0

! The time step size
REAL(8),PARAMETER :: dt=CFL*S_limit*((x2-x1)/TotalNx)*(eta_max/Neta)

! The stop time
REAL(8),PARAMETER :: t_end=Nt*dt

! If data files is to be be created
! Yes: .TRUE.
! No: .FALSE.
LOGICAL,PARAMETER :: WriteToFile=.TRUE.

! The number of times to write result
INTEGER,PARAMETER :: NrPrints=1000
INTEGER,PARAMETER :: print1 = Nt/NrPrints

END MODULE vlasov_param_mod
!

