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How to Read this Thesis

This thesis comprises a cover chapter, three appended papers (Paper A,
Paper B and, Paper C) and two appendices. The cover chapter features a
general introduction to the area of interest, as well as an overview of each
of the three papers and how these are related. The appendices correspond
to Paper A and are referred to in its part of the cover chapter.

The interested reader should start with the abstract and the cover chap-
ter. This should be enough to get an idea of which paper to read next. Each
paper is then self-supporting and the reader could read them in any order
of preference, even though the proposed one, A — B — C, may be the most
natural one from our point of view.

Related work is discussed mainly in the respective papers, and only
partly in the cover chapter.
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Abstract

Combinatorial optimisation problems are ubiquitous in our society and ap-
pear in such varied guises as DNA sequencing, scheduling, configuration,
airline-crew and nurse rostering, combinatorial auctions, vehicle routing,
and financial portfolio design. Their efficient solution is crucial to many
people and has been the target for much research during the last decades.
One successful area of research for solving such problems is constraint pro-
gramming. Yet, current-generation constraint programming languages are
considered by many, especially in industry, to be too low-level, difficult,
and large. In this thesis, we argue that solver-independent, high-level rela-
tional constraint modelling leads to a simpler and smaller language, to more
concise, intuitive, and analysable models, as well as to more efficient and
effective model formulation, maintenance, reformulation, and verification.
All this can be achieved without sacrificing the possibility of efficient solv-
ing, so that even time-pressed modellers can be well assisted. Towards this,
we propose the ESRA relational constraint modelling language, showcase its
elegance on some real-life problems, and outline a compilation philosophy
for such languages.

In order to compile high-level languages such as ESRA to current genera-
tion constraint programming languages, it is essential that as much support
as possible is available in these languages. This is already the case in the
constructive search area of constraint programming where, e.g., different
kinds of domain variables, such as integer variables and set variables, and
expressive global constraints are readily available. However, in the local
search area of constraint programming, this is not yet the case and, until
now, set variables were for example not available. This thesis introduces set
variables and set constraints in the local search area of constraint program-
ming and, by doing this, considerably improves the possibilities for using
local search. This is true both for modelling and solving problems using
constraint-based local search, as well as for using it as a possible target for
the compilation of ESRA models. Indeed, many combinatorial optimisation
problems have natural models based on set variables and set constraints,
three of which are successfully solved in this thesis.

When a new set constraint is introduced in local search, much effort must
be spent on the design and implementation of an appropriate incremental
penalty function for the constraint. This thesis introduces a scheme that,
from a high-level description of a set constraint in existential second-order
logic with counting, automatically synthesises an incremental penalty func-
tion for that constraint. The performance of this scheme is demonstrated by
solving real-life instances of a financial portfolio design problem that seem
unsolvable in reasonable time by constructive search.
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1 Introduction

Combinatorial (optimisation) problems are ubiquitous in our society and
appear in such varied guises as DNA sequencing, scheduling, configuration,
airline-crew and nurse rostering, combinatorial auctions, vehicle routing, and
financial portfolio design. Their efficient solution is crucial to many people
and has been the target for much research during the last decades.

An archetypical example of a combinatorial problem is the World Map
Colouring Problem: Given is a map of the world, a set of colours, and a
positive number k. The problem is to determine if it is possible to paint
each country in one of the colours such that at most k colours are used and
such that no two adjacent countries have the same colour.

If we limit ourselves to the Nordic Countries Map Colouring Problem
(NCMCP) (i.e., the map over the countries Denmark, Finland, Iceland, Nor-
way and Sweden), let the set of colours be {blue, green, purple, red, yellow},
and let kK = 3, we may present a solution to the problem by colouring Sweden
and Iceland in yellow, Denmark and Finland in red, and Norway in blue, as
shown in Figure 1.! This problem may also be stated as a combinatorial op-

Yellow

Figure 1: Coloured map of the Nordic countries.

timisation problem where, in addition to the conditions above, k is unknown
rather than given and must be the least number of colours needed to colour
the map. In our example, k = 3 is the least number of colours needed and,
hence, Figure 1 shows an optimal solution.

1.1 Constraint Programming

Constraint Programming (CP) [15, 8, 1] is a framework for modelling and
solving combinatorial problems. It is based on the fact that a large and com-
plex problem may be represented by a set of (often high-level) constraints.

1Sweden and Denmark are considered adjacent due to the Oresund bridge.



These constraints are in turn represented by efficient software components
that, when they are combined with an appropriate search procedure, define
an algorithm for solving the problem.

In the framework of CP, combinatorial problems and combinatorial op-
timisation problems are represented by Constraint Satisfaction Problems
(CSPs) and Constraint Optimisation Problems (COPs) respectively.

Definition 1 A CSP is a three-tuple (X,D,C) where X = {z1,...,2n}
is a set of variables, D = {Dy,,..., Dy, } is a set of domains, each D,
containing the set of possible values for the corresponding variable x;, and
C={ci,...,cm} is a set of constraints, each c¢; being defined on a subset of
X and specifying the valid combinations of values for those variables.

Definition 2 Let P = (X, D,C) be a CSP and let p© denote the number of
variables of a constraint ¢ € C. An assignment for P is a function k : X' —
Uzexr Do, where X' C X, with the condition that Vo € X' : k(x) € D,. A
complete assignment for P is an assignment k where domain(k) = X. Now,
an assignment k for P is (i) a solution to a constraint c(k(x1), ..., k(xpe)) €
C iff c(k(z1),...,k(xpe)) holds, (i) a partial solution to P iff there is no
c(x1,...,xpe) € C such that ~c(k(x1), ..., k(xpe)) holds, and (iit), a solution
to P iff Ve(zi,...,xpc) € C:c(k(z1),...,k(zpe)) holds.

Example 1 Given Definition 1, the NCMCP can be formalised as a CSP
P = (X,D,C) as follows. Let X = {D,F,I,N,S} be the set of variables,
where D stands for the colour of Denmark, F' stands for the colour of Fin-
land, etc., and let COLOURS = {b,g,p,r,y} be the common domain for
all the variables, where b denotes the colour blue, g denotes the colour
green, etc. Now, by letting # be defined on the set COLOURS such that
for any ¢, € COLOURS, ¢ # ¢ holds if and only if ¢ and ¢’ are not the
same colour, the set of constraints C = {D # S,F # N,F # S, N #
S,{D,F,I,N,S} < 3} correctly models the problem. Figure 1 corre-
sponds to the solution k to P where k(D) = r, k(F) = r, k(I) = vy,
E(N) = b, and k(S) = y. Indeed, all of the disequalities are satisfied and
{k(D), k(F), k(1) k(N), k(S)} = {r,ryy, by} = [{r, y, b} < 3.

Definition 3 A COP is a four-tuple (X, D,C, f) where (X,D,C) is a CSP
and f: A— R is a function from the set of all complete assignments A for
(X,D,C) to the real numbers whose value is to be minimised.?

Example 2 Recall the CSP P = (X, D,C) of Example 1. The optimisation
version of the NCMCP may be formalised as the COP (X, D,C, f), where

2Without loss of generality we may restrict ourselves to minimisation COPs since a
maximisation COP may be represented by a minimisation COP by considering the negated
value of the value returned by its function.



f is the function defined as f(k) = [{k(D),k(F),k(I),k(N),k(S)}|. The
value of f for the solution in Example 1 is 3, and this is indeed the minimal
value.

The definitions above are very general and allow constraints to be stated
on variables ranging over any kind of domains. The domains may for exam-
ple be (subsets of) the set of integers, the set of reals, the set of booleans, a
given set of values, or the power-set of a set of some type.

The most widely used domains in the CP community are probably finite
subsets of the set of integers and much research has been devoted to the
study of constraints and search procedures for such variables.

1.2 Constraint Programming and Constructive Search

Constraint programming research has historically been focused on construc-
tive search, which means that the variables of the CSP (or COP) are assigned
values from their domains in some systematic order until each variable has
been assigned a value such that the constraints are satisfied or such that
a non-solution proof is obtained. (Another way of saying this according to
Definition 2 is that a partial solution to a CSP P is extended into a solution
to P if possible.) This gives rise to a search tree and a possible search tree
for Example 1 is shown in Figure 2 on the next page, where the solution
k={D—r,F—r,I—y, Nw— b S+ y}is shown as the highlighted
path.

Such a search tree may, even for small examples, become very large and
exploring it entirely is not practical. In CP, this is remedied by removing
branches of the search tree that can be shown not to contain a solution
(or an optimal solution). This is done by the constraints of a CSP being
active entities that, throughout the exploration of the search tree, remove
values from the domains of the variables that cannot take part in a solution.
As an example of this we consider the CSP ({z,y},{D, = 1...4,D, =
1...3},{z < y}), and notice that the constraint < can be used to deduce
that some of the values in the domains of x and y may be removed directly.
Since the assigned value to z must be less than the assigned value to y, and
y cannot be assigned a value larger than 3, any value in the domain of z
larger than 2 cannot take part in a solution and may be removed. Similarly,
since the assigned value to y must be larger than the assigned value to =,
and x cannot be assigned a value smaller than 1, any value in the domain
of y less than 2 may also be removed. Hence, the domains of x and y
may immediately be shrunk to D = 1...2 and D = 2...3 respectively.
Following the same reasoning after the assignment of a value to x implies
further shrinking of the domain of y. The result this has to a corresponding
search tree for the CSP is shown in Figure 3 on the next page, where the
removed branches are shown dashed.
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While the examples so far include only very simple binary constraints,
in general, constraint programming relies heavily on the existence of much
more expressive and complex constraints. These constraints are referred
to as global constraints and the standard example of such a constraint in
CP is the AllDifferent({z1,...,x,}) constraint [14]. This constraint may
be decomposed into the semantically equivalent logical formula Vi < j €
{1,...,n} : z; # xj, i.e., a set of n(n — 1)/2 disequality constraints. The
differences (and advantages) of the AllDifferent constraint are the space
needed to represent it (O(n) as opposed to O(n?)) and the preserved infor-
mation that n variables are to take distinct values. Indeed, if the n(n—1)/2
disequalities are used, we view each disequality in isolation and do not know
anything about the others. If we instead use the AllDifferent constraint,
we view all disequalities together and may take advantage of this when we
design a filtering algorithm for the constraint.? The following example illus-
trates this.

Example 3 Consider the CSP P = ({z,y, 2}, {D, = {1,2}, D, = {1,2},
D, = {1,2,5}},C), and first assume that C is the set of constraints {z #
y,x # z,y # z}. Given one of these constraints, say = # vy, the only
condition that allows us to remove a value from D, (respectively D,) is
if D, (respectively D,) contains only one value. Hence, given the initial
domains of P, nothing may be done to the domains of its variables.
Assume now that C is equal to { AllDifferent({x,y, z})}. This allows us
to reason on the domains of all variables at the same time. By doing this
we may deduce that since D, = D, = {1,2}, the values 1 and 2 must be
reserved for x and y in any solution to the constraint. These values may
therefore be removed from D, resulting in the domain D/, = {5} for z.

It should be clear that if global constraints are used instead of their
decomposed counterparts, the resulting search tree may be smaller since
more branches of the tree may be removed at a more shallow level.

1.3 Constraint Programming and Local Search

As discussed in Section 1.2, constructive search procedures for solving CSPs
and COPs implicitly explore the complete search space by, for any given
subtree, either traversing it completely, or proving that it cannot contain an
(optimal) solution and, hence, that traversing it is unnecessary. In contrast,
local search procedures only explore parts of the search space. This is done
by an iterative procedure starting from a complete assignment that need
not be a solution. Complete assignments in local search are usually referred
to as configurations and we will use this terminology from now on. Each

3A filtering algorithm for a constraint is the algorithm that is used to remove values
from the variables of the constraint, and to detect when the constraint cannot be satisfied.



iteration implies evaluating a set of configurations K that are very similar
to the current one; the change between the current configuration k£ and an
element &’ in K may for example be that the value of a single variable differs.
The set K is called the neighbourhood of k and in the search, a suitable
candidate in K is picked as the current configuration in the next iteration.
The iterative procedure stops when a sufficiently good configuration has been
reached, or when some allocated resources have been exhausted.* It should
be noted here that while a constructive search procedure is determined to
find an (optimal) solution, no such guarantees can be made by a local search
procedure. Completeness is traded for a usually more efficient algorithm.

Example 4 Recall the CSP corresponding to the NCMCP in Example 1.
A sequence of three configurations for this CSP is shown in Figure 4, corre-
sponding to an initial configuration and the picked neighbouring configura-
tions in two consecutive iterations. The initial configuration is in this case
k={Dw~ y,F— r,I— y N+ r,S— y}. In the first iteration, the
colour of Norway is changed from red to blue resulting in the configuration
k', and in the second one, the value of Denmark is changed from yellow to
red resulting in the configuration k”. As can be seen, k” corresponds to the
solution in Example 1.

k"(D)=r
K (F) =
k//(N)

"k =y
=b
K'(S)=y

Figure 4: A sequence of three configurations for the NCMCP.

As opposed to constructive search, where the constraints of the CSP are
used to remowve values from the domains of their variables, in local search,
the constraints are used to guide the search procedure in the right direc-
tion. For example, in the example above, how did we know that changing
the values of N and D to b and r respectively would imply a configuration
that represents a solution to the CSP? This is usually done by associating
a penalty function to each constraint ¢ of a CSP that maps a given config-
uration k£ to a numerical value penalty(c)(k). This numerical value is the
penalty of ¢ with respect to k and is a measure on how violated c is. As a
consequence, penalty(c)(k) must be 0 if and only if ¢ is satisfied with respect
to k.

4This may for example mean that a maximum number of iterations has been reached,
or that a timeout has occurred.



Let us now look at an example of this by considering the constraint
x # y. A penalty function for this constraint may be defined as:

1, if k(z) = k(y)

0, otherwise

penalty(z # y)(k) = { (1)
Hence, given a configuration k, the penalty of the constraint x # y is 1 if the
values of x and y with respect to k are the same, and 0 if they are different.
Now, given a CSP P = (X, D,C) and a configuration k for P, the penalty
of P with respect to k is the sum of the penalties of the constraints in C.

Example 5 Recall the CSP P = ({z,y,2},{D, = {1,2}, D, = {1,2}, D, =
{1,2,5}},C) in Example 3, assume that k = {x — 1,y — 1,z +— 1} is the
initial configuration for P, and that C = {z # y,x # 2,y # z}. The penalty
of each of the constraints in C is 1, since they are all violated, hence the
penalty of Pis1+1+1=3.

While for the #-constraint it is simple to define a penalty function,
to define penalty functions for global constraints is more complicated. In
any case, it is very important that different constraints are given balanced
penalty functions that are comparable to each other, and that naturally
reflect how much violated their respective constraints are. No constraint
should be easier (or harder) in general to satisfy compared to the others,
and no constraint should give a too low or a too high penalty with respect
to a configuration. If this is not the case, it will be harder for the local
search procedure to be guided in the right direction. It may for example
be impossible to escape parts of the search space that only contain local
optima, as illustrated in Figure 5 on the next page, where filled circles
represent solution configurations and non-filled circles represent non-solution
configurations. In the figure, (a) and (b) show views of the search space for
a CSP with the assumption that the penalty functions of the constraints are
unbalanced and balanced respectively. In both cases, the search procedure
currently explores a part of the search space in which only local optima
exists. In (a), since the penalty functions of the constraints are unbalanced,
the search procedure will never reach a part of the search space in which there
is a solution. However, the balanced penalty functions for the constraints in
(b) will guide the search procedure in the right direction, as shown by the
overlapping parts of the search space.

Example 6 Recall once again the CSP P in Example 3, assume that k =
{z — 1,y — 1,z — 1} is the initial configuration for P, and that C =
{AllDifferent({x,y,z})}. A penalty function for the AllDifferent constraint
may be defined as:

penalty(AllDifferent (X)) (k) = |X| —

U k()

TEX

(2)




Figure 5: Examples of search spaces where the corresponding constraints
are unbalanced (a) and balanced (b) respectively.

Hence, given a configuration k, the penalty of the AllDifferent constraint
is the number of repeated values in X with respect to k.° This definition
corresponds to what is denoted variable-based violation cost in the soft-
constraints area (see for example [12]). Another variant is to count the
number of equal pairs in X with respect to k, as is done in [5], for example.

The penalty of AllDifferent({z,y,z}) according to (2) with respect to
k is penalty(AllDifferent({x,y, z}))(k) = 2, since there are two repeated
values (for example k(z) = 1 and k(y) = 1) with respect to k. This may
be interpreted in the way that at least two variables must change in order
to satisfy the constraint. If we change the value of any of the variables in
{z,y, z}, the penalty will decrease by 1. Hence, we obtain feedback that any
such change is a step closer a satisfied constraint.

Another penalty function for the AllDifferent constraint may be defined
as (let X denote the set {z1,...,2,}):

1, if Ji # j : k(xi) = k(z;)

0, otherwise

penalty(AllDifferent(X))(k) = { (3)

Hence, given a configuration k, the penalty of the AllDifferent constraint is
1 if there exists at least one distinct pair of variables x; and x; such that
k(z;) = k(x;), and 0 otherwise.

This penalty function is not very useful since it reports a very small (and
constant) penalty of the constraint given any violating configuration. The
only cases for which it will be able to guide the search are the ones where k

5The number of repeated values in X with respect to k may be obtained by, until
X = 0, iteratively removing a variable x in X, and placing the resulting value k(z) in an
initially empty set Xj. If, for a given x € X, the value k(z) is already in Xj, a counter r
(initially zero) is increased by one. When this iterative procedure has finished, the value
of r is the number of repeated values in X with respect to k.



is a configuration such that there exists ezactly one distinct pair of variables
x; and z; such that k(z;) = k(x;). For example, for the single constraint in P
and the configuration k above, the value of penalty (AllDifferent({z,y, z}))(k)
according to (3) is 1. No matter what change we do to one of the variables
in {z,y,z} the value will still be 1, hence, in this case, we get no feedback
from the penalty function.

In a real-life local search application, the number of iterations needed to
find a (good enough) solution may be as large as 500,000. In each iteration
a neighbourhood of size 1000 or larger is not uncommon. Due to this, it
is impractical to recalculate from scratch the penalties of the constraints
for each configuration when evaluating a particular neighbourhood. This is
especially true for highly expressive and complex global constraints. One
solution to this problem is to use incremental algorithms for calculating the
penalties. This means that for a given constraint ¢, a current configuration
k, and the penalty p; of ¢ with respect to k, the penalty of ¢ with respect to
a member £’ in the neighbourhood of k is obtained by using the information
of pr and the difference between k and k’. There are different ways of doing
this, e.g., by specialised algorithms for each constraint, by using invariants
as in [16], or by reasoning about the constraints in terms of their graph
properties as in [3].

2 High-Level Modelling

Current constraint programming languages are considered by many people
to be too low-level and complex to use; there are many techniques a novice
must learn to master before he or she becomes productive. Due to this,
CP techniques are not as widely spread as they could (and ought to) be,
especially in the industrial applications area. Users in general and novice
users in particular would be much helped if they could be presented with a
CP language that lets them focus more on what is important, i.e., how to
specify the problem instead of how to solve the problem.

Paper A presents the language ESRA for specifying CSPs and COPs.
The language is a conservative extension of second-order logic and features
existentially quantified relation variables (and thus set variables) in addition
to the traditional scalar variables. The language has intentionally been kept
small with orthogonal constructs sufficient for modelling a large number of
combinatorial optimisation problems.

More specifically, the main contributions of Paper A are the following:

e [t introduces the high-level language ESRA, based on a first-order rela-
tional calculus, for the elegant modelling of combinatorial optimisation
problems. This is illustrated by showing ESRA models of three real-life
problems.



e It argues that the design of ESRA takes into account that no low-
level representation details are assumed in models therein. Hence, the
options for making such assumptions are left for the compilation phase.

e It argues that ESRA-models can be compiled into efficient models in
lower-level (constraint programming) languages of today.

In addition to Paper A, this thesis also presents the grammar and deno-
tational semantics of ESRA in Appendices A and B respectively.

In order to get an idea about the language, let us start by giving an
ESRA model of a real-life application: the Social Golfer Problem (SGP).

The SGP is stated as follows: In a golf club, there are N players, each
of whom plays golf once a week (constraint ¢;) and always in G groups of
size S (c2), i.e., N = G- S. The objective is to determine whether there is a
schedule of W weeks of play for these golfers, such that there is at most one
week where any two distinct players are scheduled to play in the same group
(c3). An implied constraint is that every group occurs exactly S - W times
across the schedule (¢4). See Problem 10 at http://www.csplib.org for
more information. A solution to the SGP may be thought of as a function
Schedule from the set of golfers and the set of weeks to the set of groups,
that satisfies the constraints ¢; — ¢4 above, i.e., a function that maps a golfer
g and a week w to the group Schedule(g,w) that g plays in in week w.

A model of the SGP in ESRA is shown in Figure 6 and displays much of
the capabilities of the language, as explained next. An ESRA model starts

cst G, S, W : N
dom players =1...G xS, weeks =1...W, groups =1...G
var Schedule : (players x weeks) —>*W groups
solve
V(g : groups,w : weeks)
count(S)(p : players | Schedule(p,w) = g)

- W N

~N

A

Y(p1 < p2 : players)
count(0...1)(w : weeks | Schedule(py,w) = Schedule(pa,w))

co

AN AN AN AN N N N N
Nej ot
S N e e e e e e

Figure 6: An ESRA model of the SGP.

with the declaration of constants, domains, and variables. This is exem-
plified in lines (1) and (2) in Figure 6, where the constants G, S, and W
are defined as (yet unassigned) natural numbers, and the domains players,
weeks, and groups are defined as integer ranges (seen as sets) with respect
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to the constants.5 The variable Schedule is declared in line (3), ranging
over the set of all functions from the set of all pairs in the cross product of
players and weeks (constructed by the binary infix operator X) to the set
groups. The operator —*W reveals one of the useful constructs in ESRA
available to state clear and concise problem models: the expression S x W
declares that Schedule is a function such that every element in groups is
mapped to by exactly S - W (player, week) pairs. Hence, the constraint cy4
is stated already in the declaration of the variable, as well as the constraint
c1, because of the totality of the function.

After the declarations comes the objective, in which a set of constraints is
to be solved and possibly also such that a numerical expression is optimised.
In the SGP case, the variable Schedule should be further constrained with
respect to the constraints co and c3. This is done in lines (5) — (6) and (8)
— (9) respectively. The constraint ¢y is stated by a universal quantification
in which each group in each week is constrained to be of size S by a count
constraint. The expression (p : players|Schedule(p, w) = g) (from now on
referred to as F) denotes the set of all players scheduled to play in week w
and group g, and the formula count(S)E constrains the cardinality of E to
be equal to S. In this formula, .S is actually a shorthand for the singleton set
{S} and in general, any ground set 7" of natural numbers may take its place
with the semantics that the cardinality of £ must be in T. The constraint
cs3 is stated using a similar formula for each distinct pair of golfers.

In the model above (and generally in ESRA models), we did not commit
ourselves to using any specific data structures for the variable and the con-
straints. This is good because then we are allowed to make (automatically)
such decisions during the compilation/solving phase. We could for example
try to design a solver that works directly on the relation variables such as the
function variable Schedule. Another and currently more realistic option is
to transform models in ESRA into models in an existing constraint program-
ming language, and then solve those models using the solvers currently at
hand. If this is done there are many issues that arise, there are for example
different ways one may represent a relation variable. If set variables exist
in the target language, one may for example represent a relation variable
R : A x B by the set variable S € 2Us, where Us = A x B, such that (a, b)
are related in R if and only if (a,b) € S. If only integer variables exist in
the target language, one may represent R by a two-dimensional matrix M
indexed by the elements in A and B, such that (a,b) are related in R if and
only if M|[a][b] = 1. Depending on the variable representation chosen, there
are then different options for stating the constraints of the ESRA model.

In addition to the chosen representation for variables and constraints,
which actual solving algorithm to use is of course also open. We may for

5Note that constants (and domains) may be initialised by a corresponding data file or
interactively at runtime, e.g., as in Figure 6 for the constants G, S, and W.
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example use constructive search, local search, or any combination thereof.
Currently in constraint programming, there exist many options for using
constructive search regarding solvers with different kinds of domain variables
and constraints, and we may take advantage of this when translating ESRA
models. However, these options are more limited for local search and, hence,
Papers B and C are an answer to this by providing higher-level local search
possibilities based on set variables and set constraints.

3 High-Level Solving with Local Search

Being historically mostly focused on constructive search, the CP community
has recently started to bring its ideas also to local search. This implies a
compositional strategy with high-level constructs such as global constraints
and the separation of modelling from search (see for example [20, 16, 11, 5,
4,9, 17, 3]).

Even though this research has come far, witnessed by for example the
possibilities of the COMET programming language and system [9, 17, 19,
18], the variables in local search have up until now been restricted to those
that are assigned scalar values, such as integer variables. This contrasts
the constructive search area of CP, where, e.g., set variables have been
around for a long time, i.e., variables that are assigned sets of values [6, 10,
13, 2]. Being able to use set variables and set constraints in CP (whether
it is in conjunction with constructive search or with local search) clearly
implies a modelling advantage for applications that have natural set-based
models. It may also imply a solving advantage since it allows more structural
information from the model to be preserved at the solving level.

Since one of the ideas behind the ESRA language is to translate such
models automatically into (different) models of current CP languages, it is
crucial that as much support as possible in terms of available domains and
constraints is available in the target languages. This will make it easier to
translate the ESRA models as well as provide more options when it comes to
providing different target models. Papers B and C are steps in this direction
by providing set variables and set constraints for local search, as well as
automatic derivation of incremental algorithms from high-level specifications
of set constraints.

3.1 Set Variables and Local Search

A set variable is a variable whose associated domain is a power-set of a set
of values called its universe.

Definition 4 Let P = (X,D,C) be a CSP. A variable S € X is a set
variable if its corresponding domain Dg = 2UYs | where Ug is a finite set of
values of some type, called the universe of S.
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Paper B introduces set variables and set constraints in local search. Re-
call that in a local search setting of CP, we deal with complete assignments
known as configurations. In the search, we move between such configura-
tions until we reach a satisfactory one. The constraints are used to guide the
search, i.e., which neighbour of a current configuration to choose as the next
one. In order to do this, each constraint is associated with a penalty func-
tion that expresses how far away the constraint is from being satisfied with
respect to a given configuration. Also, as was mentioned in Section 1.3, it is
very important that different constraints are associated with penalty func-
tions that are comparable to each other (we say that such penalty functions
are balanced) as well as naturally reflect how much violated the respective
constraints are. Hence, in order to use set constraints in local search, we
need to know how to define such penalty functions for those constraints.
This is the main focus of Paper B which presents a generic scheme for doing
this.

More specifically, the main contributions of Paper B are the following:

e Set variables and set constraints are introduced in the local search area
of CP. To do this, local-search concepts such as penalties, configura-
tions, and neighbourhoods are put into a set-variable framewortk.

e In order to be able to use set constraints generally in local search, it
suggests a generic scheme for defining balanced penalty functions for
set constraints. This scheme is then used to give the penalty functions
of five (global) set constraints.

e In order to obtain efficient solution algorithms, Paper B proposes
methods for the incremental penalty maintenance between configu-
rations of the introduced set constraints.

e The concepts introduced in the paper are used to model and solve two
real-life problems with good results.

One possible translation of the relational model of the SGP in Figure 6
into a set-based model according to the ideas in Paper B is shown in Figure 7.
Please note that while the ESRA model in Figure 6 was given in (a pretty-
printed version of) that language, the set-based model in Figure 7 is given
in pseudo-code. The constraints used are actual entities in the solver for set
variables and, in reality, the set-based model is coded in the host-language
of the solver (currently OCaml [7]), where the set variables are stored in a
G- W matrix and the constraints are stated on the rows and columns of that
array by regular loops.

In the model of Figure 7, the identifiers G, S, W, groups, weeks and
players are assumed to refer to the same things as in the ESRA model. The
set of variables is the set {G (. | g € players N w € weeks}, where G g )
denotes the set of players playing in group ¢ in week w. Hence, there are
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(1) G,S,W:N

(2) players=1...G xS, weeks =1... W, groups=1...G
(3)  Vw € weeks : Partition({G (4,4 | g € groups}, players)
(4) Vg € groups : YVw € weeks : |G (g = S

(5)  Mazintersect({Ggw) | g € groups AN w € weeks}, 1)

Figure 7: Set-based model of the SGP.

G - W such set variables compared to the single function variable in the
ESRA model.

Line (3) states that every player must play in each week (constraint c;
from the description of the SGP in Section 2). This is done by a Partition
constraint on the variables of each week. Saying that these groups of play-
ers for each week must be a partition of all the players clearly achieves this.
Line (4) states that every group must be of size s (constraint ¢ from the de-
scription) by a cardinality constraint on each set variable in the model. Line
(5) states the meeting constraint (constraint ¢ from the description), i.e.,
that no two players should meet more than once across the schedule. This
is done by a MaxIntersect constraint over all the variables with the meaning
that the intersection of any two distinct variables (and hence groups) must
be at most 1.

The constraints above now need associated penalty functions in order
to be used in a local search setting. In order to do this in a general way,
Paper B introduces the following definition in order to measure the change
of a set variable.

Definition 5 Let P = (X,D,C) be a CSP, let k be a configuration for P,
and let S € X. An atomic set operation on k(S) is one of the following
changes to k(S):

1. Add a value d to k(S) from its complement, denoted add(k(S),d).
2. Remove a value d from k(S), denoted remove(k(S),d).

When we define the penalty function of a constraint, we usually reason
about performing (shortest) sequences of atomic set operations and what
effect that will have on a given variable.

Example 7 Assume that S and S’ are set variables and that k is a config-
uration such that k(S) = {a,b,c} and k(S") = (). Performing the sequence
of set operations A = [add(k(S),d), remove(k(S),b), add(k(S"),b)] on k(S)
and k(S") will yield A(k(S)) = {a,c,d} and A(k(S’)) = {b} respectively.
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Definition 5 may now be used in order to give a measure on how expensive
it is to change the values of a set of set variables X with respect to a
configuration k into the values of X with respect to another configuration
k" such that some constraint ¢ defined on X is satisfied. This is done by
counting the least number of atomic set operations necessary to satisfy c,
as shown in the next definition.

Definition 6 Let P = (X,D,C) be a CSP and let A be the set of all con-
figurations for P. Let ¢ € C be a constraint defined on a set of set variables
X C X. The penalty of ¢, penalty(c) : A — N, is the length of a shortest
sequence of atomic set operations that must be performed in order to satisfy
c with respect to a given configuration k € A.

From this definition it follows that penalty(c)(k) = 0 if and only if ¢ is
satisfied with respect to k. To come up with penalty functions that comply
with this definition is not always easy, as can be seen in Paper B for the
MaxIntersect constraint.

As an example, we will look at the penalty function for the Partition(X, q)
constraint. This constraint is satisfied with respect to a configuration k if
and only if the set X = {Si,...,5,} is a partition of ¢ with respect to k,
where ¢ is a ground set, i.e., if and only if the following formula holds:

Vi<jel..n:k(S)Nk(S;)=0A ] k(S)=q (4)
SeX

Now, the penalty of a Partition(X,q) constraint under k is equal to
the length of a shortest sequence A of atomic set operations that must be
performed in order for (4) to hold. The following penalty function expresses
this:

penalty(Partition(X, q))(k) =
<Z|k(5)|> | J*©)
SeX

SeX
(a) (0)

+ +

g— |J k()

SeX

U k(5) —q

SeX

Indeed, we need to remove all repeated occurrences of any value in the
partition for those variables to be all disjoint, and their number equals the
difference between the sum of the set sizes and the size of their union (part
(a)). Also, in order for the union of the variables in the partition to be
equal to g, we need to add all unused elements of the set ¢ to some set of the
partition, as well as remove all elements in any of the sets in the partition
that are not in ¢ (part (b)).

Please note that the penalty function of the Partition constraint as
defined in Paper B is incorrect since it does not take into account that we
must remove all elements in any of the sets in the partition that are not

15



in the reference set. Hence the second term of the addition in (b) is not
considered in Paper B.

3.2 Deriving Incremental Algorithms Automatically

As was mentioned in Section 1.3, the set constraints proposed in Paper B
need incremental definitions of their penalty functions in order for a real-life
problem to be solvable in reasonable time. While more elegant and general
methods are possible, such as the ones used in [16, 9] and [3] for example,
for those constraints, this was done in an ad hoc constraint-specific way.
Assume now that we have a local-search system based on the constraints in
Paper B (possibly extended with more constraints). If we come up with a
new set constraint necessary for solving a particular problem that is not in
our system yet, we will have to do (at least) the following two things before
we may use it:

1. Come up with a penalty definition for the constraint, ideally one that
complies with Definition 6.

2. Come up with an incremental algorithm for maintaining the penalty
of the constraint between neighbouring configurations.

This may be a time-consuming and error-prone task. Hence it would be
nice if it was possible, in addition to the built-in constraints, to model new
constraints in a way such that the resulting constraints automatically had
natural and balanced penalty functions with associated incremental penalty
maintenance algorithms. This is what Paper C proposes for set constraints
by providing the possibility of modelling constraints in existential second-
order logic with counting.
More specifically, the main contributions of Paper C are the following:

e It proposes the usage of existential second-order logic with counting
(denoted ISOL™) as a high-level modelling language for (user-defined)
constraints. It accommodates set variables and captures at least the
complexity class NP.

e It proposes the design of a scheme for the automated synthesis of in-
cremental penalty calculation algorithms from a description of a con-
straint in that language. An implementation of this scheme has been
developed.

e A new benchmark problem, with applications in finance, for local search
is proposed. Using the local search framework, real-life instances are
solved exactly that seem unsolvable in reasonable time by constructive
search.
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As an example, assume that we do not have a built-in constraint for
stating that S must be a strict subset of T, i.e., the constraint S C 7. This
may be expressed in ISOL™ by the formula:

ASAT(Ve(x ¢ SVax e T)ANBx(x e T Az ¢ 95))) (5)

Similarly, a constraint stating that the size of the intersection between two
set variables S and T can be at most m, i.e., the constraint |[SNT| < m,
may be modelled in ISOL™ as follows:

ASITII(Ve(x € —x € SAz e T))N|I| <m) (6)

It should be noted here that a universal (or existential) quantification V¢
implies a quantification of z over the whole universe. It is also assumed
that all set variables share the same universe (usually denoted U). It is
future work to introduce bounded quantification as well as individual initial
domains. In (6), we introduce an additional set variable I and state that
any value that is in both S and T must be in I and vice versa by a universal
quantification over the elements in the universe. The primitive cardinality
constraint may then be stated on 1.

Actually, and as detailed in Paper C, we only consider a (complete)
subset of the usual connectives of second order logic. We do this since it
implies simpler expressions to define incremental algorithms for. In this
smaller language, the formula (6) may be modelled as:

AS3ITII((Va((z ¢ IVx € SAz € T)N(x € IVx ¢ SVa ¢ T)))AI| <m) (7)

Hence, (bi-)implication is removed from the language as well as negation.
Any formula expressed using those connectives is easily expressed without
them using standard transformation techniques. This is explained in more
detail in Paper C.

Now, given a formula F in 3SOL™, the penalty function of F is defined
inductively. For example, the penalty of a literal such as = € S (given
a specific value for z) with respect to a configuration k is 1 if = ¢ k(S)
and 0 otherwise. The penalty of the literal |I| < m with respect to k is
max(|k(I)| —m,0), i.e., the difference between the actual cardinality |k(I)]
and the maximum m if |k(I)| > m, and 0 otherwise. The penalty of a
conjunction ¢ A 1 is the sum of the penalties of ¢ and 1 respectively. The
penalty of a universal quantification Vz¢ is the sum of the penalties of ¢
with respect to every possible value for x. For disjunctions and existential
quantifications the sum operators are replaced by min operators.

Example 8 Let U = {a,b} and let k be the configuration for {S, 7T} such
that k(S) = k(T) = {a}. The penalty of (5) with respect to k is 1, since
there is one value that must be removed from S (or another value that must
be added to T') in order for S to be a strict subset of T.
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In order to incrementally evaluate the penalty function for a formula in
ISOL™ between different configurations, we represent the formulas in an
extended form of syntax trees that we call penalty trees. The penalty tree of
(5) is shown in Figure 8. The penalty for each subformula is stored in the

{0 = 1(0)}

{0 — 1(0)} 0

{(a) = 1(0), (b) — 0} {(a) — 0,(b) — 1} {(a) = 0,(b) = 1} {(a) — 1(0), (b) — 0}

Figure 8: Penalty tree of (5).

corresponding subtree. Hence, the penalty for the whole formula is stored
in the root node of the corresponding penalty tree. For the descendants
of nodes representing subformulas that introduce bound variables, we must
store the penalty with respect to every possible mapping of those variables.
For example, the child node of a node for a subformula of the form Vz¢ will
have a penalty stored for each u € Y. This is illustrated in the penalty tree
in Figure 8 in which the penalties with respect to the configuration & in
Example 8 are shown (disregard the numbers in parentheses at this point).
As can be seen, the penalty stored in the root node of the penalty tree is 1,
corresponding to the penalty of (5) with respect to k.

Assume that we change k into k' such that the only difference between k
and &’ is that the value a has been removed from S. To update the penalty
tree above (and hence to obtain the overall penalty with respect to k') we
only need to consider the paths leading from any leaf containing S to the
root node, and update the penalties for the nodes on those paths. The new
penalties of the affected nodes are shown in parentheses in Figure 8. As can
be seen, the penalty of (5) is now 0. Indeed, with respect to k', S is a strict
subset of T.

Paper C presents three functions for initialising and incrementally main-
taining penalty trees representing formulas in 3SOL™. These have been im-
plemented in OCaml and make it possible to model (global) set constraints
in 3SOL™ that may be used in the framework presented in Paper B.

4 Conclusion
In this thesis we present tools for simplifying and improving the modelling

and solving of combinatorial (optimisation) problems. Although since long,
much has been done in this area, there is still a long path to tread before
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we reach the holy grail of computing: The user specifies the problem in his
or her favourite language and the computer solves it.

The ESRA language is a step in this direction since it implies the speci-
fication of combinatorial problems at a very high level, thereby shifting the
burden of designing efficient algorithms for a given problem from the user
to the solver designer. In constraint programming, this has been already
partly achieved by the existence of powerful global constraints for effec-
tively shrinking the search space of an application. However, there are still
many aspects to consider when modelling a given problem. For example,
many problems require the user to deal with issues such as symmetry and
implied constraints. This is far from trivial and requires lots of practice;
even experts miss possible deductions. By using the ESRA language, ex-
pert knowledge, heuristics, and modelling tricks may be introduced in the
solvers/compilers and thereby letting everybody take advantage of expert
solving knowledge without having to know more about it than being able to
specify their problems in that language.

In order to translate ESRA models into current constraint programming
languages, it is important that these languages provide a broad range of
constructs such that the translation process is not hindered. For example,
having many global constraints at one’s disposal is a good thing, since this
makes it possible to produce more varied problem models with perhaps
different levels of efficiency. Having different kinds of domain variables at
one’s disposal is also positive, due to similar reasoning.

As has been discussed in this thesis, the constructive search area of CP
has traditionally been the more active area of research in the community.
Many different solvers have been proposed and implemented for different
kinds of domains, and much research has been performed in order to come
up with efficient filtering algorithms for numerous global constraints. The
local search area is still slightly behind in the number of different tools
that are available and, until now, set variables and set constraints have not
existed in local search solvers.

The introduction of set variables in local search may lead to more intu-
itive and simpler problem models, provides the user with a richer set of tools,
and implies more preserved structure in underlying solving algorithms such
as the incremental algorithms for maintaining penalties. Furthermore, the
translation of ESRA models into set-based models may now be done without
taking the actual search procedure into account. Hence, the impact of the
chosen search procedure on translated ESRA models may now be compared
also for set variables, a comparison having only been possible earlier for
scalar variables.

When ESRA models are translated into set-based local search models,
since the number of available constraints are still limited, we may have to
come up with new constraints. As said in Section 3.2, this poses difficulties
both in terms of defining the actual penalty function for the new constraint
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and implementing an incremental algorithm for the same. The introduced
scheme based on ISOL™ is a solution to this problem. With this scheme it
is possible to experiment with a modelled version of a new constraint before
actually implementing a perhaps more efficient incremental algorithm for it
compared to the one automatically derived by the system.
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A  Grammar of ESRA

Model
(Model) — (Decl) (Objective)

Declarations

(Decl) — (DomDecl) | (CstDecl) | (VarDecl) | (Decl) (Decl)

Domain Declarations

(DomDecl) — dom (Id)
| dom (Id) = (Expr)

Constant Declarations

(CstDecl) — cst(Id) : (Expr)
| cst (Id) = (Expr) : (Expr)

Variable Declarations

(VarDecl) — var (Id) : (Expr)

Objectives

(Objective) — solve (Expr)
] minimise (Expr) such that (Expr)
] maximise (Expr) such that (Expr)

Expressions

(Expr) — (Name) | (Appl) | (Tuple) | (NumExpr)
| (SetExpr) | (Formula)

(Appl) —  (Expr) (Expr)
(Tuple) — ((Exprs))
(Exprs) — (Expr)| (Expr), (Exprs)

Numeric Expressions

(NumExpr) — (Int)

| inf

| sup

| (Expr) (ArithBinOp) (Expr)

| (ArithUnaryOp) (Expr)

| card (Expr)

| sum ( (QuantExpr)) ( (Expr))
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(Int)

(Nat)

— (Nat) |

-(Nat)

— (Digit) | (Digit) (Nat)

(Digit) —0|1]2|3]4|5|6|7|8|9

Set Expressions

(SetExpr)

(SvarDecls)

(SetOp)

Formulas

(Formula)

|
|
|
|
|
(QuantExpr)

(QvarDecls)

—

—

—

int | nat
{3
{ (Exprs) }
<Expr> .. (Expr)
{ (Expr) | (SvarDecls)
{ (Expr) | (SvarDecls)
(Expr) [ (Expr)]
(Expr) (SetOp) (Expr)

}
| (Expr)}

(LclVarDecl)
(LelVarDecl) /\ (SvarDecls)

[ (Expr) # (Expr) ]
[ (Expr) #]

(# (Expr) ]

[#]

[-> (Expr) ]

[->]

->

[+> (Expr) ]

[+>]

+>

— true| false

(Expr) (BoolBinOp) (Expr)
(Expr) (RelOp) (Expr)
forall ((QuantExpr)) ((Expr))
exists ((QuantExpr))

count ( (Expr)) ((QuantExpr) )

(QvarDecls)
(QvarDecls) | (Expr)

(LclVarDecl)
(LclVarDecl), (QvarDecls)
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(LclVarDecl) —  (Qvars) : (Expr)

(Qvars) — (Expr) | (Expr) & (Qvars)

Identifiers

(Name) — (Id)
| ’(ASCII)?

(ASCII) — Any sequence of displayable ASCII characters.

(Id) — (Letter)
] (Letter) (DigitsLetters)

(Ids) — (Id)
\ (Id), (Ids)

(Letter) — A|...|Z|a|...|z

(DigitsLetters) —  ((Digit) | (Letter) | _)
| ((Digit) | (Letter) | _) (DigitsLetters)

Operators
Relational Operators

(RelOp) — <] =<| =| >=| >| 1=
Arithmetic Operators

(ArithBinOp) — +|-|*|/|%

(ArithUnaryOp) — -] abs

Boolean Operators

(BoolBinOp) — /\|\/]|=>|<=]|<=>

B Denotational Semantics of ESRA

First of all, we define some basic sets such as the set Z of integers, the set N
of natural numbers, the set B of booleans, and the set A of identifiers/names.
We also define the set T of valid tuples, i.e., the set of tuples that may appear
as atomic entities in the sets and relations of ESRA.

e Z = {..,-1,01,...}
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o N

{0,1,...}
e B = {true, false}

e A = a—2A—Z]"a—2A—-20—-9]"UASCII*, where ASCII is
any displayable ASCII character.

o T = (ZUA)™

0

iCg

The grammar in Appendix A defines the syntactic domains of ESRA. We
will here refer to those domains by using the names of their grammatical
nonterminals. For example, NumFxpr is the set of syntactically correct
numerical expressions, Formula is the set of syntactically correct formulas,
and so on.

In order to reason about decision variables, we introduce a set of uni-
verses Universe of bindings. For a given decision variable z in the domain
of an element U € Universe, U contains all possible bindings for .

An environment I' is a mapping from identifiers to values. The domain
of an environment is always a subset of A. We denote the set of all environ-
ments by Environment.

Model

A model consists of a sequence of domain-, constant-, and decision-variable
declarations, followed by an objective. Evaluating a model means evaluating
the objective under the environment defined by the domain- and constant
declarations and the universe defined by the decision-variable declarations.
We define the function M with the following signature:

M : Model *x Environment x Universe — 2Environment

Hence, M takes as arguments an element of the syntactic domain Model
(consisting of a declarations part and an objective part), an environment,
and a universe, and returns a set of environments E. Each element in F
contains bindings of all decision variables in the model with respect to the
objective.

M[didy -+ dmvi -+ vy oY = O[[o]]zfl;

where I'y = D[d1]r, T2 = D[da]r,, - . -, D = Pldm]r,,_, and Uy = V[v1]¥ |
Up = Vol | o Uy = Vva]
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Domain- and Constant Declarations

Evaluating a domain- or constant declaration means adding a binding for
an identifier to a given environment. We define the function D with the
following signature:

D : DomDecl U CstDecl x Environment — Environment

Hence, D takes as arguments an element d of DomDecl U CstDecl and an
environment I', and returns an environment I, where IV is an extension of

I' with the binding defined by d added.
Dldom z =s]r = {z— S[s|r}uT

Dlest x =5l : 2]y = {z+— S[sl]r}uUTl

Decision Variable Declarations

Evaluating a decision variable declaration means adding a binding for each
possible value of the decision variable to a given universe. We define the
function V with the following signature:

V : VarDecl x Environment x Universe — Universe

Hence, V takes as arguments an element v of VarDecl, an environment, and
a universe U/, and returns a universe ', where U/’ is an extension of U with

the bindings defined by v added.

Vlvar z : sff = {x—s|seS[slr}uld

Objectives

Evaluating an objective means finding bindings to a set of decision variables
such that a boolean formula is satisfied (and possibly such that a numeri-
cal expression is optimised). We define the function O with the following
signature:

O : Objective * Environment ¥ Universe — 2Fnmvironment

Hence, O takes as arguments an element o of Objective, an environment
I', and a universe U, and returns a set of extensions E of I', with decision
variable bindings taken from U, such that for each v € E, the boolean
formula in o is satisfied (and possibly such that the numerical expression in
o is optimised).

Ofsolve b} = {Tuy |y CU A E[b]ruy}

27



O[minimise a such that b[¥ =
{Tuy |vCU A Eb]ruy A
\V/’)// cu (5[[b]]FU'y’ = g[[a]]FU’y < g[[a]]FU’y’)}
O[maximise a such that b [ =
Uy |yCU A gﬂb]]ruv A
vy CU (E[blruy = Elalruy > Elalruy)}

Expressions

The meaning of evaluating an expression depends on its type. We define the
function £ with the following signature:

& : Expr « Environment — T U 2T U 22 UB

Hence, £ takes as arguments an element of the syntactic domain Expr and
an environment, and returns, depending on the type of the expression, a
tuple, a set of tuples, a set of sets of tuples, or a boolean value.”

I'(e) if e € Name and e € domain(I")
Cle]lr if e € Name and e ¢ domain(I")
Ale]r if e e Appl

Elelr = S T[e]r ife € Tuple

Nlelr if e € NumEzpr

S[e]r if e € SetExpr

Fle]r if e € Formula

Names

ClaJr = a, foralla € A

Applications

The meaning of evaluating a function- or relation application depends on the
type of the function/relation and of the argument. We define the function
A with the following signature:

A : Appl x Environment — T UB

Hence, A takes as arguments an element of Appl and an environment, and
returns a tuple or a boolean value; a boolean value would be the result of a
relation application.

“From this, one may believe that sets of sets are allowed as values in ESRA. However,
some of the expressions (such as the ones in 22T) are reserved for denoting domains of
decision variables and, hence, the actual values of those variables would be members of
the domains, e.g., a relation.
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Aler e2]r = Eler]réez]r

Tuples

The meaning of evaluating a tuple expression depends on the types of its
members. We define the function 7 with the following signature:

T : Tuple x Environment — T

Hence, 7 takes as arguments an element of Tuple and an environment, and
returns a tuple of evaluated values.

T[Cei,....ed]r = (Ele1]r,-- - ,Elen]r)

Numeric Expressions

Evaluating a numeric expression means evaluating a numeric constant, or
evaluating the argument(s) of some operator and to apply the operator to the
resulting value(s). We define the function N with the following signature:

N : NumEzpr * Environment — Z

Hence, N takes as arguments an element of the syntactic domain NumFExpr
and an environment, and returns an integer value.

N[nlr = n,foralln €Z

N[inf]r = —o0

Nsup]r = oo

Nla1 + az]r = Efailr + E[az]r

Nla1 - a2]r = EJair — &[az]r

Nla1 *x az2]r = Efai]r - E[az]r

Nla1 /7 a]r = [E[a1]r / E[az]r], integer division.
Nla1 % a2]r = E[ai]r % E[az]r, integer remainder.
Nl-a]r = —€[a]r

Nabs a]r = |€[a]r|, absolute value of an integer.
Ncard s]r = |€][s]r|, cardinality of a set.

The sum quantifier below ranges over a set E of environments defined by a
member q of QuantEzpr. For each member in E, the numerical expression
defined by a member a of NumEzpr is evaluated and the result is the sum
of all those.

Nsum (@ @]r = > (€]a]ruy)

v€Q[alr
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Set Expressions
Evaluating a set expression means evaluating either:
e a given set such as the set of integers or the empty set.
e the elements of an enumerated set of values.
e an integer range expression.
e a set comprehension expression.
e a relation domain expression.

We define the function S with the following signature:
S : SetExpr « Environment — 2T U 22"

Hence, S takes as arguments an element of SetFxpr and an environment,
and returns a set of tuples or a set of sets of tuples.

S[[int]]p =7
S[nat]r = N
S[{}r =0

S[{e1,..-,enXr = {€[e1]r, ... ,Elen]r}
Slar..afr = {z€Z | E[a1]r < = < E[az]r}

S[[{e |1‘11&-"&x1k : 51/\”-/\.%”1&'”& Tpy ¢ Sn}]]p =
{Elelruy | v € Qlz1,& - &x1, : S, ., Tp & & Ty, : ST}

S[{e lz1,& --&x1, : s1/\---/\xp, & - & xp, : sp | B}p =
{Elelruy | v € Qlw1,& - &x1, : S1,...,Tp & & Xy, : Sn | b1}

S[s1 # s2]r = E[s1]rxE[s2]r

S[s Iml]r = {s | sCE&[s]r A |s| € E[m]r}, when m € SetEzpr.

S[s Iml]r = {s | sC &[s]r A |s| = E[m]r}, when m € NumEzxpr.
For the rules below, let m(R, S1, M, S2)) denote the boolean expression:

Vee Si:({z €S2 | R(z,2)} € M)

when M denotes a set of values, and the boolean expression:

Ve e S : ({z€S2| R(x,2)}| = M)
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when M denotes an integer value.

S[s1 [mi#my] spr =
{R - 8H51]]FX8[[SQ]]F ‘ m(R,S[[Slﬂr,gﬂml]]r,g[[sﬂ]r) A
m(R.E[s2]r.E[m2]r.Es1]r)}

S[[Sl [m#] Sz]]p =
{R C 5[[51]]p Xg[[SQ]]F ’ m(R,E[[Sl]]r,g[[m]]r,g[[Sz]]r) A
m(R,g[[SQ]]F,N,E[[Sl]]F)}

S[s1 [#m] sp]r =
{R C S[[sﬂ]p Xg[[SQ]]F ‘ m(R,g[[Sl]]F,N,S[[S2]]F) VAN
m(R,E[s2]r,E[m]r,Es1]r)}

S[[Sl [#] S2]]F =
{R C 5[[51}]1* XE[[Sz]]I‘ | m(R,g[[Slﬂ[‘,N,g[[S2]][‘) N
m(R,g[[SQ]]F,N,S[[Sl]]F)}

S[[Sl [->m] 52]]1" =
{R - Sﬂslﬂrxf[[sz]]p ‘ m(R,g[[Sl]]p,{l},g[[Sz]]p) A\
m(R.E[s2]r,E[m]r,Es1]r)}

S[s1 [->]1 so]r =
{R g 5[[51]]r><5[[52]]r | m(R,g[[Slﬂr,{l},g[[SQ]]p) A
m(R,S[[sz]]p,N,S[[sl]]p)}

S[[Sl =-> Sg]]p =
{R - 5[[5]_]]1"X5[[52]]1" ’ m(R,S[[sl]]p,{l},S[[sz]]r) AN
m(R,5H52HF,N,6H51HF)}

S[[Sl [+>m] SQ]]F =
(R C EsilrxEsalr | m(R.E[s1]r 40, 11.E[s:]r) A
m(R,E[s2]r,E[m]r.Es1]r) }

S[s1 [+>] sp]r =
{R C &[s1]rx&[s2]r | m(R,E[s1]r,{0,1},E[s2]r) A
m(R,g[[S2]]F,N,5[[Sl]]F)}

S[s1 +> s2r =
(R C E[s1]rxE[s2]r | m(R.E[s1]r,{0, 1}.Es2]r) A
m(R,S[[SQ]]F,N,E[sl]]p)}

31



Formulas

Evaluating a formula means evaluating a boolean constant, or evaluating the
arguments of some relation- or boolean operator and to apply the operator to
the resulting values. We define the function F with the following signature:

F : Formula x Environment — B

Hence, F takes as arguments an element of the syntactic domain Formula
and an environment, and returns either true or false.

Fltrue]r = true

Fltalse]r = false

Flby /\ bo]r = Ebalr A E[ba]r
Flby \/ bolr = Ebalr v Elbalr
Flby => bo]r = E[balr = E[bolr
Flbr <=bolr = E[ba]r < Elbolr
Flb1 <=> bo]r = E[bi]r & E[ba2]r
Flai < az]r = &[a1]r < Elaz]r
Flai =< az]r = E[a1]r < E[az]r
Flai = a2]r = &[ai]r = E[az]r
Flai >=a]r = Eailr > Efar]r
Fla1 > a]r = E[ar]r > Eaz]r
Fla '= a2]r = Efa1]r # E[az]r

The forall quantifier ranges over a set E of environments defined by a
member q of QuantFExpr. Evaluating the formula b with a member of F
as an extension of a given I' must evaluate to true for all members of F in
order for the whole expression to evaluate to true.

Flforall () (M) ]r = Vv e Q[a]r(E[b]ruy)

The exists quantifier ranges over a set E of environments defined by a
member q of QuantEzpr. In order for the expression to evaluate to true, the
size of F must be larger than 0.
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Flexists (PD]r = |Q[a]r| >0

The count quantifier is a generalisation of the exists quantifier. Hence, it
ranges over a set F of environments defined by a member q of QuantEzpr.
In order for the expression to evaluate to true, the size of E must be in the
set of integers defined by a member s of SetExpr.

Fleount () (D]r = |Q[a]r| € E[s]r

Quantification

Evaluating a quantified expression means generating a set of environments
that is used in, e.g., a forall quantification. We define the function Q with
the following signature:

. Environment
Q : QuantEzpr = Environment — 2

Hence, Q takes as arguments a member of QuantExpr and an environment,
and returns a set of environments.

Olx1,& - -&x1, : S15-- s T & & T, : Sn]r =
Hz1, — e, .z, — e, .. Ty — enyyoen, Ty et |
(€1y5...,€1,) € (Elsa]r)* A~ A (Enys---r€n) € (Esn]r)'}

Olx1,& - -&x1, : S15..-»Tp & & Ty, : Sn | bp =

{Hz1, — ey, .,z — €1, o oyTny — €nyyen, Ty €0y} |
(€1y5...,€1,) € (Elsi]r)* A= Ay, - -, en,) € (Esn]r)!A
g[[b]]FU{xll €1y, L1y P €1y By P €ng e, Ly enl}}

For the rules below, let ¢ € {<, =<, > >= = 1=} and let R be the function

defined by the set of mappings: {(< —<),(=< —<),(> —=>),(>= —>), (=

—=), (1= ~A)}

Qlr o y :s|pr =
{x—e1,y—ea} | (e1,e2) € (E[s]r)? A e1 R(¢) ez }

Oz o y : s | bjp =
{Hz e,y e} | (e1,e2) € (E[s]r)? A e1 R(o) e2 A
g[[b]]FU{xHel,yHez}}

Qr o e:sr = {{x—e} |ec&[s|r N e R(¢) E[e]r}

Oz o e:s | bjp =
{{z—e} [ee€llslr A eR(o) Elefr A E[blrugoey}

Qle oy :slr = {{y—e} |eclslr A EleJr R(o) e}
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Qe o y :s | b]p =
H{y—et le€lls]r A Ele]r R(0) e A E[blrugy—ey}

Q[[el O oep S]]F = @

Q[[el<>6225|b]]FE®
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Abstract. Current-generation constraint programming languages are
considered by many, especially in industry, to be too low-level, diffi-
cult, and large. We argue that solver-independent, high-level relational
constraint modelling leads to a simpler and smaller language, to more
concise, intuitive, and analysable models, as well as to more efficient
and effective model formulation, maintenance, reformulation, and veri-
fication. All this can be achieved without sacrificing the possibility of
efficient solving, so that even time-pressed or less competent modellers
can be well assisted. Towards this, we propose the ESRA relational con-
straint modelling language, showcase its elegance on some well-known
problems, and outline a compilation philosophy for such languages.

1 Introduction

Current-generation constraint programming languages are considered by many,
especially in industry, to be too low-level, difficult, and large. Consequently,
their solvers are not in as widespread use as they ought to be, and constraint
programming is still fairly unknown in many application domains, such as molec-
ular biology. In order to unleash the proven powers of constraint technology and
make it available to a wider range of problem modellers, a solver-independent,
higher-level, simpler, and smaller modelling notation is needed.

In our opinion, even recent commercial languages such as opL [31] do not go
far enough in that direction. Many common modelling patterns have not been
captured in special constructs. They have to be painstakingly spelled out each
time, at a high risk for errors, often using low-level devices such as reification.

In recent years, modelling languages based on some logic with sets and re-
lations have gained popularity in formal methods, witness the B [1] and z [29]
specification languages, the ALLOY [16] object modelling language, and the Ob-
ject Constraint Language (OCL) [35] of the Unified Modelling Language (UML)
[27]. In semantic data modelling this had been long advocated; most notably via
entity-relationship-attribute (ERA) diagrams.

* A previous version of this paper appears pages 6377 in the informally published pro-
ceedings of the Second International Workshop Modelling and Reformulating CSPs,
available at http : //www — users.cs.york.ac.uk/"frisch/Reformulation/03/

** The authors’ names are ordered according to the Swedish alphabet.

M. Bruynooghe (Ed.): LOPSTR 2004, LNCS 3018, pp. 214-232, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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Sets and set expressions started appearing as modelling devices in some con-
straint languages. Set variables are often implemented by the set interval repre-
sentation [13]. In the absence of such an explicit set concept, modellers usually
painstakingly represent a set variable by its characteristic function, namely as a
sequence of 0/1 integer variables, as long as the size of the domain of the set.

Relations have not received much attention yet in constraint programming
languages, except total functions, via arrays. Indeed, a total function f can be
represented in many ways [15], say as a 1-dimensional array of variables over
the range of f, indexed by its domain, or as a 2-dimensional array of Boolean
variables, indexed by the domain and range of f, or as a 1-dimensional array
of set variables over the domain of f, indexed by its range, or even with some
redundancy. Other than retrieving the (unique) image under a total function of
a domain element, there has been no support for relational expressions.

Matrix modelling [8, 10, 31] has been advocated as one way of capturing com-
mon modelling patterns. Alternatively, it has been argued [11, 15] that functions,
and hence relations, should be supported by an abstract datatype (ADT). It is
then the compiler that must (help the modeller) choose a suitable representa-
tion, say in a contemporary constraint programming language, for each instance
of the ADT, using empirically or theoretically gained modelling insights.

We here demonstrate, as originally conjectured in [9], that a suitable first-
order relational calculus is a good basis for a high-level, ADT-based, and solver-
independent constraint modelling language. It gives rise to very natural and
easy-to-maintain models of combinatorial problems. Even in the (temporary)
absence of a corresponding high-level search language, this generality does not
necessarily come at a loss in solving efficiency, as abstract relational models are
devoid of representation details so that the results of analysis can be exploited.

Our aims here are only to justify and present our new language, called ESRA,
to illustrate its elegance and the flexibility of its models by some examples, and
to argue that it can be compiled into efficient models in lower-level (constraint
programming) languages. The syntax, denotational semantics, and type system
of the proposed language are discussed in full detail in an online appendix [12]
and a second prototype of the advocated compiler is under development.

The rest of this paper is organised as follows. In Section 2, we present our
relational language for modelling combinatorial problems and deploy it on three
real-life problems before discussing its compilation. This allows us to list, in
Section 3, the benefits of relational modelling. Finally, in Section 4, we conclude
as well as discuss related and future work.

2 Relational Constraint Modelling with ESRA

In Section 2.1, we justify the design decisions behind our new ESRA constraint
modelling language, targeted at constraint programmers. Then, in Section 2.2,
we introduce its concepts, syntax, type system, and semantics. Next, in Sec-
tion 2.3, we deploy ESRA on three real-life problems. Finally, in Section 2.4, we
discuss the design of our prototype compilers for ESRA.
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2.1 Design Decisions

The key design decisions for our new relational constraint modelling language —
called ESRA for Executable Symbolism for Relational Algebra — were as follows.

We want to capture common modelling idioms in a new abstract datatype
for relations, so as to design a high-level and simple language. The constructs of
the language are orthogonal, so as to keep the language small. Computational
completeness is not aimed at, as long as the language is useful for elegantly
modelling a large number of combinatorial problems.

We focus on finite, discrete domains. Relations are built from such domains
and sets are viewed as unary relations. Theoretical difficulties are sidestepped
by supporting only bounded quantification, but not negation nor sets of sets.

The language has an ASCII syntax, mimicking mathematical and logical
notation as closely as possible, as well as a W TEX-based syntax, especially used
for pretty-printing models in that notation.

2.2 Concepts, Syntax, Type System, and Semantics of ESRA

For reasons of space, we only give an informal semantics. The interested reader
is invited to consult [12] for a complete description of the language. Essentially,
the semantics of the language is a conservative extension of existential second-
order logic. Existential quantification of relations is used to assert that relations
are to be found that satisfy sets of first-order constraints. This is in contrast
with extensions of logic programming [6,25] where second-order relations can
be specified recursively using Horn clauses, which needs a much more careful
treatment of the fixed-point semantics.

Code excerpts are here provided out of the semantic context of any particular
problem statement, just to illustrate the syntax, but a suggested reading in plain
English is always provided. In Section 2.3, we will actually start from plain
English problem statements and show how they can be modelled in ESRA. Code
excerpts are always given in the pretty-printed form, but we indicate the ASCII
notation for every symbol where it necessarily differs.

An ESRA model starts with a sequence of declarations of named domains
(or types) as well as named constants and decision variables that are tied to
domains. Then comes the objective, which is to find values for the decision vari-
ables within their domains so that some constraints are satisfied and possibly
some cost expression takes an optimal value.

The Type System. A primitive domain is a finite, extensionally given set of
new names or integers, comma-separated and enclosed as usual in curly braces.
An integer domain can also be given intensionally as a finite integer interval,
by separating its lower and upper bounds with ‘...” (denoted in ASCII by ‘. .’),
without using curly braces. When these bounds coincide, the corresponding sin-
gleton domain n...n or {n} can be abbreviated to n. Context always determines
whether an integer n designates itself or the singleton domain {n}. A domain
can also be given intensionally using set comprehension notation.
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The only predefined primitive domains are the sets N (denoted in ASCII by
‘nat’) and Z (denoted in ASCII by ‘int’), which are ‘0...sup’ and ‘inf...sup’
respectively, where the predefined constant identifiers ‘inf” and ‘sup’ stand for the
smallest negative and largest positive representable integers respectively. User-
defined primitive domains are declared after the ‘dom’ keyword and initialised
at compile-time, using the ‘=’ symbol, or at run-time, via a datafile, otherwise
interactively.

Ezample 1. The statement
dom Varieties, Blocks

declares two domains called Varieties and Blocks that are to be initialised at run-

time. As in OPL [31], this neatly separates the problem model from its instance

data, so that the actual constraint satisfaction problem is obtained at run-time.
Similarly, the statement

dom Players =1...g%s, Weeks=1...w, Groups=1...g

where g, s, w are integer-constant identifiers (assumed previously declared, in a
way shown below), declares integer domains called Players, Weeks, and Groups
that are initialised at compile-time.

Finally, the declaration

dom Even ={i]4:0...100 | i % 2 =0}
initialises the domain Fven of all even natural numbers up to 100.

The usual binary infix x constructor (denoted in ASCII by ‘#’) allows the
construction of Cartesian products.

The only constructed domains are relational domains. In order to simulta-
neously capture frequently occurring multiplicity constraints on relations, we
offer a parameterised binary infix x domain constructor. The relational domain
A Mix Mz B where A and B are (possibly Cartesian products of) primitive do-
mains, designates a set of binary relations in A x B. The optional M; and Ms,
called multiplicities, must be integer sets and have the following semantics: for
every element a of A, the number of elements of B related to a must be in My,
while for every element b of B, the number of elements of A related to b must
be in My '. An omitted multiplicity stands for N.

Ezample 2. The constructed domain
Varieties "x* Blocks

designates the set of all relations in Varieties x Blocks where every variety occurs
in exactly r blocks and every block contains exactly k varieties. These are two
occurrences where an integer abbreviates the singleton domain containing it.

! Note that our syntax is the opposite of the UML one, say, where the multiplicities are
written in the other order, with the same semantics. That convention can however
not be usefully upgraded to Cartesian products of arity higher than 2.
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In the absence of such facilities for relations and their multiplicities, a re-
lational domain would have to be modelled using arrays, say. This may be a
premature commitment to a concrete data structure, as the modeller may not
know yet, especially prior to experimentation, which particular (array-based)
representation of a relational decision variable will lead to the most efficient
solving. The problem constraints, including the multiplicities, would have to be
formulated in the constraints part of the model, based on the chosen represen-
tation. If the experiments revealed that another representation should be tried,
then the modeller would have to first painstakingly reformulate the declaration
of the decision variable as well as all its constraints. Our ADT view of relations
overcomes this flaw: it is now the compiler that must (help the modeller) choose
a suitable representation for each instance of the ADT by using empirically or
theoretically gained insights. Also, multiplicities need not become counting con-
straints, but are succinctly and conveniently captured in the declaration.

We view sets as unary relations: A M, where A is a domain and M an integer
set, constructs the domain of all subsets of A whose cardinality is in M. The
multiplicity M is mandatory here; otherwise there would be ambiguity whether
a value of the domain A is an element or an arbitrarily sized subset of A.

For total and partial functions, the left-hand multiplicity M; is 1...1 and
0...1 respectively. In order to dispense with these left-hand multiplicities for
total and partial functions, we offer the usual — and #/— (denoted in ASCII
by ‘=>” and ‘+>’) domain constructors respectively, as shorthands. They may still
have right-hand multiplicities though.

For injections, surjections, and bijections, the right-hand multiplicity Ms is
0...1, 1...sup, and 1...1 respectively. Rather than elevating these particular
cases of functions to first-class concepts with an invented specific syntax in ESRA,
we prefer keeping our language lean and close to mathematical notation.

Ezample 3. The constructed domain
(Players x Weeks) —*** Groups

designates the set of all total functions from Players x Weeks into Groups such
that every group is related to exactly sw (player,week) pairs.

We provide no support (yet) for bags and sequences, as relations provide
enough challenges for the time being. Note that a bag can be modelled as a total
function from its domain into N, giving the repetition count of each element.
Similarly, a sequence of length n can be modelled as a total function from 1...n
into its domain, telling which element is at each position. This does not mean
that the representation of bags and sequences is fixed (to the one of total func-
tions), because, as we shall see in Section 2.4, the various relations (and thus
total functions) of a model need not have the same representation.

Modelling the Instance Data and Decision Variables. All identifier dec-
larations are strongly typed and denote variables that are implicitly universally
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quantified over the entire model, with the constants expected to be ground before
search begins while the decision variables can still be unbound at that moment.

Like the user-defined primitive domains, constants help describe the instance
data of a problem. A constant identifier is declared after the ‘cst’ keyword and
is tied to its domain by ‘:’, meaning set membership. Constants are initialised
at compile-time, using the ‘=" symbol, or at run-time, via a datafile, otherwise
interactively. Again, run-time initialisation provides a neat separation of problem

models and problem instances.

Ezample 4. The statement
cst ok, A N

declares three natural number constants that are to be initialised at run-time.
As already seen in Examples 2 and 3, the availability of total functions makes
arrays unnecessary. The statement

cst CrewSize : Guests — N, SpareCap : Hosts — N
declares two natural-number functions, to be provided at run-time.

A decision-variable identifier is declared after the ‘var’ keyword and is tied
to its domain by :’.

Ezample 5. The statement
var BIBD : Varieties "x* Blocks

declares a relation called BIBD of the domain of Example 2.

Modelling the Cost Expression and the Constraints. Ezpressions and
first-order logic formulas are constructed in the usual way.

For numeric expressions, the arguments are either integers or identifiers of the
domain N or Z, including the predefined constants ‘inf’ and ‘sup’. Usual unary
(—, ‘abs’ for absolute value, and ‘card’ for the cardinality of a set expression),
binary infix (4, —, %, / for integer quotient, and % for integer remainder), and
aggregate (D, denoted in ASCII by ‘sum’) arithmetic operators are available. A
sum is indexed by local variables ranging over finite sets, which may be filtered
on-the-fly by a condition given after the ‘|’ symbol (read ‘such that’).

Sets obey the same rules as domains. So, for set expressions, the arguments
are either set identifiers or (intensionally or extensionally) given sets, including
the predefined sets N and Z. Only the (unparameterised) binary infix domain
constructor x and its specialisations — and /— are available as operators.

Finally function expressions are built by applying a function identifier to an
argument tuple. We have found no use yet for any other operators on functions
(but see the discussion of future work in Section 4).

Ezample 6. The numeric expression

Z CrewSize(g)

g:Guests | Schedule(g,p)=h
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denotes the sum of the crew sizes of all the guest boats that are scheduled to
visit host h at period p, assuming this expression is within the scope of the local
variables h and p. The nested function expression CrewSize(g) stands for the
size of the crew of guest g, which is a natural number according to Example 4.

Atoms are built from numeric expressions with the usual comparison predi-
cates, such as the binary infix =, #, and < (denoted in ASCII by ‘=’, ‘!=", and
‘=<’ respectively). Atoms also include the predefined ‘true’ and ‘false’, as well as
references to the elements of a relation. We have found no use yet for any other
predicates. Note that ‘€’ is unnecessary as x € S is equivalent to S(z).

Ezample 7. The atom BIBD(v1,1) stands for the truth value of variety v; being
related to block i in the BIBD relation of Example 5.

Formulas are built from atoms. The usual binary infix connectives (A, V, =,
<, and <, denoted in ASCII by /\’, ‘\/’, ‘=>’, ‘<=’ and ‘<=>" respectively) and
quantifiers (V and 3, denoted in ASCII by ‘forall’ and ‘exists’ respectively) are
available. A quantified formula is indexed by local variables ranging over finite
sets, which may be filtered on-the-fly by a condition given after the ‘|’ symbol
(read ‘such that’). As we provide a rich (enough) set of predicates, we are only
interested in models that can be formulated positively, and thus dispense with
the negation connective. The usual typing and precedence rules for operators
and connectives apply. All binary operators associate to the left.

Ezample 8. The formula

Y(p : Periods, h: Hosts) Z CrewSize(g) | < SpareCap(h)
g:Guests | Schedule(g,p)=h

constrains the spare capacity of any host boat h not to be exceeded at any period
p by the sum of the crew sizes of all the guest boats that are scheduled to visit
host h at period p.

A generalisation of the 3 quantifier turns out to be very useful. We define
count( Multiplicity)(x : Set | Condition)

to hold if and only if the cardinality of the set comprehension {z : Set| Condition}
is in the integer set Multiplicity. So

I(x : Set | Condition)
is actually syntactic sugar for
count(1...sup)(z : Set | Condition)
Example 9. The formula

V(v1 < vy : Varieties) count(\)(j : Blocks | BIBD(v1,j) A BIBD(vs,j))
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says that each ordered pair of varieties v; and ve occurs together in exactly A
blocks, via the BIBD relation. Regarding the excerpt ‘v; < vy : Varieties’, note
that multiple local variables can be quantified at the same time, and that a
filtering condition on them may then be pushed across the ‘|” symbol.

Example 10. Assuming that the function Schedule is of the domain of Example 3
and thus returns a group, the formula

V(p1 < p2 : Players) count(0...1)(v : Weeks | Schedule(p1,v) = Schedule(pa,v))

says that there is at most one week where any ordered pair of players p; and po
is scheduled to play in the same group.

A cost expression is a numeric expression that has to be optimised. The con-
straints on the decision variables of a model are a conjunction of formulas, using
A as the connective. The objective of a model is either to solve its constraints:

solve Constraints
or to minimise the value of its cost expression subject to its constraints:
minimise CostExpression such that Constraints

or similarly for maximising. A model consists of a sequence of domain, constant,
and decision-variable declarations followed by an objective, without separators.

Ezxample 11. Putting together code fragments from Examples 1, 4, 5, and 9, we
obtain the model of Figure 2 two pages ahead, discussed in Section 2.3.

The grammar of ESRA is described in Figure 1. For brevity and ease of read-
ing, we have omitted most syntactic-sugar options as well as the rules for iden-
tifiers, names, and numbers. The notation (nt)s* stands for a sequence of zero
or more occurrences of the non-terminal (nt), separated by symbol s. Similarly,

<nt>8+ stands for one or more occurrences of (nt), separated by s. The typing
rules ensure that the equality predicates = and # are only applied to expres-
sions of the same type, that the other comparison predicates, such as <, are only
applied to numeric expressions, and so on.

2.3 Examples

We now showcase the elegance and flexibility of our language on three real-
life problems, namely Balanced Incomplete Block Designs, the Social Golfers
problem, and the Progressive Party problem.

Balanced Incomplete Block Designs. Let V' be any set of v elements, called
varieties. A balanced incomplete block design (BIBD) is a bag of b subsets of
V, called blocks, each of size k (constraint Ci), such that each pair of distinct
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(Model) ::= (Decl)* (Objective)

(Decly ::= (DomDecl) | (CstDecl) | { VarDecl)
(DomDecl) ::= dom (Id) [ = (Set) |

(CstDecl) ::= cst (Id) [ = (Tuple) | (Set) | : (SetExpr)
(VarDecl) ::= var (Id) : (SetExpr)

(Objective) ::= solve (Formula)

(Ezpr) := (Id) | (Name) | (Tuple) | (NumEzpr) | (SetExpr) | (FuncAppl) | ( (Expr) )

(NumEzpr) ::

(SetEzpr) ::= (Set) | (SetEzpr) [(Set)]

(Set)

(ComprEzpr) ::= (Expr) | ( (IdTuple)‘g‘Jr in (SetExpr) )/\+ [ | (Formula) ]
(FuncAppl) ::= (Id) (Tuple)

(Tuple) := ((Eacpr)’+) | (Ezpr)

(Formula) :

(RelAppl) ::= (Id) (Tuple)

(QuantExpr) = ( ( (RelQuars) | <I(1Tuple>&4r ) in (SetEzpr) ),+ [ | (Formula) |
(RelQuars) == (Ezpr) (< |=<|=|>=|>]| =) (Ezpr)

(IdTuple) == (Id) | ( {Id)>" )

(minimise | maximise ) (NumEzpr) such that (Formula)

= (Id) | (Int) | (Nat) | inf | sup | (FuncAppl)
| (NumEzxpr) (+|-|*1|/1|%) (NumEzpr)
| (-] abs) (NumEzxpr)

| card (SetExpr)

| sum ( (QuantEzpr) ) ( (NumExpr) )

| (SetExpr) ( [[(Set)|#[(Set)]1 | # ) (SetEzpr)

| (SetExpr) ( [->[(Set)]] | => | [+>[(Set)]]1 | +> ) (SetEzpr)

Id) | int | nat
(Tuple)s" } | { (ComprExzpr) }

=
| {
| (NumExpr)..(NumExzpr) | (NumEzpr)

= true | false | (RelAppl)

| (Formula) ( /\ | \/ | =>| <= <=>) (Formula)

| (NumBapr) (< | =< |= | >= | >| 1=) (NumBapr)
| forall ( (QuantEzpr) ) ( (Formula) )

| count ( (Set) ) ( (QuantEzpr) )

Fig. 1. The grammar of ESRA

varieties occurs together in exactly A blocks (Cs), with 2 < k < v. An implied
constraint is that each variety occurs in the same number of blocks (C3), namely

r

A(v —1)/(k — 1). A BIBD is parameterised by a 5-tuple (v,b,r, k,A) of
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dom Varieties, Blocks

cst rk, A N
var BIBD : Varieties "x* Blocks
solve

V(v1 < vz : Varieties) count(\)(j : Blocks | BIBD(v1,7) A BIBD(v2,j))
Fig. 2. A pretty-printed ESRA model for BIBDs

dom Varieties, Blocks
cst r, k, lambda : nat
var BIBD : Varieties [r#k] Blocks
solve
forall (vl < v2 : Varieties)
count (lambda) (j : Blocks | BIBD(v1,j) /\ BIBD(v2,j))

Fig. 3. An ESRA model for BIBDs

parameters. Originally intended for the design of statistical experiments, BIBDs
also have applications in cryptography and other domains. See Problem 28 at
http://www.csplib.org for more information.

The instance data can be declared as the two domains Varieties and Blocks, of
implicit sizes v and b respectively, as well as the three natural-number constants
r, k, and A, as in Examples 1 and 4. A unique relational decision variable,
BIBD, can then be declared as in Example 5, thereby immediately taking care
of the constraints C; and C3. The remaining constraint Cs can be modelled as
in Example 9. Figure 2 shows the resulting pretty-printed ESRA model, while
Figure 3 shows it in ASCII notation.

For comparison, an OPL [31] model is shown in Figure 4, where ‘= ...’ means
that the value is to be found in a corresponding datafile. The decision variable
BIBD is a 2-dimensional array of integers 0 or 1, indexed by the varieties and
blocks, such that BIBD[i,j] = 1 iff variety i is contained in block j. Further-
more, the constraints C; and C3, which we could capture by multiplicities in the
ESRA model, need here to be stated in more length. Finally, the constraint Cy
is stated using a higher-order constraint?: for each ordered pair of varieties v1
and v2, the number of times they appear in the same block, that is the number
of blocks j where BIBD(v1,j) = 1 = BIBD(v2,j) holds, must equal lambda.

In an OPL model, one needs to decide what concrete datatypes to use for
representing the abstract decision variables of the original problem statement.
In this case, we chose a 2-dimensional 0/1 array BIBD, indexed by Varieties
and Blocks. We could just as well have chosen a different representation, say (if
OPL had set variables) a 1-dimensional array BIBD, indexed by Blocks, of subsets
of Varieties. Such a choice affects the formulation of every constraint and the
cost expression, but is premature as even expert intuition is weak in predicting
which representation choice leads to the best solving efficiency. Consequently, the
modeller has to frequently reformulate the constraints and the cost expression

2 A higher-order constraint refers to the truth value of another constraint. In OPL, the
latter is nested in parentheses, truth is represented by 1, and falsity by 0.
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enum Varieties = ..., Blocks = ...;
int r = ...; int k = ...; int lambda = ...;
range Boolean 0..1;
var Boolean BIBD[Varieties,Blocks];
solve {
forall(j in Blocks) sum(i in Varieties) BIBD[i,j] = k;

forall(i in Varieties) sum(j in Blocks) BIBD[i,j] = r;
forall (ordered v1,v2 in Varieties)
sum(j in Blocks) (BIBD[vi,j] = 1 = BIBD[v2,j]) = lambda;

. symmetry-breaking code ...

Fig. 4. An orPL model for BIBDs

while experimenting with different representations. No such choices have to be
made in an ESRA model, making ESRA a more convenient modelling language.

As a consequence to such representation choices, one often introduces an as-
tronomical amount of symmetries into an OPL model that are not present in the
original problem statement [10]. For example, given a solution, any two rows
or columns in the array BIBD can be swapped, giving a different, but symmet-
rically equivalent, solution. Such symmetries need to be addressed in order to
achieve efficient solving. Hence, symmetry-breaking code [10, 32] would have to
be inserted, as indicated in Figure 4. Since such choices are postponed to the
compilation phase in ESRA (see Section 2.4), any symmetries consciously intro-
duced can be handled (automatically) in that process.

The Social Golfers Problem. In a golf club, there are n players, each of
whom plays golf once a week (constraint C7) and always in g groups of size s
(C2), hence n = gs. The objective is to determine whether there is a schedule of
w weeks of play for these golfers, such that there is at most one week where any
two distinct players are scheduled to play in the same group (C3). An implied
constraint is that every group occurs exactly sw times across the schedule (Cy).
See Problem 10 at http://www.csplib.org for more information.

The instance data can be declared as the three natural-number constants
g, s, and w, via ‘cst g,s,w : N’ as well as the three domains Players, Weeks,
and Blocks, as in Example 1. A unique decision variable, Schedule, can then be
declared using the functional domain in Example 3, thereby immediately taking
care of the constraints C; (because of the totality of the function) and Cy4. The
constraint C3 can be modelled as in Example 10. The constraint Cs can be stated
using the count quantifier, as seen in the pretty-printed ESRA model of Figure 5.

Note the different style of modelling sets of unnamed objects, via the separa-
tion of models from the instance data, compared to Figure 2. There we introduce
two sets without initialising them at the model level, while here we introduce
three uninitialised constants that are then used to arbitrarily initialise three
domains of desired cardinalities. Both models can be reformulated in the other
style. The benefit of such sets of unnamed objects is that their elements are indis-
tinguishable, so that lower-level representations of relational decision variables
whose domains involve such sets are known to introduce symmetries.
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cst g,s,w: N

dom Players =1...g%s, Weeks =1...w, Groups=1...g

var Schedule : (Players x Weeks) —°** Groups

solve
V(p1 < p2 : Players) count(0...1)(v : Weeks | Schedule(p1,v) = Schedule(p2,v))
A Y(h: Groups,v : Weeks) count(s)(p : Players | Schedule(p,v) = h)

Fig. 5. A pretty-printed ESRA model for the Social Golfers problem

dom Guests, Hosts, Periods

cst SpareCap : Hosts — N, CrewSize : Guests — N
var Schedule : (Guests X Periods) —» Hosts

solve

g:Guests | Schedule(g,p)=h
A V(g : Guests, h : Hosts) count(0...1)(p : Periods | Schedule(g,p) = h)
A V(g1 < g2 : Guests) count(0...1)(p : Periods | Schedule(g1,p) = Schedule(gz,p))

V(p : Periods, h : Hosts) < > CrewSize(g) | < SpareCap(h)

Fig. 6. A pretty-printed ESRA model for the Progressive Party problem

The Progressive Party Problem. The problem is to timetable a party at
a yacht club. Certain boats are designated as hosts, while the crews of the
remaining boats are designated as guests. The crew of a host boat remains
on board throughout the party to act as hosts, while the crew of a guest boat
together visits host boats over a number of periods. The spare capacity of any
host boat is not to be exceeded at any period by the sum of the crew sizes of
all the guest boats that are scheduled to visit it then (constraint Cy). Any guest
crew can visit any host boat in at most one period (C3). Any two distinct guest
crews can visit the same host boat in at most one period (Cj5). See Problem 13
at http://www.csplib.org for more information.

The instance data can be declared as the three domains Guests, Hosts, and
Periods, via ‘dom Guests, Hosts, Periods’, as well as the two functional constants
SpareCap and CrewSize, as in Example 4. A unique functional decision variable,
Schedule, can then be declared via ‘var Schedule : (Guests X Periods) — Hosts’.
The constraint C; can now be modelled as in Example 8. The constraints Cs
and C3 can be stated using the count quantifier, as seen in the pretty-printed
ESRA model of Figure 6.

2.4 Compiling Relational Models

A compiler for ESRA is currently under development. It is being written in OCAML
(http://www.ocaml.org) and compiles ESRA models into SICStus Prolog [5]
finite-domain constraint programs. Our choice of target language is motivated
by its excellent collection of global constraints and by our collaboration with its
developers on designing new global constraints.
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We already have an ESRA-to-OPL compiler [36,15], written in Java, for a
restriction of ESRA to functions, now called Functional-ESRA. That project gave
us much of the expertise needed for developing the current compiler.

The solver-independent ESRA language is so high-level that it is very small
compared to such target languages, especially in the number of necessary prim-
itive constraints. The full panoply of features of such target languages can,
and must, be deployed during compilation. In particular, the implementation
of decision-variable indices into matrices is well-understood.

In order to bootstrap our new compiler quickly, we decided to represent
initially every relational decision variable by a matrix of 0/1 variables, indexed by
its participating sets. This first version of the new compiler is thus deterministic.

The plan is then to add alternatives to this unique representation rule, de-
pending on the multiplicities and other constraints on the relation, achieving a
non-deterministic compiler, such as our existing Functional-ESRA-to-OPL com-
piler [36,15]. The modeller is then invited to experiment with her (real-life)
instance data and the resulting compiled programs, so as to determine which
one is the ‘best’. If the compiler is provided with those instance data, then it
can be extended to automate such experiments and generate rankings.

Eventually, more intelligence will be built into the compiler via heuristics
(such as those of [15]) for the compiler to rank the resulting compiled programs
by decreasing likelihood of efficiency, without any recourse to experiments. In-
deed, depending on the multiplicities and other constraints on a relation, certain
representations thereof can be shown to be better than others, under certain as-
sumptions on the targeted solver, and this either theoretically (see for instance
[33] for bijections and [15] for injections) or empirically (see for instance [28] for
bijections). We envisage a hybrid interactive/heuristic compiler.

Our ultimate aim is of course to design an actual solver for relational con-
straints, without going through compilation.

3 Benefits of Relational Modelling

In our experience, and as demonstrated in Section 2.3, a relational constraint
modelling language leads to more concise and intuitive models, as well as to more
efficient and effective model formulation and verification. Due to ESRA being
smaller than conventional constraint programming languages, we believe it is
easier to learn and master, making it a good candidate for a teaching medium.
All this could entail a better dissemination of constraint technology.

Relational languages seem a good trade-off between generality and specificity,
enabling efficient solving despite more generality. Relations are a single, pow-
erful concept for elegantly modelling many aspects of combinatorial problems.
Also, there are not too many different, and even standard, ways of representing
relations and relational expressions. Known and future modelling insights, such
as those in [15, 28, 33], can be built into the compilers, so that even time-pressed
or less competent modellers can benefit from them. Modelling is unencumbered
by early if not uninformed commitments to representation choices. Low-level
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modelling devices such as reification and higher-order constraints can be en-
capsulated as implementation devices. The number of decision variables being
reduced, there is even hope that directly solving the constraints at the high re-
lational level can be faster than solving their compiled lower-level counterparts.
All this illustrates that more generality need not mean poorer performance.

Relational models are more amenable to maintenance when the combina-
torial problem changes, because most of the tedium is taken care of by the
compiler. Model maintenance at the relational level reduces to adapting to the
new problem, with all representation (and solving) issues left to the compiler.
Very little work is involved here when a multiplicity change entails a preferable
representation change for a relation. Maintenance can even be necessary when
the statistical distribution of the problem instances that are to be solved changes
[22]. If information on the new distribution is given to the envisaged compiler,
a simple recompilation will take care of the maintenance.

Relational models are at a more suitable level for possibly automated model
reformulation, such as via the inference and selection of suitable implied con-
straints, with again the compiler assisting in the more mundane aspects. In the
BIBD and Social Golfers examples, we have observed that multiplicities provide
a nice framework for discovering and stating some implied constraints. Indeed,
the language makes the modeller think about making these multiplicities explicit,
even if they were not in the original problem formulation.

Relational models are more amenable to constraint analysis. Detected prop-
erties as well as properties consciously introduced during compilation into lower-
level programs, such as symmetry or bijectiveness, can then be taken into account
during compilation [10], especially using tractability results [32].

There would be further benefits to an abstract modelling language if it were
adopted as a standard front-end language for solvers. Models and instance data
would then be solver-independent and could be shared between solvers, whatever
their technology. Indeed, the targeted solvers need not even use constraint tech-
nology, but could just as well use answer-set programming, linear programming,
local search, or propositional satisfiability technology, or any hybrid thereof.
This would facilitate fair and homogeneous comparisons, say via new standard
benchmarks, as well as foster competition in fine-tuning the compilers.

4 Conclusion

We have argued that solver-independent, abstract constraint modelling leads to
a simpler and smaller language; to more concise, intuitive, and analysable mod-
els; as well as to more efficient and effective model formulation, maintenance,
reformulation, and verification. All this can be achieved without sacrificing the
possibility of efficient solving, so that even time-pressed or less competent mod-
ellers can be well assisted. Towards this, we have proposed the ESRA relational
modelling language, showcased its elegance on some well-known problems, and
outlined a compilation philosophy for such languages. To conclude, let us look
at related work (Section 4.1) and future work (Section 4.2).
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4.1 Related Work

We have here generalised and re-engineered our own work [11, 36, 15] on a pre-
decessor of ESRA, now called Functional-ESRA, that only supports functional
decision variables, by pursuing the aim of relational modelling outlined in [9].
Elsewhere, such ideas have recently inspired a related project [3], incorporating
partition decision variables. Constraints for bag decision variables [2,7,34] and
sequence decision variables [2,26] have also been proposed.

This research owes a lot to previous work on relational modelling in formal
methods and on ERA-style semantic data modelling, especially to the ALLOY
object modelling language [16], which itself gained much from the z specification
notation [29] (and learned from UML/OCL how not to do it). Contrary to ERA
modelling, we do not distinguish between attributes and relations.

In constraint programming, the commercial OPL [31] stands out as a medium-
level modelling language and actually gave the impetus to design ESRA: see the
BIBD example in Section 2.3 and consult [9] for a further comparison of elegant
ESRA models with more awkward (published) OPL counterparts that do not
provide all the benefits of Section 3. Other higher-level constraint modelling
languages than ESRA have been proposed, such as ALICE [18], CLP(Fun(D))
[14], cLps [2], cONJUNTO [13], EACL [30], {log} [7], NCL [37], and the language of
[24]. Our ESRA shares with them the quest for a practical declarative modelling
language based on a strongly-typed fuller first-order logic than Horn clauses, with
sequence, set, bag, functional, or even relational decision variables, while often
dispensing with recursion, negation, and unbounded quantification. However,
ESRA goes way beyond them, by advocating an ADT view (of relations), so that
representations need not be fixed in advance, by providing an elegant notation
for multiplicity constraints, and by promising intelligent compilation.

In the field of knowledge representation, answer-set programming (ASP) has
recently been advocated [21] as a practical constraint solving paradigm, espe-
cially for dynamic domains such as planning. A set of (disjunctive) function-free
clauses, where classical negation and negation as failure are allowed, is inter-
preted as a constraint, stating when an atom is in a solution, called an answer set
or a stable model. This non-monotonic approach differs from constraint (logic)
programming, where statements are used to add atomic constraints on decision
variables to a constraint store, whereupon propagation and search are used to
construct solutions. Implementation methods for computing the answer sets of
ground programs have advanced significantly over recent years, possibly using
propositional satisfiability (SAT) solvers. Also, effective grounding procedures
have been devised for some classes of such programs with (schematic) variables.
Sample ASP systems are DLV [19] and SMODELS [23]. Closely related are Con-
straintLingo [8] and NP-SPEC [4]. The languages of these systems include useful
features, such as cardinality and weight constraints, aggregate functions, and
soft constraints. They have strictly more expressive power than propositional
logic and traditional constraint (logic) programming/modelling languages, in-
cluding ESRA. Again, our objective only is a language that is useful for elegantly
modelling a large number of combinatorial problems. The cardinality constraint
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dom Clities
cst Distance : (Cities x Cities) — N
var Nexzt : Cities —* Cities

minimise Y Distance(c, Next(c))
c: Cities

such that V(ci1&ecz : Cities) Next™(c1) = c2

Fig. 7. A pretty-printed ESRA model for the Travelling Salesperson problem

of SMODELS is a restriction of the ESRA ‘count’ quantifier to interval multiplici-
ties, as opposed to set multiplicities. Speed comparisons with SAT solvers were
encouraging, but no comparison has been done yet with constraint solvers.

4.2 Future Work

Most of our future work has already been listed in Sections 2.4 and 3 about
the compiler design and long-term benefits of relational modelling, such as the
generation of implied constraints and the breaking of symmetries.

We have argued that our ESRA language is very small. This is mostly because
we have not yet identified the need for any other operators or predicates. An
exception to this is the need for transitive closure relation constructors. We
aim at modelling the well-known Travelling Salesperson (TSP) problem as in
Figure 7, where the transitive closure of the bijection Nexzt on Cities is denoted
by Next*. This general mechanism avoids the introduction of an ad hoc ‘circuit’
constraint as in ALICE [18].

As we do not aim at a complete constraint modelling language, we can be
very conservative in what missing features shall be added to ESRA when they
are identified. Also, for manpower reasons, we do not yet propose other ADTs,
say for bags or sequences, although this was originally part of our original vision
(see Section 3.3 of [11]).

Our request for explicit model-level distinction between constants and deci-
sion variables may be eventually lifted, as the default is run-time initialisation:
we could treat as constants any universally quantified variable that was actually
initialised and treat all the others as decision variables. This requires a convinc-
ing example, though, as well as just-in-time compilation.

In [20], a type system is derived for binary relations that can be used as an
input to specialised filtering algorithms. This kind of analysis can be integrated
into the relational solver we have in mind.

Also, a graphical language could be developed for the data modelling, includ-
ing the multiplicity constraints on relations, so that only the cost expression and
the constraints would need to be textually expressed.

Finally, a search language, such as SALSA [17] or the one of OPL [31], but at
the level of relational modelling, should be adjoined to the constraint modelling
language proposed here, so that more expert modellers can express their own
search heuristics.
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Abstract. Many combinatorial (optimisation) problems have natural
models based on, or including, set variables and set constraints. This was
already known to the constraint programming community, and solvers
based on constructive search for set variables have been around for a
long time. In this paper, set variables and set constraints are put into a
local-search framework, where concepts such as configurations, penalties,
and neighbourhood functions are dealt with generically. This scheme is
then used to define the penalty functions for five (global) set constraints,
and to model and solve two well-known applications.

1 Introduction

Many combinatorial (optimisation) problems have natural models based on, or
including, set variables and set constraints. Classical examples include set par-
titioning and set covering, and such problems also occur as sub-problems in
many real-life applications, such as airline crew rostering, tournament schedul-
ing, time-tabling, and nurse rostering. This was already known to the constraint
programming community, and constructive search (complete) solvers for set vari-
ables have been around for a long time now (see for example [11,15,19,2]).

Complementary to constructive search, local search [1] is another common
technique for solving combinatorial (optimisation) problems. Although not com-
plete, it usually scales very well to large problem instances and often compares
well to, or outperforms, other techniques. Historically, the constraint program-
ming community has been mostly focused on constructive search and has only re-
cently started to apply its ideas to local search. This means that concepts such as
high declarativeness, global constraints with underlying incremental algorithms,
and high-level modelling languages for local search have been introduced there
(see [12,25,22,16,10,7,13, 23,14, 6] for instance).

In this paper, we introduce set variables and (global) set constraints to
constraint-based local search. More specifically, our contributions are as follows:

— We put the local-search concepts of penalties, configurations, and neighbour-
hood functions into a set-variable framework. (Section 2)

* This paper significantly extends and revises Technical Report 2004-015 of the De-
partment of Information Technology, Uppsala University, Sweden.

R. Barték and M. Milano (Eds.): CPAIOR 2005, LNCS 3524, pp. 19-33, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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— In order to be able to use (global) set constraints generally in local search, we
propose a generic penalty scheme. We use it to give the penalty definitions of
five (global) set constraints. Other than their well-known modelling merits,
we show that (global) set constraints provide opportunities for a hardwired
global reasoning while solving, which would otherwise have to be hand-coded
each time for lower-level encodings of set variables, such as integer variables
for the characteristic functions of their set values. (Section 3)

— In order to obtain efficient solution algorithms, we propose methods for the
incremental penalty maintenance of the (global) set constraints. (Section 4)

— The (global) set constraints are used to model and solve two well-known
problems, with promising results that motivate further research. (Section 5)

After this, Section 6 discusses related and future work and concludes the paper.

2 Local Search on (Set) Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a triple (V, D, C), where V is a finite
set of variables, D is a finite set of finite domains, each D, € D containing the
set of possible values for the corresponding variable v € V', and C is a finite set
of constraints, each ¢ € C' being defined on a subset of the variables in V' and
specifying their valid combinations of values.

The definition above is very general and may be used with any choice of finite-
domain variables. The variables in V' may, for example, range over sets of integers
(integer variables), strings, or, as in our case, sets of values of some type (set
variables, defined formally below). Of course, a CSP may also contain variables
with several kinds of domains. As an example, consider a CSP (V, D, C) in which
some variables {i1,...,ip} C V are integer variables, and some other variables
{s1,...,8} C V are set variables. These could for instance be connected with
constraints stating that the cardinality of each s; must not exceed ¢;.

In this paper, we assume that all the variables are set variables, and that all
the constraints are stated on variables of this kind. This is of course a limitation,
since many models contain both set variables and integer variables. However,
mixing integer variables and set variables makes the constraints harder to define,
and we consider this to be future work. Fortunately, interesting applications, such
as the two in this paper, are already possible to model.

Definition 1 (Set Variable and its Universe). Let P = (V, D, C) be a CSP.
A wvariable s € V is a set variable if its corresponding domain Dy = 2Ys, where
Us is a finite set of values of some type, called the universe of s.

Note that this definition does not allow the indication of a non-empty set of
required values in the universe of a set variable, hence this must be done here
by an explicit constraint. This is left as future work, as not necessary for our
present purpose.

Definition 2 (Configuration). Let P = (V,D,C) be a CSP. A configuration
for P is a total function k : V — oy Ds such that k(s) € Ds for all s € V.
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Definition 3 (Delta of Configurations). Let P = (V, D, C) be a CSP and let
k and k' be two configurations for P. The delta of k and k', denoted delta(k, k'),
is the set {(s,v,v") | s €V & v=Fk(s)—K(s) & v/ =k'(s)—k(s) & v#'},

where — stands for the set difference.

Ezample 1. Consider a CSP P = ({s1, s2, 83}, {Ds,, Ds,, Dss },C) where Dy, =
D,, = D,, = 2{d1.d2ds} (hence U,, = U,, = U,, = {di,ds,d3}). One possible
configuration for P is defined as k(s1) = {ds}, k(s2) = {d1,d2},k(s3) = 0, or
equivalently as the set of mappings {s; — {ds}, s2 — {d1,d2}, s3 — 0}. Another
configuration for P is defined as k' = {s1 — 0, s2 — {d1,ds,d3}, s3 — 0}. Now,
the delta of k and k' is delta(k, k') = {(s1,{ds},0), (s2,0,{ds})}.

Definition 4 (Neighbourhood Function). Let K denote the set of all pos-
sible configurations for a CSP P and let k € K. A neighbourhood function for
P is a function N : K — 2K . The neighbourhood of P with respect to k and N
is the set of configurations N (k).

Ezxample 2. Consider P and k from Example 1. A possible neighbourhood of P
with respect to k& and some neighbourhood function A for P is the set N(k) =
{k1 = {s1 — 0,80 — {di1,do,ds},s3 — 0}, ko = {s1 — 0,80 — {d1,d2},s3 —
{ds3}}. This neighbourhood function moves the value d3 in s; to variable s or
variable s3, decreasing the cardinality of s; and increasing the one of s, or s3.

We will use two general neighbourhoods in this paper, which are defined next.
For both, let s € V, S C V — {s}, and let k¥ € K be a configuration for a CSP
P = (V,D,(C), where K is the set of all configurations for P. The first one, called
move, is defined by the neighbourhood function with the same name:

move(s,S)(k)={k e K|3de€k(s):se€S & deUy —k(s) &
delta(k, k") = {(s,{d},0), (s',0,{d})}}

This neighbourhood, given k, is the set of all neighbourhoods &’ that differ from
k in the definition of two distinct set variables s and s, the difference being
that there exists exactly one d € k(s) such that d € k(s) & d ¢ k'(s) and
d ¢ k(s") < dek'(s"). Hence, d was moved from s to s'.

The second one, called swap, is defined by the neighbourhood function:

swap(s,S)(k) ={k e K |3de€k(s) : Id € Us —k(s): s € S & d € k(¢)
& deUy —k(s) &
delta(k, k') = {(s,{d}, {d'}), (s', {d'}, {d})}}

This neighbourhood, given k, is the set of all neighbourhoods k' that differ
from k in the definition of two distinct set variables s and s’, the difference
being that there exists exactly one pair (d € k(s), d € Us — k(s)) such that
dek(s) e d¢k(s)and d ¢ k(s') & d € k'(s'), and the opposite for d’. Hence,
d and d’ were swapped between s and s’.

We will now define the notion of penalty of a constraint, which, informally, is
an estimate on how much a constraint is violated. Below is a general definition,
followed by a generic scheme for balancing the penalties of different constraints,
which is then specialised for each constraint in Section 3.
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Definition 5 (Penalty). Let P = (V,D,C) be a CSP and let K denote the
set of all possible configurations for P. A penalty of a constraint ¢ € C is a
function penalty(c) : K — N. The penalty of P with respect to k is the sum

ZCEC penalty(c) (k).

Ezxample 3. Consider once again P from Example 1 and let ¢; and ¢o be the
constraints s; C so and d3 € sz respectively. Let the penalty functions of ¢;
and c¢o be defined as: penalty(c1)(k) = |k(s1) — k(s2)|, and penalty(cz)(k) =
0, if d3 € k(s3), or 1, otherwise . Now, the penalties of P with respect to the
different configurations in the neighbourhood of Example 2 are penalty(ci)(k1)
+ penalty(c2)(k1) = 1, and penalty(ci)(ke) + penalty(cz)(ka) = 0 respectively.

In order for a constraint-based local-search approach to be effective, different
constraints should have balanced penalty definitions [6]: i.e. for a set of con-
straints C, no ¢ € C should be easier in general to satisfy compared to any other
¢’ € C. This may be application dependent, in which case weights could be added
to tune the penalties, see [13] for example. For set constraints, we believe that
one such penalty definition is to let (by extension of the integer-variable ideas
in [10]) the penalty of a set constraint ¢ be the length of the shortest sequence of
atomic set operations (defined below) that must be performed on the variables
in ¢ under a configuration k in order to satisfy c.

Definition 6 (Atomic Set Operations). Let P = (V,D,C) be a CSP, let k
be a configuration for P, and let s € V. An atomic set operation on k(s) is one
of the following changes to k(s):

1. Add a value d to k(s) from its complement Us — k(s), denoted Add(k(s),d).
2. Remove a value d from k(s), denoted Remove(k(s),d).

Note that no value-replacement operation is considered here; its inclusion
would imply a reduction of some of the penalties in Section 3.

Ezample 4. Performing A = [Add(k(s),d), Remove(k(s),b), Add(k(s"),b)] on
k(s) = {a,b,c} and k(s') = 0 will yield A(k(s)) = {a,c,d} and A(k(s")) = {b}.

Definition 7 (Operation-Based Penalty for Set Constraints). Let P =
(V,D,C) be a CSP and let K be the set of all configurations for P. Let ¢ € C be a
constraint defined on a set of set variables S C V. The penalty of ¢, penalty(c) :
K — N, is the length of the shortest sequence of atomic set operations that must
be performed in order to satisfy ¢ given a specific configuration k.

From this definition it follows that penalty(c)(k) = 0 if and only if ¢ is satisfied
with respect to k. Also, as will be seen, to find a penalty that complies with this
definition for a given set constraint is not always obvious.

3 (Global) Set Constraints and Their Penalties

We now present five (global) set constraints and define their penalties. Through-
out this section, we assume that k is a configuration for a CSP P = (V, D, C),
and that c € C.
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3.1 AllDisjoint

The global constraint AllDisjoint(S), where S = {s1,...,8,} is a set of set
variables, expresses that all distinct pairs in S are disjoint, i.e. that Vi < j €
1...n :s;Ns; = 0. The penalty of an AllDisjoint(S) constraint under k is
equal to the length of the shortest sequence A of atomic set operations of the
form Remove(k(s),d) that must be performed in order for Vi < j € 1...n :
A(k(s;)) N A(k(sj)) = 0 to hold. We define the penalty as:

UkGs) (1)

ses

penalty(AllDisjoint(S)) (k) = <Z|k(s)> -

seS

Indeed, we need to remove all repeated occurrences of any value, and their
number equals the difference between the sum of the set sizes and the size of
their union. Hence the following proposition:

Proposition 1. The penalty (1) is correct with respect to Definition 7.

3.2  Cardinality

The constraint Cardinality(s,m), where s is a set variable and m a natural-
number constant, expresses that the cardinality of s is equal to m, i.e. that
|s| — m. This constraint would of course be more powerful if we allowed m to
be an integer variable. However, as was mentioned earlier, the penalty would be
more complicated if we did this, and we see this as future work.

The penalty of a Cardinality(s, m) constraint under k is equal to the length
of the shortest sequence A of atomic set operations of the form Add(k(s),d) or
Remove(k(s), d) that must be performed in order for |A(k(s))| = m to hold. The
penalty below expresses this:

penalty( Cardinality(s,m))(k) = abs(|k(s)| —m) (2)

where abs(e) denotes the absolute value of the expression e. Indeed, we need
to add (remove) exactly as many values to (from) k(s) in order to increase
(decrease) its cardinality to m. Hence the following proposition:

Proposition 2. The penalty (2) is correct with respect to Definition 7.

3.3 MaxIntersect

The global constraint MaxIntersect(S, m), where S = {s1,...,s,} is a set of set
variables and m a natural-number constant, expresses that the cardinality of the
intersection between any distinct pair in S is at most m, i.e. thatVi < j € 1...n:
|s;Nsj| < m. This constraint expresses the same as an AllDisjoint(S) constraint
when m = 0. However, as will be seen, keeping the AllDisjoint constraint is
useful for this special case. Again, allowing m to be an integer variable would
make the constraint more powerful and is future work.
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The penalty of a MaxIntersect(S, m) constraint under k is equal to the length
of the shortest sequence A of atomic set operations of the form Remove(k(s),d)
that must be performed such that Vi < j € 1...n: |A(k(s;)) N A(k(s;))] < m
holds. In fact, finding a closed form for the exact penalty of a MazIntersect con-
straint with respect to Definition 7 turns out not to be that easy. The following
expression gives an upper bound on this penalty, namely the sum of the excesses
of the intersection sizes:

penalty(MazIntersect(S,m)) (k) < Z maz(|k(s;) Nk(s;)| —m,0) (3)

1<i<j<n

Ezample 5. Assume that k(s1) = {di,da,ds}, k(s2) = {da,ds,ds}, k(s3) =
{d1,ds,ds}, and that ¢ = MaxIntersect({s1, s2,s3},1). The penalty of ¢ accord-
ing to (3) is 24 2 + 2 = 3. Indeed, we may satisfy ¢ by performing the sequence
of 3 operations [Remove(k(s1),d1), Remove(k(sz2),d2), Remove(k(s3),ds)]. How-
ever, this is not the shortest sequence that achieves this, since after performing
[Remove(k(s1),ds), Remove(k(sz2), ds)], the constraint c is also satisfied.

Proposition 3. The bound of (3) is an optimal upper bound w.r.t. Definition 7.
Proposition 4. The upper bound of (3) is zero iff MaxIntersect(S, m) holds.

However, the upper bound of (3) is not correct with respect to Definition 7
when m = 0. Consider s; = {dy,d2}, s2 = {d2,d3}, and s3 = {da,ds}. The
penalty under (3) of MazxIntersect({s1,$2,53},0) is 14+ 14 2 = 4 whereas the
one of AllDisjoint({s1, $2,3}) correctly is 6 — 3 = 3 under (1).

We may also obtain a lower bound, by using a lemma due to Corradi [8].

Lemma 1 (Corradi). Let sq,..., s, be r-element sets and U be their union. If
|si N'sj| < m for alli # j, then |U| > H_(T;fq)m

This lemma can be applied for n ground sets that do not necessarily all
have the same cardinality r, but rather with r being the mazimum of their
cardinalities, as is the case with MazIntersect(S,m) and |S| = n. It suffices to
apply the corrective term 0 = n-r — > __|k(s)| when using the lower bound
for a configuration k where r = mazscg|k(s)|. Note that 0 is the amount of
distinct new elements (from a sufficiently large fictitious universe disjoint from
Uses k(s)) that one must add to the sets in {k(s) | s € S} in order to make
them all be of size 7.

We now have the following lower bound on the penalty of a MaxzIntersect(S, m)
constraint under a configuration k (where |S| = n and r = mazses|k(s)|):

penalty(MazIntersect(S,m))(k) > (4)
[ - (o= SIk1) - | Uk

seS seS

Ezample 6. Recall Example 5, where m = 1 and the n = 3 sets are of the same
size r = 3, hence 6§ = 0, and have a union of 4 elements. We get penalty(c)(k) >
[21] — 0 — 4 = 2, which is correct with respect to Definition 7.
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Now, the following proposition follows from Lemma 1:
Proposition 5. The bound of (4) is an optimal lower bound w.r.t. Definition 7.

The next proposition establishes what happens when m = 0, in which case
MazIntersect(S, m) is equivalent to AllDisjoint(S):

Proposition 6. The lower bound of (4) is correct wrt Definition 7 when m = 0.

Proof. When m = 0, then [H_(T;fq)m—‘ = r-n and the lower bound of (4)

simplifies into the penalty expression (1). Hence it is correct, by Proposition 1.

Unfortunately, the lower bound is sometimes zero even though the constraint
is violated. Consider n = 10 sets, all of size r = 3 (hence § = 0), that should
have pairwise intersections of at most m = 1 element and that have a union of
8 elements. Then (4) gives 0 as lower bound on the penalty, but the constraint
is violated as there are no such 10 sets, hence m would have to be at least 2.

However, we may still use (4) for the MazIntersect constraint, but it would
have to be in conjunction with (3), with the condition that if the lower bound of
(4) is zero, then one uses the upper bound of (3) instead. In our experience, the
lower bound of (4) is frequently correct. This also argues for keeping the explicit
constraint AllDisjoint, since for that constraint (4) gives the correct penalty.

An often tighter upper bound than the one of (3) can be obtained by Al-
gorithm 1. It obtains an estimate of the penalty by returning the length of a
sequence of atomic set operations constructed in the following way: (i) Start
with the empty sequence. (ii) Until the constraint is satisfied, add an atomic set
operation removing a value that belongs to a set variable that takes part in the
largest number of violating intersections. The algorithm uses the upper bound
of (3) as the exit criterion, as it is zero only upon satisfaction of the constraint,
by Proposition 4.

Algorithm 1 Calculating the penalty of a MazIntersect constraint

function penalty_maz_intersect(S, m)(k)
l—0
while penalty(MazIntersect(S,m))(k) > 0 do > According to (3)
choose d € |J,cg k(s) st [{(i,4) | i <j & d € k(si) Nk(s;) & [k(s:) N
k(s;)| > m}| is maximised.
choose s; € Ss.t. [{s; € S|i#j & d € k(si)Nk(s;) & |k(si)Nk(s;)] > m}|
is maximised.

l—1+1 > i.e. an imaginary Remove(k(s;),d) operation was added
Replace the binding for s; in k by s; — k(s;) — {d}
return /

In the current implementation of the MazIntersect constraint, we use the
upper bound given by (3). As we have seen, this is not always a good estimate
on the penalty with respect to Definition 7. In the future, we plan to use (4) in
conjunction with (3) or (an incremental variant of) Algorithm 1.
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3.4 MaxWeightedSum

The constraint MazWeightedSum(s, w,m), where s is a set variable, w : Us — N
is a weight function from the universe of s to the natural numbers, and m is a
natural-number constant, expresses that ), w(d) < m. Note that we do not
allow negative weights nor m to be an integer variable. Allowing these would
need a redefinition of the penalty below.

The penalty of a MazWeightedSum(s, w, m) constraint under k is equal to
the length of the shortest sequence A of operations of the form Remove(k(s),d)
that must be performed in order for }_;c A((s)) w(d) < m to hold. We define
the following penalty:

penalty(MazWeightedSum (s, w,m))(k) = (5)
min_card ({5’ Ck(s)| Dgey wld)> (Zdek(s) w(d)) - m})

where min_card(Q) denotes the cardinality of a set ¢ € @ such that for all
q €Q,l|ql <|¢|,or 0if Q = 0. Indeed, we must remove at least the smallest set
of values from k(s) such that their weighted sum is at least the difference between
the weighted sum of all values in k(s) and m. Hence the following proposition:

Proposition 7. The penalty (5) is correct with respect to Definition 7.

3.5 Partition

The global constraint Partition(S,q), where S = {s1,...,s,} is a set of set
variables and q is a ground set of values, expresses that the variables in S are
all disjoint, i.e. that Vi < j € 1...n:s,Ns; = (), and that their union is equal
to ¢, i.e. that J, g s = ¢. Note that this definition of a partition allows one or
more variables in S to be empty, which is useful in some applications, such as
the progressive party problem below. The set g, called the reference set, could
be generalised to be a set variable. The applications we currently look at do not
expect this but this may change in the future. In that case, the penalty function
below would have to be changed to take this into account.

The penalty of a Partition(S,q) constraint under k is equal to the length
of the shortest sequence A of atomic set operations that must be performed in
order for Vi < j € 1...n: A(k(s;)) N A(k(s;)) =0 & U,eq Alk(s)) = q to
hold. The following penalty expresses this:

penalty(Partition(S, q)) (k) = <Z|k‘(s)|> - + (6)

ses

UkGs)

ses

q— [Jk(s)

ses

Indeed, the first two terms are those in (1) for AllDisjoint and the third term
expresses that all unused elements of the reference set must be added to some
set of the partition for the union to hold. Hence the following proposition:

Proposition 8. The penalty (6) is correct with respect to Definition 7.

Note that this penalty could be reduced by allowing replacement operations.
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4 Incrementally Maintaining Penalties

This section presents how the penalties are maintained for two of the presented
constraints, AllDisjoint and MaxIntersect. For the other three, Partition is sim-
ilar to AllDisjoint, while Cardinality and MaxWeightedSum are rather straight-
forward to maintain. Since in local search one may need to perform many it-
erations, and since each iteration usually requires searching through a large
neighbourhood, it is crucial that the penalty of a neighbouring configuration
is computed efficiently. In order to do this, it is important to use incremental
algorithms that, given a current configuration k, do not recompute from scratch
the penalty of a neighbouring configuration k&', but rather compute the penalty
with respect to the penalty of k and the difference between k and &'

This technique is used, for instance, in [12,22] where invariants are used to
get efficient incremental algorithms from high-level, declarative descriptions. In
this paper, the incrementality is achieved explicitly for each constraint, and we
consider it to be future work to implement this in a more general and elegant
way. The aim of this paper is to explore the usefulness of the proposed framework
and penalty definitions for set constraints.

4.1 Incrementally Maintaining AllDisjoint

Recall the penalty (1) for an AllDisjoint constraint in Section 3.1. In order to
maintain this incrementally, we use a table count of integers, indexed by the
values in U = (J,.g Us, such that count[d] is equal to the number of variables
that contain d. Now, the sum in (1) is equal to ) ;. (count[d]—1) as it suffices to
remove a value d € | J,. g k(s) from all but one of the set variables in {s € S | d €
k(s)} in order to satisfy the constraint. This is easy to maintain incrementally
given an atomic set operation.

4.2  Incrementally Maintaining MaxIntersect

Recall the penalty bound of (3) for a MazIntersect constraint. In order to main-
tain this incrementally, we use the following two data structures: (i) A table
variables indexed by the values in U = | J, 4 Us, such that variables|d] is the set
of variables that d is a member of; (ii) for each variable s;, a table s;.intersects
indexed by the values in {i+1,...,n} such that s;.intersects[j] = |k(s;)Nk(s;)|.

The sum in (3) is then equal to 3, ., ;, maz(s;.intersects[j| —m,0) and
all this may be maintained incrementally in the following way, given an atomic
set operation o. If o = Add(k(s;),d) then (i) add s; to wvariables|d]; (ii) for
each variable s; in variables[d] such that j > i: if s;.intersects[j] > m then
increase the sum in (3) by 1; and (iii) for each variable s; in variables[d] such
that j > i: increase s;.intersects[j] by 1. If o = Remove(k(s;), d) then (i) remove
s; from variables[d]; (ii) for each variable s; in variables[d] such that j > i: if
si.intersects[j] > m then decrease the sum in (3) by 1; and (iii) for each variable
s; in variables[d] such that j > i: decrease s;.intersects[j] by 1.

Implementing these ideas with respect to the lower bound of (4) and Algo-
rithm 1 is future work.
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5 Applications

This section presents two well-known applications for constraint programming:
the Progressive Party Problem and the Social Golfers Problem. They both have
natural models based on set variables. They have previously been solved both
using constructive and local search. See, for instance, the references [21, 10, 25,
13,6,24] and [3,20,18,9], respectively. The constraints in Section 3 as well as
the search algorithms were implemented in OCaml and the experiments were
run on an Intel 2.4 GHz Linux machine with 512 MB memory.

5.1 The Progressive Party Problem (PPP)

The problem is to timetable a party at a yacht club. Certain boats are designated
as hosts, while the crews of the remaining boats are designated as guests. The
crew of a host boat remains on board throughout the party to act as hosts, while
the crew of a guest boat together visits host boats over a number of periods. The
crew of a guest boat must party at some host boat each period (constraint c¢;).
The spare capacity of any host boat is not to be exceeded at any period by the
sum of the crew sizes of all the guest boats that are scheduled to visit it then
(constraint cz). Any guest crew can visit any host boat in at most one period
(constraint c3). Any two distinct guest crews can visit the same host boat in at
most one period (constraint cy).

A Set-Based Model. Let H be the set of host boats and let G be the set of
guest boats. Furthermore, let capacity(h) and size(g) denote the spare capacity
of host boat h and the crew size of guest boat g, respectively. Let periods be
the number of periods we want to find a schedule for and let P be the set
{1,..., periods}. Now, let s, ), where h € H and p € P, be a set variable
containing the set of guest boats whose crews boat h hosts during period p.
Then the following constraints model the problem:

(c1) : Vp € P: Partition({spp) | h € H}, G)

(c2) : Yh € H :¥p € P: MaxWeightedSum (s, py, size, capacity(h))
(e3) : Yh € H : AllDisjoint({s(np) | p € P})

(c4) : MazIntersect({spp) | h€ H & p € P}, 1)

Solving The PPP. If we are careful when defining an initial configuration and
a neighbourhood for the PPP, we may be able to exclude some of its constraints.
For instance, it is possible to give the variables s(;, ,) an initial configuration and
a neighbourhood that respect ¢;. We can do this (i) by assigning random disjoint
subsets of GG to each s, ), where h € H, for each period p € P, making sure
that each g € G is assigned to some s(j ;) and (ii) by using a neighbourhood
specifying that guests from a host boat h are moved to another host boat A’ in
the same period, and nothing else.

Algorithm 2 is the solving algorithm we used for the PPP. It takes the con-
stant sets P, G, H, and the functions capacity and size as defined above as
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parameters, specifying an instance of the PPP, and returns a configuration &
for a CSP with respect to that instance. Mazlter and MaxNonImproving are
additional arguments as described below. If penalty((V, D,C))(k) = 0, then a
solution was found within Maxlter iterations. The algorithm uses the notion of
conflict of a variable (line 10), which, informally, is an estimate on how much a
variable contributes to the total penalty of a set of constraints with respect to a
configuration.

Algorithm 2 Solving the PPP

1: procedure solve_progressive_party(P, G, H, capacity, size)

2: Initialise (V, D, C) w.r.t. P, G, H, capacity, and size to be a CSP € PPP
3: iteration «— 0, non_improving < 0, best «— oo
4: k «— 0, tabu «— @, history — 0
5: for all p € P do > Initialise s.t. ¢;1 is respected
6: Add a random mapping s, — G', where G C G, for each h € H to k
T: s.t. penalty(Partition({smn,p | h € H},G))(k) =0
8: while penalty((V, D, C))(k) > 0 & iteration < Mazlter do
9: iteration «— iteration + 1, non_tmproving < non_improving + 1
10: choose s,y €V s.t. Vs' € V 1 conflict(s(n ), C) (k) > conflict(s’, C) (k)
11: N — move(shpy, {S(n'p) | B € H & R’ # h})(k)
12: choose k' € N st. VE' € N : penalty((V,D,C))(K') <
penalty((V, D, C)) (k")
13: and ((s(n ), d, iteration) ¢ tabu or penalty((V, D, C))(k") < best),
14: where delta(k, k") = {(s(n.p), {d}, D), (S(n'.p), 0, {d})}
15: k— k', tabu — tabu U {(s4 p), d, iteration + rand_int(5,40))}
16: if penalty((V, D, C))(k) < best then
17: best — penalty((V, D, C))(k), non_improving < 0,
18: history «— {k}, tabu «— 0
19: else if penalty((V, D, C))(k) = best then
20: history « history U {k}
21: else if non_improving = MaxNonlmproving then
22: k <+ a random element in history
23: non_improving < 0, history <« {k}, tabu «— 0

24: return k

The algorithm starts by initialising a CSP for the PPP, necessary counters,
bounds, and sets (lines 2 — 4), as well as the variables of the problem (lines
5 — 7). As long as the penalty is positive and a maximum number of iterations
has not been reached, lines 8 — 23 explore the neighbourhood of the problem in
the following way. (i) Choose a variable s(;, ;) with maximum conflict (line 10).
(ii) Determine the neighbourhood of type move for s ,) with respect to the
other variables in the same period (line 11). (iii) Move to a neighbour &’ that
minimises the penalty (lines 12 — 14).

In order to escape local minima it also uses a tabu list and a restarting compo-
nent. The tabu list fabu is initially empty. When a move from a configuration & to
a configuration %’ is performed, meaning that for two variables s(;, ;) and s/ p),
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a value d in k(s ) is moved to k(s ), the triple (s(up),d, iteration + t)
is added to tabu. This means that d cannot be moved to s,y again for the
next t iterations, where ¢ is a random number between 5 and 40 (empirically
chosen). However, if such a move would imply the lowest penalty so far, it is
always accepted (lines 13 — 15). By abuse of notation, we let (s,d,t) ¢ tabu be
false iff (s,d,t') € tabu & t <t

The restarting component (lines 16 — 23) works in the following way. Each
configuration k such that penalty((V,D,C))(k) is at most the current lowest
penalty is stored in the set history (lines 16 —20). If a number MazNonImproving
of iterations passes without any improvement to the lowest overall penalty, then
the search is restarted from a random element in history (lines 21—23). A similar
restarting component was used in [13,24] (saving one best configuration) and [6]
(saving a set of best configurations), both for integer-domain models of the PPP.

5.2  The Social Golfers Problem (SGP)

In a golf club, there is a set of golfers, each of whom play golf once a week
(constraint ¢;) and always in ng groups of size ns (constraint ¢g). The objective
is to determine whether there is a schedule of nw weeks of play for these golfers,
such that there is at most one week where any two distinct players are scheduled
to play in the same group (constraint cs).

A Set-Based Model. Let G be the set of golfers and let s, ,,) be a set vari-
able containing the players playing in group g in week w. Then the following
constraints model the problem:

(c1) : Yw € 1...nw : Partition({sg,w) | g€ 1...ng}, G)
(c2):Vgel...ng:VYw e 1l...nw: Cardinality(sg ., ns)
(e3) : MazIntersect({s(guw) |1 €1...ng & wel...nw}, 1)

Solving The SGP. Similar to the PPP, we need to define an initial configura-
tion and a neighbourhood for the SGP. This, and a slightly changed tabu list,
are the only changes in the algorithm compared to the one we used for the PPP,
hence the algorithm for the SGP is not shown.

We choose an initial configuration k£ and a neighbourhood that respects the
constraints ¢y and cg, i.e. that each golfer plays every week and that each group
is of size ns. We do this (i) by assigning random disjoint subsets of size ns of G to
each s, ,,) where g € 1...ng for each week w € 1... nw and (ii) by choosing the
neighbourhood called swap, specifying the swap of two distinct golfers between
a given group g and another group ¢’ in the same week. Given such a swap of
golfers between two different groups s, .,) and $(y ), what is now inserted in
the tabu list are both (s(g,.),d,t) and (s(g/ ), d,t) with ¢ being as for the PPP.

5.3 Results

Tables 1 and 2 show the experimental results for the PPP and SGP, respectively.
For both, each entry in the table is the mean value of successful runs out of 100.
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Table 1. Run times in seconds for the PPP. Mean run time of successful runs (out of
100) and number of unsuccessful runs (if any) in parentheses

H /periods (fails) 6 7 8 9 10
1-12,16 1.2 2.3 21.0
1-13 7.0 90.5
1,3-13,19 7.2 1284 (4)
3-13,25,26 13.9 170.0 (17)
1-11,19,21 10.3  83.0 (1)

1-9,16-19 18.2 160.6 (22)

Table 2. Run times in seconds for the SGP. Mean run time of successful runs (out of
100) and number of unsuccessful runs (if any) in parentheses

ng-ns-nw time (fails)|ng-ns-nw time (fails)|ng-ns-nw time (fails)

6-3-7 0.4 6-3-8 215.0 (76)| 7-3-9 138.0 (5)
8-3-10 14.4 9-3-11 3.5 10-3-13 325.0 (35)
6-4-5 0.3 6-4-6  237.0 (62)| 7-4-7 333.0 (76)
8-4-7 0.9 8-4-8 290.0 (63)| 9-4-8 1.7
10-4-9 25 6-5-5 101.0  (1)| 7-5-5 1.3
8-5-6 8.6 9-5-6 0.9 10-5-7 1.7
6-6-3 0.2 7-6-4 1.2 8-6-5  18.6
9-6-5 1.0 10-6-6 3.7 7-7-3 0.3
8-7-4 4.9 9-7-4 0.8 10-7-5 3.4
883 05 9-8-3 0.6 10-8-4 1.4
9-9-3 0.7 10-9-3 0.8 10-10-3 1.1

The numbers in parentheses are the numbers of unsuccessful runs, if any, for that
instance. We empirically chose Mazlter = 500,000 and MazNonImproving = 500
for both applications. For the PPP, the instances are the same as in [25, 6, 24]
and for the SGP, the instances are taken from [9]. For both applications, our
results are comparable to, but not quite as fast as, the current best results
([6,24] and [9] respectively) that we are aware of. We believe that they can be
improved by using more sophisticated neighbourhoods and meta-heuristics, as
well as by implementing the ideas in Section 3.3 for the MazIntersect constraint.

6 Conclusion

We have proposed to use set variables and set constraints in local search. In
order to do this, we have introduced a generic penalty scheme for (global) set
constraints and used it to give incrementally maintainable penalty definitions for
five such constraints. These were then used to model and solve two well-known
combinatorial problems.

This research is motivated by the fact that set variables may lead to more
intuitive and simpler problem models, providing the user with a richer set of
tools, as well as more preserved structure in underlying solving algorithms such
as the incremental algorithms for maintaining penalties: (global) set constraints
provide opportunities for hard-wired global reasoning that would otherwise have
to be hand-coded each time for lower-level encodings of set variables.
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In terms of related work, Localizer [12,22], by Michel and Van Hentenryck,
was the first modelling language to allow the definition of local search algorithms
in a high-level, declarative way. It introduces invariants to obtain efficient incre-
mental algorithms. It also stresses the need for globality by making explicit the
invariants distribute and dcount.

In [10], Galinier and Hao use a similar scheme to ours for defining the penalty
of a constraint in local search: they define as the penalty of a (global) constraint
¢ the minimum number of variables in ¢ that must change in order for it to be
satisfied. Note, however, that this work is for integer variables only. Nareyek uses
global constraints in [16] and argues that this is a good compromise between low-
level CSP approaches, using only simple (e.g., binary) constraints, and problem-
tailored local search approaches that are hard to reuse.

Comet [13], also by Van Hentenryck and Michel, is an object-oriented lan-
guage tailored for the elegant modelling and solving of combinatorial problems.
With Comet, the concept of differentiable object was introduced, which is an
abstraction that reconciles incremental computation and global constraints. A
differentiable object may for instance be queried to evaluate the effect of local
moves. Comet also introduced abstractions for controlling search [23] and mod-
elling using constraint-based combinators such as logical operators and reifica-
tion [24]. Both Localizer and Comet support set invariants, but these are not
used as variables directly in constraints.

Generic penalty definitions for constraints are useful also in the soft-
constraints area. Petit et al. [17] use a similar penalty definition to the one
of Galinier and Hao [10] as well as another definition where the primal graph of
a constraint is used to determine its cost. This definition of cost is then refined
by Petit and Beldiceanu in [5], where the cost is expressed in terms of graph
properties [4]. Bohlin [6] also introduces a scheme built on the graph proper-
ties in [4] for defining penalties, which is used in his Composer library for local
search. To our knowledge, none of these approaches considers set variables and
set constraints.

Open issues exist as well. Other than fine-tuning the performance of our cur-
rent prototype implementation, further (global) set constraints should be added.
What impact will a change to the penalty of MazIntersect with respect to Sec-
tion 3.3 have? In what way should the penalties of the (global) set constraints
in this paper be generalised to allow problems containing variables with several
kinds of domains? For instance, it would be useful to be able to replace m with
an integer variable in the Cardinality, MaxIntersect, and MaxzWeightedSum con-
straints, to allow negative weights in the latter, and to have a variable reference
set in the Partition constraint.

Overall, our results are already very promising and motivate such further
research.
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Abstract. Local search is a powerful and well-established method for
solving hard combinatorial problems. Yet, until recently, it has provided
very little user support, leading to time-consuming and error-prone im-
plementation tasks. We introduce a scheme that, from a high-level de-
scription of a constraint in existential second-order logic with counting,
automatically synthesises incremental penalty calculation algorithms.
The performance of the scheme is demonstrated by solving real-life in-
stances of a financial portfolio design problem that seem unsolvable in
reasonable time by complete search.

1 Introduction

Local search is a powerful and well-established method for solving hard combi-
natorial problems [1]. Yet, until recently, it has provided very little user support,
leading to time-consuming and error-prone implementation tasks. The recent
emergence of languages and systems for local search, sometimes based on novel
abstractions, has alleviated the user of much of this burden [10, 16,12, 11].

However, if a problem cannot readily be modelled using the primitive con-
straints of such a local search system, then the user has to perform some of those
time-consuming and error-prone tasks. These include the design of algorithms
for the calculation of penalties of user-defined constraints. These algorithms are
called very often in the innermost loop of local search and thus need to be im-
plemented particularly efficiently: incrementality is crucial. Would it thus not be
nice if also this task could be performed fully automatically and satisfactorily
by a local search system? In this paper, we design a scheme for doing just that,
based on an extension of the idea of combinators [15] to quantifiers. Our key
contributions are as follows:

— We propose the usage of existential second-order logic with counting as a
high-level modelling language for (user-defined) constraints. It accommodates
set variables and captures at least the complexity class NP.

— We design a scheme for the automated synthesis of incremental penalty cal-
culation algorithms from a description of a (user-defined) constraint in that
language. We have developed an implementation of this scheme.



— We propose a new benchmark problem for local search, with applications in
finance. Using our local search framework, we ezactly solve real-life instances
that seem unsolvable in reasonable time by complete search; the performance
is competitive with a fast approximation method based on complete search.

The rest of this paper is organised as follows. In Section 2, we define the back-
ground for this work, namely constraint satisfaction problems over scalar and set
variables as well as local search concepts. The core of this paper are Sections 3
to 6, where we introduce the used modelling language and show how incremen-
tal algorithms for calculating penalties can be automatically synthesised from a
model therein. In Section 7, we demonstrate the performance of this approach
by solving real-life instances of a financial portfolio design problem. Finally, we
summarise our results, discuss related work, and outline future work in Section 8.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple (V, D, C), where V
is a finite set of variables, D is a finite set of domains, each D, € D containing
the set of possible values for the corresponding variable v € V| and C'is a finite
set of constraints, each ¢ € C' being defined on a subset of the variables in V'
and specifying their valid combinations of values.

Definition 1 (Set Variable and its Universe). Let P = (V, D, C) be a CSP.
A wvariable S € V is a set variable if its corresponding domain Dg = 245 | where
Us is a finite set of values of some type, called the universe of S.

Without loss of generality, we assume that all the set variables have a common
universe, denoted U. We also assume that all the variables are set variables, and
denote such a set-CSP by (V,U,C). This is of course a limitation, since many
models contain both set variables and scalar variables. Fortunately, interesting
applications, such as the ones in this paper and in [2], can be modelled using
only set variables.

A constraint program assigns values to the variables one by one, but local
search maintains an (initially arbitrary) assignment of values to all the variables:

Definition 2 (Configuration). Let P = (V,U,C) be a set-CSP. A configura-
tion for P (or V) is a total function k : V — 24.

As usual, the notation k = ¢ expresses that the open formula ¢ is satisfied
under the configuration k.

Ezample 1. Consider a set-CSP P = ({51, S2, S35}, {d1,d2,d3},{c1,¢2}). A con-
figuration for P is given by k(S1) = {ds}, k(S2) = {d1,dz2}, k(S3) = 0, or equiv-
alently as the set of mappings {S1 — {ds},S2 — {d1,dz2},S3 — 0}. Another
configuration for P is given by k' = {S; — 0,52 — {d;,d2,d3}, S3 — 0}.

Local search iteratively makes a small change to the current configuration,
upon examining the merits of many such changes. The configurations thus ex-
amined constitute the neighbourhood of the current configuration:



Definition 3 (Neighbourhood). Let K be the set of all configurations for a
(set-)CSP P and let k € K. A neighbourhood function for P is a function
N : K — 2K The neighbourhood of P with respect to k and N is the set N (k).

Ezxample 2. Reconsider P and k from Example 1. A neighbourhood of P with
respect to k and some neighbourhood function for P is the set {k; = {S; —
@752 = {dl,dg,d?,},Sg, = @},kg = {Sl — @,SQ — {dl,dg},Sg, = {dg}} This
neighbourhood function moves the value d3 in S7 to Sy or S3.

The penalty of a CSP is an estimate on how much its constraints are violated:

Definition 4 (Penalty). Let P = (V,D,C) be a (set-)CSP and let K be the
set of all configurations for P. A penalty function of a constraint ¢ € C is a
function penalty(c) : K — N such that penalty(c)(k) = 0 if and only if ¢ is
satisfied under configuration k. The penalty of a constraint ¢ € C' with respect
to a configuration k € K is penalty(c)(k). The penalty of P with respect to a
configuration k € K is the sum ) . penalty(c)(k).

Ezample 3. Consider once again P from Example 1 and let ¢; and cs be the
constraints S; C S; and ds € S3 respectively. Let the penalty functions of ¢;
and ¢ be defined by penalty(c1)(k) = |k(S1) \ k(S2)| and penalty(c2)(k) = 0 if
ds € k(S5) and 1 otherwise. Now, the penalties of P with respect to the config-
urations k1 and ko from Example 2 are penalty(c1)(k1) + penalty(ce)(k1) =1
and penalty(c1)(k2) + penalty(cz) (k) = 0, respectively.

3 Second-Order Logic

We use ezxistential second-order logic (3SOL) [8], extended with counting, for
modelling the constraints of a set-CSP. 3SOL is very expressive: it captures the
complexity class NP [5]. Figure 1 shows the BNF grammar for the used language,
which we will refer to as 3SOL™T. Some of the production rules are highlighted
and the reason for this is explained below. The language uses common mathe-
matical and logical notations. Note that its set of relational operators is closed
under negation. A formula in 3SOLT is of the form 35, ---39,,¢, i.e., a sequence
of existentially quantified set variables, ranging over the power set of an implicit
common universe U, and constrained by a logical formula ¢. The usual prece-
dence rules apply when parentheses are omitted, i.e., = has highest precedence,
A has higher precedence than V, etc.

Ezxample 4. The constraint S C T on the set variables S and T may be expressed
in 3SOL™T by the formula:

ASAT(Vax(x ¢ SVax e T))A(Fe(x € T Ax ¢ 5))) (1)

The constraint |SNT| < m on the set variables S and T and the natural-number
constant m may be expressed in ISOLY by the formula:

ASITII(Ve(r e I —x € SAzeT))AN|I| <m) (2)

Note that we used an additional set variable I to represent the intersection SNT'.



(Constraint) := (3 (S))T (Formula)
(Formula) ::= ((Formula))
| (Y] I){z) (Formula)
| (Formula) (A | V |= | & |&) (Formula)
| =(Formula)
| (Literal)
(Literal) ::= (z) (€ | €) (S)
| (o) (KIS =1#121>) )
IO IS I=1#121>)(a)

Fig. 1. The BNF grammar for the language 3SOL™ where terminal symbols are un-
derlined. The non-terminal symbol (S) denotes an identifier for a bound set variable S
such that S C U, while (z) and (y) denote identifiers for bound variables z and y such
that =,y € U, and (a) denotes a natural number constant. The core subset of 3SOL™
corresponds to the language given by the non-highlighted production rules.

In Section 4 we will define the penalty of formulas in ISOL™. Before we do
this, we define a core subset of this language that will be used in that definition.
This is only due to the way we define the penalty and does not pose any lim-
itations on the expressiveness of the language: Any formula in 3SOLT may be
transformed into a formula in that core subset, in a way shown next.

The transformations are standard and are only described briefly. First, given
a formula 357 ---35,¢ in ISOL™, we remove its negations by pushing them
downward, all the way to the literals of ¢, which are replaced by their negated
counterparts. Assuming that ¢ is the formula Vz(—=(z € S Az ¢ 5)), it is
transformed into Vz(x ¢ SV z € S’). This is possible because the set of rela-
tional operators in ISOL™ is closed under negation. Second, equivalences are
transformed into conjunctions of implications, which are in turn transformed
into disjunctions. Assuming that ¢ is the formula Va(z € S < x € Ss), it is
transformed into Va((x ¢ S1Vx € So) A(x € S1Va ¢ Ss)).

By performing these transformations for ¢ (and recursively for the sub-
formulas of ¢) in any formula 35 ---35,¢, we end up with the non-highlighted
subset of the language in Figure 1, for which we will define the penalty.

Ezample 5. (1) is in the core subset of 3ISOL*. The core equivalent of (2) is:
AS3ATII(Ve((z ¢ IVx e SAz e T)AN(xeIVag SV ¢T))) NI <m) (3)

From now on we assume that any formula said in 3SOL™ is already in the core
subset of 3SOL™. The full language just offers convenient shorthand notations.

4 The Penalty of an 3SOLT Formula

In order to use (closed) formulas in 3SOL™T as constraints in our local search
framework, we must define the penalty function of such a formula according



to Definition 4, which is done inductively below. It is important to stress that
this calculation is totally generic and automatable, as it is based only on the
syntazx of the formula and the semantics of the quantifiers, connectives, and
relational operators of the ASOL™ language, but not on the intended semantics
of the formula. A human might well give a different penalty function to that
formula, and a way of calculating it that better exploits globality, but the scheme
below requires no such user participation.

We need to express the penalty with respect to the values of any bound first-
order variables. We will therefore pass around an (initially empty) environment
I in the definition below, where I is a total function from the currently bound
first-order variables into the common universe of values.

Definition 5 (Penalty of an 3SOL' Formula). Let F be a formula in ISOLT
of the form 3S7---3S,¢, let k be a configuration for {Si,...,Sp}, and let I" be
an environment. The penalty of F with respect to k and I" is given by a function
penalty’ defined by:

u}

(a) penalty’(I')(3S1 - - - 3S,0)(k) = penalty’ (I")(¢)(k)

(b) penalty’ (I')(V26) (k) = 5 penaity(TU o = u)(0))

() penalty’ (1)) () — min{penalty (I'U {z — u})()(k) | u €
(d) penalty' (D)6 A ) () — penalty! (I)(6) (k) + penalty (T) () (k)

(¢) penalty! (I)(6 v ) (k) — min{penalty’ (') (6) (), penalty/ (1) () (k)}
(f) penalty/ (D) < ) (k) =40 TLE) <TW)

1, otherwise

0, if [k(9)| <c
|k(S)| — ¢, otherwise
(h) penalty'(I')(x € S)(k) _ o F(x) € k(S)
1, otherwise

0, if I'(xz) & k(95)
1, otherwise

() penalty’ (I')(z ¢ S)(k) =

Now, the penalty function of F is the function penalty(F) = penalty’ (0)(F).

In the definition above, for (sub)formulas of the form x ¢ y and [S]| O ¢,
where € {<,<,=,#,>,>}, we only show the cases where ¢ € {<}; the other
cases are defined similarly. (The same applies to the algorithms in Section 5.)
The following proposition is a direct consequence of the definition above:

Proposition 1. The penalty of a formula F with respect to a configuration k is
0 if and only if F is satisfied under k: penalty(3S; ---3S,0)(k) =0 <=k = ¢.

In our experience, the calculated penalties of violated constraints are often
meaningful, as shown in the following example.

Ezample 6. Let U = {a,b} and let k be the configuration for {S,T} such that
kE(S) = k(T) = {a}. Let us calculate penalty(3S3T¢)(k), where ISIT¢ is



the formula (1) The initial call matches case (a) which gives the recursive call
penalty’ (0)(¢) (k). Since ¢ is of the form 1) A ¢’ this call matches case (d), which
is defined as the sum of the recursive calls on 1) and v’. For the first recursive
call, ¢ is the formula Vz(x ¢ SV o € T). Hence it will match case (b), which is
defined as the sum of the recursive calls penalty’ ({z — a})(z ¢ SVa € T)(k) and
penalty’ ({x — b})(x ¢ SV € T)(k) (one for each of the values a and b in U).
Both of these match case (e) which, for the first one, gives the minimum of the
recursive calls penalty’({z — a})(z ¢ 5)(k) and penalty’({z — a})(x € T)(k).
This value is min{1,0} = 0 since a € T. A similar reasoning for the second one
gives the value min{0,1} = 0 as well since b ¢ S. Hence the recursive call on
1 gives 0 + 0 = 0. This means that v is satisfied and should indeed contribute
nothing to the overall penalty. A similar reasoning for the recursive call on 1,
which is 3z(x € T Az ¢ S), gives min{1,1} = 1. This means that 1)’ is violated:
the calculated contribution of 1 to the overall penalty means that no value of U
belongs to T' but not to S. Hence the returned overall penalty is 0+ 1 = 1.

5 Incremental Penalty Maintenance using Penalty Trees

In our local search framework, given a formula F in 3SOL™T, we could use Defini-
tion 5 to calculate the penalty of F with respect to a configuration k, and then
similarly for each configuration k' in a neighbourhood N(k) to be evaluated.
However, a complete recalculation of the penalty with respect to Definition 5 is
impractical, since N'(k) is usually a very large set.

In local search it is crucial to use incremental algorithms when evaluating the
penalty of a constraint with respect to a neighbour &’ to a current configuration
k. We will now present a scheme for incremental maintenance of the penalty of a
formula in 3SOLT with respect to Definition 5. This scheme is based on viewing
a formula F in 3SOL™ as a syntax tree and observing that, given the penalty
with respect to k, only the paths from the leaves that contain variables that are
changed in k' compared to k to the root node need to be updated to obtain the
penalty with respect to k'

5.1 The Penalty Tree of a Formula

First, a syntax tree T of a formula F in ISOLT of the form 3S;---3S5,¢ is
constructed in the usual way. Literals in F of the form « € S, z ¢ S, = O y,
and |S| ¢ k (where ¢ € {<,<,=,#,>,>}) are leaves in T. Subformulas in F
of the form ¢ O ¢’ (where O € {A,V}) are subtrees in T with OJ as parent
node and the trees of ¢ and v’ as children. When possible, formulas of the form
Y O- -0 4y, give rise to one parent node with m children. Subformulas in F
of the form Vz1) (resp. Jz1)) are subtrees in T with Va (resp. 3z) as parent node
and the tree of ¢ as only child. Finally, 357 - -- 35, is the root node of T with
the tree of ¢ as child. As an example of this, Figure 2 shows the syntax tree
of formula (3). Note that it contains additional information, to be explained in
Section 5.2.



{0 — 1(0)}

{(a) — 0,

(b) — 1(0), {O — 0}

>

{(a) — 0,
(b) — 0(0),
(c) — 0}

{(a) — 1,
. . Eb; — 1(}0), <
{(a) — 1, c) —
(‘;) — 0, <. .
(e) — 0}

{(a) — 0,
(b) — 0(1), < -°
(c) — 1}

%
{(a) — 1,(b) — 1,(c) — 0}
{(a) = 0, (b) — 0, (c) — 1} {(a) = 0, (b) — 0(1), () — 0}

Fig. 2. Penalty tree of formula (3).

Assume that T is the syntax tree of a formula F = 357 - - - 345,,¢. We will now
extend T into a penalty tree in order to obtain incremental penalty maintenance
of F. Given an initial configuration & for {S1,...,S,}, the penalty with respect
to k of the subformula that the tree rooted at node n represents is stored in each
node n of T. This implies that the penalty stored in the root node of T is equal
to penalty(F)(k). When a configuration k' in the neighbourhood of k is to be
evaluated, the only paths in T that may have changed are those leading from
leaves containing any of the set variables S; that are affected by the change of
k to k'. By starting at each of these leaves [(S;) and updating the penalty with
respect to the change of S; of each node on the path from [ to the root node of
T, we can incrementally calculate penalty(F)(k') given k.

5.2 Initialising the Nodes with Penalties

For the descendants of nodes representing subformulas that introduce bound
variables, we must store the penalty with respect to every possible mapping of
those variables. For example, the child node n of a node for a subformula of the
form Va¢ will have a penalty stored for each u € U. Generally, the penalty stored
at a node n is a mapping, denoted p(n), from the possible tuples of values of the
bound variables at n to N. Assume, for example, that at n there are two bound
variables x and y (introduced in that order) and that & = {a,b}. Then the
penalty stored at n after initialisation will be the mapping {(a, a) — p1, (a,b) —
pa2, (bya) — ps, (b,b) — ps} where {p1,p2,ps,ps} C N. The first element of each
tuple corresponds to x and the second one to y. If there are no bound variables
at a particular node, then the penalty is a mapping {() — ¢}, i.e., the empty
tuple mapped to some g € N.



Algorithm 1 Initialises the penalty mappings of a penalty tree.
function initialise(T, U, k)
match T with
3S1---3Sn¢ — p(T) «— {tuple(I") — initialise(p, I'U, k)}

| Ve¢p — p(T) «— p(T) U {tuple(I") — > initialise(¢, ' U {z — u}, U, k)}

| Jzp — ueU
p(T) — p(T) U {tuple(I') — min{initialise(¢, " U {z — u}, U, k) | u € U}}

[ 1 A~ AN b — p(T) — p(T) U {tuple(I") — >, <, <, initialise(p;, I, U, k)}

[$1V - Vgm — o
p(T) «— p(T) U {tuple(I') — min{initialise(p, [ U, k) | ¢ € {¢p1,...,Pm}}}

0, if I'(z) < I'(y) }

1, otherwise

|z <y — p(T) —p(THU {tupk(l“) - {
i <
151 < m — p(T) — p(T)U {tupze(m - {f,;(sf):’“_(fi[ S e }

|z€eS — p(T) — p(TH U {tuple(l") — {O’ if I'(z) € k(S) }

1, otherwise

|z ¢S — p(T) — p(TH U {tuple(F) — {
end match
return p(T)(tuple(I"))

function tuple(I")
return (I'(z1),...,I'(z,)) > {x1,...,2n} = domain(I"), introduced into I" in that order.

0, if I'(z) & k(S) }

1, otherwise

Algorithm 1 shows the function initialise(T, I',U, k) that initialises a penalty
tree T of a formula with penalty mappings with respect to an (initially empty)
environment I, a universe U, and a configuration k. By abuse of notation, we let
formulas in 3SOL™ denote their corresponding penalty trees, e.g., V¢ denotes
the penalty tree with Va as root node and the tree representing ¢ as only child,
@1 N -+ N ¢y denotes the penalty tree with A as root node and the subtrees of
all the ¢; as children, etc. Note that we use an auxiliary function tuple that,
given an environment I', returns the tuple of values with respect to I'. We also
assume that before initialise is called for a penalty tree T, the penalty mapping
of each node in T is the empty set.

Ezample 7. Let k = {S — {a,b},T — {a,b,c}, I — {a}}, let U = {a,b,c}, and
let m = 1. Figure 2 shows the penalty tree T with penalty mappings (dotted
arrows connect nodes to their mappings) after initialise(T,0,U, k) has been
called for formula (3). As can be seen at the root node, the initial penalty is 1.
Indeed, there is one value, namely b, that is in S and T but not in [.

5.3 Maintaining the Penalties

We will now present a way of incrementally updating the penalty mappings of a
penalty tree. This is based on the observation that, given an initialised penalty
tree T, a current configuration k, and a configuration to evaluate k’, only the
paths leading from any leaf in T affected by changing & to k' to the root node
of T need to be updated.

Algorithm 2 shows the function submit(n,n’, A, k, k') that updates the penalty
mappings of a penalty tree incrementally. It is a recursive function where infor-



Algorithm 2 Updates the penalty mappings of a penalty tree.

function submit(n,n’, A, k, k')
update(n,n’, A) > First update n with respect to n’.
if All children affected by the change of k to k’ are done then
if n is not the root node then
submit(parent(n),n, AU changed(n), k, k')
changed(n) «— 0
else () > We are at the root. Done!
else changed(n) «— changed(n) U A > Not all children done. Save tuples and wait.
function update(n,n’, A)
p’(n) «— p(n) > Save the old penalty mapping.
for all t € Aliounds(n) do
match n with
381---3Sn¢ — p(n) «— p(n) ® {() = p(n")(()}
| Vap —
for all t’ € Alyunds(n’y St ' lbounds(n) =t do
p(n) — p(n) ® {t — p(n)(t) + p(n") () — p'(n")(¥")}
| Jzp —
for all t' € Alypunds(n’y 5t t'|bounds(n) =t do
Replace the value for ¢’ in min_heap(n,t) with p(n’)(t")
p(n) «— p(n) @ {t — min(min_heap(n,t))}
| 1A Apm — p(n) «— p(n) & {t — p(n)(t) + p(n’)(t) — p'(n’) (1)}
| 1V -+ V ¢ — Replace the value for n’ in min_heap(n,t) with p(n’)(t)
p(n) «— p(n) & {t — min(min_heap(n,t))}
| x <y — error > Only leaves representing formulas on set variables apply!
0, if |k (S)] < m
[ 18] < m —>p(l’l)<—p(l’l)®{t'—> {‘k,(SN*M, otherwise }

1, otherwise

|z ¢S — p(n) — p(n) ® {t — {0’ if t(z) € k'(S) }

‘weS*’P(n)Hp(n)@{tH{oa if t(z) € k'(S) }

1, otherwise
end match

mation from the node n’ (void when n is a leaf) is propagated to the node n.
The additional arguments are A (a set of tuples of values that are affected by
changing k to k' at n), k (the current configuration), and &’ (the configuration
to evaluate). It uses the auxiliary function update(n,n’, A) that performs the
actual update of the penalty mappings of n with respect to (the change of the
penalty mappings of) n’.

The set A depends on the maximum number of bound variables in the penalty
tree, the universe U, and the configurations k and k’. Recall U and k of Example 7
and assume that &' = {S — {a,b},T — {a,c},I — {a}} (b was removed from
E(T)). In this case A would be the singleton set {(b)} since this is the only
tuple affected by the change of k to k’. However, if the maximum number of
bound variables was two (instead of one as in Example 7), A would be the set
{(b,a), (b,b), (b,¢), (a,b),(c,b)} since all of these tuples might be affected.

Some of the notation used in Algorithm 2 needs explanation: Given a set A of
tuples, each of arity n, we use Al,, to denote the set of tuples in A projected on
their first m < n positions. For example, if A = {(a, a), (a,b), (a,c), (b,a), (c,a)},
then Al; = {(a), (b), (¢)}. We use a similar notation for projecting a particular
tuple: if t = (a, b, ¢) then t|o denotes the tuple (a,b). We also use t(z) to denote
the value of the position of = in ¢. For example, if  was the second introduced



bound variable, then t(x) = b for t = (a,b,c). We let changed(n) denote the
set of tuples that has affected n. We let bounds(n) denote the number of bound
variables at node n (which is equal to the number of nodes of the form Vz or
Jz on the path from n to the root node). We use the operator @ for replacing
the current bindings of a mapping with new ones. For example, the result of
{z — a,y— a,z— b} d{x — by b}is {& — by — bz +— b}. Finally,
we assume that nodes of the form Jz and V have a data structure min_heap for
maintaining the minimum value of each of its penalty mappings.

Now, given a change to a current configuration k, resulting in k', assume that
{S;} is the set of affected set variables in a formula F with an initialised penalty
tree T. The call submit(n, void, A, k, k') must now be made for each leaf n of T
that represents a subformula stated on S;, where A is the set of affected tuples.

Ezample 8. Recall k = {S — {a,b},T — {a,b,c},I — {a}} and m = 1 of
Example 7, and keep the initialised tree T in Figure 2 in mind. Let k' = {S —
{a,b}, T — {a,c}, I — {a}}, i.e., b was removed from k(7). The function submit
will now be called twice, once for each leaf in T containing 7.

Starting with the leaf ny; representing the formula z € T, submit is called
with submit(nq1, void, {(b)}, k,k'). This gives the call update(ni, void,{(b)})
which replaces the binding of (b) in p(n11) with (b) — 1 (since b is no longer in
T). Since a leaf node has no children and nj; is not the root node, submit(n;s,
ni1, {(b)}, k, k') is called where nis = parent(ni;). Since njy is an A-node,
update(nya,ny1, {b}) implies that the binding of (b) in p(n;s) is updated with
the difference p(nj1) — p’(n11) (which is 1 in this case). Hence, the new value of
p(n12)(b) is 1. Since there are no other affected children of njs and n;s is not the
root node, submit(nis,ni2, {(b)}, k, k') is called where ny3 = parent(n;2). Since
ny3 is an V-node, update(nys, nio, {b}) gives that the binding of (b) in p(n;3) is
updated with the minimum of p(ni2)(b) and the values of p(n)(b) for any other
child n of n;3. Since the only other child of n;3 gives a 0 for this value, p(n;3)(b)
remains 0. Now, call submit(nz,nis, {(b)}, k, k') where ny = parent(n;3). The
call update(ns,nys, {b}) gives that p(nz)(b) is unchanged (since p(n;3)(b) was
unchanged). Now, not all possibly affected children of nz are done since the leaf
no; representing the formula « ¢ T has not yet been propagated. By following
a similar reasoning for the nodes ng; and ngs = parent(ng;) we will see that
the value of p(n22)(b) changes from 1 to 0 (since b is now in T'). When this is
propagated to nz by submit(ng, naa, {(b)}, k, k'), the value of p(nsz)(b) will also
change from 1 to 0. A similar reasoning for parent(ng), parent(parent(ng)) and
the root node gives the same changes to their penalty mappings consisting of
only () — 1. This will lead to an overall penalty decrease of 1 and hence, the
penalty of formula (3) with respect to k" is 0, meaning that (3) is satisfied under
k'. The values of the changed penalty mappings with respect to k' of T are
shown in parentheses in Figure 2.



6 Neighbourhood Selection

When solving a problem with local search, it is often crucial to restrict the
initial configuration and the neighbourhood function used so that not all the
constraints need to be stated explicitly. It is sometimes hard by local search
alone to satisfy a constraint that can easily be guaranteed by using a restricted
initial configuration and neighbourhood function. For example, if a set must have
a fixed cardinality, then, by defining an initial configuration that respects this
and by using a neighbourhood function that keeps the cardinality constant (for
example by swapping values in the set with values in its complement), an explicit
cardinality constraint need not be stated. Neighbourhoods are often designed in
such an ad-hoc fashion. With the framework of 3SOL™, it becomes possible to
reason about neighbourhoods and invariants:

Definition 6. Let formula ¢ model a CSP P, let K be the set of all config-
urations for P, and let formula ¢ be such that k = ¢ implies k = ¢ for all
configurations k € K. A neighbourhood function N : K — 2K is invariant for v

if k = implies k' = for all k' € N (k).

Intuitively, the formula v is implied by ¢ and all possible moves take a
configuration satisfying 1) to another configuration satisfying ¢. The challenge
then is to find a suitable neighbourhood function for a formula ¢.

Sometimes (as we will see in Section 7), given formulas ¢ and v satisfying
Definition 6, it is possible to find a formula ¢ such that ¢ is logically equivalent
to & A . If the formula ¢ is smaller than ¢, then the speed of the local search
algorithm can be greatly increased since the incremental penalty maintenance is
faster on smaller penalty trees.

7 Application: A Financial Portfolio Problem

After formulating a financial portfolio optimisation problem, we show how to
exactly solve real-life instances thereof in our local search framework. This is
impossible with the best-known complete search algorithm and competitive with
a fast approximation method based on complete search.

7.1 Formulation

The synthetic-CDO-Squared portfolio optimisation problem in financial mathe-
matics has practical applications in the credit derivatives market [7]. Abstracting
the finance away and assuming (not unrealistically) interchangeability of all the
involved credits, it can be formulated as follows.! Let V = {1,...,v} and let
B = {1,...,b} be a set of credits. An optimal portfolio is a set of v subsets
B; C B, called baskets, each of size r (with 0 < r < b), such that the maximum
intersection size of any two distinct baskets is minimised.

! We use the notation of the related balanced incomplete block design problem.



credits

basket 1 [1|1[1]0[0[0[0[0
basket 2 [1|1|0{1|0{0|0[0
basket 3 |1(1]|0|0|1|0(0|0
basket 4 [1/1[0[0[0[1]|0[0
basket 5 [0|0[1]1|1{0|0[0
basket 6 |0(0|1|1|0|1|0|0
basket 7 [0[0[1]1|0[0[1|0
basket 8 [0]0/0|0|1{1]0|1
basket 9 |0(0/0]|0|1|0(1]|1
basket 10{0{0{0{0|0{1|1|1
Table 1. An optimal solution to (10,8, 3,\), with A = 2.

There is a universe of about 250 < b < 500 credits. A typical portfolio
contains about 4 < v < 25 baskets, each of size r & 100. Such real-life instances
of the portfolio optimisation problem are hard, so we transform it into a CSP by
also providing a targeted value, denoted A (with A\ < r), for the maximum of the
pairwise basket intersection sizes in a portfolio. Hence the following formulation
of the problem:

VieV:|Bj|=r (4)

V21¢Z2€V|BhﬂBu|§)\ (5)

We parameterise the portfolio CSP by a 4-tuple (v,b,r, \) of independent pa-
rameters. The following formula gives an optimal lower bound on A [13]:2

[%272(rv mod b) + [ 52]2(b — rv mod b) — rv

Az v(v—=1)

(6)

7.2 Using Complete Search

One way of modelling a portfolio is in terms of its incidence matriz, which is a
v X b matrix, such that the entry at the intersection of row ¢ and column j is
1if j € B; and 0 otherwise. The constraints (4) and (5) are then modelled by
requiring, respectively, that there are exactly r ones (that is a sum of r) for each
row and a scalar product of at most A for any pair of distinct rows. An optimal
solution, under this model, to (10,8, 3, \) is given in Table 1, with A = 2.

The baskets are indistinguishable, and, as stated above, we assume that all
the credits are indistinguishable. Hence any two rows or columns of the incidence
matrix can be freely permuted. Breaking all the resulting v! - b! symmetries can
in theory be performed, for instance by v! - b! — 1 (anti-)lexicographical order-
ing constraints [4]. In practice, strictly anti-lexicographically ordering the rows
(since baskets cannot be repeated in portfolios) as well as anti-lexicographically

2 Tt often improves the bound reported in [7] and negatively settles the open question
therein whether the (10, 350, 100, 21) portfolio exists or not.



ordering the columuns (since credits can appear in the same baskets) works quite
fine for values of b up to about 36, due to the constraint (5), especially when
labelling in a row-wise fashion and trying the value 1 before the value 0. How-
ever, this is one order of magnitude below the typical value for b in a portfolio.
In [7], we presented an approximate and often extremely fast method of solv-
ing real-life instances of this problem by complete search, even for values of A
quite close, if not identical, to the lower bound in (6). It is based on embedding
(multiple copies of) independent sub-instances into the original instance. Their
determination is itself a CSP, based on (6).

7.3 Using Local Search

It is easy to model the portfolio problem in 3SOL™ using additional set variables.
The problem can be modelled by the following formula:

AB1, ..., 3By il ) 01 N P2 NP3 (7)

where 3;;1; ;) is a shorthand for the sequence of quantifications 31(y 2y, . . ., [(; j
... for all i < j.® The formula ¢; = |B1| = r A --- A |B,| = r states that each
set B; is of size r. Using similar conventions, the formula ¢o = Vi < j Va(z €
I;5) < (v € Bi ANw € By)) states that each set I(; j) is the intersection of B;
and Bj. Finally, the formula ¢35 = Vi < j|I(; ;)| < A states that the intersection
size of any B; and B; should be less than or equal to A.

The local search algorithm can be made more efficient by using the ideas
in Section 6. First, we define a neighbourhood function that is invariant for the
formula ¢;. Assuming that the initial configuration for (7) respects ¢1, the neigh-
bourhood function that swaps any value in any B; to any value in its complement
is invariant for ¢. We denote this neighbourhood function by ezchange. We may
even extend exchange such that it is invariant also for ¢o. In order to do this,
we assume that the initial configuration for (7) respects ¢1 A ¢2. Now, we extend
exchange in the following way. Given a configuration k and a configuration &’ in
exchange(k) where B; is the only variable affected by the change of k to k’, the
variables I; ;) such that there exists a subformula z € I; jy < (z € B; Az € By)
orx € I ;) < (x € B Az € B;) are all updated (by adding or removing a value
to I(;,7)) so that those formulas still hold.

We use a similar algorithm to the one in [2] for solving the portfolio problem
with local search, i.e., a Tabu-search algorithm with a restarting criterion if no
overall improvement was reported after a certain number of iterations.

7.4 Results

The experiments were run on an Intel 2.4 GHz Linux machine with 512 MB
memory. The local search framework was implemented in OCaml and the com-
plete search algorithm was coded in SICStus Prolog.

3 This shorthand is a purely conservative extension of 3SOL* and does not increase
the expressiveness.



The local search algorithm performs well on this problem. For example, the
easy instance (10, 35,11, 3) is solved in 0.2 seconds, the slightly harder instance
(10,70, 22,6) in 0.6 seconds, and the real-life instance (15,350, 100, 24) in 133.9
seconds. Bear in mind that these results were achieved (by our current prototype
implementation) under the assumption that no built-in constraints existed, and
thus that the incremental penalty maintenance algorithms were automatically
generated as described in this paper.

For comparison, the complete search approach without embeddings needs 0.6
seconds for finding a first solution of (10, 35, 11, 3), 929.8 seconds for (10, 70,22, 6),
and does not terminate within several hours of CPU time for (15,350,100, 24).

Using the extended implementation [13] of the embedding method of [7]
for the real-life instance (15, 350,100, 24), two embeddings were constructed but
both timed out after 100 seconds. Hence, local search approaches can outperform
even this approximation method.

8 Conclusion

Summary. In the context of local search, we have introduced a scheme that,
from a high-level problem model in existential second-order logic with counting
(3SOL™), automatically synthesises incremental penalty calculation algorithms.
This bears significant benefits when ad hoc constraints are necessary for a par-
ticular problem, as no adaptation by the user of the modelling part of the local
search system is then required. The performance of the scheme has been demon-
strated by solving real-life instances of a financial portfolio design problem that
seem unsolvable in reasonable time by complete search.

Related Work. The usage of existential second-order logic (3SOL) as a mod-
elling language has also been advocated in [9]. The motivation there was rather
that any automated reasoning about constraint models must necessarily first
be studied on this simple core language before moving on to extensions thereof.
Modern, declarative constraint modelling languages, such as NP-SPEC [3], OPL
[14], and ESRA [6], are extensions of 3SOL. In contrast, our motivation for 3ISOL
is that it is a sufficient language for our purpose, especially if extended (only)
with counting.

The adaptation of the traditional combinators of constraint programming for
local search was pioneered in [15]. The combinators there include logical con-
nectives (such as A and V), cardinality operators (such as ezactly and atmost),
reification, and expressions over variables. We extend these ideas here to the
logical quantifiers (V and 3). This is not just a matter of simply generalising
the arities and penalty calculations of the A and V connectives, respectively, but
made necessary by our handling of set variables over which one would like to
iterate, unlike the scalar variables of [11,15].

Future Work. We have made several simplifying assumptions in order to re-
strict this paper to its fundamental ideas. For instance, the handling of both
scalar variables and set variables requires special care in the calculation of penal-
ties, and has been left as future work. Also, many more shorthand notations than



the ones used in this paper could be added for the user’s convenience, such as
quantification bounded over a set rather than the entire universe. Furthermore,
it would be useful if appropriate neighbourhood functions that are invariant for
some of the constraints could automatically be generated from an 3SOL™ model.
Conclusion. Our first computational results are encouraging and warrant fur-
ther research into the automatic synthesis of local search algorithms.
Acknowledgements. This research was partially funded by Project C/1.246/
HQ/JC/04 of EuroControl. We thank Olof Sivertsson for his contributions to
the experiments on the financial portfolio problem, as well as the referees for
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