
Notes on the BENCHOP implementations for the

FDAD method

Lina von Sydow (lina@it.uu.se)

March 3, 2015

Abstract

This text describes the FD-AD method and its implementation for the
BENCHOP-project.

1 Spatial discretization

The problems considered are all on the form

∂u

∂t
+ Lu = 0 , t ∈ [0, T] (1)

where L is a partial-(integro) operator in one or two spatial dimensions.We will
describe the spatial discretization with adaptivity for a one-dimensional problem
in s, . The generalization to a two-dimensional problem is straight-forward and
can be found in , and .

We discretize (1) on an equidistant grid sj using centered, second-order finite
differences such that for a computed solution uh ∈ C2 it holds

uh = u+ h2c(s) (2)

after neglecting high-order terms and hence u2h = u + (2h)2c(s). Using the
second-order accuracy also in the local discretization error in space τh we get

τh = h2η(s). (3)

From the definition of the local truncation error τh = Lhu−Lu and (2) we get

τh = Lhuh − Lu− h2Lhc(x) , τ2h = L2huh − Lu− h2L2hc(x), (4)

where the term L2huh is defined as the operator L2h acting on every second
element in uh. Subtracting the first equation in (4) from the second, and defining
δh = Lhuh and δ2h = L2huh gives

τ2h − τh = δ2h − δh − h2(L2h − Lh)c(x) = δ2h − δh +O(h4).

1

Now using (3) and omitting high-order terms we get

η(s) ≈ δ2h − δh
3h2

, τ(s) =
δ2h − δh

3
, (5)

i.e. we can estimate η(s) by computing a solution uh̄ using the spatial discretiza-
tion h̄ and employ (5). If we require |τh| = |h2η(x)| < ε for some tolerance ε
we can obtain this by computing a solution using the new spatial discretization
h(x) defined by

h(s) = h̄

√
ε

|τh̄(s)|
.

To prevent us from using too large spatial steps, we introduce a small parameter
d and define

h(x) = h̄

√
ε

|τh̄(s)|+ ε · d
. (6)

We use extrapolation of τh̄ close to the boundaries s = smin, s = smax and
v = vmax to remove the effects caused by the boundary conditions used. To
ensure a smooth τh̄ we perform q smoothing iterations according to

τh̄(sk) = (τh̄(sk−1) + 2τh̄(sk) + τh̄(sk+1)) /4.

Since (1) is time-dependent the local discretization error τh will vary in time.
We will use the solution uh at three different time-steps 0, T/3, and 2T/3 and
use max |τh| over these time-steps when we compute the new computational
grids.

We end this section by summarizing the algorithm for adaptivity as follows:

1. Compute a solution using a coarse spatial grid with Nc grid-points in space
and a coarse temporal discretization with Mc time-steps.

2. Estimate the local truncation error on this grid and compute a new spatial
grid using (6) for some given ε.

3. Compute a new solution using the new spatial grid with Nf grid-points
in space and Mf time-steps.

2 Temporal discretization

The spatial discretization described in Section 1 leads to the system of ordinary
differental equations

duh
dt

+Ahuh = 0, (7)

where Ah for a one-dimensional problem is a tri-diagonal matrix of size N ×N .
For most benchmarking problems we have used discontinuous Galerkin in time
to solve (7), and when it for some reason didn’t compute accurate solutions, we
used BDF-2.

2

2.1 Discontinuous Galerkin

The time-interval [0, T] is partitioned intoM subintervals {Im = (tm−1, tm)}Mm=1

of size k = tm − tm−1 = T
M . Define Pr(Im) as the space of polynomials of de-

gree r or less on the interval Im and U = {U : Um ∈ Pr(Im)} to be the finite
element space containing the piecewise polynomials. The solution U is con-
tinuous within each time interval Im, but may be discontinuous at the nodes
t1, . . . , tM−1. We define the one-sided limits of a piecewise continuous function
u(t) as u+

m := limv→0+ u(tm + v), u−m := limv→0+ u(tm − v), and the “jump” in
u(t) across tm as [um] := u+

m − u−m.
The dG method of degree r (dG(r) to solve (7) reads as follows: Find U ∈ U,

satisfying U−0 = u0, such that
∑M
m=1

∫
Im

(U̇m−AUm)w(t) dt+
∑M
m=1[Um−1]w(tm−1) =

0 for all w(t) ∈ U. In practice U can be computed in each interval∫
Im

(U̇m −AUm)w(t) dt+ [Um−1]w(tm−1) = 0 (8)

for m = 1, . . . ,M . Let {ϕ}rmj=0 be a basis of the polynomial space Prm(−1, 1)

and let time shape functions on time interval Im be given by ϕj ◦F−1
m , where the

mapping Fm : (−1, 1)→ Im is given by t = Fm(x) = 1
2 (tm−1 + tm)+ 1

2kx, x ∈
(−1, 1). Since the dG approximation Um in each time interval Im is in the
polynomial space Prm(Im), it can uniquely be expressed in the basis {ϕ}rmj=0 as

Um =
∑rm
j=0 um,j(ϕj ◦F−1

m). Inserting this into (8), and letting the test function
w(t) be the basis {ϕ}rmj=0, we get after some algebraic manipulations

rm∑
i,j=0

(
Cij −

k

2
Gij ·A

)
um,j =

rm∑
i=0

fm,i, (9)

with fm,i = ϕi(−1)
∑rm
j=0 ϕj(1)um−1,j , Cij =

∫ 1

−1
ϕ′jϕi dτ + ϕj(−1)ϕi(−1),

Gij =
∫ 1

−1
ϕjϕi dτ . Dropping the subscript m for sake of readability and repre-

senting (9) in matrix form results in(
C⊗ I− k

2
G⊗A

)
u = f , (10)

where ⊗ is the Kronecker product and u denotes the coefficient vector of Um,

that is u =
(
um,0 · · ·um,rm

)T
.

By choosing the temporal shape functions to be the normalized Legendre

polynomials, we get G = I and Cij = αij (i+ 1/2)
1/2

(j + 1/2)
1/2

, αij =
(−1)i+j if j < i and 1 otherwise. The matrix C is diagonalizable in C, and thus
there exists a matrix Q ∈ C(r+1)×(r+1) such that Q−1CQ = diag(λ0, . . . , λr).
Multiplying (10) by Q−1 ⊗ I from the left gives

(
T⊗M− k

2 I⊗A
)
w = g,

with w = (Q−1 ⊗ I)u, and g = (Q−1 ⊗ I)f . This system is block-diagonal and
completely decouples into(

λjM−
k

2
A

)
wj = gj , j = 0, . . . , r. (11)

3

Hence, in each time-step we have to solve the r+ 1 linear systems in (11) of size
N .

2.2 BDF-2

BDF-2 to solve (7) reads

3

2
unh = knAhu

n
h + 2un−1

h − 1

2
un−2
h . (12)

Since BDF-2 is a multi-step method we need to use a different method for the
first time-step. We have used Euler-backward

u1
h = knAhu

1
h + u0

h. (13)

3 Solution of linear systems of equations

Both discontinuous Galerkin in time and BDF-2 leads to large systems of linear
equations that have to be solved each time-step. We have solved them by per-
forming an LU-factorization prior to the time-stepping with subsequent solves
with these factors each time-step.

4 Details for different benchmark problems

The parameters that are common for all benchmark problems are:

d = 0.01,
q = 10

4.1 Benchmark problem 1–3

• The boundary conditions used for the one-dimensional problems are

∂2u
∂s2 = 0 , s = smin
∂2u
∂s2 = 0 , s = smax

together with one-sided differences for ∂u
∂s at both smin and smax.

• The time-stepping method used is dG(1).

4.1.1 Problem 1

• The computation of ∆ in S0 is accomplished through a centered finite

difference ũ(S0+h̃)−ũ(S0−h̃)

2h̃
where ũ is an interpolation of the computed

solution and h̃ is the smallest spatial step in the adaptive grid.

4

• The computation of Γ in S0 is accomplished through a centered finite

difference ũ(S0+h̃)−2ũ(S0)+ũ(S0−h̃)

h̃2
where ũ is an interpolation of the com-

puted solution and h̃ is the smallest spatial step in the adaptive grid.

• The computation of V in S0 is accomplished through a centered finite dif-

ference ũ(S0,1.0001σ)−ũ(S0,0.9999σ)
0.0002σ where ũ is an interpolation of the com-

puted solution.

Problem smin smax Nc Mc ε Nf Mf TM

1a) SP 0 4K 41 6 3.3e-3 113 6 dG(1)
1b) SP 0 4K 41 6 5.0e-5 989 189 BDF-2
1c) SP 0 4K 41 6 1.3e-3 197 11 dG(1)

1a) CP 0 4K 61 6 2.0e-8 61993 71 dG(1)
1b) CP 0 4K 61 6 3.7e-4 465 6 BDF-2
1c) CP 0 4K 61 6 2.0e-7 34517 69 dG(1)

1a) ∆ SP 0 4K 41 6 8.0e-4 221 6 dG(1)
1a) Γ SP 0 4K 41 6 5.4e-4 269 6 dG(1)
1a) V SP 0 4K 41 6 4.1e-4 309 50 dG(1)

1a) ∆ CP 0 4K 61 6 2.0e-8 61993 73 dG(1)
1a) Γ CP 0 4K 61 6 9.0e-7 92409 193 dG(1)
1a) V CP 0 4K 61 6 1.0e-8 87665 189 dG(1)

Table 1: Parameters used for Problems 1. Here SP and CP mean Standard
Parameters and Challenging Parameters respectively, and TM stands for Time-
stepping Method.

4.1.2 Benchmark problem 2

4.1.3 Benchmark problem 3

4.2 Benchmark problem 6

5

Problem smin smax Nc Mc ε Nf Mf TM

2) European call 0 4K 41 + 41 6 + 6 2.6e-4 537 + 377 6 + 6 dG(1)
2) American call 0 4K 41 + 41 6 + 6 2.7e-4 525 + 401 6 + 6 dG(1)

Table 2: Parameters used for Problem 2. Here TM stands for Time-stepping
Method. Nf = 537 + 377 means that 537 spatial grid-points were used between
T and αT , and 377 spatial grid-points between αT and 0, and similarily for Nc,
Mf , and Mc.

Problem smin smax Nc Mc ε Nf Mf TM

3) Local volatility smooth 0 4K 41 6 3.5e-4 353 38 BDF-2
3) Local volatility implied 0 4K 41 6 1.7e-4 725 31 BDF-2

Table 3: Parameters used for Problem 3. TM stands for Time-stepping Method.

Problem s1
min s1

max s2
min s2

max N1
c N2

c Mc ε N1
f N2

f Mf TM

6) 0 350 0 175 101 101 10 3.6e-3 277 409 40 BDF-2

Table 4: Parameters used for Problem 6. TM stands for Time-stepping Method.

6

