
IT Licentiate theses
2001-009

Efficient Symbolic State Exploration
of Timed Systems:
Theory and Implementation

JOHAN BENGTSSON

UPPSALA UNIVERSITY
Department of Information Technology

Efficient Symbolic State Exploration of Timed Systems:
Theory and Implementation

BY

JOHAN BENGTSSON

May 2001

DEPARTMENT OFCOMPUTERSYSTEM

INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY

UPPSALA

SWEDEN

Dissertation for the degree of Licentiate of Philosophy in Computer Systems
at Uppsala University 2001

Efficient Symbolic State Exploration of Timed Systems:
Theory and Implementation

Johan Bengtsson

johanb@docs.uu.se

Department of Computer System
Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

c© Johan Bengtsson 2001
ISSN 1404-5117

Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

Timing aspects are important for the correctness of safety-critical systems. It is
crucial that they are carefully analysed in designing such systems.UPPAAL is a
tool designed to automate the analysis process. InUPPAAL, a system under con-
struction is described as a network of timed automata and the desired properties
of the system can be specified using a query language. ThenUPPAAL can be used
to explore the state space of the system description to search for states violating
(or satisfying) the properties. If such states are found, the tool provides diagnostic
information, in form of executions leading to the states, to help the desginers, for
example, to locate bugs in the design.

The major problem forUPPAAL and other tools for timed systems to deal with
industrial-size applications is the state space explosion. This thesis studies the
sources of the problem and develops techniques for real-time model checkers,
such asUPPAAL, to attack the problem. As contributions, we have developed
local-time semantics for timed systems to allow partial order reductions, the no-
tion of committed locations to model atomicity and a number of implementation
techniques to reduce time and space consumption in state space exploration. The
techniques are studied and compared by case studies. Our experiments demon-
strate significant improvements on the performance ofUPPAAL.

Acknowledgements

First I want to thank my supervisor Wang Yi, for guiding me towards the com-
pletion of this thesis. I have learnt a lot during the years we have been work-
ing together. I also would like to thank all current and former colleagues in the
“UPPAAL-group” in Uppsala,i.e. Tobias Amnell, Alexandre David, Elena Fers-
man, Fredrik Larsson, Justin Pearson and Paul Petterson. It has been a pleasure
working together with you, discussing implementation issues and other problems.
Further I want to thank Kim G. Larsen and the rest of the Aalborg part of theUP-
PAAL project for stimulating collaboration. Without your participationUPPAAL

would not have been what it is today. I am also grateful to all my other co authors,
i.e. David Griffioen, Bengt Johnsson and Johan Lilius, for fruitful discussions. It
has been fun working with you.

Last but not least I want to thank my family. Without their love, support and en-
couragement this thesis would never have been possible.

This thesis is based on four different publications, written between 1995 and 2001.

Paper A: Johan Bengtsson. Reducing Memory Usage in Symbolic State-Space
Exploration for Timed Systems. Technical Report, 2001-009, Department
of Information Technology, Uppsala University, 2001.

Paper B: Johan Bengtsson, Bengt Jonsson, Johan Lilius and Wang Yi. Partial
Order Reductions for Timed Systems. In Proceedings, Ninth International
Conference on Concurrency Theory, volume 1466, Lecture Notes in Com-
puter Science, Springer Verlag, 1998

Paper C: Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. Automated Anal-
sysis of an Audio-Control Protocol usingUPPAAL. In Proceedings, Ninth
International Conference on Computer Aided Verification, volume 1102,
Lecture Notes in Computer Science, Springer Verlag, 1996

Paper D: Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson and
Wang Yi.UPPAAL — a Tool Suite for Automatic Verification of Real-Time
Systems. In Proceedings, Hybrid Systems III: Verification and Control, vol-
ume 1066, Lecture Notes in Computer Science, Springer Verlag, 1995

Comments on My Participation

Paper A: I discussed the content with Wang Yi. I implemented everything and
wrote the report.

Paper B: I participated in discussions and wrote part of the paper. I made a pro-
totype implementation but it is not described in the paper.

Paper C: I participated in some of the discussions and implemented committed
locations inUPPAAL. I have also made minor revisions to the semantics for
committed location.

Paper D: I implementedUPPAAL together with Fredrik Larsson.

Contents

Introduction 1

1 Background . 1

2 The State Explosion Problem for Timed Systems2

3 Contributions . 3

4 Conclusions and Future Work .4

Paper A: Reducing Memory Usage in Symbolic State-Space Exploration
for Timed Systems 13

1 Introduction .15

2 Timed Automata and Reachability Analysis17

2.1 Timed Automata Model17

2.2 Reachability Analysis19

2.3 UPPAAL Extensions .22

3 Representing Symbolic States27

3.1 Normal Representation28

3.2 Packed States .29

3.3 Packed Zones with Cheap Inclusion Check32

4 Representing Symbolic State-Space35

4.1 RepresentingWAIT . 36

4.2 RepresentingPASSED 38

4.3 SupertracePASSED for Timed Automata 39

i

4.4 Hash Compaction for Timed Automata42

5 Conclusions .46

A Examples and Experiment Environment52

Paper B: Partial Order Reductions for Timed Systems 55

1 Motivation .57

2 Preliminaries .60

2.1 Networks of Timed Automata60

2.2 Symbolic Global–Time Semantics62

3 Partial Order Reduction and Local-Time Semantics63

3.1 Symbolic Local-Time Semantics66

3.2 Finiteness of the Symbolic Local Time Semantics68

4 Partial Order Reduction in Reachability Analysis69

4.1 Operations on Constraint Systems71

5 Conclusion and Related Work72

Paper C: Automated Analsysis of an Audio-Control Protocol usingUP-
PAAL 77

1 Introduction .79

2 Committed Locations .81

2.1 An Example .82

2.2 Syntax .83

2.3 Semantics .84

3 Committed Locations inUPPAAL 86

3.1 The Model-Checking Algorithm86

3.2 Space and Time Performance Improvements87

4 The Audio Control Protocol with Bus Collision88

5 A Formal Model of the Protocol91

ii

6 Verification inUPPAAL . 93

7 Conclusions .96

A The System Description .98

Paper D: UPPAAL — a Tool Suite for Automatic Verification of Real-
Time Systems 107

1 Introduction .109

2 An Overview of UPPAAL .110

2.1 Graphical Description of Networks of Timed Automata . .111

2.2 Textual Description of Networks of Timed Automata . . .111

2.3 Linear Hybrid Systems111

2.4 Syntactical Checks .113

2.5 Model–Checking .113

3 The UPPAAL Model .114

3.1 Syntax .114

3.2 Semantics .116

4 The UPPAAL Model–Checker118

5 Applications and Performance120

6 Conclusion and Future Work .122

iii

Introduction

1 Background

During the last decades, computers have become one of the most important tools
in our society. They are no longer used only for word processing, banking or sci-
entific computations. Nowadays computers are widely used in our daily life to
control e.g. stereos, micro wave ovens, cars, medical equipments, aeroplanesetc.
This change became possible due to the development of powerful micro proces-
sors that can be integrated in so calledembedded systems. A large class of embed-
ded systems isreal-time systemswhere it is important that the control computer
should deliver not only correct output, but also in time. As an example, consider
an industrial robot that picks boxes from conveyor belt.

Because of the wide spread safety-critical applications of real time systems, their
correct functioning has been an issue of vital importance in the system develop-
ment process. Various new techniques have been developed to check the correct-
ness of such systems. Among others, formal verification has been a promising
technique to complement the traditional method by testing. The basic idea of for-
mal verification is to describe the system under development in a formal systems
and then apply rigorous methods to prove that the system meets its requirements
(e.g. [Hoa69, Dij75, Hoa78, Rei85, Mil89, Hol91, AD90, AD94, BD91, Yi91,
RR88, ACD90, CES86, AH94, HNSY92, SS95]).

In this thesis we focus onmodel-checking[CGP99]. In contrast to manual tech-
niques, model-checking is fully automatic in the sense that the proof showing that
a system satisfies a given requirement is constructed by the model-checker without
manual interaction. In the past years, a large number of model-checkers have been
developed by researchers for different application areas. For examples, we men-
tion SPIN [Hol91, Hol97] for communication protocols and Murϕ [DDHY92] for
concurrent and reactive systems, UPPAAL [LPY97, ABB+01] andKRONOS[DOTY95,
Yov97, BDM+98] for timed systems andHYTECH [HHWT97] for hybrid sys-

1

tems. These tools have all been successfully applied to industrial-size case stud-
ies,e.g.[HLP98, JMMS98, SD95a, MMS97, LPY98, HSLL97, TY98, HWT96].

Even though the existing techniques and tools have become increasingly efficient
and success stories are reported frequently, they currently do not scale up to the
size of most industrial systems. The bottleneck is the state space explosion prob-
lem. The main source of the problem is that the state space of a system of parallel
processes can grow exponentially with the number of components. This is due to
the fact that parallelism is modelled by interleaving of steps from the processes.
In the literature, various techniques have been proposed to attack the state space
explosion problems e.g. partial order reductions [God90, Val90, Pel93], symme-
try reductions [HJJJ84, ID96, ES97], loop reduction [LLPY97], sweep-line and
state space caching methods to keep only part of the state space in main mem-
ory [Hol85, GHP95, SD96, CKM01], and probabilistic methods [Hol91, Hol98,
WL93, SD95].

2 The State Explosion Problem for Timed Systems

During the past few years, a number of verification tools have been developed
for real-time systems in the framework of timed automata (e.g.KRONOSandUP-
PAAL [DOTY95, LPY97, BLL+98]). One of the major problems in applying these
tools to industrial-size systems is the huge memory-usage (e.g. [BGK+96]) for the
exploration of the state-space of a network (or product) of timed automata. The
main reason is that the model-checkers must store a large number of symbolic
states each of which contains information not only on the control structure of the
automata but also the clock values specified by clock constraints or time zone. A
well-known technique to represent time zone in the existing model checkers for
timed systems isDifference Bounds Matrices[Dil89] (DBM). In DBM, the mem-
ory requirement for each state is quadratic in the number of clocks. For example,
in a system with 10 clocks and 10 processes and each with 10 states, the time zone
for each state requires 484 bytes in addition to 10 bytes for the control part.

It is crucial for performance to reduce the memory requirement to represent time
zone. In the literature there are a few techniques that address this problem. In [DY96]
live-range analysis is used to reduce the number of clocks in a model. By analysing
the control structure of the model it is possible to compute, for each control loca-
tion, the set of active (live) clocks. Then, for each state, only timing informa-
tion regarding the active clocks need to be stored. Another approach is taken
in [LLPY97]. This work is based on the observation that the DBM representa-
tion of a time zone often contain a lot of redundant information,i.e. the solution

2

set can be represented using much less constraints. The paper presents a three step
procedure for computing a minimal set of constraints with the same solution set
as a given DBM. One step further is presented in [BLP+99]. This paper introduce
CDDs, a BDD-like structure for representation of time zones. The key feature
of this structure is the possibility to store non-convex unions of zones. A CDD
is a directed acyclic graph with two types of nodes: terminal nodes labelled true
and false, and inner nodes labelled with pairs of clocks. The edges in this graph
correspond to bounds on the difference between the clocks in source node.

3 Contributions

The main contribution of this thesis is in the implementation ofUPPAAL. In par-
ticular, we have developed a number of efficient techniques to minimise memory
usage in model checking timed systems. We study the memory consumption prob-
lem in two fronts: the data structures to store and manipulate each symbolic state
and the whole state space. We present two different methods that can be used
for packing states. First, we code the entire state as one large number using a
multiply-and-add algorithm. This method yields a representation that is canonical
and minimal in terms of memory usage but the performance for inclusion checking
between states is poor. The second method is mainly intended to use for the tim-
ing part of the state and it is based on concatenation of bit strings. Using a special
concatenation of the bit string representation of the constraints in a zone, ideas
from [PS80] can be used to implement fast inclusion checking between packed
zones. We attack the problem with large state spaces in two different ways. First,
to get rid of states that do not need to be explored, as early as possible, we intro-
duce inclusion checking already in the data structure keeping the states waiting
to be explored. We also describe how this can be implemented without slowing
down the verification process. Second, we investigate how supertrace [Hol91] and
hash compaction [WL93, SD95] methods can be applied to timed systems. We
also present a variant of the hash compaction method, that allows termination of
branches in the search tree based on probable inclusion checking between states.
These techniques have been implemented in theUPPAAL tool, evaluated and com-
pared by real-life examples; their strengths and weaknesses are described.

In addition, we have developed a partial-order reduction method for timed sys-
tems based on alocal-timesemantics for networks of timed automata. The main
idea is to remove the implicit clock synchronisation between processes in a net-
work by letting local clocks in each process advance independently of clocks in
other processes, and by requiring that two processesresynchronisetheir local time

3

scales whenever they communicate. A symbolic version of this new semantics is
developed in terms of predicate transformers, which enjoys the desired property
that two predicate transformers are independent if they correspond to disjoint tran-
sitions in different processes. Thus we can apply standard partial order reduction
techniques to the problem of checking reachability for timed systems.

Another contribution is the notion ofcommitted locations. This notion allows ac-
curate modelling of atomic behaviours, such as atomic broadcast. More impor-
tantly committed location are utilised to guide the state-space exploration of the
model checker to avoid exploring unnecessary interleavings of independent tran-
sitions. In the thesis we present a modified algorithm for state space exploration
for networks of timed automata which generate a reduced number of states when
committed locations are used. Our experimental results demonstrate significant
time and space-savings of the modified model checking algorithm.

4 Conclusions and Future Work

The bottleneck for model checking technology to scale up is the state state explo-
sion problem. For timed systems, the problem is even more critical because the
model checker must keep track on not only the state space of the control structure
of a system, but also timing constraints over the clock variables of the system.

This thesis summarises the implementation decisions and techniques adopted in
UPPAAL. We have presented a collection of techniques to improve the perfor-
mance ofUPPAAL, in particular, to reduce the huge memory consumption in state
space explosion. We believe that these techniques are general and applicable to
other model checkers for timed systems. We would like to point out that the de-
velopment ofUPPAAL demonstrates it is possible today to build a model checker
for timed systems that is both easy to use and capable of handling realistic, indus-
trial size, systems.

The work presented in this thesis can be extended in several directions. As future
work, we will study and develop techniques to reduce the memory requirements
even further without losing performance,e.g.by finding better packing methods
or developing hash functions for zones that still allow inclusion checking. Another
challenge is to further investigate partial order reduction can be efficiently applied
to timed automata. The local-time semantics is just a step on the way. Further
investigations are needed to develop an efficient implementation of the technique.
Hierarchical extensions to timed automata is a direction that is currently being
pursued. A new challenge is how to take advantage of the hierarchical structures

4

to reduce the time and space consumption of the state space exploration process.

5

Bibliography

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R.
D’Argenio, Alexandre David, Ansgar Fehnker, Thomas Hune,
Bertrand Jeannet, Kim G. Larsen, M. Oliver Möller, Paul Petters-
son, Carsten Weise, and Wang Yi.UPPAAL - Now, Next, and Future.
In Modelling and Verification of Parallel Processes, number 2067
in Lecture Notes in Computer Science, pages 100–125. Springer-
Verlag, 2001.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-
checking for real-time systems. InProceedings, Seventh Annual
IEEE Symposium on Logic in Computer Science, pages 414–425.
IEEE Computer Society Press, 1990.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time sys-
tems. InProceedings, Seventeenth International Colloquium on Au-
tomata, Languages and Programming, volume 443 ofLecture Notes
in Computer Science, pages 322–335. Springer-Verlag, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.Journal
of Theoretical Computer Science, 126(2):183–235, 1994.

[AH94] Rajeev Alur and Thomas A. Henzinger. A really temporal logic.
Journal of the ACM, 41(1):181–204, 1994.

[BD91] Bernard Berthomieu and Michel Diaz. Modeling and verification of
timed dependent systems using timed petri nets.IEEE Transactions
on Software Engineering, 17(3):259–273, 1991.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. Kronos: a model-checking tool for real-
time systems. InProceedings, Tenth International Conference on
Computer Aided Verification, volume 1427 ofLecture Notes in Com-
puter Science. Springer-Verlag, 1998.

6

[BGK+96] Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen,
Kim G. Larsen, Fredrik Larsson, Paul Petterson, and Wang Yi. Verifi-
cation of an audio protocol with bus collision usingUPPAAL. In Pro-
ceedings, Eigth International Conference on Computer Aided Verifi-
cation, Lecture Notes in Computer Science. Springer-Verlag, 1996.

[BLL +98] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
Yi Wang, and Carsten Weise. New Generation ofUPPAAL. In Int.
Workshop on Software Tools for Technology Transfer, June 1998.

[BLP+99] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient timed reachability analysis using clock differ-
ence diagrams. InProceedings, Eleventh International Conference
on Computer Aided Verification, volume 1633 ofLecture Notes in
Computer Science, pages 341–353. Springer-Verlag, 1999.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifica-
tions. ACM Transactions on Programming Languages and Systems,
8(3):244–263, 1986.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model
Checking. The MIT Press, 1999.

[CKM01] Søren Christensen, Lars Michael Kristensen, and Thomas Mailund.
A sweep-line method for state space exploration. InProceedings,
Seventh International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031 ofLecture Notes
in Computer Science, pages 450–464. Springer-Verlag, 2001.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Pro-
tocol verification as a hardware design aid. InProceedings, IEEE In-
ternational Conference on Computer Design, VLSI in Computers and
Processors, pages 522–525. IEEE Computer Society Press, 1992.

[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs.Communications of the ACM, 18(8):453–
457, 1975.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state
concurrent systems. InProceedings, Automatic Verification Methods
for Finite State Systems, volume 407 ofLecture Notes in Computer
Science, pages 197–212. Springer-Verlag, 1989.

7

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. The tool kronos. InProceedings, Hybrid Systems III: Ver-
ification and Control, volume 1066 ofLecture Notes in Computer
Science. Springer-Verlag, 1995.

[DY96] Conrado Daws and Sergio Yovine. Reducing the number of clock
variables of timed automata. InProceedings, 17th IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 1996.

[ES97] E. Allen Emerson and A. Prasad Sistla. Using symmetry when mod-
elchecking under fairness assumptions: An automata theoretic ap-
proach. ACM Transactions on Programming Languages and Sys-
tems, 19(4), 1997.

[GHP95] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-
space caching revisited.Journal of Formal Methods in System De-
sign, 7(3):227–241, 1995.

[God90] Patrice Godefroid. Using partial orders to improve automatic verifi-
cation methods. InProceedings, Second International Conference on
Computer Aided Verification, volume 531 ofLecture Notes in Com-
puter Science, pages 176–185. Springer-Verlag, 1990.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A model checker for hybrid systems.Journal on Software
Tools for Technology Transfer, pages 110–122, 1997.

[HJJJ84] Peter Huber, Arne M. Jensen, Leif O. Jespen, and Kurt Jensen. To-
wards reachability trees for high-level petri nets. InProceedings, Ad-
vances on Petri Nets ’84, volume 188 ofLecture Notes in Computer
Science. Springer-Verlag, 1984.

[HLP98] Klaus Havelund, Mike Lowry, and John Penix. Formal analysis
of a space craft controller using Spin. InProceedings, Fourth In-
ternational SPIN Workshop, 1998. Proccedings available online.
URL: http://netlib.bell-labs.com/netlib/spin/ws98/program.html.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. InPro-
ceedings, Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 394–406, 1992.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

8

[Hoa78] C. A. R. Hoare. Communicating sequential processes.Communica-
tions of the ACM, 21(8):666–677, 1978.

[Hol85] Gerhard J. Holzmann. Tracing protocols.AT&T Technical Journal,
64(10), 1985.

[Hol91] Gerard J. Holzmann.Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[Hol97] Gerard J. Holzmann. The model checker Spin.IEEE Transactions
on Software Engineering, 23(5):279–295, 1997.

[Hol98] Gerard J. Holzmann. An analysis of bitstate hashing.Journal of
Formal Methods in System Design, November 1998.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. For-
mal modelling and analysis of an audio/video protocol: An industrial
case study using uppaal. InProceedings, 18th IEEE Real-Time Sys-
tems Symposium, pages 2–13. IEEE Computer Society Press, 1997.

[HWT96] Thomas A. Henzinger and Howard Wong-Toi. Using hytech to syn-
thesize control parameters for a steam boiler. InFormal Methods
for Industrial Applications: Specifying and Programming the Steam
Boiler Control, number 1165 in Lecture Notes in Computer Science,
pages 265–282. Springer-Verlag, 1996.

[ID96] C. Norris Ip and David L. Dill. Better verification through symmetry.
Journal of Formal Methods in System Design, 9, 1996.

[JMMS98] Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Springintveld.
Verifying business processes using SPIN. InProceedings, Fourth
International SPIN Workshop, 1998. Proccedings available online.
URL: http://netlib.bell-labs.com/netlib/spin/ws98/program.html.

[LLPY97] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Ef-
ficient verification of real-time systems: Compact data structure and
state space reduction. InProceedings, 18th IEEE Real-Time Systems
Symposium, pages 14–24. IEEE Computer Society Press, 1997.

[LPY97] Kim G. Larsen, Paul Petterson, and Wang Yi. Uppaal in a nutshell.
Journal on Software Tools for Technology Transfer, 1997.

[LPY98] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and
Analysis of a Gear-Box Controller. InProceedings, Fourth Work-
shop on Tools and Algorithms for the Construction and Analysis of

9

Systems, number 1384 in Lecture Notes in Computer Science, pages
281–297. Springer-Verlag, 1998.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall In-
ternational Series in Computer Science. Prentice Hall, 1989.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated anal-
ysis of cryptographic protocols using Murφ. In Proceedings, 1997
Conference on Security and Privacy, pages 141–153. IEEE Com-
puter Society Press, 1997.

[Pel93] Doron Peled. All from one, one for all: on model checking using
representatives. InProceedings, Fifth International Conference on
Computer Aided Verification, volume 697 ofLecture Notes in Com-
puter Science, pages 409–423. Springer-Verlag, 1993.

[PS80] Wolfgang J. Paul and Janos Simon. Decision trees and random access
machines. InLogic and Algorithmic, volume 30 ofMonographie
de L’Enseignement Mathématique, pages 331–340. L’Enseignement
Mathématique, Université de Genève, 1980.

[Rei85] Wolfgang Reisig. Petri nets. An Introduction. InEATCS Monographs
on Theoretical Compute Science, volume 4. Springer Verlag, 1985.

[RR88] G. M. Reed and A. W. Roscoe. A timed model for communicating
sequential processes.Theoretical Computer Science, 58(1-3):249–
261, 1988.

[SD95a] Ulrich Stern and David L. Dill. Automatic verification of the SCI
cache coherence protocol. InCorrect Hardware Design and Verifi-
cation Methods: IFIP WG10.5 Advanced Research Working Confer-
ence Proceedings, 1995.

[SD95b] Ulrich Stern and David L. Dill. Improved probabilistic verification
by hash compaction. InCorrect Hardware Design and Verifica-
tion Methods: IFIP WG10.5 Advanced Research Working Confer-
ence Proceedings, 1995.

[SD96] Ulrich Stern and David L. Dill. Combining state space caching and
hash compaction. InMethoden des Entwurfs und der Verifikation
digitaler Systeme: 4. GI/ITG/GME Workshop Proceedings, 1996.

[SS95] Oleg V. Sokolsky and Scott A. Smolka. Local model checking for
real-time systems. InProceedings, Seventh International Confer-
ence on Computer Aided Verification, volume 939 ofLecture Notes
in Computer Science. Springer-Verlag, 1995.

10

[TY98] Stavros Tripakis and Sergio Yovine. Verification of the fast reser-
vation protocol with delayed transmission using the tool kronos. In
Proceedings, Fourth IEEE Real-Time Technology and Applications
Symposium. IEEE Computer Society Press, 1998.

[Val90] Antti Valmari. A stubborn attack on state explosion. InProceedings,
Second International Conference on Computer Aided Verification,
volume 531 ofLecture Notes in Computer Science, pages 156–165.
Springer-Verlag, 1990.

[WL93] Pierre Wolper and Dennis Leroy. Reliable hashing without collision
detection. InProceedings, Fifth International Conference on Com-
puter Aided Verification, volume 697 ofLecture Notes in Computer
Science, pages 59–70. Springer-Verlag, 1993.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems.
In Proceedings, Eighteenth International Colloquium on Automata,
Languages and Programming, volume 510 ofLecture Notes in Com-
puter Science. Springer-Verlag, 1991.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems.
Journal on Software Tools for Technology Transfer, 1, October 1997.

11

Paper A:
Reducing Memory Usage in Symbolic State-Space Exploration
for Timed Systems

Johan Bengtsson. Technical Report, 2001-009, Department of Information Tech-
nology, Uppsala University, 2001.

Reducing Memory Usage in Symbolic State-Space
Exploration for Timed Systems

Johan Bengtsson

Abstract. One of the major problems to scale up model checking techniques
to the size of industrial systems is the large memory consumption. This report
address the problem in the context of verifiers for timed systems and present
a number of techniques that reduce the amount memory used for state space
exploration in such a tool. The methods are evaluated and compared by real-
life examples and their strengths and weaknesses are described. In particular
we adress the memory consumption problem on two fronts, first by reduc-
ing the size of each symbolic state by means of compression and second by
reducing the size of the stored state space by early inclusion checking and
probabilistic methods.

1 Introduction

During the last ten years timed automata [AD90, AD94] has evolved as a common
model to describe timed systems. This process has gone hand in hand with the de-
velopment of verification tools for timed automata. The two best known of these
tools areUPPAAL [LPY97, ABB+01] andKRONOS [DOTY95, Yov97]. One of
the major problems in applying these tools to industrial-size systems is the large
memory consumption (e.g. [BGK+96]) when exploring the state space of a net-
work of timed automata. The reason is that the exploration does not only suffer
from the large number of states that needs to be explored, but also from the large
size of each state.

In the literature a number of approaches studying these problems have been de-
veloped, for both timed and untimed systems: Some methods do not only aim at
the memory consumption but also reduce the reachable state space of a system,
such as partial order reduction methods [God90, Val90, Pel93] and symmetry re-
ductions [HJJJ84, ID93]. Other methods aim at reducing the number of states
stored in the passed list. In the global reduction technique from [LLPY97] all
states that are not possible loop entry points are never entered in the passed list. A
related method is the sweep-line technique described in [CKM01]. Here a notion
of progress is used to throw away parts of the passed list that can never be revis-

15

ited. The work presented in [SD98] describe how the passed list can be pushed
down in the memory hierarchy, from main memory to disk, with a very small
penalty in terms of increased runtime. On the border between reducing the size
of the state space and reducing the size of each state we find the work presented
in [DY96]. In this work, methods similar to live-range analysis in compilers are
used to reduce the number of clocks in timed automata. Another method that fits
into this group is the CDD technique described in [BLP+99]. Here a BDD-like
structure, that can represent unions of zones efficiently, is used to store the timing
information for each state.

In probabilistic methods, such as the supertrace method [Hol91] and the hash
compaction method [WL93, SD95], the demand for exact verification is relaxed
in order to save space. In these methods there is a probability that a part of the
state space will never be visited during verification.

In this report we address both the problem of large state spaces and the problem
of large states.

The problem with large symbolic states is addressed by means of compaction.
We present two different methods that can be used for packing states. First, we
code the entire state as one large number using a multiply-and-add algorithm.
This method yields a representation that is canonical and minimal in terms of
memory usage but the performance for inclusion checking between states is poor.
The second method is mainly intended to use for the timing part of the state and
it is based on concatenation of bit strings. Using a special concatenation of the bit
string representation of the constraints in a zone, ideas from [PS80] can be used
to implement fast inclusion checking between packed zones.

We attack the problem with large state spaces in two different ways. First, to
get rid of states that do not need to be explored, as early as possible, we intro-
duce inclusion checking already in the data structure keeping the states waiting
to be explored. We also describe how this can be implemented without slowing
down the verification process. Second, we investigate how supertrace [Hol91] and
hash compaction [WL93, SD95] methods can be applied to timed systems. We
also present a variant of the hash compaction method, that allows termination of
branches in the search tree based on probable inclusion checking between states.

The rest of report is organised as follows: In section 2 we introduce timed au-
tomata as a model for timed systems and give a brief introduction on how to check
properties for systems modelled as timed automata.

In section 3 we present three ways to represent the key objects used in checking
timed automata, namely the symbolic states. We also give a comparison between
them.

16

Section 4 addresses issues on the state space of a model. We describe how the wait
and past lists are handled inUPPAAL. We also describe an approximation method
of the past list that can be used when the complete state space of a model is too
big to be stored in memory.

Finally, section 5 wraps up the report by summarising the most important results
and suggests some directions for future work.

A description of the platform and examples used to evaluate the presented tech-
niques is given in Appendix A.

2 Timed Automata and Reachability Analysis

In this section we briefly review the notation. A more extensive description can be
found ine.g. [AD94, Pet99]. For clarity, we start by describing a version of timed
automata which is somewhat simplified compared to the model used inUPPAAL

and then extend it to the fullUPPAAL model in a less formal manner.

2.1 Timed Automata Model

Let Σ be a finite set of labels, ranged over bya, b etc. A timed automaton is a
finite state automaton over alphabetΣ extended with a set of real valued clocks,
to model time dependent behaviour. LetC denote a set of clocks, ranged over by
x, y, z. LetB(C) denote the set of conjunctions of atomic constraints of the form
x ∼ n or x − y ∼ n for x, y ∈ C,∼∈ {≤, <, =, >,≥} andn ∈ N. We useg and
laterD to range over this set.

Definition 1 (Timed Automaton) A timed automatonA is a tuple〈N, l0,→, I〉
whereN is a set of control nodes,l0 ∈ N is the initial node,→∈ N×B(C)×Σ×
2C ×N is the set of edges andI : N −→ B(C) assign invariants to locations. As
a simplification we will usel

g,a,r−−→ l′ to denote〈l, g, a, r, l′〉 ∈→.

An example automaton is shown in Figure 1. The automaton is a model of a time
dependent light switch. Initially the the light is off and if the switch is pressed a
dim light is switched on. If the switch is pressed one more time within 10 seconds
the light gets brighter but if the second press is later than 10 seconds after the first,
the light is switched off. If the switch is pressed when the light is bright, the light
is switched off.

17

off dim brightx:=0press? x<=10

press?

x>10 press?

press?

Figure 1: A timed automaton modelling a light switch.

The clocks values are formally represented as functions, called clock assignments,
mappingC to the non-negative realsR+. We letu, v denote such functions, and
useu ∈ g to denote that the clock assignmentu satisfy the formulag. Ford ∈ R+

we letu + d denote the clock assignment that map all clocksx in C to the value
u(x) + d, and forr ⊆ C we let[r 7→ 0]u denote the clock assignment that map all
clocks inr to 0 and agree withu for all clocks inC \ r.

The semantics of a timed automaton is a timed transition-system where the states
are pairs〈l, u〉, with two types of transitions, corresponding to delay transitions
and discrete action transitions respectively:

• 〈l, u〉 ε(t)−−→ 〈l, u + t〉 if u ∈ I(l) and(u + t) ∈ I(l)

• 〈l, u〉 a−→〈l′, u′〉 if l
g,a,r−−→ l′, u ∈ g, u′ = [r 7→ 0]u andu′ ∈ I(l′)

It is easy to see that the state space is infinite and thus not a good base for al-
gorithmic verification. However, efficient algorithms may be obtained using a
symbolic semanticsbased onsymbolic statesof the form 〈l, D〉, whereD ∈
B(C) [HNSY92, YPD94]. The symbolic counterpart of the transitions are given
by:

• 〈l, D〉 Ã
〈
l, D↑ ∧ I(l)

〉

• 〈l, D〉 Ã 〈l′, r(D ∧ g)〉 if l
g,a,r−−→ l′

whereD↑ = {u + d | u ∈ D ∧ d ∈ R+} andr(D) = {[r 7→ 0]u | u ∈ D}. It
can be shown that the set of constraint systems is closed under these operations.
Moreover the symbolic semantics correspond closely to the standard semantics in
the sense that if〈l, D〉 Ã 〈l′, D′〉 then, for allu′ ∈ D′ there isu ∈ D such that
〈l, u〉 → 〈l′, u′〉. As an example, the symbolic semantics of the lamp switch is
shown in Figure 2.

18

¿ off, x = 0 À

〈off, x ≥ 0〉

〈dim, x = 0〉

〈off, x > 10〉

〈dim, x ≥ 0〉〈bright , x = 0〉

〈bright , x ≤ 10〉

〈bright , x ≥ 0〉

Figure 2: Symbolic semantics of lamp switch automaton

Start
loop

x<=10 end

x:=0, y:=0

x==10
x:=0

y>=20

x:=0, y:=0

Figure 3: Timed automaton with an infinite symbolic semantics

2.2 Reachability Analysis

Given a timed automaton with symbolic initial-state〈l0, D0〉 and a symbolic state
〈l, D〉, 〈l, D〉 is said to bereachableif 〈l0, D0〉 Ã∗ 〈l, Dn〉 andD ∩ Dn 6= ∅ for
someDn. This problem may be solved using a standard reachability algorithm for
graphs. However the unbounded clock values may render an infinite zone graph
and thus might the reachability algorithm not terminate. As an example, consider
the automaton in Figure 3. The symbolic semantics of this simple automaton is
shown in Figure 4. The symbolic state space is infinite because a clock drifts away
unboundedly. The solution problem is to introduce ak-normalisedversion of the
infinite symbolic semantics. The idea is to utilise the maximum constant appearing
in clock constraints in the automaton, to render a finite symbolic semantics. For
details we refer the reader to [Pet99, Rok93] but the main fact and the intuition
behind it will be described here.

In order to do this we first have to introduce the notion of closed constraint sys-

19

¿ start, x = y À

〈loop, x ≤ 10 ∧ x = y〉

〈loop, x ≤ 10 ∧ y ≤ 20 ∧ y − x = 10〉

〈end, x = y〉

〈loop, x ≤ 10 ∧ y ≤ 30 ∧ y − x = 20〉

〈loop, x ≤ 10 ∧ y ≤ 40 ∧ y − x = 30〉

...

Figure 4: Symbolic semantics of timed automaton in Figure 3

tems. We say that a constraint systemD ∈ B(C) is closed under entailmentor
just closed, for short, if no constraint inD can be strengthened without reducing
the solution set.

Proposition 1 For each constraint systemD ∈ B(C) there is a unique constraint
systemD′ ∈ B(C) such thatD andD′ have exactly the same solution set andD′

is closed under entailment.

From this proposition we conclude that a closed constraint system can be used as
a canonical representation of a zone.

Given a zoneD and a natural numberk, thek-normalisation ofD, denotednormk(D),
is computed from the closed representation ofD by (a) removing all constraints
of the formx < m, x ≤ m, x−y < m andx−y ≤ m wherem > k, (b) replacing
all constraints of the formx > m, x ≥ m, x − y > m andx − y ≥ m where
m > k with x > k andx − y > k respectively. This can then be used to define a
notion ofk-normalised symbolic transitions (Ãk) by modifying the transitions of
the standard symbolic semantics to preservek-normalisation. The discrete action
transition already preserves this so there is no need to modify it, but the delay
transition should be modified to〈l, D〉 Ãk

〈
l, normk(D

↑ ∧ I(l))
〉
.

Proposition 2 Assume a timed automatonA with symbolic initial-state〈l0, D0〉
and letk be the largest constant appearing in any constraint inA. Then〈l, D〉 is
reachable from〈l0, D0〉 if and only if there is a sequence ofk-normalised transi-
tions〈l0, D′

0〉 Ã∗
k 〈l, D′

n〉 such thatD ∩D′
n 6= ∅.

20

¿ start, x = y À

〈loop, x ≤ 10 ∧ x = y〉

〈loop, x ≤ 10 ∧ y ≤ 20 ∧ y − x = 10〉

〈end, x = y〉

〈loop, x ≤ 10 ∧ ∧y − x = 20〉

〈loop, x ≤ 10 ∧ y > 20 ∧ y − x > 20〉

Figure 5:20-normalised symbolic semantics for automaton in Figure 3

The intuition behind this construction is that when the value of a clock is larger
than the maximum constant appearing inA it is not possible for any edge inA to
distinguish the actual value of the clock, only that the value is above the maximum
constant. Therefore it is not needed to keep track of the actual value of the clock
when it is larger than the maximum constant. As an example we apply this to
the automaton from Figure 3. For this automaton, the maximum constant is20
(from the guard ony on the edge fromloop to end). Thus we need to compute the
20-normalised symbolic semantic of the automaton to preserve the reachability
properties. This semantics can be found in Figure 5.

Using this we will get a finite symbolic state-space where we can apply a standard
reachability algorithm for graphs, such as the one in Algorithm 1. The algorithm
uses two important data structures:WAIT and PASSED. WAIT is a list of states
waiting to be explored. By controlling how new states are added toWAIT the
exploration order can be altered. IfWAIT is organised as a queue the exploration
will be breadth first, and ifWAIT is organised as a stack the exploration will be
depth first. When the exploration is started the initial state is placed inWAIT .
PASSED is a table of states explored so far. InitiallyPASSED is empty. Due to the
size of the state space, these structures may consume a considerable amount of
main memory.

21

Algorithm 1 Symbolic reachability analysis
PASSED= ∅, WAIT = {〈l0, D0〉}
while WAIT 6= ∅ do

take〈l, D〉 from WAIT

if l = lf ∧D ∩Df 6= ∅ then return “YES”
if D 6⊆ D′ for all 〈l, D′〉 ∈ PASSED then

add〈l, D〉 to PASSED

for all 〈l′, D′〉 such that〈l, D〉 Ãk 〈l′, D′〉 do
add〈l′, D′〉 to WAIT

end for
end if

end while
return “NO”

2.3 UPPAAL Extensions

In UPPAAL there are some extensions to the model described above. The most im-
portant of these are networks of timed automata (to model parallel tasks), shared
integer variables, urgent channels and committed locations.

Networks of Timed Automata

To model concurrent systems,UPPAAL has a notion of anetwork of timed au-
tomata, i.e. several timed automata (called processes) are combined into a single
system. Synchronisation between the processes are performed either using the
edge labels or, as will be described later, using shared integer variables.

To control synchronisation we partition the set of labels intolocal labelsandsyn-
chronising labels. The synchronising labels are then paired two by two InUPPAAL

each such pair of synchronising labels is called a channel and they share a com-
mon prefix (or channel name) followed by either! or ?. A label test! will be called
anoutputon channel test and test? will be called aninputon the same channel.

As an example, consider the network in Figure 6. Here the lamp switch model
described earlier have been combined with a model of a user. This particular user
have two main interests, reading and watching TV, which he may start doing at
any time. If the user wants to watch TV he press the switch once to get a cosy dim
light and starts to watch. If, on the other hand, the user wants to read he press the
switch twice within five seconds to get a light bright enough for reading and starts
to read.

22

off dim brightx:=0press? x<=10

press?

x>10 press?

press?

idle

pressing
y<5

read

TV
y:=0
press!

press!

press!

press!

press!

Figure 6: A network of timed automata modelling a light switch and its user.

The semantics of a network is similar to the semantics of a single timed automa-
ton; the difference is that we have to define how processes interact. A state is a
pair

〈
l̄, u

〉
, the difference to the timed automata semantics is that the location of

a network is a vector of control locations, one for each process in the system. In
a network there are three types of transitions, delay transitions, local action tran-
sitions and synchronising action transitions. The delay transitions works exactly
like delay transitions for single timed automata with the exception that for a net-
work the invariant on the current location of all processes have to be taken into
account. The discrete action transition type of the single timed automata is split
into two types in the network case. A discrete action transition of a network is
either a local action transition, where one of the processes makes a move entirely
on its own, or a synchronising action transition, where two processes synchronise
on a channel and move simultaneously. The transition rules are as follows:

• 〈
l̄, u

〉 ε(t)−−→ 〈
l̄, u + t

〉
if u ∈ I(l̄) and(u + d) ∈ I(l̄), whereI(l̄) =

∧
I(li)

• 〈
l̄, u

〉 a−→〈
l̄[l′i/li], u

′〉 if li
g,a,r−−→ l′i, u ∈ g, u′ = [r 7→ 0]u, u′ ∈ I(l̄[l′i/li])

• 〈
l̄, u

〉 τ−→ 〈
l̄[l′i/li][l

′
j/lj], u

′〉 if li
gi,a?,ri−−−−→ l′i, lj

gj ,a!,rj−−−−→ l′j, i 6= j, u ∈ gi ∧
gj, u

′ = [ri ∪ rj 7→ 0]u andu′ ∈ I(l̄[l′i/li][l
′
j/lj]).

23

This concrete semantics are then easily extended to a normalised symbolic seman-
tics that can serve as a base for model checking procedures.

Shared Integer Variables

As a convenience, the timed automata model ofUPPAAL has a notion ofshared
integer variables. Each network of timed automataA1| · · · |An is augmented with
a set,D, of integer variables each with a bounded domain and an initial value.
Predicates over the integer variables can be used as guards on the edges in any
process and their values can be updated on by any process, as a part of the reset.
In the current versions ofUPPAAL aninteger guardhave the formE1 ∼ E2 where
E1, E2 are integer expressions overD, as defined by the grammar below, and
∼∈ {<,≤, =, 6=,≥, >}. An integer resethas the formv := E wherev ∈ D and
E is an integer expression overD. The integer expressions are generated by the
following syntax:

E ::= E + E | E − E | E ∗ E | E/E | n | v

Wheren ∈ Z is an integer value andv ∈ D is an integer variable. This expression
can easily be extended to handle function calls and procedures but it is currently
not implemented.

The semantics needs to be extended to deal with the integer variables. A state of
a network is now a triple

〈
l̄, d, u

〉
wherel̄ andu are as before andd is a function

mapping each variable inD to a value in its domain. Functions such asd will be
calledinteger assignments. Similar to clock assignments we used ∈ gi to denote
that the integer assignmentd satisfies the integer guardgi.

Since delay does not affect the integer variables the delay transitions are the same
as for networks without integer variables. The action transitions are extended in
the natural way,i.e. for an action transition to be enabled the integer assignment
must satisfy all integer guards on the corresponding edges and when a transition
is taken the integer assignment is updated according to the integer resets.

However, there is one problem with this extension that needs to be considered.
How should we handle the case where one of the processes participating in a syn-
chronising transition updates a variable that is at the same time used by the other.1

There are three possible solutions to this problem, first it is possible to prevent
this by demanding that the integer resets of the edges in a synchronising transition
may not update a variable that is used or updated by the other. This property can

1Used in the sense that the variable is either updated itself or its value is needed to compute the
new value of another variable.

24

be checked, either statically or during verification, and an error can be reported
to the user if the property does not hold. Second, the situation can be handled by
introducing a non-determinism where either of the resets are performed before the
other. However, this feature would probably be of little use to user and the extra
non-determinism introduced may give a significantly larger state space. The third
solution is to give a defined order between the resets on the edges. InUPPAAL

resets on the edge with an output-label is performed before the resets on the edge
with an input-label. The drawback is that this solution destroys symmetry proper-
ties that could have been used to optimise the state space search, but on the other
hand it can be utilised to create more efficient models.

Urgent Channels

In the standard network model processes are always allowed to delay up to the
time specified by the location invariants even if there are enabled synchronisa-
tion actions. Sometime this is the wanted behaviour but on other occasions the
preferred behaviour would be that the synchronisation occurred as soon as it gets
enabled. To allow the second type of behaviours as well as the first,UPPAAL

has a notion of urgent channels. An urgent channel works much like an ordinary
channel, but with the exception that if a synchronisation on an urgent channel is
possible the system may not delay. Interleaving with other enabled action tran-
sitions, however, is still allowed. In order to keep the time regions representable
using one normal zone we forbid clock guards on edges synchronising on urgent
channels. To illustrate why this restriction is necessary we use an example.

Consider the network presented in Figure 7. Both processes may independently go
from their first state to their second state. In the second state the processes must
delay for at least 10 time units before they are allowed to wait for synchronisation
on the urgent channelu. As soon as both processes have spent 10 time units in their
second state they should synchronise and move to their third state. The problem
with this network arise in[S1,T1]. As you see in Figure 8, the timing region for
this state is not representable using a zone. Since the synchronisation occurs as
soon as the transition is enabled the region won’t even be convex.

For this simple example the problem can be solved by splitting the timing region
into two zones (marked by a dashed line in the figure), but for a more complicated
example the number of zones needed to represent one timing region may be much
larger.

25

S2S1S0 x:=0 x>=10

u!

T2T1T0 y:=0 y>=10

u?

Figure 7: An example of a network with non convex timing regions.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

10

10

x

y

Figure 8: Timing region for state[S1,T1] in the network from Figure 7.

Committed Locations

For some some models it is necessary to have a notion of atomic sequences of
actions,e.g. to model atomic broadcast or multicast. InUPPAAL this notion is
supported using so calledcommitted locations. A committed location is a con-
trol location where no delay is allowed and if any process is in such a location
then only transitions starting in a committed location are enabled. Thus, processes
that are in committed locations may not be interleaved with processes that aren’t.
However, a process that is in a committed location may be interleaved with other
processes that are in committed locations.

A little more formally, each processAi in a network of timed automata has a set
NC

i ⊆ Ni of committed locations. For a location vectorl̄ of the network, we use
C(l̄) to denote the subset of the locations inl̄ that are committed. In the semantics
the states have the same form as for networks without committed locations, but the
transitions are somewhat different. First, delay must be forbidden if any process
is in a committed location. Second, if there are processes that are in a committed
location one of them must take part in the next transition. The transition rules are
described in terms of the transitions for a network without committed location. In
the description→c denote transitions for a network with committed locations and

26

→ denote transitions for a network without.

• 〈
l̄, u

〉 ε(t)−−→c

〈
l̄, u + t

〉
if

〈
l̄, u

〉 ε(t)−−→ 〈
l̄, u + t

〉
andC(l̄) = ∅

• 〈
l̄, u

〉 →c

〈
l̄[l′i/li], u

′〉 if
〈
l̄, u

〉 → 〈
l̄[l′i/li], u

′〉 and eitherli ∈ C(l̄) or
C(l̄) = ∅

• 〈
l̄, u

〉 τ−→c

〈
l̄[l′i/li][l

′
j/lj], u

′〉 if
〈
l̄, u

〉 τ−→ 〈
l̄[l′i/li][l

′
j/lj], u

′〉 and eitherli ∈
C(l̄), lj ∈ C(l̄) or C(l̄) = ∅

3 Representing Symbolic States

The symbolic states are the core objects of state space search, and one of the key
issues in implementing an efficient model checker is how to represent them. The
desired properties of the representation also differ in parts of the verifier, and there
are potential gains in using different representations in different places.

In this section we will present different ways to represent symbolic states, explain
their strengths and weaknesses and give hints on when to use them. But we start
one level above, between the logical level with location vectors integer assign-
ments and clock zones and the physical representation that is the focus of this
section.

The encoding of the location vector and the integer assignment is, at this level,
straight forward. For the location vector, we start by numbering the locations in
each process. Then instead of a vector of locations, we get a vector of location
numbers. For the integer assignment we number all the integer variables in the
system and represent the assignment as a vector of integers, where thei:th element
is the value of the variable with numberi.

Representing the clock zone is a little trickier but starting from the constraint
system representation of a zone it is possible to obtain an efficient intermediate
representation. We start with the following observation:

Let 0 be a dummy clock with the constant value 0. Then for each constraint system
D ∈ B(C) there is a constraint systemD′ ∈ B(C ∪ {0) with the same solution set
asD, and where all constraints are of the formx−y < n or x−y ≤ n, for n ∈ Z.

We also note that to represent any clock zone we need at most(|C ∪{0}|)2 atomic
constraints. One of the most compact ways to represent this is to use a matrix
where each element represent a bound on the difference between two clocks. Each
element in the matrix is a pair〈n,∼〉 wheren is an integer and∼ tells whether
the bound is strict or not. Such a matrix is called aDifference Bounds Matrix, or

27

DBM for short. More detailed information about DBM:s and operations on them
can be found in [Dil89].

Now we zoom in on the representation of a single bound in the DBM. Since we
want a finite symbolic state space, we only consider normalised clock zones. Then,
given a maximum constantk, the maximum number of significant values for any
clock bound is2 · (2k +2). (Each bound is either in the interval[−k, k] or infinite,
and it can be strict or non-strict2.)

3.1 Normal Representation

The simplest way to physically represent a symbolic state is to use a machine
word for each control location, integer value or clock bound. The implementation
is straight forward, but a practical tip is that if the standard library functions for
memory management are used all the memory needed for one state should, if
possible, be allocated in the same chunk, to minimise the allocation overhead.
However, due to an early design decision, this is not the case in theUPPAAL

implementation. InUPPAAL the symbolic state is split into three different objects:
a state object containing a location vector and pointers to an integer assignment
and a clock zone, an integer assignment object representing the integer values and
an object representing the clock zone. A sketch of the connection between the
objects is shown in Figure 9

The strength of this representation is its simplicity and the speed of accessing an
individual control location, integer value, or clock bound. In this representation the
maximum time needed to reach any individual entity is the time needed to fetch a
word from the memory. This makes the representation ideal to use when we have
to do operations on individual entities,e.g.when calculating the successors of a
state. The weakness is the amount of wasted space. Here a whole machine word,
typically 32-bit wide, is used to store entities where all possible values will fit in
much less bits.

However this is a good base representation for states. It is ideal for states that will
be modified in the near future, such as intermediate states or states inWAIT . It
also works reasonably well for states inPASSED, specially for small and medium
sized examples.

This representation is used for bothWAIT andPASSED in the current version of
UPPAAL.

2For the infinite bound only strict is needed but non-strict is included for simplicity.

28

Location
vector

Integer
values

Clock
zone

Figure 9: The symbolic state representation used inUPPAAL.

3.2 Packed States

The second representation is on the opposite side of the spectra compared to the
previous one and it can be used both for the discrete part of the states, for the
clock zone and for both together. The encoding builds on a simple multiply and
add scheme, similar to the position system for numbers, and it is very compact. In
the description we will focus on encoding an entire symbolic state, but the parts
can also be encoded separately.

First, consider the state as a vectorv1, . . . , vn, where each element represents a
control location, the value of a variable or a clock bound. For each elementvi

we can compute the number of possible values,|vi|. For the location vector|vi|
is the number of control locations in the corresponding process, for the integer
assignment|vi| is the size of the domain of the corresponding variable and for the
clock zone then|vi| can be computed using the maximum constantk.

Now consider the vector as a number written down in a position system with
a variable base,i.e. each elementvi is a digit and the product

∏i−1
j=0 |vi| is its

position value. Represent the state as the value of this number,i.e. encode the
state as follows:

E(〈l, D〉) = v0 +
n∑

i=1

(
vi ·

i−1∏
j=0

|vi|
)

29

Note that in this context〈l, D〉 is a sequence of numbers. The encodingE(〈l, D〉)
is often too large to fit in a machine word and it have to be in fixed precision; some
kind of bignums are needed. In our prototype implementation we used the GMP
bignum package [Gra00].

Proposition 3 The representation of states using bit string encoding is canonical
and minimal in terms of space usage.

The strength of this representation is the effective use of space and the weakness
is that to access an individual integer value or clock bound a number of division
and modulo operations must be performed. This results in small states that are
expensive to handle.

In order to test the performance of this representation, it is implemented in the
PASSED structure inUPPAAL. In the implementation the packing algorithm has
been re-shuffled in order to eliminate the use of temporary bignum variables. The
implemented algorithm is listed as Algorithm 2.

Algorithm 2 Algorithm used to pack states
Parameters:

l̄ – Location vector
d – Integer assignment vector
D – DBM representation of zone

E ⇐ l̄[0]
for i = 1 to #proc do

E ⇐ E ∗ #states(Ai) + l̄[i]
end for
for i = 1 to #var do

E ⇐ E ∗ domain(d[i]) + d[i]
end for
for i = 0 to #clock do

for j = 0 to #clock do
if i 6= j then

E ⇐ E ∗ 2k + D[i, j] + k
end if

end for
end for

In the experiment two different algorithms to check for visited states are used,
one version where only equality checking is implemented and the other where
inclusion checking is used for the clock zone part of the states. The version with
only equality is straight forward. The version with inclusion checking for the clock

30

zone is a little more complicated. Now we have to unpack (at least) the zone part
of the state in order to compare the DBMs bound by bound. This is described as
Algorithm 3

Algorithm 3 Algorithm used to compare packed states.
Parameters:

E1 – First state in comparison
E2 – Second state in comparison

inclusion(E1, E2) ⇐ tt, inclusion(E2, E1) ⇐ tt
cmp1 ⇐ E1, cmp2 ⇐ E2

for i = #clock downto 0 do
for j = #clock downto 0 do

if i 6= j then
inclusion(E1, E2) ⇐ inclusion(E1, E2) ∧ (cmp1 mod k <= cmp2

mod k)
inclusion(E2, E1) ⇐ inclusion(E2, E1) ∧ (cmp2 mod k <= cmp1

mod k)
cmp1 ⇐ cmp1/k
cmp2 ⇐ cmp2/k

end if
end for

end for
if cmp1 6= cmp2 then

return ‘E1 is not related toE2’
end if
case

¤ inclusion(E1, E2) ∧ inclusion(E2, E1)⇒ return ‘E1 = E2’
¤ inclusion(E1, E2) ∧ ¬inclusion(E2, E1)⇒ return ‘E1 ⊆ E2’
¤ ¬inclusion(E1, E2) ∧ inclusion(E2, E1)⇒ return ‘E1 ⊇ E2’
¤ ¬inclusion(E1, E2) ∧ ¬inclusion(E2, E1) ⇒ return ‘E1 is not related to
E2’

end case

In Table 1 we see the performance for the packed representation with only equality
checking for the clock zone. In the table the results are given both by measured
numbers and relative to the currentUPPAAL implementation. First, note that for
the Field Bus example the verification does not terminate normally. (Denoted by
⊥ in the table.) The reason for this is that when only equality checking is used
large parts of the state space are revisited, which makesWAIT expand until the
verification process run out of memory. For the other examples the representation
is very good, with space savings of up to 67% for Fischers protocol and 57% for

31

Example Time Space
real (Sec) relative real (MB) relative

Field Bus (Faulty 1) ⊥ ⊥ ⊥ ⊥
Field Bus (Faulty 2) ⊥ ⊥ ⊥ ⊥
Field Bus (Faulty 3) ⊥ ⊥ ⊥ ⊥
Field Bus (Fixed) ⊥ ⊥ ⊥ ⊥
B&O 20.42 1.09 10.48 0.48
DACAPO (big) 326.91 1.14 43.14 0.47
DACAPO (small) 18.50 1.30 6.60 0.78
Fischer 5 14.53 0.90 4.45 0.47
Fischer 6 733.91 0.54 48.34 0.33

Table 1: Performance for packed states without inclusion checking

a more realistic example3 at a very moderate slowdown (or even a speedup for
Fischers protocol).

The result of the experiment with packed states where zone inclusion checking
was implemented using division and modulo is shown in Table 2 (as absolute
figures and in relation to the currentPASSED implementation inUPPAAL). We
note that using this representation we are able to verify all the examples and that
the space performance is very good. However the time performance is very poor,
for one instance Fischers protocol we notice a slowdown of almost 13 times and
for one instance of the Field Bus protocol the slowdown is 8 times. The conclusion
is that this representation should only be used in cases where main memory is a
severe restriction.

3.3 Packed Zones with Cheap Inclusion Check

The main drawback of representing states using the number encoding given in
section 3.2 is expensive inclusion checking. In this section we present a compact
way of representing zones overcoming this drawback. The heart of this represen-
tation builds on an observation due to [PS80] that one subtraction can be used to
perform multiple comparisons in parallel.

Let m denote the minimum number of bits needed to store all possible values for
one clock bound. The DBM is then encoded as a long bit string, where each bound
is assigned am + 1 bit wide slot. The value of the clock bound is put in them

3Fischers protocol behaves, as mentioned in Appendix A, different from all other examples,
with respect to verification.

32

Example Time Space
real (Sec) relative real (MB) relative

Field Bus (Faulty 1) 541.32 3.70 23.05 0.30
Field Bus (Faulty 2) 956.55 4.34 33.80 0.29
Field Bus (Faulty 3) 10630.90 8.21 136.52 0.28
Field Bus (Fixed) 2890.30 5.88 60.59 0.29
B&O 52.44 2.81 11.17 0.51
DACAPO (big) 1379.45 4.81 34.01 0.37
DACAPO (small) 31.67 2.23 5.55 0.65
Fischer 5 94.31 5.82 4.18 0.45
Fischer 6 17387.56 12.88 40.12 0.28

Table 2: Performance for packed states with expensive inclusion checking

least significant bits in the slot and the extra, most significant bit, is used as atest
bit.

Since a zoneD is included in another zoneD′ if and only if all bounds in the
DBM representingD is as tight as the same bound in the DBM representation of
D′, inclusion checking is to check if all elements in one vector is less than or equal
to the same bound in another vector. Using the new bit-string encoding of zones
this can be checked using only simple operations like bitwise-and (&), bitwise-or
(|), subtraction and test for equality.

Given two packed zonesE(D) andE(D′), to check ifD ⊆ D′ first setting all the
test bits inE(D) to zero and all the test bits inE(D′) to one. In an implementation
the test bits are usually zero in the stored states and setting them to one is done
using a prefabricated maskM where all test bits are set to one. The test is then
performed by calculatingE(D′)−E(D). The result is read out of the test bits. If a
test bit is one the corresponding bound inD is at least as tight as inD′ and if a test
bit is zero the corresponding bound is tighter inD′ than inD. Thus, if all test bits
are one we can conclude thatD ⊆ D′ and if all the test bits are zeroD ⊃ D′. It is
worth noting that “all test bits are one” is both necessary and sufficient to conclude
D ⊆ D′ while “all test bits are zero” is only sufficient to concludeD ⊃ D′.

Example 1 Consider a system with two clocksx, y and the maximum constant
2. In order to cut away some unnecessary detail, we don’t consider strictness of
bounds. The number of bits needed to store all possible values of one clock bound
in this system is 3. LetD = {x−y ≤ 1, y−x ≤ 1} andD′ = {x−y ≤ 1, y−x ≤
2} be two zones that arise from a verification of this system.

33

E(D) = 0 011 0 011 0 011 0 001 0 011 0 001

E(D′) = 0 011 0 011 0 011 0 001 0 011 0 010

To check ifD ⊆ D′, start by setting all the test bits inD′ to one,e.g.by doing a
bitwise or with the precomputed maskM . The extra bits set to one will serve two
purposes. As mentioned above they will indicate the result of the comparison, but
they will also serve as borrow bits and prevent interference between the packed
bounds.

E(D′) | M = 1 011 1 011 1 011 1 001 1 011 1 010

The actual comparison is then made by a subtraction. All the packed bounds will
be subtracted by one subtraction operation, and since the test bits are set in the
first term and unset in the second term the bounds will not interfere with each
other.

E(D′) | M − E(D) = 1 000 1 000 1 000 1 000 1 000 1 001

Now the result of the inclusion check is read out of the test bits. Since all the test
bits are one we conclude thatD ⊆ D′.

In an implementation of this scheme the main issue is how to handle the bit strings.
The easiest way is to let a bignum package, such as GMP, handle everything.
However, this may give a considerable overhead, specially in connection with
memory allocation, since the bignum packages are often tailored towards other
types of applications. InUPPAAL we share the memory layout of the bignum
packages, but to reduce the overhead we have implemented our own operations
on top of it.

In the physical representation,i.e. how the bit-string is stored in memory, the bit-
string is chopped up into machine-word sized chunks, orlimbs. The limbs are then
packed in big-endian order,i.e. the least significant limb first, in an array. If the
bit string doesn’t fill an even number of machine words the last limb padded with
zero bits.

Example 2 Assuming a nine-bit machine, the packed zoneE(D′) from Example 1
is represented as follows:

100110010 110011000 000001100

34

Noting that the effect of all operations needed for the inclusion check, except
subtraction, is local within the limb and that subtraction only passes one borrow
bit to the next more significant limb, we can implement the inclusion check in one
pass through the array of limbs instead of one pass for each operation. The one
pass inclusion check is shown in Algorithm 4. In the description we useE(D)[i]
to denote thei:th limb of E(D) and−w to denote a binary subtraction of machine
word size.

Algorithm 4 Inclusion check for packed zones
b ⇐ 0
for i = 1 to #limbs do

cmp⇐ (M [i] | E(D′)[i])−w (E(D)[i] + b)
if cmp 6= M [i] then return “false”
if (M [i] | E(D′)[i]) < (E(D)[i] + b) then

b ⇐ 1
else

b ⇐ 0
end if

end for
return “true”

To evaluate the performance of this technique, it was implemented in thePASSED

structure inUPPAAL. In the experiment the discrete part of each state is stored
in PASSED using the compact representation from the previous section and the
zone is stored using this technique. The results are presented in Table 3, both as
absolute figures and compared to the standard state representation. We note that
using this method the space usage is typically reduced with around 40%, without
increased verification time. The verification time is actually reduced a little using
this scheme, even though the number of operations is increased. The reason for
this is most certainly that the number of memory operations are reduced by the
smaller memory footprint of the states4.

4 Representing Symbolic State-Space

The two key data structures in a model checker is, as mentioned before,WAIT ,
that keeps track of states not yet explored, andPASSED, that keeps track of states
already visited. Both theses data structures tend to be large, and how to represent

4Memory operations are expensive compared to arithmetic operations, specially since there is
no temporal locality in verifiers.

35

Example Time Space
real (Sec) relative real (MB) relative

Field Bus (Faulty 1) 142.47 0.97 49.69 0.64
Field Bus (Faulty 2) 212.82 0.97 71.77 0.61
Field Bus (Faulty 3) 1190.96 0.92 278.54 0.57
Field Bus (Fixed) 488.14 0.99 139.01 0.65
B&O 18.04 0.97 13.31 0.61
DACAPO (big) 278.58 0.97 43.39 0.48
DACAPO (small) 14.54 1.02 6.49 0.77
Fischer 5 12.46 0.77 4.66 0.50
Fischer 6 815.94 0.60 51.12 0.35

Table 3: Performance for packed states with cheap zone coding

them is an important issue for performance. In this section we describe how to im-
plementWAIT and how to improve its performance by adding inclusion checking.
We also describe a standard implementation ofPASSEDas well as an implemen-
tation where space is saved at the price of possibly inconclusive answers.

4.1 RepresentingWAIT

In its most simple formWAIT is implemented as a linked list. This is easy to
implement and it is easy to control the search order by adding unexplored states
at the end, for breadth first search, or adding states at the beginning, for depth first
search.

An optimisation in terms of both time and space is to check whether a state already
occur inWAIT before adding it. For a verifier based explicit states this will only
give minor improvements, mainly by keeping down the length ofWAIT , but for a
verifier based on symbolic states this may actually prevent revisiting parts of the
state space.

In the following presentation we say that a symbolic state
〈
l̄, d, D

〉
is included in

a another symbolic state
〈
l̄′, d′, D′〉 if they have the same discrete part (i.e. l̄ = l̄′

andd = d′) andD ⊆ D′. For simplicity we will not separate the discrete parts
from each other in the presentation, and from now on we will write〈l, D〉 for〈
l̄, d,D

〉
.

We know,e.g.from [Pet99], that if〈l, D〉 ⊆ 〈l, D′〉 then all states reachable from
〈l, D〉 are also reachable from〈l, D′〉 and thus we only have to explore〈l, D′〉. So
before adding a new state〈l, D〉 to WAIT we check all states already inWAIT . If

36

〈l1, D1〉 〈l3, D3〉 〈l4, D4〉 〈l5, D5〉〈l2, D2〉
List for search order.

Hash table for inclusion check

Figure 10: Structure ofWAIT

we find any state including〈l, D〉 we stop searching and throw away〈l, D〉 since
all states reachable from it are also reachable from a state already scheduled for
exploration. If no such state is found we add〈l, D〉 to WAIT . During the search
throughWAIT we also delete all states included in〈l, D〉 in order to prevent revis-
iting parts of the state space.

There are some implementation issues that need consideration. The main issue is
how to find all states inWAIT with same discrete part. The simplest way to do this
is to do a linear search throughWAIT every time a state is added. However, using
this solution it will be expensive to add states, even for examples whereWAIT is
short. One solution to this is to implementWAIT using a structure where searching
is cheap,e.g.a hash table. The problem with this solution is that picking up states
from WAIT will be expensive, at least for search strategies like breadth first and
depth first, where the exploration order depends on the order in which the states
were addedWAIT .

In the implemented solution, each state inWAIT is indexed using both a list and
a hash table. The list part is used to keep the depth or breadth first ordering of
states and to make it cheap to pick up states to explore. The hash table part is used
to index the states inWAIT based on their location vector, in order to speed up
inclusion checking. A picture of this structure is shown in Figure 10.

To test the performance of this solution we compared the space and time needed to
explore the state space of the examples mentioned in section A, for one version of
UPPAAL without inclusion checking onWAIT and one version with the combined
scheme. The result is shown in Table 4. It is worth noting that the version with
inclusion checking is both significantly faster and less memory consuming than

37

Example Time (Sec) Space (MB)
no opt inclusion gain(%) no opt inclusion gain(%)

Field Bus (Faulty 1) 335.53 152.66 54.50 83.00 78.02 6.00
Field Bus (Faulty 2) 610.87 226.31 62.95 128.32 117.97 8.07
Field Bus (Faulty 3) 2142.13 1342.23 37.34 510.77 489.94 4.08
Field Bus (Fixed) 1051.19 497.85 52.64 230.03 212.33 7.70
B&O 20.24 18.80 7.11 21.91 21.91 0.00
DACAPO (big) 828.53 296.87 64.17 104.84 90.91 13.29
DACAPO (small) 97.90 14.54 85.15 15.45 8.48 45.15
Fischer 5 14.75 16.86 −14.31 9.68 9.38 3.15
Fischer 6 1179.34 1456.64 −23.51 150.93 145.73 3.44

Table 4: Performance impact of inclusion check onWAIT

the version without inclusion checking, for all examples except Fischers protocol
which is, as mentioned earlier, not typical.

4.2 RepresentingPASSED

The key feature needed by a representation ofPASSED is that searching should
be cheap. For a symbolic verifier it is also crucial, at least performance wise, that
finding states which includes a given state is possible and cheap. InUPPAAL the
standardPASSED is implemented as a hash table, where the key is computed from
the discrete part of the state and collisions are handled by chaining. The reason for
basing the hash key only on the discrete part is to simplify checking for inclusion
between states by making all related states end up in the same hash bucket. It is
easy to see that hashing only on the discrete part is as good as we can do if we
want this property. The reason for using chaining instead of open addressing to
resolve conflicts is, apart from keeping related states together, mainly simplicity
and eliminating the need for expensive rehashing. Judging by performance the
choice could go either way, at least if rehashing is not taken into account. More
about this can be read in [Lar00]. The layout of the standardPASSEDstructure is
illustrated in Figure 11.

For some models the memory needed for exact verification may exceed the amount
of memory installed in the system where the verification takes place. This often
occurs within the modelling phase before the most bugs are removed from the
model. During this phase the verification engine is often used as a tool to find
the cause of unwanted behaviour and not primarily to prove the absence of such
behaviour. Under these premises it is desirable to use a method that can handle
larger systems but sometimes miss unwanted behaviour. Here we will describe

38

〈l3, D4〉 〈l3, D3〉

〈l1, D5〉 〈l1, D1〉

〈l2, D2〉

Figure 11: Structure ofPASSED.

two such methods. The first method is an application of the supertrace algorithm
from [Hol91] on networks of timed automata. The second method is based on the
hash compaction method from [WL93, SD95].

4.3 SupertracePASSED for Timed Automata

The main idea behind supertracePASSED is from the following observation: The
purpose ofPASSED is only to keep track of whether a state have been visited or
not, i.e. for each state we only need one bit of information. Thus,PASSED for a
system ofn states can be implemented a ann-bit wide bit vector. However, if
n is sufficiently large, even such a compact representation will be too large to
fit the memory of system running the verifier. A way to tackle this problem is
to loosen the demand that the verification should be exact and allow false hits
to be indicated,i.e. a previously unvisited state may, with some probability, be
reported as already visited. Such a false hit will be called anomission, as it causes
a part of the state space to be omitted from the state space search. This effect
the reachability search such that if a state is reported to be not reachable we can
not conclude that it can not be reached since it might have been excluded by an
omission.

The natural way to implement such aPASSEDstructure is to allocate a bit-vector
of size k, wherek < n, and hash each state to a value in{1, . . . , k}. In the
UPPAAL implementation of the supertrace algorithm the hash function is similar
to the first packing technique described in Section 3:

H(〈l, D〉) =

(
v0 +

n∑
i=1

(
vi ·

i−1∏
j=0

|vi|
))

mod k

To simplify the algorithm and to eliminate the need for bignum integers, we push
the modulo operation as far as possible. The resulting operation is shown, as

39

pseudo-code, in Algorithm 5. Note that a variation of this hash function (applied
only to the location vector and the integer assignment) is used in both the normal
PASSED implementation and the cross-reference table of theWAIT list. It is also
possible to enhance the supertrace algorithm by implementing a way to change
the hash function between runs, in order to lower the probability that a part of
the state space is omitted. A simple way to do this is to implement a generator
of universal2 hash functions [CW79] and provide the user with a way to choose
among the functions in the class.

Algorithm 5 Hash function used in supertrace algorithm
Parameters:

l̄ – Location vector
d – Integer assignment vector
D – DBM representation of zone
k – The size of the hash table

E ⇐ l̄[0] mod k
for i = 1 to #proc do

E ⇐ (E ∗ #states(Ai) + l̄[i]) mod k
end for
for i = 1 to #var do

E ⇐ (E ∗ domain(d[i]) + d[i]) mod k
end for
for i = 0 to #clock do

for j = 0 to #clock do
if i 6= j then

E ⇐ (E ∗ 2k + D[i, j] + k) mod k
end if

end for
end for

The main drawback of the supertrace algorithm, when applied to timed automata,
is that inclusion between time zones can not be detected. The effect of this is that
number of explored states are increased. This leads to longer verification times
and harder pressurePASSED, with an increased omission probability as result.

To investigate the performance of this algorithm we have implemented it inUP-
PAAL. In the experiment we test the supertracePASSED structure for three dif-
ferent sizes: 16MB, 32MB and 64MB and compare it to the standardPASSED

implementation ofUPPAAL, to estimate the impact of collisions. The results of
the experiment are presented in Table 5. For each of the examples the table shows
the collision frequency and an estimation on the fraction of the state space not

40

covered due to collisions.

In the table there are several interesting observations. First, for the Philips example
the coverage is totally independent of the size of thePASSED structure. We get
exactly the same collision frequency and coverage for all three runs. This is an
indication on that the hash function is far from optimal on this example.

We also note, when studying the big DACAPO example, that even though the
collision frequency is decreased the fraction of the state space not covered in the
search may increase. The reason for this may be that the collisions occur for dif-
ferent states in the different runs and that the number of children for these states
differ. (If a state with many children is omitted the coverage will be less than if a
state with few children is omitted.)

Example 16MB 32MB 64MB
collision omitted collision omitted collision omitted

Philips (Correct) 0.45 5.71 0.45 5.71 0.45 5.71
B&O 0.97 21.62 0.91 16.07 0.65 3.49
DACAPO (big) 4.40 13.05 2.75 13.74 1.24 4.39
DACAPO (small) 1.65 5.96 0.79 4.17 0.39 3.13
Fischer 5 0.18 0.64 0.07 0.35 0.04 0.04
Fischer 6 3.67 12.29 1.84 6.30 0.93 3.12

Table 5: Frequency of collisions and the fraction of state space not covered (inh)
for three instances of the supertracePASSEDstructure

To see how the supertrace algorithm behave time-wise we made an experiment
where the verification time was measured. The setting of this experiment is a lit-
tle different from the previous one. For this example we used inclusion checking
on WAIT , to speed up verification. This is the most likely setting when using the
tool in practice. To compare the verification speed we used two different versions
of the classicPASSED implementation as reference, one version where inclusion
checking between states were switched off and the standard version where inclu-
sion checking between states is used to optimise the search. The version without
inclusion checking is included since the number of states explored when it is used
is in the same order of magnitude as for the supertracePASSED. The standard
version is included to compare the performance for the supertracePASSED to the
PASSED implementation that is normally used when working with the tool. The
result of this experiment is presented in Table 6. As we see in the table the times
for the supertrace is in the same order of magnitude as the standardPASSED im-
plementation inUPPAAL.

41

Example Supertrace Classic
16MB 32MB 64MB exact inclusion

Philips (Correct) 2.39 2.58 2.97 2.18 1.91
Philips (Erroneous) 98.83 98.18 102.20 270.91 22.22
B&O 15.59 16.20 16.30 17.37 16.57
DACAPO (big) 268.32 268.04 269.67 294.77 254.01
DACAPO (small) 15.32 15.47 15.90 15.56 12.45
Fischer 5 11.57 13.01 12.20 18.53 14.36
Fischer 6 688.28 681.67 686.75 1675.04 1217.88

Table 6: Time (in seconds) to explore the entire state space for three different
supertracePASSED lists and two versions of the standardPASSED list

4.4 Hash Compaction for Timed Automata

Hash compaction evolved from the supertrace ideas as a way to lower the proba-
bility of omissions in the verification process. It was first investigated in [WL93]
and then further developed in [SD95].

The key observation for hash compaction is that the supertracePASSED list can
be seen as representation of a set of hash values, where a set bit (1) in the table
represents that this hash value is in the set; while an unset bit (0) in the table
represent that it is not. Under the assumption that the set is sparse,i.e. the number
of elements in the set is small compared to the number of elements not in it, a
table of the elements might be a more compact representation of the set. With this
solution the number of possible hash values is no longer bounded by the number
of bits in the main memory.

In the work presented in [WL93] a normal hash table is used to store the elements
and the key into this table is computed from the elements themselves. A sketch of
this is shown in Figure 12. In [SD95] the technique is developed further. As a way
to decrease the probability of false collisions the key into the table is computed
from the state itself, instead of from the hash signature, using a different hash
function. Since the hash signature and its entry in the table are computed using
different hash functions two states have to collide in both the hash functions for a
false collision to occur.

There is an alternative way to view this second variation of hash compaction. Start
with the supertracePASSED list. To lower the probability of classifying an unvis-
ited state as already visited we increase the number of bits in each entry of the hash
table. (Given a fixed amount of memory this is done at the expense of the number

42

H1 H2〈l, D〉

H1(〈l, D〉)

Figure 12: Hash compaction with hash table key based on signature

of entries in the table.) To separate different states that end up at the same position
in table we build a signature,e.g.a checksum, of the states and store this. To com-
pute the checksum we choose a function with a low probability that two different
states have the same signature,i.e.P (H(〈l1, D1〉) = H(〈l2, D2〉)|〈l1, D1〉 6= 〈l2, D2〉)
should be as small as possible. For this we use a hash function. If we take this one
step further the combination of the signature and the index into the hash table can
be seen as different parts of the same hash value. Some bits of this value are used
to index into the hash table and some bits are stored in the table. A sketch of this
is shown in Figure 13.

H(〈l,D〉)︷ ︸︸ ︷
0101 · · · 01︸ ︷︷ ︸

index

101 · · · 10︸ ︷︷ ︸
signature

Figure 13: The table index and the signature as one hash value.

Given a fixed amount of memory there is a tradeoff where to put the border be-
tween the index part and the signature part. For each bit we take away from the
index part we may double the number of bits in the signature, but at the price of
less entries inPASSED.

So far we have not mentioned how to handle collisions within the hash table. Since
there are now several possible values for the entries in the hash table, it is possible
to get collisions in the hash table. Since the main priority of this solution is space,
collisions are resolved using open addressing instead of chaining. This will save
one pointer for each state entered intoPASSED, and since the signatures are, more
or less, as big as a pointer we may fit twice as many states in the same amount

43

of memory with open addressing than with chaining. The price we pay for this
choice is that the hash table might get full. Normally this would only lead to an
expensive rehashing but in our case the information needed to rehash an entry
in the hash table is no longer available. This leaves us with two choices, we can
either stop the verification and say thatPASSED is full and advice the user to try
with a largerPASSED, or we can just skip adding the state toPASSED and hope
that the search will terminate anyway. In the prototype implementation we have
chosen the first alternative.

To evaluate hash compaction for timed automata, we used two slightly different
PASSED implementations. The difference between them lays in what we store in
the hash table. In the first implementation we store signatures of entire symbolic
states. This solution gives very a compact representation of each state inPASSED,
but it has the drawback that inclusion between states inPASSED can not be de-
tected. This leads to potentially larger state spaces resulting in a higher pressure
on thePASSEDstructure.

In the secondPASSED implementation we try to get around this problem by sep-
arating the discrete part and the clock zone. In this implementation we apply the
hash function only to the discrete part of the state. The clock zone is compressed
using the method from Section 3.3 and stored in the hash table together with the
signature. With this solution we aim at minimising the number of states stored
in PASSED. However, storing the full zone has a big drawback. The entries in
PASSEDare much bigger than for the other type. For a fixed memory-size this will
give less entries inPASSED. A way around this would be to compress the zones
further using a method that, with some probability, might report false inclusions.
However, this has not been investigated in this report.

As an introductory experiment all the examples are run with 47-bit signatures5 for
three different sizes of the hash table (16MB, 32MB and 64MB), and an estimate
of the covered part of the state space is computed. In order to prevent interference
from the inclusion check onWAIT , this feature is turned off. In this experiment
we experienced no omissions, but for some examples the verification procedure
did not terminate correctly.

The faulty Philips example can not be handled at all byPASSED implementation
based only on signatures; while it can be handled by the combined scheme when
the size of the passed list is at least 32MB. The reason is that large parts of the
state space of this example is revisited since since the firstPASSED implementa-
tion only can detect equal states and not inclusion between states. In contrast to

5The size of the signature may seem a little odd, but in the implementation one bit is sacrificed
to ensure that no used slot in the hash table can be mistaken for an empty.

44

this example, the large instance of the DACAPO example terminates for all sizes
using the firstPASSED implementation, while it fail to do so for 16MB and 32MB
using the second. This is due to that, for each state, the zone information is an
order of magnitude larger than the size of the hash signature. This, in combination
with the fact that (for this example) the number of explored states are almost the
same in both variations, lead to that 16MB is big enough when using signatures
only while 64MB is needed for the combined scheme.

To study what the impact of the signature length on the fraction of the state space
that is omitted from exploration we perform an experiment with 7-bit signatures.6

The result of this experiment can be seen in Table 7. As we see in the table there
are still problem instances where no omissions occur. We also note that where
omissions occur, in all cases except one, less than one per mille of the state space
is omitted from exploration.

Example signature signature+pack
16MB 32MB 64MB 16MB 32MB 64MB

Philips (correct) - - - - - -
Philips (faulty) ⊥ ⊥ ⊥ - - -
B&O 0.80 1.17 0.81 2.25 0.29 -
DACAPO (big) 0.94 0.65 0.21 ⊥ ⊥ 0.19
DACAPO (small) 0.54 0.19 0.10 0.13 0.14 0.02
Fischer 5 - - 0.05 - - -
Fischer 6 0.95 0.44 0.19 0.08 0.02 0.03

Table 7: Fraction of state space (inh) omitted from exploration for hash com-
paction with 7-bit signatures.

As a final experiment we measure the run time and memory use for state space
exploration with aPASSEDstructure based on hash compaction with 47-bit signa-
tures and compare it to the run time for state space exploration using the classic
PASSED implementation inUPPAAL. To get as close as possible to a normal use
situation, inclusion checking forWAIT is enabled in this experiment. The mea-
sured run times are listed in Table 8. We note from the table that the combined
scheme (signatures of the discrete part + packed zone) is somewhat faster, for all
examples, than using only signatures. The reason for this is the smaller number
of states that is visited using the combined scheme. We also note that using hash
compaction is somewhat slower than using the classicPASSED implementation
(for all examples except Fischers protocol). This is partly due to the extra work

6This is the smallest possible signature size in the current implementation.

45

needed to compute the signatures and partly due to that the hash compaction im-
plementation withinUPPAAL is partly a prototype.

Example signature signature+pack Classic
16MB 32MB 64MB 16MB 32MB 64MB

Field Bus (Faulty 1) ⊥ ⊥ ⊥ ⊥ 140.86 144.73 148.12
Field Bus (Faulty 2) ⊥ ⊥ ⊥ ⊥ 211.41 215.45 218.17
Field Bus (Faulty 3) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1296.95
Field Bus (Fixed) ⊥ ⊥ ⊥ ⊥ ⊥ 464.89 488.39
Philips (correct) 3.30 3.46 3.82 2.19 2.32 2.61 1.89
Philips (faulty) ⊥ ⊥ ⊥ 23.11 23.05 23.40 22.84
B&O 22.62 22.78 22.83 20.00 20.11 20.32 16.45
DACAPO (big) 304.24 305.09 303.44 ⊥ 256.77 256.35 259.87
DACAPO (small) 19.11 19.25 19.64 13.70 13.86 14.15 12.60
Fischer 5 13.05 13.18 13.50 12.80 13.05 13.35 14.42
Fischer 6 641.39 643.09 646.26 1252.79 995.90 963.30 1210.97

Table 8: Run time (in seconds) for state space exploration using aPASSED list
based on hash compaction with 47-bit signatures.

The measured memory use for the different examples is listed in Table 9. From
this table we note that for the large examples,i.e. Field Bus, the large DACAPO
instance and Fischer 6, there are significant reductions in memory usage. We also
note that for some of the smaller examples the classicPASSEDimplementation use
less memory than the hash compaction. This suggests that the chosen size of the
hash compaction is too large, and that these examples can be verified using much
smallerPASSED. A further observation is that the measured numbers for hash
compaction are larger than the requested size forPASSED. The reason for this is
that the listed values are the total memory used in the verification,i.e. the numbers
also includeWAIT , temporary storage and the binary code. In a real application,
this should be taken into account when deciding how much memory to reserve for
PASSED.

5 Conclusions

This report describes and evaluates three different ways to physically represent
symbolic states inPASSED, in implementing verifiers for timed automata. The
evaluation shows that if space consumption is a main issue rather than time con-
sumption then the multiply-and-add scheme can be used. For the evaluated exam-
ples this optimisation reduces the memory usage with up to 70% compared to the
current representation used inUPPAAL, at the price of 3–13 times slowdown due

46

Example signature signature+pack Classic
16MB 32MB 64MB 16MB 32MB 64MB

Field Bus (Faulty 1) ⊥ ⊥ ⊥ ⊥ 40.41 72.41 77.92
Field Bus (Faulty 2) ⊥ ⊥ ⊥ ⊥ 40.61 72.62 117.88
Field Bus (Faulty 3) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 489.87
Field Bus (Fixed) ⊥ ⊥ ⊥ ⊥ ⊥ 75.82 212.21
Philips (correct) 17.91 33.91 65.91 17.89 33.89 65.89 4.21
Philips (faulty) ⊥ ⊥ ⊥ 18.35 34.35 66.35 18.23
B&O 17.85 33.85 65.85 17.85 33.85 65.85 21.81
DACAPO (big) 24.93 40.93 72.93 ⊥ 40.01 72.01 92.77
DACAPO (small) 18.44 34.44 66.44 18.40 34.40 66.40 8.38
Fischer 5 18.91 34.91 66.91 18.88 34.88 66.88 9.28
Fischer 6 40.13 56.13 88.13 38.38 54.38 86.38 145.64

Table 9: Space (in MB) for state space exploration using aPASSED list based on
hash compaction with 47-bit signatures.

to expensive inclusion checking between states. In all other cases the state should
be represented using a mixed representation where the discrete part is represented
using the multiply-and-add scheme and the zone is represented by concatenated
bit strings separated by test bits. This packing scheme reduces the memory us-
age with 35%–65% compared to the current version ofUPPAAL. In most cases
this representation also gives a minor speedup (1%–3%) compared to the current
UPPAAL implementation.

Further the report describes how to improve performance by checking for already
visited states not only onPASSED, but also onWAIT . For the evaluated examples
this optimisation reduces the verification time with up to 85% and the memory
usage with up to 45%.

Finally we studyPASSED representations based on supertrace and hash com-
paction effect the performance ofUPPAAL. The gain from this technique is sig-
nificantly reduced memory usage for large examples, but at the price of possibly
omitting parts of the state space from exploration. For the evaluated examples a su-
pertracePASSEDcause between 22h and 0.04h of the state space to be omitted
from the exploration. The evaluation show also that supertracePASSED represen-
tations only work for examples where the number of revisited states (that can’t be
detected without inclusion checking) is small.

For hash compaction we evaluate two, slightly different, methods. One method
where a hash key, signature and probe sequence is computed using both the dis-
crete part of the states and the time zone, and one method where the hash key,
signature and probe sequence is computed only from the discrete part of the states
while the time zone is compressed and stored together with the signature. The

47

evaluation shows that in terms of coverage both these methods outperform the
supertrace method. For 47-bit signatures there are no omissions at all (in the eval-
uated examples) and for 7-bit signatures the omissions are less than1/10:th of the
omissions in the supertracePASSEDrepresentation.

A future extension of this part of the work is to investigate how the size timing
region can be reduced while still maintaining the possibility of inclusion checking
between states.

Acknowledgement:We would like to thank Wang Yi for valuable comments and
discussions on the content of this report.

References

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R.
D’Argenio, Alexandre David, Ansgar Fehnker, Thomas Hune,
Bertrand Jeannet, Kim G. Larsen, M. Oliver Möller, Paul Petters-
son, Carsten Weise, and Wang Yi.UPPAAL - Now, Next, and Future.
In Modelling and Verification of Parallel Processes, number 2067 in
Lecture Notes in Computer Science, pages 100–125. Springer-Verlag,
2001.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time sys-
tems. InProceedings, Seventeenth International Colloquium on Au-
tomata, Languages and Programming, volume 443 ofLecture Notes
in Computer Science, pages 322–335. Springer-Verlag, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.Journal
of Theoretical Computer Science, 126(2):183–235, 1994.

[BGK+96] Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen,
Kim G. Larsen, Fredrik Larsson, Paul Petterson, and Wang Yi. Ver-
ification of an audio protocol with bus collision usingUPPAAL. In
Proceedings, Eigth International Conference on Computer Aided Ver-
ification, Lecture Notes in Computer Science. Springer-Verlag, 1996.

[BLP+99] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient timed reachability analysis using clock differ-
ence diagrams. InProceedings, Eleventh International Conference
on Computer Aided Verification, volume 1633 ofLecture Notes in
Computer Science, pages 341–353. Springer-Verlag, 1999.

48

[CKM01] Søren Christensen, Lars Michael Kristensen, and Thomas Mailund. A
sweep-line method for state space exploration. InProceedings, Sev-
enth International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 2031 ofLecture Notes in
Computer Science, pages 450–464. Springer-Verlag, 2001.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash
functions.Journal of Computer and System Sciences, 18(2):143–154,
1979.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state con-
current systems. InProceedings, Automatic Verification Methods for
Finite State Systems, volume 407 ofLecture Notes in Computer Sci-
ence, pages 197–212. Springer-Verlag, 1989.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine.
The tool kronos. InProceedings, Hybrid Systems III: Verification
and Control, volume 1066 ofLecture Notes in Computer Science.
Springer-Verlag, 1995.

[DY96] Conrado Daws and Sergio Yovine. Reducing the number of clock
variables of timed automata. InProceedings, 17th IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 1996.

[DY00] Alexandre David and Wang Yi. Modelling and analysis of a commer-
cial field bus protocol. InProceedings, Twelfth Euromicro Conference
on Real Time Systems, pages 165–174. IEEE Computer Society Press,
2000.

[God90] Patrice Godefroid. Using partial orders to improve automatic verifi-
cation methods. InProceedings, Second International Conference on
Computer Aided Verification, volume 531 ofLecture Notes in Com-
puter Science, pages 176–185. Springer-Verlag, 1990.

[Gra00] Torbjörn Granlund.The GNU Multiple Precision Arithmetic Library,
3.0.1 edition, 2000.

[HJJJ84] Peter Huber, Arne M. Jensen, Leif O. Jespen, and Kurt Jensen. To-
wards reachability trees for high-level petri nets. InProceedings, Ad-
vances on Petri Nets ’84, volume 188 ofLecture Notes in Computer
Science. Springer-Verlag, 1984.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. InPro-

49

ceedings, Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 394–406, 1992.

[Hol91] Gerard J. Holzmann.Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. For-
mal modelling and analysis of an audio/video protocol: An industrial
case study using uppaal. InProceedings, 18th IEEE Real-Time Sys-
tems Symposium, pages 2–13. IEEE Computer Society Press, 1997.

[ID93] C. Norris Ip and David L. Dill. Better verification through symme-
try. In Proceedings, Eleventh International Conference on Computer
Hardware Description Languages and their Applications, volume 32
of IFIP Transactions A: Computer Science and Technology, pages
97–112. North-Holland, 1993.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm.ACM Transac-
tions on Computer Systems, 5(1):1–11, 1987.

[Lar00] Fredrik Larsson. Efficient implementation of model-checkers for net-
works of timed automata. Licentiate Thesis 2000-003, Department of
Information Technology, Uppsala University, 2000.

[LLPY97] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Ef-
ficient verification of real-time systems: Compact data structure and
state space reduction. InProceedings, 18th IEEE Real-Time Systems
Symposium, pages 14–24. IEEE Computer Society Press, 1997.

[LP97] Henrik Lönn and Paul Pettersson. Formal verification of a tdma pro-
tocol startup mechanism. InProceedings of 1997 IEEE Pacific Rim
International Symposium on Fault-Tolerant Systems, pages 235–242.
IEEE Computer Society Press, 1997.

[LPY97] Kim G. Larsen, Paul Petterson, and Wang Yi. Uppaal in a nutshell.
Journal on Software Tools for Technology Transfer, 1997.

[Pel93] Doron Peled. All from one, one for all: on model checking using rep-
resentatives. InProceedings, Fifth International Conference on Com-
puter Aided Verification, volume 697 ofLecture Notes in Computer
Science, pages 409–423. Springer-Verlag, 1993.

[Pet99] Paul Pettersson.Modelling and Verification of Real-Time Systems
Using Timed Automata: Theory and Practice. PhD thesis, Uppsala
University, 1999.

50

[PS80] Wolfgang J. Paul and Janos Simon. Decision trees and random ac-
cess machines. InLogic and Algorithmic, volume 30 ofMonographie
de L’Enseignement Mathématique, pages 331–340. L’Enseignement
Mathématique, Université de Genève, 1980.

[Rok93] Tomas Gerhard Rokicki.Representing and Modeling Digital Circuits.
PhD thesis, Stanford University, 1993.

[SD95] Ulrich Stern and David L. Dill. Improved probabilistic verification by
hash compaction. InCorrect Hardware Design and Verification Meth-
ods: IFIP WG10.5 Advanced Research Working Conference Proceed-
ings, 1995.

[SD98] Ulrich Stern and David L. Dill. Using magnetic disk instead of main
memory in the Murϕ verifier. In Proceedings, Tenth International
Conference on Computer Aided Verification, volume 1427 ofLecture
Notes in Computer Science. Springer-Verlag, 1998.

[Val90] Antti Valmari. A stubborn attack on state explosion. InProceed-
ings, Second International Conference on Computer Aided Verifica-
tion, volume 531 ofLecture Notes in Computer Science, pages 156–
165. Springer-Verlag, 1990.

[WL93] Pierre Wolper and Dennis Leroy. Reliable hashing without collision
detection. InProceedings, Fifth International Conference on Com-
puter Aided Verification, volume 697 ofLecture Notes in Computer
Science, pages 59–70. Springer-Verlag, 1993.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems.
Journal on Software Tools for Technology Transfer, 1, October 1997.

[YPD94] Wang Yi, Paul Petterson, and Mats Daniels. Automatic verification
of real-time communicating systems by constraint-solving. InPro-
ceedings, Seventh International Conference on Formal Description
Techniques, pages 223–238, 1994.

51

A Examples and Experiment Environment

To evaluate the the ideas presented in this report we have made a number of exper-
iments. In this section we describe the environment in which the experiments are
performed. The results themselves are presented together with the ideas behind
them.

The experiments are run on a Sun Ultra Enterprise 450 with four7 400MHz CPUs
and 4GB of main memory. The operating system on the machine was Solaris 7.

All the ideas have been implemented on top of the current development version of
UPPAAL (3.1.26), and to measure the performance we used five different applica-
tions: Field Bus, B&O, DACAPO, Philips and Fischer. During all the experiments
the memory limit for the run is set to 1GB which is at least twice the amount of
memory needed forUPPAAL 3.1.26 to check any of the examples, using the stan-
dard representation of states. If any run exceeds this limit the run is marked as
unsuccessful (⊥).

The Field Bus application is a model of the data link layer of a commercial field
bus protocol. The protocol and the models we use (three erroneous and one cor-
rected version) are described in [DY00].

B&O is a highly time-sensitive protocol devolved by Bang & Olufsen to trans-
mit control messages between audio/video components. The model used in the
experiments is described in [HSLL97].

DACAPO is a model of the start-up algorithm of the so-called DACAPO proto-
col. The DACAPO protocol is TDMA (time division multiple access) based and
intended for local area networks inside modern vehicles. For a more thorough de-
scription of this application, see [LP97]. In these experiments we use two different
models: a small one with three stations and drifting clocks, and larger one with
four stations and perfect clocks.

The Philips example is a model of the physical layer of a protocol used by Philips
to connect different parts of stereo equipment. This model was one of the first
larger case studies made withUPPAAL. The model is thoroughly described in
[BGK+96]. This example is only used in the experiments with probabilistic passed
lists. Two versions of this protocol are used in the experiments, the correct model
and one faulty model.

The last application is Fischers protocol for mutual exclusion [Lam87]. This sim-

7The version ofUPPAAL used in the experiments is not multi threaded, so we only use one
CPU for each run.

52

ple protocol for mutual exclusion has, unfortunately, become a standard bench-
mark for verification tools for timed systems, since the state space grows rapidly
with the number of processes. The reason that this example is not a good bench-
mark example is that it is not very realistic and it behaves differently, verification
wise, from examples based on real case studies. In the experiments we have used
two different sizes of this problem, one with five processes and one with six pro-
cesses.

53

Paper B:
Partial Order Reductions for Timed Systems

Johan Bengtsson, Bengt Jonsson, Johan Lilius and Wang Yi. In Proceedings,
Ninth International Conference on Concurrency Theory, volume 1466, Lecture
Notes in Computer Science, Springer Verlag, 1998

Partial Order Reductions for Timed Systems

Johan Bengtsson1 Bengt Jonsson1 Johan Lilius2 Wang Yi1

1 Department of Computer Systems, Uppsala University, Sweden.
Email: {bengt,johanb,yi}@docs.uu.se

2 Department of Computer Science, TUCS, Åbo Akademi University, Finland.
Email:Johan.Lilius@abo.fi

Abstract. In this paper, we present a partial-order reduction method for
timed systems based on alocal-time semantics for networks of timed au-
tomata. The main idea is to remove the implicit clock synchronization be-
tween processes in a network by letting local clocks in each process advance
independently of clocks in other processes, and by requiring that two pro-
cessesresynchronizetheir local time scales whenever they communicate. A
symbolic version of this new semantics is developed in terms of predicate
transformers, which enjoys the desired property that two predicate trans-
formers are independent if they correspond to disjoint transitions in different
processes. Thus we can apply standard partial order reduction techniques to
the problem of checking reachability for timed systems, which avoid explo-
ration of unnecessary interleavings of independent transitions. The price is
that we must introduce extra machinery to perform the resynchronization op-
erations on local clocks. Finally, we present a variant of DBM representation
of symbolic states in the local time semantics for efficient implementation of
our method.

1 Motivation

During the past few years, a number of verification tools have been developed for
timed systems in the framework of timed automata (e.g.KRONOSandUPPAAL)
[HH95, DOTY95, BLL+96]. One of the major problems in applying these tools
to industrial-size systems is the huge memory-usage (e.g. [BGK+96]) needed to
explore the state-space of a network (or product) of timed automata, since the
verification tools must keep information not only on the control structure of the
automata but also on the clock values specified by clock constraints.

Partial-order reduction (e.g., [God96, GW90, HP94, Pel93, Val90, Val93]) is a
well developed technique, whose purpose is to reduce the usage of time and mem-
ory in state-space exploration by avoiding to explore unnecessary interleavings of
independent transitions. It has been successfully applied to finite-state systems.

57

However, for timed systems there has been less progress. Perhaps the major obsta-
cle to the application of partial order reduction to timed systems is the assumption
that all clocks advance at the same speed, meaning that all clocks are implicitly
synchronized. If each process contains (at least) one local clock, this means that
advancement of the local clock of a process is not independent of time advance-
ments in other processes. Therefore, different interleavings of a set of independent
transitions will produce different combinations of clock values, even if there is no
explicit synchronization between the processes or their clocks.

A simple illustration of this problem is given in Fig. 1. In (1) of Fig. 1 is a system
with two automata, each of which can perform one internal local transition (α1 and
α2 respectively) from an initial local state to a synchronization state(m, s) where
the automata may synchronize on labela (we use the synchronization model of
CCS). It is clear that the two sequences of transitions(l, r)

α1−→ (m, r)
α2−→ (m, s)

and (l, r)
α2−→ (l, s)

α1−→ (m, s) are different interleavings of two independent
transitions, both leading to the state(m, s), from which a synchronization ona is
possible. A partial order reduction technique will explore only one of these two
interleavings, after having analyzed that the initial transitions of the two automata
are independent.

(1)

l

m

n

r

s

t

α1

a

α2

a

(2)

l

m

n

r

s

t

α1

x := 0

x > 5

a

α2

y := 0

y < 5

z ≤ 10
a

Figure 1: Illustration of Partial Order Reduction

Let us now introduce timing constraints in terms of clocks into the example, to
obtain the system in (2) of Fig. 1 where we add clocksx, y andz. The left au-
tomaton can initially move to nodem, thereby resetting the clockx, after waiting
an arbitrary time. Thereafter it can move to noden after more than5 time units.
The right automaton can initially move to nodes, thereby resetting the clocky, af-
ter waiting an arbitrary time. Thereafter it can move to nodet within 5 time units,
but within 10 time units of initialization of the system. We note that the initial
transitions of the two automata are logically independent of each other. However,
if we naively analyze the possible values of clocks after a certain sequence of ac-
tions, we find that the sequence(l, r)

α1−→ (m, r)
α2−→ (m, s) may result in clock

58

values that satisfyx ≥ y (asx is reset beforey) where the synchronization ona
is possible, whereas the sequence(l, r)

α2−→ (l, s)
α1−→ (m, s) may result in clock

values that satisfyx ≤ y (asx is reset aftery) where the synchronization ona
is impossible. Now, we see that it is in general not sufficient to explore only one
interleaving of independent transitions.

In this paper, we present a new method for partial order reductions for timed sys-
tems based on a new local-time semantics for networks of timed automata. The
main idea is to overcome the problem illustrated in the previous example by re-
moving the implicit clock synchronization between processes by letting clocks ad-
vance independently of each other. In other words, wedesynchronizelocal clocks.
The benefit is that different interleavings of independent transitions will no longer
remember the order in which the transitions were explored. In this specific ex-
ample, an interleaving will not “remember” the order in which the clocks were
reset, and the two initial transitions are independent. We can then import standard
partial order techniques, and expect to get the same reductions as in the untimed
case. We again illustrate this on system (2) of Fig. 1. Suppose that in state(l, r)
all clocks are initialized to0. In the standard semantics, the possible clock values
when the system is in state(l, r) are those that satisfyx = y = z. In the “desyn-
chronized” semantics presented in this paper, any combination of clock values is
possible in state(l, r). After both the sequence(l, r)

α1−→ (m, r)
α2−→ (m, s) and

(l, r)
α2−→ (l, s)

α1−→ (m, s) the possible clock values are those that satisfyy ≤ z.

Note that the desynchronization will give rise to many new global states in which
automata have “executed” for different amounts of time. We hope that this larger
set of states can be represented symbolically more compactly than the original
state-space. For example, in system (2), our desynchronized semantics gives rise
to the constrainty ≤ z at state(m, s), whereas the standard semantics gives rise to
the two constraintsx ≤ y ≤ z andy ≤ x ∧ y ≤ z. However, as we have removed
the synchronization between local time scales completely, we also lose timing
information required for synchronizaton between automata. Consider again sys-
tem (2) and look at the clockz of the right automaton. Sincez = 0 initially, the
constraintz ≤ 10 requires that the synchronization ona should be within10 time
units from system initialization. Implicitly, this then becomes a requirement on the
left automaton. A naive desynchronization of local clocks includingz will allow
the left process to wait for more than10 time units, in its local time scale, before
synchronizing. Therefore, before exploring the effect of a transition in which two
automata synchronize, we must explicitly “resynchronize” the local time scales
of the participating automata. For this purpose, we add to each automaton a local
reference clock, which measures how far its local time has advanced in perform-
ing local transitions. To each synchronization between two automata, we add the
condition that their reference clocks agree. In the above example, we addc1 as

59

a reference clock to the left automaton andc2 as a reference clock to the right
automaton. We requirec1 = c2 at system initialization. After any interleaving
of the first two independent transitions, the clock values may satisfyy ≤ z and
x− c1 ≤ z− c2. To synchronize ona they must also satisfy the constraintc1 = c2

in addition tox > 5, y < 5 andz ≤ 10. This implies thatx ≤ 10 when the syn-
chronization occurs. Without the reference clocks, we would not have been able
to derive this condition.

The idea of introducing local time is related to the treatment of local time in the
field of parallel simulation (e.g., [Fuj90]). Here, a simulation step involves some
local computation of a process together with a corresponding update of its local
time. A snapshot of the system state during a simulation will be composed of
many local time scales. In our work, we are concerned with verification rather
than simulation, and we must therefore represent sets of such system states sym-
bolically. We shall develop a symbolic version for the local-time semantics in
terms of predicate transformers, in analogy with the ordinary symbolic semantics
for timed automata, which is used in several tools for reachability analysis. The
symbolic semantics allows a finite partitioning of the state space of a network
and enjoys the desired property that two predicate transformers are independent if
they correspond to disjoint transitions in different component automata. Thus we
can apply standard partial order reduction techniques to the problem of checking
reachability for timed systems, without disturbance from implicit synchronization
of clocks.

The paper is organized as follows: In section 2, we give a brief introduction to the
notion of timed automata and its standard semantics i.e. the global time semantics.
Section 3 develops a local time semantics for networks of timed automata and a
finite symbolic version of the new semantics, analogous to the region graph for
timed automata. Section 4 presents a partial order search algorithm for reachabil-
ity analysis based on the symbolic local time semantics; together with necessary
operations to represent and manipulate distributed symbolic states. Section 5 con-
cludes the paper with a short summary on related work, our contribution and future
work.

2 Preliminaries

2.1 Networks of Timed Automata

Timed automata was first introduced in [AD90] and has since then established
itself as a standard model for timed systems. For the reader not familiar with the

60

notion of timed automata we give a short informal description. In this paper, we
will work with networks of timed automata[YPD94, LPY95a] as the model for
timed systems.

Let Act be a finite set oflabelsranged over bya, b etc. Each label is eitherlocal
or synchronizing. If a is a synchronizing label, then it has acomplement, denoted
a, which is also a synchronizing label witha = a.

A timed automaton is a standard finite–state automaton over alphabetAct, ex-
tended with a finite collection of real–valuedclocksto model timing. We usex, y
etc. to range over clocks,C andr etc. to range over finite sets of clocks, andR to
stand for the set of non-negative real numbers.

A clock assignmentu for a setC of clocks is a function fromC to R. Ford ∈ R,
we useu + d to denote the clock assignment which maps each clockx in C to the
valueu(x) + d and forr ⊆ C, [r 7→ 0]u to denote the assignment forC which
maps each clock inr to the value0 and agrees withu onC\r.

We useB(C) ranged over byg (and later byD), to stand for the set of conjunctions
of atomic constraints of the form:x ∼ n or x − y ∼ n for x, y ∈ C, ∼∈ {≤
, <, >,≥} and n being a natural number. Elements ofB(C) are calledclock
constraintsor clock constraint systemsoverC. We useu |= g to denote that the
clock assignmentu ∈ RC satisfies the clock constraintg ∈ B(C).

A network of timed automatais the parallel compositionA1 | · · · |An of a collec-
tion A1, . . . , An of timed automata. EachAi is a timed automaton over the clocks
Ci, represented as a tuple〈Ni, l

0
i , Ei, Ii〉, whereNi is a finite set of (control)nodes,

l0i ∈ Ni is theinitial node, andEi ⊆ Ni × B(Ci) × Act × 2Ci × Ni is a set of
edges. Each edge〈li, g, a, r, l′i〉 ∈ Ei means that the automaton can move from the
nodeli to the nodel′i if the clock constraintg (also called the enabling condition
of the edge) is satisfied, thereby performing the labela and resetting the clocks in
r. We write li

g,a,r−→ l′i for 〈li, g, a, r, l′i〉 ∈ Ei. A local actionis an edgeli
g,a,r−→ l′i

of some automatonAi with a local labela. A synchronizing actionis a pair of

matching edges, writtenli
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j wherea is a synchronizing label,

and for somei 6= j, li
gi,a,ri−→ l′i is an edge ofAi andlj

gj ,a,rj−→ l′j is an edge ofAj.
The Ii : Ni → B(Ci) assigns to each node aninvariant conditionwhich must
be satisfied by the system clocks whenever the system is operating in that node.
For simplicity, we require that the invariant conditions of timed automata should
be the conjunction of constraints in the form:x ≤ n wherex is a clock andn
is a natural number. We require the setsCi to be pairwise disjoint, so that each
automaton only references local clocks. As a technical convenience, we assume
that the setsNi of nodes are pairwise disjoint.

61

Global Time Semantics.

A stateof a networkA = A1| · · · |An is a pair(l, u) wherel, called acontrol
vector, is a vector of control nodes of each automaton, andu is a clock assignment
for C = C1∪· · ·∪Cn. We shall usel[i] to stand for theith element ofl andl[l′i/li]
for the control vector where theith elementli of l is replaced byl′i. We define the
invariantI(l) of l as the conjuctionI1(l[1]) ∧ · · · ∧ In(l[n]). The initial state ofA
is (l0, u0) wherel0 is the control vector such thatl[i] = l0i for eachi, andu0 maps
all clocks inC to 0.

A network may change its state by performing the following three types of transi-
tions.

• Delay Transition:(l, u)−→(l, u + d) if I(l)(u + d)

• Local Transition:(l, u)−→(l[l′i/li], u
′) if there exists a local actionli

g,a,r−→ l′i
such thatu |= g andu′ = [r 7→ 0]u.

• Synchronizing Transition:(l, u)−→(l[l′i/li][l
′
j/lj], u

′) if there exists a syn-

chronizing actionli
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j such thatu |= gi, u |= gj, and
u′ = [ri 7→ 0][rj 7→ 0]u.

We shall say that a state(l, u) is reachable, denoted(l0, u0) −→∗ (l, u) if there
exists a sequence of (delay or discrete) transitions leading from(l0, u0) to (l, u).

2.2 Symbolic Global–Time Semantics

Clearly, the semantics of a timed automaton yields an infinite transition system,
and is thus not an appropriate basis for verification algorithms. However, efficient
algorithms may be obtained using asymbolicsemantics based onsymbolic states
of the form(l, D), whereD ∈ B(C), which represent the set of states(l, u) such
thatu |= D. Let us write(l, u) |= (l′, D) to denote thatl = l′ andu |= D.

We perform symbolic state space exploration by repeatedly taking the strongest
postcondition with respect to an action, or to time advancement. For a constraint
D and setr of clocks, define the constraintsD↑ andr(D) by

• for all d ∈ R we haveu + d |= D↑ iff u |= D, and

• [r 7→ 0]u |= r(D) iff u |= D

It can be shown thatD↑ andr(D) can be expressed as clock constraints whenever
D is a clock constraint. We now define predicate transformers corresponding to
strongest postconditions of the three types of transitions:

62

• For global delay,sp(δ)(l, D)
def
=

(
l, D↑ ∧ I(l)

)

• For a local actionli
g,a,r−→ l′i sp(li

g,a,r−→ l′i)(l, D)
def
=

(
l[l′i/li], r(g ∧D)

)

• For a synchronizing actionli
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j,

sp(li
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j)(l, D)
def
=

(
l[l′i/li][l

′
j/lj], (ri ∪ rj)(gi ∧ gj ∧D)

)

It turns out to be convenient to use predicate transformers that correspond to first
executing a discrete action, and thereafter executing a delay. For predicate trans-
formersτ1, τ2, we useτ1; τ2 to denote the compositionτ2 ◦ τ1. For a (local or

synchronizing) actionα, we definespt(α)
def
= sp(α); sp(δ).

From now on, we shall use(l0, D0) to denote the initial symbolic global time
state for networks, whereD0 = ({u0})↑ ∧ I(l0). We write (l, D) ⇒ (l′, D′) if
(l′, D′) = spt(α)(l, D) for some actionα. It can be shown (e.g. [YPD94]) that
the symbolic semantics characterizes the concrete semantics given earlier in the
following sense:

Theorem 1 A state(l, u) of a network is reachable if and only if(l0, D0)(⇒
)∗(l, D) for someD such thatu |= D.

The above theorem can be used to construct a symbolic algorithm for reachability
analysis. In order to keep the presentation simple, we will in the rest of the paper
only consider a special form oflocal reachability, defined as follows. Given a con-
trol nodelk of some automatonAk, check if there is a reachable state(l, u) such
that l[k] = lk. It is straight-forward to extend our results to more general reacha-
bility problems. The symbolic algorithm for checking local reachability is shown
in Figure 2 for a network of timed automata. Here, the setenabled(l) denotes the
set of all actions whose source node(s) are in the control vectorl i.e., a local action

li
g,a,r−→ l′i is enabled atl if l[i] = li, and a synchronizing actionli

gi,a,ri−→ l′i|lj
gj ,a,rj−→ l′j

is enabled atl if l[i] = li andl[j] = lj.

3 Partial Order Reduction and Local-Time Seman-
tics

The purpose of partial-order techniques is to avoid exploring several interleavings
of independent transitions, i.e., transitions whose order of execution is irrelevant,

63

PASSED:= {}
WAITING := {(l0, D0)}
repeat

begin
get(l, D) from WAITING

if l[k] = lk then return “YES”
else ifD 6⊆ D′ for all (l, D′) ∈ PASSED then

begin
add(l, D) to PASSED

SUCC:={spt(α)(l, D) : α ∈ enabled(l)}
for all (l′, D′) in SUCC do

put (l′, D′) to WAITING

end
end

until WAITING={}
return “NO”

Figure 2: An Algorithm for Symbolic Reachability Analysis.

e.g., because they are performed by different processes and do not affect each
other. Assume for instance that for some control vectorl, the setenabled(l) con-
sists of the local actionαi of automatonAi and the local actionαj of automaton
Aj. Since executions of local actions do not affect each other, we might want to
explore only the actionαi, and defer the exploration ofαj until later. The jus-
tification for deferring to exploreαj would be that any symbolic state which is
reached by first exploringαj and thereafterαi can also be reached by exploring
these actions in reverse order, i.e., firstαi and thereafterαj.

Let τ1 andτ2 be two predicate transformers. We say thatτ1 andτ2 areindependent
if (τ1; τ2)((l, D)) = (τ2; τ1)((l, D)) for any symbolic state(l, D). In the absence
of time, local actions of different processes are independent, in the sense that
sp(αi) andsp(αj) are independent. However, in the presence of time, we do not
have independence. That is,spt(αi) andspt(αj) are in general not independent,
as illustrated e.g., by the example in Figure 1.

If timed predicate transformers commute only to a rather limited extent, then par-
tial order reduction is less likely to be successful for timed systems than for un-
timed systems. In this paper, we present a method for symbolic state-space ex-
ploration of timed systems, in which predicate transformers commute to the same
extent as they do in untimed systems. The main obstacle for commutativity of
timed predicate transformers is that timed advancement is modeled by globally

64

synchronous transitions, which implicitly synchronize all local clocks, and hence
all processes. In our approach, we propose to replace the global time-advancement
steps by local-time advancement. In other words, we remove the constraint that all
clocks advance at the same speed and let clocks of each automaton advance totally
independently of each other. We thus replace one global time scale by a local-time
scale for each automaton. When exploring local actions, the corresponding pred-
icate transformer affects only the clocks of that automaton in its local-time scale;
the clocks of other automata are unaffected. In this way, we have removed any
relation between local-time scales. However, in order to explore pairs of synchro-
nizing actions we must also be able to “resynchronize” the local-time scales of the
participating automata, and for this purpose we add a localreference clockto each
automaton. The reference clock of automatonAi represents how far the local-time
of Ai has advanced, measured in a global time scale. In a totally unsynchronized
state, the reference clocks of different automata can be quite different. Before a
synchronization betweenAi andAj, we must add the condition that the reference
clocks ofAi andAj are equal.

To formalize the above ideas further, we present a local-time semantics for net-
works of timed automata, which allows local clocks to advance independently and
resynchronizing them only at synchronization points.

Consider a networkA1| · · · |An. We add to the setCi of clocks of eachAi a refer-
ence clock, denotedci. Let us denote byu +i d the time assignment which maps
each clockx in Ci (includingci) to the valueu(x) + d and each clockx in C \Ci

to the valueu(x). In the rest of the paper, we shall assume that the set of clocks
of a network include the reference clocks and the initial state is(l0, u0) where the
reference clock values are0, in both the global and local time semantics.

Local Time Semantics.

The following rules define that networks may change their state locally and glob-
ally by performing three types of transitions:

• Local Delay Transition:(l, u)7→(l, u +i d) if Ii(li)(u +i d)

• Local Discrete Transition:(l, u)7→(l[l′i/li], u
′) if there exists a local action

li
g,a,r−→ l′i such thatu |= g andu′ = [r 7→ 0]u

• Synchronizing Transition:(l, u)7→(l[l′i/li][l
′
j/lj], u

′) if there exists a syn-

chronizing actionli
gi,a,ri−→ l′i|lj

gj ,a,rj−→ l′j such thatu |= gi, u |= gj, and
u′ = [ri 7→ 0][rj 7→ 0]u, andu(ci) = u(cj)

65

Intuitively, the first rule says that a component may advance its local clocks (or
execute) as long as the local invariant holds. The second rule is the standard inter-
leaving rule for discrete transitions. When two components need to synchronize, it
must be checked if they have executed for the same amount of time. This is spec-
ified by the last condition of the third rule which states that the local reference
clocks must agree, i.e.u(ci) = u(cj).

We call(l, u) a local time state. Obviously, according to the above rules, a network
may reach a large number of local time states where the reference clocks take
different values. To an external observer, the interesting states of a network will
be those where all the reference clocks take the same value.

Definition 1 A local time state(l, u) with reference clocksc1 · · · cn is synchro-
nizedif u(c1) = · · · = u(cn).

Now we claim that the local-time semantics simulates the standard global time
semantics in which local clocks advance concurrently, in the sense that they can
generate precisely the same set of reachable states of a timed system.

Theorem 2 For all networks,(l0, u0)(−→)∗(l, u) iff for all synchronized local
time states(l, u) (l0, u0)(7→)∗(l, u).

3.1 Symbolic Local-Time Semantics

We can now define a local-time analogue of the symbolic semantics given in Sec-
tion 2.2 to develop a symbolic reachability algorithm with partial order reduction.
We need to represent local time states by constraints. Let us first assume that the
constraints we need for denote symbolic local time states are different from stan-
dard clock constraints, and usêD, D̂′ etc to denote such constraints. Later, we will
show that such constraints can be expressed as a clock constraint.

We useD̂↑i to denote the clock constraint such that for alld ∈ R we haveu +i

d |= D̂↑i iff u |= D̂. For local-time advance, we define alocal-time predicate
transformer, denoted̂spt(δi), which allows only the local clocksCi including the
reference clockci to advance as follows:

• ŝpt(δi)(l, D̂)
def
=

(
l, D̂↑i ∧ I(l)

)

For each local and synchronizing actionα, we define a local-time predicate trans-
former, denoted̂spt(α), as follows:

• If α is a local actionli
g,a,r−→ l′i, thenŝpt(α)

def
= sp(α); ŝpt(δi)

66

• If α is a synchronizing actionli
gi,a,r−→ l′i|lj

gj ,a,rj−→ l′j, then

ŝpt(α)
def
= {ci = cj}; sp(α); ŝpt(δi); ŝpt(δj)

Note that in the last definition, we treat a clock constraint likeci = cj as a pred-

icate transformer, defined in the natural way by{ci = cj}(l, D̂)
def
= (l, D̂ ∧ (ci =

cj)).

We use(l0, D̂0) to denote the initial symbolic local time state of networks where
D̂0 = ŝpt(δ1); · · · ; ŝpt(δn)({u0}). We shall write(l, D̂) |=⇒ (l′, D̂′) if (l′, D̂′) =

ŝpt(α)(l, D̂) for some actionα.

Then we have the following characterization theorem.

Theorem 3 For all networks, a synchronized state(l, u), (l0, u0) −→∗ (l, u) if
and only if (l0, D̂0)(|=⇒)∗(l, D̂) for a symbolic local time state(l, D̂) such that
u |= D̂.

The above theorem shows that the symbolic local time semantics fully character-
izes the global time semantics in terms of reachable states. Thus we can perform
reachability analysis in terms of the symbolic local time semantics. However, it
requires to find a symbolic local time state that issynchronizedin the sense that
it constains synchronized states. The searching for such a synchronized symbolic
state may be time and space-consuming. Now, we relax the condition for a class
of networks, namely those containing no local time-stop.

Definition 2 A network is local time-stop free if for all(l, u), (l0, u0)(7→)∗(l, u)
implies(l, u)(7→)∗(l′, u′) for some synchronized state(l′, u′).

The local time-stop freeness can be easily guaranteed by syntactical restriction
on component automata of networks. For example, we may require that at each
control node of an automaton there should be an edge with a local label and a
guard weaker than the local invariant. This is precisely the way of modelling time-
out handling at each node when the invariant is becoming false and therefore it is
a natural restriction.

The following theorem allows us to perform reachability analysis in terms of sym-
bolic local time semantics for local time-stop free networks without searching for
synchronized symbolic states.

Theorem 4 Assume a local time-stop free networkA and a local control nodelk
of Ak. Then (l0, D0)(⇒)∗(l, D) for some(l, D) such thatl[k] = lk if and only if
(l0, D̂0)(|=⇒)∗(l′, D̂′) for some(l′, D̂′) such thatl′[k] = lk.

67

We now state that the version of the timed predicate transformers based on local
time semantics enjoy the commutativity properties that were missing in the global
time approach.

Theorem 5 Letα1 andα2 be two actions of a networkA of timed automata. If the
sets of component automata ofA involved inα1 andα2 are disjoint, then̂spt(α1)
and ŝpt(α2) are independent.

3.2 Finiteness of the Symbolic Local Time Semantics

We shall use the symbolic local time semantics as the basis to develop a partial
order search algorithm in the following section. To guarantee termination of the
algorithm, we need to establish the finiteness of our local time semantics, i.e. that
the number ofequivalentsymbolic states is finite. Observe that the number of
symbolic local time states is in general infinite. However, we can show that there
is finite partitioning of the state space. We take the same approach as for standard
timed automata, that is, we construct a finite graph based on a notion of regions.

We first extend the standard region equivalence to synchronized states. In the fol-
lowing we shall useCr to denote the set of reference clocks.

Definition 3 Two synchronized local time states (with the same control vector)
(l, u) and (l, u′) are synchronized-equivalent if([Cr 7→ 0]u) ∼ ([Cr 7→ 0]u′)
where∼ is the standard region equivalence for timed automata.

Note that([Cr 7→ 0]u) ∼ ([Cr 7→ 0]u′) means that only the non-reference clock
values in(l, u) and(l, u′) are region-equivalent. We call the equivalence classes
w.r.t. the above equivalence relationsynchronized regions. Now we extend this
relation to cope with local time states that are not synchronized. Intuitively, we
want two non-synchronized states,(l, u) and(l′, u′) to be classified as equivalent
if they can reach sets of equivalent synchronized states just by letting the automata
that have lower reference clock values advance to catch up with the automaton
with the highest reference clock value.

Definition 4 A local delay transition(l, u) 7→ (l, u′) of a network is acatch-up
transitionif max(u(Cr)) ≤ max(u′(Cr)).

Intuitively a catch-up transition corresponds to running one of the automata that
lags behind, and thus making the system more synchronized in time.

Definition 5 Let (l, u) be a local time state of a network of timed automata. We
useR((l, u)) to denote the set of synchronized regions reachable from(l, u) only
by discrete transitions or catch-up transitions.

68

We now define an equivalence relation between local time states.

Definition 6 Two local time states(l, u) and (l′, u′) are catch-up equivalentde-
noted(l, u) ∼c (l′, u′) if R((l, u) = R((l′, u′)). We shall use|(l, u)|∼c to denote
the equivalence class of local time states w.r.t.∼c.

Intuitively two catch-up equivalent local time states can reach the same set of
synchronized states i.e. states where all the automata of the network have been
synchronized in time.

Note that the number of synchronized regions is finite. This implies that the num-
ber of catch-up classes is also finite. On the other hand, there is no way to put an
upper bound on the reference clocksci, since that would imply that for every pro-
cess there is a point in time where it stops evolving which is generally not the case.
This leads to the conclusion that there must be a periodicity in the region graph,
perhaps after some initial steps. Nevertheless, we have a finiteness theorem.

Theorem 6 For any network of timed automata, the number of catch-up equiva-
lence classes|(l, u)|∼c for each vector of control nodes is bounded by a function
of the number of regions in the standard region graph construction for timed au-
tomata.

As the number of vectors of control nodes for each network of automata is finite,
the above theorem demonstrates the finiteness of our symbolic local time seman-
tics.

4 Partial Order Reduction in Reachability Analysis

The preceding sections have developed the necessary machinery for presenting a
method for partial-order reduction in a symbolic reachability algorithm. Such an
algorithm can be obtained from the algorithm in Figure 2 by replacing the initial
symbolic global time state(l0, D0) by the initial symbolic local time state(l0, D̂0)
(as defined in Theorem 4), and by replacing the statement

SUCC:={spt(α)(l, D) : α ∈ enabled(l)}

by SUCC:={ŝpt(α)(l, D) : α ∈ ample(l)} whereample(l) ⊆ enabled(l) is a sub-
set of the actions that are enabled atl. Hopefully the setample(l) can be made
significantly smaller thanenabled(l), leading to a reduction in the explored sym-
bolic state-space.

69

In the literature on partial order reduction, there are several criteria for choosing
the setample(l) so that the reachability analysis is still complete. We note that
our setup would work with any criterion which is based on the notion of “in-
dependent actions” or “independent predicate transformers”. A natural criterion
which seems to fit our framework was first formulated by Overman [Ove81]; we
use its formulation by Godefroid [God96].

The idea in this reduction is that for each control vectorl we choose a subsetA
of the automataA1, . . . , An, and letample(l) be all enabled actions in which the
automata inA participate. The choice ofAmay depend on the control nodelk that
we are searching for. The setA must satisfy the criteria below. Note that the con-
ditions are formulated only in terms of the control structure of the automata. Note
also that in an implementation, these conditions will be replaced by conditions
that are easier to check (e.g. [God96]).

C0 ample(l) = ∅ if and only if enabled(l) = ∅.
C1 If the automatonAi ∈ A from its current nodel[i] can possibly synchro-

nize with another processAj, thenAj ∈ A, regardless of whether such a
synchronization is enabled or not.

C2 From l, the network cannot reach a control vectorl′ with l′[k] = lk without
performing an action in which some process inA participates.

CriteriaC0 andC2 are obviously necessary to preserve correctness. CriterionC1
can be intuitively motivated as follows: If automatonAi can possibly synchro-
nize with another automatonAj, then we must explore actions byAj to allow it
to “catch up” to a possible synchronization withAi. Otherwise we may miss to
explore the part of the state-space that can be reached after the synchronization
betweenAi andAj.

A final necessary criterion for correctness isfairness, i.e., that we must not in-
definitly neglect actions of some automaton. Otherwise we may get stuck explor-
ing a cyclic behavior of a subset of the automata. This criterion can be formulated
in terms of theglobal control graphof the network. Intuitively, this graph has
control vectors as nodes, which are connected by symbolic transitions where the
clock constraints are ignored. The criterion of fairness then requires that

C3 In each cycle of the global control graph, there must be at least one control
vector at whichample(l) = enabled(l).

In the following theorem, we state correctness of our criteria.

Theorem 7 A partial order reduction of the symbolic reachability in Figure 2,
obtained by replacing

70

1. the initial symbolic global time state(l0, D0) with the initial symbolic local
time state(l0, D̂0) (as defined in theorem 4)

2. the statementSUCC:={spt(α)(l, D) : α ∈ enabled(l)} with the statement
SUCC:={ŝpt(α)(l, D) : α ∈ ample(l)} where the functionample(·) satis-
fies the criteriaC0 - C3,

3. and finally the inclusion checking i.e.D 6⊆ D′ between constraints with an
inclusion checking that also takes∼c into account1.

is a correct and complete decision procedure for determining whether a local state
lk in Ak is reachable in a local time-stop free networkA.

The proof of the above theorem follows similar lines as other standard proofs of
correctness for partial order algorithms. See e.g., [God96].

4.1 Operations on Constraint Systems

Finally, to develop an efficient implementation of the search algorithm presented
above, it is important to design efficient data structures and algorithms for the
representation and manipulation of symbolic distributed states i.e. constraints over
local clocks including the reference clocks.

In the standard approach to verification of timed systems, one such well-known
data structure is the Difference Bound Matrix (DBM), due to Bellman [Bel57],
which offers a canonical representation forclock constraints. Various efficient al-
gorithms to manipulate (and analyze) DBM’s have been developed (e.g [LLPY97]).

However when we introduce operations of the form̂spt(δi), the standard clock
constraints are no longer adequate for describing possible sets of clock assign-
ments, because it is not possible to let only a subset of the clocks grow. This
problem can be circumvented by the following. Instead of considering values of
clocksx as the basic entity in a clock constraint, we work in terms of the relative
offset of a clock from the local reference clock. For a clockxl

i ∈ Ci, this offset is
represented by the differencexl

i − ci. By analogy, we must introduce the constant
offset 0 − ci. An offset constraintis then a conjunction of inequalities of form
xi ∼ n or (xl

i − ci) − (xk
j − cj) ∼ n for xl

i ∈ Ci, x
k
j ∈ Cj, where∼∈ {≤,≥}.

Note that an inequality of the formxl
i ∼ n is also an offset, since it is the same as

(xl
i − ci) − (0 − ci) ∼ n. It is important to notice, that given an offset constraint

1This last change is only to guarantee the termination but not the soundness of the algorithm.
Note that in this paper, we have only shown that there exists a finite partition of the local time state
space according to∼c, but not how the partitioning should be done. This is our future work.

71

(xl
i− ci)− (xk

j − cj) ∼ n we can always recover the absolute constraint by setting
ci = cj.

The nice feature of these constraints is that they can be represented by DBM’s,
by changing the interpretation of a clock from being its value to being its local
offset. Thus given a set of offset constraintsD over aC, we construct a DBM
M as follows. We number the clocks inCi by x0

i , . . . , x|Ci|−2, ci. An offset of the
form xl

i − ci we denote bŷxl
i and a constant offset0 − ci by ĉi. The index set of

the matrix is then the set of offsetŝxl
i andĉi for xl

i, ci ∈ Ci for all Ci ∈ C, while
an entry in M is defined byM(x̂, ŷ) = n if x̂ − ŷ ≤ n ∈ D andM(x̂, ŷ) = ∞
otherwise. We say that a clock assignmentu is a solution of a DBMM , u |= M ,
iff ∀x, y ∈ C : u(x̂)− u(ŷ) ≤ M(x̂, ŷ), whereu(x̂) = u(x)− u(ci) with ci the
reference clock ofx.

The operationD↑i now corresponds to the deletion of all constraints of the form
ĉi ≥ x̂ + n. The intuition behind this is that when we let the clocks ini grow, we
are keeping the relative offsetŝxk

i constant, and only the clock̂ci will decrease,
because this offset is taken from 0.D↑i can be defined as an operation on the
corresponding DBMM : M↑i(x̂, ŷ) = ∞ if ŷ = ĉi andM↑i(x̂, ŷ) = M(x̂, ŷ)
otherwise. It then easy to see thatu |= M iff u +i d |= M↑i.

Resetting of a clockxk
i corresponds to the deletion of all constraints regarding

x̂k
i and then settinĝxk

i − ĉi = 0. This can be done by an operation[xk
i →

0](M)(x̂, ŷ) = 0 if x̂ = x̂k
i and ŷ = ĉi or x̂ = ĉi and ŷ = x̂k

i ,
∞ if x̂ = x̂k

i and ŷ 6= ĉi or x̂ 6= ĉi and ŷ = x̂k
i , andM(x̂, ŷ) otherwise.

Again it is easy to see, that[xk
i → 0]u |= [xk

i → 0](M) iff u |= M .

5 Conclusion and Related Work

In this paper, we have presented a partial-order reduction method for timed sys-
tems, based on alocal-timesemantics for networks of timed automata. We have
developed a symbolic version of this new (local time) semantics in terms of pred-
icate transformers, in analogy with the ordinary symbolic semantics for timed
automata which is used in current tools for reachability analysis. This symbolic
semantics enjoys the desired property that two predicate transformers are indepen-
dent if they correspond to disjoint transitions in different processes. This allows
us to apply standard partial order reduction techniques to the problem of checking
reachability for timed systems, without disturbance from implicit synchroniza-
tion of clocks. The advantage of our approach is that we can avoid exploration
of unnecessary interleavings of independent transitions. The price is that we must

72

introduce extra machinery to perform the resynchronization operations on local
clocks. On the way, we have established a theorem about finite partitioning of the
state space, analogous to the region graph for ordinary timed automata. For ef-
ficient implementation of our method, we have also presented a variant of DBM
representation of symbolic states in the local time semantics. We should point out
that the results of this paper can be easily extended to deal with shared variables by
modifying the predicate transformer in the formci = cj) for clock resynchroniza-
tion to the formci ≤ cj properly for the reading and writing operations. Future
work naturally include an implementation of the method, and experiments with
case studies to investigate the practical significance of the approach.

Related Work

Currently we have found in the literature only two other proposals for partial order
reduction for real time systems: The approach by Pagani in [Pag96] for timed
automata (timed graphs), and the approach of Yoneda et al. in [YSSC93, YS97]
for time Petri nets.

In the approach by Pagani a notion of independence between transitions is defined
based on the global-time semantics of timed automata. Intuitively two transitions
are independent iff we can fire them in any order and the resulting states have
the same control vectors and clock assignments. When this idea is lifted to the
symbolic semantics, it means that two transitions can be independent only if they
can happen in the same global time interval. Thus there is a clear difference to
our approach: Pagani’s notion of independence requires the comparison of clocks,
while ours doesn’t.

Yoneda et al. present a partial order technique for model checking a timed LTL
logic on time Petri nets [BD91]. The symbolic semantics consists of constraints on
the differences on the possible firing times of enabled transitions instead of clock
values. Although the authors do not give an explicit definition of independence
(like our Thm. 5) their notion of independence is structural like ours, because the
persistent sets, ready sets, are calculated using the structure of the net. The dif-
ference to our approach lies in the calculation of the next state in the state-space
generation algorithm. Yoneda et al. store the relative firing order of enabled tran-
sitions in the clock constraints, so that a state implicitly remembers the history
of the system. This leads to branching in the state space, a thing which we have
avoided. A second source of branching in the state space is synchronization. Since
a state only contains information on the relative differences of firing times of tran-
sitions it is not possible to synchronize clocks.

73

Acknowledgement: We would like to thank Paul Gastin, Florence Pagani and
Stavros Tripakis for their valuable comments and discussions.

References

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems.
In Proc. of of International Colloquium on Algorithms, Languages
and Programming, volume 443 ofLNCS, pages 322–335. Springer
Verlag, 1990.

[BD91] B. Berthomieu and M. Diaz. Modelling and verification of time de-
pendent systems using time Petri nets.IEEE Transactions on Software
Engineering, 17(3):259–273, 1991.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press,
1957.

[BGK+96] J. Bengtsson, D. Griffioen, K. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Verification of an Audio Protocol with Bus
Collision UsingUPPAAL. In Proc. of 9th Int. Conf. on Computer
Aided Verification, volume 1102 ofLNCS, pages 244–256. Springer
Verlag, 1996.

[BLL +96] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi.UP-
PAAL in 1995. InProc. of the 2nd Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1055 of
Lecture Notes in Computer Science, pages 431–434. Springer Verlag,
1996.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The toolKRONOS.
In Proc. of Workshop on Verification and Control of Hybrid Systems
III , volume 1066 ofLNCS, pages 208–219. Springer Verlag, 1995.

[Fuj90] R. M. Fujimoto. Parallel discrete event simulation.Communications
of the ACM, 33(10):30–53, Oct. 1990.

[God96] P. Godefroid.Partial-Order Methods for the Verification of Concur-
rent Systems: An Approach to the State-Explosion Problem, volume
1032 ofLNCS. Springer Verlag, 1996.

[GW90] P. Godefroid and P. Wolper. Using partial orders to improve automatic
verification methods. InProc. of Workshop on Computer Aided Ver-
ification, 1990.

74

[HH95] T. A. Henzinger and P.-H. Ho. HyTech: The Cornell HYbrid TECH-
nology Tool. Proc. of Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, 1995. BRICS report series
NS–95–2.

[HP94] G. J. Holzmann and D. A. Peled. An improvement in formal verifica-
tion. In Proc. of the 7th International Conference on Formal Descrip-
tion Techniques, pages 197–211, 1994.

[LLPY97] F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. Efficient Verifica-
tion of Real-Time Systems: Compact Data Structures and State-Space
Reduction. InProc. of the 18th IEEE Real-Time Systems Symposium,
pages 14–24, December 1997.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. InProc. of the 16th IEEE
Real-Time Systems Symposium, pages 76–87, December 1995.

[Ove81] W. Overman.Verification of Concurrent Systems: Function and Tim-
ing. PhD thesis, UCLA, Aug. 1981.

[Pag96] F. Pagani. Partial orders and verification of real-time systems. In
Proc. of Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 1135 ofLNCS, pages 327–346. Springer Verlag, 1996.

[Pel93] D. Peled. All from one, one for all, on model-checking using repre-
sentatives. InProc. of 5th Int. Conf. on Computer Aided Verification,
volume 697 ofLNCS, pages 409–423. Springer Verlag, 1993.

[Val90] A. Valmari. Stubborn sets for reduced state space generation. InAd-
vances in Petri Nets, volume 483 ofLNCS, pages 491–515. Springer
Verlag, 1990.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. InProc. of
5th Int. Conf. on Computer Aided Verification, volume 697 ofLNCS,
pages 59–70, 1993.

[YPD94] W. Yi, P. Pettersson, and M. Daniels. Automatic Verification of Real-
Time Communicating Systems By Constraint-Solving. InProc. of
the 7th International Conference on Formal Description Techniques,
1994.

[YS97] T. Yoneda and H. Schlingloff. Efficient verification of parallel
real-time systems.Journal of Formal Methods in System Design,
11(2):187–215, 1997.

75

[YSSC93] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. M. Clarke. Ef-
ficient verification of parallel real-time systems. InProc. of 5th Int.
Conf. on Computer Aided Verification, volume 697 ofLNCS, pages
321–332. Springer Verlag, 1993.

76

Paper C:
Automated Analsysis of an Audio-Control Protocol usingUP-
PAAL

Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson and Wang Yi. In Proceedings, Ninth Interna-
tional Conference on Computer Aided Verification, volume 1102, Lecture Notes
in Computer Science, Springer Verlag, 1996

Automated Analsysis of an Audio-Control Protocol
using UPPAAL

Johan Bengtsson1 W. O. David Griffioen2 Kåre J. Kristoffersen3 Kim G. Larsen3

Fredrik Larsson1 Paul Pettersson1 Wang Yi1

1 Department of Computer Systems, Uppsala University, Sweden.
Email: {johanb,fredrikl,paupet,yi}@docs.uu.se .

2 CWI, Amsterdam, The Netherlands. Email:griffoe@cwi.nl .
3 BRICS, Aalborg University, Denmark. Email:{jelling,kgl}@cs.auc.dk .

Abstract. In this paper we present a case-study where the toolUPPAAL

is extended and applied to verify an Audio-Control Protocol developed by
Philips. The size of the protocol studied in this paper is significantly larger
than case studies, including various abstract versions verified of the same
protocol without bus collision handling, reported previously in the commu-
nity of real time verification. We have checked that the protocol will function
correctly if the timing error of its components is bound to±5%, and incor-
rectly if the error is±6%. In addition, usingUPPAAL’s ability of generat-
ing diagnostic traces, we have studied an erroneous version of the protocol
actually implemented by Philips in their audio products, and constructed a
possible execution sequence explaining a known error.

During the case-study,UPPAAL was extended with the notion ofcommitted
locations. It allows for accurate modelling of atomic behaviours, and more
importantly, it is utilised to guide the state-space exploration of the model
checker to avoid exploring unnecessary interleavings of independent transi-
tions. Our experimental results demonstrate truly time and space-savings of
the modified model checking algorithm. In fact, due to the huge time and
memory-requirement, it was impossible to check a simple reachability prop-
erty of the protocol before the introduction of committed locations, and now
it takes only seconds.

1 Introduction

During the last few years a number of tools for automatic verification of hybrid and
real-time systems have emerged, e.g.HYTECH [HHWT95], KRONOS [DY95],
Polka [HRP94], RT-Cospan [AK95] andUPPAAL [BLL +95]. These tools have by
now reached a state, where they are mature enough for industrial applications. We

79

hope to substantiate the claim by reporting on an industry-size case study where
the toolUPPAAL is applied.

We analyse an audio control protocol developed by Philips for the physical layer
of an interface bus connecting the various devices e.g. CD-players, amplifier etc.
in audio equipments. It uses Manchester encoding to transmit bit sequences of ar-
bitrary length between the components, whose timing errors are bound. A simpli-
fied version of the protocol is studied by Bosscher et.al. [BPV94]. It is showed that
the protocol is incorrect if the timing error of the components is± 1

17
or greater.

The proof is carried out without tool support. The first automatic analysis of the
protocol is reported in [HWT95] whereHYTECH is applied to check an abstract
version of the protocol and automatically synthesise the upper bound on the tim-
ing error. Similar versions of the protocol have been analysed by other tools, e.g.
UPPAAL [LPY95b] andKRONOS [DY95]. However, all the proofs are based on
a simplification on the protocol, introduced by Bosscheret.al. in 1994, that only
one sender is transmitting on the bus so that no bus collisions can occur. In many
applications the bus will have more than one sender, and the full version of the
protocol by Philips therefore handles bus collisions. The protocol with bus colli-
sion handling was manually verified in [Gri94] without tool support. Since 1994,
it had been a challenge for the verification tool developers to automate the analysis
on the full version of the protocol.

The first automated proof of the protocol with bus collision handling was pre-
sented in 1996 in the conference version of this paper [BGK+96]. It was the largest
case study, reported in the literature on verification of timed systems, which has
been considered as a primary example in the area (see [CW96, LSW97]). The
size of the protocol studied is significantly larger than various simplified versions
of the same protocol studied previously in the community, e.g. the node-space is
103 times larger than the case without bus collision handling and the number of
clocks, variables and channels is also increased considerably.

The major problem in applying automatic verification tools to industrial-size sys-
tems is the huge time and memory-usage needed to explore the state-space of a
network (or product) of timed automata, since the verification tools must keep in-
formation not only on the control structure of the automata but also on the clock
values specified by clock constraints. It is known as the state–space explosion
problem. We experienced the problem right on the first attempt in checking a sim-
ple reachability property of the protocol usingUPPAAL, which did not terminate
in hours though it was installed on a super computer with giga bytes of main mem-
ory. We observed that in addition to the size and complexity of the problem itself,
one of the main causes to the explosion was the inaccurate modelling of atomic
behaviours and inefficient search of the unnecessary interleavings of atomic be-

80

haviours by the tool. As a simple solution, during the case-study,UPPAAL was
extended with the notion ofcommitted locations. It allows for accurate modelling
of atomic behaviours, and more importantly, it is utilised to guide the state-space
exploration of the model checker to avoid exploring unnecessary interleavings
of independent transitions. Our experimental results demonstrate truly time and
space-savings of the modified model checking algorithm. In fact, due to the huge
time and memory-requirement, it was impossible to check certain properties of
the protocol before the introduction of committed locations, and now it takes only
seconds.

The automated analysis was originally carried out using anUPPAAL version ex-
tended with the notion of committed location installed on a super computer, a SGI
ONYX machine [BGK+96]. To make a comparison, we in this paper present an
application of the current version ofUPPAAL, also supporting committed location,
installed on an ordinary Pentium 150 MHz PC machine, to the protocol. We have
checked that the protocol will function correctly if the timing error of its com-
ponents is bound to±5%, and incorrectly if the error is±6%. In addition, using
UPPAAL’s ability of generating diagnostic traces, we have studied an erroneous
version of the protocol actually implemented by Philips in their audio products,
and constructed a possible execution sequence explaining a known error.

The paper is organised as follows: In the next two sections we present theUPPAAL

model with committed location and describe its implementation in the tool. In
section 4 and 5 the Philip Audio-Control Protocol with Bus Collision is informally
and formally described. The analysis of the protocol is presented in section 6
where we also compare the performance of the currentUPPAAL version with the
one used in [BGK+96]. Section 7 concludes the paper. Finally, formal descriptions
of the protocol components are enclosed in the appendix.

2 Committed Locations

The basis of theUPPAAL model for real-time systems is networks of timed au-
tomata extended with data variables [AD90, HNSY94, YPD94]. However, to meet
requirements arising from various case-studies, theUPPAAL model has been ex-
tended with various new features such as urgent transitions [BLL+95] etc. The
present case-study indicates that we need to further extend theUPPAAL model
with committed locationsto model behaviours such as atomic broadcasting in
real-time systems. Our experiences withUPPAAL show that the notion of com-
mitted locations introduced inUPPAAL is not only useful in modelling but also
yields significant improvements in performance.

81

m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!

m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!

m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1? m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1 R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11 R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3 R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12 R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22

R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1SSSSSSSSSSSSSSSSS

Figure 1: Broadcasting Communication and Committed Locations.

We assume that a real-time system consists of a fixed number of sequential pro-
cesses communicating with each other via channels. We further assume that each
communication synchronises two processes as in CCS [Mil89]. Broadcasting com-
munication can be implemented in such systems by repeatedly sending the same
message to all the receivers. To ensure atomicity of such “broadcast” sequences
we mark the intermediate locations of the sender, which are to be executed imme-
diately, as so-calledcommitted locations.

2.1 An Example

To introduce the notion of committed locations in timed automata, consider the
scenario shown in Figure 1. A senderS is to broadcast a messagem to two re-
ceiversR1 andR2. As this requires synchronisation betweenthreeprocesses this
can not directly be expressed in theUPPAAL model, where synchronisation is
between two processes with complementary actions. As an initial attempt we
may model the broadcast as a sequence of two two-process synchronisations,
where firstS synchronises withR1 on m1 and then withR2 on m2. However,
this is not an accurate model as the intended atomicity of the broadcast is not
preserved (i.e. other processes may interfere during the broadcast sequence). To
ensure atomicity, we mark the intermediate locationS2 of the senderS as acom-
mitted location(indicated by thec:-prefix). The atomicity of the action sequence
m1!m2! is now achieved by insisting that a committed sequence must be left im-
mediately! This behaviour is similar to what has been called “urgent transitions”
[HHWT95, DY95, BLL+95], which insists that the next transition taken must be
an action (and not a delay), but the essential difference is that no other actions

82

should be performed in between such an atomic sequence. The precise semantics
of committed locations will be formalised in the transition rules for networks of
timed automata with data variables in Section 2.3.

2.2 Syntax

We assume a finite set of clock variablesC ranged over byx, y, z and a finite
set of data variablesD ranged over byi, j. We useB(C) to stand for the set of
clock constraintsthat are the conjunctive formulas of simple constraints in the
form of x ≺ n or x − y ≺ n, where≺ ∈ {<,≤, =,≥, >} andn is a natural
number. Similarly, we useB(D) to stand for the set ofnon-clock constraintsthat
are conjunctive formulas ofi ∼ j or i ∼ k, where∼ ∈ {<,≤, =, 6=,≥, >} and
k is an integer number. We useB(C,D) ranged over byg to denote the set of
formulas that are conjunctions of clock constraints and a non-clock constraints.
The elements ofB(C,D) are calledconstraintsor guards.

To manipulate clock and data variables, we use reset-sets which are finite sets of
reset-operations. A reset-operation on a clock variable should be in the formx :=n
wheren is a natural number and a reset-operation on an data variable should be in
the form:i := k ∗ j + k′ wherek, k′ are integers. A reset-set is aproper reset-set
when the variables are assigned a value at most once, we useR to denote the set
of all proper reset-sets.

We assume that processes synchronise with each other via complementary ac-
tions. LetA be a set of action names with a subsetU of urgent actions on which
processes should synchronise whenever possible. We useAct = { α? | α ∈
A } ∪ { α! | α ∈ A } ∪ { τ } to denote the set of actions that processes can
perform to synchronise with each other, whereτ is a distinct symbol represent-
ing internal actions. We use name(a) to denote the action name ofa, defined by
name(α?) = name(α!) = α.

An automatonA over actionsAct, clock variablesC and data variablesD is a
tuple 〈N, l0,−→, I, NC〉 whereN is a finite set of locations (control-locations)
with a subsetNC ⊆ N being the set of committed locations,l0 is the initial
location,−→ ⊆ N × B(C,D) × Act× R × N corresponds to the set of edges,
andI : N 7→ B(C) is the invariant assignment function. To model urgency, we
require that the guard of an edge with an urgent action is a non-clock constraint,
i.e. if name(a)∈ U and〈l, g, a, r, l′〉 ∈ −→ theng ∈ B(D).

In the case,〈l, g, a, r, l′〉 ∈ −→ we shall writel
g a r−→ l′ which represents a transi-

tion from the locationl to the locationl′ with guardg, actiona to be performed,

83

and a sequence of reset-operationsr to update the variables. Furthermore, we shall
write C(l) wheneverl ∈ NC .

To model networks of processes, we introduce a CCS-like parallel composition
operator for automata. Assume thatA1, ..., An are automata. We useA to de-
note their parallel composition. The intuitive meaning ofA is similar to the CCS
parallel composition ofA1, ..., An with all actions being restricted, that is,A =
(A1|...|An)\Act. Thus only synchronisation between the componentsAi is possi-
ble. We callA a network of automata. We simply viewA as a vector and useAi

to denote itsith component.

2.3 Semantics

Informally, a process modelled by an automaton starts at locationl0 with all its
variables initialised to0. The values of the clocks may increase synchronously
with time at locationl as long as the invariant conditionI(l) is satisfied. At any
time, the process can change location by following an edgel

g a r−→ l′ provided the
current values of the variables satisfy the enabling conditiong. With this transi-
tion, the variables are updated byr.

To formalise the semantics we shall use variable assignments. Avariable assign-
mentis a mapping which maps clock variablesC to the non-negative reals and data
variablesD to integers. For a variable assignmentu and a delayd, u⊕d denotes
the variable assignment such that(u⊕d)(x) = u(x) + d for a clock variablex
and(u⊕d)(i) = u(i) for any data variablei. This definition of⊕ reflects that all
clocks proceed at the same speed and that data variables are time-insensitive.

For a reset-setr (a proper set of reset-operations), we user[u] to denote the
variable assignmentu′ with u′(w) = Value(e)u whenever(w := e) ∈ r and
u′(w′) = u(w′) otherwise, whereValue(e)u denotes the value ofe in u. Given
a constraintg ∈ B(C,D) and a variable assignmentu, g(u) is a boolean value
describing whetherg is satisfied byu or not.

A control vectorl of a networkA is a vector of locations whereli is a location of
Ai. We writel[l′i/li] to denote the vector where theith elementli of l is replaced
by l′i. Furthermore, we shall writeC(l) wheneverC(li) for somei.

A stateof a networkA is a configuration(l, u) wherel is a control vector ofA
andu is a variable assignment. The initial state ofA is (l0, u0) wherel0 is the
initial control vector whose elements are the initial locationsl0i of Ai’s andu0 is
the initial variable assignment that maps all variables to0.

84

Thesemantics of a networkof automataA is given in terms of a transition system
with the set of states being the configurations. The transition relation is defined
by the following three rules, which are standard except that each rule has been
augmented with conditions handling control-vectors with committed locations:

• (l, u) Ã (l[l′i/li], ri[u]) if li
gi τ ri−→ l′i andgi(u) for someli, gi, ri, and for allk

if C(lk) thenC(li).

• (l, u) Ã (l[l′i/li, l
′
j/lj], (rj ∪ ri)[u]) if li

gi α! ri−→ l′i, lj
gj α? rj−→ l′j, gi(u), gj(u),

andi 6= j, for someli, lj, gi, gj, α, ri, rj, and for allk if C(lk) thenC(i) or
C(j).

• (l, u) Ã (l, u⊕ d) if I(l)(u), I(l)(u ⊕ d), ¬C(l) and noli
giα?ri−→ , lj

gjα!rj−→
such thatgi(u), gj(u), α ∈ U , i 6= j, li, lj, ri andrj.

whereI(l) =
∧

i I(li).

Intuitively, the first rule describes a local internal action transition in a component,
and possibly the resetting of variables. An internal transition can occur if the cur-
rent variable assignment satisfies the transition guard and if the control-location
of any component is committed, only components in committed locations may
take local transitions. Thus, only internal transitions of components in committed
location may interrupt other components operating in committed locations.

The second rule describes synchronisation transitions that synchronise two com-
ponents. If the control-location of any of the components is committed it is re-
quired that at least one of the synchronising components starts in a committed lo-
cation. This requirement prevents transitions starting in non-committed locations
from interfering with atomic (i.e. committed) transition sequences. However, two
independent committed sequences may interfere with each other.

The third rule describes delay transitions, i.e. when all clocks increase synchronously
with time. Delay transitions are permitted only while the location invariants of all
components are satisfied. Delays are not permitted if the control-location of a
component in the network is committed, or if an urgent transition (i.e. a synchro-
nisation transition with urgent action) is possible. Note that the guards on urgent
transitions are non-clock constraints whose truth-values are not affected by delays.

Finally, we note that the three rules give a semantics where components operat-
ing in committed location are required to participate in the next transition, which
must be an action transition. Furthermore, transition sequences marked as com-
mitted areinstantaneousin the sense that they happen without duration, andnon-
interleaved(or indivisible) as they are never interfered by other components.

85

3 Committed Locations in UPPAAL

In this section we present a modified version of the model-checking algorithm of
UPPAAL for networks of automata with committed locations.

3.1 The Model-Checking Algorithm

The model-checking algorithm performs reachability analysis to check for invari-
ance properties∀¤β, and reachability properties∃♦β, with respect to a local prop-
erty β of the control locations and the values of the clock and data variables. It
combines constraint-solving techniques with on-the-fly generation of the state-
space in order to avoid explicit construction of the product automaton and the im-
mediately caused memory problems. The algorithm is based on a partitioning of
the (otherwise infinite) state-space into finitely many symbolic states of the form
(l, D), whereD is a constraint system (i.e. a conjunction of clock constraints and
non-clock constraints). It checks if a symbolic state(lf , Df) is reachable from the
initial symbolic state(l0, D0), whereD0 expresses that all clock and data variables
are initialised to0 [YPD94]. Throughout the rest of this paper we shall simply call
(l, D) a state instead of symbolic state.

The algorithm essentially performs a forwards search of the state-space. The search
is guided and pruned by two buffers:WAITING , holding states waiting to be ex-
plored andPASSED holding states already explored. Initially,PASSED is empty
andWAITING holds the single state(l0, D0). The algorithm then repeats the fol-
lowing steps:

S1. Pick a state(l, D) from theWAITING buffer.

S2. If l = lf andD ∧Df 6= ∅ return the answeryes.

S3. a. If l = l′ andD ⊆ D′, for some(l′, D′) in the PASSED buffer, drop
(l, D) and go to stepS1.

b. Otherwise, save(l, D) in thePASSEDbuffer.

S4. Find all successor states(ls, Ds) reachable from(l, D) in one step and store
them in theWAITING buffer.

S5. If the WAITING buffer is not empty then go to step S1, otherwise return the
answerno.

We will not treat the algorithm in detail here, but refer the reader to [YPD94,
BL96].

86

Note that in stepS3.b all explored states are stored in thePASSEDbuffer to ensure
termination of the algorithm. In many cases, it will store the whole state-space
of the analysed system which grows exponentially both in the number clocks
and components [YPD94]. The algorithm is therefore bound to run into space
problems for large systems. The key question is how to reduce the growth of the
PASSEDbuffer.

The use of committed location to model atomic behaviours render possible two
potential reductions of thePASSEDbuffer size. First, as atomic sequences in gen-
eral restrict the amount of interleaving that is allowed in a system [Hol91], the
state-space of the system is reduced, and consequently also the number of states
stored in thePASSED buffer. Secondly, as a sequence of committed locations se-
mantically is instantaneous and non-interleaved with other components, it suffices
to save only the control-location at the beginning of the sequence in thePASSED

buffer to ensure termination. Hence, our proposed solution is simplynot to save
states in thePASSED buffer which involvecommittedlocations. We modify step
S3 of the algorithm in the following way:

S3′. a. If C(l) go directly to stepS4.

b. If l = l′ andD ⊆ D′, for some(l′, D′) in the PASSED buffer, drop
(l, D) and go to stepS1.

c. If neither of the above steps are applicable, save(l, D) in thePASSED

buffer.

So, for a given state(l, D), if l is committed the algorithm proceeds directly from
stepS3′.a to stepS4, thereby omitting the time-consuming stepS3′.b and the
space-consuming stepS3′.c. Clearly, this will reduce the growth of thePASSED

buffer and the total amount of time spent on stepS3′. In the following stepS4
more reductions are made as interleavings are not allowed whenl is committed. In
fact, the next transition must be an action transition and it must involve allli which
are committed inl (according to the transition rules in the previous section). This
reduces the time spent on generating successor states of(l, D) in S4 as well as the
total number of states in the system. Finally, we note that reducing thePASSED

buffer size also yields potential time-savings in stepS3′.b whenl is notcommitted
as it involves a search through thePASSEDbuffer.

3.2 Space and Time Performance Improvements

To investigate the practical benefits from the usage of committed locations and its
implementation inUPPAAL we perform an experiment with a parameterizable sce-

87

Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2

k==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==n
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!

a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1

k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1

SSSSSSSSSSSSSSSSS

Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1

DjDjDjDjDjDjDjDjDjDjDjDjDjDjDjDjDj

i==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==k
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?

Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1

Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2

RiRiRiRiRiRiRiRiRiRiRiRiRiRiRiRiRi

Figure 2: Broadcasting Using Committed Locations.

nario, where a senderS wants to broadcast a message ton receiversR1, . . . , Rn.
The senderS simply performsn a!-transitions and then terminates, whereas the
receivers are all willing to perform a singlea?-transition hereby synchronizing
with the sender. The data variablek ensures that theith receiver participates in the
ith handshake. Additionally, there arem auxiliary automataD1, . . . , Dm simply
oscillating between two states. Consider Figure 2, where the control nodeS2 is
committed (indicated by thec:-prefix).

We may now useUPPAAL to verify that the sender succeeds in broadcasting the
message, i.e. it forces all the receivers to terminate. More precisely we verify
that SYSn,m = (Sn | R1 | . . . | Rn | D1 | . . . | Dm) satisfies the formula
∃♦(at(S,S3) ∧n

i=1 at(Ri,Ri2)), where we assume that the propositionat(A,l) is
implicitly assigned to each locationl of the automatonA, meaning that the compo-
nentA is operating in locationl. We perform two test sequences, withS2 declared
as respectively not committed and committed. The result is shown in Figure 3. In
both test sequences the number of disturbing automata was fixed to eight. Time
is measured in seconds and space is measured in pages (4KB). The general ob-
servation is that use of committed locations in broadcasting saves time as well as
space. The most important observation is that in the committed scenario the space
consumption behaves as a constant function in the number of receivers.

4 The Audio Control Protocol with Bus Collision

In this section an informal introduction to the audio protocol with bus collision is
given. The audio control protocol is a bus protocol, all messages are received by
all components on the bus. If a component receives a message not addressed to it,
the message is just ignored. Philips allows up to 10 components.

88

Receivers

T
im

e
(s

ec
.)

70

60

50

40

30

20

10

1 2 3 4 5

S2 not commited
S2 commited

360

350

340

330

320

310

300

S2 not commited
S2 commited

54321

380

370

Receivers

Sp
ac

e
(p

ag
es

)

Figure 3: Time and Space Consumption.

Messages are transmitted using Manchester encoding. Time is divided into bit-
slots of equal length, a bit “1” is transmitted by an up-going edge halfway a bit-
slot, a bit “0” by a down-going edge halfway a bit-slot. If the same bit is transmit-
ted twice in a row the voltage changes at the end of the first bit-slot. Note that only
a single wire is used to connect the components, no extra clock wire is needed.
This is one of the properties that makes it a nice protocol.

The protocol has to cope with some problems:(a) The sender and the receiver
must agree on the beginning of the first bit-slot,(b) the length of the message is
not known in advance by the receiver,(c) the down-going edges are not detected
by the receiver. To resolve these problems the following is required: Messages
must start with a bit “1” and messages must end with a down-going edge. This
ensures that the voltage on the wire is low between messages. Furthermore the
senders must respect a so-called “radio silence” between the end of a message and
the beginning of the next one. The radio silence marks the end of a message and
the receiver knows that the next up-going edge is the first edge of a new message.
It is almost possible to decode a Manchester encoded message by only looking to
the up-going messages (problemc) only the last zero bit of a message can not be
detected (consider messages “10” and “1”). To resolve this, it is required that all
messages are of odd length.

It is possible that two or more components start transmitting at the same time. The
behavior of the electric circuit is such that the voltage on the wire will be high
as long as one of the senders pulls it high. In other words: The wire implements
theor-function. This makes it possible for a sender to notice that someone else is
also transmitting. If the wire is high while it is transmitting a low, a sender can

89

6

?

6

?

6

?•
Figure 4: An Example.

detect a bus collision. This collision detection happens at certain points in time.
Just before each up-going transition, and at one and three quarters of a bit-slot
after a down going edge (if it is still transmitting a low). When a sender detects a
collision it will stop transmitting and will try to retransmit its message later.

If two messages are transmitted at the same time and one is a prefix of the other,
the receiver will not notice the prefix message. To ensure collision detection it
is not allowed that a message is a prefix of an other message in transit. In the
Philips environment this restriction is met by embedding the source address in
each message (and assigning each component a unique source address).

In Figure 4 an example is depicted. Assume two senders, named A and B, that start
transmitting at exactly the same time. Because two lines on top of each other is
hard to distinguish from one line, they are shifted slightly. The sender A (depicted
with thick lines) starts transmitting “11...” and sender B (depicted with thin lines)
“101...”. At the end of the first bit-slot sender A does a down, to prepare for the
next up-going edge. But one quarter after this down it detects a collision and stops
transmitting. Sender B did not notice the other sender and continues transmitting.
Note that the receiver will decode the message of the sender B correctly.

The protocol has to cope with one more thing: timing uncertainty. Because the
protocol is implemented on a processor that also has to execute a number of other
time critical tasks, a quite large timing uncertainty is allowed. A bit-slot is 888
microseconds, so the ideal time between two edges is 888 or 444 microseconds.
On the generation of edges a timing uncertainty of±5% is allowed. That is, be-
tween 844 and 932 for one bit-slot and between 422 and 466 for half a bit-slot.
The collision detection just before an up-going edge and the actual generation of
this up-going edge must be at most 20 microseconds. The timing uncertainty on
the collision detection on one and three quarters after the generation of a down-
going edge is±22 microseconds. Also the receiver has a timing uncertainty of
±5%. And, to complete the timing information, the distance between the end of
one message and the beginning of the next must be at least 8000 microseconds (8
milliseconds).

90

Add0

Add1

OUT

(Ax,Ad,Anext)

SenderA

(Bx,Bd,Bnext)

SenderB

Bhead0

Bhead1

Bempty

Ahead0

Ahead1

Aempty

(Volt,w)

(Volt,w)

UP,DOWN

UP,DOWN

VUP,(w)

(odd)

(r,l)

AINc,expect0,expect1,CAcoll,(as)

Wire Receiver

Check

Acoll

Bcoll

(ok)

(Bod,Blb,bs)

MessageB

(od,lb)

MessageA

Figure 5: Philips Audio-Control Protocol with Bus Collision.

5 A Formal Model of the Protocol

To analyse the behavior of the protocol we model the system as a network of
seven timed automata. The network consists of two parts: acore partand atesting
environment. The core part models the components of the protocol to be imple-
mented: two senders, a wire and a receiver. The testing environment, consisting
of two message generators and an output checker, is used to model assumptions
about the environment of the protocol and for testing the behavior of the core part.
Figure 5 shows a flow-graph of the network where nodes represent timed automata
and edges represent synchronisation channels or shared variables (enclosed within
parenthesis).

The general idea of the model is as follows. The two automataMessageA and
MessageB generate messages for the both senders, in additionMessageA in-
forms theCheck-automaton on the bits it generated forSenderA. The senders
transmit the messages via the wire to the receiver. The receiver communicates the
bits it decoded to the checker. Thus theCheck automaton is able to compare the
bits generated byMessageA and the bits received byReceiver. If this matches
the protocol is correct.

The senders A and B are, modulo renaming (all A’s in identifiers to B’s), ex-
actly the same. Because of this symmetry, it is enough to check that the messages
transmitted by sender A are received correctly. We will proceed with a short de-
scription of each automaton. The definition of these uses a number of constants
that are declared in Table 1 in Appendix A.

91

The Senders

SenderA is depicted in Figure 9. It takes input actionsAhead0?, Ahead1? and
Aempty?. The output actionsUP! andDOWN! will be the Manchester encod-
ing of the message. The clockAx is used to measure the time betweenUP! and
DOWN! actions. The idea behind the model (taken from [DY95]) is that the sender
changes location each half of a bit-slot. The locationsHS (wire isHigh in Second
half of the bit-slot) andHF (High in First half of the bit-slot) refer to this idea.
Extra locations are needed because of the collision detection.

The clockAd is used to measure the time elapsed between the detection just be-
fore UP! action and the correspondingUP! action. The system is in the locations
ar_Qfirst andar_Qlast when the next thing to do is the collision test at one or
three quarters of a bit-slot. WhenVolt is greater than zero, at that moment, the
sender detects a collision, stops transmitting and returns to theidle location. The
clock w is used to ensure the radio silence between messages. This variable is
checked on the transition fromidle to ar_first_up.

The Wire

This small automaton keeps track of the voltage on the wire and generatesVUP!
actions when appropriate, that is when aUP? action is received when the voltage
is low. The automaton is shown in Figure 10.

The Receiver

Receiver, shown in Figure 8, decodes the bit sequence using the up-going (mod-
eled asVUP?) changes of the wire. Decoded bits are signaled to the environment
using output actionsAdd0!, Add1! andOUT! (whereOUT! is used for signaling
the end of a decoded message). The decoding algorithm of the receiver is a direct
translation of the algorithm in the Philips documentation of the protocol. In the au-
tomaton eachVUP? transition is followed by a transition modeling the decoding.
This decoding happens at once, therefore the intermediate locations are modeled
as committed locations. The automaton has two important locations,L1 andL0.
When the last received bit is a bit “1” the receiver is in locationL1, after receiving
a bit “0” it will be in location L0. Theerror location is entered when aVUP? is
received much to early. In the complete model theerror location is not reachable,
see Section 6. The receiver keeps track of the parity of the received message using
the integer variableodd. When the last received bit is a bit “1” and the message is
even, a bit “0” is added to make the complete message of odd length.

92

The Message Generators

The message generatorsMessageA andMessageB, shown in Figure 11, gen-
erate messages of odd length for sender A and B respectively. Furthermore, the
messages generated for sender A are communicated to the checker. The start of
a message is signaled to the checker byAINc!, bits byexpect0! andexpect1!.
When a collision is detected by sender A this is communicated toMessageA via
Acoll?. The message generator will communicate this on his turn to the check
automaton viaCAcoll!.

Generating messages of odd length is quite simple. The only problem is that it is
not allowed that a message for one sender is a prefix of the message for the other
sender. To be more precise: If only one sender is transmitting there is no prefix
restriction. Only when the two senders start transmitting at the same time, it is not
allowed that one sender transmits a prefix of the message transmitted by the other.
As mentioned before the reason for this restriction is that the prefix message is
not received by the receiver and it is possible that the senders do not notice the
collision. In other words: the prefix message can be lost.

The Checker

This automaton is shown in Figure 7. It keeps track of the bits “in transit”, i.e.
the bits that are generated by the message generators but not yet decoded by the
receiver. Whenever a bit is decoded or the end of the message is detected not
conform the generated message the checker enters locationerror. Furthermore,
when sender A detects a collision the checker returns to its initial location.

6 Verification in UPPAAL

In this section we present the results of analysing the protocol formally described
in the previous section. We will useA.l to denote the (implicit) propositionat(A, l)
introduced in Section 3.2. Also, note that invariance properties inUPPAAL are on
the form∀¤β, whereβ is a local property.

Correctness Criteria

The main correctness criterion of the protocol is to ensure that the bit sequence
received by theReceiver matches the bit sequence sent bySenderA. Moreover,

93

the entire bit sequence should be received byReceiver (and communicated to
Check). From the description of theCheck-automaton (see the previous section)
it follows that this behaviour is ensured ifCheck is always operating in location
start or normal:

∀¤ (Check.start ∨ Check.normal) (C.1)

When theReceiver-automaton observes changes of the wire too early it changes
control to locationerror. If the rest of the components behave normally this should
not happen. Therefore, theReceiver-automaton is required to never reach the
locationerror:

∀¤(¬Receiver.error) (C.2)

Incorrectness

Unfortunately the protocol described in this paper is not the protocol that Philips
has implemented. The original sender checked less often for a bus collision. The
“just before the up going edge” collision detection was only performed before the
first up. In theUPPAAL model this comes down to deleting outgoing transitions of
ar_Qlast_ok and using the outgoing transitions ofar_up_ok instead. This incor-
rect version is shown in Figure 12. In general the problem is that if both senders
are transmitting and one is slow and the other fast, the distance can cumulate to
a high value that can confuse the receiver.UPPAAL generated a counterexample
trace to Property C.1. The trace is depicted in Figure 6. The scenario is as fol-
lows: Sender A (depicted with thick lines) tries to transmit “111...” and sender B
(depicted with thin lines) “1100...”. The sender A is fast and the other slow. This
makes that the distance between the secondUP’s is quite big (77 microseconds).
In the third bit-slot the sender A detects the collision. The result of all this is that
the time elapsed between theVUP actions is 6.65Q instead of the ideal 6Q. And
because of the timing uncertainty in the receiver this can be interpreted as 7Q
(7 ∗ 0.95 = 6.65). And 7Q is just enough to decode “01” instead of the trans-
mitted “0”. In the correct version this scenario is impossible, because if collision
detection happens beforeeveryUP action, the distance between theUP’s in the
second bit-slot can not be that high (at most 20 microseconds).

It is not likely that these kind of errors happen in the actual implementation. This is
prevented by, among others, the following: It is not likely that two senders do start
at (roughly) the same time. The timing uncertainty is at most 2% instead of 5%.
And the “average” timing uncertainty is even less. And finally, the source address
is in the beginning of the messages, this makes the senders detect the collision.
See [Gri94] for more details.

94

6

?

6

? •

6

?

6

?

6

first bitslot ideal distance = 6Q
actual distance = 6.65Q

Figure 6: Error execution of the incorrect protocol.

Although this problem was know by Philips it is interesting to see how powerful
the diagnostic traces can be. It enables us not only to find mistakes in themodel
of a protocol, but also to find design mistakes in real life protocols.

Verification Results

UPPAAL successfully verifies the correctness properties C.1 and C.2 for an error
tolerance of 5% on the timing. Recall thatSenderA andSenderB are, modulo
renaming, exactly the same, implying that the verified properties forSenderA
also applies to the symmetric case forSenderB. The verification of Property C.1
and C.2 was performed in 12.75 sec using 2.1 MB of memory.

The analysis of the incorrect version of the protocol with less collision detection
(discussed above) usesUPPAAL’s ability to generate diagnostic traces whenever
an invariant property is not satisfied by the system. The trace, consisting of 46
transitions, was generated in 4.5 sec using 1.8 MB of memory. Also, attempts to
verify Property C.1 for the full protocol with an error tolerance of 6% on the tim-
ing failed. The scenario is similar to the one found by Bosscher et.al. in [BPV94]
for the one sender protocol.

The properties were verified usingUPPAAL version 2.17 [LPY97a, BLL+98] that
implements the verification algorithm for handling committed locations described
in Section 3. It was installed on a Pentium 150 MHz MMX running Red Hat
Linux 5.0. In the conference version of this paper [BGK+96] we reported that
the same protocol was verified usingUPPAAL version 0.961 installed on a SGI
ONYX machine. The verification of the two correctness properties then consumed
7.5 hrs using 527.4 MB and 1.32 hrs using 227.9 MB, whereas a diagnostic trace
for the incorrect version was generated in 13.0 min using 290.4 MB of memory.
Hence, both the time- and space-consumption of the verifier have been reduced

1The twoUPPAAL versions 0.96 and 2.17 are dated Nov 1995 and March 1997 respectively.

95

with over 99%. These improvements of theUPPAAL verifier are due to a number
of developments in the last two years that will not be discussed further here, but
we refer the reader to [LPY97b, BLL+98].

7 Conclusions

In this paper we have presented a case-study where the verification toolUPPAAL

is applied to analyse a realistic audio-control protocol by Philips with bus colli-
sion handling. The protocol has received a lot of attention in the formal methods
research community (see e.g. [LSW97, CW96]) and simplified versions of the
protocol without the handling of bus collisions have previously been analysed by
several research teams, with and without support from automatic tools. To our
knowledge, the full protocol considered in this paper has never before been auto-
matically analysed.

As verification results we have shown that the protocol behaves correctly if the
error on all timing is bound to±5%, and incorrectly if the error is±6%. Further-
more, usingUPPAAL’s ability to generate diagnostic traces we have been able to
study error scenarios in an incorrect version of the protocol actually implemented
by Philips.

In this paper we have also introduced the notion of so-called committed locations
which allows for accurate modelling of atomic behaviours. More importantly, it
is also utilised to guide the state-space exploration of the model checker to avoid
exploring unnecessary interleavings of independent transitions. Our experimental
results demonstrate truly time and space-savings of the modified model checking
algorithm. In fact, due to the huge time and memory-requirement, it was impossi-
ble to check certain properties of the protocol before the introduction of committed
locations, and now it takes only seconds.

References

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. InProc.
of ICALP’90, LNCS 443, 1990.

[AK95] Rajeev Alur and Robert P. Kurshan. Timing Analysis in COSPAN. In Ra-
jeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors,Proc. of
Workshop on Verification and Control of Hybrid Systems III, number 1066
in LNCS, Springer Verlag, pages 220–231. Springer–Verlag, October 1995.

96

[BGK+96] Johan Bengtsson, David Griffioen, Kåre Kristoffersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of an Audio
Protocol with Bus Collision UsingUPPAAL. Accepted for presentation at
the 8th Int. Conf. on Computer Aided Verification, 1996.

[BL96] Johan Bengtsson and Fredrik Larsson.UPPAAL a Tool for Automatic Veri-
fication of Real-time Systems. Master’s thesis, Uppsala University, 1996.

[BLL +95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL— a Tool Suite for Automatic Verification of Real–Time
Systems. InProc. of the 4th DIMACS Workshop on Verification and Control
of Hybrid Systems, 1995. To appear in LNCS, 1996.

[BLL +98] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang
Yi, and Carsten Weise. New Generation ofUPPAAL. In Int. Workshop on
Software Tools for Technology Transfer, June 1998.

[BPV94] D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Verification of an Audio-
Control Protocol. InProc. of FTRTFT’94, LNCS 863, pages 170–192, 1994.

[CW96] Edmund M. Clarke and Jeanette M. Wing. Formal Methods: State of the Art
and Future Directions.ACM Computing Surveys, 28(4):626–643, December
1996.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed
automata withKRONOS. In Proc. of the 16th IEEE Real-Time Systems Sym-
posium, pages 66–75, December 1995.

[Gri94] W.O.D. Griffioen. Analysis of an Audio Control Protocol with Bus Collision.
Master’s thesis, University of Amsterdam, Programming Research Group,
1994.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.HYTECH: The
Next Generation. InProc. of the 16th IEEE Real-Time Systems Symposium,
pages 56–65, December 1995.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic Model Checking for Real-Time Systems.Information and Com-
putation, 111(2):193–244, 1994.

[Hol91] Gerard Holzmann.The Design and Validation of Computer Protocols. Pren-
tice Hall, 1991.

[HRP94] N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid
systems by means of convex approximations. InStatic Analysis Symposium,
LNCS 864, pages 223–237, 1994.

97

[HWT95] Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio Con-
trol Protocol. InProc. of CAV’95, LNCS 939, 1995.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking
for Real-Time Systems. InProc. of the 4th DIMACS Workshop on Verifica-
tion and Control of Hybrid Systems, 1995. To appear in LNCS, 1996.

[LPY97a] Kim G. Larsen, Paul Pettersson, and Wang Yi.UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, Octo-
ber 1997.

[LPY97b] Kim G. Larsen, Paul Pettersson, and Wang Yi.UPPAAL: Status and De-
velopments. In Orna Grumberg, editor,Proc. 9th Int. Conf. on Computer
Aided Verification, number 1254 in LNCS, Springer Verlag, pages 456–459.
Springer–Verlag, June 1997.

[LSW97] Kim G. Larsen, Bernard Steffen, and Carsten Weise. Continuous modeling
of real-time and hybrid systems: from concepts to tools.Int. Journal on
Software Tools for Technology Transfer, 1(1–2):64–85, December 1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, Englewood
Cliffs, 1989.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-
Time Communicating Systems By Constraint-Solving. InProc. of the 7th
International Conference on Formal Description Techniques, 1994.

A The System Description

98

checkcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheck

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

aaaaaaaaaaaaaaaaa

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?
r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1

Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1

OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2
l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1
l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0
l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3

AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2

OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2

Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0

Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0

Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1

Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0

Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2

Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1

expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?
r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?
r:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*r
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

Figure 7: The Check Automaton.

99

The constants used in the formulas
q 2220 One quarter of a bit-slot: 222 micro sec
d 200 Detection ’just before’ the UP:

20 micro sec
g 220 ’Around’ 25% and 75% of the bit-slot:

22 micro sec
w 80000 The radio silence: 8 milli sec
t 0.05 The timing uncertainty: 5%
The constants in the automata
W w 80000
D d 200
A1min q-g 2000
A1max q+g 2440
A2min 3*q-g 6440
A2max 3*q+g 6880
Q2 2*q 4440
Q2minD 2*q*(1-t)-d 4018
Q2min 2*q*(1-t) 4218
Q2max 2*q*(1+t) 4662
Q3min 3*q*(1-t) 6327
Q3max 3*q*(1+t) 6993
Q5min 5*q*(1-t) 10545
Q5max 5*q*(1+t) 11655
Q7min 7*q*(1-t) 14763
Q7max 7*q*(1+t) 16317
Q9min 9*q*(1-t) 18981
Q9max 9*q*(1+t) 20979

Table 1: Declaration of Constants.

100

receiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiver

c:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:b

c:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:a

L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0
(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)

c:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:e

c:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:c

L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1
(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

c:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:d

Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!
odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1

OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!

w>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3min
w<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7max
Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!

w>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5min
w<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	w<=Q3max	
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!

Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!
odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1

w>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9max
odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!

w>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7min
w<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9max
odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1

w>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5min
w<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3min
w<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?
w<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3max

VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?
odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0

Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!

Figure 8: The Receiver Automaton.

101

senderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderA

ar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlast
(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)

c:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LS

do_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_down
(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)

ar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_ok
(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)

c:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:ready
HFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)HSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHS

(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_ok
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

ar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_up
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle ar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirst
(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ax>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minD
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ax>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minD
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0
Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0

Ad>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2max
Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!

Ad>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2min
Ad<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0
DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0
UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D
 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1
 UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?
w>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=W
Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0

 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1
 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0

Ad>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1min
Ad<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ad>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1max
Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!

Figure 9: The SenderA Automaton.

102

wirewirewirewirewirewirewirewirewirewirewirewirewirewirewirewirewire

aaaaaaaaaaaaaaaaa

c:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:b

UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?
Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1
Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1

DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?
Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1

UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!
Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

Figure 10: The Wire Automaton.

103

messageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageA

messageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageB

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle sendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsending

c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0

c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1

c:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:coll

c:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:a

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle sendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsending

c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0

c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1

Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!
as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1
od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1

od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1
lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!

od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1
lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!

Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?

Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1
od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1

od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,
expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1

od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!
lb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blb

od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!

od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,
expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1

Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!
lb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blb

od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!

CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!
as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0
lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1

AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!
ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0

Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!
bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0

Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1
Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0

Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1
Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1

Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1
Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1

Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?
bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1

Bod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=Blb
ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1

Bod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==Blb

Bod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=od

Bod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=Blb
ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1

Bod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==Blb

Bod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=od

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart
lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1

Figure 11: The Message Automata.

104

senderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderA

ar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlast
(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)

c:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LS
do_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_down
(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)

c:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:ready
HFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

HSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHS
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_ok
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

ar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_up
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle ar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirst
(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0
UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1
 UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ad>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2min

Ad<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2max
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ad>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2min
Ad<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0
DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ad <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= D
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ad <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= D
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?
w>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=W
Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0

 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1
 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0

Ad>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1min
Ad<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ad>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1min
Ad<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1max
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Figure 12: The Incorrect SenderA Automaton.

105

Paper D:
UPPAAL — a Tool Suite for Automatic Verification of Real-Time
Systems

Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. In
Proceedings, Hybrid Systems III: Verification and Control, volume 1066, Lecture
Notes in Computer Science, Springer Verlag, 1995

UPPAAL — a Tool Suite for
Automatic Verification of Real–Time Systems?

Johan Bengtsson2 Kim Larsen1

Fredrik Larsson2 Paul Pettersson2 Wang Yi??2

1 BRICS? ? ? , Aalborg University, DENMARK
2 Department of Computer Systems, Uppsala University, SWEDEN

Abstract. UPPAAL is a tool suite for automatic verification of safety and
bounded liveness properties of real-time systems modeled as networks of
timed automata. It includes: agraphical interfacethat supports graphical
and textual representations of networks of timed automata, and automatic
transformation from graphical representations to textual format, acompiler
that transforms a certain class of linear hybrid systems to networks of timed
automata, and amodel-checkerwhich is implemented based on constraint–
solving techniques.UPPAAL also supports diagnostic model-checking pro-
viding diagnostic information in case verification of a particular real-time
systems fails.

The current version ofUPPAAL is available on the World Wide Web via the
UPPAAL home pagehttp://www.docs.uu.se/docs/rtmv/uppaal .

1 Introduction

UPPAAL is a new tool suite for automatic verification of safety and bounded live-
ness properties of networks of timed automata [YPD94, LPY95c, LPY95a]. The
tool was developed during the spring of 1995 as the result of intense research col-
laboration between BRICS at Aalborg University and Department of Computing
Systems at Uppsala University. The two main design critea forUPPAAL has been
efficiencyandease of usage.

The current version ofUPPAAL, as well as its future extensions, is implemented in
C++. Model–checking is often hampered by various state–explosion problems.

?This work has been supported by the European Communieties (under CONCUR2 and RE-
ACT), NUTEK (Swedish Board for Technical Development) and TFR (Swedish Technical Re-
search Council)

??This author would also like to thank the Chinese NSF and the Hong Kong Wang’s Foundation
for supporting a visit to the Institute of Software, Chinese Academy of Sciences, in 1995.
? ? ?BasicResearch inComputerScience, Centre of the Danish National Research Foundation.

109

.q

.atg verifytachecktaatg2ta

.ta

‘‘no’’

‘‘yes’’

hs2ta

UPPAAL

diagnostic
trace

Figure 1: Overview ofUPPAAL

In UPPAAL thes problems are dealt with by a combination of on–the–fly verifica-
tion together with a new and coarser symbolic technique reducing the verification
problem to that of solving simple linear constraint systems. The features and tools
of UPPAAL includes:

• A graphical interface based on Autograph.

• An automatic compilation of the graphical definition into a textual format.

• Analysis of certain types of hybrid automata by compilation into ordinary
timed automata. In particularUPPAAL allows automata with varying and
drifting time–speed of clocks.

• A number of simple, but in practice extremely useful syntactical checks are
made before verification can commence.

• Generation of diagnostic traces in case verification of a particular real–time
system fails.

In this paper we present the various features ofUPPAAL, review and provide point-
ers to the theoretical foundation as well as applications to various case–studies.

2 An Overview of UPPAAL

UPPAAL consists of a suite of tools for verifying safety properties of real-time
system. An overview of the system is shown in Figure 1. In this section we briefly
describe the main features ofUPPAAL.

110

id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0
x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0

x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1x1 <= 1
x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0x1 := 0
id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1id := 1

x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2x1 >= 2
id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1id == 1

x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2x2 >= 2
id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2id == 2

x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1x2 <= 1
x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0
id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id := 2id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0id == 0

x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0x2 := 0

aaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc cscscscscscscscscscscscscscscscscs

cscscscscscscscscscscscscscscscscscccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig
// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson// 1995-05-17 - Johan Bengtsson
//////////////////////////////////
// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol// A simplified version of Fischers protocol
// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.// for mutual exclusion.
clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;clock x1, x2;
int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;int id;
system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;system P1, P2;

P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2

P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

Figure 2: Graphical Description of Fischers Mutual Exclusion Protocol

2.1 Graphical Description of Networks of Timed Automata

It is possible to draw networks of timed automata using Autograph, given that
certain syntactical rules are followed, e.g. the different automata in the network
must be enclosed in boxes with the name of the process in the structural label,
there must be a textual box describing the system configuration, i.e. declaration of
clocks, channels and auxiliary integer variables. To be able to import system de-
scriptions, drawn with help of Autograph, intoUPPAAL the system must be saved
in the Autograph.atg -format. In Figure 2 the Autograph version of Fischers
Protocol [AL93, Sha93] is shown.

2.2 Textual Description of Networks of Timed Automata

In addition,UPPAAL allows networks of timed automata to be described using a
textual format (called.ta) providing a basicprogramming language for timed
automata. In certain cases we found this textual format more convenient (and
faster) to work with than the graphical interface. The compileratg2ta automat-
ically transforms system description in the graphical.atg –format into the tex-
tual .ta –format, thus supporting the important principle WYSIWYV1. Figure 3
shows the resulting.ta –format for Fischers Protocol from Figure 2.

2.3 Linear Hybrid Systems

Under certain conditions, the model of timed automata may be generalized to
allow clocks with rates varying between a lower and an upper bound, and to allow

1What You See Is What You Verify.

111

//
// Declarations
//
clock x1, x2;
int id;

//
// Processes
//
process P1 {

state a, b, c, cs;
init a;
trans a -> b {

guard id == 0;
assign x1 := 0;

},
b -> c {

guard x1 <= 1;
assign x1 := 0, id := 1;

},
c -> cs {

guard x1 >= 2, id == 1;
};

}

//
// System Configuration
//
system P1,P2;

process P2 {
state cs,c,b,a;
init a;
trans c -> cs {

guard x2 >= 2, id == 2;
},
b -> c {

guard x2 <= 1;
as-

sign x2 := 0, id := 2;
},
a -> b {

guard id == 0;
assign x2 := 0;

};
}

Figure 3: Textual Description of Fischers Mutual Exclusion Protocol

112

clock rates to change between different control-nodes (vertices) [OSY94]. This
extension of timed automata is useful for modelling of hybrid systems where the
behaviour of the system variables can be described or approximated using lower
and upper bounds on their rates. Using abstraction techniques, this class of linear
hybrid system can be transformed into timed automata and thus be verified using
the techniques available for timed automata, implemented inUPPAAL. UPPAAL

allows linear hybrid automata where the speed of clocks is given by an interval.
Hybrid automata of this form may be transformed into ordinary timed automata
using the translatorhs2ta . Philips Audio-Control Protocol of [BPV93] is one
such linear hybrid system and for its Autograph version is shown in Figure 5.

2.4 Syntactical Checks

Given a textual description of a timed automata in the.ta -format the program
checkta performs a number of syntactical checks. In particular the use of clocks,
auxiliary integer variables and channels must be in accordance with their declara-
tion, e.g. attempted synchronization on an undeclared channel will be captured by
checkta .

2.5 Model–Checking

In the current versionUPPAAL is able to check for reachability properties, in par-
ticular whether certain combinations of control-nodes and constraints on clocks
and integer variables are reachable from an initial configuration. The desired mu-
tual exclusion property of Fischers protocol (Figure 2 and Figure 3) falls into
this class. Bounded liveness properties can be obtained by reasoning about the
system in the context of testing automata. The model-checking is performed by
the moduleverifyta which takes as input a network of timed automata in the
.ta -format and a formula.verifyta can also be used interactively. In case
verification of a particular real-time system fails (which happens more often than
not), adiagnostic traceis automatically reported byverifyta [LPY95b]. Such
a trace may be considered as diagnostic information of the error, useful during the
subsequent debugging of the system. This principle could be called WYDVYAE2.

2What You Don’t Verify You Are Explained.

113

3 The UPPAAL Model

In this section, we present the syntax and semantics of the model used inUPPAAL

to model real–time systems. The emphasis will be put on the precise semantics
of the model. For convenience, we shall use a slightly different syntax compared
with UPPAAL’s user interface.

We assume that a typical real–time system is a network of non–deterministic se-
quential processes communicating with each other over channels. InUPPAAL, we
use finite–state automata extended with clock and data variables to describe pro-
cesses and networks of such automata to describe real–time systems.

3.1 Syntax

Alur and Dill developed the theory of timed automata [AD90], as an extension
of classical finite–state automata with clock variables. To have a more expressive
model and to ease the modelling task, we further extend timed automata with more
general types of data variables such as boolean and integer variables. Our final
goal is to develop a modelling (or design) language which is as close as possible
to a high–level real–time programming language. Clearly this will create problems
for decidability. However, we can always require that the value domains of the data
variables should be finite in order to guarantee the termination of a verification
procedure. The current implementation ofUPPAAL allows integer variables in
addition to clock variables.

In a finite–state automaton, a transition takes the forms
αÃ s′ meaning that the

process modelled by the automaton will perform anα–transition in states and
reach states′ in doing so. Note that there is no condition on the transition. Alur

and Dill [AD90] extend the untimed transition to the timed version:s
g,a,φ−→ s′

whereg is a simple linear constraint over the clock variables andφ is a set of

clocks to be reset to zero. Intuitively,s
g,a,φ−→ s′ means that a process in control

nodes may perform theα-transition instantaneously wheng is true of the current
clock values and then reach control nodes′ with the clocks inφ being reset. The
constraintg is called aguard. In UPPAAL, we allow a more general form of guard
that can also be a constraint over data variables, and extend the reset–operation on
clocks in timed automata to data variables.

Now assume a finite set of clock variablesC ranged over byx, y, z etc and a finite
set of data variablesD ranged over byi, j, k etc.

114

Guard over Clock and Data Variables

We useG(C,D) to stand for the set of formulas ranged over byg, generated by
the following syntax:g ::= a | g ∧ g, wherea is a constraint in the form:x ∼ n
or i ∼ n for x ∈ C, i ∈ D,∼∈ {≤,≥, =} andn being a natural number. We shall
callG(C,D) guards. Note that a guard can be divided into two parts: a conjunction
of constraintsgc’s in the formx ∼ n over clock variables and a conjunction of
constraintsgv’s in the formi ∼ n over data variables. We shall usett to stand for
a guard likex ≥ 0 which is always true, for a clock variablex as clocks can only
have non-negative values. InUPPAAL’s representation of automata, the guardtt is
often omitted.

Reset–Operations

To manipulate clock and data variables, we use reset–set in the form:~w := ~e
which is a set of assignment–operations in the formw := e wherew is a clock
or data variable ande is an expression. We useR to denote the set of all possible
reset–operations.

The current version ofUPPAAL distinguishes clock variables and data variables:
a reset–operation on a clock variable should be in the formx := n wheren is a
natural number and a reset–operation on an integer variable should be in the form:
i := k ∗ i + k′ wherek, k′ are integer constants. Note thatk, k′ can be negative.

Channel, Urgent Channel and Syncronization

We assume that processes synchronize with each other via channels. LetA be a
set of channel names and out ofA, there is a subsetU of urgent channels on which
processes should synchronize that whenever possible. We usect = {α?|α ∈ A}∪
{α!|α ∈ A} to denote the set of actions that processes can perform to synchronize
with each other. We use name(a) to denote the channel name ofa, defined by
name(α?) = name(α!) = α.

Automata with clock and data variables

Now we present an extended version of timed automata with data variables and
reset–operations.

115

Definition 7 An automatonA over actionsct, clock variablesC and data variables
D is a tuple〈N, l0,−→〉 whereN is a finite set of nodes (control-nodes),l0 is the
initial node, and−→⊆ N×G(C,D)×ct×2R×N corresponds to the set of edges.
To model urgency, we require that the guard of an edge with an urgent action
should always bett, i.e. if name(a) ∈ U and〈l, g, a, r, l′〉 ∈−→ theng ≡ tt. In
the case,〈l, g, a, r, l′〉 ∈−→ we shall write,l

g,a,r−→ l′ which represents a transition
from the nodel to the nodel′ with guardg (also called the enabling condition of
the edge), actiona to be performed and a set of reset–operationsr to update the
variables. ¤

Concurrency and Synchronization

To model networks of processes, we introduce a CCS–like parallel composition
operator for automata. Assume thatA1...An are automata with clocks and data
variables. We useA to denote their parallel composition. The intuitive meaning
of A is similar to the CCS parallel composition ofA1...An with all actions being
restricted, that is,

(A1|...|An)\A

Thus only synchronization between the componentsAi is possible. We shall call
A a network of automata. We simply viewA as a vector and useAi to denote its
ith component.

3.2 Semantics

Informally, a process modelled by an automaton starts at nodel0 with all its clocks
initialized to0. The values of the clocks increase synchronously with time at node
l. At any time, the process can change node by following an edgel

g,a,r−→ l′ pro-
vided the current values of the clocks satisfy the enabling conditiong. With this
transition, the variables are updated byr.

Variable Assignment

Now, we introduce the notion of avariable assignment. A variable assignment
is a mapping which maps clock variablesC to the non-negative reals and data
variablesD to integers. For a variable assignmentu and a delayd, v⊕d denotes
the variable assignement such that(v⊕d)(x) = v(x) + d for any clock variablex

116

and(v⊕d)(i) = v(i) for any integer variablei. This definition of⊕ reflects that all
clocks operate with the same speed and that data variables are time–insensitive.
For a reset-operationr (a set of assignment–operations), we user(u) to denote
the variable assignmentu′ with u′(w) = V (e, u) wheneverw := e ∈ r and
u′(w′) = u(w′) otherwise, whereV (e, u) denotes the value ofe in u. Given a
guardg ∈ G(C,D) and a variable assignmentu, g(u) is a boolean value describing
whetherg is satisfied byu or not.

Control Vector and Configuration

A control vectorl of a networkA is a vector of nodes whereli is a node ofAi. We
shall writel[l′i/li] to denote the vector where theith elementli of l is replaced by
l′i.

A stateof a networkA is a configuration〈l, u〉 wherel is a control vector ofA and
u is a variable assignment. The initial state ofA is 〈l0, u0〉 wherel0 is the initial
control vector whose elements are the initial nodes ofAi’s andu0 is the initial
variables assignment that maps all variables to0.

Maximal Delay

To model progress properties, we need a notion of maximal delay. Let〈l, u〉 be
a configuration of an automatonA. Note thatA in locationl may have a number
of outgoing transitions with guards. The process modelled byA in state〈l, u〉
may have to wait for the guards to become true, which enables the transitions.
However, we do not want the process to stay forever in the same control–node,
i.e. l; in other words, some discrete transition must be taken within a certain time
bound. We require that the bound should be the maximal delay before all the
guards are completely closed, that is, they will never become true again. This is
formalized as follows:

Definition 8 (Maximal Delay for Automata)

MD(l, u) = max{d | l g,a,r−→ l′ andg(u⊕ d)} ¤

Note thatmax{} = 0. This will be the case when all the guards for outgoing tran-
sitions inl have already been closed in state〈l, u〉 or in other words, the process
reaches a time–stop process, which means thatA is physically unrealizable. Now
we extend the notion of maximal delay to networks of automata, which insures
that synchronization on urgent channels happens immediately.

117

Definition 9 (Maximal Delay for Networks of Automata)

MD(l, u) =

{
0 if ∃α ∈ U , li, lj ∈ l : li

α?,ri−→ & lj
α!,rj−→

min{MD(l, u) | l ∈ l} otherwise

¤

Transition Rules

The semantics of a network of automataA is given in terms of a transition system
with the set of states being the set of configurations and the transition relation
defined as follows:

Definition 10 (Transition Rules for Networks of Automata)

• 〈l, u〉Ã τ〈l[l′i/li, l′j/lj], (ri ∪ rj)(u)〉 if there existli, lj ∈ l, gi, gj, α, ri and

rj such thatli
gi,α!,ri−→ l′i, lj

gj ,α?,rj−→ l′j, gi(u) andgj(u).

• 〈l, u〉Ã τ〈l, u⊕ d〉 if d ≤ MD(l, u) ¤

4 The UPPAAL Model–Checker

In the current version,UPPAAL is able to check for reachability properties, in
particular whether certain combinations of control–nodes and constraints on clock
and data variables are reachable from an initial configuration.

Logic

The properties that can be analysed are of the forms:

ϕ ::= INVβ | Possβ β ::= a | β1 ∧ β2 | ¬β

Wherea is an atomic formula being either an atomic clock (or data) constraint (c)
or a component location (Aiatl). Atomic clock (data) constraints are either integer
bounds on individual clock (data) variables (e.g.1 ≤ x ≤ 5) or integer bounds on
differences of two clock (data) variables (e.g.3 ≤ x− y ≤ 7).

Intuitively, for INVβ to be satisfied all reachable states must satisfyβ. Dually, for
Possβ to be satisfied some reachable state must satisfyβ. Formally letÃ de-
note the transitive closure of the delay– and action–transition relations between

118

network configurations. Then the satisfaction relation|= between network config-
urations and formulas are defined as follows:

(l, v) |= Possβ ⇐⇒ ∃(l′, v′).(l, v) Ã (l′, v′) ∧ (l′, v′) |= β

(l, v) |= INVβ ⇐⇒ ∀(l′, v′).(l, v) Ã (l′, v′)⇒(l′, v′) |= β

Satisfaction with respect to a boolean combinationβ of atomic formulas is defined
inductively on the structure ofβ (behaving as usual with respect to the boolean
connectives). Satisfaction with respect to an atomic formula is given by the fol-
lowing definitions:

(l, v) |= c ⇔ v ∈ c

(l, v) |= Aiatl ⇔ li = l

Our (simple and efficient) model–checking technique extends to the logic pre-
sented in [LPY95b], which also allows for bounded liveness properties to be spec-
ified. Currently, bounded liveness properties are obtained by reachability analysis
of the system in the context of testing (and time–sensitive) automata. We conjec-
ture that all bounded liveness properties of the logic in [LPY95b] can be translated
into reachability problems in this manner.

Model Checking

The model–checking procedure implemented inUPPAAL is based on an interpre-
tation using a finite–state symbolic semantics of networks. More precisely, we
interpret the logic with respect to symbolic network configurations of the form
[l, D], whereD a constraint system (i.e. a conjunction of atomic clock and data
constraints) andl a control–vector. Some of the rules defining this symbolic inter-
pretation is given in Table 1.

To read the rules of Table 1 some notation needs to be explained. ForD a con-
straint system andr a set of variables (to be reset)r(D) denotes the set of variable
assignments{r(v) | v ∈ D}. Now D↑ denotes the following set of variable as-
signments

D↑ = {w | ∃v ∈ D∃d ≤ MD(l, u).w = v⊕d}

An important observation is that, wheneverD is a constraint system (i.e. a con-
junction of atomic clock and data constraints), then so are bothr(D) andD↑.
Moreover, due to Richard Bellman representing constraint systems as weighted di-
rected graphs (with clock and data variables as nodes), these operations as well as

119

D ⊆ c

` [l, D] : c

li = l

` [l, D] : Aiatl

` [l, D] : β

` [l, D] : Possβ

` [
l[mi/li,mj/lj], (ri ∪ rj)(D ∧ gi ∧ gj)

]
: Possβ

` [l, D] : Possβ

[
li

gi,α?,ri−→ mi

lj
gj ,α!,rj−→ mj

]

` [l, D↑] : Possβ

` [l, D] : Possβ

Table 1: Symbolic Interpretation of Reachability Logic

testing for inclusion between constraint systems may be effectively implemented
in O(n2) andO(n3) using shortest path algorithms [TCR90, YL93, LPY95a].

Now, by applying the proof rules of Table 1 in a goal directed manner we obtain
an algorithm (see also [YPD94]) for deciding whether a given symbolic network
configuration[l, D] satisfies a propertyPossβ. To ensure termination (and effi-
ciency), we maintain a (past–) listL of the symbolic network configurations en-
countered. If, during the goal directed application of the proof rules of Table 1 a
symbolic network configuration[l, D′] is generated which is already “covered” by
a configuration[l, D] in L (i.e. D′ ⊆ D) then the the goal directed search fails at
[l, D′] and backtracking is needed. If[l, D′] “covers” some configuration[l, D] in
L (i.e.D ⊆ D′) then[l, D′] replaces[l, D] in L.

5 Applications and Performance

UPPAAL has been used to verify various benchmark examples and applications
including: several versions of Fischer’s protocol, Philips Audio-Control Proto-
col, the Train Gate Controller, the Manufacturing Plant, the Steam Generator, the
Mine-Pump Controller and the Water Tank.

In [LPY95c] an experiment was performed using four existing real-time verifi-
cation tools:UPPAAL, HYTECH (Cornell), Kronos (Grenoble) and Epsilon (Aal-
borg). In the experiment it was verified that the so-called Fischer’s mutual ex-

120

clusion protocol [Sha93, AL93], shown in Figure 2, satisfies the mutual exclu-
sion property∀¤¬((P1 at cs) ∧ (P2 at cs)). With all the tools installed on the
same machine3 the standard Unix commandtime was used to measure execu-
tion time. The resulting time-performance diagram, shown in Figure 4, indicate
thatUPPAAL performs time- and space-wise favorably compared to the other tools
in the experiment.

0

100

200

300

400

500

600

2 3 4 5 6 7 8

se
co

nd
s

�

processes

HyTech 0.6 (verification)
HyTech 0.6 (total)

HyTech 1.0
Epsilon

Kronos (verification)
Kronos (total)

UPPAAL

Figure 4: Execution Times for Fischer’s Protocol.

In [LPY95b], in this volume, the Philips Audio-Control Protocol [BPV93, HWT95]
was verified usingUPPAAL. A version of the protocol is shown in Figure 5. In the
verification of this protocol, we found the diagnostic model-checking feature of
UPPAAL useful for detecting and correcting several errors in the description of the
protocol.UPPAAL verifies that the received bit stream is guaranteed to be identical
to the sent bit stream in 3.8 seconds4.

3The tools were installed on a Sparc Station 10 running SunOS 4.1.3 with 64MB of primary
memory and 64 MB of swap memory.

4UPPAAL version 0.95 was installed on a Sparc Station 10 running SunOS 4.1.3, with 64 MB
of primary memory and 64 MB of swap memory.

121

list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!list_in_b!

list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!list_in_a!

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0

y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1y==0, leng>=1

y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?y<=3, up?

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0
output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1

list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?list_in_b?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?list_in_a?
c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1c:=1
k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0
leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1

c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0c:=0
k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0k:=0
leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!

x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4
input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!

x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4x==4
input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!

leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4leng>=4
output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?

leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4, leng>=4,
output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?

leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3
output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?
leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2leng:=2

leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3leng==3, c<=3
output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?

leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4
output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?

leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0
output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?
leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0leng:=0

leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1
output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?output_0?
leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1leng:=1

leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1leng==2, c<=1
output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?

leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0leng==1, c==0
output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?

leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0
output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?output_neq_1?

leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2
output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?

leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1
output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?

leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0leng==0
output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?output_neq_0?

leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4leng==3, c>=4
output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?
c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2c:=c-4, leng:=2

leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2leng==2, c>=2
output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?
c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1c:=c-2, leng:=1

leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1leng==1, c==1
output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?output_1?
c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0c:=0, leng:=0

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0
output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1output_0!, m:=-m+1

y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9
m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0
output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!

y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3y<=3
up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0
output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0
output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!output_1!
m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1m:=-m+1

y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!y==7, output_neq_0!

y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7y==7
output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9
m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0m==0
output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!output_0!
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9y==9
m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1m==1
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3 y>=3
 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5 y<=5
 up? up? up? up? up? up? up? up? up? up? up? up? up? up? up? up? up?
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5
y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7
up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7y>=7
y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9y<=9
up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5y>=5
y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7y<=7
up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5y>=3, y<=5
up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?
y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0

y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0y:=0
up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?up?
m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0m:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!

x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2
head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!up!

x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2
head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!head_0!x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2

input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?input_0?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!head_e!

x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2
input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2x==2
head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!head_1!

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?input_1?

input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!
k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1

input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!
k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1k:=-k+1,c:=2*c+1
leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1

head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?

head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?head_e?

head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?head_0?

input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!
k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1k:=-k+1,c:=2*c,leng:=leng+1

head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?head_1?

input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!
k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1k:=-k+1, c:=2*c+1
leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1leng:=leng+1

k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0
input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!

input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!

input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!input_0!
c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1c:=2*c, leng:=leng+1

k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0k==0
input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!input_1!

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0
output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!output_neq_1!

y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0y==0
output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!output_neq_0!

c_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msyncc_msync

c_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_start

tranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0atranhigh_0a

translow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1atranslow_1a

ackackackackackackackackackackackackackackackackack

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1up_1

c_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_outc_out last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0last_is_0

up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0up_0next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01next_is_01

last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1last_is_1

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

c_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translowc_translow

head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0head_is_0

endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00endeven_00idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1head_is_1

c_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_startc_start

c_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhighc_transhigh

transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1transhigh_1
c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1c_rise_1

translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1translow_1

c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0c_rise_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0transhigh_0 translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0translow_0

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

SenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSender

Output_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_AckOutput_Ack

ReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiver

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig
//////////////////////////////////
// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson// 950511 - Paul Pettersson and Johan Bengtsson
// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson// 951126 - Paul Pettersson
clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],clock x rate [19,21],
 y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21]; y rate [19,21];
int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;int c, k, m, leng;
chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,chan input_0, input_1, list_in_a, list_in_b,
 head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e, head_0, head_1, head_e,
 output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1, output_0, output_1, output_neq_0, output_neq_1,
 up; up; up; up; up; up; up; up; up; up; up; up; up; up; up; up; up;
system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;system Input, Sender, Receiver, Output_Ack;

InputInputInputInputInputInputInputInputInputInputInputInputInputInputInputInputInput

Figure 5: Philips Audio-Control Protocol.

6 Conclusion and Future Work

In this paper we have presented the main features ofUPPAAL together with a re-
view of and pointers to its theoretical foundation and application on case–studies.

Future versions ofUPPAAL will extend the current model–checker to the safety
and bounded liveness logic of [LPY95b]. Also future versions ofUPPAAL will in-
tegrate the newly developed compositional model–checking technique of [LPY95a],
which, judged from experimental results using a CAML prototype implementation
[LL95], seems to be a powerful technique in the on–going fight against explosion
problems.

References

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In
Proc. of ICALP’90, volume 443, 1990.

[AL93] Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for Real
Time. Lecture Notes in Computer Science, 600, 1993.

122

[BPV93] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio-
Control Protocol. InProc. of FTRTFT’94, volume 863 ofLecture
Notes in Computer Science, 1993.

[HWT95] Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio
Control Protocol. InProc. of CAV’95, volume 939 ofLecture Notes in
Computer Science. Springer Verlag, 1995.

[LL95] F. Laroussinie and K.G. Larsen. Compositional Model Checking of
Real Time Systems. InProc. of CONCUR’95, Lecture Notes in Com-
puter Science. Springer Verlag, 1995.

[LPY95a] K.G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. To appear inProc. of the 16th
IEEE Real-Time Systems Symposium, December 1995.

[LPY95b] Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-
Checking for Real-Time Systems. InProc. of the 4th DIMACS Work-
shop on Verification and Control of Hybrid Systems, Lecture Notes in
Computer Science, October 1995.

[LPY95c] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-Checking for
Real-Time Systems. InProc. of Fundamentals of Computation Theory,
1995.

[OSY94] A. Olivero, J. Sifakis, and S. Yovine. Using Abstractions for the Ver-
ification of Linear Hybrids Systems. InProc. of CAV’94, volume 818
of Lecture Notes in Computer Science, 1994.

[Sha93] N. Shankar. Verification of Real-Time Systems Using PVS. InProc.
of CAV’93., volume 697, 1993.

[TCR90] C.E. Leiserson T.H. Cormen and R.L. Rives.Introduction to ALGO-
RITHMS. MIT Press, McGraw-Hil, 1990.

[YL93] Mihalis Yannakakis and David Lee. An efficient algorithm for mini-
mizing real–time transition systems. InProceedings of CAV’93, vol-
ume 697 ofLecture Notes in Computer Science, pages 210–224, 1993.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Autfomatic Verifica-
tion of Real-Time Communicating Systems By Constraint-Solving. In
Proc. of the7th International Conference on Formal Description Tech-
niques, 1994.

123

Recent licentiate theses from the Department of Information Technology

2000-008 Marcus Nilsson:Regular Model Checking

2000-009 Jan Nyström:A formalisation of the ITU-T Intelligent Network standard

2000-010 Markus Lindgren:Measurement and Simulation Based Techniques for Real-
Time Analysis

2000-011 Bharath Bhikkaji:Model Reduction for Diffusion Systems

2001-001 Erik Borälv:Design and Usability in Telemedicine

2001-002 Johan Steensland:Domain-based partitioning for parallel SAMR applications

2001-003 Erik K. Larsson:On Identification of Continuous-Time Systems and Irregular
Sampling

2001-004 Bengt Eliasson:Numerical Simulation of Kinetic Effects in Ionospheric Plasma

2001-005 Per Carlsson:Market and Resource Allocation Algorithms with Application to
Energy Control

2001-006 Bengt Göransson:Usability Design: A Framework for Designing Usable Inter-
active Systems in Practice

2001-007 Hans Norlander:Parameterization of State Feedback Gains for Pole Assign-
ment

2001-008 Markus Bylund:Personal Service Environments — Openness and User Control
in User-Service Interaction

2001-009 Johan Bengtsson:Efficient Symbolic State Exploration of Timed Systems: The-
ory and Implementation

Department of Information Technology, Uppsala University, Sweden

