# Notes on the BENCHOP implementations for the FDAD method 

Lina von Sydow (lina@it.uu.se)

March 3, 2015


#### Abstract

This text describes the FD-AD method and its implementation for the BENCHOP-project.


## 1 Spatial discretization

The problems considered are all on the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\mathcal{L} u=0 \quad, \quad t \in[0, T] \tag{1}
\end{equation*}
$$

where $\mathcal{L}$ is a partial-(integro) operator in one or two spatial dimensions. We will describe the spatial discretization with adaptivity for a one-dimensional problem in $s$. The generalization to a two-dimensional problem is straight-forward and can be found in , and .

We discretize (1) on an equidistant grid $s_{j}$ using centered, second-order finite differences such that for a computed solution $u_{h} \in C^{2}$ it holds

$$
\begin{equation*}
u_{h}=u+h^{2} c(s) \tag{2}
\end{equation*}
$$

after neglecting high-order terms and hence $u_{2 h}=u+(2 h)^{2} c(s)$. Using the second-order accuracy also in the local discretization error in space $\tau_{h}$ we get

$$
\begin{equation*}
\tau_{h}=h^{2} \eta(s) \tag{3}
\end{equation*}
$$

From the definition of the local truncation error $\tau_{h}=\mathcal{L}_{h} u-\mathcal{L} u$ and (2) we get

$$
\begin{equation*}
\tau_{h}=\mathcal{L}_{h} u_{h}-\mathcal{L} u-h^{2} \mathcal{L}_{h} c(x) \quad, \quad \tau_{2 h}=\mathcal{L}_{2 h} u_{h}-\mathcal{L} u-h^{2} \mathcal{L}_{2 h} c(x), \tag{4}
\end{equation*}
$$

where the term $\mathcal{L}_{2 h} u_{h}$ is defined as the operator $\mathcal{L}_{2 h}$ acting on every second element in $u_{h}$. Subtracting the first equation in (4) from the second, and defining $\delta_{h}=\mathcal{L}_{h} u_{h}$ and $\delta_{2 h}=\mathcal{L}_{2 h} u_{h}$ gives

$$
\tau_{2 h}-\tau_{h}=\delta_{2 h}-\delta_{h}-h^{2}\left(\mathcal{L}_{2 h}-\mathcal{L}_{h}\right) c(x)=\delta_{2 h}-\delta_{h}+\mathcal{O}\left(h^{4}\right) .
$$

Now using (3) and omitting high-order terms we get

$$
\begin{equation*}
\eta(s) \approx \frac{\delta_{2 h}-\delta_{h}}{3 h^{2}} \quad, \quad \tau(s)=\frac{\delta_{2 h}-\delta_{h}}{3}, \tag{5}
\end{equation*}
$$

i.e. we can estimate $\eta(s)$ by computing a solution $u_{\bar{h}}$ using the spatial discretization $\bar{h}$ and employ (5). If we require $\left|\tau_{h}\right|=\left|h^{2} \eta(x)\right|<\epsilon$ for some tolerance $\epsilon$ we can obtain this by computing a solution using the new spatial discretization $h(x)$ defined by

$$
h(s)=\bar{h} \sqrt{\frac{\epsilon}{\left|\tau_{\bar{h}}(s)\right|}} .
$$

To prevent us from using too large spatial steps, we introduce a small parameter $d$ and define

$$
\begin{equation*}
h(x)=\bar{h} \sqrt{\frac{\epsilon}{\left|\tau_{\bar{h}}(s)\right|+\epsilon \cdot d}} . \tag{6}
\end{equation*}
$$

We use extrapolation of $\tau_{\bar{h}}$ close to the boundaries $s=s_{\min }, s=s_{\max }$ and $v=v_{\max }$ to remove the effects caused by the boundary conditions used. To ensure a smooth $\tau_{\bar{h}}$ we perform $q$ smoothing iterations according to

$$
\tau_{\bar{h}}\left(s_{k}\right)=\left(\tau_{\bar{h}}\left(s_{k-1}\right)+2 \tau_{\bar{h}}\left(s_{k}\right)+\tau_{\bar{h}}\left(s_{k+1}\right)\right) / 4 .
$$

Since (1) is time-dependent the local discretization error $\tau_{h}$ will vary in time. We will use the solution $u_{h}$ at three different time-steps $0, T / 3$, and $2 T / 3$ and use $\max \left|\tau_{h}\right|$ over these time-steps when we compute the new computational grids.

We end this section by summarizing the algorithm for adaptivity as follows:

1. Compute a solution using a coarse spatial grid with $N_{c}$ grid-points in space and a coarse temporal discretization with $M_{c}$ time-steps.
2. Estimate the local truncation error on this grid and compute a new spatial grid using (6) for some given $\epsilon$.
3. Compute a new solution using the new spatial grid with $N_{f}$ grid-points in space and $M_{f}$ time-steps.

## 2 Temporal discretization

The spatial discretization described in Section 1 leads to the system of ordinary differental equations

$$
\begin{equation*}
\frac{d u_{h}}{d t}+A_{h} u_{h}=0 \tag{7}
\end{equation*}
$$

where $A_{h}$ for a one-dimensional problem is a tri-diagonal matrix of size $N \times N$. For most benchmarking problems we have used discontinuous Galerkin in time to solve (7), and when it for some reason didn't compute accurate solutions, we used BDF-2.

### 2.1 Discontinuous Galerkin

The time-interval $[0, T]$ is partitioned into $M$ subintervals $\left\{I_{m}=\left(t_{m-1}, t_{m}\right)\right\}_{m=1}^{M}$ of size $k=t_{m}-t_{m-1}=\frac{T}{M}$. Define $\mathcal{P}^{r}\left(I_{m}\right)$ as the space of polynomials of degree $r$ or less on the interval $I_{m}$ and $\mathbb{U}=\left\{U: U_{m} \in \mathcal{P}^{r}\left(I_{m}\right)\right\}$ to be the finite element space containing the piecewise polynomials. The solution $U$ is continuous within each time interval $I_{m}$, but may be discontinuous at the nodes $t_{1}, \ldots, t_{M-1}$. We define the one-sided limits of a piecewise continuous function $u(t)$ as $u_{m}^{+}:=\lim _{v \rightarrow 0^{+}} u\left(t_{m}+v\right), u_{m}^{-}:=\lim _{v \rightarrow 0^{+}} u\left(t_{m}-v\right)$, and the "jump" in $u(t)$ across $t_{m}$ as $\left[u_{m}\right]:=u_{m}^{+}-u_{m}^{-}$.

The dG method of degree $r(\mathrm{dG}(r)$ to solve (7) reads as follows: Find $U \in \mathbb{U}$, satisfying $U_{0}^{-}=u_{0}$, such that $\sum_{m=1}^{M} \int_{I_{m}}\left(\dot{U}_{m}-A U_{m}\right) w(t) d t+\sum_{m=1}^{M}\left[U_{m-1}\right] w\left(t_{m-1}\right)=$ 0 for all $w(t) \in \mathbb{U}$. In practice $U$ can be computed in each interval

$$
\begin{equation*}
\int_{I_{m}}\left(\dot{U}_{m}-A U_{m}\right) w(t) d t+\left[U_{m-1}\right] w\left(t_{m-1}\right)=0 \tag{8}
\end{equation*}
$$

for $m=1, \ldots, M$. Let $\{\varphi\}_{j=0}^{r_{m}}$ be a basis of the polynomial space $\mathcal{P}_{r_{m}}(-1,1)$ and let time shape functions on time interval $I_{m}$ be given by $\varphi_{j} \circ F_{m}^{-1}$, where the mapping $F_{m}:(-1,1) \rightarrow I_{m}$ is given by $t=F_{m}(x)=\frac{1}{2}\left(t_{m-1}+t_{m}\right)+\frac{1}{2} k x, \quad x \in$ $(-1,1)$. Since the dG approximation $U_{m}$ in each time interval $I_{m}$ is in the polynomial space $\mathcal{P}_{r_{m}}\left(I_{m}\right)$, it can uniquely be expressed in the basis $\{\varphi\}_{j=0}^{r_{m}}$ as $U_{m}=\sum_{j=0}^{r_{m}} u_{m, j}\left(\varphi_{j} \circ F_{m}^{-1}\right)$. Inserting this into (8), and letting the test function $w(t)$ be the basis $\{\varphi\}_{j=0}^{r_{m}}$, we get after some algebraic manipulations

$$
\begin{equation*}
\sum_{i, j=0}^{r_{m}}\left(C_{i j}-\frac{k}{2} G_{i j} \cdot A\right) u_{m, j}=\sum_{i=0}^{r_{m}} f_{m, i} \tag{9}
\end{equation*}
$$

with $f_{m, i}=\varphi_{i}(-1) \sum_{j=0}^{r_{m}} \varphi_{j}(1) u_{m-1, j}, C_{i j}=\int_{-1}^{1} \varphi_{j}^{\prime} \varphi_{i} d \tau+\varphi_{j}(-1) \varphi_{i}(-1)$, $G_{i j}=\int_{-1}^{1} \varphi_{j} \varphi_{i} d \tau$. Dropping the subscript $m$ for sake of readability and representing (9) in matrix form results in

$$
\begin{equation*}
\left(\mathbf{C} \otimes \mathbf{I}-\frac{k}{2} \mathbf{G} \otimes \mathbf{A}\right) \mathbf{u}=\mathbf{f} \tag{10}
\end{equation*}
$$

where $\otimes$ is the Kronecker product and $\mathbf{u}$ denotes the coefficient vector of $U_{m}$, that is $\mathbf{u}=\left(u_{m, 0} \cdots u_{m, r_{m}}\right)^{T}$.

By choosing the temporal shape functions to be the normalized Legendre polynomials, we get $\mathbf{G}=\mathbf{I}$ and $C_{i j}=\alpha_{i j}(i+1 / 2)^{1 / 2}(j+1 / 2)^{1 / 2}, \alpha_{i j}=$ $(-1)^{i+j}$ if $j<i$ and 1 otherwise. The matrix $\mathbf{C}$ is diagonalizable in $\mathbb{C}$, and thus there exists a matrix $\mathbf{Q} \in \mathbb{C}^{(r+1) \times(r+1)}$ such that $\mathbf{Q}^{-1} \mathbf{C Q}=\operatorname{diag}\left(\lambda_{0}, \ldots, \lambda_{r}\right)$. Multiplying (10) by $\mathbf{Q}^{-1} \otimes \mathbf{I}$ from the left gives $\left(\mathbf{T} \otimes \mathbf{M}-\frac{k}{2} \mathbf{I} \otimes \mathbf{A}\right) \mathbf{w}=\mathbf{g}$, with $\mathbf{w}=\left(\mathbf{Q}^{-1} \otimes \mathbf{I}\right) \mathbf{u}$, and $\mathbf{g}=\left(\mathbf{Q}^{-1} \otimes \mathbf{I}\right) \mathbf{f}$. This system is block-diagonal and completely decouples into

$$
\begin{equation*}
\left(\lambda_{j} \mathbf{M}-\frac{k}{2} \mathbf{A}\right) \mathbf{w}_{j}=\mathbf{g}_{j}, \quad j=0, \ldots, r . \tag{11}
\end{equation*}
$$

Hence, in each time-step we have to solve the $r+1$ linear systems in (11) of size $N$.

### 2.2 BDF-2

BDF-2 to solve (7) reads

$$
\begin{equation*}
\frac{3}{2} u_{h}^{n}=k_{n} A_{h} u_{h}^{n}+2 u_{h}^{n-1}-\frac{1}{2} u_{h}^{n-2} . \tag{12}
\end{equation*}
$$

Since BDF-2 is a multi-step method we need to use a different method for the first time-step. We have used Euler-backward

$$
\begin{equation*}
u_{h}^{1}=k_{n} A_{h} u_{h}^{1}+u_{h}^{0} . \tag{13}
\end{equation*}
$$

## 3 Solution of linear systems of equations

Both discontinuous Galerkin in time and BDF-2 leads to large systems of linear equations that have to be solved each time-step. We have solved them by performing an LU-factorization prior to the time-stepping with subsequent solves with these factors each time-step.

## 4 Details for different benchmark problems

The parameters that are common for all benchmark problems are:

$$
\begin{aligned}
d & =0.01 \\
q & =10
\end{aligned}
$$

### 4.1 Benchmark problem 1-3

- The boundary conditions used for the one-dimensional problems are

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial s^{2}}=0 \quad, \quad s=s_{\min } \\
\frac{\partial^{2} u}{\partial s^{2}}=0 \quad, \quad s=s_{\max }
\end{array}
$$

together with one-sided differences for $\frac{\partial u}{\partial s}$ at both $s_{\min }$ and $s_{\max }$.

- The time-stepping method used is $\mathrm{dG}(1)$.


### 4.1.1 Problem 1

- The computation of $\Delta$ in $S_{0}$ is accomplished through a centered finite difference $\frac{\tilde{u}\left(S_{0}+\tilde{h}\right)-\tilde{u}\left(S_{0}-\tilde{h}\right)}{2 \tilde{h}}$ where $\tilde{u}$ is an interpolation of the computed solution and $\tilde{h}$ is the smallest spatial step in the adaptive grid.
- The computation of $\Gamma$ in $S_{0}$ is accomplished through a centered finite difference $\frac{\tilde{u}\left(S_{0}+\tilde{h}\right)-2 \tilde{u}\left(S_{0}\right)+\tilde{u}\left(S_{0}-\tilde{h}\right)}{\tilde{h}^{2}}$ where $\tilde{u}$ is an interpolation of the computed solution and $\tilde{h}$ is the smallest spatial step in the adaptive grid.
- The computation of $\mathcal{V}$ in $S_{0}$ is accomplished through a centered finite difference $\frac{\tilde{u}\left(S_{0}, 1.0001 \sigma\right)-\tilde{u}\left(S_{0}, 0.9999 \sigma\right)}{0.0002 \sigma}$ where $\tilde{u}$ is an interpolation of the computed solution.

| Problem | $s_{\min }$ | $s_{\max }$ | $N_{c}$ | $M_{c}$ | $\epsilon$ | $N_{f}$ | $M_{f}$ | TM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| 1a) SP | 0 | $4 K$ | 41 | 6 | $3.3 \mathrm{e}-3$ | 113 | 6 | $\mathrm{dG}(1)$ |
| 1b) SP | 0 | $4 K$ | 41 | 6 | $5.0 \mathrm{e}-5$ | 989 | 189 | $\mathrm{BDF}-2$ |
| 1c) SP | 0 | $4 K$ | 41 | 6 | $1.3 \mathrm{e}-3$ | 197 | 11 | $\mathrm{dG}(1)$ |

Table 1: Parameters used for Problems 1. Here SP and CP mean Standard Parameters and Challenging Parameters respectively, and TM stands for Timestepping Method.

### 4.1.2 Benchmark problem 2

### 4.1.3 Benchmark problem 3

### 4.2 Benchmark problem 6

| Problem | $s_{\min }$ | $s_{\max }$ | $N_{c}$ | $M_{c}$ | $\epsilon$ | $N_{f}$ | $M_{f}$ | TM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2) European call | 0 | $4 K$ | $41+41$ | $6+6$ | $2.6 \mathrm{e}-4$ | $537+377$ | $6+6$ | $\mathrm{dG}(1)$ |
| 2) American call | 0 | $4 K$ | $41+41$ | $6+6$ | $2.7 \mathrm{e}-4$ | $525+401$ | $6+6$ | $\mathrm{dG}(1)$ |

Table 2: Parameters used for Problem 2. Here TM stands for Time-stepping Method. $N_{f}=537+377$ means that 537 spatial grid-points were used between $T$ and $\alpha T$, and 377 spatial grid-points between $\alpha T$ and 0 , and similarily for $N_{c}$, $M_{f}$, and $M_{c}$.

| Problem | $s_{\min }$ | $s_{\max }$ | $N_{c}$ | $M_{c}$ | $\epsilon$ | $N_{f}$ | $M_{f}$ | TM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3) Local volatility smooth | 0 | $4 K$ | 41 | 6 | $3.5 \mathrm{e}-4$ | 353 | 38 | $\mathrm{BDF}-2$ |
| 3) Local volatility implied | 0 | $4 K$ | 41 | 6 | $1.7 \mathrm{e}-4$ | 725 | 31 | $\mathrm{BDF}-2$ |

Table 3: Parameters used for Problem 3. TM stands for Time-stepping Method.

| Problem | $s_{\min }^{1}$ | $s_{\max }^{1}$ | $s_{\min }^{2}$ | $s_{\max }^{2}$ | $N_{c}^{1}$ | $N_{c}^{2}$ | $M_{c}$ | $\epsilon$ | $N_{f}^{1}$ | $N_{f}^{2}$ | $M_{f}$ | TM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 0 | 350 | 0 | 175 | 101 | 101 | 10 | $3.6 \mathrm{e}-3$ | 277 | 409 | 40 | $\mathrm{BDF}-2$ |

Table 4: Parameters used for Problem 6. TM stands for Time-stepping Method.

